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This paper addresses the problem of foreground detection in real-
time video surveillance applications. We propose a framework, which is
computationally cheap and has low memory requirements. It combines
two simple processing blocks, both of which are essentially background
subtraction algorithms. The main novelty of our approach is a
combination of autoregressive moving average filter with two background
models having different adaptation speeds. The first model, having a lower
adaptation speed, models long-term background and detects foreground
objects by finding areas in current frame which significantly differ
from the proposed background model. The second model, with a higher
adaptation speed, models the short-term background and is responsible
for finding regions in the scene with a high foreground object activity.
Our final foreground detection is built by combining the outputs from
these building blocks. The foreground obtained by the long-term modeling
block is verified by the output of the short-term modeling block, i.e. only
the objects exhibiting significant motion are detected as a real foreground
objects. The proposed method results in a very good foreground detection
performance at a low computational cost.

Introduction: Visual surveillance systems are successfully used in a
number of different applications, such as traffic monitoring, people
tracking, etc. An important step in these application is the detection and
tracking of moving objects in real time. The scene analysis should consume
only a few percents of the available processing power and results should
be available with small or no delay. However, to separate moving objects
from the background scene remains challenging. In this work, we consider
the detection of moving objects as a generic preprocessing step, which can
be further used for object tracking and behavior analysis. We propose a
computationally efficient foreground detection method, which is focused
solely on accurate localization of moving objects, both in space and time.
The basic assumption of background subtraction methods is a fixed camera
position. Therefore, the background scene model is learned over time and
moving objects are identified as areas where the current pixel values differ
significantly from the current background model [2].

Background subtraction techniques usually impose two conflicting
requirements: accuracy of the background model and fast responsiveness
of the model to sudden changes in the background (such as illumination
changes). An accurate background model should precisely represent the
real background (BG) scene, not affected by foreground (FG) objects and
noise. Therefore, such models are usually implemented as slow-adaptive
algorithms which integrate information about the background over longer
periods. A fast-responding model, on the other hand, has to react quickly
on the appearance of moving objects and exclude them immediately from
the background otherwise false objects are introduced [2]. Such models
are typically fast-adaptive. However, models which are both accurate and
responsive need a trade-off between slow and fast-adaptive background
modeling. The optimal rate for a model adaptation is difficult to determine
without having previous knowledge on the monitored scenes.

In this paper, we propose a novel algorithm which solves the conflicting
requirements by combining two models, with significantly different
adaptation speeds. The final segmentation of foreground regions is
achieved by a combination of those two models. At first, the slow-adapting
model performs accurate detection of moving objects whereas the fast-
adapting model validates the detected objects afterwards. We tested the
proposed foreground detection method in many surveillance scenarios. The
results demonstrate a better detection of foreground objects compared to
related methods ([3], [4], [6] and [5]) especially in transient cases, when
new events occur in the scene. For example, objects, that are initially part
of the background but start moving, as well as moving objects, that stop
and become part of the background, are detected more accurately and more
quickly by the proposed method. Moreover, our proposed method is more
robust to sudden illumination changes.

The main property of the proposed background modeling method is
its low computational complexity, which makes it a few times faster than
state-of-the-art methods based on Mixture of Gaussian (MoG) models or
non-parametric kernel density estimation (KDE) [2].

The Proposed Method: In contrast to existing solutions, we propose
combining background subtraction with moving object validation at the
pixel level, rather than at the object level. In this way the algorithm is
faster, insensitive to the object’s size and shape and capable of suppressing
ghost objects even if they overlap with the real objects.

Our approach consists of a long-term and a short-term background
model, Bl

k and Bs
k, which are based on the computationally efficient

running average technique. At first, the i-th pixel of the k-th input frame
Ik is compared with the long-term model resulting in a binary mask F l

k as
follows

F l
k (i) = hyst

(∣∣Ik (i)− Bl
k (i)

∣∣) . (1)

Function hyst () denotes a hysteresis thresholding operation on an image.
All pixels in Ik having a gray value larger than or equal to TH are
immediately accepted as foreground. These pixels are denoted as secure
pixels. Conversely, all pixels with gray values less than TL = 0.5TH are
immediately rejected. In this way, detecting the noise as foreground is
avoided, but some of the foreground pixels are not detected either. In order
to include the missed ones, the pixels having gray values in between are
accepted as foreground if they are in the neighborhood of secure pixels.

At the same time, the image Ik is compared with the short-term model
resulting in a binary mask F s

k

F s
k (i) =

{
1, if

∣∣Ik (i)−Bs
k (i)

∣∣>TL
0, otherwise.

(2)

The thresholding is done using the same threshold TL as for the mask F l
k.

Only the lower threshold is used because the possible false detection of
motion due to noise is not critical. The final foreground mask Fk is found
as the intersection of the foreground areas indicated by the masks F l

k and
F s
k and therefore given by

Fk (i) = F l
k (i)F s

k (i) . (3)

The proposed foreground validation can also be seen as an integration
of a standard background subtraction approach and a motion detection
approach. The first one is realized by a long-term background model and
the second one by a short-term background model.

To achieve low memory requirements, we estimate the mean value
for Bl

k from previous frames in a recursive manner, using the following
relation:

Bl
k (i) = αk (i) Ik (i) + (1− αk (i))Bl

k−1 (i) , (4)

where αk (i) is a spatially adaptive learning rate. We update the long-term
model Bl

k selectively, only at the spatial locations where the foreground
objects are not detected in Ik. This prevents incorporation of moving
objects into the long-term background model. Therefore, we set αk (i) =
(1− Fk (i))αl. This implies that no additional frame buffers are needed
to store αk (i) because αl is a constant. Selectively updating of Bl

k could
cause propagation of false detections in time because the model is not
updated in foreground regions. However, this situation is prevented by the
short-term background module which works in conjunction with the long-
term background module.

The task of the short-term modeling block is to detect areas in the scene
where motion appears. However, because of the fact that the long- and the
short-term block are used jointly, we do not need to locate moving objects
accurately. It is rather important to detect areas containing significant
temporal activity. We assume that areas of significant activity contain all
moving objects and occasionally some neighboring areas. Our intention is
to detect slightly more motion in the scene than it is actually present, rather
than leaving out parts of the moving objects from detection. Therefore, the
short-term background model Bs

k is updated in a similar way as the long-
background model Bl

k given as follows:

Bs
k (i) = αsIk (i) + (1− αs)B

s
k−1 (i) , (5)

where αs is the learning constant. In contrast to (4), αs is constant and
has larger values than αl, which is the major difference between the
two models. In typical surveillance applications the algorithm is robust
to changes of αs and produces satisfactory results as long as αs is kept
sufficiently large, i.e. in the range [0.1, 0.5]. We found experimentally that
the learning rate αs ≈ 10αl produces good results in many scenarios.

Note that the proposed method has only two parameters, since
the threshold parameters are connected as well as the learning speed
parameters. Therefore, only the parameters TL and αs need to be chosen.
As a result, the proposed method has the same number of parameters as
the MoG background modeling scheme.
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Fig. 1 Representative results of video6 of the VSSN2006 Background
Competition: (a) the overall performance in the ROC space for the MoG method
and the proposed method calculated, and (b) the F-measure for MoG, adaptive
MoG, FGD, ViBe and the proposed method.

Experimental Results: We thoroughly compared the performance of
the proposed foreground detection method with a few state-of-the-
art background modeling methods: the MoG background subtraction
technique [3], the adaptive MoG method [4], the foreground detection
model (FGD) [6], which is not based upon MoG modeling scheme, and
ViBe [5]. Our main target is to develop a low-complexity algorithm,
suitable for the real-time implementation, while retaining sufficient
quality level. Therefore, the complexity of the proposed method is
compared mainly to the MoG method, since the other methods, used
in comparison, have significantly higher complexity. The MoG method
is well known and theoretically established. Nevertheless, regarding
hardware implementation it is also considered as a low-complexity
algorithm.

As stated in [1], we measure sensitivity, specificity and precision of the
foreground detection methods. The sensitivity represents the proportion of
TPs among the correct FG pixels and the missed FG pixels, as sensitivity =
TP/ (TP + FN). Whereas the specificity specifies the proportion of TNs
among all pixels detected as BG, as specificity = TN/ (TN + FP). Finally,
the precision is defined as the proportion of TPs among all pixels detected
as FG precision = TP/ (TP + FP). Usually there is a trade-off between
sensitivity and precision; obtaining a high sensitivity usually means
sacrificing precision and vice versa. Therefore, we used the F-measure
which quantifies how similar the obtained FG mask is to the ground-truth.

In Fig. 1(a), we report the overall performance in the Receiver Operating
Characteristic (ROC) space, which depicts the dependency between TP
rate (sensitivity) and FP rate (1-specificity) calculated as an average over
all frames. Each dot represents a different parameter set for the algorithms.
In the MoG method, the number of Gaussians K is set to 5, while the
learning speed parameter is varied in range [0.0005, 0.05] and the threshold
parameter in range [0.1, 0.99] (see [3]). For our proposed algorithm, αl is
varied in range of [0.01, 0.05], and TH in range of [4, 20]. We can see
that both algorithms perform well on average. However, on the sequences
the proposed algorithm is able to achieve slightly better TP rate than the
MoG method, at the cost of negligible increase in the FP rate. In Fig. 1(b),
the evolution of the F-measure over time is shown. The proposed method
adapts quickly (in approximately 10 frames). The MoG method, adaptive
MoG and FGD method adapt at a similar speed as the proposed method,
but achieve slightly lower accuracy. Only ViBe has problems in adapting,
and achieves an average performance.

The memory requirements of the proposed algorithm are rather small.
We need to store the long-term and short-term background models,Bl

k and
Bs

k, and the binary mask Fk. Therefore, the requirements of the algorithm
are basically three frames. This is much less than for the MoG method,
which needs at least 3 ·K frames (K has to be at least three [3]). Moreover,

the number of calculations needed for a model update is also small (4
multiplications and 2 additions), compared to the MoG method (2K + 7
multiplications and 2K + 4 additions). In addition, the proposed algorithm
is approximately four times faster than the MoG method (156 vs. 36 FPS
on the VSSN2006 sequences).

The test sequences and corresponding results are publicly available:
http://telin.ugent.be/~ljj/fgs_results/.

Conclusion: In this paper, we present a novel algorithm for foreground
detection. Here, we divide the problem into two simple parts: modeling of
the long-term background scene and finding regions containing motion.
Both models are combined using autoregressive moving average filter.
Therefore the advantage is twofold: at first, it is easy to analyze and
predict the behavior of the system, and secondly the algorithm is suitable
for hardware implementation due to modest memory and computation
requirements. However, this does not result in performance loss. On
the contrary, comparing to the state-of-the-art algorithms, the proposed
method performs often better compared to the state-of-the-art algorithms,
especially in transitional cases, when the background changes.
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