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Coarse-to-Fine Search Technique to Detect Circles in Images

M. Atiquzzaman
Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH, USA

Detection of patterns in images is an important high-level task
in automated manufacturing using machine vision. Straight
lines, circles and ellipses are considered to be the basic
building blocks of a large number of patterns occurring in
real-world images. Real-world images frequently contain noise
and occlusions resulting in discontinuous patterns in noisy
images. The Hough transform can be used to detect parametric
patterns, such as straight lines and circles, embedded in noisy
images. The large amount of storage and computing power
required by the Hough transform presents a problem in real-
time applications.

The aim of this paper is to propose an efficient coarse-to-
fine search technique to reduce the storage and computing
time in detecting circles in an image. Variable-sized images
and accumulator arrays are used to reduce the computing and
storage requirements of the Hough transform. The accuracy
and the rate of convergence of the parameters at different
iterations of the algorithm are presented. The results demon-
strate that the coarse-to-fine search strategy is very suitable
for detecting circles in real-time environments having time con-
straints.

Keywords: Circle detection; Coarse-to-fine search; Hough
transform; Image processing; Pattern recognition

1. Introduction

Recognition of patterns in images is an important task in many
automated manufacturing processes using machine vision [1–
3]. A large number of the patterns occurring in real-world
manufacturing images can be either represented by a parametric
equation or approximated by a number of parametric equations
Straight lines, circles and ellipses are considered as the basic
building blocks of a large number of patterns in real-world
scenes. Most of the other shapes that may be present in real-
world images can usually be detected by decomposing them
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into a number of straight lines and circles [4,5]. Since the
standard Hough transform does not provide the length and the
endpoints of a straight line, algorithms for the detection of the
length and endpoints were proposed in [6,7].

Circles in real-world images are frequently found to be
discontinuous and embedded in noise. The Hough transform
[8] has long been known to be an efficient technique for
detecting discontinuous patterns embedded in real-world noisy
images. The Hough transform (HT) is essentially a voting
process where each feature point votes for all the possible
circles passing through the point (see Fig. 1).

The votes are accumulated in an accumulator array and the
circle receiving the maximum vote is the pattern to be detected.
The circle receiving the maximum vote is found from the peak
in the accumulator array. Detection of circles in images using
the HT has been discussed in [9–14]. A pair of 2D accumulator
arrays, to reduce the storage and computation time, in detecting
circles has been investigated in [11].

The transform has the drawbacks of being highly compu-
tation bound and requiring a large amount of storage. It requires
an accumulator array of sizeO(p2) where p is the size of the
accumulator array. The computational requirement increases
with an increase in the size of the accumulator array and the
accuracy with which the parameters are to be determined. The
resolution of the accumulator array determines the accuracy
with which the parameters can be determined.

A considerable amount of research has been devoted to
increasing the computational and storage efficiency of the HT.
The approaches generally adopted to overcome the compu-
tational requirements are mostly based on one of the follow-
ing techniques.

Fig. 1.Mapping of a straight line from the image space to the para-
meter space in the Hough transform.
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Fig. 2. The different stages in the detection of patterns in images using
the Hough transform.

– Using a priori information to reduce the dimension of the
accumulator array.

– Implementing the transform in multiprocessor systems using
a large number of processors.

– Designing efficient algorithms.

A priori information regarding the gradient at the feature
points has been used in [15]. The use of gradient information
is known to reduce the computing time by one-sixth when
compared to the method without using the gradient information.
Gerig and Klein [16] illustrate a method to replace the 3D
accumulator array required for a circle to three 2D arrays, in
order to reduce the space requirements. However, it is not
possible to store all the details of concentric circles. Multipro-
cessor implementations of the transform have been proposed to
reduce the execution time of the transform [17–20]. However,
multiprocessor systems are expensive and may not be generally
available in all cases.

Coarse-to-fine search strategies [21–23], on the other hand,
are efficient algorithms suitable for implementation in single
processor systems. They use a number of iterations to reduce
the computing and storage requirements of the standard HT.
The methods are based on dynamically quantised structures for
the accumulator arrays.

The objective of this paper is to propose a coarse-to-fine
search technique to detect circles in images. The effectiveness
of the algorithm will be judged by the accuracy with which
the parameters of the circle can be determined. The speed of
the algorithm will be measured by the rate of convergence of
the estimated parameters towards the actual values of the
parameters as a function of the number of iterations.

A necessary step preceding the Hough transform process is
edge detection and thresholding, as shown in Fig. 2. The
Hough transform is applied to the edge image obtained from
the above process. Detection of edges and choice of an optimal
threshold have been widely studied in the literature [24]. Since
edge detection is not the main focus of this paper, we assume
that we have available a binary edge image containing a
circular shape. In this paper, we are interested in determining
the effectiveness of the proposed algorithm in determining
circles, using the Hough transform.

The coarse-to-fine search technique for detecting circles in
images using the Hough transform is described in Section
2, followed by results and conclusions in Sections 3 and
4, respectively.

2. The Coarse-to-Fine Approach for Circle
Detection

In the proposed coarse-to-fine approach for circle detection,
the initial iterations are performed on reduced-size images

using a coarse resolution accumulator array. The information
obtained from the coarse resolution analysis is used to narrow
down the search region of the parameter space. The reduced
computational complexity results from the use of a simple
peak-detection algorithm in addition to variable-size images
and accumulator arrays in the successive iterations of the
algorithm. Owing to the use of coarse resolution images and
accumulator arrays at the beginning of the iterations, the
parameter ranges of investigation are reduced less during the
initial iterations, when large-size images and accumulator arrays
are used to obtain accurate results. This results in a logarithmic
reduction in the parameter range.

Let us define a circle in a binary edge image by

(x 2 a)2 + (y 2 b)2 = r2

where (a, b) are the coordinates of the centre andr is the
radius of the circle. The standard Hough transform [8] requires
a 3D accumulator array having the ranges ofa, b and r as 0
2 6(x), 0 2 6(y) and 02 . √((6(x))2 + (6(y))2, respectively,
where 6(x) and 6(y) are the sizes of the binary image in the
x- and y-directions. If the discretisation resolution of thea, b
and r axes of the accumulator array areD(a), D(b) and D(r),
respectively, then the size of the accumulator array is

6(x) 6(y) Î((6(x))2 + (6(y))2)

2D(a) D(b) D(r)

The detection accuracy depends on the values ofD(a), D(b)
and D(r). This results in the accumulator arrays being exorbi-
tantly large if the parameters are to be detected with a reason-
able accuracy.

The proposed coarse-to-fine search technique iteratesL times,
using a different image from a set ofL images at each iteration.
The set of images is generated by reducing the size of the
original image (L 2 1) times by a Gaussian subsampling
process [25]. The factor by which an image is reduced at each
step iss. The first iteration uses the smallest image from the
set and accumulates the votes in a small accumulator array.
Because of the use of a small image and a small accumulator
array in the first iteration, the values obtained fora, b and r
are very rough estimates of the actual values. The second
iteration uses a larger image and a larger accumulator array
than those used in the first iteration. However, the parameter
ranges of investigation are narrowed down during the second
iteration. The estimates ofa, b and r obtained in the first
iteration are used to select reduced ranges of the parameters
to be investigated in the second iteration. The above procedure
of reducing the parameter ranges and using increasingly larger
images and accumulator arrays at successive iterations is carried
out until the original image has been analysed. The above
coarse-to-fine analysis technique results in a reduced amount
of computation, compared to the original HT using a single
image and a single accumulation of the HT [21]. Section 2.1
introduces some notation which will be used to illustrate the
proposed algorithm for the detection of circles.

2.1 Notation

L = number of iterations in the coarse-to-fine search algorithm.
6(x, i), 6(y, i) = the x and y sizes of the image afteri
reductions in size.6(x, 0) and6(y, 0) are therefore, the sizes
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of the original image. We will assume square images whose
sizes will be represented by6(f, i) = 6(x, i) = 6(y, i) =
6(r, i) for 0 # i # L 2 1.
6(a, i), 6(b, i), 6(r, i) = the dimensions of the accumulator
array along thea, b and r axes during the (L 2 1)th iteration.

6(f, i) = the size of the imagef along each dimension at the
(L 2 i)th iteration, assuming square images.
D(a, L 2 i), D(b, L 2 i), D(r, L 2 i) = discretisation steps
of a, b and r during the ith iteration.

5(a, L 2 i) = Range ofa during the ith iteration.
5(b, L 2 i) = Range ofb during the ith iteration.

5(r, L 2 i) = Range ofr during the ith iteration.

g = the factor (subsampling number) by which thea, b and r
ranges are reduced after the last (Lth) iteration.

s = the factor by which the image is reduced at successive iter-
ations.

2.2 Reduction of Parameter Ranges

The algorithm uses small image and accumulator arrays during
the initial iterations. An image loses detail as the size is
reduced successively, and a small accumulator array means
lower resolution of the estimated parameters. Consequently, a
small image in conjunction with a small accumulator array
results in very rough estimates of the parameters during the
initial iterations. If the parameter range is reduced much (based
on the rough estimates) during the initial iterations, it has been
found that the actual parameters frequently fall outside the
new reduced range of investigation. This problem can be
overcome by reducing the parameter ranges less during the
initial iterations as compared to the iterations in the final
stages. Higher reductions in the parameter range can be applied
when large-size images and accumulator arrays are used in the
last few iterations. The above requirements are satisfied by
reducing the parameter ranges logarithmically (instead of
linearly) at successive iterations.

Figure 3 illustrates the linear and the logarithmic range
reductions forL = 3. As can be seen from the figure, both
the linear and the logarithmic range reductions use the full
parameter ranges in the first iteration. However, the logarithmic
reduction results in a much larger parameter range to be

Fig. 3. Reduction of parameter ranges. (a) Linear reduction. (b) Logar-
ithmic reduction.

investigated during the second iteration when compared to the
linear reduction which reduces the range by half after the first
iteration (and all subsequent iterations). During the third iter-
ation the range of investigation is the same as the range in
the linear reduction. This is achieved by reducing the range
by four times after the second iteration in the logarithmic
method while the linear methods only reduces the range by
half after the second iteration. In this example, if the number
of interations is more than three, the parameter ranges of
investigation resulting from the logarithmic reduction will, in
fact, be narrower than the linear reduction method. Alterna-
tively, for a particular range of investigations at the last
iteration, the logarithmic reduction of range results in requiring
fewer iterations than when the linear reduction is used.

Let the a, b and r ranges be reduced byg after the Lth
iteration. To apply a logarithmic range reduction, the parameter
ranges should be reduced byg/sL2i after the ith, 1 # i # L,
iteration. If the a, b and r parameters are to be determined
with an accuracy of one pixel afterL iterations, g for any
parameter can be obtained from the following equation:

1
g/s0

1
g/s1

1
g/s2 %

1
g/sL21 =

1
6(f, 0)

or,

g = 1/LÎ(sL/2(L21) 6(f, 0)) (1)

Without loss of generality, we will assume that the sizes of
an accumulator array along thea, b and r dimensions are the
same, and the ranges fora, b, and r are also reduced by the
same factor after an iteration. Therefore,

5(a, L21) = 5(b, L21) = 5(r, L21) = 6( f, L21) (2)

After the first iteration, the range ofa (b and r) is reduced
by g/sL21. Therefore,

5(a, L22) =
5(a, L21)

g/sL21 s =
6(f, L21)

g/sL21 s (3)

Similarly, it can be shown that

5(a, L2i) = 6(f, L21)sL21sL22
# sL2i+1 Ss

gDi21

(4)

As an example, using an original image of size 512× 512, L
= 4, and s = 2, g comes out to be 13.454 and5(a, 3) =
512, 5(a, 2) = 304, 5(a, 1) = 90.5, and5(a, 0) = 13.5.
Therefore, the parameter ranges are reduced by 1.68, 3.36,
6.725 and 13.45 after the first, second, third and fourth iter-
ations, respectively. For square accumulator arrays,

6(a, L2i) = 6(b, L2i) = 6(r, L2i) =
6(f, L21)

sm
si21

where m is an integer$ 1. Higher values ofm indicates a
smaller accumulator array being used in the iterations. There-
fore,

D(a, L21) =
5(a, L2i)
6(a, L2i)

=
sL21sL22

% sL2i+1

gi21 sm (5)
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For m = 1, s = 2, L = 4 and 6(f, L21) = 512 we have

D(a, 3) = D(b, 3) = D(r, 3) = 2
D(a, 2) = D(b, 2) = D(r, 2) = 1.189
D(a, 1) = D(b, 1) = D(r, 1) = 0.3535
D(a, 0) = D(b, 0) = D(r, 0) = 0.05255

3. Results

In this section, we present the accuracy with which the radius
and the coordinates of the centre of a circle can be determined.
The detection accuracy will be represented by the percentage
error between the estimated (from the proposed algorithm) and
the actual values of parameters. To obtain the percentage
errors, we use a number of images and average the percentage
errors in detecting the circles in those images. The percentage
errors of a, b and r will be represented byea, eb and ec,
respectively. We will also show the speed at which the para-
meters converge to the actual values at the different iterations.
The speed of convergence will be demonstrated by the rate at
which the search interval for the parameters are reduced at
successive iterations, with the peak still being within the range
of investigation.

Figure 4 illustrates the 3D parameter space resulting from
two points, (10, 10) and (20, 20), on a circle having a radius
of 5 and the centre being at (15, 15). Figure 5 shows the
binary multiresolution images used at the different iterations.
The initial image is of size 512× 512 and has a number of
discontinuities at the edges.L = 4, s = 2, and m = 2 have
been used. Therefore, as seen in Fig. 5, the sizes of the images
used at the different iterations are 64× 64, 128 × 128,
256× 256, and 512× 512. The first iteration uses the 64×
64 image; the last ones uses 512× 512. Because of usings
= 2 and m = 2, the sizes of the accumulator arrays were 16
× 16, 32 × 32, 64 × 64, and 128× 128 during iterations 1,
2, 3, and 4, respectively.

The constant-r planes of the accumulator arrays (at the
different iterations) containing the maximum votes are shown

Fig. 4. Illustration of the 3D parameter space resulting from two points,
(10, 10) and (20, 20), having a radius of 5 and the centre at (15, 15).

in Fig. 6. To show the sharpness of the peaks, the planes are
represented in 3D forms, where the vote count is represented
in the z-direction. Since the first iteration uses the full ranges
of the parameter, the position of the peak in the plane during
the iteration depends on the actual values of the parametersa
and b. Parameter values obtained after iterationi, 1 # i # L
2 1, are used as coarse approximations of the parameter values
in iteration i + 1. From the coarse approximations, the algor-
ithm selects the starting and ending values of thea, b and r
ranges of the accumulator arrays for the next iteration. The
ranges are chosen such that the peak is close to the centre, as
seen in iterations 2, 3, and 4 in Fig. 6. The peaks are also
seen to be very sharp and unique in the different iterations.

Table 1 presents the percentage errors in the parameters,
obtained by averaging the errors from analysing 30 different
images of size 512× 512 each, and usings = 2, m = 1 and
2, andL = 4. The percentage error of a parameter is obtained
by calculating the error between the estimated value (from the
algorithm) of the parameter and the actual value of the para-
meter. The 30 images contain circles of random radius and
centre coordinates. The sharp decrease in the percentage errors
in successive iterations shows the speed of convergence of the
estimated parameters to the actual parameters during the differ-
ent iterations. It should be pointed out that whenm = 2 is
used, the accumulator arrays used in the different iterations
are half the size of those whenm = 1. Consequently, the errors
with m = 2 are larger during the initial iterations than when
m = 1 is used. However, the errors at the fourth iteration are
the same for bothm = 1 and 2. Note that the memory required
to store the accumulator arrays withm = 2 is a quarter of the
requirement whenm = 1 is used. Moreover, withm = 2, the
computing time is half the time required withm = 1. Therefore,
in this particular case,m = 2 would be a better choice than
m = 1.

The ranges of the parametersa, b and r computed by the
algorithm in the different iterations are shown in Table 2. The
data relate to an image of size 512× 512 containing a circle
of radius 210 and having its centre at (230, 235).L = 4, s =
2, andm = 2 have been used. The first iteration uses the full
range of the parameters and the range is then logarithmically
reduced at successive iterations. In all the iterations, except
the first, the algorithm has been successful in selecting the
range such that the actual parameter values are almost in the
centre of the range.

4. Conclusions

In this paper, we have demonstrated the effectiveness of the
coarse-to-fine search Hough technique to detect circles in
images. This could be used for automatic inspection of objects
in automated manufacturing processes using machine vision.
Binary edge images have been used to illustrate the algorithm.
It has been shown that the centre and radius can be determined
to an accuracy of less than 0.2% in only four iterations. Prior
edge gradient information for the feature points can be used to
further reduce the amount of computation [15]. The algorithm
illustrated in this paper applies to the detection of circular
arcs. With a change in the parametric equation, it can be used
to detect ellipses and other parameterisable patterns in images.
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Fig. 5. Images used during the different iterations.
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Fig. 6. Accumulator array planes during the different iterations.
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Table 1.Percentage errors ofa, b and r at each iteration based on 30
images.6(f, 0) = 512, s = 2 and L = 4.

Iteration ea eb ec

number

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

1 8.52 39.02 15.92 15.92 12.66 42.75
2 2.74 4.13 0.83 3.42 3.87 3.87
3 0.17 0.25 0.17 0.27 0.69 0.85
4 0.15 0.15 0.14 0.14 0.17 0.19

Table 2.The parameter ranges of investigation at the different iter-
ations for a circle having a radius of 210 and centre at (230, 235) in
a 512× 512 image.

Iteration Parameter range of investigation
number

a range b range r range

1 0–512 0–512 0–512
2 71.8–376.2 103.8–408.2 71.8–376.2
3 188.2–278.8 191.7–282.2 169.2–259.7
4 222.5–236.0 227.4–240.9 203.5–217.0

References

1. V. Allada and S. Anand, “Efficient vertex detection algorithms
using the hough transform”, International Journal of Advanced
Manufacturing Technology, 11(6), pp. 394–405, June 1996.

2. D. M. Tsai, “Locating overlapping industrial parts for robotic
assembly”, International Journal of Advanced Manufacturing Tech-
nology, 12(4), pp. 288–302, April 1996.

3. S. J. Huang and C. C. Lin, “Three-dimensional non-contact
measurement system”, International Journal of Advanced Manufac-
turing Technology, 13(6), pp. 419–425, June 1997.

4. C. J. Radford, “Vehicle detection in open-world scenes using a
Hough transform technique”, IEE Third International Conference
on Image Processing and its Applications, London, pp. 78–82,
July 1989.

5. J. L. C. Sanz, E. B. Hinkle and A. K. Jain, Radon and Projection
Transform-Based Computer Vision, Springer-Verlag, Berlin, 1988.

6. M. W. Akhtar and M. Atiquzzaman, “Determination of line length
using Hough transform”, Electronics Letters, 28(1), pp. 94–96,
January 2, 1992.

7. M. Atiquzzaman and M. W. Akhtar, “Complete line segment
description using the Hough transform”, Image and Vision Com-
puting, 12(5), pp. 267–273, June 1994.

8. P. V. C. Hough, “Methods and means for recognizing complex
patterns”, US Patent 3069654, 1962.

9. C. Kimme, D. Ballard and J. Sklansky, “Finding circles by an
array of accumulators”, Communications of the ACM, 18(2), pp.
120–122, February 1975.

10. H. K. Yuen, J. Princen, J. Illingworth and J. Kittler, “Comparative
study of Hough transform methods for circle finding”, Image and
Vision Computing, 8(1), pp.71–77, February 1990.

11. R. Chan and W. C. Siu, “New parallel Hough transform for
circles”, IEE Proceedings Part-E, 138(5), pp. 335–344, Sep-
tember 1991.

12. K. Hanahara and M. Hiyane, “A circle detection algorithm simulat-
ing wave propagation”, Machine Vision and Applications, 3, pp.
97–111, 1990.

13. P. Kierkegaard, “A method for detection of circular arcs based
on the Hough transform”, Machine Vision and Applications, 5,
pp. 249–263, 1992.

14. V. F. Leavers, “The dynamic generalized Hough transform: Its
relationship to the probabilistic Hough transforms and an appli-
cation to the concurrent detection of circles and ellipses”, Com-
puter Vision, Graphics and Image Processing: Image Understand-
ing, 56(3), pp. 381–398, November 1992.

15. F. O’Gorman and M. B. Clowes, “Finding picture edges through
collinearity of feature points”, IEEE Transactions on Computers,
C-25(4), pp. 449–456, April 1976.

16. G. Gerig and F. Klein, “Fast contour identification through efficient
Hough transform and simplified interpretation strategy”, 8th Inter-
national Joint Conference on Pattern Recognition, pp. 498–500,
1986.

17. C. Guerra and S. Hambrusch, “Parallel algorithms for line detec-
tion on a mesh”, Journal of Parallel and Distributed Computing,
6, pp. 1–19, 1989.

18. M. Atiquzzaman, “Pipelined implementation of the multiresolution
Hough transform in a pyramid multiprocessor”, Pattern Recog-
nition Letters, 15(9), pp. 841–851, September 1994.

19. A. L. Fisher and P. T. Highnam, “Computing the Hough transform
on a scan line array processor”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(3), pp. 262–265, March
1989.

20. A. Kavianpour, S. Shoari and N. Bagherzadeh, “A new approach
for circle detection on multiprocessors”, Journal of Parallel and
Distributed Computing, 20, pp. 256–260, 1994.

21. M. Atiquzzaman, “Multiresolution Hough transform – an efficient
method of detecting pattern in images”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(11), pp. 1090–1095,
November 1992.

22. J. Illingworth and J. Kittler, “Adaptive Hough transform”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
9(5), pp. 690–698, September 1987.

23. H. Li, M. A. Lavin and R. J. LeMaster, “Fast Hough transform”,
Computer Vision, Graphics and Image Processing, 36, pp. 139–
161, 1986.

24. Y. Lu and R. C. Jain, “Behaviour of edges in scale space”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(4),
pp. 337–356, April 1989.

25. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a
compact image code”, IEEE Transactions on Communications,
COM-31(4), pp. 532–540, April 1983.


