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Department of Telecommunications and Information Processing (TELIN)
Ghent University
Ghent, Belgium

{Simon.Donne, Ljubomir.Jovanov, Bart.Goossens, Wilfried.Philips,
Aleksandra.Pizurica}@telin.ugent.be

1 ABSTRACT

Non-rigid structure-from-motion in an on-line setting holds many promises for useful
applications, and off-line reconstruction techniques are already very advanced. Literature
has only recently started focusing on on-line reconstruction, with only a handful of
existing techniques available. Here we propose a novel method of history representation
which utilizes the advances in off-line reconstruction. We represent the history as a set
of keyframes, a representative subset of all past frames. This history representation is
used as side-information in the estimation of individual frames. We expand the history
as previously unseen frames arrive and compress it again when its size grows too large.
We evaluate the proposed method on some test sequences, focusing on a human face in a
conversation. While on-line algorithms can never perform as well as off-line methods as
they have less information available, our method compares favourably to the state of the
art off-line methods.

2 INTRODUCTION

One of the most important problems in computer vision today is the reconstruction of the
3D geometry of a scene based on one or more cameras capturing 2D image sequences.
Non-rigid structure-from-motion is one of the fundamental computer vision problems,
with a large number of potential applications such as:

– 3D video: conversion of 2D movies into 3D,
– Human-computer interface (HCI): pose and gesture estimation of the user,
– Minimal-invasion surgery: extraction of 3D information from laparoscopic images

to provide surgeons with more detailed information.

These are only some important applications of these techniques, illustrating the impor-
tance of accurate and on-line 3D reconstruction. In this paper we focus on a telecon-
ference scenario: we wish to create a more immersive user experience by only using
a single 2D camera. The goal is to estimate the 3D coordinates for a series of feature
points from an input stream of their corresponding 2D observations, and to do so in an
on-line fashion.



The input 2D coordinates are assumed to be reasonably accurate, but our model
includes input noise, for example from feature tracker inaccuracies. This paper focuses
on the case of only one camera. We make no further assumptions about this camera: it
may be either static or moving compared to the object and we do not restrict ourselves
to a given camera model in this stage, either perspective or orthographic.

We say that the (external) feature tracker detects J feature points on the surface
and that the camera is represented by C parameters. Accordingly, in each frame we
wish to estimate 3J 3D coordinates and C camera parameters using 2J observed 2D
coordinates: the problem is ill-posed without any restrictions on the possible solutions.
The two major challenges are finding the best solution to this ill-posed problem and
doing so in an on-line fashion. While the existing literature offers a plethora of solutions
to the ill-posed problem in an off-line scenario, on-line non-rigid structure-from-motion
has only recently been receiving attention with just a handful of publications at the time
of writing [1–3].

3 EXISTING METHODS

Non-rigid structure-from-motion is in itself an ill-posed problem: at each input frame
we wish to estimate 3J +C unknowns based on only 2J input values, where the camera
parameters may or may not include movement depending on the specifics of the method
used. To lower the amount of unknowns that need to be estimated, we assume a certain
degree of knowledge about the scene. The various methods are generally classified by
the type of knowledge they assume.

3.1 Template-based Methods

The first option is to assume that the object being reconstructed is well-known and that
all of its possible behaviours are collected into a so-called template. As illustrated in
the literature, a linear space can adequately represent deformations of a real, physical
object such as a human face [4–6]. Such a template effectively restricts the possible 3D
point clouds of the object to a K-dimensional subspace of the 3J-dimensional space,
with the template containing the known subspace basis. This means we must estimate
K + C unknowns based on 2J input values, which is more likely to be well-determined.
Naturally, the dimensionality of the subspace is assumed to be significantly lower than
3J . If this were not the case, there is little advantage from a template-based method.

3.2 Shape Basis Methods

Unfortunately, templates are often missing due to the lack of any accurate knowledge
about the deforming object. We must therefore make less stringent assumptions to reduce
the number of unknowns. A relaxation of the assumption of the template methods is
that the possible constellations of the object’s point cloud are indeed restricted to a
K-dimensional subspace, but that the basis of this subspace is unknown and must be
estimated as well.



Fig. 1: Illustration of a shape basis extracted with a shape space method.

In this case K + C unknowns have to be estimated for each frame, as well as 3JK
unknowns globally for the subspace basis [7]. Figure 1 shows an example of an estimated
shape basis, and we can see that this is similar to what one would expect a template to
contain.

In the seminal work of [7] the shape basis and the coefficients are extracted through
matrix factorization. Several methods improve this seminal method, either in the method
of estimation or in the modelling of the object. Some of the most important approaches
consist of:

- an extension to non-linear manifolds for the possible constellations [8–11];
- the use of a perspective rather than an orthographic camera model [12, 13];
- the use of Bayesian estimation [14, 15];
- the handling of missing data points [16].

One of these approaches, probabilistic principal component analysis (PPCA) [14] is
one of the best performing methods when in the input is perturbed by noise, courtesy
of its explicit noise modelling. It is the one we choose to champion for the shape basis
methods in later comparisons. Moreover, this method is computationally faster than most
other methods, which is another point of importance considering our goal of an on-line
reconstruction. This method is explained in more detail later in this section, because our
proposed method relies on the same modelling and on the same approach for the actual
reconstruction.

To the best of our knowledge there exist, at of the time of writing, only a handful
of on-line non-rigid structure-from-motion methods in the literature. In [1], the authors
perform off-line reconstruction on a bootstrap sequence, which results in an initial
estimate for the shape basis. Afterwards this basis is used to estimate the subsequent
frames sequentially. The shape basis is then expanded using principal component analysis
(PCA). While the shape basis representation from [1] tends to collect a large amount
of noise over time in noise-perturbed sequences as it will keep adding bases based on
noises, it works well in the noise-free case. The authors of [3] utilize an adaptation of
PCA more suited for sequential use: Incremental PCA (IPCA). They use a frame window
to step through the input sequence and update the shape basis using IPCA. Their method
requires a training input set to estimate the prior distribution of shape basis weights,
however. Lastly, the use of an adapted Finite Elements Method (FEM) is proposed [2].
The major drawback of this FEM method is that it requires an initialisation step wherein
the object behaves rigidly. This is a valid assumption in a large number of cases, but we
will focus on scenarios where this requirement is not necessarily fulfilled.



3.3 Trajectory Basis Methods
Whereas shape basis approaches attempt to model spatial coherence, trajectory basis
methods exploit temporal coherence: there is a high correlation between subsequent
locations of a given point. These methods model the point trajectories as elements of a
K-dimensional subspace. The optimal basis for each input sequence can be estimated
through principal component analysis (PCA), but research has shown this basis largely
coincides with that of the discrete cosine transform (DCT) [17, 18]. A related method
models the camera as smoothly moving rather than the points: Column Space Fitting [19],
which we classify under trajectory basis methods in this overview. It first estimates
the camera behaviour and then uses this knowledge to perform reconstruction more
effectively. It is chosen to champion for the trajectory basis methods in later comparisons.

3.4 Details of PPCA
Because our method uses the estimation framework from [14] we repeat the basics here.
This approach is based on the Bayesian modelling of the tracking errors and the input
noise. Let us sj,t as the 3D coordinates of point j, dt as the 3D camera translation, Rt

as the camera matrix and ct as the camera scaling factor,(all in the tth frame). Under the
assumption of Gaussian measurement noise nj,t ∼ N (0;σ2 I) we can then express the
2D observation pj,t of the jth point as a weak-perspective projection:

pj,t︸︷︷︸
2×1

= ct Rt︸︷︷︸
2×3

( sj,t︸︷︷︸
3×1

+ dt︸︷︷︸
3×1

) + nj,t︸︷︷︸
2×1

(1)

In matrix notation, the observed locations of all points in a given frame t are concate-
nated vertically into pt:

pt︸︷︷︸
2J×1

= Gt︸︷︷︸
2J×3J

( st︸︷︷︸
3J×1

+ Dt︸︷︷︸
3J×1

) + nt︸︷︷︸
2J×1

(2)

In this equation, Gt contains J copies of ct Rt on its diagonal, and other entities are
the vertically concatenated versions of their counterparts in Equation 1. We now assume
st to be an element of a K-dimensional manifold:

st︸︷︷︸
3J×1

= s︸︷︷︸
3J×1

+ V︸︷︷︸
3J×K

zt︸︷︷︸
K×1

,

where s is an average 3D shape, and V holds the shape basis vectors in its columns,
which are weighted with the deformation coefficients contained in zt.

Subsequently, the authors of [14] place a Gaussian prior on the deformation weights:
zt ∼ N (0; I). The estimation of Rt, s, V and zt then amounts to a Bayesian scheme,
which is called probabilistic principal component analysis (PPCA). Specifically, an
expectation-maximization (EM) optimization is used for estimating the various parame-
ters. One final remark must be given about the localisation: without any fixed reference
system, the location of the camera and the object are only estimated up to an affine
transform. For ease of use we will assume that the center of the observed object is
the origin (and that this center does not fluctuate markedly due to deformations). We
will then express any movement of either the real-life camera or the real-life object as
movements of our virtual camera, fixing the object’s center at the virtual origin.



4 THE PROPOSED ON-LINE RECONSTRUCTION

We can identify two large elements in any on-line method: a method for history represen-
tation and one for the sequential processing of the input. In an initial attempt for on-line
reconstruction method we performed the EM update equations using the information
from a sliding temporal window for all of the unknowns. Due to small frame windows
and slow-moving cameras, this strategy typically resulted in a degeneration of the shape
basis and the resulting reconstruction because the frame window did not contain enough
vantage points for the object. In this case, the latest estimations of the various unknowns
were used as a history representation: obviously this history representation was too sim-
plistic. This section comprises the selection of a representative subset, both on artificial
2D point clouds and our specific problem, and the overview of our proposed method.

4.1 History Representation with keyframes

A key element of any sequential or on-line algorithm is the need to remember past input.
Clearly, it is intractable to simply memorize all past frames of a theoretically infinite
sequence. We propose to use a set of keyframes as a representation of all past input
frames; a sparse sampling of history, so to speak. We extract the shape basis for the
shape subspace required for the reconstruction from this history representation, but we
retain the entire subset as the history representation. The challenge is now the selection
of such a set of representative frames from all of the input frames.

General Subset Selection The main goal of the keyframe selection procedure is to
select a set of frames which represent all the possible deformations of the object from as
many vantage points as possible. In order to achieve this goal, the selection procedure
should exclude all of the frames that do not contribute any additional information to the
shape basis, eliminating duplicate frames from the keyframe set.

A subset of representative frames is selected from the full set, having much fewer
elements. Due to the combinatorial explosion, the number of possible ways to select a
subset from a larger set grows very quickly with the size of the full set. Therefore, an
exhaustive comparison of all possible subsets of keyframes is implausible and we resort
to a heuristic subset selection. Assuming that we can represent the elements of the set
as points in a Euclidean space, our goal is to select a subset, the elements of which are
uniformly distributed throughout the bounds of the full set.

To select a subset with a given metric, we use backward elimination. By starting from
the full set and removing one element at a time according to a local criterion we remove
the element whose exclusion from the subset results in the best change of the metric, e.g.
one of the two elements lying closest together when maximizing the minimum distance:
the one lying closest to the rest of the subset.

We illustrate four different metrics to maximize: the minimum distance between
any two elements of the subset, the mean distance between all elements of the subset,
the mean distance between the elements of the subset and those of the full set, and the
differential entropy of the subset. These metrics are heuristically chosen so that their
maximization results either in a uniform density over the bounds (the minimum distance
and the entropy), or in an accurate representation of the bounds (the mean distance).
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Fig. 2: Demonstration of the subset
selection metrics on an artificial 2D
point cloud.
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Fig. 3: Keyframe selection using several metrics.
The input sequence is a 316-frame sequence of a
person talking from [14].

The mean distance to the full set is included because it is computationally faster
than the mean distance to the subset. For the first three metrics we require a meaningful
distance to be defined between any two elements in the set, a drawback the differential
entropy does not suffer from. To estimate the differential entropy, we use a Matlab
wrapper for the TIM, an open-source C++ library for efficient estimation of information-
theoretic measures [20].

The result of each of these strategies on the selection of a representative subset for
an artificial 2D point cloud are shown in Figure 2. We can see that maximizing the
minimum distance between any two points in the subset yields the most representative
cloud, while maximizing the mean distance represents the edges well. The entropy metric
gives disappointing results, which we assume largely to be the result of the difficulty of
estimating the entropy of a continuous variable based on a small number of samples.

Subset selection for keyframe selection Results shown in Figure 2 demeonstrate that
it is possible to select a representative subset of 2D points from a much larger set. In
this section we investigate whether this result also holds for selecting a set of keyframes
from the full set of frames, as illustrated in Figure 4. The set of keyframes is said to be
representative to the full set if the reconstruction error is not significantly affected by
restricting the estimation of the shape basis to the set of keyframes rather than the full
set. To this end, three metrics for the selection of keyframes are investigated:

- the minimum distance in the shape space,
- the minimum distance in the camera manifold,
- the entropy in the combined shape-camera space.



︸ ︷︷ ︸

Fig. 4: Illustration of how the keyframe selection should work: any duplicate or near iden-
tical frames should be eliminated. Images courtesy of the open-source video Elephant’s
Dream [21], featuring the character Proog.

We use the Euclidian distance between deformation coefficients as the distance metric in
the shape space. In the camera manifold, the distance between two camera parameter
vectors is defined as the euclidean distance between a given unit vector transformed to the
cameras’ reference system. The differential entropy is retained as a metric in this paper
because it allows us to combine the deformation coefficients and the camera parameters
into a single metric, which is not straightforward using distance-based metrics and would
require extensive research.

Figure 3 shows that the minimum distance on the shape manifold results in a lower
reconstruction error than the other methods, indicating that the observation of the
different deformations is more important to the overall accuracy than the observation
from different vantage points. The results were obtained on a 316-frame sequence
from [14] consisting of a person talking to the camera. At each step, we eliminate
the frame which maximizes the respective metric and perform PPCA reconstruction
restricting the estimation of the shape basis to the keyframes. Figure 3 also shows that
for keyframe set sizes of about 35 frames there is little loss in accuracy.

4.2 Overview of the Proposed Algorithm

We start by performing a 3D reconstruction of a bootstrap sequence with an existing, off-
line, reconstruction method. For this, any off-line reconstruction algorithm can be used,
but we have chosen the PPCA method [14] for simplicity. The length of the bootstrap
sequence must be chosen with some care: choosing it too short will result in a rough
initialization, while choosing it too long will increase the initialisation time. For the
sequences used in this paper we have found a bootstrap length of 60 frames to be a
good middle ground. We select a subset of frames from the bootstrap sequence which
accurately represents the whole of the bootstrap sequence, through the already discussed
keyframe selection. A rough initial reconstruction can be performed for the bootstrap
window (through a limitation of the iteration count), which is sufficient for keyframe
selection and which we improve only for the selected keyframes.

Throughout the execution of the program we will add frames to the keyframe set,
and we cull the keyframe set using the subset selection whenever its cardinality exceeds
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Fig. 5: Overview of our proposed method.

a certain imposed size (heuristically chosen to be 1.5 times the initial size). The initial
history size is also chosen manually, and tests have shown (see for example Figure 3)
that a set of 30 frames is an acceptable choice.

For the on-line processing, we reconstruct each frame sequentially using the shape
basis we have extracted from the keyframe set, initialising the camera matrix using
the last estimated value. This consists of alternately optimizing the camera parameters
and the deformation coefficients for a set number of iterations using the update steps
from [14]. In the next step we add the newly processed frame to the keyframe set if it
represents a deformation or vantage point which is not yet represented in said set, i.e.
if the subset selection metric does not lower significantly when including the newly
processed frame. At the point where the keyframe set has changed significantly, i.e. it has
grown to a predefined threshold, we select a new subset of the large keyframe set to serve
as the new history representation from now on. Finally, we extract an updated shape
basis from the updated history and continue with the on-line processing. The update of
the keyframe set and the extraction of the new shape basis can be done in parallel with
the on-line reconstruction using parallel programming paradigms (OpenMP or GPGPU).
An overview of the proposed algorithm is given in the form of a flowchart in Figure 5.

4.3 GOP Processing

Estimating the 3D shape one frame at a time incurs a large amount of overhead, because
we are performing calculations on small matrices: the overhead of the calculations is large
compared to the complexity of the calculations. Group-of-pictures (GOP) processing is
possible in the proposed method due to the nature of the optimization equations, which
results in a lower average overhead per frame. Processing multiple frames at the same
time comes with the disadvantage of a higher latency, and therefore the end-user will
have to decide which point of the trade-off is optimal for their particular application.

To illustrate the relationship between GOP size, processing speed and latency, we
vary the GOP size from 1 to 10 and scatter the points (FPSx,Latencyx) in our Matlab
implementation, as visible in Figure 6. The latency displayed in the graph is the minimum
latency: to compute it we ignore the fact that the first frame of a GOP must wait until the
last frame of its GOP is observed until the estimation of the GOP can begin. Therefore,
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Fig. 7: Causal comparison between two ex-
isting methods and our proposed method.
The input sequence is consists of a person
talking, courtesy of [14].

the displayed latency is the latency for the last frame of a GOP. The actual choice of the
GOP size depends on the application: a large GOP size may be applicable to off-line
reconstruction of a very long sequence because current off-line reconstruction methods
typically scale badly with rising sequence length, in computational complexity and/or
required memory. In this case, latency is of little interest and the goal is to maximize the
throughput while avoiding the high memory use and complexity of off-line methods.

5 RESULTS

5.1 Quantitative Results

In this section we present the result of the proposed approach and compare it to some
state-of-the-art methods. It is important to note that the proposed method is restricted
to causal processing of the input sequence: we reconstruct frame t using only the
observations from frames 1 through t. The existing methods work off-line on the whole
video sequence and are not restricted by causality: for a more fair comparison we can
restrict these to causal reconstruction as well. We do this because we want to focus our
evaluation on the effectiveness of our history representation. Assuming the methods are
allocated a bootstrap window of B frames, we can restrict them to causal workings by
reconstructing frame t using only the frames 1, . . . , t. Clearly, this is not a practical way
to perform reconstruction, but it gives an indication of the performance of other methods
in a causal setting. Figure 7 shows the comparison between the proposed method and
some state-of-the-art methods [19, 14]. While the proposed method can never perform a
reconstruction of the same accuracy as its off-line variant, because it does not retain the
same amount of information on previous frames, our proposed method still compares
favourably to the off-line PPCA method and outperforms other state of the art methods.
Our proposed method has also inherited the noise robustness of the Bayesian modelling
from the off-line PPCA, as illustrated by the equality of the slopes.



These graphs of course do not reflect the immense advantage of the on-line aspect
of our method. There is no entry for the first online method by [1] because it uses a
threshold for the error as an indicator of whether or not the model should be expanded.
The resulting line in the graph is therefore constant and does not reflect the downsides
of the method (extraordinary computational complexity with rising noise). The graph
was produced by perturbing the 316-frame sequence from [14] with zero-mean Gaussian
noise (AWGN), reconstructing the perturbed sequence with the various methods and
afterwards computing the average 3D error between the reconstructed point cloud and the
ground truth. The specific parameter values for our method were: a 60-frame bootstrap
length, a 40-frame history representation size and 25 EM iterations per frame.

5.2 Qualitative Results

Figure 8 puts these reconstruction errors into perspective: all three methods manage an
accurate reconstruction of the face from the sequence from [14]. We also present a re-
construction by the three methods of the sequence extracted from Elephant’s Dream [21]
in Figure 9. For this comparison, we extract the projected points from the video’s source
and pass them as input to the reconstruction methods. Because the full mesh of the
Proog’s face has over 4000 points, we manually selected a subset of 197 points to
perform reconstruction on. After reconstruction, the resulting 3D mesh is visualized by
using the original texture from the movie sources.

6 CONCLUSION

In this paper we have proposed a new method for on-line non-rigid structure-from-motion
based on keyframe selection. While the literature on off-line 3D reconstruction has
received a lot of attention and several accurate techniques exist, relatively few ventures
have been made concerning on-line operation. A new method of history representation
using a set of keyframes is described and evaluated, comparing favourably to existing
methods, performing similarly to its off-line variant and outperforming other off-line
state-of-the-art methods.

CSF PPCA Proposed method

Fig. 8: Visual comparison between three methods. The top row shows the original view
point, and the bottom row shows an alternate view point. Lines and points show the
projection of reconstructed 3D points and their connections, while small circles are
centered around the ground truth locations.
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Fig. 9: Visual comparison between two existing methods and our proposed method on a
sequence extracted from Elephant’s Dream [21].

We see two clear options for future work on on-line non-rigid structure-from-motion:
improving the history representation and improving the estimation of the separate
frames. Sequential statistical estimation, which is used to great effect in other fields,
may offer a more theoretical approach to history representation. On the other hand, the
estimation of the separate frames can no doubt benefit from existing methods in off-line
reconstruction. The exploitation of the temporal coherence through implementation of a
linear dynamic system as in [14], the PPCA-specific improvement of the camera update
equation as in [22], or other techniques from off-line state-of-the-art offer possibilities
for improvement.
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