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Abstract
An algorithm for estimating reliable and accurate depth maps from stereoscopic image
pairs is presented, which is based on block–matching techniques for disparity estima-
tion. By taking neighboring disparity values into account, reliability and accuracy of the
estimated disparity values are increased and the corona effect at disparity discontinui-
ties is avoided. An interpolation of disparity values within segmented regions of homo-
geneous disparity enables the computation of dense depth maps by means of triangula-
tion.

1 Introduction

Depth estimation is used in applications like 3D–modelling of natural objects [1] [2],
3D–remote handling and quality control [3]. Depth information is obtained by a trian-
gulation of corresponding image points with known stereoscopic camera parameters.
Therefore, the coordinate difference between corresponding image points, called dis-
parity, has to be estimated. Applying common block–matching techniques for disparity
estimation, the correspondence of image points is evaluated using the cross correlation
or mean absolute difference of corresponding image blocks [4]. To increase the reliabil-
ity of disparity estimates, large block sizes have to be chosen. On the other hand, large
block sizes decrease the accuracy of disparity estimation. Hierarchical block–matching
combines both, accuracy and reliability, but gives rise to corona effects at disparity
discontinuities [5].

The goal of this contribution is to overcome the contradictory requirements of accu-
racy and reliability and to avoid the corona effect. The hierarchical block–matching will
be substituted by a non–hierarchical block–matching technique, which uses small
block–sizes in order to provide accuracy and to avoid the corona effect. Neighboring
disparity estimates are considered in order to provide reliability. A cost function for a
disparity estimator will be developed that combines block–matching with a consider-
ation of neighboring disparity estimates.

In low textured areas and in areas which are only visible in one image, disparity cannot
be estimated. These areas, called disparity gaps, have be interpolated in order to obtain
dense depth maps. Therefore an interpolator has to be developed that preserves disparity
discontinuities.

Chapter 2 presents the developed disparity estimation algorithm. The computation of
dense depth maps from disparity is explained in Chapter 3. Depth estimation results are



presented  for the image sequence ’aqua’, a stereoscopic image sequence acquired by
the RACE–DISTIMA project [6], and compared to common disparity estimation based
on block–matching in Chapter 4 . Chapter 5 concludes this paper.

2 Disparity estimation

2.1 Model of the Stereoscopic Camera System
In the course of disparity and depth estimation, a pinhole camera model based on the
central projection of diffuse illuminated and diffuse reflecting spatial points in the
image plane is applied. No lense distortion is considered. Each camera is defined by its
position C

�
, its optical axis A

�
 and its image plane, which is determined by two perpen-

dicular vectors H
�

 and V
�

. The camera is therefore called CAHV–camera [7]. The
projection of a spatial point P

�
S � (PSx, PSy, PSz) into the image plane of a CAHV–cam-

era can be computed using equation (1).
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For DISTIMA image sequences, only the intrinsic and relative extrinsic camera param-
eters are known, which is sufficient for depth estimation. The absolute camera parame-
ters needed  for the CAHV–camera model can therefore be chosen arbitrarily for one
of the cameras. Here, the left camera is arranged in the center of the coordinate system
and the right camera is positioned with respect to the known relative camera parameters
(Fig. 1). Due to the emulation of human vision in DISTIMA, both cameras are arranged
horizontally with a base length b and their optical axes have a small convergence angle
�. The focal length of both cameras is identical.

Fig. 1: Model of the stereoscopic camera system
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When depth shall be estimated, the spatial position of a point has to be reconstructed
from to known image coordinates of its projection in the stereoscopic image planes. The



spatial position of the point is the intersection of both viewing lines. If the viewing lines
are skewed, the spatial position is assumed to be located at the point with minimal
distance to both viewing lines.

The direction of the viewing lines is determined using the CAHV–camera parameters
and the image coordinates. Evaluating the projection equation (1) the direction appears
to be the following vector product.
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The vector M
�

 links both viewing lines at the location of minimal distance.
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Therefore M
�

 has to be perpendicular to both viewing lines S
�

L, S
�

R.

�
�
� �
�

� � �� � � ��
�
� �
�

� � � (4)

Based on condition (4), λ and µ are computed with equation (5).
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Finally the spatial position is determined using equation (6).

S
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L
� (6)

This equation will be used for the computation of depth maps from disparity maps.

2.2 Disparity Estimation Constraints
The entity of disparity estimation is the search for corresponding image features in a
stereoscopic image pair. Corresponding image features are projections of the same
object feature into both image planes. Due to physical laws of image acquisition, a
number of constraints for matching features can be derived. These constraints are
mainly applied in feature based disparity estimation algorithms, where luminance fea-
tures are extracted from the images in a first step and the disparity of these features is
estimated in a second step [4].

In most area–based disparity estimation algorithms, not all of these constraints are
considered, because disparity is estimated for each image point or block of image points
independently. In the following, these constraints are explained.

2.2.1 Epipolar Constraint

With the applied camera model an image point p�L  results from the central projection
of a spatial point P

�
S into the left image plane. The viewing line is the connection of the

spatial point P
�

S and the center of the camera C
�

. The projection of the viewing line into
the other image plane results in the epipolar line (Fig 1). Therefore the corresponding



point in the right image plane p�R  has to lie on the epipolar line, which reduces the search
area of the disparity estimation to one dimension.

Under the assumption of a small convergence angle between both optical axes and a
horizontal arrangement of the cameras, the epipolar line is approximately horizontal.

2.2.2 Extended Continuity Constraint

Under the assumption of large objects with a smooth surface shown in the stereoscopic
image pair, the disparity varies continuously in most parts of the image. Disparity
discontinuities are allowed at object boundaries only. Therefore, disparity discontinui-
ties have to be detected and involved in the disparity estimation algorithm.

2.2.3 Disparity Gradient Limit

The possible disparity gradient is limited, because disparity changes coincide with
depth changes and therefore with an occlusions of object parts in one of the images in
case of high gradients. Assuming horizontally arranged cameras, for the left disparity
map an upper disparity gradient of size +1 and for the right disparity map a lower
disparity gradient of –1 results. The disparity gradient limits are given in equation (7).

���
�dh

�h
�� 1 for the left disparity map

� 1 �
�dh

�h
��� for the right disparity map

(7)

2.2.4 Monotonic Ordering Constraint

With a defined order of points along a line in one image of the image pair, the corre-
sponding points have to occur in the same order in the other image. This constraint will
be of interest when the scan line oriented disparity estimation algorithm is introduced.

2.2.5 Luminance constraint

Correspondence analysis is disturbed by camera noise. For a reliable disparity estima-
tion, the local luminance variance �2

Ih  within the compared image blocks in direction
of the epipolar line has to be clearly higher than the camera noise variance�2

n.  Therefore
correspondence analysis is restricted to points P

�
 with high local luminance variance �2

Ih.

�
2
Ih �

1
b
�b2

i��b2
�

�

1
b
�b2

j��b2

I2(Ph–j; Pv–i)�
1
b
�b2

j��b2

I(Ph–j; Pv–i)�2

�
�
�
	 �

2
n (8)

with b = blocksize  and  b2 = (blocksize–1) / 2

2.3 Disparity Estimation considering Directly Neighboring Dis-
parity Values (DN–Cost Function)

In order to estimate a dense disparity map for an image, for each point of the image a
corresponding point is searched in the other image. This pair of points is denoted as
candidate pair. In common area–based algorithms, each possible corresponding point,



denoted as candidate, is evaluated using the luminance difference or the cross correla-
tion of surrounding image blocks. For reliable estimation, large block sizes from 11x11
pel to 17x17 pel are needed for block–matching or in the first level of hierarchical
block–matching. These block sizes giving rise to corona effects at disparity discontinui-
ties, e.g. at object boundaries [5] and leading to less accurate disparity estimates, if no
further estimation with smaller block sizes is applied.

Some of the estimation constraints mentioned in Chapter 2.2 cannot be taken into
account, when disparity is estimated for each point independently. Therefore a simulta-
neous disparity estimation for all points along one scan line has been proposed [8].
There, a maximum likelihood cost function is employed, evaluating the luminance
difference of the candidate pair and the disparity change along the scan line. This cost
function is minimized for each scan line using a dynamic programming strategy. With
this method all mentioned estimation constraint expect the extended continuity
constraint are considered.

The first of the two presented cost functions is based on [8], but  evaluating the Normal-
ized Cross Correlation NCC (9) of a candidate pair instead of the luminance difference.
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Fig. 2: a) Horizontal slice of an image from the DISTIMA test sequence 
’aqua’ with a selected scan line
b) Correlation map of the selected scan line, showing the NCC between 
each point along the scan line and each candidate on the epipolar line
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In order to estimate the disparity for a scan line, a NCC map is computed, specifying
the NCC for each possible candidate pair. Possible candidates are image points within
a fixed disparity range. A cross correlation map for two scan lines of the test image pair
’aqua’ is shown in Fig. 2, where bright horizontal lines indicate probable areas of
continuos disparity. Based on the correlation map a cost map is computed applying a
cost function for each candidate pair.

2.3.1 Evaluation of the DN–Cost Function

A dynamic programming strategy is applied to find the maximum likely disparity
estimates for each scan line. With this strategy the cost of the candidate pairs are
computed one after another starting with hj = 1 and d = dmax. The cost for each candidate
pair is composed of two summands, a local cost and the cost of the most probable
predecessor.

For each candidate pair three possible predecessors are evaluated using (10), which
have a maximum disparity difference of �d �� 1 (see Fig. 3). Depending on the
disparity difference the local cost is a fixed cost Cchange for changed disparity or a
matching cost Cmatch for constant disparity. The predecessor that leads to the minimal
resulting cost is chosen and its position  is stored additionally, in order to find the most
likely way for the whole scan line.

C(hj,di) � min�
�

�

C1 � Cchange

C0 � Cmatch

C2 � Cchange

Fig. 3: Computation of the cost map with the DN–cost function
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When the complete cost map of a scan line is computed, the disparity candidate with
the lowest cost is searched at the last pel of the scan line. Starting from this candidate
the disparity values along the scan line are determined backwards, using the path that
is stored for each cost element pointing to the predecessor.

2.3.2 Elements of the DN–Cost Function

The cost for a change in disparity Cchange depends on the probability of an object
boundary Pboundary and on the image noise variance �2

n. Pboundary depends on size of the
objects in the scene and is determined by the mean number of object boundaries along
a scan line of the image related to the number of pels in each scan line. Pboundary is of size
0.95 –0.98. In [8] the following cost value is derived.
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On the other hand a matching cost Cmatch has to be derived,  evaluating constant disparity
along the scan line. This cost value depends on the NCC of the candidate pair and has
to be adapted to the size of Cchange, which is related to the noise variance of the luminance
signal. Therefore the NCC is scaled in the range of the luminance values.
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2.4 Disparity Estimation considering an Extended Neighbor-
hood (EN–Cost Function)

The DN–cost function derived in Chapter 2.3 does not consider all estimation
constraints. An extended maximum likelihood cost function is presented in this Chapter
that considers additionally the extended continuity constraint. This constraint requires
the examination of more than three preceding candidates. The examination is still
limited to candidates in the same scan line and the new maximum likelihood cost
function is minimized for each scan line using dynamic programming.

The EN–cost function is composed of three cost terms. The first cost term is the cost
of the predecessor. The second cost is the cost for matching probability of a candidate
pair. This cost term is similar to the one in the previous cost function, but is considered
independently on the disparity change. In the previous cost function, this term was
considered only in the case of constant disparity.

The third cost term Cpenalty evaluates the disparity change with respect to the predeces-
sor. Due to the resolution of disparity, changes are limited to integer values. The evalua-
tion of disparity changes in the left disparity map is listed below.

• Case 1: �d � 0 � Cpenalty � 0
Continuous disparity due to an object surface parallel to the image plane.

• Case 2: �d �� 1 � Cpenalty � Cinclination

Continuous disparity change due to the inclination of an object surface with
increasing or decreasing distance to the camera

• Case 3: �� � �d � � 1 � Cpenalty � Cdiscontinuity

Disparity discontinuity due to a transition from an object in the foreground to an
object in the background.

• Case 4: � 1 � �d � �� � Cpenalty � Cdiscontinuity � �d � Cocclusion

with �d � d(h0) � d(h0 � �d)
Disparity discontinuity due to a transition from an object in the background to an
object in the foreground, considering possible  occlusions.

Because of the asymmetric disparity gradient limit, two different kinds of disparity
discontinuities have to be considered. These discontinuities are denoted as Case 3 and
Case 4 in the list above. For rising disparity, a discontinuity coincides with an occluded



area in the right image. As a result, disparity is undetermined in the left image within
a range of�d preceding image points. In the cost function this is considered by taking
C(h0–�d,d0+�d) as a possible predecessor. An additional penalty is required, evaluating
the number of skipped disparity estimates. For falling disparity, a discontinuity does not
coincide with an occlusion.

The cost map is determined in a similar manner as in the previous algorithm. In
contrast to the previous cost function, where three predecessors have been evaluated for
each candidate, the number of possible predecessors is now predestinated by the dispar-
ity range.

C(hj,di) � min�Cp
�d
� Cpenalty

�d
� Cmatch�

Fig. 4: Computation of the cost map with the EN–cost function

disparity

x

candidates with determined cost

possible preceeding candidate

PLh

x current candidate

Cpenalty �
Cp

�d
�

Cmatch �

di+3

Cost of preceeding candidate

Penalty due to disparity difference

Cost due to matching probability

path and related penalty

,

� �d

Cp+3

di+2

di+1

di

di–1

di–2

di–3

hj–2hj–3 hj–1 hj

Cp+2

Cp+1

Cp

Cp–1

Cp–2

Cp–3

(13)

The computation of the cost of a single candidate pair is illustrated in (Fig. 4). In this
Figure, each point is one element of the cost map. From each predecessor an arrow
points to the current candidate, which coincides with a penalty depending on the change
of disparity. The reason for the asymmetric arrangement of possible candidates is the
asymmetric disparity gradient limit.

The quality of disparity estimation depends to great extent on the penalty terms of the
EN–cost function (13). These penalty terms have been optimized with respect to the
penalty term of the DN–cost function  Cchange using the DISTIMA test sequences.

Cinclination � Cchange

Cdiscontinuity � 4 � Cchange

Cocclusion � 4 � Cchange

(14)



3 Computation of a Dense Depth Map

Disparity cannot be estimated in low textured areas and in areas which are visible in one
image only. These disparity gaps shall be interpolated without a smoothing of disparity
discontinuities. Additionally the corona effect of block–matching shall be compen-
sated.

3.1 Segmentation of Regions of Homogeneous Disparity
With the applied disparity estimation algorithm, disparity is estimated in pel resolution.
Because of  the disparity gradient limit introduced in Chapter 2.2.3 and the disparity
resolution, all disparity estimates with an absolute disparity difference to their neigh-
bors below 2 pel shall be merged into one region of homogeneous disparity. The
resulting regions are therefore not limited to a certain amount of different disparity
values, but to a maximum absolute disparity gradient of 1.

The segmentation is carried out in several steps. Initially,  all neighboring points with
equal disparity are merged into regions of constant disparity. In a second step neighbor-
ing regions with a maximum disparity difference of one are merged. In order to compen-
sate  single disparity estimation failures, a minimum connection of 10 pel between these
regions is additionally required. In a third step small labels are assigned to the neighbor
with the most similar disparity, which guarantees a minimum size of regions. Undeter-
mined regions are treated as occlusions and are therefore ascribed to the deepest neigh-
bor, which is the one with the lowest disparity.

Even with the small block–sizes of the developed disparity estimation algorithms, the
corona effect of block–matching is apparent in the disparity maps (Fig. 5b). Under the
assumption that object boundaries and therefore disparity discontinuities coincide with
luminance edges, the corona effect of block–matching is compensated by adapting
region boundaries to neighboring luminance edges. The maximum size of the corona
is half of the block–size. Therefore luminance edges in this area around region bound-
aries are detected by evaluating the luminance gradient. Both, luminance edges and
region boundaries are then dilated and afterwards skeletonized, resulting in a new
region boundary in the middle between their original position. When this method is
applied iteratively, the region boundaries are successively adapted to neighboring lumi-
nance edges (Fig. 5d).

Fig. 5: a) Part of DISTIMA image ’aqua’
b) Estimated disparity map (dark = low disparity, bright = high disparity)
c) Segmentation into regions of homogeneous disparity
d) Adaptation of region boundaries to neighboring luminance edges
e) Interpolated disparity map with corona compensation

a) b) c) d) e)



3.2 Disparity Interpolation
In order to compute dense depth maps, disparity gaps have to be interpolated. Disparity
discontinuities are not effected, because disparity is interpolated within segmented
regions of homogeneous disparity only.

For interpolation purposes, the disparity estimates of a segmented region are approxi-
mated by a thin plate. The finite element method is used to minimize the energy of the
thin plate, which is connected to the disparity values with springs of different force. The
force of the springs is controlled by the reliability of the estimated disparity, which is
the NCC in the proposed method. Springs of no force are applied to disparity gaps. In
addition springs of no force are applied to region boundaries, because disparity estima-
tion is unreliable due to the corona effect there. The hierarchical interpolation algorithm
minimizing the energy of the thin plate is based on [9].

The reliability of disparity estimation is enhanced before the interpolation, using a
disparity verification between the left and right disparity map. With this verification all
disparity estimates that differ more than 1 pel from their corresponding disparity esti-
mate in the other disparity map are neglected (15).

��������� ��� � ����������� ������ ��� � � � (15)

This verification enables also an assessment of disparity estimation, because the
remaining disparity estimates can be treated as correct disparity values.

3.3 Depth Computation from Disparity
With known extrinsic camera parameters depth is computed from disparity. Therefore
each point of the interpolated disparity map is evaluated using equation (6).

4 Results

The developed algorithms have been examined using DISTIMA stereoscopic image
sequences. In this paper the results for image sequence ’aqua’ are presented, which are
typical for the results obtained with other image sequences. Image sequence ’aqua’ has
TV resolution and is 2 seconds long. The first image pair and results are presented in
(Fig. 6).

Disparity has been estimated for each field of ’aqua’, applying block–matching, The
DN–cost function and the EN–disparity estimation use block sizes of 5x5 pel. An
example of the disparity estimation results is given in (Fig. 6). To compare the three
different estimation algorithms, the amount of correct disparity estimates is evaluated.
The correctness is verified using (15). For 25% of the image, no disparity can be
estimated, because the luminance constraint is not fulfilled of the points are only visible
in one of the images of an image pair. For the remaining 75% disparity can be estimated.
The part of verified disparity values rises from 65% applying block–matching to 70%
with the new approaches. The difference between both new approaches is below 1%.
The increased number of correctly estimated disparity values shows the result from the
increased  reliability of the developed algorithm. Even the consideration of an extended



neighborhood increases the reliability slightly, so that the usage is only recommended
if the computation time is not relevant. Applying the proposed algorithm increases the
computational effort by a factor of 2 in the case of the DN–cost function and by the
factor of 3 in the case of the EN–cost function when compared to block–matching.

Fig. 6: Depth and disparity estimation results for a DISTIMA image pair ’aqua’
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right image

disparity map
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disparity map
DN–Disparity Estimation
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5 Conclusions

In this contribution, an algorithm for reliable and accurate disparity estimation has been
developed that avoids the corona effect of block–matching at disparity discontinuities.
Therefore, a disparity estimator for two corresponding lines of a stereoscopic image pair
has been developed that evaluates neighboring disparity estimates. Under the assump-
tion of horizontally arranged cameras, corresponding lines, which are also called epipo-
lar lines, are according scan lines.

For the evaluation of neighboring disparity estimates a cost function and a cost
minimization procedure has been developed that considers the following disparity
estimation constraints. Each picture element (pel) of one scan line corresponds exactly
to one pel of the epipolar line. Corresponding pels have to occur in the same ordering
in both scan lines. These constraints are fulfilled by applying dynamic programming for
the minimization of the cost function. The disparity gradient in horizontal direction is
limited between [–∞ ; +1], which reduces the amount of possible neighboring disparity
values.  With the extended disparity continuity constraint, large objects are assumed and
disparity discontinuities are allowed at object boundaries only. Therefore penalty terms
evaluating disparity changes between neighboring disparity values are applied that
cause continuos disparity to be favoured. The correspondence measure between two
pels is the cross correlation of corresponding image blocks. Two cost functions have
been derived, which differ in the number of considered neighbors. The first algorithm



evaluates only direct neighboring disparity estimates (DN–cost function), which
enables the consideration of all constraints except the extended continuity constraint.
The second algorithm evaluates an extended neighborhood (EN–cost function), which
enables the consideration of all constraints.

Block sizes between 11x11 pel and 17x17 pel are chosen for block–matching or in the
first level of hierarchical block–matching, in order to give reliable results. With the new
cost functions the necessary block size for reliable disparity estimates is reduced to 5x5
pel. Due to the reduced block size disparity can be estimated more accurate compared
to block–matching and the corona effect at disparity discontinuities can be reduced
effectively compared to hierarchical block–matching. Reliability is ensured by the
consideration of neighboring disparity values. The reliability of disparity estimates is
verified by comparing disparity estimates of the left disparity map with corresponding
disparity estimates in the right disparity map. Disparity values that do not match are
deleted in the disparity map. Disparity is only be estimated, when the local luminance
variance in direction of the epipolar line is much higher than the camera noise variance.
Disparity estimation result for DISTIMA image sequence ’aqua’ are presented. In this
sequence, approximately 75 % of all image points are visible in both images and fulfill
the luminance constraint. Averaged over the 50 frames, the percentage of verified
disparity values is increased from 65% using block–matching to 69% using the DN–
cost function and 70% using the EN–cost function. Verifications using other DISTIMA
image sequences provided similar results. Applying the proposed algorithm increases
the computational effort by a factor of 2 in the case of the DN–cost function and by the
factor of 3 in the case of the EN–cost function when compared to block–matching.

In order to compute dense depth maps, disparity gaps have to be interpolated without
a smoothing of disparity discontinuities. Therefore the disparity map is segmented into
regions of homogeneous disparity. The developed segmentation algorithm subdivides
the disparity map, which is estimated with integer resolution, into regions of equal
disparity values in a first step. It is assumed that disparity changes between neighboring
pels of a continuos surface are limited to �1 pel. Therefore, in a second step neighbor-
ing regions with a disparity difference of �1 are merged. The remaining corona effect
of block–matching is compensated during segmentation by adapting segmented region
boundaries to neighboring luminance edges using an iterative dilation and skeletoniza-
tion technique. Disparity values inside the corona are not considered during interpola-
tion. Therefore the corona effect is avoided in the resulting depth map.

Beside its usage in DISTIMA, the presented algorithm has successfully been applied
to modelling of 3D natural objects from multiple views in the RACE–MONA LISA
project [2] and modelling of buildings from stereoscopic image sequences [10].
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