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Abstract

An algorithm for estimating reliable and accurate depth maps from stereoscopic image
pairs is presented, which is based on block—matching techniques for disparity estima-
tion. By taking neighboring disparity values into account, reliability and accuracy of the
estimated disparity values are increased and the corona effect at disparity discontinui-
ties isavoided. An interpolation of disparity values within segmented regions of homo-
geneous disparity enables the computation of dense depth maps by means of triangula-
tion.

1 Introduction

Depth estimation is used in applications like 3D—modelling of natural objects [1] [2],
3D-remote handling and quality control [3]. Depth information is obtained by a trian-
gulation of corresponding image points with known stereoscopic camera parameters.
Therefore, the coordinate difference between corresponding image points, called dis-
parity, has to be estimated. Applying common block—matching techniques for disparity
estimation, the correspondence of image points is evaluated using the cross correlation
or mean absolute difference of corresponding image blocks [4]. To increase the reliabil-
ity of disparity estimates, large block sizes have to be chosen. On the other hand, large
block sizes decrease the accuracy of disparity estimation. Hierarchical block-matching
combines both, accuracy and reliability, but gives rise to corona effects at disparity
discontinuities [5].

The goal of this contribution is to overcome the contradictory requirements of accu-
racy and reliability and to avoid the corona effect. The hierarchical block—matching will
be substituted by a non-hierarchical block—matching technique, which uses small
block-sizes in order to provide accuracy and to avoid the corona effect. Neighboring
disparity estimates are considered in order to provide reliability. A cost function for a
disparity estimator will be developed that combines block—matching with a consider-
ation of neighboring disparity estimates.

Inlow textured areas and in areas which are only visible in one image, disparity cannot
be estimated. These areas, called disparity gaps, have be interpolated in order to obtain
dense depth maps. Therefore an interpolator has to be developed that preserves disparity
discontinuities.

Chapter 2 presents the developed disparity estimation algorithm. The computation of
dense depth maps from disparity is explained in Chapter 3. Depth estimation results are



presented for the image sequence’ agua’, a stereoscopic image sequence acquired by
the RACE-DISTIMA project [6], and compared to common disparity estimation based
on block—matching in Chapter 4 . Chapter 5 concludes this paper.

2 Disparity estimation

2.1 Modd of the Stereoscopic Camera System

In the course of disparity and depth estimation, a pinhole camera model based on the
central projection of diffuse illuminated and diffuse reflecting spatial points in the
image planeisapplied. No lensedistortion is considered. Each camerais defined by its
position C, itsoptical axis A and itsimage plane, which is determined by two perpen-
dicular vectors H and V. The camera is therefore called CAHV—camera [7]. The
projection of aspatial point Ps = (Pg, P, Pg) intotheimage plane of aCAHV—cam-
era can be computed using equation (1).
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For DISTIMA image sequences, only theintrinsic and rel ative extrinsic cameraparam-
etersare known, which issufficient for depth estimation. The absol ute camera parame-
ters needed for the CAHV—cameramodel can therefore be chosen arbitrarily for one
of the cameras. Here, the left camerais arranged in the center of the coordinate system
and theright camerais positioned with respect to the known rel ative camera parameters
(Fig. 1). Duetotheemulation of humanvisionin DISTIMA, both camerasarearranged
horizontally with abase length b and their optical axes have asmall convergenceangle
¢. Thefocal length of both camerasisidentical.
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Fig. 1: Modél of the stereoscopic camera system

When depth shall be estimated, the spatial position of a point has to be reconstructed
fromto knownimage coordinatesof itsprojectionin the stereoscopicimageplanes. The



spatial position of the point istheintersection of both viewing lines. If theviewing lines
are skewed, the spatia position is assumed to be located at the point with minimal
distance to both viewing lines.

Thedirection of theviewing linesisdetermined using the CAHV—cameraparameters
and theimage coordinates. Evaluating the projection equation (1) the direction appears
to be the following vector product.
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The vector M links both viewi ng lines at the location of minimal distance.

M=Cr+4-Sg—C,—u-5, ()
Therefore M has to be perpendicular to both viewing lines S, S.
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Based on condition (4), A and p are computed with equation (5).
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Finally the spatial position is determined using equation (6).
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This equation will be used for the computation of depth maps from disparity maps.

2.2 Disparity Estimation Constraints

The entity of disparity estimation is the search for corresponding image featuresin a
stereoscopic image pair. Corresponding image features are projections of the same
object feature into both image planes. Due to physical laws of image acquisition, a
number of constraints for matching features can be derived. These constraints are
mainly applied in feature based disparity estimation algorithms, where luminancefea-
tures are extracted from the imagesin afirst step and the disparity of these featuresis
estimated in a second step [4].

In most area—based disparity estimation algorithms, not all of these constraints are
considered, becausedisparity isestimated for each image point or block of image points
independently. In the following, these constraints are explained.

221 Epipolar Constraint

With the applied camera model an image point p, results from the central projection
of asgpatial point Pginto theleft image plane. The viewing lineisthe connection of the
spatial point 55 and the center of the camera C. The projection of the viewing lineinto
the other image plane results in the epipolar line (Fig 1). Therefore the corresponding



pointintherightimageplane P hastolieontheepipolar line, whichreducesthesearch
area of the disparity estimation to one dimension.

Under the assumption of asmall convergence angle between both optical axesand a
horizontal arrangement of the cameras, the epipolar line is approximately horizontal.

222 Extended Continuity Constraint

Under the assumption of large objectswith asmooth surface shown in the stereoscopic
image pair, the disparity varies continuously in most parts of the image. Disparity
discontinuitiesare allowed at object boundaries only. Therefore, disparity discontinui-
ties have to be detected and involved in the disparity estimation algorithm.

223 Disparity Gradient Limit

The possible disparity gradient is limited, because disparity changes coincide with
depth changes and therefore with an occlusions of object partsin one of theimagesin
case of high gradients. Assuming horizontally arranged cameras, for the left disparity
map an upper disparity gradient of size +1 and for the right disparity map a lower
disparity gradient of —1 results. The disparity gradient limits are given in equation (7).

- o < 6_(::, < + 1 fortheleft disparity map
‘ (7)
ad, . N
-1< “h = + o for theright disparity map

224 Monotonic Ordering Constraint

With a defined order of points along aline in one image of the image pair, the corre-
sponding points have to occur in the same order in the other image. Thisconstraint will
be of interest when the scan line oriented disparity estimation algorithm isintroduced.

2.25 Luminance constraint

Correspondence analysisis disturbed by camera noise. For areliable disparity estima-
tion, the local luminance variance o7, within the compared image blocksin direction
of theepipolar linehasto beclearly higher than the cameranoisevarianceo?. Therefore
correspondenceanalysisisrestrictedto points P with hi ghlocal luminancevariance o3,
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with b = blocksize and b2 = (blocksize-1) / 2

2.3 Disparity Estimation considering Directly Neighboring Dis-
parity Values (DN—Cost Function)

In order to estimate a dense disparity map for an image, for each point of theimage a

corresponding point is searched in the other image. This pair of points is denoted as

candidate pair. In common area—based algorithms, each possible corresponding point,



denoted as candidate, is evaluated using the luminance difference or the cross correla-
tion of surrounding imageblocks. For reliable estimation, large block sizesfrom 11x11
pel to 17x17 pel are needed for block—matching or in the first level of hierarchical
bl ock—matching. Theseblock sizesgiving riseto coronaeffectsat disparity discontinui-
ties, e.g. at object boundaries [5] and leading to |ess accurate disparity estimates, if no
further estimation with smaller block sizesis applied.

Some of the estimation constraints mentioned in Chapter 2.2 cannot be taken into
account, when disparity isestimated for each point independently. Thereforeasimulta-
neous disparity estimation for al points along one scan line has been proposed [8].
There, a maximum likelihood cost function is employed, evaluating the luminance
difference of the candidate pair and the disparity change along the scan line. This cost
function isminimized for each scan line using a dynamic programming strategy. With
this method all mentioned estimation constraint expect the extended continuity
constraint are considered.

Thefirst of thetwo presented cost functionsisbased on[8], but evaluatingthe Normal-
ized Cross Correlation NCC (9) of acandidate pair instead of the luminance difference.
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Fig. 2. a) Horizontal slice of an image from the DISTIMA test sequence
"agua with a selected scan line
b) Correlation map of the selected scan line, showing the NCC between
each point along the scan line and each candidate on the epipolar line



In order to estimate the disparity for a scan line, aNCC map is computed, specifying
the NCC for each possible candidate pair. Possible candidates are image points within
afixed disparity range. A cross correlation map for two scan lines of thetest image pair
"agua is shown in Fig. 2, where bright horizontal lines indicate probable areas of
continuos disparity. Based on the correlation map a cost map is computed applying a
cost function for each candidate pair.

231 Evaluation of the DN—-Cost Function

A dynamic programming strategy is applied to find the maximum likely disparity
estimates for each scan line. With this strategy the cost of the candidate pairs are
computed oneafter another starting with hj = 1 and d = dmax. The cost for each candidate
pair is composed of two summands, a local cost and the cost of the most probable
predecessor.

For each candidate pair three possible predecessors are evaluated using (10), which
have a maximum disparity difference of Ad = + 1 (see Fig. 3). Depending on the
disparity difference the local cost is a fixed cost Cgange fOr changed disparity or a
matching cost C,.., for constant disparity. The predecessor that leads to the minimal
resulting cost is chosen and its position is stored additionally, in order to find the most
likely way for the whole scan line.
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Fig. 3: Computation of the cost map with the DN—cost function

When the complete cost map of a scan line is computed, the disparity candidate with
the lowest cost is searched at the last pel of the scan line. Starting from this candidate
the disparity values along the scan line are determined backwards, using the path that
is stored for each cost element pointing to the predecessor.

2.3.2 Elements of the DN—Cost Function

The cost for a change in disparity C,n.nge depends on the probability of an object
boundary Piniry and on the image noise variance o7. Ppouniary depends on size of the
objectsin the scene and is determined by the mean number of object boundaries along
ascan line of theimagerel ated to the number of pelsin each scanline. Py gy iSOf Size
0.95-0.98. In [8] the following cost value is derived.
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Ontheother hand amatching cost C,.., hasto bederived, evaluating constant disparity
aong the scan line. This cost value depends on the NCC of the candidate pair and has
tobeadaptedtothesizeof C,,q Whichisrelated tothenoisevarianceof theluminance
signal. Therefore the NCC is scaled in the range of the luminance values.

Cou = 255 - - PCC (12)

n

1-P oundar
Cchange = ln ( ooy ' 1 ) (11)

2.4 Disparity Estimation considering an Extended Neighbor -
hood (EN—Cost Function)

The DN—cost function derived in Chapter 2.3 does not consider all estimation
constraints. An extended maximum likelihood cost functionispresented in this Chapter
that considers additionally the extended continuity constraint. This constraint requires
the examination of more than three preceding candidates. The examination is till
limited to candidates in the same scan line and the new maximum likelihood cost
function is minimized for each scan line using dynamic programming.

The EN—cost function is composed of three cost terms. Thefirst cost term isthe cost
of the predecessor. The second cost is the cost for matching probability of a candidate
pair. Thiscost term issimilar to the onein the previous cost function, but is considered
independently on the disparity change. In the previous cost function, this term was
considered only in the case of constant disparity.

Thethird cost term C,,,,,, eval uatesthedisparity changewith respect to the predeces-
sor. Dueto theresolution of disparity, changesarelimited tointeger values. Theevalua-
tion of disparity changesin the left disparity map islisted below.

e Casel: Ad =0 = Cpoay = 0
Continuous disparity due to an object surface parallel to the image plane.

e Case2 Ad=+1= Cpenajty = Cingination
Continuous disparity change due to the inclination of an object surface with
increasing or decreasing distance to the camera

e Casel: —® <d4d< -1= Cpenalty = Cdiscontinuity
Disparity discontinuity due to atransition from an object in the foreground to an
object in the background.

e Case4 +l<dd< + © = Cpena]ty = Cdiscontinuity + 4d - Cocclusion
with Ad = d(hy) — d(h, — Ad)
Disparity discontinuity dueto atransition from an object in the background to an
object in the foreground, considering possible occlusions.

Because of the asymmetric disparity gradient limit, two different kinds of disparity
discontinuities have to be considered. These discontinuities are denoted as Case 3 and
Case4inthelist above. For rising disparity, adiscontinuity coincideswith an occluded



areain the right image. As aresult, disparity is undetermined in the left image within
arange of Ad preceding image points. In the cost function thisis considered by taking
C(hgs4d d,+4d) asapossiblepredecessor. Anadditional penalty isrequired, evaluating
thenumber of skipped disparity estimates. For falling disparity, adiscontinuity doesnot
coincide with an occlusion.

The cost map is determined in a similar manner as in the previous algorithm. In
contrast to the previous cost function, wherethree predecessorshave been evaluated for
each candidate, the number of possible predecessorsisnow predestinated by thedispar-
ity range.
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Fig. 4. Computation of the cost map with the EN—cost function

The computation of the cost of asingle candidate pair isillustrated in (Fig. 4). Inthis
Figure, each point is one element of the cost map. From each predecessor an arrow
pointsto the current candidate, which coincideswith apenalty depending on thechange
of disparity. The reason for the asymmetric arrangement of possible candidatesis the
asymmetric disparity gradient limit.

Thequality of disparity estimation dependsto great extent on the penalty termsof the
EN—cost function (13). These penalty terms have been optimized with respect to the
penalty term of the DN—cost function C,,nge Using the DISTIMA test sequences.

Cinclinalion = Cchange
Cdisr:ontinuity =4 Cchange (14)
Cocclusion =4- Cchange



3 Computation of a Dense Depth Map

Disparity cannot be estimated in low textured areasand in areaswhich arevisiblein one
image only. These disparity gaps shall beinterpol ated without asmoothing of disparity
discontinuities. Additionally the corona effect of block—matching shall be compen-
sated.

3.1 Segmentation of Regions of Homogeneous Disparity

With theapplied disparity estimation algorithm, disparity isestimated in pel resolution.
Because of the disparity gradient limit introduced in Chapter 2.2.3 and the disparity
resolution, all disparity estimates with an absolute disparity difference to their neigh-
bors below 2 pel shall be merged into one region of homogeneous disparity. The
resulting regions are therefore not limited to a certain amount of different disparity
values, but to a maximum absolute disparity gradient of 1.

The segmentationiscarried out in severa steps. Initialy, al neighboring pointswith
equal disparity are merged into regions of constant disparity. In asecond step neighbor-
ing regionswith amaximum disparity differenceof onearemerged. In order to compen-
sate singledisparity estimation failures, aminimum connection of 10 pel betweenthese
regionsisadditionally required. Inathird step small labelsare assigned to the neighbor
with the most similar disparity, which guarantees aminimum size of regions. Undeter-
mined regions aretreated as occlusions and are therefore ascribed to the deepest neigh-
bor, which is the one with the lowest disparity.

Evenwith the small block—sizes of the devel oped disparity estimation algorithms, the
coronaeffect of block—matching is apparent in the disparity maps (Fig. 5b). Under the
assumption that object boundaries and therefore disparity discontinuitiescoincidewith
luminance edges, the corona effect of block—matching is compensated by adapting
region boundaries to neighboring luminance edges. The maximum size of the corona
ishalf of the block—size. Therefore luminance edgesin this area around region bound-
aries are detected by evaluating the luminance gradient. Both, luminance edges and
region boundaries are then dilated and afterwards skeletonized, resulting in a new
region boundary in the middle between their original position. When this method is
appliediteratively, theregion boundariesare successively adapted to neighboring lumi-
nance edges (Fig. 5d).

e

Fig. 5. a) Part of DISTIMA image’agua
b) Estimated disparity map (dark = low disparity, bright = high disparity)
) Segmentation into regions of homogeneous disparity
d) Adaptation of region boundaries to neighboring luminance edges
€) Interpolated disparity map with corona compensation



3.2 Disparity Interpolation

In order to compute dense depth maps, disparity gaps haveto beinterpolated. Disparity
discontinuities are not effected, because disparity is interpolated within segmented
regions of homogeneous disparity only.

For interpol ation purposes, thedisparity estimates of asegmented region are approxi-
mated by athin plate. The finite element method is used to minimize the energy of the
thin plate, whichisconnected to thedisparity valueswith springsof different force. The
force of the springsis controlled by the reliability of the estimated disparity, which is
the NCC in the proposed method. Springs of no force are applied to disparity gaps. In
addition springs of no force are applied to region boundaries, because disparity estima-
tionisunreliabledueto the coronaeffect there. The hierarchical interpolation algorithm
minimizing the energy of the thin plate is based on [9].

The reliability of disparity estimation is enhanced before the interpolation, using a
disparity verification between theleft and right disparity map. With thisverification all
disparity estimates that differ more than 1 pel from their corresponding disparity esti-
mate in the other disparity map are neglected (15).

dy(his v) — dp(hi~d(hgv);v)| < 1 (15)

This verification enables also an assessment of disparity estimation, because the
remaining disparity estimates can be treated as correct disparity values.

3.3 Depth Computation from Disparity

With known extrinsic camera parameters depth is computed from disparity. Therefore
each point of the interpolated disparity map is evaluated using equation (6).

4 Results

The developed algorithms have been examined using DISTIMA stereoscopic image
sequences. In this paper the resultsfor image sequence’aqua’ are presented, which are
typical for the results obtained with other image sequences. Image sequence’aqua’ has
TV resolution and is 2 seconds long. The first image pair and results are presented in
(Fig. 6).

Disparity has been estimated for each field of ' aqua’, applying block—matching, The
DN—cost function and the EN—disparity estimation use block sizes of 5x5 pel. An
example of the disparity estimation resultsis given in (Fig. 6). To compare the three
different estimation algorithms, the amount of correct disparity estimatesis evaluated.
The correctness is verified using (15). For 25% of the image, no disparity can be
estimated, becausetheluminance constraint isnot fulfilled of thepointsareonly visible
inoneof theimagesof animage pair. For theremaining 75% disparity can be estimated.
The part of verified disparity values rises from 65% applying block—matching to 70%
with the new approaches. The difference between both new approaches is below 1%.
Theincreased number of correctly estimated disparity values showstheresult from the
increased reliability of the devel oped algorithm. Even the consideration of an extended



neighborhood increases the reliability slightly, so that the usage is only recommended
if the computation timeis not relevant. Applying the proposed algorithm increases the
computational effort by afactor of 2 in the case of the DN—cost function and by the
factor of 3 in the case of the EN—cost function when compared to block—matching.

|spar|ty map
Block—Matching DN-Disparity Estimation

right image diépa(it); m‘a_\b _ interpolated depth map
EN-Disparity Estimation EN-Disparity Estimation

Fig. 6: Depth and disparity estimation results for aDISTIMA image pair ' aqua

5 Conclusions

Inthiscontribution, analgorithmfor reliableand accurate disparity estimation hasbeen
devel oped that avoidsthe corona effect of block—matching at disparity discontinuities.
Therefore, adisparity estimator for two corresponding linesof astereoscopicimagepair
has been devel oped that eval uates neighboring disparity estimates. Under the assump-
tion of horizontally arranged cameras, corresponding lines, which areal so called epipo-
lar lines, are according scan lines.

For the evaluation of neighboring disparity estimates a cost function and a cost
minimization procedure has been developed that considers the following disparity
estimation constraints. Each picture element (pel) of one scan line corresponds exactly
to one pel of the epipolar line. Corresponding pels have to occur in the same ordering
inboth scanlines. These constraintsarefulfilled by applying dynamic programming for
the minimization of the cost function. The disparity gradient in horizontal directionis
limited between [—oo ; +1], which reduces the amount of possible neighboring disparity
values. Withtheextended disparity continuity constraint, large objectsareassumed and
disparity discontinuitiesareallowed at object boundariesonly. Therefore penalty terms
evauating disparity changes between neighboring disparity values are applied that
cause continuos disparity to be favoured. The correspondence measure between two
pelsis the cross correlation of corresponding image blocks. Two cost functions have
been derived, which differ in the number of considered neighbors. Thefirst algorithm



evaluates only direct neighboring disparity estimates (DN—cost function), which
enables the consideration of all constraints except the extended continuity constraint.
The second a gorithm eval uates an extended neighborhood (EN—cost function), which
enables the consideration of all constraints.

Block sizesbetween 11x11 pel and 17x17 pel are chosen for block—matching or inthe
firstlevel of hierarchical block—matching, in order to givereliableresults. With the new
cost functionsthe necessary block sizefor reliabledisparity estimatesisreduced to 5x5
pel. Due to the reduced block size disparity can be estimated more accurate compared
to block—matching and the corona effect at disparity discontinuities can be reduced
effectively compared to hierarchical block—matching. Reliability is ensured by the
consideration of neighboring disparity values. The reliability of disparity estimatesis
verified by comparing disparity estimates of theleft disparity map with corresponding
disparity estimates in the right disparity map. Disparity values that do not match are
deleted in the disparity map. Disparity is only be estimated, when the local luminance
variancein direction of the epipolar lineismuch higher than the cameranoisevariance.
Disparity estimation result for DISTIMA image sequence’agua’ are presented. In this
seguence, approximately 75 % of al image points are visible in both images and fulfill
the luminance constraint. Averaged over the 50 frames, the percentage of verified
disparity values is increased from 65% using block—matching to 69% using the DN—
cost function and 70% using the EN—cost function. Verificationsusing other DISTIMA
image sequences provided similar results. Applying the proposed algorithm increases
the computational effort by afactor of 2 in the case of the DN—cost function and by the
factor of 3 in the case of the EN—cost function when compared to block—matching.

In order to compute dense depth maps, disparity gaps haveto beinterpolated without
asmoothing of disparity discontinuities. Therefore the disparity map issegmented into
regions of homogeneous disparity. The devel oped segmentation algorithm subdivides
the disparity map, which is estimated with integer resolution, into regions of equal
disparity valuesin afirst step. Itisassumed that disparity changesbetween neighboring
pelsof acontinuos surfacearelimited to + 1 pel. Therefore, in asecond step neighbor-
ing regionswith adisparity difference of + 1 are merged. The remaining corona effect
of block—matching iscompensated during segmentation by adapting segmented region
boundariesto neighboring luminance edges using an iterative dil ation and skeletoniza-
tion technique. Disparity valuesinside the coronaare not considered during interpola-
tion. Therefore the corona effect is avoided in the resulting depth map.

Besideitsusagein DISTIMA, the presented al gorithm has successfully been applied
to modelling of 3D natural objects from multiple views in the RACE-MONA LISA
project [2] and modelling of buildings from stereoscopic image sequences [10].
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