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Using Dynamic Programming for Solving Variational 
Problems in Vision 

Abstract-Variational approaches have been proposed for solving 
many inverse problems in early vision, such as in the computation of 
optical flow, shape from shading, and energy-minimizing active con- 
tour models. In general however, variational approaches do not guar- 
antee global optimality of the solution, require estimates of higher or- 
der derivatives of the discrete data, and do not allow direct and natural 
enforcement of constraints. 

In this paper we discuss dynamic programming as a novel approach 
to solving variational problems in vision. Dynamic programming en- 
sures global optimality of the solution, it is numerically stable, and it 
allows for hard constraints to be enforced on the behavior of the so- 
lution within a natural and straightforward structure. As a specific 
example of the efficacy of the proposed approach, application of dy- 
namic programming to the energy-minimizing active contours is de- 
scribed. The optimization problem is set up as a discrete multistage 
decision process and is solved by a “time-delayed” discrete dynamic 
programming algorithm. A parallel procedure is discussed that can 
result in savings in computational costs. 

Zndex Terms-Active contours, contour extraction, deformable 
models, dynamic programming, variational methods. 

I. INTRODUCTION 
N many instances in computer vision research, the need I arises to determine a surface or a contour having opti- 

mal properties amongst a large space of functions. For 
example, one might be interested in finding the smoothest 
surface which is close to the available data and which at 
the same time preserves the discontinuities in such data. 
Approaches to problems of this kind are mostly determin- 
istic and involve solutions to variational principles [7], 
[27], [32], [34]. Stochastic formulations based on prob- 
abilistic models such as the Markov random fields and 
involving MAP estimation techniques have also been pro- 
posed [15], [16], [24]. 

Class of vision problems which have been formulated 
using smoothness models include as examples: optical 
flow [2 11,  [22], visible surface reconstruction [8], [ 181, 
[24], [33], shape from shading [20], [22], edge detection 
[25], and energy-minimizing active contour models [23]. 
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Invariably, an algorithmic solution involves derivation of 
an objective function and optimization of the derived 
equation for finding an appropriate solution. One deals 
with minimizing an objective function: using variational 
techniques [20], [2 11,  direct techniques [ 11,  [ 181, [3 11, or 
stochastic relaxation techniques [ 161, [24]. 

This paper discusses a novel optimization framework 
for vision problems where the derived equation may be 
nonconvex. In the past few years, vision researchers have 
reported the need for dealing with nonuniqueness and lo- 
cal minima. This problem is extremely important and 
commonly arises when there is a need to minimize an en- 
ergy function of some form [38]. Dynamic programming 
is an optimization approach that simply stated, bypasses 
local minima. Application of dynamic programming to 
variational problems are focused upon in this paper, and 
the relationship between variational approaches and dy- 
namic programming methods are discussed in detail. For 
the univariate variational problem, dynamic programming 
is used to optimize the continuous problem, and a discus- 
sion on dynamic programming treatment of the bivariate 
variational problems is included. The discrete form of dy- 
namic programming is also used to optimize the active 
contours. For minimizing the energy of the active con- 
tours, we have devised a “time-delayed’’ discrete dy- 
namic programming algorithm. The proposed approach 
provides necessary and sufficient conditions for optimal- 
ity of solution functions. Dynamic programming has pre- 
viously been applied to computer vision (see for example 
[ 141, [26], [37]). We address dynamic programming so- 
lutions of variational problems. 

11. VARIATIONAL METHODS IN VISUAL OPTIMIZATION 

The primary approach to solving problems involving 
functional optimization in computer vision has been cal- 
culus of variations [lo], [ 191, [29]. In order to solve such 
problems with variational methods, a smoothness con- 
straint is added to a physical equation, a variational inte- 
gral is derived, and the corresponding Euler-Lagrange 
partial differential equation is solved iteratively. 

In this section, we first state the Euler-Lagrange con- 
dition and some additional necessary conditions that clas- 
sical variational theory has developed. We then discuss 
issues that are of concern when using variational formu- 
lations. These issues are related to optimality , stability, 
convergence, and constraints on variational problems. 
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A.  Necessary Conditions 
Let us review the variational techniques and the several 

optimality conditions that calculus of variations has de- 
veloped [lo], [ I l l ,  [19] ,  [29]. As will be seen, although 
these conditions are all necessary, they are usually not 
sufficient. Our arguments will be made for the univariate 
case, where one is interested in finding a curve minimiz- 
ing a functional. The arguments carry over to the bivariate 
case. 

Suppose that we can reduce the form of the visual op- 
timization problem to the minimization of a functional of 
the form 

Assuming that the solution curve is unique, what we seek 
is the curve that yields a number J ,  by equation (l), that 
is smaller than the number yielded by any other admis- 
sible curve. The value of J corresponding to such a curve 
is called the absolute (g lobal )  minimum of the functional 
J( y )  and the associated curve is the absolute (g lobal )  
minimizer. 

Some additional definitions are in order. A weak neigh- 
borhood N ,  of a curve y* ( x ) ,  xo 5 x I x l ,  is the collec- 
tion of all admissible curves y ( x )  such that the expres- 
sions 

l Y ( 4  - Y * ( X ) l  I E (2 )  

( 3 )  

hold for all x E [ x o ,  x l ]  with E > 0. Notice that weak 
neighborhood is a function of E .  A curve y* ( x )  is said to 
yield a weak relative minimum of J (  y )  if there exists a 
weak neighborhood of y ( x )  such that J (  y * )  I J( y )  for 
all y ( x )  in the neighborhood. Waiving the requirement 
imposed by (3), leads to the definition of a strong neigh- 
borhood and the corresponding concept of a strong rela- 
tive minimum. 

The sets associated with absolute, strong, and weak 
minimizers of an arbitrary functional create a monotoni- 
cally increasing sequence of sets. The set of absolute min- 
imizers is a subset of the strong minimizers and in turn 
the set of strong minimizers is a subset of the weak min- 
imizers. 

Suppose that we wish to test a curve y ( x )  to see if it 
yields a weak relative minimum of the functional in (1). 
We can deform the curve by choosing an arbitrary 11 ( x  ) 
so that 

W )  = Y ( X >  + 4 4  (4) 
is admissible for all E and q ( x o )  = 9 (xl ) = 0. This class 
of deformations are weak variations of the curve since 
given 6 > 0, by choosing I E I sufficiently small, we can 
force ( x )  to lie in the weak neighborhood, N6 of y ( x ) .  

Euler-Lagrange Condition: Assuming the weak vari- 
ation, Euler-Lagrange equation for (1) can easily be de- 

rived to be 

If a curve satisfies ( 5 ) ,  we may have the correct answer, 
that is if one exists. However, we may have found a wide 
assortment of other curves as well. 

Other necessary conditions exist for reducing the size 
of the set of curves that satisfy the Euler-Lagrange con- 
dition. Although we will not give the details of these other 
existing conditions, we will state two of them, namely, 
the Legendre and the Jacobi conditions. We will then state 
the method of Lagrange for dealing with the constrained 
variational problem. 

Legendre Condition: It is shown in texts on variational 
calculus that if we add the condition that 

Fyty, 2 0 ( 6 )  
for all x E [ x o ,  x l ] ,  then we eliminate a number of the 
weak relative maxima in the set of possible solutions. 

Jacobi Condition: Jacobi in the early nineteenth cen- 
tury showed that the Legendre condition is not always ef- 
fective in distinguishing relative minima. His studies led 
to a condition about the zeros of a solution v ( x )  of the 
Jacobi 's equation: 

1 d + [z Fyyn - Fyy U ( . )  = 0 .  (7) 

The condition is applied in the following manner: if U ( x )  
is found to satisfy the Jacobi's equation, and if it takes on 
the value of zero at xl, yet is not identically zero, and 
v ( x )  does not take on the value of zero anywhere else in 
[ x o ,  x l ] ,  then Legendre condition will assure weak rela- 
tive minimality , given that the Euler-Lagrange equation 
is also satisfied. 

There are other existing necessary conditions besides 
the ones that are stated here. For example Weierstrass also 
has a necessary condition for strong relative minimality . 

Method of Lugrange for Constrained Variational Prob- 
lems: Suppose that it is desired to minimize ( 1 )  subject 
to the constraints h i ( x ,  y )  = 0 fori = 1 ,  2 ,  , m. The 
approach in classical variational theory is to solve the 
modified Euler-Lagrange equation 

d 
du 
- * y !  - *y = 0 

subject to the constraints. The functional in this case is 
m 

@ = F + c X ; ( x ) h i ( x ,  y ) .  
i =  I ( 9 )  

The unknown functions h i ( x )  are called the Lagrange 
multipliers. As can be seen from (8), the constraints hi 
must be differentiable functions in order for the method 
to apply. 



AMINI ef al . :  VARIATIONAL PROBLEMS IN VISION 857 

A second possible form of constraint surfaces arise in 
isoperimetric problems. In this class of problems, it is 
required that (1) be minimized while the following rela- 
tions hold (for i = 1, - - m ) :  

SIo’ h(x, Y ,  Y ’) ak = c; (10) 

where ci are constants of specified value. The method of 
solution in this case is to solve (8) with 

m 

9 = F + X i h i ( x ,  y, y ’ ) .  (11) 
i = l  

The important point here is that Lagrange multipliers 
are required for constraining the solution space. As will 
be seen, in using dynamic programming no such device 
is required. 

B. Issues of Concern 
There are certain issues that must be addressed in re- 

gards with the classical variational theory, and the com- 
putations that it requires to arrive at a solution. 

In many vision problems, the usual approach of re- 
searchers has been to find a solution to the Euler-La- 
grange equation. As stated in Section 11-A, this equation 
is only necessary for optimality. The danger in using nec- 
essary conditions is that one can not guarantee absolute 
or relative optimality; it is possible for one to obtain max- 
ima instead of minima and minima instead of maxima 
when using necessary conditions of variational theory. It 
is also possible for the solution to be a stationary point 
and satisfy the conditions stated previously. This problem 
is analogous to the situation in calculus where for a point 
to yield a minimum, it is necessary for the first derivative 
of the function to vanish there. However, if the derivative 
vanishes, it is not sufficient to conclude that the point 
yields a local minimum of the function. Although, one 
could use higher order necessary conditions (e.g., Jacobi, 
Weierstrass), these conditions are often difficult to test, 
and even if they could be tested, they do not guarantee 
sufficiency for the general case [ 121. Classical variational 
theory says very little about properties of absolute mini- 
mizers. In practice, the best that it can offer is to ensure 
the solution to be a relative minimum of the weak type. 

A second issue of concern is to enforce possibly non- 
differentiable constraints on the solution. In many vision 
applications, the ability to enforce hard constraints on the 
solution is required. Grimson, for example, taking the di- 
rect approach to optimization has used a gradient projec- 
tion algorithm for surface interpolation; enforcing as hard 
constraints the available stereo disparities [18]. In case of 
the variational approaches, Lagrangian-based methods 
could turn the constrained problem into an unconstrained 
problem. However, Lagrangian-based approaches require 
1) higher dimensional spaces, since now there are more 
unknowns that must be dealt with, and 2) the constraints 
themselves must be differentiable. With dynamic pro- 
gramming, constraints simply limit the set of admissible 

solutions and in fact reduce the computational complex- 
ity. 

Careful attention should be paid to a third issue of nu- 
merical stability and accuracy. In using variational ap- 
proaches, there is a need for estimates of higher order 
derivatives of discrete data. Computing high order deriv- 
atives of discrete, noisy data leads to numerical instability 
due to amplification of high frequency noise content. In 
the variational calculus formulation, the optimization 
problem is formulated on the continuous plane and is 
solved using approximate processes. Using this approach 
however, solutions can become more accurate provided 
that derivatives of data never become unduly large. We 
will discuss the variational formulation for the active con- 
tours, where there are grounds for being concerned about 
numerical stability. As will be seen, dynamic program- 
ming can directly be applied to the discrete grid with no 
required approximations. In addition, order of derivatives 
are generally lower since functionals are directly opti- 
mized, and necessary conditions are not used. 

Lastly, in finding numerical solutions when using vari- 
ational techniques, except for some very simple cases, it- 
erative techniques such as the Gauss-Seidel, or Jacobi 
methods must be employed [28]. A numerical analyst must 
pay careful attention to convergence issues. For the active 
contours, convergence of the iterative methods will be 
analyzed in Section IV. 

111. RELATIONSHIP BETWEEN CALCULUS OF VARIATIONS 
AND DYNAMIC PROGRAMMING 

There is a great deal in common between variational 
methods [lo], [ 191, [29] and dynamic programming [4], 
[5], [6], [ 113, [ 131. With calculus of variations, the func- 
tion is sought which has associated with it, by a given 
functional, a numerical value less than that associated with 
any other function in a specified set of functions. Calculus 
of variations considers the extremal function to be a locus 
of points and attempts to determine this function by means 
of the Euler-Lagrange equation. 

The approach of dynamic programming is to solve the 
optimization problem by studying a collection, or family 
of problems containing the particular problem as a mem- 
ber. This is known as embedding. Dynamic programming 
regards the extremal as an envelope of tangents, and at- 
tempts to determine the optimal direction at each point on 
an extremal. 

A.  The Univariate Case 

Consider the functional 
X I  

J ( g )  = s F ( x ,  g, g ’ )  k. (12) 
xo 

The problem involving minimization of J ( g )  with y = 
g(x) is the so-called simplest problem in the calculus of 
variations. As we saw in Section 11, a necessary condition 
for a function g,, to be a solution to (12) is that it satisfy 
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the Euler-Lagrange equation 

(13 )  

We can derive the fundamental equation for dynamic pro- 
gramming for the variational problem stated above. We 
state the problem in a space with independent variable t 
for reasons that will become clear shortly 

E l  

EO 
J(g) = j F(t9  g7 g 9 d t .  (14) 

Now, let to alter with x < C l ,  thus “embedding” the 
integral minimization problem in a family of related prob- 
lems. In addition, let us introduce the optimal value func- 
tion S(x, y )  by 

1 

The set { P >  in (15) contains all admissible curves that 
connect the point (x, g(x)) with the end point (tl, 
g ( 4 I )). By definition, S (x, y )  attains the minimal value 
of the right-hand side (RHS) of (15) for all values of (x, 
y )  in its domain of definition. 

The reasoning is similar to the discrete case of dynamic 
programming [4]. We pick an x < tI and then choose a 
small increment A t  such that x + A t  I E l .  The candi- 
dates for the minimizing curve are only those admissible 
curves that are optimal on the interval [x + At;, 4 1 ,  and 
where over the interval of interest [x, x + A t ]  are arbi- 
trary. The aim is to find the optimal infinitesimal curve 
over [ x, x + At; 1 .  The principle of optimality [4] assures 
us that the best curve chosen as such will in fact be the 
absolutely minimizing curve for our problem. 

Let us assume that g’ is continuous in the interval 
[x, x + A t ]  and that F is continuous in its arguments over 
the same interval. We will then have the expression in 
(16) as an alternate form to the integral over [x, x + At;] 
and an optimized integral over [ x  + A t ,  4 3 in (15): 

F(x, Y, Y ’) At; + O ( A t )  
+ S ( x  + A t ,  y + y ’  At  + O ( A t ) ) .  (16) 

In (16), a first order approximation is made to the integral 
over [ x ,  x + At; 1 ,  and a Taylor expansion is done on g ( x  
+ At;) in the neighborhood of x. Clearly then, 

S(x, Y )  I F ( x ,  Y ,  Y ’ )  At  + o(W 
+ S(x + At;, y + y ’ At  + O ( A t ) ) .  ( 1 7 )  

With equality achieved if the optimum y ’ is chosen over 
the interval [x, x + A t ]  and assuming an optimal curve 
over [ x  + At;, 4 , ] ;  i.e., 

S(x, y )  = min F(x, y,  Y ‘) At; + o(At;) 
Y ’  

+ S ( x  + A t , y  + y ’ A t  + O(At;)) .  (18 )  
In analogy with a discrete multistage decision process 

where the optimal sequence of decisions are desired, the 

choice of y ’ corresponds to the choice of decisions at each 
stage, and the term y + y ‘ A t  + O (  A t  ) corresponds to 
the new state that will be reached if y ’ is chosen. Assum- 
ing that S is differentiable in both its arguments, we can 
further expand the third term on RHS of (1 8) as 

S(x, y )  + S, At  + ~~y ’ At  + O ( A 5 ) .  (19 )  
Substituting (19) in (18), subtracting S(x, y )  from both 
sides, dividing by At;, and letting A t  approach zero yields, 

o = min [ ~ ( x ,  y,  y ’) + S, + ~ , , y  ’ I .  (20) 

Equation (20) is a partial differential equation in S ,  and is 
known as the fundamental equation for dynamic program- 
ming [ 111. This equation must be satisfied if the optimal 
value function is to attain the absolutely minimal value of 
the functional. The optimal policy function is the value 
of the derivative of the optimal curve at each point con- 
necting (x, y )  with the terminal point. We denote this 
function by y ’(x, y ) ,  for the present continuous case. As 
stated previously, dynamic programming seeks to deter- 
mine an envelope of tangents. 

We saw in Section 11 the kind of perturbation necessary 
for deriving the Euler-Lagrange equation. The perturba- 
tion function was an additive distortive function that per- 
turbed the entire curve in an arbitrary manner. In dynamic 
programming the variations are quite different from this 
form. Over a small initial interval, the candidate curve is 
perturbed arbitrarily as long as it remains admissible. The 
remainder of the curve is defined to be optimal for the 
remaining problem so that each perturbation in the initial 
interval produces a dependent deformation of the remain- 
ing curve. Although the form of these deformations are 
unknown until the problem is solved completely, the vari- 
ations are well defined. 

An observation to be made about the form of (20) is 
that it is not a partial differential equation of classical 
types. In fact as can be seen, although it is well-behaved 
in the sense that it is a linear equation in partial derivaties 
of S ,  it involves a minimization operation. We can thus 
derive a necessary condition for the minimization in (20) 
by taking partial derivative of the expression in brackets 
with respect to y ’, rendering 

Y ’  

q x ,  y,  y ’ )  + S,. = 0. 

F ( x ,  y,  y ’) + S, + S,y ’ = 0. 

(21) 

(22 )  

The following equation must also be valid: 

Solving for S, and S,, and equating SI,, and SY,, we can 
combine (21) and (22) into a quasi-linear partial differ- 
ential equation in y ’, namely, 

F,Cy,y; + F,:,,y ’yi, + (Fxf, + FYY,y ’ - F,.) = 0. (23 )  
Finally, we should point out that the necessary condi- 

tions discussed in Section 11: the Legendre, Weierstrass, 
and also the Euler-Lagrange conditions can all be derived 
from the fundamental equation. This is not surprising be- 
cause these conditions are all necessary, and not suffi- 
cient. 
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B. Extending Dynamic Programming to Two 
Dimensions 

A number of problems of early vision have been for- 
mulated as minimization of integral functionals of the 
form 

J ( z )  = 1," 1" 0 F(v) dy dr (24) 

where D denotes a vector of arguments 
[x y z z, z, z, - -1, and z = z(x, y ) .  So far, in 
this section we have seen the dynamic programming treat- 
ment of the univariate variational problems, and in par- 
ticular we have seen the form that the optimal value func- 
tion takes. In this section, we will see that the theory 
outlined for 1-D does not directly extend to the bivariate 
case. In a forthcoming paper, in the context of reconstruc- 
tion of surfaces, we will discuss the necessary machinery 
for functional optimization of the bivariate problem with 
dynamic programming [3]. 

Consider the functional J ( z )  defined over the domain 
in Fig. 1 .  With a change in notation, the form of the in- 
tegral becomes 

J ( z )  = s," IoTv F(D) dK d t .  (25) 

If we define the optimal value function S(x, y, z )  as 

by additivity of integrals: 
x+AE ,+An 

S(x, y ,  z )  = min s, s, F ( D ) d K d t  
{ P  1 

+ [xT;At SYTY W )  dK d t  

+ 1" [yT;AK F ( 8 )  dK d t  

- j,",,, s,,,, F @ )  dK d t .  (27) 
TY 

One would be tempted to follow as in (17) for the 1-D 
case resulting in 

S(x, y ,  z )  I F ( 3 )  At  AK + O(AE A K )  

+ s(x + At ,  Y ,  z(x + A t ,  Y ) )  

(0.0) X X + A C  =x 

Y 
y + A U  

T. 
Fig. 1 .  The rectangular domain considered for finding the optimal solution 

for the 2-D functional optimization problem with dynamic program- 
ming. 

direct extension of the one-dimensional case, cannot be 
derived. 

C. Finding Numerical Solutions 
The solution of the fundamental equation is clearly de- 

sirable because the fundamental equation guarantees ab- 
solute minimality of the solution within the region of the 
solution and, at one stroke, solves the problem for an en- 
tire range of possible initial conditions. However, analyt- 
ical solutions are rare. Numerical treatment of the fun- 
damental equation is certainly one method for finding 
solutions of functional optimization problems. 

Alternatively, dynamic programming methods can di- 
rectly treat the integral minimization problem. For the 
one-dimensional problem, consider 

s1 (c) = min [ ~ ( x ,  c ,  U )  * 61 (29) 
v 

where c = g ( 0 )  and v = g '(0). The integral minimiza- 
tion problem can thus be transformed to the problem of 
constructing the optimal value function by means of the 
recurrence relation: 

S N ( c )  = min [ F ( x ,  c ,  U)  * 6 + S N - , ( c  + US)]. (30) 
V 

The suggested computational process determines the min- 
imum not by means of derivatives, but rather by a 
straightforward search technique. By evaluating the right 
side of (30) for a large set of U values, and then by directly 
comparing these, the absolute minimum is found. 

Finally, one can perform optimization using discrete 
dynamic programming. In Section V, we will describe an 
application of this technique which exploits the discrete 
nature of the problem. The problem is that of minimiza- 
tion of the energy of active contours. 

IV. THE VARIATIONAL APPROACH TO ENERGY 
MINIMIZATION FOR ACTIVE CONTOURS 

The energy-minimizing active contour algorithm pro- 
posed in [23], and reformulated in [l], is a top-down 
mechanism for locating features of interest in images. The 
user or some other process places an active contour near 
an image structure of interest. The constraint forces that 
act on the active contour then push or pull the contour 
towards features of the image structure. The contour locks 

+ S(x, y + AK,  z(x, y + A K ) )  

- S(x + A t ,  y + AK,  

z(x + A t ,  y + A K ) ) .  (28) 
However, careful consideration of above equation con- 
vinces one that this step is not valid. The problem arises 
when the minimization operation is distributed over terms 
in the sum in (27). Hence, a recurrence relation for com- 
puting the optimal value function as defined in (26), as a 
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on to features of an image structure by minimizing an in- 
tegral measure which represents the active contour's total 
energy. 

Representing the integrand by F ( s ,  us, U , , ) ,  the Euler- 
Lagrange necessary condition is derived as 

( 3 6 )  
a a2 
as as 

The forces acting on an active contour depend on where 

in space. The behavior Of energy-minimizing Contours is 
controlled by internal and external forces. The internal 
forces serve as a smoothness constraint and the external 
forces guide the active contour towards image features 

The total energy of an active contour with parametric 

F ,  - - FUs + 7 Ft,xs = 0. 

Substituting the terms in the above equation, we obtain a 
pair of independent E ~ ~ ~ ~ - L ~ ~ ~ ~ ~ ~ ~  equations, 

the contour is placed and how its shape changes locally 

( 3 7 )  

(38 )  

aEext 

ax 

8Eext 
ay 

-ax,, + px,,,, + - = 0 

- a y s s  + PY,,,, + - = 0. 

which minimize the contour's total energy. 

representation u ( s )  = (x(s) ,  y ( s ) ) ,  can be written as 

To solve numerically, the Euler equations with fx ( i  ) = 
&Fe,. / a x i  and f, ( i ) = aEext /ayi are discretized, yielding 

where 

Eint(u(s)) = ( a ( s )  1 us(s) + p(s)J uss(s)  1') ( 3 2 )  

+ wtemEterm( ~ ( s ) )  ( 3 3 )  

( 3 4 )  

Eirnage( WlineEline( + WedgeEedge( 

& J " ( 4 s ) )  = -k(x1 - x2)2. 

The internal energy Eint represents the forces whict 
constrain the curve to be smooth, -Eirnage represents the 
forces derived from the image which constrain the curve 
to take the shape of features present in the image, and the 
constraint energy E,,, represents the energy of a spring 
connected between a point on the contour and some point 
in the plane. 

The internal energy results in u ( s )  being a controlled 
continuity spline [32] with the first order membrane term 
in (33) favoring discrete points to become closer to one 
another and the second order thin-plate term favoring 
points to become equidistant. 

The image energy is a linear combination of three terms 
all derived from the image: the line energy simply attracts 
the contour to lower or higher intensity values in the im- 
age depending on the sign of wllne with Eline = Z(x, y); 
the edge energy is calculated as Eedge = - [ VZ(x ,  y )  1 
thus attracting the contour to image points with high gra- 
dient values, and E,,, is the curvature of the level con- 

A .  Discussion 
In Section 11-B, several points were raised in regard to 

optimality , numerical stability, convergence, and en- 
forcement of hard constraints within the variational 
framework. 

Let us look at these issues and some additional points, 
starting with convergence of the iterative method of so- 
lution. Arguing for the case of (42): 

xt+ l  = y ( A  + yZ)-Ix, + ( A  + yZ)-'Ct. (44) 

With C, = - f x ( x , ,  y , )  and B = ( A  + yZ)-', the equation 
can be reformulated to be: 

tours in a Gaussian smoothed image, attracting the con- 
tour towards line terminations. 

The constraint energy attracts points on the contour to 
points in the plane. In (34), x1 and x2 represent such points 
on the contour and in the plane, respectively, and k is the 

t 

xI+ l  = (yB) '+'xo + y ' B i + l C t - i .  (45)  

If the final solution is x*, x* = yBx, + BC,. Then we 
have 

i = O  

"spring constant." 
Letting E,,. = Eimage + E,,,, (31) becomes 
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This is the error in successive approximations. For the 
simple case of C, - = C,, for all i and t, 

(47) 

Letting xo - x* = a I u I  + a2u2 + + anun, where 
{ u i }  ;= are the eigenvectors of y B  with { X i  } ;= being 
the eigenvalues, we have, 

If X i  > 1, for any i, the process does not converge since 
the limit of ( yB) '  does not exist when t + 03, and (48) 
does not yield an equality. If Ct - # C,, it is difficult to 
predict the convergence properties in general. 

Optimality is not guaranteed within this formulation. 
Existence and uniqueness of the solution could be guar- 
anteed (see [ 3 3 ] )  if the external force field were convex 
or simply did not change with time. However, close at- 
tention to the form of iterative solution unveils that the 
external energy field changes with each iteration, and 
moreover for images of real scenes can not satisfy the 
convexity requirement. As we saw in Section 11, although 
the Euler-Lagrange equation is a necessary condition for 
optimality in a local sense, it is not a sufficient condition. 

In terms of possible constraints enforceable on the so- 
lution, within the variational formulation described here, 
constraints can be enforced on the solution if they can be 
added to the overall functional. Differentiability of con- 
straints in the variational formulation however is neces- 
sary and strict enforcement of constraints is not accounted 
for in the variational approach to energy minimization. 
Although the weight associated with a desired constraint 
term may be increased to force more effect from it, the 
constraint will be satisfied at the cost of other constraints 
such as smoothness not being satisfied as closely. 

There is a need for estimates of high order derivatives 
of the discrete data. The iterative solution requires esti- 
mate of the derivative of the gradient of the image data 
(arising from the edge energy functional). Unless the im- 
age is smoothed, this term may cause instabilities. 
Smoothing the image however results in poor localization 
for boundaries. One may need to resort to scale space 
strategies in such cases [ 2 3 ] .  

Finally, as characteristics of the formulation, if a con- 
tour is not subjected to any external forces, it will vanish 
to a line or a point, and furthermore, if it is not placed 
close to image boundaries, it will not get attracted. 

In summary, although the computational requirements 
of the variational approach is linear, dynamic program- 
ming has important features, making the new formulation 
attractive. 

in ( 3 2 ) ,  

Discretizing the integral in ( 3 6 ) ,  
n - 1  

In order to use dynamic programming, the observation is 
made that minimization of (50) can be viewed as a dis- 
crete multistage decision process. Starting from the initial 
point on the contour, we can treat the minimization prob- 
lem as one that at each of a finite set of stages (io, i l ,  e e * , 
in - ), a decision is chosen from a finite set of possible 
decisions. One could solve for the optimal policy for the 
continuous multistage decision process [e.g., ( 3 0 ) ] .  How- 
ever, with this approach, the discrete process introduced 
for numerical purposes has nothing to do with the original 
discrete grid upon which the contour points are initially 
placed. The algorithm described here takes advantage of 
the inherent discrete nature of the problem. 

A correspondence can be made between minimization 
of the total energy measure (with only the first order term 
in the internal energy measure) and the problem of mini- 
mizing a function of the form 

E ( u l ,  2/29 * > vn) 

= El(% v2) + E2(Y, u3) + - * * 

+ E n - l ( U n - 1 ,  v n )  (51) 

where each variable is allowed to only take on m possible 
values. One way to find the minimum of the above func- 
tion is by exhaustive enumeration. A more efficient 
method is via discrete dynamic programming, with vi cor- 
responding to the state variable in the ith decision stage. 

The dynamic programming solution involves generat- 
ing the sequence of functions of one variable, {si};:: 
(the optimal value function), where for obtaining each si 
a minimization is performed over a single dimension. As 
an example, for a function having the form of (51), with 
n = 5 ,  

s1(v2)  = min El(q,  Q) 
UI 

For the general case, sk( vk + ) = min, { sk  - (vk)  -t 
Ek(uk, u k + l ) } .  In view of the form of (51), let us first 
consider only the first order term in Eint. With k repre- 

V. TIME-DELAYED DISCRETE DYNAMIC PROGRAMMING 
FOR ENERGY MINIMIZATION OF ACTIVE CONTOURS 

Consider the energy-minimization problem described in 
the previous section. Discretizing the internal energy term 

senting the stage and vk being the state variable, the re- 
currence relation for computing the optimal value func- 
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tion for contours is given by 

(53) 

Fig. 2 shows the basic idea in a simplified case where 
there are only three possible states per stage. The cost 
associated with any given arc corresponds to the internal 
energies between two possible choices in decision sets. 

In addition to the energy matrix corresponding to the 
optimal value function { sk}, a position matrix is also 
needed. Each entry of the position matrix at stage k stores 
the value of vk that minimizes (53). Fig. 3 illustrates the 
correspondence between the decision set and image pix- 
els. In order to find the contour of minimum energy using 
the backward method of solution for discrete dynamic 
programming problems, Emin ( t ) = minun s, - ( U, ) is 
found. This is the energy of the optimal contour. Tracing 
back in the position matrix, the optimal contour is found. 
This procedure constitutes a single iteration. If there are 
n points and m directions at each point, each iteration has 
complexity 0 ( nm2 ). For finding the optimal contour, the 
iterative process continues until Emin ( t )  does not change 
with time. Convergence is guaranteed since the configu- 
ration of points on the contour will not change unless the 
total energy of the contour is reduced by the new config- 
uration. 

An important feature of this algorithm is that one is able 
to enforce hard constraints on the solution. Consider for 
example the case of an inequality constraint where it is 
desired that no two adjacent points on the contour become 
closer than a distance d. In such a situation, when com- 
puting the energy matrix, the distance between points are 
also computed. If computing sk ( v k  + ) yields a point that 
violates the distance constraint for some value of vk, then 
that choice is eliminated and the best next minimum sat- 
isfying the constraint is chosen. In this case the value of 
the new minimizer of vk is stored in the position matrix. 
If no minimum exists which satisfies the constraint, the 
algorithm halts. Another useful example of a hard con- 
straint might be a binary edge image. Use of such con- 
straints will be illustrated in Section VI. 

Let us now consider tne case when Eint includes the sec- 
ond order term. With the second order term in place, 

 total(% v2, * - * 7 4 
= E l ( %  212, u3) + E 2 ( u 2 ,  U39 u4) + * 

' 

+ E,-2(v,-2, v e l ,  U , )  (54) 
where 

Ei-I(ui-1, vi, ui+ l>  

In order to apply dynamic programming to (55), a two 
element vector of state variables, ( vi + I ,  v i ) ,  is fixed. Now 
the optimal value function is a function of two adjacent 

Y 

Y+l 

2 0 1  
h o ,  1 2 

sk(vk+3)  = min sk-3 (vk) + 
vk 

Ek(vk,Vk+l 

Fig. 2 .  One iteration of the algorithm for computation of the minimal-en- 
ergy contour with only the first order term in E,,,. In this example, each 
point on the contour is only allowed to move to two other points ( m  = 
3 ) .  The darker arrows correspond to the minimum at each stage. Further 
description is given in the text. m 

Fig. 3.  The decision set for the discrete dynamic programming formula- 
tion (with m = 9) .  The two curved arrows depict the minimum energy 
configuration for the current iteration. 

points on the contour and we can apply the standard form 
of dynamic programming in the usual way: 

~ ~ ( u ~ + ~ ,  vi> = m i n S i P l ( u i ,  + a(1vi - vi -11)2  

(56)  

U,- I 

+ P I v i + l  - 2Ui  + Ui-11 '  + E e x t ( v i ) .  

Notice that the new dynamic programming table has m2 
entries for each stage. Each entry in the dynamic pro- 
gramming table in the i + 1 row represents fixed values 
for ui + I and vi and the minimization is done over possible 
values of vi - I .  Results are stored in the table entry at 
i + 1. Fig. 4 shows what the time-delayed discrete dy- 
namic programming algorithm involves for a hypothetical 
case with m = 3. 

The time complexity for the algorithm increases to 
O( nm3) ,  where n is the length of the contour and m is the 
number of possible choices at each stage. The storage re- 
quirement also increases from n x m to n x m* memory 
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Fig. 4. Computing the minimal-energy contour in a single iteration with 
both terms of the internal energy measure. Each point on the contour is 
only allowed to move to two other points in this example ( m  = 3 ) .  Each 
entry in the dynamic programming table in the i + 1 row represents fixed 
values for v, + I and U, and the minimization is done over possible values 
of v,  ~ I. Results are stored in the table entry at i + 1 .  

elements when considering the second order term. In 
summary, the algorithm iteratively executes the steps in 
Fig. 5 .  

Examining the dynamic programming table, in order to 
make the algorithm independent of the number of choices 
at each stage and only linearly dependent on the number 
of points on the contour, consider the following strategy. 
We can compute the energy of each entry for a given row 
in the dynamic programming table in parallel. This is be- 
cause there are no interactions among the entries in each 
row in Fig. 4. For full parallelism, the number of proces- 
sors needed is m2. This reduces the computational com- 
plexity to O ( n ) .  

A .  Discussion 
In this section we list properties of the time-delayed 

discrete dynamic programming based approach. 
Relational constraints can be enforced in the dynamic 

programming formalism in a natural manner. The dy- 
namic programming formalism provides the machinery for 
enforcing hard constraints on the distance of points on the 
contour. 

In the dynamic programming formulation lower or- 
der derivatives of data are used and the problem represen- 
tation that is adopted only deals with the gradient of the 
image data, and first and second derivatives of the active 
contour data. There are clear advantages for using lower 
order derivatives of data whenever possible. 

The dynamic programming method used for optimi- 
zation of active contours takes advantage of the discrete 
nature of the problem. Dynamic programming can di- 
rectly treat the continuous version of the problem, how- 
ever, the nature of the problem lends itself to the discrete 
dynamic programming approach for optimization. 

Each iteration results in an optimum contour within 
the resolution of the considered window. This is the case 
since in the dynamic programming approach, all possible 
choices are considered within an efficient parallelizable 
framework. 

In the discrete dynamic programming formulation, 
the active contour is guaranteed to converge to a final so- 
lution in a finite number of iterations since the energy 

1. Find total energy of the minimal energy contour for the set 
of pixels considered around each point. 

2. If total energy has not changed from previous iteration, exit. 

3. Move points to newly computed locations. 

4. Go to 1. 

Fig. 5 .  Steps in the iterative algorithm. 

measure is monotonically decreasing with time. The al- 
gorithm halts when there is no change in the total energy 
of the contour. 

VI. EXPERIMENTAL RESULTS 
We have tested the time-delayed discrete dynamic pro- 

gramming algorithm on a number of real images. The user 
interactively specifies the position of the active contour 
and sets the weights for the internal and external active 
contour forces. In the current implementation, all coeffi- 
cients are set independent of position. In addition, the user 
can specify any hard constraints that are to be imposed on 
the contour. 

These experiments illustrate two types of hard con- 
straints. In all the experiments to follow the distance be- 
tween adjacent points on the contour are not allowed to 
become smaller (or larger) than some user specified num- 
ber. In one experiment that will be discussed, a hard con- 
straint was provided to the algorithm in the form of a bi- 
nary edge image. 

Although the algorithm is not completely independent 
of parameter settings, we believe that it is insensitive to 
a large range of parameter settings for a number of param- 
eters. In its current form, selection of parameter values is 
based on empirical observations. This seems to be the 
most widely used strategy (see for example [24]). Certain 
approaches to automatic selection of parameter values ex- 
ist however. Gennert and Yuille [17] recently proposed 
the idea of determining the optimal weights in multiple 
objective function optimization using the min-max prin- 
ciple. Another approach proposed by Wahba [35], [36] 
and discussed in [7] and [30] is the method of cross val- 
idation which can be used to determine the optimal degree 
of smoothing. 

Fig. 6 shows iterations of (42) and (43) over an image 
of a Pepsi can for a representative set of parameters with 
30 points on the contour. Fig. 7 shows iterations of Fig. 
5 over the same image and with the same number of points 
with the constraint that the distance between adjacent 
points be greater than d = 8.  In all figures to follow it- 
erations proceed from left to right and top to bottom. Each 
displayed contour represents every tenth iteration and 
points on the contour are represented by tick marks. 

The second set of experiments involves running the al- 
gorithm over an image of leaves. Figs. 8 and 9 show the 
results. 

The third experiment is done on an image of a computer 
mouse. Results are shown in Figs. 10 and 11. 

The fourth experiment is on a cell image. Fig. 12 shows 
the cell image, and its corresponding Canny edges [9]. 



Fil! 6 .  Iterations of (42) and (43) over an irnape of a Pep\] can.  The Fig.  9 .  Iteration\ o t  Fig. 5 o \e r  the i m a f e  The tint iniage o n  the  lett I S  

the initial act1\e contour .  b.11 inequal i t>  con\ t ra int  o n  the interdi\taiize 1n1aee o n  the left i \  the init ial  ac t i \ e  contour. The tigure illu\trati'\ in-  

&,tabillties that rnay result. ot point\ I \  tntorced 

Results of the application of the algorithm are shown in 
Fig. 13. As can be seen. in the four representative itera- 
tions. the contour expands rather than contract. In this 
experiment. use is also made of the binary edge image. 
The contour follows the boundary quite closely. and fills 
in the gaps where there is a null response from the edge 
detector. (These contours are referred to as the inflating/ 
deflating contours [ 21. ) 

A final illustration (Table I )  is given as a repeatable 
exercise which the reader can use to verify his or hcr own 
implementation of the algorithm given in this paper. This 
illustration is. if you will, a "repeatable experiment." 
This experiment involves the application of the time-de- 
layed discrete dynamic programming algorithm on a 
256 X 256 synthetic image. The synthetic image was gen- 
erated by creating a 128 x 128 square of intensity 255 on 

FII;. 8 iterations of (42) and (43)  O\W a n  image of  iCaves. The first a background of zero intensity in the center of the image. 
A normalixd 7 X 7 box filter with unity entries was then o n  the left I \  the initial active contour. 
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Fig. I  I .  Irerations of Fig. 5 over the image of'a computer niouhe with 3 0  
points ( I n  the contour. Each picture represent5 every  tenth iterntion. 

Fig. 12. A mi\) image of cells. and i t \  Cann) edpdetec ted  image 

Fig. 13. I'he first image on the left 15 the initial contour. a circulitr con- 
tour Thcse contours are referred to as the inflating contour\ [ ? ] .  Thcre 
are 15 p,lints o n  the contour. and the edge irnage is used a\  :I hard con- 
\trnint i t i  the optiiiii7ation proce\s. 

convolved with the resulting image. The initial contour 
position\ were: (206, 54). (217, 74) ,  (206, 951, (220, 
112). (206. 133). (222, 150), (208. 173), (221, 194), 
(199. 204), ( 180, 222). (166, 206). ( 137. 218) .  ( 118. 

Fig. 1-1. ,A repeatable experiment with B b?nthetic h o x  with mmp edges. 
There are 30 point\ o n  the contour. and the dlstencc betaeen conwcutivc 
points I \  re\tricted to rem:iin greater than X 

80000 1 
70000 

50000 
40000 
30000 
20000  
10000 **-*.r..r.. 

0' 
1 5 9 13  1 7 2 1  2 5 2 9 3 3  3 7 4 1  4 5 4 9  

Fiy. 15.  A plot o t  energ? ( 5 0 ,  ;I\ J tunc t ion  ( i t  iri'r:ttion\ 

204). (96. 224) .  (84.  206). (60.  216). (50, 202). (48. 
184). (34.  168). (47. 146), (32. 126), (46.  110). (32,  
86) ,  (46 .  77) .  (42.  56 ) .  (57.  5 0 ) .  (73.  40 ) ,  (94.  46) .  
(108. 36) ,  ( 126. 4 2 ) .  

Fig. 14 shows a sample of iterations of the algorithm 
over the image. Iterations proceed from left to right and 
top to bottom. Notice that in each iteration points on the 
contour are characterized by tick markb. In this experi- 
inent an inequality constraint was enforced on the mini- 
inum allowable distance between any two adjacent points 
on the contour. The distance between no two points was 
allowed to become less than 8 pixels. Fig. 15 shows a plot 
of energy as a function of iterations. 

VI I .  CONCLUSIONS 

Variational methods have been applied to a number of 
optimization problems by researchers in computer vision. 
As discussed in the paper, certain issues are of concern 
when using variational methods. Dynamic programming 
is an attractive methodology for optimization since it  by- 
passes local minima and allows for enforcement of hard 
constraints on the solution within a natural and straight- 
forward structure. For the active contours, we have de- 
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vised the time-delayed discrete dynamic programming al- 
gorithm for energy minimization. In the dynamic 
programming framework, hard constraints can be en- 
forced on such quantities as the minimum allowable dis- 
tance between adjacent points on the contour and position 
of the contour points. Constraints of this form result in 
more controlled behavior of the contours. Convergence of 
the algorithm is guaranteed, and so is the optimality of 
the solution. 
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gation. Navigation, even in known environments, requires sensory feed- 
back. This feedback, however, must be tied to the prior knowledge of the 
scene wether derived from other views of the same sensor, from different 
sensors, or from world knowledge. He is working on two projects related 
to the assimilation of sensory information into an evolving description of 
the environment: dynamic stereo vision for capturing depth information, 
and knowledge-based landmark identification for reducing location uncer- 
tainty. Sub\ystems with these abilities, eventually, will become part of a 
robot navigation system. 
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