
Comparison of Message Passing Algorithms for
Cooperative Localization under NLOS Conditions

Samuel Van de Velde∗, Henk Wymeersch†, and Heidi Steendam∗
∗Department of Telecommunications and Information Processing,
Ghent University, Belgium, e-mail: {slvdveld, hs}@telin.ugent.be

†Department of Signals and Systems, Chalmers University of Technology,
Gothenburg, Sweden, e-mail: henkw@chalmers.se

Abstract—For large wireless networks, there is a need for
accurate localization in a distributed manner. Several algorithms
have been developed in order to achieve this goal. However,
comparing different algorithms is hard because of the use of
different network topologies and measurement models. In this
paper two promising message passing algorithms, called SPAWN
and SLEEP, are compared in terms of accuracy, complexity, and
network traffic. To enable a fair comparison, several alterations
are made to SLEEP resulting in ASLEEP with reduced network
traffic and the incorporation of reference nodes. Simulations,
using measurement models from real ultra-wideband equipment,
show that ASLEEP is able to achieve similar estimation quality
as SPAWN at much lower complexity and network traffic.

Index Terms—Cooperation, localization, ultra-wideband,
SPAWN, SLEEP.

I. INTRODUCTION

More and more, modern mobile applications are exploiting
position information about the user in order to provide an
augmented user experience. Many of these applications have
not yet reached their full potential due to some important
limitations of the positioning system they rely on, such as
GPS or WiFi. At this time, there is no scalable system that
can provide accurate position information at low cost for both
indoor and outdoor environments. This may change however,
with the adoption of ultra-wideband (UWB) technology [1]
and cooperative localization [2]. By equipping users with a
low cost UWB transceiver, it becomes possible to make precise
range measurements necessary for accurate positioning. UWB
can be used in a peer-to-peer mode, enabling a cooperative
approach where all users help each other in finding and
refining their position estimates.

In large networks, centralized cooperative processing is not
feasible due to the exponential increase (in the number of
nodes) in network traffic [3]. Because of this, considerable
attention has been given in developing distributed algorithms,
with only linear increase in network traffic. In [4], an iterative
algorithm (called SPAWN) based on belief propagation (BP)
is presented. With this algorithm, very accurate results are
achieved but at very high complexity and large packet require-
ments. In [5] another iterative algorithm (called SLEEP) uses
expectation propagation (EP) [6] in order to reduce complexity
and packet size. However, both algorithms have never been
compared due to the difference in measurement models and
because SLEEP is actually not fully distributed, as it requires

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x (m)

y
(m

)

Figure 1. The simulation setup: a 100 m × 100 m area with 13 reference
nodes and a communication range of 20m.

a separate centralized step to provide absolute coordinates.
Furthermore, it will be shown that with SLEEP, the network
easily becomes flooded with small packets and may cause
large delays in localization.

In this paper, two alterations to SLEEP are presented in
order to solve some of the issues mentioned above. This altered
version of SLEEP, called ASLEEP, is compared to SPAWN
for a static scenario in terms of performance, complexity,
and network traffic for a number of network topologies (see
Fig. 1). Both algorithms are tested using UWB measurements
for scenarios with mixed line-of-sight (LOS) and non-line-of-
sight (NLOS) conditions.

II. PROBLEM FORMULATION

A. System Model

We consider a wireless network with N user nodes with
unknown position and Nref reference nodes for which the
position is known. Every node i is connected to a number

of neighboring nodes collected in N (i) with whom messages
can be exchanged and ranging can be performed. The goal of
the users is to locally estimate their position xi based on the
position of the reference nodes and the estimated distances
with their neighbors. User node i can estimate the distance
to node j ∈ N (i), denoted by zj→i, with a ranging protocol,
e.g., two-way time of arrival (TW-TOA) [7]. All measurements
by all nodes are collected in a vector z. The joint posterior
distribution for x1:N can be written as follows using Bayes’
theorem:

p(x1:N |z) ∝ p(z|x1:N)p(x1:N)

=

N+Nref∏
i=1

p(xi)
∏

j∈N (i)

p(zj→i|xi,xj). (1)

Here, p(xi) is the prior probability distribution for the position
of node i. For user nodes, this prior is uniform and can be
omitted. For reference nodes, the prior is a Dirac distribution
p(xi) = δ(xi−xref

i), with xref
i the exact position of reference

node i.
For modeling the error of the distance estimates, we use

measurements collected from real ultra-wideband equipment
[8]. We shall make a distinction between line-of-sight and non-
line-of sight measurements. In LOS cases where there is a
direct path between nodes i and j, the measurements exhibit
a normal distribution with mean equal to the distance and
standard deviation σ = 0.25m. The likelihood function for
a LOS measurement zj→i can thus be written as1

p(zj→i|xi,xj) = N (zj→i; ‖xi − xj‖, σ). (2)

In NLOS conditions, caused by signal blockage, the mea-
surements are strictly larger than the true distance and can
be modeled according to an exponential distribution with rate
parameter λ = 0.38m−1. The likelihood function for a NLOS
measurement zj→i can be written as

p(zj→i|xi,xj) =

{
λe−λ|‖xi−xj‖−zj→i| if zj→i ≥ ‖xi − xj‖
0 else.

(3)
Throughout the paper, we shall assume that a node is

able to identify whether a range measurement is LOS or
NLOS, and use the corresponding likelihood accordingly. In
[8], [9], several methods are presented that can determine the
NLOS or LOS nature of a measurement. We will abbreviate
p(zj→i|xi,xj) by fj→i.

III. LOCALIZATION BY MESSAGE PASSING

It has been shown [4], [5] that estimating the position
of the users in a distributed manner can be accomplished
by using message passing algorithms. With these iterative
algorithms, every user is able to find an approximation of the

1With N (z;m,σ) representing a normal distribution for the random
variable z with mean equal to m and variance σ.

f

ix jx

j i

i jf Mi j

Mj i

bi

bj

Figure 2. Factor graph representation of the joint posterior distribution (1)
for two neighbouring user nodes i and j. The shaded area is the part of the
factor graph that can be physically related with node i in the wireless network.
Here, fj→i is shorthand for p(zj→i|xi,xj), and arguments of messages are
omitted. Message flow is indicated for SPAWN and ASLEEP.

marginal distribution p(xi|z) of its position, called the belief
bi(xi), by passing messages between neighboring nodes. In
the literature, two of the proposed algorithms are SPAWN and
SLEEP that respectively use loopy belief propagation (BP) and
expectation propagation (EP) as underlying message passing
algorithm. These algorithm operate by sending messages over
a factor graph [10] that is constructed from the joint posterior
distribution (1). A factor graph is constructed by representing
all variables of the posterior probability distribution as round
vertices, and all factors by square vertices. A square vertex
is then connected to all variables that are arguments of its
corresponding factor. For the joint posterior distribution (1),
two neighbouring user nodes i and j will be represented
by two round vertices that are connected by two factors
representing the inter-node likelihood functions. This can be
seen in Fig. 2. Note that the prior probability distribution is
omitted for the two nodes since it is uniform.

In general, messages are repeatedly sent over the edges of
the graph in two directions until all beliefs have converged.
However, since nodes are not physically connected with each
other, some messages need to be wirelessly transmitted be-
tween nodes, which makes message size and overall message
count an important factor in comparing these kind of algo-
rithms.

From the literature, it is known that for many problems, BP
is able to converge fast to relatively accurate approximations
of marginal distributions [11]. However, in case of continuous
variables, complexity of the algorithm can become very high
and messages can have unbounded complexity [12]. EP is
an algorithm developed to address the problems of belief
propagation by representing the beliefs by a family of simpler
distributions, such as normal distributions [6]. Because of this,
messages also reduce to simple distributions and computations
become more tractable. However, due to the approximations
in EP the quality of the beliefs are expected to be lower than
for BP and some convergence issues can arise.

Comparing SPAWN and SLEEP in terms of accuracy,
complexity, and message size is thus directly related to the
used message passing algorithm. However, the network traffic
generated by both algorithms highly depends on the implemen-
tation and message schedule of the chosen message passing
algorithm.

Algorithm 1 SPAWN
1: for l = 1 to NBP

iter do
2: nodes i = 1 to N in parallel
3: Broadcast belief: b(l−1)

i (xi)
4: for ∀j ∈ N (i) do
5: Receive belief b(l−1)

i (xi)
6: Calculate message MSPAWN

j→i (xi) using (5)
7: end for
8: Update belief b(l)i (xi) =

∏
j∈N (i) M

BP
j→i(xi)

9: end parallel
10: end for

A. SPAWN

In SPAWN, the fact that two independent measurements
are available between two user nodes is exploited in order to
reduce complexity and network traffic. Because of this, the
algorithm works in a synchronized fashion in which every
node broadcasts its belief once at the beginning of each
iteration. To achieve this, messages are only allowed to flow
in one direction and the belief is calculated using only the
branches for which a measurement is locally available, i.e.,
for node i, this corresponds to the branches with factor fj→i,
∀j ∈ N (i). Because of this, half of the number of branches
a node is connected to is used to receive messages, and the
other half is used to send messages. Because no message is
ever received from an outgoing edge, the message that is sent
over an edge is equal to the belief. This makes broadcasting
possible. The flow of messages in SPAWN can be seen in
Fig. 2. A message received from node j to node i via the factor
fj→i is denoted Mj→i(xi). The product of these messages
gives the belief of node i [4, line 8 in alg.3]

bi(xi) = p(xi)
∏

j∈N (i)

MBP
j→i(xi). (4)

Messages are given by [4, line 9 in alg.3]

MSPAWN
j→i (xi) =

ˆ
p(zj→i|xi,xj)bj(xj)dxj . (5)

These messages are calculated locally at node i using the
received belief of it’s neighboring node j and the locally
available measurement zj→i. In the beginning of each iter-
ation, every node broadcasts its belief, so that it is available
to calculate the message. The complete algorithm is outlined
in Algorithm 1. Messages and beliefs are represented with
particles as described in [13]. The complexity of (4) scales as
O(R2

1), where R1 is the number of particles. The estimated
position of each user is obtained by taking the mean of its
belief. This corresponds to a minimal mean squared error
(MSSE) estimate.

B. SLEEP

SLEEP is a direct implementation of EP for a network
where measurements between nodes are shared, i.e., zi→j =

Algorithm 2 SLEEP
1: for l = 1 to NSLEEP

iter do
2: select neighbours (i, j) according to schedule
3: Request and receive bj(xj)

Mi→j(xj)
from node i

4: Calculate the projection Pij(xi) using (6)
5: Calculate bnewi (xi) and Mnew

j→i(xi) using (8) and (9)
6: bi(xi) = bnewi (xi) and Mj→i(xi) = Mnew

j→i(xi)
7: end select
8: end for

zj→i. Because of this, messages must flow in both directions
over the edge between node i and j. In SLEEP, beliefs
are again given by the product of all incoming messages.
The messages in SLEEP are Gaussian approximations of the
messages of BP2 and because of this, beliefs are also Gaussian.
For the approximation of message Mj→i(xi), the following
projection is performed [5, eq. 2A]

Pj→i(xi) = P

⎡
⎢⎢⎢⎣ bi(xi)

Mj→i(xi)

ˆ
dxjp(zj→i|xi,xj)

bj(xj)

Mi→j(xj)︸ ︷︷ ︸
BP message

⎤
⎥⎥⎥⎦ ,

(6)
with P [·] is the projection operator that is defined as

P [p] = argmin
q∈G

KL(p‖q). (7)

Here, KL(p‖q) is the Kullback-Leibler divergence between
p and q and G represents the family of Gaussian distributions.
Because the corrected belief bj(xj)

Mi→j(xj)
is not locally available

at node i, it is required for the calculation of (6) that it is
transmitted from node j to i. The projection Pij(xi) can
be seen as a weighted approximation for the standard BP
message, i.e., the original BP message towards node i is
multiplied with the corrected belief of node i such that the
overall approximation would be the most accurate in the region
where the belief of node i has a high probability. Because
of this approximation however, the algorithm can become
unstable. For example, during the first few iterations, when the
belief still has a large spread, the approximation that is made
can be very inaccurate. The error made by the approximation
can then propagate through the network and affect other nodes
in subsequent iterations. A common approach to battle this
instability is by damping the messages with a factor γ ∈ [0, 1]
[14]. Using (6) and damping, beliefs and messages can be
calculated as follows [5, eq. 2B-2C]

bnewi (xi) = Pij(xi)
1−γbi(xi)

γ (8)

Mnew
j→i(xi) =

(
Pij(xi)

bi(xi)

)1−γ

Mj→i(xi). (9)

2Note that the message in BP for with shared measurements is different
from the message (5) in SPAWN.

Algorithm 3 Altered SLEEP
1: nodes i = 1 to N in parallel
2: Receive position of neighbouring reference nodes
3: Calculate bi(xi) ∈ G by using SLEEP
4: end parallel
5: for l = 2 to NEP

iter do
6: nodes i = 1 to N in parallel
7: Broadcast belief: bi(xi)
8: for ∀j ∈ N (i) do
9: Receive belief b(l−1)

j (xj)
10: Calculate the projection Pij(xi) using (10)
11: Calculate bnewi (xi) and Mnew

j→i(xi) using (8)–(9)
12: bi(xi) = bnewi (xi) and Mj→i(xi) = Mnew

j→i(xi)
13: end for
14: end parallel
15: end for

The algorithm is shown in Algorithm 2. Messages are ini-
tialized as random Gaussians with a very high spread. With
these messages, initial beliefs are calculated using (4). Every
iteration, a user will update its belief in an unsynchronized
way and transmit a message to one of its neighbours. This is
done until a message is sent in both directions over all edges
of the factor graph. For networks with relatively few users, the
number of neighbours for each node can still be high3 and as a
result, every iteration a large amount of messages will be sent
over the network with this algorithm. Furthermore, sharing
measurements raises some question on how it is determined
which node makes the measurement and how it will be shared.
Together with the fact that damped EP generally requires
more iterations than BP for convergence, it follows that data
traffic with SLEEP is very high. Furthermore, due to the
asynchronized update scheme of the nodes, it may take a
considerable amount of time before all nodes are updated,
resulting in slow positioning.

For two dimensional localization, formula (6) leads to a 4-
dimensional integral. By introducing a transformation to new
coordinates, this can be reduced to a two dimensional integral
that can efficiently be calculated using importance sampling
[5]. The operation scales as O(R2), where R2 is the number
of samples used for importance sampling.

In the section III-C, an altered synchronized version of
SLEEP, called ASLEEP, is presented.

C. Altered SLEEP

When two independent measurements between nodes i and
j are available, SLEEP can be transformed to a synchronized
algorithm. For this, messages are again restricted to flow in
one direction. The projection is now calculated as follows:

3For example, in the simulated network as described in Section IV, a user
has on average more than 10 neighbouring users.

10 20 30 40 50 60

10

20

30

40

50

60

x (m)

y
(m

)

beliefs after one iteration

10 20 30 40 50 60

10

20

30

40

50

60

x (m)

y
(m

)

beliefs after multiple iterations

Figure 3. Beliefs of user nodes obtained with SLEEP using only information
from reference nodes. Ellipses represent the 95% confidence interval of the
belief. Lines represent the error between the mean of the belief and the actual
position.

Pj→i(xi) = P

⎡
⎢⎢⎢⎣ bi(xi)

Mj→i(xi)

ˆ
dxjp(zj→i|xi,xj)bj(xj)︸ ︷︷ ︸
message from SPAWN (5)

⎤
⎥⎥⎥⎦ .

(10)
Except for the belief bj(xj) of node j, all necessary infor-
mation is locally available at node i in order to calculate
Pj→i(xi). Because of this, with ASLEEP, beliefs can be
broadcast once at the beginning of each iteration. Beliefs and
messages can again be calculated using (8) and (9).

To obtain absolute coordinates without requiring a separate
step, reference nodes are required. Introducing reference nodes
can be done in a straightforward way, by placing a prior on the
reference nodes in the same way as is done in SPAWN. This
approach however leads to instability and slow convergence.
The reason for this is that because of the approximations and
damping of EP, the beliefs of the users will still have a large
spread after the first iteration4 (see Fig. 3 on the left). It is
therefore better to run SLEEP for every user node internally
until convergence using only information of the reference
nodes. This will make the approximations for the belief more
accurate (see Fig. 3 on the right) and hence more useful for
neighbours. Furthermore, by doing this, it becomes possible
to lower the damping factor for the rest of the algorithm. The
complete algorithm for the altered version of SLEEP is shown
in Algorithm 3.

IV. RESULTS

We compare the performance of both algorithms in a
cooperative network with 100 users and 13 reference nodes
by means of Monte Carlo simulations. The reference nodes
are positioned in a way to provide maximum coverage in a
100m×100m deployment area, user nodes are uniformly dis-
tributed in the area. The radio range of network nodes is fixed
at 20m distance. An example simulation scenario is shown
in Fig. 1, in total 40 maps with different user positions are

4Note that, during the first iteration, no beliefs of neighbours are available
and thus only information from the reference nodes is used.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

localization error [m]

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

SPAWN
ASLEEP

60% NLOS

30% NLOS

LOS-only

Figure 4. Cumulative distribution function for SPAWN and SLEEP for both
LOS and NLOS conditions.

used for the simulations. Note that, with this network topology,
there is on average one user every 100m2. For SPAWN, the
number of particles for the belief was chosen R1 = 2048.
The multiplication step was done using a maximum of 5
messages to create a proposal distribution from which samples
were drawn and weighted by the other messages. For SLEEP,
the integrals were calculated using importance sampling with
the number of particles R2 adaptively chosen between 2048
and 10240. In order to assure convergence, messages with a
negative variance are skipped [15].

Fig. 4 depicts the cumulative distribution function (CDF)
for both algorithms after convergence. Three scenarios with
a varying percentage of LOS connections between nodes
are tested. It can be observed that for both algorithms, the
accuracy is highest for LOS scenarios and degrades for an
increasing percentage of NLOS connections. In comparing the
algorithms, it is observed that SPAWN achieves the best re-
sults. For the LOS-only scenario however, the difference with
SLEEP is small. For most nodes, the belief can be adequately
approximated with a Gaussian. For some nodes however, the
actual belief is multi-modal5 and problems may arise with EP.
Ideally, the algorithm would make an approximation for these
beliefs that span all modes, but in some cases, the algorithm
locks on to a single mode with great certainty. Because of
this large localization errors can occur. It is observed that when
30% NLOS connections are introduced, the difference between
SPAWN and SLEEP becomes larger. This is because there will
be more multi-modal beliefs for these scenarios and because
the remaining uni-modal beliefs behave less like a Gaussian.
For the scenario with 60% NLOS, the CDF curve of SPAWN
falls below the curve for SLEEP for errors between 0 cm and
70 cm. The explanation for this is that the number of particles
used in SPAWN are insufficient to accurately represent the

5For example, when a node is only connected with two neighbours, the
belief will have two distinct modes.

2 4 6 8 10 12 14 16 18 20

10−2

10−1

100

iteration index

P
(e

rr
or

 >
 1

m
)

SPAWN
ASLEEP γ=0.7
ASLEEP γ=0.6
ASLEEP γ=0.5

Figure 5. The probability of a positioning error greater than 1m as a function
of the iteration index for a LOS-only scenario.

messages for this scenario, resulting in a lowered positioning
accuracy.

In Fig. 5, the probability of an error greater than 1m is
shown as a function of the iteration index for both algorithms
in the LOS scenario. It can be observed that SPAWN converges
faster than ASLEEP: after 4 iterations, the probability of
locating all users within 1 meter remains unchanged around
99%. For ASLEEP, different values for the damping factor γ
are used. Decreasing γ makes the algorithms converge faster,
however, lowering this value too much will cause unstable
behaviour of the algorithm. In our experiments, γ = 0.5 was
the lowest value where the algorithm remained stable all of the
time. Here, the probability of locating a user within 1meter
remains stable after 12 iterations around 97%. For the scenario
with 60% NLOS connections, more iterations are required for
both algorithms until convergence. More than 80% of all users
are located within 1meter after 5 iterations for SPAWN and
13 iterations for ASLEEP (results not shown).

Finally, we also make a comparison in terms of network
traffic for all algorithms. Results for SLEEP are also included.
For SLEEP, the minimum damping factor was γ = 0.7 and
the algorithm converged after 12 iterations. The number of
data packets that will be physically sent over the network will
depend on the maximum number of user bytes per packet.
For current UWB equipment, the maximum number of user
bytes per packet is 1 kbyte.6 If we use a 32 bit precision
floating point representation for the particles of the beliefs
in SPAWN, this requires a total of 8 kb, or equivalently,
8 packets for a message in SPAWN. For both SLEEP and
ASLEEP, a message consists of 5 real numbers7 or 20 bytes,
which can easily fit in one packet. So, where SPAWN needs
to transmit a number of packets that are fully packed with

6Using UWB P400 RCM transceivers from Time Domain. Detailed infor-
mation can be found at http://www.timedomain.com/p400.php.

7Two for the mean and three for the covariance matrix of the belief.

SPAWN SLEEP ASLEEP
Message size 4R1 bytes 20 bytes 20 bytes

Average number of messages per user per iteration 1 10.2 1
Average number of iterations before convergence 4 12 12

Average number of data packets per user 24 122.4 11
Complexity O(R2

1) O(R2) O(R2)
Calculation time per user per iteration (on a 2.6GHz processor) 7 sec 0.1 sec 0.1 sec

Table I
COMPARISON OF SPAWN, SLEEP AND ASLEEP

data, with ASLEEP, it becomes possible to just add some
localization data to the header of a data packet. In an ideal
case where every node in the network is actively transmitting
data packets this would result in zero overhead for localization,
i.e., no extra localization packets need to be transmitted. Note
that this approach is less obvious for SLEEP because an
individual message needs to be transmitted to each neighbour
in a sequential order. To obtain the average total amount of
packets sent by a user, the number of packets to represent
a belief is multiplied with the number of iterations needed
for convergence. In Table I the data load for all algorithms is
compared for a LOS scenario. It can be observed that SLEEP
requires the most packets to be sent over the network, i.e., on
average 122.4 packets are sent per user. The altered SLEEP
algorithm needs fewer packets, i.e., less than half the amount
of messages compared to SPAWN and less than ten times
fewer packets compared to SLEEP are needed. In order to
asses the complexity of all algorithms, simulations were run
in MATLAB on a 2.6GHz processor that was fully dedicated
to the algorithms. Table I shows that SPAWN takes about 70
times longer with the specified parameters than SLEEP and
ASLEEP. From this we may conclude that, even on dedicated
hardware with optimized code, SPAWN is probably unable to
perform real-time localization.

V. CONCLUSIONS AND FUTURE WORK

We have investigated two message passing algorithms
for cooperative localization: SPAWN and (an alteration of)
SLEEP. The existing SLEEP algorithm is modified to reduce
the network traffic. This altered version of SLEEP, called
ASLEEP is compared with SPAWN for static localization
under mixed LOS and NLOS conditions. In terms of accuracy,
SPAWN performs best. However, the difference with ASLEEP
is small. In terms of complexity, ASLEEP performs best with
a complexity of order O(R) as compared to a complexity
O(R2) for SPAWN. When comparing the network data load
for both algorithms, i.e., the number of packets transmitted
over the network, the outcome will very much depend on
the maximum packet size of the communication equipment.
With currently available hardware, SPAWN requires twice as
many packets to be sent over the network as compared to
ASLEEP. Furthermore, with ASLEEP, it becomes possible to
make a small modification to the header of a data packet
to enable localization. With this it becomes possible to even
further reduce localization-specific network traffic for some
networks. Future research will include the comparison with

some message passing algorithms, and a detailed overview
of the network traffic and localization delay using a medium
access protocol and a number of different censoring techniques
to reduce network traffic [16].

REFERENCES

[1] S. Gezici, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and
Z. Sahinoglu, “Localization via ultra-wideband radios: a look at po-
sitioning aspects for future sensor networks,” IEEE Signal Processing
Magazine, vol. 22, pp. 70–84, Jul 2005.

[2] N. Patwari, J. Ash, S. Kyperountas, A. Hero III, R. Moses, and
N. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4,
pp. 54–69, 2005.

[3] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks, pp. 20–27, ACM, 2004.

[4] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proceedings of the IEEE, vol. 97, pp. 427–450, Feb.
2009.

[5] M. Welling and J. J. Lim, “A distributed message passing algorithm for
sensor localization,” Proceedings of the 17th international conference
on Artificial neural networks. ser. ICANN’07., pp. 767–775, 2007.

[6] T. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” in Uncertainty in Artificial Intelligence, vol. 17, pp. 362–369,
2001.

[7] J. Lee and R. Scholtz, “Ranging in a dense multipath environment using
an UWB radio link,” IEEE Journal on Selected Areas in Communica-
tions, vol. 20, no. 9, pp. 1677–1683, 2002.

[8] H. Wymeersch, S. Marano, W. M. Gifford, and M. Z. Win, “A machine
learning approach to ranging error mitigation for UWB Localization,”
IEEE Trans. Commun., 2012 (to appear).

[9] S. Gezici, H. Kobayashi, and H. Poor, “Nonparametric nonline-of-sight
identification,” in Vehicular Technology Conference, 2003. VTC 2003-
Fall., vol. 4, pp. 2544 – 2548, Oct. 2003.

[10] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Pro-
cessing Magazine, january 2004.

[11] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2282–2312,
2005.

[12] T. Minka, “Divergence measures and message passing,” Microsoft Re-
search Cambridge, Tech. Rep. MSR-TR-2005-173, 2005.

[13] A. Ihler, J. Fisher III, R. Moses, and A. Willsky, “Nonparametric belief
propagation for self-localization of sensor networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 4, pp. 809–819, 2005.

[14] T. Heskes, O. Zoeter, A. Darwiche, and N. Friedman, “Expectation prop-
agation for approximate inference,” in Proceedings UAI-2002, pp. 216–
233, 2002.

[15] T. Minka, A family of algorithms for approximate Bayesian inference.
PhD thesis, Massachusetts Institute of Technology, 2001.

[16] L. Chen, M. Wainwright, M. Cetin, and A. Willsky, “Data association
based on optimization in graphical models with application to sensor
networks,” Mathematical and computer modelling, vol. 43, no. 9,
pp. 1114–1135, 2006.

