
A Fast Sequential Rainfalling Watershed

Segmentation Algorithm

Johan De Bock, Patrick De Smet, and Wilfried Philips

Ghent University, Belgium
jdebock@telin.UGent.be

Abstract. In this paper we present a new implementation of a rain-
falling watershed segmentation algorithm. Our previous algorithm was a
one-run algorithm. All the steps needed to compute a complete water-
shed segmentation were done in one run over the input data. In our new
algorithm we tried another approach. We separated the watershed algo-
rithm in several low-complexity relabeling steps that can be performed
sequentially on a label image. The new implementation is approximately
two times faster for parameters that produce visually good segmenta-
tions. The new algorithm also handles plateaus in a better way. First we
describe the general layout of a rainfalling watershed algorithm. Then
we explain the implementations of the two algorithms. Finally we give a
detailed report on the timings of the two algorithms for different param-
eters.

1 Introduction

Image segmentation is the process of partitioning a digital image in meaningful
segments, i.e. segments that show a certain degree of homogeneity. Image seg-
mentation can be interpreted and implemented in many ways. The division into
edge detection and region growing algorithms could be a rough classification of
segmentation algorithms. The watershed transform can be attributed properties
of both classes, i.e. it tries to find the homogeneous closed regions by using an
edge indication map as input. In case of intensity segmentation, the edge indi-
cation map can be created by calculating the gradient magnitude of the input
image. The watershed transform then regards the edge indication map as a to-
pographic landscape in which “valleys” correspond to the interior of segments,
whereas the “mountains” correspond to the boundaries of segments. The wa-
tershed algorithm derives the “mountain rims” from the landscape and those
mountain rims then delineate the segments in the image.

Watershed algorithms can be divided in two classes depending on the method
that is used to extract the mountain rims from the topographic landscape. The
first class contains the flooding watershed algorithms. These algorithms extract
the mountain rims by gradually flooding the landscape. The points where the
waterfronts meet each other constitute the mountain rims. This process is dis-
played chronologically in Fig. 1. A well-known example of this class is the discrete
Vincent-Soille flooding watershed algorithm [1,2]. The second class contains the

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 476–482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Fast Sequential Rainfalling Watershed Segmentation Algorithm 477

rainfalling watershed algorithms. These type of algorithms will be discussed in
this paper. Examples of this class are the algorithms described in [3,4] and our
previous algorithm [5]. In Sect. 2 we describe the general layout of a rainfalling
watershed algorithm. In Sect. 3 we explain the implementations of our two rain-
falling watershed algorithms. First we will describe the implementation of our
previous algorithm [5]. All the steps needed to do a complete watershed segmen-
tation were done in one run over input data, hence the name one-run algorithm.
Next we will describe the implementation of our new algorithm. We separated
the watershed algorithm in several low-complexity relabeling steps that can be
performed sequentially on a label image, hence the name sequential algorithm.
We give a detailed report on the timings of the two algorithms for different
parameters in Sect. 4. Finally we draw some conclusions in Sect. 5.

Fig. 1. Chronological stages in the flooding process

2 General Layout of a Rainfalling Watershed Algorithm

A rainfalling watershed algorithm exploits a different concept (compared to the
flooding watershed) to extract the mountain rims. For each point on the topo-
graphic landscape an algorithm tracks the path that a virtual droplet of water
would follow if it would fall on the landscape at that point. All droplets or points
that flow to the same local minimum constitute a segment. This concept is de-
picted in Fig. 2 for the two-dimensional case. The lowest mountains (weakest
edges) can be suppressed by drowning them. All the mountains below a certain
drowning threshold will not be taken into account. This is shown in Fig. 3.

In the implementation, the rainfalling concept is carried out by calculating
the steepest descent direction for each pixel. The directions are limited to the
pixels neighboring the central pixel. For a four-neighborhood configuration this
results in searching for the lowest neighboring pixel, for an eight-neighborhood
configuration we have to take into account an additional 1/

√
2 factor for the

diagonal directions. A visualization of the steepest descent directions for an
image of 10×10 pixels is given in Fig. 4 (eight-neighborhood). The pixels marked
with a circle in the middle are pixels from where there is no descent possible.
Hence, they are the local minima of the topographic landscape. Every group of
pixels that is connected by the same tree of arrows leading to a local minimum
must now make up one segment.

478 J. De Bock, P. De Smet, and W. Philips

Fig. 2. Rainfalling concept Fig. 3. Drowning threshold

Fig. 4. Steepest descent directions

3 Description of the Rainfalling Watershed
Implementations

The input matrix G for both algorithms is the floating point gradient magnitude
of an image containing n pixels. The drowning threshold dt and the neighborhood
nbh ∈ {4, 8} are the two input parameters. The drowning threshold can also
be expressed by the relative drowning threshold rdt, this is dt divided by the
maximum value of G. The output data for both cases is a segment label image
S, i.e. an image with for each pixel a label of the segment to which the pixel
belongs.

First we describe our previous one-run rainfalling watershed segmentation
algorithm which has been available publicly. The main data structures are:

A Fast Sequential Rainfalling Watershed Segmentation Algorithm 479

– The segment label image, a matrix S of labels. S is initialised in the following
way: for each i the algorithm sets S(i) := i, with i being the one-dimensional
index into S, in video scanning order (from left to right, top to bottom).

– An array P of pointers to pixels. For each segment, P contains a singly linked
list of pixels belonging to that segment. To be more precise, P (i) gives the
next pixel in the list of pixels of the segment to which pixel i belongs. The
start of the list of pixels of the segment with label i is given by P (i). The last
pixel i of a list is indicated by P (i) := −1. P is initialised with −1 indicating
that initially each pixel is a separate segment.

The only operation that will be applied on these two data structures is the
merge(labela, labelb) operation. This operation will merge the segments with
labela and labelb by relabeling one of the two segments with the other label in
S. P is needed to efficiently locate the pixels with a certain label during the
relabeling process. After the relabeling, the lists in P of the two segments are
updated by linking the tail of one list with the head of the other list.

The algorithm visits all pixels i in G in video scanning order. If the central
pixel i is below dt then all neighboring pixels nb (depending on nbh) are inves-
tigated; if nb is below dt then the algorithm executes merge(S(i), S(nb)). If the
central pixel is above dt then the steepest descent direction (depending on nbh)
is calculated. If there is a steepest descent pixel (direction) steepest then the al-
gorithm executes merge(S(i), S(steepest)). By applying these merge operations
the algorithm ensures that after investigating the last pixel, S is in the desired
state. Every group of pixels that is connected by the same tree of arrows will
now have the same unique label (cfr. Fig. 4).

Now we describe our new sequential rainfalling watershed segmentation al-
gorithm. The main data structures are:

– The segment label image, a matrix S of pointers to pixels, or labels depending
on the interpretation.

– The local minima image, a matrix M of labels. M is initialized with 1.

In the first step the algorithm visits all pixels i in G in video scanning order. If
the central pixel i is below dt then S(i) := i. If the central pixel is above dt then
the steepest descent direction (depending on nbh) is calculated. If there is no
steepest descent (local minimum) then S(i) := i. If there is a steepest descent
pixel steepest then S(i) := steepest and M(i) := 0. The visual interpretation
of the state of S after the first step is shown in Fig. 4. After the first step M
indicates the locations of the local minima (the pixels below dt are included
here).

In the second step the pointers in S are propagated until each pixel points to
one of the local minima. For each pixel i the algorithm repeats next := S(next)
starting with next := i until it reaches a local minimum, i.e. until next =
S(next), then the algorithm sets S(i) := next. This step thus implements the
tracking of the virtual droplet described above.

In the third step the algorithm applies a connected components algorithm
directly on the local minima image M . This connected components algorithm

480 J. De Bock, P. De Smet, and W. Philips

assigns a different label to each separately connected group of local minima. This
step is necessary to be able to merge the connected local minima.

In the final step the algorithm incorporates the new labels given by the
connected components algorithm by doing the following relabeling: for each pixel
i the algorithm sets S(i) := M(S(i)). S is now in the desired state.

Assuming that the labels and pointers all take up 4 bytes, then the one-
run algorithm uses approximately 8n bytes and the sequential algorithm uses
approximately 9n bytes. These n bytes extra are used up by the connected
components algorithm.

Theoretically these two implementations are identical, except for the han-
dling of plateaus. A plateau is a group of connected local minima above the
drowning threshold. In the sequential algorithm these plateaus are handled
by the connected components step. Consequently, the individual pixels of the
plateau are merged to one segment. In the one-run algorithm these plateau
pixels will not be merged and therefore will form individual segments. If the
topographic landscape is created by calculating the gradient magnitude of the
input image, then linear gradients in the input image will result in plateaus in
the landscape. Perceptually it is more appropriate to segment a linear gradient
into one segment instead of individual pixel segments.

4 Results

To compare the performance of our two rainfalling watershed algorithms, we
tested them on the well-known test image PEPPERS 512x512. The algorithms
were implemented in C, compiled with gcc 3.4.2 with optimization parameter -O3
and run on an Intel Pentium 4 2.8 GHz. To obtain very accurate and reliable
timings, we measured the time needed to execute 1000 watershed runs. The
results for one watershed run are displayed in Fig. 5 for an eight-neighborhood
configuration and Fig. 6 for a four-neighborhood configuration. We can see that
the new implementation is approximately two times faster for parameters that

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

45

Relative drowning threshold

T
im

e
ta

ke
n

(m
s)

One−run
Sequential

Fig. 5. PEPPERS 512x512, nbh = 8

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

45

Relative drowning threshold

T
im

e
ta

ke
n

(m
s)

One−run
Sequential

Fig. 6. PEPPERS 512x512, nbh = 4

A Fast Sequential Rainfalling Watershed Segmentation Algorithm 481

Fig. 7. PEPPERS 512x512, segmented with rdt = 0.001, nbh = 8

produce visually good segmentations. An example segmentation result is given
in Fig. 7. The difference in computation time can be explained by the more
efficient merging of a group of connected pixels below the drowning threshold.
The difference clearly shows when we test the algorithms on the specific test
pattern depicted in Fig. 8. The one-run algorithm needs 48.9 ms to segment
the pattern, the sequential algorithm only needs 11.6 ms. Almost all pixels in
this pattern are below the drowning threshold, thus the running time is almost
completely dominated by the part that merges the connected pixels below the
drowning threshold.

Fig. 8. Test pattern

482 J. De Bock, P. De Smet, and W. Philips

For a comparison of our one-run algorithm with a Vincent-Soille based flood-
ing watershed algorithm we refer to our previous paper [5]. That paper showed
that the one-run algorithm is significantly faster than the flooding watershed
algorithm.

5 Conclusion

In this paper we presented a new implementation of a rainfalling watershed
segmentation algorithm. We separated the rainfalling watershed algorithm in
several low-complexity relabeling steps that can be performed sequentially on a
label image. The new algorithm handles plateaus in a better way and is approx-
imately two times faster than our previous implementation for parameters that
produce visually good segmentations. This is mostly due to the more efficient
merging of a group of connected pixels below the drowning threshold. With exe-
cution times of approximately 20 ms (for images of size 512x512), this algorithm
can be used to perform real-time video segmentation with a normal PC.

References

1. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis and Machine
Intelligence 13 (1991) 583–598

2. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer
(1999)

3. Beucher, S.: Segmentation d’images et morphologie mathématique. PhD thesis,
School of Mines (1990)

4. Moga, A., Cramariuc, B., Gabbouj, M.: A parallel watershed algorithm based on
rainfalling simulation. In: Proc. 12th European Conf. Circuit Theory and Design.
Volume 1. (1995) 339–342

5. De Smet, P., Pires, R.: Implementation and analysis of an optimized rainfalling
watershed algorithm. In: Proc. Electronic Imaging, Science and Technology, Image
and Video Communications and Processing. (2000) 759–766

	Introduction
	General Layout of a Rainfalling Watershed Algorithm
	Description of the Rainfalling Watershed Implementations
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

