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Abstract. In this chapter, we address the use of Markov Random Field (MRF) prior models in
wavelet based image denoising. Two di�erent approaches are considered: the maximum a posteriori
(MAP) estimation of the wavelet coeÆcients using MRF priors, and the MAP estimation of signi�cant
edges in detail images. The second approach can be incorporated into many di�erent wavelet based
denoising schemes; in particular, we discuss its use in wavelet shrinkage techniques. Practical results
demonstrate that this approach is very eÆcient for suppressing di�erent kinds of natural noise, which
makes it attractive for di�erent applications.

1. Introduction. The wavelet representation has become very attractive for

image denoising because it naturally facilitates the construction of spatially adaptive

algorithms, which adapt to real discontinuities in the image and smooth noise only in

the areas where no signi�cant details are present. The wavelet decomposition enables

one to analyze di�erent image details at di�erent resolution scales. At each resolution

scale the wavelet coeÆcients can be organized into detail images, which represent

a bandpass content of the image in the speci�c (horizontal, vertical or diagonal)

spatial direction. Large wavelet coeÆcients occur exclusively in the areas of image

discontinuities, such as edges, peaks, corners, etc. Due to this property, noise can be

e�ectively suppressed even by simple thresholding [25] of the wavelet coeÆcients.

Advanced wavelet based denoising techniques make use of interscale dependen-

cies [18, 36, 48, 66], intrascale (spatial) dependencies [42, 56, 62] or both inter and

intrascale dependencies [28, 29, 51, 58] between wavelet coeÆcients. Spatial depen-

dencies in detail images, as well as those among pixel values in general, can be quan-

titatively expressed using the appropriate image models.

Markov Random Field (MRF) models are widely used in image processing, espe-

cially for texture modeling and classi�cation [1, 14, 19], image restoration [32, 33], and

segmentation of noisy and textured images [8, 17, 22, 43]. The classical concepts of

single-resolution image restoration using MRFs and the maximum a posteriori (MAP)

estimation were established in [32]. The extension of this approach to a multigrid

framework [33], has proved its advantages: better results are obtained, and at the

same time, the computation time is reduced. The implementation of these ideas in

the wavelet domain is a research �eld with great expectations, but also with a number

of di�erent possibilities and open questions.

For the wavelet representation, multiscale or hierarchical MRF models, like the

one in [40], seem to be the most natural choice. These models enable a complete

modeling of the wavelet coeÆcients of images, including both interscale and spatial

dependencies. On the other hand, such models call for a big memory and a long

computation time. Their application in the wavelet domain is not well studied yet.

Instead, many wavelet based techniques apply hidden Markov tree (HMT) models

[18, 59]. For images, these models are de�ned on a quad-tree structure, and lead to

much faster algorithms than multiscale MRF. However, HMT models do not capture

the spatial dependencies between wavelet coeÆcients, but only the evolution of their

magnitudes through resolution scales. Such models are naturally related with the

wavelet representation of one-dimensional signals, but do not encounter the speci�c

properties of images (the spatial context). To overcome this disadvantage, so-called

contextual HMT model was recently proposed [28, 29]. It combines a simple local
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spatial model into a classical HMT. For encoding the prior knowledge about spatial

dependencies, MRF models remain more powerful. Our interest in this chapter is the

application of the MRF models in the wavelet domain.

An attractive approach in this respect was proposed in [51]. It uses a binary MRF

to encode the prior knowledge about the \geometry" of detail images, and applies the

MAP estimation of the positions of useful edges. The interscale dependencies are

taken into account through a speci�c data distribution model. Related approaches

were later proposed, e.g., in [57, 58]. These techniques apply a Bayesian shrinkage

of the wavelet coeÆcients, using MRF priors for their spatial clustering. Practically,

the shrinkage factor applied to a given wavelet coeÆcient depends not only on the

measurement at the corresponding spatial position, but it also depends on the spatial

context. One should note that this approach di�ers signi�cantly from [35]. There,

the authors also note that signi�cant wavelet coeÆcients are clustered in space, but

apply it to a di�erent problem: to better estimate an \optimum" threshold value,

which is constant for a whole detail image. Using such a �xed threshold one cannot

preserve edge clusters of wavelet coeÆcients, and suppress at the same time larger,

but isolated ones. And precisely this is enabled by using MRF priors.

In this chapter, we have three main objectives. The �rst one is to present the

basic concepts of the wavelet based image denoising using MRF prior models in a

comprehensive way, suitable for non-experts in this �eld. The second objective is

to emphasize its various applications. Indeed, the Bayesian shrinkage using MRF

priors proves to be very useful for di�erent kinds of natural images. In particular, we

demonstrate its application to infrared images (humanitarian demining), ultrasound

images (medicine) and radar images (remote sensing). Finally, our third objective

is to discuss a general framework of using the MAP-MRF denoising in the wavelet

domain. The use of binary MRF prior models is only one possibility in this respect.

Instead, one can implement the classical MAP-MRF estimation in the fashion of [32]

to the wavelet coeÆcients. We do not propose any practical algorithm of this kind,

but we do discuss some possibilities and point some advantages and speci�c problems.

This chapter is organized as follows. In Section 2, we explain brie
y the wavelet

transform and the related multiresolution representation of signals. The basic con-

cepts of wavelet based image denoising are introduced in Section 3. We discuss in

more detail some approaches that can be further extended or combined with MRF

priors. Next, in Section 4, we address the use of spatial context in image denoising.

The relationship between Markov and Gibbs random �elds is discussed and some often

used MRF models are presented. The main subject is treated in Section 5, where we

apply MRF models to wavelet based image denoising. We use the MAP approach and

apply it in two di�erent directions: (i) to estimate the \actual" values of the wavelet

coeÆcients and (ii) to estimate masks, which indicate the positions of meaningful

wavelet coeÆcients. The computational aspects for both of these cases are discussed.

In Section 6, we present some results and discuss di�erent applications.

2. The Wavelet Representation. In signal processing theory and applications

the representation of signals plays a fundamental role. We need to represent signals

in a way that facilitates the extraction of certain characteristics or features that are

important for a speci�c problem (e.g., the occurrence of abrupt changes in time or

edges and di�erent textures in images). It is essential for the chosen representation to

be computed quickly, because otherwise it has little practical importance. A common

way to obtain a speci�c representation is to decompose a signal f(x) into elementary

\atoms" or building blocks  i(x) that are simple waveforms f(x) =
P

i �i i(x).
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Figure 2.1. A few wavelets obtained from the Mexican hat mother wavelet  (x) = (1 � 2x2)e�x
2

.

For many applications (like compression and denoising) it is extremely important

to have a representation with good approximation properties, i.e., with the ability

to represent a signal at a given level of accuracy with as few building blocks as

possible. Another important point is that details in signals or images that we want to

analyze may have many di�erent sizes. It is generally diÆcult to �nd one single and

optimal resolution scale to analyze the complete signal. The power of amultiresolution

representation is that it enables one to analyze di�erent details at di�erent resolution

scales. All these advantages are o�ered by the wavelet decomposition, which has

therefore become a widely used representation in signal and image processing.

In one dimensional wavelet representation, the signal is decomposed into a family

of wavelets

 a;b(x) =
1
p
a
 (
x� b

a
); a > 0; b 2 R(2.1)

that are obtained from a unique \mother wavelet"  (x), by dilating (scaling) it by a
and translating it by b. A mother wavelet  (x) is generally a function in the Hilbert

space L2(R) (the space of square integrable functions) that has unit norm k (x)k = 1,

oscillates around the x-axis, averages to zero and has a compact support (it is well

localized around x = 0). A more formal characterization of wavelet functions is given,

e.g., in [16, 20, 50].

In Fig. 2.1, several wavelets are shown that are obtained from the mother wavelet

 (x) = (1 � 2x2)e�x
2

; this wavelet is the second derivative of a Gaussian function

and is called the Mexican hat. At small resolution scales, the localization of wavelets

in signal domain gets �ner, which is appropriate for analyzing �ne, high frequency

details. At coarser scales the wavelets are more elongated in the signal domain and

better localized in the frequency domain, which is appropriate for analyzing the slow

changes in a signal. The wavelet representation can be implemented using the contin-

uous wavelet transform, using wavelet frames or using wavelet bases. Each of these

representations has its advantages for speci�c applications. We shall use for denoising

the frame representation, but �rst we start with a general brief overview.

2.1. Continuous wavelet transform. The continuous wavelet transform of a

signal f(x) is de�ned as

Wf(a; b) =
1
p
a

Z
1

�1

f(x) 
�x� b

a

�
dx = hf;  a;bi;(2.2)

where  (x) denotes the complex conjugate of  (x) and hf; gi is the usual notation

for the inner product
R
1

�1
f(x)g(x)dx. The existence of the inverse transform is
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guaranteed if the wavelet is chosen such that
R
1

�1
j ̂(!)j2=j!jd! < +1, which implies

 ̂(0) = 0. Therefore,  (x) can be viewed as an impulse response of a bandpass �lter.

The continuous wavelet transform is redundant. Its advantages over the discrete

wavelet representations are the greater freedom in the choice of a wavelet and the

shift invariance. An important property of this transform, which is often exploited

for denoising, is the following [50]: the rate of increase or decrease of jWf(a; x)j
through resolution scales is directly related to the local Lipschitz regularity1 � of the

signal. Formally, if a function f(x) is Lipschitz � at a point x0, then

jWf(a; x)j � A a�+
1

2 ; for jx� x0j � Ka;(2.3)

where K is the support of the mother wavelet  (x). A region in the scale-space plane

(a; x), for which jx � x0j � Ka is called the cone of in
uence (COI) of the point x0.
If a function f(x) has � > 0 at a certain point, then the amplitude of the wavelet

transform increases through scales within the COI of that point. In the case where

� < 0 the amplitude of the wavelet transform decreases through scales. This was �rst

in [48] exploited for denoising, assuming that for meaningful signal transitions � > 0

and for those that originate from noise � < 0.

It is diÆcult to implement the continuous wavelet transform with a fast algorithm.

In practical applications it can be computed only on a discrete grid, which involves

sampling in scale and location.

2.2. Wavelet bases. Among the most remarkable achievements in the wavelet

theory is the construction of orthonormal wavelet bases and the development of fast

algorithms [46, 47] for decomposing signals into wavelet basis functions. There exist

some wavelets [20] such that the family  j;k(x) = 2j=2 (2jx � k), with j; k 2 Z

constitutes an orthonormal basis for the Hilbert space L2(R), which means that each

function f in L2(R) can be represented as

f(x) =
X
j;k2Z

hf;  j;ki j;k(x):(2.4)

The wavelet coeÆcients in this representation are obtained by sampling the con-

tinuous wavelet transform (2.2) at dyadic scales a = f2�jgj2Z and at locations pro-

portional to the scale b = f2�jkgj;k2Z , i.e., wj;k = hf;  j;ki = Wf(2�j ; 2�jk). A

greater index j corresponds to a smaller scale 2�j and thus to a �ner resolution.

With each mother wavelet  (x), a unique scaling function '(x) is associated [47],

which is often called a \father wavelet". Scaling functions 'j;k(x) = 2j=2'(2jx � k)
constitute an orthonormal set for �xed j. In a multiresolution analysis, the decom-

position of a signal into the basis 'j;k(x) = 2j=2'(2jx � k) is used to approximate a

signal at the resolution scale 2�j . The details that constitute the di�erence between

approximations at the resolution scale 2�j and the next �ner scale 2�(j+1) are decom-

posed into the basis  j;k = 2j=2 (2jx�k). This multiresolution concept is depicted in

Fig. 2.2. In the engineering terminology, the scaling coeÆcients uj;k = hf'j;ki repre-
sent the lowpass content of the signal f(x) and the wavelet coeÆcients wj;k = hf j;ki
its bandpass content at a given resolution scale.

Image processing methods make use of two-dimensional wavelets, and commonly

three separable wavelets are used:  LH(x; y) , '(x) (y),  HL(x; y) ,  (x)'(y) and

1A function f(x) is said to be Lipschitz � � 0 at a point x0 if and only if there exist two positive
constants A and h0, and a polynomial Pn(x) of order n < �, such that jf(x0 +h)�Pn(h)j � Ajhj�,
for h < h0. The sup of the set of all � for which this is satis�ed is called the Lipschitz regularity.
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Figure 2.2. The multiresolution concept.

 HH (x; y) ,  (x) (y); these wavelets correspond to horizontal, vertical and diagonal

details, respectively. In practice a �nite number of resolution scales is used and an

image f(x; y) is decomposed as the sum

f(x; y) =
X
k

un;k'n;k(x; y) +

+

N�1X
j=n

X
k

(wLHj;k  
LH
j;k (x; y) + wHL

j;k  
HL
j;k (x; y) + wHH

j;k  
HH
j;k (x; y));(2.5)

where j = n corresponds to the coarsest and j = N to the �nest resolution scale. To

keep the notation short, we have used in (2.5) one index k to represent a pair of shifts

in x and y directions, i.e.,  j;k(x; y) = 2j (2jx�k1; 2jy�k2), where k = (k1; k2) 2 Z2.

The wavelet decomposition (2.5) reorganizes the image content into a set of im-

ages: the lowpass image, i.e., the set of scaling coeÆcients un = fun;kg, k 2 Z
2

that approximate f(x; y) at the coarsest scale, and several bandpass or detail images

w1
j = fwLHj;k g;w

2
j = fwHL

j;k g and w3
j = fwHH

j;k g, k 2 Z2 containing details (edges) of

di�erent orientations LH, HL, HH and at di�erent resolution scales n < j < N .

Wavelet bases provide a nonredundant representation of signals in terms of their

wavelet coeÆcients. An eÆcient algorithm for discrete nonredundant wavelet trans-

form, implemented with �lter banks, was proposed in [46] and [47]. Rows and columns

of an image are �ltered with given lowpass and bandpass �lters, and subsequently

downsampled by two (removing every other sample). Therefore, at each coarser scale

the number of samples is reduced by a factor two in each dimension. The discrete

nonredundant wavelet representation is widely used for image coding and compression

[3, 60], as well as image denoising [4], [23]-[26], [28, 54, 61, 65, 67].

2.3. Wavelet frames. In many practical applications it is better to avoid down-

sampling at successive resolution scales and to represent a signal with the same

number of wavelet coeÆcients at each scale. Such a redundant representation, us-

ing dyadic scales, is obtained by decomposing a signal into a family of wavelets

 j;k = 2j=2 (2j(x � k)). In this representation the wavelet coeÆcients are sam-

ples of the continuous wavelet transform at all integer locations at each dyadic scale,

i.e., wj;k = Wf(2�j ; k). The wavelets 2j=2 (2j(x � k)) are not linearly independent

and thus they do not constitute a basis but a frame. A detailed analysis of wavelet

frames is presented [16, 20, 50].

In this chapter, we shall use the redundant frame representation, with spline

wavelets from [49], in the classical form of (2.5). An example of such a decomposition

is given in Fig. 2.3. It is computed using the �a trous algorithm [49, 50]. This redun-

dant decomposition requires more calculations and calls for bigger memory than the
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Figure 2.3. An example of the redundant wavelet frame decomposition in three resolution
levels. From left to right are represented lowpass images and detail images in LH, HL and HH
subbands, respectively.

decomposition into wavelet bases. However, this is a price worth paying for better

solving some practical problems. Several advantages of are listed below.

In a redundant representation, the wavelet coeÆcients are well correlated across

scales. The relation between the wavelet coeÆcients at the same location in successive

resolution levels (wj;k and wj+1;k) is a source of additional information that can be

exploited to better distinguish useful signal from noise.

The nonredundant representation is not shift invariant. When the signal is shifted

its continuous wavelet transform is translated by the same amount, but this is not

generally true for the sampled coeÆcients. To better approach the translation invari-

ance one needs to sample the coeÆcients at more dense locations. The representation

with equally dense sampling at all scales is in this respect better than the wavelet ba-

sis representation. The shift invariance is important for pattern recognition purposes,

but also for the estimation of local Lipschitz exponents (Section 2.1).

The nonredundant representation is usually implemented for discrete signals or

images which size is a power of two, because the number of coeÆcients is halved

in subsequent resolution levels. When this downsampling is avoided, the wavelet

transform is equally implemented for arbitrary input sizes.

Finally, for the topic of this chapter the redundant representation is more inter-

esting; spatial dependencies between wavelet coeÆcients are much higher and more

important for denoising than in the case where orthogonal transform is used.

3. Wavelet-Based Image Denoising Methods. The common procedure in

wavelet based denoising is the following: (1) Compute the discrete wavelet transform;

(2) Modify the wavelet coeÆcients in order to remove noise and (3) Reconstruct the

denoised signal from the modi�ed wavelet coeÆcients.

We shall use the following notations. Random variables will be denoted by capital

letters and their realizations by the corresponding small letters. Boldface capital

letters will be used for vectors of random variables and boldface small letters for

vectors of realizations. Furthermore, in order to have a more compact representation,

we shall omit the indices of the wavelet coeÆcients that indicate the scale and the

orientation, unless in cases where it is explicitly needed. Thus, the wavelet coeÆcients
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(a) (b)

Figure 3.1. Shrinkage factors that multiply the wavelet coeÆcients in (a) hard-thresholding
and (b) soft-thresholding.

will usually have only one index that corresponds to their spatial location and a given

detail image will be represented as w = fw1; :::; wng. We assume the following model

w = y + n;(3.1)

where y is the unknown \clean" detail image that we want to estimate and n is the

additive white Gaussian noise.

3.1. Thresholding of the wavelet coeÆcients. In the wavelet domain, the

essential information about the signal is contained within relatively few, large coeÆ-

cients. The large wavelet coeÆcients occur exclusively in the areas of major \spatial

activity", i.e., near places where image transitions occur (edges, corners, peaks, ...).

This property suggests that a spatially adaptive denoising algorithm can be based

on selecting the subset that consists of large coeÆcients and treating it in a di�erent

way than the other wavelet coeÆcients that represent mainly noise. This is the idea

of wavelet thresholding [23]-[26]. These techniques were mainly developed for the

orthogonal wavelet representation and for the case of additive white Gaussian noise.

Two standard thresholding policies are: hard-thresholding, (\keep or kill"), and

soft-thresholding (\shrink or kill"). In both cases, the coeÆcients that are below a

certain threshold are set to zero. In hard-thresholding, the remaining coeÆcients

are kept unchanged. On the other side, in soft thresholding, the magnitudes of the

remaining coeÆcients are reduced by an amount equal to the value of the threshold.

We can say that in both cases each wavelet coeÆcient is multiplied by a given shrinkage

factor, which is a function of the magnitude of the coeÆcient (Fig. 3.1).

In soft thresholding, the estimates are biased: large coeÆcients are always reduced

in magnitude; therefore, the mathematical expectations of their estimates di�er from

the observed values. On the other side, hard thresholded estimates have a larger

variance and may be highly sensitive to small changes in the data.

The choice of an \optimum" threshold depends on the chosen optimality criterion

(e.g., the minimization of the expected mean squared error or minimization of a given

risk function). Many methods for estimating the threshold use the fact that under

orthogonal transformation, such as decomposition into a wavelet basis, the white noise

in the input image maps into a white noise in the transformation (wavelet) domain.

The well known universal threshold [23] is derived as: Tuniv = �̂
p
2log(n), where �̂

is the estimate of the standard deviation of additive white noise and n is the total

number of the wavelet coeÆcients in a given detail image. The motivation for choosing
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this threshold was the following: if we have a sequence of n independent, identically

distributed random variables (white noise) with normal distribution N(0; 1), then the

maximum of this sequence is smaller than
p
2log(n) with a probability approaching

one when n tends to in�nity. Therefore, for detail images of the same orientation the

universal threshold di�ers only in the constant factor that is related to the number

of coeÆcients at a given resolution level. Other thresholds that are estimated in an

adaptive way for each level were proposed, e.g., in [26, 38, 67].

3.2. MAP estimation assuming independent wavelet coeÆcients. An-

other approach in wavelet-based image denoising applies classical Bayes estimation

theory. Many techniques, like [61, 65], use orthogonal wavelet representation and

assume statistically independent wavelet coeÆcients with heavy-tailed prior distribu-

tions. We shall explain this approach in more detail, because later (in Section 5) it

will be extended to include the spatial dependencies between the wavelet coeÆcients.

In the estimation theory, the Bayes estimate is known as the best estimate in the

case when the data distribution is known and when appreciable prior knowledge about

the quantity being estimated is available. A special case of the Bayes estimate is the

maximum a posteriori (MAP) estimate, which maximizes the posterior probability of

the solution

P (Y = yjW = w) =
pWjY(wjy)P (Y = y)

pW(w)
:(3.2)

The denominator in (3.2) does not play a role in the search for the vector y

that maximizes the whole expression. Therefore, it can be omitted for the sake of

clarity. Under the assumption of an additive white noise model, the conditional

density is separable: pWjY(wjy) =
Q

s pWsjYs(wsjys). Further on, if it is assumed

that the wavelet coeÆcients are independent, the prior distribution is also separable,

i.e., P (Y = y) =
Q

s P (Ys = ys). In this case, the MAP estimation problem can be

separated into n independent optimization problems:

ŷs = arg maxs pWsjYs(wsjys)P (Ys = ys); 1 < s < n:(3.3)

The prior distribution of the wavelet coeÆcients in the form of a generalized

Laplacian distribution pY (y) = a exp(�jbyj�) was proposed in [47], where the shape

parameter � is typically between 0 and 0.5. Estimation of the parameters of the prior

distribution using higher-order statistics was performed in [61]. The relationship

between the MAP estimators and wavelet thresholding was studied in [53]. There it

was shown that the soft-thresholding method is equivalent to the MAP estimation

assuming a Laplacian prior on the wavelet coeÆcients, with standard deviation equal

to �y = �2T�1univ

p
2, where �2 is the noise variance and Tuniv is the universal threshold.

3.3. The use of a redundant wavelet representation in denoising. A re-

dundant wavelet representation o�ers a better reconstruction of useful signal from

noise than the orthogonal one (see, e.g., the discussion in [16]). We assume here

the speci�c redundant representation with the same number of wavelet coeÆcients at

each resolution scale. In this case, as it can be seen from Fig. 2.3, the most signi�cant

wavelet coeÆcients are highly correlated across scales and inside a given detail image.

Di�erent denoising techniques make use of these dependencies in di�erent ways, in

order to achieve a better separation of useful signal from noise. In [48], the evolution

of the modulus maxima of the wavelet transform through resolution scales is exploited

to estimate the local Lipschitz exponents � (see Section 2.1). The modulus maxima
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(a) (b)

Figure 4.1. (a) An example of spatially connected clusters of wavelet coeÆcients. (b) A
perturbation of (a) possibly due to noise.

which originate from discontinuities with � < 0 are assumed to represent noise and

are removed. The denoised image is then reconstructed from these modi�ed modulus

maxima. It was theoretically proved and practically demonstrated [49] that a close

approximation of the image can be reconstructed from the modulus maxima of the

wavelet transform. However, the reconstruction involves a computationally demand-

ing iterative procedure. Several techniques, like [11], have been proposed to improve

the convergence of the reconstruction process. The approach of [36] performs the

thresholding of the wavelet coeÆcients, where the threshold is applied to the rough

estimates of the local Lipschitz exponents; these estimates are found by computing

the interscale ratios of the wavelet coeÆcients. Another method [66], calculates the

products between the wavelet coeÆcients at several adjacent scales in order to iden-

tify the positions of signi�cant wavelet coeÆcients, from which the denoised signal is

reconstructed.

4. Markov Random Field Image Models. The wavelet based denoising

methods analyzed so far do not exploit spatial dependencies between wavelet coeÆ-

cients. Generally, the use of spatial context is of great importance in image processing

and pattern recognition. The intensity, i.e., the brightness level of a pixel in an image

is highly dependent on the intensities of surrounding pixels, unless the image is simply

random noise. The knowledge about the image structure can be used to recover miss-

ing information or to correct erroneous data. The image structure is also re
ected

in the detail images of its wavelet decomposition. We assume here the redundant

decomposition, with equal number of the wavelet coeÆcients at each scale (Fig. 2.3).

In this case, high spatial dependencies between wavelet coeÆcients are evident.

An example in Fig. 4.1(a) illustrates schematically a part of a typical detail image.

The lightest colors correspond to the largest positive coeÆcients, and the darkest

colors to the negative coeÆcients with highest magnitudes. The spatially connected

clusters, like these in Fig. 4.1(a), are a priori more probable, than the case where the

large coeÆcients appear isolated like in Fig. 4.1(b). This prior knowledge can be used

to improve the result of the denoising. The dependencies among neighboring pixel

intensities are quantitatively expressed by using an appropriate image model. There

exist many di�erent image models, such as linear prediction [37], random mosaic [2],

fractal models [30, 55], etc. Random �eld image models treat the intensity of a pixel

as a random variable and impose statistical dependence between image pixels.

It is convenient to introduce at this point the notion of a label as it will be

frequently used in the rest of this chapter. Many problems in image processing, such

as image restoration, segmentation or edge detection �t into a general image labeling
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Figure 4.2. A con�guration (realization) of an image �eld sampled on a rectangular lattice.

framework, where a given label is assigned to each pixel. In image restoration, the

label that is assigned to a pixel is the \true" gray value of its intensity. In image

segmentation the label determines the category of a pixel, i.e., its belonging to a

speci�c class. In edge detection the labels are binary: if a pixel belongs to an edge

it is assigned one label and in the opposite case the other. The values of the wavelet

coeÆcients, in this general framework, can also be interpreted as labels assigned to

the corresponding pixels in detail images. In the language of random image models

the statistical dependencies among pixel labels are called spatial interactions.

4.1. Markov Random Fields. MRF models are widely used in image pro-

cessing and pattern recognition, as they provide a convenient way of modeling local

spatial interactions, i.e., they describe statistical dependence of a pixel label on labels

in its local spatial surrounding. In real images, a pixel label (e.g., the gray value in

a given point) is signi�cantly correlated only with a limited number of other labels

and for this reason the local characterization is valid. For image denoising the global

characterization in terms of the joint probability of all pixel labels is also important,

but this subject will be addressed later.

First, we introduce the notations and some basic concepts of random image mod-

els. Let S = f1; :::; ng be a �nite index set - the set of sites on a regular rectangular

lattice. The elements of S correspond to points at which an image is sampled, i.e., to

the location of image pixels. A family of random variables X = fX1; :::; Xng de�ned
on the set S is called the image �eld. The notation X = x will be used to abbreviate

the joint event (X1 = x1; :::; Xn = xn). The vector x = fx1; :::; xng is a con�guration

of X, corresponding to a given realization of the image �eld. The space of all possible

con�gurations of X will be denoted by X . A subscript in the notation of a vector will

be used to indicate that only some variables are present in the vector. For example,

XSns denotes the vector of random variables Xt such that t 2 S n fsg.
A random �eld is a family of random variables X = fX1; :::; Xng such that all its

possible con�gurations have strictly positive probability. A speci�c class of random

�eld models called Markov random �elds furthermore requires that the label of each

pixel is in
uenced only by pixels that are its neighbors. Not necessarily, but usually

these neighbors are the pixels that are surrounding the current one. Formally, the

neighboring relation is de�ned as follows.

Definition 4.1. A collection @ = f@(s) : s 2 Sg of subsets of S

is called a neighborhood system, if
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(a) (b)

Figure 4.3. (a) First order neighborhood. (b) Second order neighborhood.

1. s =2 @(s)
2. s 2 @(t) if and only if t 2 @(s).

The sites s 2 @(t) are called neighbors of t. The notation hs; ti will be used to denote

that pixels s and t are neighbors of one another.

Two examples of neighborhoods are shown in Fig. 4.3. The neighborhood in

Fig. 4.3(a) is called the four-point or the �rst order neighborhood, and the neighbor-

hood in Fig. 4.3(b) is called the eight-point or the second order neighborhood. For

practical reasons, these two neighborhood systems are the most frequently used in

image processing. The formal de�nition of a Markov random �eld is:

Definition 4.2. The random �eld X is a Markov �eld with respect to the

neighborhood system @ if for all x 2 X

P (Xs = xsjXSns = xSns) = P (Xs = xsjX@(s) = x@(s)):(4.1)

According to this de�nition, the probability of a pixel label xs, given all other labels

in the image practically reduces to a function of relatively small number of labels that

are in the neighborhood @(s). It should be noted that by choosing an arbitrarily large

neighborhood @(s) the MRF model can be applied to every image. MRF models that

are applied in image processing are often homogeneous (i.e., strictly stationary), but

it is not a general property of a MRF. The homogeneity property means that the

distribution P (Xs = xsjX@(s) = x@(s)) is the same for all pixels s.

4.2. The equivalence between Markov and Gibbs random �elds. Gibbs

random �elds (GRF) [52] are used in statistical mechanics as probability models for

the 
uctuations of large physical systems around their equilibrium state. While MRFs

characterize local aspects, GRFs explicitly express the joint probability of the system

variables, providing thus a model for global context. The link between Markov and

Gibbs random �elds provides an excellent framework for specifying the global context

via local spatial interactions. A Gibbs random �eld is generally a random �eld X for

which the con�gurations x obey a Gibbs distribution

P (X = x) =
1

Z
e�H(x)=T ;(4.2)

where H(x) is called the energy function and Z and T are constants. Z is the

normalizing constant Z =
P
x2X e

�H(x)=T and is called the partition function. T
is the temperature and it actually controls the \peaking" in the probability density:

if T is smaller there is a bigger di�erence between joint probabilities of di�erent

con�gurations x and peaks in the density that correspond to con�gurations with

lowest energy are easier to �nd.

The relationship between Gibbs and Markov random �elds was established by

introducing cliques (Fig. 4.4). A clique is a set of sites in which two di�erent elements

are always neighbors. The set of all cliques will be denoted by C. The clique potential

VC(x) is a function of only those variables xs for which s 2 C. If the energy H(x) can
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(a)

(b)

Figure 4.4. (a) The clique types for (a) the �rst order and (b) the second order neighborhood.

be decomposed as a sum of clique potentials then the corresponding Gibbs random

�eld is called a neighbor Gibbs �eld, and is equivalent to a Markov random �eld. This

is stated in the often cited Hammersley-Cli�ord theorem:

Theorem 4.3. A random �eld is a Markov �eld for the neighborhood system @
if and only if it is a neighbor Gibbs �eld for @.

Di�erent proofs of this theorem can be found in, e.g., [44, 68]. Its practical value

is that it provides a simple way of specifying the joint probability of MRFs:

P (X = x) =
1

Z
exp
�
�
1

T

X
C2C

VC(x)
�
:(4.3)

The equation (4.3) characterizes the global context (joint distribution of all pixels

in an image) in terms of local spatial characteristics that are expressed through clique

potentials. One chooses the appropriate clique potential functions to give preference

to certain local spatial interactions. In this way, the prior knowledge about an image

is encoded. For example, for image denoising it is important to remove the occurrence

of isolated pixels that are usually produced by noise. This prior knowledge can be

encoded by choosing such a clique potential function that the lowest potential corre-

sponds to the case when all pixel labels in a clique are equal. In this way we give a

preference to spatial continuity over pixels that di�er strongly from their neighbors.

4.3. Speci�cation of MRF models. There exist di�erent MRF models that

assume continuous or discrete label sets and that use di�erent neighborhoods and

clique potential functions. The particularly simple Ising model is often used as a

starting point for studying Markov Random Fields. This model was proposed by

the German physicist E. Ising in 1925 for the purpose of modeling the behaviour of

ferromagnets. We shall present it here in terms of images. The energy function in the

Ising model takes the form

H(x) = �
X
s

xs + �
X
hs;ti

xsxt;(4.4)

where � and � are constants and the labels xs assume binary values�1. The neighbors
hs; ti are the horizontally and vertically adjacent pixels at the Euclidean distance 1;

thus the �rst order neighborhood from Fig. 4.3 is assumed. The �rst term in (4.4) is

the cost that is paid for the occurrence of a given label in the image irrespective of

the values of its neighbors: depending on the sign of the factor � one of the labels

-1 or +1 will contribute to the higher energy, being thus \more expensive" and less

probable. Therefore, by choosing � we encode the prior preference of a given label. If

both labels are equally probable a priori, we choose � = 0. The second term in (4.4)

corresponds to the interaction of neighboring labels. If � < 0 then equal neighboring
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(a) (b) (c)

Figure 4.5. Di�erent con�gurations of the Ising model. In all cases � = 0 and (a) � = �0:25,
(b) � = �0:45 and (c) � = �0:9.

labels contribute to the lower energy, and therefore xs = xt will be more probable

than xs 6= xt. If � > 0 the opposite is true. The Ising model is homogeneous because

� and � are constants that do not depend on the spatial location s. It is also isotropic
(i.e., rotationally invariant) because � is the same for neighbors hs; ti in all possible

(here horizontal and vertical) directions. To illustrate the Ising model, we present in

Fig. 4.5 three samples of this random �eld that correspond to � = 0 and di�erent

values of the parameter �. We have sampled these con�gurations using the Metropolis

algorithm (Section 5.3) at temperature T = 1.

For practical reasons, image processing methods mostly use MRF models with

cliques consisting of two sites (pair-site cliques). When the prior probabilities of

di�erent labels are known (which is less frequently the case in practice), single-site

cliques are additionally used. The general form of the energy for MRF models with

clique potentials of up to two sites is

H(x) =
X
C2C

VC(x) =
X
hs;ti

V2(xs; xt) +
X
s

V1(xs);(4.5)

where V1(xs) denotes the potential function for single-site cliques, and V2(xs; xt) is
the potential function for pair-site cliques.

Commonly used MRF models in image processing are automodels [5]. There,

the potential functions are of the form V1(xs) = xsgs(xs) and V2(xs; xt) = �s;txsxt;
gs(�) are arbitrary functions and �s;t are constants, which re
ect the pair-site inter-

actions. If the constants �s;t are di�erent for pairs hs; ti that form cliques of di�erent

orientations then preference is given to spatial clusters in speci�c directions; this is

needed for modeling anisotropic textures [19]. For image denoising, isotropic models

are mainly used. However, if we apply a MRF model to encode the prior knowledge

about wavelet detail images, it could be useful to use an anisotropic model to give

preference to horizontal, vertical or diagonal clusters in di�erent detail images.

Important classes of auto models are auto-logistic models [44], auto-binomial mod-

els [19] and auto-normal models, which are also called Gaussian Markov Random Field

(GMRF) models [13, 14, 39]. GMRF models are often used for image segmentation

[8, 17, 43]. In [41], a method was proposed for selecting the neighbor sets in GMRF,

based on the spatial correlation of image.

The multi-level logistic (MLL) model is used, e.g., in [22] and in [32], where it is

called the generalized Ising model. For cliques containing two or more sites the MLL
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potentials are de�ned as

VC(x) =
n �
c; if all xs; s 2 C are equal;

+
c; otherwise;
(4.6)

where 
c is the potential for type c cliques. We have used this model, with pair-site

cliques and the second order neighborhood for the results in Section 6.

5. MAP-MRF approach to wavelet based image denoising. In this sec-

tion, we address the MAP approach to wavelet based image denoising, applying a

MRF prior model. We use the redundant wavelet representation, with equal number

of the wavelet coeÆcients at each resolution scale (Section 2.3). The assumed noise

model is given in Eq (3.1). However, the analysis that follows can be applied or easily

extended to other cases, with di�erent kinds of noise.

5.1. Bayesian estimation of the wavelet coeÆcients using a MRF prior.

The MAP approach was already introduced in Section 3.2. However, there it was

assumed that a prior distribution of each wavelet coeÆcient was available and that

wavelet coeÆcients were statistically independent. Now that we take the spatial

dependencies into account, we search for the joint MAP estimate ŷ of all wavelet

coeÆcients in a detail image

ŷ = arg maxy2Y pWjY(wjy)P (Y = y);(5.1)

where the joint probability P (Y = y) is a Gibbs distribution (4.3). Similarly as

in Section 3.2, we assume pWjY(wjy) =
Q

s pWsjYs(wsjys). This is a reasonable

assumption when noise is spatially noncorrelated. Furthermore, one can present an

arbitrary conditional distribution in the exponential form p(wjy) = A exp(�V (wjy))
by choosing V (wjy) = ln(A) � ln(p(wjy)), where A is a given constant. Then the

conditional probability model becomes

pWjY(wjy) = A exp
�
�
X
s

V (wsjys)
�
:(5.2)

If we use this conditional probability model and if we use the Gibbs distribution

in (4.3) with the partition function Z, the temperature T and the energy function

H(y) =
P

C2C VC(y) to model the joint probability P (Y = y) of the prior MRF

�eld, the posterior probability is also a Gibbs distribution

P (Y = yjW = w) =
1

�
exp
�
�
H(yjw)

�

�
;(5.3)

where the partition function is � = A=(Z � P (W = w)), which is independent of y.

The temperature is � = T and the posterior energy is of the form

H(yjw) =
X
s

V (wsjys) + �
X
C2C

VC(y):(5.4)

The constant � actually represents the in
uence of the prior knowledge that is encoded
in the model. Thus, the MAP solution (5.1) is the global minimum of the posterior

energy (5.4). This is a classical image restoration problem using Gibbs distributions

[32], applied to denoising in the wavelet domain. The posterior probability (5.3) is
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an imaginary physical system whose lowest energy state is exactly the MAP estimate

of the noise-free detail image given the noisy data. In the particular case where the

observation noise is white Gaussian and has zero mean and variance �2, the posterior
energy is of the form

H(yjw) =
X
s

(ws � ys)
2 +

2�2

T

X
C2C

VC(y):(5.5)

Practical computation of the MAP solution ŷ by minimizing the posterior energy

H(yjw) is addressed in Section 5.3. Such a solution should yield better results than

one assuming independent wavelet coeÆcients, if the clique potentials are correctly

de�ned.

The speci�cation of clique potentials is a key problem: they should penalize the

abrupt changes due to noise, but not the actual discontinuities. This problem is in

general important in image denoising using MRF priors. In classical, single-resolution

techniques some approaches involve \line processes", which are updated in parallel

with the Markov random �eld [31, 32]. Many di�erent \discontinuity adaptive" (DA)

methods [44] have been proposed. Generally speaking, DA potentials are nonlinear

functions of the absolute di�erence between neighboring pixel intensities, which tend

to turn o� the smoothing when this di�erence is large. The wavelet representation

naturally facilitates various discontinuity adaptive approaches: large wavelet coeÆ-

cients occur exclusively at the positions of image discontinuities. Moreover, if these

discontinuities are produced by noise the magnitudes of the corresponding coeÆcients

rapidly decrease through scales. Due to these properties, the positions of meaningful

edges are more reliably detected than in the single-resolution case. The construc-

tion of di�erent edge adaptive potentials in this framework is an interesting problem,

which is not well studied yet. For example, the energy of the wavelet coeÆcients

in local surroundings can be used to indicate the presence of an edge [28]. Such a

local measurement can be introduced as an additional variable in clique potentials.

Similarly, the measurement derived from several resolution scales, at a given spatial

position, may be used to control the clique potential.

Another problem with the MAP-MRF approach is the computation time (see

Section 5.3). It was proved [8, 33] that better results can be obtained, and the

computation time reduced by applying a multiscale approach and a coarse-to-�ne

strategy. This processing combines optimization at di�erent resolution scales with an

interscale transfer of information. The optimization criterion is the same in this case:

the minimization of the posterior energy at the corresponding scale. The interscale

information can be introduced in di�erent ways. For example, the solution from

the previously processed scale is the initial solution for the current scale. Another

possibility is to consider each scale as causally dependent on the previously processed

one, and to introduce the corresponding interscale cliques. This approach can be

eÆciently applied in the wavelet domain.

5.2. Bayesian shrinkage of the wavelet coeÆcients using a MRF prior.

The simple shrinkage of individual wavelet coeÆcients (Section 3) provides reasonably

good denoising results in many practical cases. To improve the heuristic shrinkage

estimators leading to the choice of a given threshold, Bayesian \mimicking" of thresh-

olding rules was used in [65]; it takes into account the prior distribution of individual

wavelet coeÆcients. Further improvements can be obtained by taking into account

spatial dependencies between wavelet coeÆcients as well. Such an approach was �rst

proposed in [51], and later extended in other papers, e.g., [58].
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Figure 5.1. Top left: a noisy detail image. Top right: an initial classi�cation of binary labels.
Bottom left: the MAP estimate of the mask. Bottom right: cleaned detail.

The basic concept is the following: for each detail image w we estimate a mask x,

which indicates the positions of meaningful edges. Subsequently, an edge-adaptive

suppression is applied to the wavelet coeÆcients, using the estimated mask. In

Fig. 5.1, we illustrate this approach. The mask x is a set fx1; :::; xng of binary

labels: xs = 0 if ws is assumed to originate from noise and xs = 1 if ws is assumed to

represent a useful signal. To estimate masks, we de�ne for each wavelet coeÆcient ws
a given measure of its signi�cance ms, and we exploit the prior knowledge about the

spatial clustering of labels xs. Spatial clustering is encoded using a MRF prior model.

In other words, the vector x is assumed to be a speci�c con�guration of a Markov ran-

dom �eld X. The measure of signi�cance ms is computed from the observed wavelet

coeÆcients. For example, one can de�ne ms as the magnitude of the wavelet coef-

�cient jwsj, an estimate of the local Lipschitz exponent, or the amount of interscale

correlation at the position s. In these cases a larger value of ms indicates that ws
is more likely to represent a useful signal, while a smaller value of ms indicates that

ws is more likely to originate from noise. Using such reasoning, a heuristic model for

the likelihood pMsjXs

(msjxs) was proposed in [51]. In [58], we have proposed a more

accurate statistical characterization of di�erent signi�cance measures, which yields

realistic models for pMsjXs

(msjxs). Similarly as in Section 5.2, we can represent the
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conditional probability density in the form

pMjX(mjx) = A exp
�
�
X
s

V (msjxs)
�
;(5.6)

where A is an arbitrary constant. The MAP estimate of the mask x is found by

minimizing the posterior energy

H(xjm) =
X
s

V (msjxs) + �
X
s

VC(x);(5.7)

where the constant � like in (5.4) controls the in
uence of the prior knowledge about

spatial clustering. This approach o�ers an elegant way of combining inter- and in-

trascale dependencies between wavelet coeÆcients. For example, if one de�nes ms as

the interscale correlation or the averaged interscale ratio at spatial position s, then
the interscale dependencies are captured in the data distribution model V (msjxs).
Intra-scale dependencies are modeled via spatial clustering of binary labels.

One can use the estimated binary mask x̂ in di�erent ways to modify the wavelet

coeÆcients. The simplest approach is the hard thresholding

ŷs = x̂sws:(5.8)

This simple manipulation of wavelet coeÆcients already yields better results than

the classical thresholding according to their magnitude alone. The labels x̂s were

estimated by taking into account not only the local measure (like magnitude of the

coeÆcient) but also the spatial interactions between the wavelet coeÆcients. Even

better results can be obtained if the hard binary decision in (5.8) is replaced by a soft

modi�cation rule, as was done in [51]:

ŷs = P (Xs = 1jM)ws:(5.9)

This produces a soft shrinkage of the wavelet coeÆcients: those coeÆcients that

are more likely to originate from noise are attenuated more than those coeÆcients

that are likely to represent a useful signal. To compute the marginal probabilities

P (Xs = 1jM), strictly according to the theory, one needs to know the joint posterior

probability P (XjM). In practice stochastic samplers like the Metropolis algorithm

(Section 5.3) are used to obtain reliable estimates: the probability P (Xs = 1jM) is

estimated by measuring the frequency of occurrence of the label value 1 at spatial

position s, in the chain of masks generated by a random sampling algorithm.

We have proposed in [56] another, much faster approach for the soft modi�ca-

tion of the wavelet coeÆcients, taking into account spatial interactions. There, the

estimates of the wavelet coeÆcients are found as

ŷs = q(ms; us)ws; u(s) =
X
t2@(s)

(2x̂t � 1)(5.10)

where the function q(ms; us) is a nonlinear function, bounded between zero and one,

and us is the neighborhood parameter, which is computed from the MAP estimate

of the mask. The shrinkage factor q(ms; us) is monotonically increasing in a given

interval around the speci�ed threshold Thr:

q(ms; us) =
�(ms)

� �(us)
�

1 + �(ms)� �(us)�
; (1� Æ)Thr < ms < (1 + Æ)Thr;(5.11)
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Figure 5.2. The shrinkage factor qs = q(ms; us) versus normalized measure ms=Thr. The
parameter is the product �us. (a) Æ = 1, � = 2 and (b) Æ = 1, � = 4.

outside of this interval, q(ms; us) = 0 for ms < (1 � Æ)T and q(ms; us) = 1 for

ms > (1 + Æ)T . The parameters � � 0 and � � 0 control the in
uence of the local

measures and the spatial interactions, respectively, and

�(ms) =
ms � (1� Æ)Thr

(1 + Æ)Thr �ms

; �(us) = exp(us):(5.12)

The shrinkage factor in (5.10) - (5.12) satis�es the following conditions. If the

neighborhood @(s) is \neutral" (an equal number of neighboring labels have values 0

and 1), or if we do not give any in
uence to the prior knowledge (� = 0), then the

shrinkage factor is in
uenced only by ms. In this case, the shrinkage function can

vary between a linear function (for � = 1) and the hard thresholding (for � ! 1).

In case where � > 0, the shrinkage factor is closer to one when more labels in @(s)
indicate an edge. The greater � is, the greater is the in
uence of the neighboring

labels. Another, interpretation of the shrinkage function de�ned by (5.10) - (5.12) is

the following. The marginal probability P (Xs = 1jM = m;XSns = x̂Sns) that the

wavelet coeÆcient ws is useful, given the set of signi�cance measuresm and given the

estimated mask at all the positions except the current one x̂Sns, can be represented

[57] in the form �s�s=(1 + �s�s), where �s is the ratio of likelihood functions �s =

pMsjXs

(msj1)=pMsjXs

(msj0), and �s is the ratio of prior probabilities �s = P (Xs =

1jx̂@(s))=P (Xs = 0jx̂@(s)). The ratio of likelihood functions �s becomes exactly equal

to �(ms) from (5.12) if pMsjXs

(msjxs) are approximated by simple piecewise linear

functions, with two constant parts and a linear transition around the threshold. For

the MRF prior model with pair-site cliques and the potentials (4.6), the ratio of prior

probabilities �s is exactly equal to �(ms) from (5.12).

Two di�erent families of characteristics q(ms; us) are shown in Fig. 5.2. It can be

seen that if the signi�cance measure of the coeÆcient is equal to the chosen thresh-

old (ms=Thr = 1) and if the neighborhood @(s) contains the same number of edge

and non-edge labels (us = 0), then the shrinkage factor q(ms; us) is equal to 0.5.

Depending on its neighborhood, a coeÆcient can be signi�cantly reduced even if its

signi�cance measure is highly above the threshold. On the other hand, if the neigh-

borhood indicates an edge the coeÆcient is less suppressed.
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Choose an initial configuration of the MRF field x

Generate a new, candidate configuration x’ by

perturbing one or several labels in x

Compute the change in the posterior energy

x x’exp(- H/T) > random {0,1)

Equilibrium
reached?

no

yes

no

yes
x

H

Figure 5.3. The Metropolis algorithm at the temperature T .

5.3. Computational aspects. For both problems that were addressed in this

Section, the MAP estimation of the detail images and the MAP estimation of masks,

we need to minimize the posterior energies of the same form. The signi�cant dif-

ference is that in the second case we operate with binary labels, which is an easier

computational problem. If the values of the wavelet coeÆcients are quantized, the

same combinatorial minimization techniques can be used for both problems.

The minimization of the energy function by deterministic gradient descent algo-

rithms is likely to end up in a local minimum. To overcome this problem, random

search methods are often used, such as the Metropolis algorithm [44] and the Gibbs

sampler [32]. These algorithms allow occasional increases of the energy, in order to

get out of a local minimum. Random search starts from some initial estimate and a

chain of con�gurations is generated by randomly perturbing labels. The convergence

is faster if the initial estimate is good. For masks, an initial estimate is simply ob-

tained by using a given threshold for the chosen signi�cance measure of the wavelet

coeÆcients. The Metropolis algorithm is schematically depicted in Fig. 5.3. During

the random search process, a new \candidate" con�guration is obtained by random

perturbation of the previous con�guration; subsequently, it is accepted or not, de-

pending on the change in the posterior energy �H . If �H � 0 the change is accepted

and if �H > 0 the change is accepted with probability p. Practically, a random num-

ber with uniform distribution on [0,1) is generated and compared with exp(��H=T ).
When all the labels are updated, one iteration is completed. This method does not

guarantee the global minimum solution, but a low energy con�guration is found with

a large probability. In general, a suÆcient number of generated sample con�gurations

to reach the equilibrium is 50 times the size of the image [44]. For masks of binary

labels, that we consider, 10 iterations usually suÆce if the initial estimate is good.

In image processing applications, the iterated conditional modes (ICM) technique

[6] is often used. It searches for a solution close to the MAP one, by maximizing the

local conditional probabilities P (Xs = xsjY = y;XSns = xSns) sequentially. For the

serial updating case, convergence is guaranteed and is rapid (5 to 6 raster scans of an

image are suÆcient). For masks in our application, this method is very eÆcient. It

provides similar estimates as the Metropolis algorithm, while the number of iterations

is at least halved.

Other optimization techniques, like random and deterministic annealing algo-

rithms, are discussed in [44]. Annealing algorithms tend to overcome the problem of
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Figure 6.1. Top left: noise-free image. Top right: image with additive white Gaussian noise.
Bottom: two results of the same wavelet shrinkage function, without using spatial prior (Left) and
using spatial prior (Right).

getting trapped in local minima by decreasing the value of a given parameter (e.g.,

temperature in the Gibbs distribution) during the iterative minimization. For the

MAP estimation of detail images, in the continuous case, deterministic annealing

algorithms, like graduated non-convexity (GNC) [7] may be an attractive choice.

6. Applications. Here we present several applications of the Bayesian wavelet

shrinkage using MRF priors. First, the advantage of using the estimated masks to

achieve a spatially adaptive wavelet shrinkage is demonstrated in Fig. 6.1. The input

image is corrupted by additive white Gaussian noise with standard deviation 14.

Both presented results were obtained by applying the same shrinkage function (5.11)

with � = 1, but in one case the information from masks was not used (� = 0)

and in the second case masks were used to control the shrinkage factor (� = 0:2).
In other words, in the �rst case the shrinkage factor is a function of the chosen

signi�cance measure only, like in classical thresholding techniques; in the second case

it is extended to a family of functions, depending on the spatial context as well. We
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Figure 6.2. Left: an original infrared image. Right: the result of the Bayesian wavelet shrink-
age using the MAP-MRF approach.

have used the second-order neighborhood @(s), and the measure of signi�cance ms

was the magnitude of the coeÆcient. For conditional densities pMsjXs

(msjxs) we used
a simple approximation (similar to one in [51]): piecewise linear, with two constant

parts and a linear transition around the chosen threshold. The threshold Thr was

chosen as the standard deviation of noise in a given detail image, and the parameter

Æ = 0:5. Masks were estimated using ICM. By comparing the two results in Fig. 6.1

one can clearly see the advantage of using these masks: noise in background areas is

better suppressed while the signi�cant edges are preserved.

Our main interest here is to investigate the applicability of this method in practical

cases, where images are contaminated by di�erent kinds of natural noise. To achieve

an optimum performance in this respect one needs to examine di�erent choices for the

signi�cance measure ms, and to use realistic likelihood models pMsjXs

(msjxs). The

simulation method that we have proposed in [58] can be helpful in this respect. Here

we used in all cases the simple, above described approximation for pMsjXs

(msjxs). The
signi�cance measure was magnitude of the wavelet coeÆcient in the �rst application,

and a rough estimate of the local Lipschitz exponent in the other two.

The �rst application that we consider is the denoising of infrared (IR) images in

humanitarian demining. In images acquired by infrared sensors, noise is a mixture of

thermal (Gaussian) and photonic (Poisson) noise. One IR image of a buried landmine

is shown in Fig. 6.2. One can see that Bayesian shrinkage using MRF priors achieves an

excellent result in this case. Noise is completely suppressed, while the image preserves

the natural variation of intensities, which corresponds to slowly varying temperature

of the soil. Details of the landmine are well preserved.

Next, we investigate the applicability of the same approach in remote sensing.

One of the most frequently used sensors there is Synthetic Aperture Radar [9], due

to its high spatial resolution. SAR images are corrupted by speckle noise [34]. As it

can be seen from Fig. 6.3, our denoising method eÆciently suppresses speckle noise

in SAR images. At the same time, �ne structures and the sharpness of edges are

preserved well. The processed images are much more convenient for some further

image processing tasks, like segmentation.
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Figure 6.3. Left: original SAR images. Right: the corresponding results of the Bayesian
wavelet shrinkage using the MAP-MRF approach.

Finally, we apply the same approach to a third kind of images, i.e., medical ul-

trasound images. There, noise is again of the speckle type, but the speckle is di�erent

than in the previous case. Ultrasound images are also special in the sense that it is

diÆcult to judge the quality of the results. Only medical experts are competent to

decide which image details are relevant, and which regions can be smoothed without

loosing important information. Therefore, it is very desirable for the denoising ap-

proach in this case to be user-interactive, so that the amount of smoothing in \
at"

areas can be easily changed and controlled; precisely this is what the Bayesian shrink-

age using MRF priors o�ers (see Fig. 5.2 and the related explanation). In Fig. 6.4

we show an original ultrasound image and two results of the same method, but with

increasing in
uence of the prior model from left to right. One can see that white

\clouds" of speckles become smoother as the in
uence of the prior model increases.

7. Conclusions. In this chapter, we have discussed a Bayesian approach to

wavelet based image denoising using MRF prior models. Two di�erent directions in

this respect were analyzed: the classical MAP-MRF estimation applied in the wavelet
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Figure 6.4. Left: an original ultrasound image. Middle and Right: two results of the Bayesian
wavelet shrinkage using the MAP-MRF approach, with increasing in
uence of the prior.

domain, and the use of binary MRF priors in wavelet shrinkage techniques. The �rst

approach theoretically o�ers better results, while the second one leads to much faster

algorithms and seems to be attractive for many practical applications.

For the �rst approach, practical results were not available yet. However, some

practical aspects regarding the computation, possible advantages as well as the speci�c

problems were discussed. This approach is related to well studied single-resolution

[32] and multigrid [33] MAP-MRF estimation methods. On the other hand, its imple-

mentation in the wavelet domain opens new possibilities. In particular, new types of

clique potentials, which better adapt to the actual image edges should be considered.

For detecting the meaningful edges in the presence of noise, the wavelet representa-

tion is especially convenient. In this framework, the construction of di�erent edge

adaptive potentials is also facilitated.

The second approach applies the MAP-MRF estimation of masks that indicate

the positions of signi�cant wavelet coeÆcients, and accordingly adapts the wavelet

shrinkage to the actual image edges. In contrast to standard techniques, which apply

the same shrinkage nonlinearity to all the coeÆcients in a detail image, this approach

o�ers a family of shrinkage functions, depending on the spatial surrounding. The

practical importance is the following: one can preserve the connected edge clusters

of the wavelet coeÆcients, and at the same suppress even larger, but isolated ones.

The results demonstrate that in this case the important image details are better

reconstructed from noise. Furthermore, the results show that this approach is very

eÆcient for suppressing di�erent kinds of natural noise, like in infrared, SAR and

ultrasound images. An important advantage is that it allows a user to easily change

the amount of smoothing in 
at areas without edges. It is simply done by changing

the relative importance given to the measured data at one hand, and to the prior

knowledge about spatial clustering at the other. This is, for example, very interesting

for denoising of medical ultrasound images, where clouds of speckles may contain

useful information, and only experienced users may decide to which amount those

areas should or may be smoothed.

The obtained results motivate further research in this �eld. For example, the

improvements can be expected from de�ning speci�c clique potential functions for

di�erent detail images. These potentials should give preference to relatively narrow

clusters of edge labels in predominantly horizontal, vertical or diagonal direction,

depending on the type of detail image. In addition, for di�erent kinds of noise one

should examine the optimal choice of the signi�cance measure (e.g., the magnitude of

the wavelet coeÆcient, the interscale ratio, the interscale product, etc). For the chosen
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measure the realistic likelihood models, given noise and given useful edges should be

derived. We have presented in [58] some current developments in this respect.
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