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Abstract.- This paper describes an algorithm for the noise 

removal in the wavelet domain, which takes into account 

not only the local noise measure, but also prior spatial 

constraints. These prior spatial or geometrical constraints 

express the fact that meaningful wavelet coefficients ap-

pear in spatially connected clusters, forming edges of given 

directions. Existing techniques that exploit this kind of 

prior knowledge are computationally expensive, while the 

proposed method exploits the spatial constraints in a dif-

ferent and simple manner. 

I. INTRODUCTION 

A number of different wavelet based de-noising tech-

niques for the suppression of noise were proposed in 

recent years. A common approach is to compare the 

magnitude of the wavelet coefficient with a certain 

threshold. The coefficients that are below the threshold 

are usually replaced by zero. The other coefficients are 

kept unchanged or reduced in absolute value according 

to some predefined rule. In the wavelet shrinkage tech-

nique of Donoho (1) the threshold depends on the esti-

mated noise variance and the number of discrete data 

points. The method of Xu et al (2) exploits the fact that 

useful signal features are strongly correlated across 

scales. On the other hand, for the wavelet coefficients of 

noise this correlation between scales is very weak. In 

the approach of Mallat and Hwang (3) the estimate of 

the local regularity, expressed through Lipschitz expo-

nents, is used to distinguish noise from useful signal 

transitions. The local Lipschitz exponents are estimated 

from the decay of the wavelet coefficients through 

scales. Practically, the method examines only the behav-

ior of the local extrema. Reconstruction of the denoised 

image from the modified wavelet extrema is performed 

through an iterative procedure, which makes this 

method computationally expensive. 

The method of Malfait and Rose (4) takes into account 

not only the evolution of the wavelet coefficients 

through scales, but also prior geometrical constraints. 

These geometrical constraints are combined with the 

local regularity measure in a Bayesian probability for-

mulation. For each wavelet coefficient the probability of 

being noise-free is calculated. The coefficients are then 

modified according to these probabilities. Computation 

of the corresponding probabilities in (4) involves a sto-

chastic sampling procedure, which is computationally 

demanding. This makes the approach of (4) less attrac-

tive for those applications that require fast processing. 

In this paper, we propose a computationally efficient de-

noising algorithm in the wavelet domain, which exploits 

prior spatial constraints in a simpler manner. It is sup-

posed that every wavelet coefficient is affected by noise 

and a unique modification rule is applied to all the coef-

ficients. The magnitude of each wavelet coefficient is 

“shrunk” by a certain amount, by multiplying the coef-

ficient with the corresponding shrinkage factor, which 

takes the values between 0 and 1. We propose an ana-

lytical expression for the shrinkage factor, which de-

pends on both noise measure and a geometrical measure 

that are derived from a given neighborhood. We derive 

the de-noising model in a general form, containing dif-

ferent parameters that can be adjusted according to a 

specific application. The noise measure can be a local 

regularity measure or the magnitude of the wavelet co-

efficients. 

The proposed method can be applied to a wide class of 

natural and synthesized images. We are, however, 

mostly interested in de-noising infrared images of natu-

ral terrain, for the purpose of landmine detection. The 

regularity properties of the images of natural terrain 

often vary from point to point and it is important to 

know the distribution of the singularities in order to 

analyze their properties. Pointwise measurements of 

Lipschitz exponents are not possible in this case be-

cause of the finite spatial resolution. Therefore, in prac-

tical implementations we use the magnitudes of the 

wavelet coefficients as a criterion for selecting noisy 

coefficients. 

II. THE PROPOSED METHOD 

The proposed method combines a criterion, which de-

termines how noisy the wavelet coefficients are with 

some prior geometrical assumptions. These prior as-

sumptions express the fact that meaningful wavelet co-

efficients appear in spatially connected clusters at the 

location of characteristic image features like edges, cor-

ners, etc. 

The same modification rule is applied at all the levels 

and orientations in the wavelet decomposition. There-

fore, in the following discussion, the coefficients will 

carry the spatial position as the only index. Hence, wl is 

the wavelet coefficient at the spatial position l in the 

corresponding detail image. The appropriate noise 

measure ml is associated with each wavelet coefficient. 

For this purpose we will use the magnitude of the wave-

let coefficient ml = |wl|. We also associate with each 



wavelet coefficient a binary label. The binary labels are 

denoted by xl, xl {0,1} where, xl = 0 if wl originates 

from noise and xl = 1 if wl originates from signal (i.e., 

belongs to an edge). Finally, spatial constraints will be 

taken into account through a parameter tl, which de-

pends on the given neighborhood Nl. Generally, tl will 

represent a linear combination of the labels xk, where 

xkNl. 

We want to derive a modifying rule for the wavelet co-

efficients, which takes into account both the noise 

measure (e.g. the magnitude of the coefficient) and the 

prior spatial constraints. A simple way to accomplish 

this is to multiply each wavelet coefficient with the cor-

responding shrinkage factor ql, 0  ql  1, which de-

pends on both ml and the neighborhood parameter tl. 
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The parameter ql should be high, i.e., close to 1, when 

the magnitude of the coefficient ml is high and/or when 

tl is large, i.e., the majority of the coefficients in the 

neighborhood Nl have high magnitudes. The fulfillment 

of the latter condition implies that the neighborhood Nl 

centered at the spatial position l contains an edge seg-

ment. More specific geometrical constraints (e.g. edges 

of given directions in different detail images) can be 

obtained by choosing the appropriate neighborhood 

configurations and the appropriate weighting factors for 

the labels inside the neighborhood. 

Let us denote by T an optimal threshold for the noise 

measure. In classical hard thresholding techniques all 

the wavelet coefficients for which ml  T are set to zero, 

which corresponds to putting ql = 0 in equation (1), and 

all the coefficients for which ml > T are kept unchanged, 

which corresponds to putting ql = 1. Instead of that, we 

define a range around the threshold ((1-)T, (1+ 

0    1, where we suppose that the noise measure ml 

itself is not sufficient to classify the coefficients as be-

ing clean or noisy. Hence, for (1-)T < ml < (1+T the 

shrinkage factor ql is in the range 0 < ql < 1, and it is 

monotonically increasing with ml, but it is also influ-

enced by prior geometrical constraints expressed 

through tl. The idea behind this is the following: the 

magnitudes of those coefficients that are more likely to 

belong to edges should be less reduced. The coefficient 

is more likely to belong to an edge if its magnitude ml is 

higher and if the most of the neighboring coefficients 

are supposed to belong to an edge, which is specified by 

the neighborhood parameter tl. Only in “extreme” cases 

when ml  (1-)T, or when ml  (1+)T geometrical 

constraints do not influence our decision about the coef-

ficient. Thus, for ml  (1-)T we have ql=0 and for 

ml  (1+)T we have ql=1. 

With reference to the discussion above, we propose the 

following form for the shrinkage factor 
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where l = (ml) depends on the noise measure in the 

following way 
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and l = (tl) > 0 expresses the influence of the prior 

spatial constraints. The exact dependence of the parame-

ter l on tl will be specified later. The proposed forms 

for ql and l ensure that 0  ql  1 and that ql is         

monotonically increasing with ml in the range                       

(1-)T < ml < (1+T, where ql0 for ml (1-)T and 

ql 1 for ml (1+)T, for any given value of l. More-

over, when there is no influence of the spatial con-

straints )1( 


l  the chosen form of (ml) in equation 

(3) ensures a linear change of ql in the range                     

(1-)T < ml < (1+T, for  =1. The parameters  and  
are introduced in order to allow us to control the influ-

ence of the noise measure ml and the spatial constraint tl. 

In order to completely specify the shrinkage factor ql it 

still remains to define the function (tl). To ensure the 

desired influence of the spatial constraints on ql the pa-

rameter l should be greater than one if it is likely that 

the coefficient wl belongs to an edge (xl = 1), given tl. If 

it is more probable that wl does not belong to an edge 

(xl = 0) l should be smaller than one. When both cases 

are equally probable, l should not influence the shrink-

age factor ql, and thus l should be equal to one in this 

case. A reasonable choice for l is therefore 
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To estimate the conditional probailities in equation (4) 

we need a model for the interaction between neighbor-

ing labels. A set of binary labels {xl} at a given level 

and orientation in the wavelet decomposition will be 

called mask. The masks are obtained by comparing the 

magnitude of the wavelet coefficients with a certain 

threshold. We assume that the probability of the binary 

mask can be modeled as a Markov random field. In this 

case, according to Cross and Jain (5), probability of the 

binary label xl conditioned on the neighboring labels can 

be expressed as 
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where tl represents a linear combination of the labels in 

the neighborhood of xl. It then follows that the parame-

ter l  is equal to 

)exp( ll t . (6) 

In this paper, we choose different neighborhoods for the 

subbands of different orientations and we calculate the 

neighborhood parameter at the position l simply as  
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This form ensures that tl > 0 when most of the labels xk 

in the neighborhood Nl are equal to one. In other words, 

a positive tl means that most of the coefficients in the 

neighborhood of l are assumed to belong to an edge. It 

is then likely that the coefficient at the position l also 

belongs to an edge. According to equation (6), l > 1 in 

this case, as it was required. The value tl = 0 in equation 

(7) indicates that equal number of the wavelet coeffi-

cients in Nl  have labels 0 and 1. In this case, it is 

equally likely that the coefficient wl belongs to an edge 

or not and the corresponding l should be equal to one 

as it is provided by equation (6). 

The shrinkage factor ql = q(ml,tl) is determined by equa-

tions (2), (3) and (6). Dependence of ql on both the 

magnitude of the wavelet coefficient ml and the 

neighborhood parameter tl  is presented in Figure 1. If 

the magnitude of the coefficient is equal to the chosen 

threshold (ml /T = 1) and the neighborhood Nl contains 

the same number of edge and non-edge labels (tl = 0), 

then the coefficient is shrunk to one half of its value. It 

can be seen that depending on the neighborhood a coef-

ficient can be significantly reduced even if its magni-

tude is highly above the threshold. Also, a coefficient 

might be only slightly reduced even when it is well bel-

low the threshold if the neighborhood parameter is high. 

A steepest change of ql with ml is obtained when pa-

rameter  is higher, as can be seen by comparing Fig-

ure 1(a) and Figure 1(b). 

III. RESULTS  

The images shown in Figure 2(a) and Figure 2(b) are 

original infrared images of buried land mines. Results 

obtained with the proposed de-noising technique ap-

plied to these images are shown in Figure 2(c) and Fig-

ure 2(d), respectively. We used the redundant wavelet 

transform, with two detail images at each scale as in the 

approach of Mallat and Hwang (3). For each of these 

detail images a universal threshold of Donoho (1) was 

calculated. The neighborhood parameter was calculated 

from 5x3 and 3x5 neighborhoods for horizontal and 

vertical subbands, respectively. 

Obviously, the proposed method facilitates the interpre-

tation of the analyzed infrared images and as such could 

be an important help to a human observer. The proposed 

method could also be useful as a pre-processing step to 

automated target detection applications, where it could 

improve the detection performance because it removes 

noise without deteriorating the sharpness of the image. 

However, additional efforts are needed in order to con-

firm the usefulness of the proposed method in the latter 

application 

IV CONCLUSION 

We proposed a de-noising method in the wavelet do-

main, which incorporates prior spatial assumptions. 

These prior assumptions are general and express the fact 

that meaningful wavelet coefficients are spatially clus-

tered, forming edges of given directions in different 

detail images. We combine this prior knowledge with a 

criterion that describes how noisy the coefficients are. 

Each wavelet coefficient is multiplied with a corre-

sponding shrinkage factor, which depends both on the 

noise measure and on the prior spatial assumptions. An 

 

Figure 1: The shrinkage factor ql versus normalized magnitude of the coefficient ml /T. 

The parameter is the product 
.tl  (a)  = 1,  = 2 and (b)  = 1,  = 4. 
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analytical expression for the shrinkage factor is pro-

posed. The presented results show that the proposed 

method can significantly reduce the noise while preserv-

ing the significant image features. Other important ad-

vantages of this method are speed and simplicity. It is 

computationally much more efficient then some other 

algorithms that use prior spatial constraints, like the 

method of (4) where a stochastic sampling procedure is 

needed to compute shrinkage factors for the wavelet 

coefficients. 
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Figure 2:  (a) and (b) original infrared images of buried land mines. 

(c) and (d) results of the de-noising applied to the images (a) and (b), respectively. 


