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Coarse-to-Fine Search Technique to Detect Circles in Images
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Detection of patterns in images is an important high-level taskinto a number of straight lines and circles [4,5]. Since the
in automated manufacturing using machine vision. Straightstandard Hough transform does not provide the length and the
lines, circles and ellipses are considered to be the basieendpoints of a straight line, algorithms for the detection of the
building blocks of a large number of patterns occurring in length and endpoints were proposed in [6,7].
real-world images. Real-world images frequently contain noise Circles in real-world images are frequently found to be
and occlusions resulting in discontinuous patterns in noisydiscontinuous and embedded in noise. The Hough transform
images. The Hough transform can be used to detect parametri8] has long been known to be an efficient technique for
patterns, such as straight lines and circles, embedded in noisgetecting discontinuous patterns embedded in real-world noisy
images. The large amount of storage and computing powejmages. The Hough transform (HT) is essentially a voting
required by the Hough transform presents a problem in real-process where each feature point votes for all the possible
time applications. _ o circles passing through the point (see Fig. 1).
~ The aim of this paper is to propose an efficient coarse-to- The yotes are accumulated in an accumulator array and the
fine search technique to reduce the storage and computingjrcie receiving the maximum vote is the pattern to be detected.
time in detecting circles in an image. Variable-sized imagesrhg circle receiving the maximum vote is found from the peak
and accumulator arrays are used to reduce the computing ang, yhe accumulator array. Detection of circles in images using
storage requirements of the Hough transform. The accuraCihe HT has been discussed in [9-14]. A pair of 2D accumulator
_and _the rate of convergence of the parameters at d'ﬁerengrrays, to reduce the storage and computation time, in detecting
iterations of the algorlthm.are presented. The_results de_mon&irCIeS has been investigated in [11].
strate tha_t thg coar_se-to-fln_e searc_h strategy Is very suitable The transform has the drawbacks of being highly compu-
for detecting circles in real-time environments having time con-,__.. - X
straints. tation bound and requiring a large amount _of storage. It requires
an accumulator array of siz®&(p?® wherep is the size of the
accumulator array. The computational requirement increases
with an increase in the size of the accumulator array and the
accuracy with which the parameters are to be determined. The
resolution of the accumulator array determines the accuracy
with which the parameters can be determined.
1. Introduction A considerable amount of research has been devoted to
increasing the computational and storage efficiency of the HT.
Recognition of patterns in images is an important task in manyrhe approaches generally adopted to overcome the compu-
automated manufacturing processes using machine vision [1tational requirements are mostly based on one of the follow-
3]. A large number of the patterns occurring in real-world ing techniques.
manufacturing images can be either represented by a parametric
equation or approximated by a number of parametric equations
Straight lines, circles and ellipses are considered as the basic
building blocks of a large number of patterns in real-world
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scenes. Most of the other shapes that may be present in real- p=x cos 6+ y sin6 0 /\,
world images can usually be detected by decomposing them |:‘> /\% e
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using a coarse resolution accumulator array. The information
Parameters obtained from the coarse resolution analysis is used to narrow
of the down the search region of the parameter space. The reduced
pattern computational complexity results from the use of a simple
peak-detection algorithm in addition to variable-size images
and accumulator arrays in the successive iterations of the
galgorithm. Owing to the use of coarse resolution images and
accumulator arrays at the beginning of the iterations, the
— Using a priori information to reduce the dimension of the Parameter ranges of investigation are reduced less during the
accumulator array. initial iterations, when large-size images and accumulator arrays
gre used to obtain accurate results. This results in a logarithmic
reduction in the parameter range.
Let us define a circle in a binary edge image by

A priori i ; ; i X—aP+y—Dbz=r?
priori information regarding the gradient at the feature
points has been used in [15]. The use of gradient informatiorwhere @, b) are the coordinates of the centre ands the
is known to reduce the computing time by one-sixth whenradius of the circle. The standard Hough transform [8] requires
compared to the method without using the gradient informationa 3D accumulator array having the rangesapfb andr as 0
Gerig and Klein [16] illustrate a method to replace the 3D — ¥(x), 0 — (y) and 0— 3 V((¥(x))? + (¥(y))? respectively,
accumulator array required for a circle to three 2D arrays, inwhere ¥(x) and ¥(y) are the sizes of the binary image in the
order to reduce the space requirements. However, it is not- and y-directions. If the discretisation resolution of tlag b
possible to store all the details of concentric circles. Multipro-and r axes of the accumulator array atga), A(b) and A(r),
cessor implementations of the transform have been proposed t@spectively, then the size of the accumulator array is
redu_ce the execution time of the tr_ansform [17-20]. However, () F(y) \M
multiprocessor systems are expensive and may not be generally
available in all cases. 2A(a) A(b) A(r)
Coarse-to-fine search strategies [21-23], on the other handhe detection accuracy depends on the values\@), A(b)
are efficient algorithms suitable for implementation in singleand A(r). This results in the accumulator arrays being exorbi-
processor systems. They use a number of iterations to redugeantly large if the parameters are to be detected with a reason-
the computing and storage requirements of the standard HTable accuracy.
The methods are based on dynamically quantised structures for The proposed coarse-to-fine search technique itetatieses,
the accumulator arrays. using a different image from a set bfimages at each iteration.
The objective of this paper is to propose a coarse-to-fineThe set of images is generated by reducing the size of the
search technique to detect circles in images. The effectivenessriginal image [ — 1) times by a Gaussian subsampling
of the algorithm will be judged by the accuracy with which process [25]. The factor by which an image is reduced at each
the parameters of the circle can be determined. The speed @fep iso. The first iteration uses the smallest image from the
the algorithm will be measured by the rate of convergence ofet and accumulates the votes in a small accumulator array.
the estimated parameters towards the actual values of thBecause of the use of a small image and a small accumulator
parameters as a function of the number of iterations. array in the first iteration, the values obtained forb and r
A necessary step preceding the Hough transform process e very rough estimates of the actual values. The second
edge detection and thresholding, as shown in Fig. 2. Theteration uses a larger image and a larger accumulator array
Hough transform is applied to the edge image obtained fromhan those used in the first iteration. However, the parameter
the above process. Detection of edges and choice of an optimginges of investigation are narrowed down during the second
threshold have been widely studied in the literature [24]. Sincdteration. The estimates of, b and r obtained in the first
edge detection is not the main focus of this paper, we assumieration are used to select reduced ranges of the parameters
that we have available a binary edge image containing ao be investigated in the second iteration. The above procedure
circular shape. In this paper, we are interested in determiningf reducing the parameter ranges and using increasingly larger
the effectiveness of the proposed algorithm in determiningmages and accumulator arrays at successive iterations is carried
circles, using the Hough transform. out until the original image has been analysed. The above
The coarse-to-fine search technique for detecting circles igoarse-to-fine analysis technique results in a reduced amount
images using the Hough transform is described in Sectiof computation, compared to the original HT using a single
2, followed by results and conclusions in Sections 3 andmage and a single accumulation of the HT [21]. Section 2.1
4, respectively. introduces some notation which will be used to illustrate the
proposed algorithm for the detection of circles.
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Fig. 2. The different stages in the detection of patterns in images usin
the Hough transform.

— Implementing the transform in multiprocessor systems usin
a large number of processors.
— Designing efficient algorithms.

2. The Coarse-to-Fine Approach for Circle

. 2.1 Notati

Detection otation

L = number of iterations in the coarse-to-fine search algorithm.
(x, i), $(y, i) = the x and y sizes of the image after

reductions in size#(x, 0) and¥(y, 0) are therefore, the sizes

In the proposed coarse-to-fine approach for circle detection
the initial iterations are performed on reduced-size image
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of the original image. We will assume square images whoseénvestigated during the second iteration when compared to the
sizes will be represented b¥(f, i) = F(x, i) = S(y, i) = linear reduction which reduces the range by half after the first
Fr,iyfor0=i=L - 1. iteration (and all subsequent iterations). During the third iter-

F(a, i), L(b, i), ¥(r, i) = the dimensions of the accumulator ation_ the range _of inve_stig_ation _is the same as the range in
array along thea, b andr axes during thel( — 1)th iteration. the linear reduction. This is achieved by reducing the range

9(f, i) = the size of the imagé along each dimension at the by four times after the second iteration in the logarithmic
(L — i)th iteration, assuming square images. method while the linear methods only reduces the range by

. . N L half after the second iteration. In this example, if the number
Af(a, IB_ g %(b‘. L t_h I?ihA'(tr' Lt'_ 1) = discretisation Steps ¢ yerations is more than three, the parameter ranges of
ofa bandr durning theith iteration. investigation resulting from the logarithmic reduction will, in

%(a, L — i) = Range ofa during theith iteration. fact, be narrower than the linear reduction method. Alterna-
R(b, L — i) = Range ofb during theith iteration. tively, for a particular range of investigations at the last
R(r, L — i) = Range ofr during theith iteration. iteration, the logarithmic reduction of range results in requiring

v = the factor (subsampling number) by which tagb and r fewer iterations than when the linear reduction is used.
Let thea, b and r ranges be reduced by after the Lth

ranges are reduced after the lakth] iteration. . X = .
— the factor by which the image is reduced at successive iter|_terat|on. To apply a logarithmic range reduction, the parameter
g y 9 ranges should be reduced o~ after theith, 1 =i = L,

ations. iteration. If thea, b and r parameters are to be determined
with an accuracy of one pixel aftdr iterations,y for any
2.2 Reduction of Parameter Ranges parameter can be obtained from the following equation:

1 1 1 1 1

yIa® ylat yia? T ylot 1 T (f, 0)

The algorithm uses small image and accumulator arrays during
the initial iterations. An image loses detail as the size is
reduced successively, and a small accumulator array means,
lower resoluthn of t_he e_stlmat_ed parameters. Consequently, a gz “/(O.LIZ(L—l) (5, 0)) B
small image in conjunction with a small accumulator array \ ’

results in very rough estimates of the parameters during thyithout loss of generality, we will assume that the sizes of
initial iterations. If the parameter range is reduced much (baseg gccumulator array along thee b and r dimensions are the
on the rough estimates) during the initial iterations, it has beergme, and the ranges fay b, andr are also reduced by the
found that the actual parameters frequently fall outside theame factor after an iteration. Therefore,

new reduced range of investigation. This problem can be

overcome by reducing the parameter ranges less during thé(@ L—1)=%(b, L—1) =%(r, L—1) = ¥(f, L-1) &)
initial iterations as compared to the iterations in the final after the first iteration, the range od (b andr) is reduced
stages. Higher reductions in the parameter range can be applig§} /oL -1, Therefore,

when large-size images and accumulator arrays are used in the

last few iterations. The above requirements are satisfied by gy L—2):%(a’ L= L= 3)
reducing the parameter ranges logarithmically (instead of ylot—t ylot—t
linearly) at successive iterations. Similarly, it can be shown that

Figure 3 illustrates the linear and the logarithmic range )
reductions forL = 3. As can be seen from the figure, both N avl-1L-2 Lis1 [T ot
the linear and the logarithmic range reductions use the full Ma L= =S LDt ot o v )

parameter ranges in the first iteration. However, the logarithmic | . iginal | ¢ si
reduction results in a much larger parameter range to beAS an example, using an original image of size 51212, L
= 4, ando = 2, y comes out to be 13.454 anit(a, 3) =

512, R(a, 2) = 304, R(a, 1) = 90.5, andR(a, 0) = 13.5.
(a) Therefore, the parameter ranges are reduced by 1.68, 3.36,

6.725 and 13.45 after the first, second, third and fourth iter-
Full Range . .
. ations, respectively. For square accumulator arrays,
Iteration=3
Iteration=2 . . L9, L-1)
Iteration=1 S(a L=i)=Fb L)) =F(, L-i)=——" o
(b) where . is an integer= 1. Higher values ofp. indicates a
smaller accumulator array being used in the iterations. There-
— Full Range - fore,
Iteration=3 ;
Iteration=2 Aa L-1) = M
Iteration=1 ! F(a, L—i)
H . . . O'L71(7L72 O.L—i+l
Fig. 3. Reduction of parameter ranges) Linear reduction. If) Logar- - — pn (5)
i

ithmic reduction. Y
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Forw=1,0=2,L=4and¥(f, L-1) = 512 we have in Fig. 6. To show the sharpness of the peaks, the planes are
_ _ _ represented in 3D forms, where the vote count is represented
Aa, 3)=A(b, 3)=A(r, 3)=2 in the zdirection. Since the first iteration uses the full ranges
A(a, 2)=A(b, 2) = A(r, 2)=1.189 of the parameter, the position of the peak in the plane during
A(a, 1) = A(b, 1) = A(r, 1) = 0.3535 the iteration depends on the actual values of the paramaters
A(a, 0) = A(b, 0) = A(r, 0) = 0.05255 and b. Parameter values obtained after iteratiprl =i = L
— 1, are used as coarse approximations of the parameter values
in iterationi + 1. From the coarse approximations, the algor-
3. Results ithm selects the starting and ending values of #hé andr
ranges of the accumulator arrays for the next iteration. The

In this section, we present the accuracy with which the radiuganges are chosen such that the peak is close to the centre, as
and the coordinates of the centre of a circle can be determine§€en in iterations 2, 3, and 4 in Fig. 6. The peaks are also
The detection accuracy will be represented by the percentage€en to be very sharp and unique in the different iterations.
error between the estimated (from the proposed algorithm) and Table 1 presents the percentage errors in the parameters,
the actual values of parameters. To obtain the percentagePtained by averaging the errors from analysing 30 different
errors, we use a number of images and average the percentajeages of size 51 512 each, and using = 2, u = 1 and
errors in detecting the circles in those images. The percentagzndl- = 4. The percentage error of a parameter is obtained
errors ofa, b and r will be represented by, €, and e y calculating the error between the estimated value (from the
respectively. We will also show the speed at which the para@lgorithm) of the parameter and the actual value of the para-
meters converge to the actual values at the different iterationgneter. The 30 images contain circles of random radius and
The speed of convergence will be demonstrated by the rate &ntre coordinates. The sharp decrease in the percentage errors
which the search interval for the parameters are reduced af Successive iterations shows the speed of convergence of the
successive iterations, with the peak still being within the rangeeStimated parameters to the actual parameters during the differ-
of investigation. ent iterations. It should be pointed out that whgn= 2 is
Figure 4 illustrates the 3D parameter space resulting frontised, the accumulator arrays used in the different iterations
two points, (10, 10) and (20, 20), on a circle having a radiusare half the size of those when = 1. Consequently, the errors
of 5 and the centre being at (15, 15). Figure 5 shows thavith w = 2 are larger during the initial iterations than when
binary multiresolution images used at the different iterations = 1 is used. However, the errors at the fourth iteration are
The initial image is of size 512512 and has a number of the same for bottn = 1 and 2. Note that the memory required
discontinuities at the edges. = 4, o = 2, andw = 2 have to store the accumulator arrays with= 2 is a quarter of the
been used. Therefore, as seen in Fig. 5, the sizes of the imagk&duirement when. = 1 is used. Moreover, withw = 2, the
used at the different iterations are 64 64, 128 x 128,  computing time is half the time required with = 1. Therefore,
256x 256, and 512x 512. The first iteration uses the 64 in this particular casep. = 2 would be a better choice than
64 image; the last ones uses 5%2512. Because of using po=1

= 2 and p. = 2, the sizes of the accumulator arrays were 16 The ranges of the parameteas b andr computed by the
x 16, 32x 32, 64 x 64, and 128x 128 during iterations 1, @lgorithm in the different iterations are shown in Table 2. The

2, 3, and 4, respectively. data relate to an image of size 5¥2512 containing a circle

The constant- planes of the accumulator arrays (at the Of radius 210 and having its centre at (230, 235 4, o =

different iterations) containing the maximum votes are showr?, andp = 2 have been used. The first iteration uses the full
range of the parameters and the range is then logarithmically

reduced at successive iterations. In all the iterations, except
the first, the algorithm has been successful in selecting the
range such that the actual parameter values are almost in the
centre of the range.

4. Conclusions

In this paper, we have demonstrated the effectiveness of the
coarse-to-fine search Hough technique to detect circles in
images. This could be used for automatic inspection of objects
in automated manufacturing processes using machine vision.
Binary edge images have been used to illustrate the algorithm.
It has been shown that the centre and radius can be determined
to an accuracy of less than 0.2% in only four iterations. Prior
edge gradient information for the feature points can be used to
further reduce the amount of computation [15]. The algorithm
illustrated in this paper applies to the detection of circular
Fig. 4. lllustration of the 3D parameter space resulting from two points,arcs. With a change in the parametric equation, it can be used
(10, 10) and (20, 20), having a radius of 5 and the centre at (15, 15%g detect ellipses and other parameterisable patterns in images.
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Table 1.Percentage errors @& b andr at each iteration based on 30 9. C. Kimme, D. Ballard and J. Sklansky, “Finding circles by an
images.¥(f, 0) = 512, ¢ = 2 andL = 4.

Iteration €a € € 10.
number

p=1 p=2 w=1 p=2 p=1 p=2 11.
1 8.52  39.02 15.92 15.92 12.66 42.75
2 2.74 413 0.83 3.42 3.87 3.87 12.
3 0.17 0.25 0.17 0.27 0.69 0.85
4 0.15 0.15 0.14 0.14 0.17 0.19

Table 2. The parameter ranges of investigation at the different iter-14.

ations for a circle having a radius of 210 and centre at (230, 235) in
a 512x 512 image.

Iteration Parameter range of investigation
number 15.
a range b range r range
16.
1 0-512 0-512 0-512
2 71.8-376.2 103.8-408.2 71.8-376.2
3 188.2-278.8 191.7-282.2 169.2-259.7
4 222.5-236.0 227.4-240.9 203.5-217.0 17.
18.
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