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Abstract—The problem of localization involves estimating the
position of a user from a number of noisy sensor measurements.
In a practical wireless network, these sensor measurements
cannot be collected instantaneously and arrive after a certain
delay. In a dynamic scenario where the users move around,
this delay will render some measurements out-dated and, if not
taken into account, have a negative effect on the localization
performance. This paper consists of two parts, in the first part
we investigate the effect of user movement on the measurement
models for ranging. In the second part we use these models to
analyze the impact of movement on the accuracy of the position
estimate by means of the Cramer-Rao lower bound (CRLB)
which bounds the performance of the estimation.

Index Terms—Localization, dynamic, movement, CRLB

I. INTRODUCTION

During the past decade, a multitude of cooperative lo-

calization algorithms were presented and analyzed. It has

been shown that cooperative localization greatly improves the

localization accuracy [1]. However, many of these algorithms

concentrate on static networks with no movement. For the

few studies where movement is considered, an abstraction is

made on how the range measurements are made and collected.

However, for dynamic networks with movement of the users,

the way the data is collected becomes an important part of

the localization problem because the delays present in any

practical network, may render part of the data outdated. For

the Global Positioning System (GPS) this has never been

a problem because measurements are always performed in

parallel: the different satellites use different CDMA codes

that do not interfere. The receiver knows the codes and has

several parallel correlators to track all satellites simultaneously.

This parallel approach can be applied in GPS as the satellites

are strictly synchronized, such that the ranging is meaningful.

Without synchronized anchors it is harder to simultaneously

make measurements with all the different sensors, and there-

fore many current systems employ a sequential measurement

scheme.

However, by sequentially measuring the ranges, delays in

the network will start to play an important role. The delays

originate from different sources; for example

• The radio channel is used for both communications and

ranging, and delays due to network congestion can grow

large.

• Measurements are deliberately delayed in order to reduce

the power consumption of the transceiver or to reduce the

network load.

Hence, a measurement can take up to several tens of millisec-

onds, such that the delays become prominent when measure-

ments with multiple neighboring sensors are made. It is clear

that such delays have a great impact on the performance of the

localization, especially if a user is moving fast. For single-user

(i.e. non-cooperative) tracking other than GPS, the problem of

delayed or so-called out-of-sequence measurements (OOSM)

has already been well studied, although no optimal solution

for the problem has been found yet [2]. For example, in [3],

the authors provide an overview of filters, which are adapted

to cope with OOSM, and they compare the results with the

case where the Kalman and Particle filters do not take into

account the presence of OOSM.

For cooperative localization, however, the effect of delays

on the localization performance has barely been examined.

Yet, it can be expected that the performance degradation

will be higher as a result of the cooperation between the

users: cooperation typically involves more packets to be sent

over the wireless network, and consequently it introduces

larger delays. Some studies exist where the MAC delay is

evaluated for cooperative localization networks using the IEEE

802.15.4 standard. The MAC delay is examined in [4], and

two enhancements were proposed to reduce the delay for

localization-specific scenarios. Further, in [5], some lower and

upper bounds on the delay were given for cooperative net-

works. Their results show that for current off-the-shelf ranging

equipment, the delays are of the order of seconds. In [6],

the MAC delay was examined and the effect on localization

was evaluated through simulations. However, in none of the

above mentioned works, the effect on the localization accuracy

was addressed. In this paper, we will focus on a theoretical

analysis of the effect of movement and delays on the accuracy

of cooperative localization.
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II. PROBLEM FORMULATION

We consider a wireless network with N user nodes that are

to be localized and Nref anchor nodes with known positions. In

2D, the node coordinates at timestep k are denoted by column

vectors x
(k)
i = [x

(k)
i , y

(k)
i ]T, where for users i ∈ {1, .., N}

and for anchors i ∈ {N+1, .., N+Nref}. Extension to 3D

is straightforward. Every node i is connected to a number of

neighboring nodes (both users and anchors) collected in the

set N (i), with whom ranging can be performed.

In this paper we consider range-based cooperative localiza-

tion with movement of the users. We concentrate on scenarios
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Figure 1. Effect of movement on the distance between two nodes.

with low movement speed and possibly high delays, and where

an accurate model for the movement is hard to obtain due to

the lack of additional sensors, such as an inertial measurement

unit (IMU). These scenarios typically correspond to indoor

scenarios. To model the movement of the user we employ the

discrete time random walk model:

x
(k+1)
i = x

(k)
i +w

(k)
i , (1)

for i ≤ N (i.e. only the users move not the anchors), with

w
(k)
i = [w

(k)
x,i , w

(k)
y,i ]

T the displacement during the time interval

Δt between time steps k and k + 1. The displacement is

modeled as zero mean Gaussian noise: wi ∼ N (0, σ2
m,iI2)

with I2 the 2 × 2 identity matrix and σ2
m,i the variance of

movement of the ith user. In the above discrete time model,

the noise variance σ2
m,i can be related to a maximum1 user

speed vmax as follows: σ2
m,i = (Δt vmax

3 )2. A disadvantage2

of the discrete time model is the fact that the model is defined

for a specific time interval Δt between time steps k and k+1.

To enforce consistency, the model requires rescaling for a

different time interval Δt′ [7].

III. EFFECT ON RANGE MEASUREMENTS

For two-way time-of-arrival (TW-TOA), a distance estimate

is obtained by measuring the round-trip delay of a packet.

Errors due to movement are introduced at two levels. The first

type of error is a result of the movement of the user during

the round-trip of the message. For low movement speed, this

error will be very small because the round-trip delay is only

a fraction of a second. The second type of error is due to

a delay in the processing of the measurement. As explained

in the introduction, this delay can be large and will therefore

be the dominant contribution to the error. Both effects can be

modeled in a similar way. Let d
(k)
ij be the distance between

nodes i and j at timestep k:

d
(k)
ij =

√
(x

(k)
i − x

(k)
j )2 + (y

(k)
i − y

(k)
j )2, (2)

After a time interval Δt, the nodes will have moved (see

Fig. 1). The distance between nodes i and j at timestep k+1
can be written as

1The probability that the speed of the user is higher than vmax is less than
1% for the random walk model defined in (1).

2In a continuous time model there is no inconsistency for different time
intervals but the noise variance cannot be related to a physical quantity such as
the maximum speed. Because of this we do not employ a continuous model.
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Figure 2. Error on ranging induced by movement.

d
(k+1)
ij =

√
(x(k) − x

(k)
j +Δx

(k)
ij )2 + (y(k) − y

(k)
j +Δy

(k)
ij )2

(3)

where Δx
(k)
ij = w

(k)
x,i −w

(k)
x,j and Δy

(k)
ij = w

(k)
y,i −w

(k)
y,j are in-

dependent random variables distributed as N (0, σ2
m,i+σ2

m,j),
and represent the displacement of the users from timestep k
to k + 1.

Hence, the new distance d
(k+1)
i is a random variable with

as distribution a non-central chi distribution with parameter

k = 2 (which corresponds to a Rice distribution). The proba-

bility density function corresponding to the Rice distribution,

denoted by R(λ, σ), is given as

p(x|λ, σ) = x

σ2
e−

(x2+λ2)

2σ2 I0

(
λx

σ2

)
, (4)

where I0 is the 0th order Modified Bessel function of the first

kind. This results in the distribution

d
(k+1)
ij ∼ R(d

(k)
ij , σ2

m,i + σ2
m,j), (5)

which is shown in Fig. 2 for different values for d
(k)
ij .

Using this exact formulation leads to an intractable ex-

pression for the CRLB. However, we will show that this

distribution can be approximated by a Gaussian distribution

if λ � σ, which represents the case where the movement is

small as compared to the distances between the nodes3. To

prove this we show that the Kullback-Leibler (KL) divergence

between the Ricean distribution p(x) and a Gaussian distribu-

tion q(x) = 1√
2πσ2

exp(−(x−λ)2

2σ2 ) goes to zero if λ� σ. The

KL-divergence can be written as

3In general, this requirement will be fulfilled as the time interval that
is considered is of the order of a fraction of a second, implying that the
movements in this time interval will typically be very small.



DKL(Q‖P ) = Eq(x)

[
ln

(
q(x)

p(x)

)]

= Eq(x)

[
ln(σ)− 1

2
ln(2π)− ln

(
xI0

(
λ

σ2

))
+

λx

σ2

]

= ln(σ)− 1

2
ln(2π) +

λ2

σ2
− E [ln (x)]− E

[
ln

(
I0

(
λx

σ2

))]
(6)

The modified Bessel function can be approximated for large

arguments by the following formula [8, eq. 9.6.7]:

I0 (z) ≈ ez√
2πz

(7)

With this approximation we can rewrite the last term in (6) as

E

[
ln

(
I0

(
λx

σ2

))]

≈ E

[
λx

σ2

]
− 1

2
E [ln (x)]− 1

2
ln

(
2π

λ

σ2

)

=
λ2

σ2
− 1

2
E [ln (x)]− 1

2
ln

(
2π

λ

σ2

)
(8)

Inserting (8) in (6) yields the following approximate expres-

sion for the KL-divergence when λ� σ2:

DKL(P‖Q) ≈ −1

2
E [ln (x)] +

1

2
ln (λ) (9)

If the Gaussian distribution q(x) is narrow, i.e., σ is small, we

can consider ln(x) as a constant equal to ln(λ), which makes

the KL divergence approximately equal to zero.

We can now use this result to model the error on a distance

measurement d
(k+1)
ij :

d
(k+1)
ij ∼ N (d

(k)
ij , σ2

m,i + σ2
m,j), (10)

for d
(k)
ij � σ2

m,i + σ2
m,j . In other words, the random walk

model (1) simply introduces an extra Gaussian error term in

the delayed distance when the distance d
(k)
ij is large.

IV. EFFECT ON LOCALIZATION

Typically, the localization process can be divided in two

steps: a measurement phase and a processing phase. In the

measurement phase, range measurements are collected be-

tween all nodes in the network. In the processing phase the

actual position estimate is computed. In a practical network,

the ranging phase cannot collect all range measurements

instantaneously, and dynamics of the users result in errors in

the range measurements. It is clear that the ranging schedule

will have an influence on the delays and consequently, on the

errors of the range measurements. In this paper we consider

communication and ranging over the network that employs a

TDMA scheme following the IEEE 802.15.4 standard that is

specifically designed for low rate communication and localiza-

tion in Personal Area Networks (PAN). In the IEEE standard

a slotted carrier sense multiple access - collision avoidance
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r4 r5

rK−1 rK

user 1
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userN

t

Δt

Figure 3. ranging schedule during the measurement phase.

(CSMA-CA) protocol is used to access the channel. In the

ranging phase, the users will thus sequentially range with their

neighbors.

A. Sequential ranging

In the sequential ranging schedule that we consider, each

user makes range measurements with every neighbor, starting

with user 1, then user 2, and so on. Let us consider that each

range measurement takes an equal amount of time Δt, then at

every timestep k, a noisy range measurement rk is obtained

between the nodes ik and jk.

rk = d
(k)
ik,jk

+ vk, (11)

where the noise term vk is modeled as AWGN with vari-

ance σ2
r , and k = 1..K with K the total number of

measurements. All measurements are collected in a vector

r = [r1, r2, . . . , rK ]T.
Because we are interested in estimating the user position

at the final timestep k = K, the measurement need to be

related to the distance at the time of this timestep. During the

K − k time intervals that the kth measurement is waiting to

be processed, both nodes will have moved according to the

model in (1), resulting in a combined displacement εk with

respect to the timestep k = K:

εk =

K∑
�=k

ε
(�)
ik

+

K∑
�=k

ε
(�)
jk

(12)

where ε
(�)
i ∼ N (0, σ2

m,i).

Using (12) and the approximation (10), we can write the

range measurement rk with respect to the distance at timestep

k = K:

rk ≈ d
(K)
ik,jk

+ εk + vk. (13)

Because many measurements have common terms in εk,
these measurements are highly correlated. The elements of

the covariance matrix Σr of the the measurements r is given

by:

[Σr]m,n = cov (rm, rn)

= E

[(
m∑
�=1

(ε
(�)
im

+ ε
(�)
jm

) + vm

)(
n∑

�=1

(ε
(�)
in

+ ε
(�)
jn

) + vn

)]



= max(m,n) · σ2
m,im

(
δ(im − in) + δ(im − jn)

+max(m,n) · σ2
m,jm

(
δ(jm − jn) + δ(jm − in)

)
+δ(m− n)σ2

r (14)

For non-cooperative localization, this covariance matrix has

the following peculiar form:

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
K + σ2

r · · · σ2
K σ2

K σ2
K

...
. . . · · ·

σ2
K σ2

3 + σ2
r σ2

3 σ2
3

σ2
K

... σ2
3 σ2

2 + σ2
r σ2

2

σ2
K σ2

3 σ2
2 σ2

1 + σ2
r

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(15)

with σ2
k = kσ2

m.

B. Performance bound

To evaluate the effect of the delays we will calculate the

CRLB which gives a lower bound on the mean square error

of the position estimate4. Consider the estimation of all user

coordinates, aggregated in a vector θ = [xT
1, x

T
2, ..., x

T
N ]T. It

is well-known [9] that the covariance matrix of the unbiased

estimate θ̂ is bounded by the CRLB

Eθ̂

[
(θ − θ̂)(θ − θ̂)T

]
	 F−1, (16)

where Eθ̂[ · ] denotes the expectation over the distribution of θ̂,

the symbol	 denotes positive-semidefinite inequality and F−1

is the inverse of the Fisher information matrix. Consequently,

the mean squared error (MSE) of the position estimate is

bounded below by trace
(
F−1

)
.

Given the relation between parameters and measurements

in (13), we can write the Fisher information matrix F as [9]:

F = GTFrG, (17)

with G the K × 2N Jacobian of the transformation rk(θ) =
‖xik − xjk‖ and Fr the Fisher information of the measure-

ments r. It is well-known that the Fisher information matrix

for normally distributed inputs is equal to the inverse of its

covariance matrix. Hence we can write the K ×K matrix Fr

as: Fr = Σ−1
r . The Jacobian G is given by:

G =
∂r

∂θT
=

⎡
⎢⎢⎢⎢⎣

∂r1
∂x1

∂r1
∂y1

· · · ∂r1
∂xN

∂r1
∂yN

∂r2
∂x1

∂r2
∂y1

· · · ∂r2
∂xN

∂r2
∂yN

...
...

. . .
...

...
∂rK
∂x1

∂rK
∂y1

· · · ∂rK
∂xN

∂rK
∂yN

⎤
⎥⎥⎥⎥⎦ (18)

4It should be noted that for the true measurement models given in the
previous section the CRLB cannot be calculated because the regularity
conditions are not satisfied. However, by using the approximate models it
is possible to calculate the CRLB.

Defining uk � xik
−xjk

‖xik
−xjk

‖ , the kth row of G is given by

∂rk

∂θT
=
[
01×2(ik−1), u

T
k, 01×2(jk−ik−1), −uT

k, 01×2(N−jk)

]
(19)

whenever the corresponding range measurement rk is between

two users (ik, jk ≤ N ), and

∂rk

∂θT
=
[
01×2(ik−1), u

T
k, 01×2(N−ik)

]
, (20)

when the corresponding range measurement rk is between a

user and an anchor (ik ≤ N and jk > N).
Notice that equations (17), (18), and (14) correspond to the

normal CRLB as in [10], when there is no delay (Δt = 0) or

no movement (σm,i = 0, ∀i).
V. SIMULATION RESULTS

We base our simulations on the specifications of the com-

mercially available range modules from Timedomain Inc. [11].

From the datasheet, it follows that the radio range of the

devices can be chosen from 35m to 350m (outdoor), and the

corresponding measurement delay varies between 6.5ms to

132ms, respectively5. From [4], [5], we know that this delay

increases as a consequence of the MAC protocol. Therefore,

we consider delays in our simulations that vary between

Δt = 0ms and Δt = 200ms. We will assume that all range

measurements take an equal amount of time Δt. For the noise

on the range measurements we use a standard deviation of

σr =0.05cm, in accordance with the available hardware.

A. Impact on non-cooperative localization

We first evaluated the effect of delays on localization in a

network with a single user and multiple anchors, spread out

evenly in a circle around the user (optimal anchor placement).

We assumed the user makes range measurements with the

anchors in a random order. The maximum user speed as

defined in Section II is set to vmax = 0.0014m/s (or 5km/h).

From Fig. 4 it follows that, when there is no delay, we obtain

the classical result that the lower bound on the root mean

squared error (RMSE) of the position estimate decreases as the

number of anchors increases. However, when there is a delay

in the reception of the range measurements, the addition of

anchors does not necessarily decrease the error on the position

estimate. More specifically, for a delay larger than 100ms,

it becomes counter-productive to use more than 4 anchors.

We can conclude that when a user is moving and delays

in the network are large, using more anchors than strictly

necessary has an adverse effect on the localization accuracy

because the range measurements between the user and the

anchors become outdated. However, for other reasons such as

robustness against non line-of-sight (which is not considered

in this paper), it may still be advisable to use more anchors

than necessary.

5The increasing delay results from a longer transmitted sequence required
for an increased radio range. The distance itself only has a negligible effect
on the delay resulting from the high speed of light
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Figure 4. Effect of movement (max 5km/h) on the accuracy of non-
cooperative localization, given for an increasing number of anchors.

B. Impact on cooperative localization

For the simulations on cooperative localization, we in-

creased the number of mobile users in a 20m×20m area from

N = 1 to N = 10. We placed Nref = 4 anchors in the corners

of the considered area and distributed all users randomly. We

assumed that all nodes are within radio-range of each other

within this area and have the same maximum movement speed

vmax,i = 0.0014m/s for ∀i. To average out the effect of the

user position, 1000 Monte-Carlo trials were performed for

each different parameter. The lower bound on the RMSE,

provided by the CRLB, is shown in Fig. 5. Note that the

case with N = 1 corresponds to the non-cooperative scenario.

For an increasing number of users, we observe the classical

result that cooperation increases the estimation accuracy when

no delays are present. From the same figure, however, it is

apparent that when delays are present the beneficial effect of

cooperation reduces up to a point where cooperation actually

degrades performance (Δt ≥ 100ms). It must be noted

that, in order to reach the CRLB, the correlations between

measurements should be taken into account. If correlations

are neglected, worse performance can be expected.

VI. CONCLUSIONS

Intuitively, it is clear that when a mobile user is moving,

the delays of the different range measurements can have a

significant impact on the localization accuracy. In this paper,

we make a theoretical analysis of this effect. First we analyzed

the error model of the range measurements under this setting

and showed that, if we consider a random walk of the user,

the error due to movement can be modeled as Gaussian. Using

this result, we computed the Cramer-Rao Lower bound using

delayed measurements for cooperative localization. From this

analysis we conclude that the delays degrade the performance

and that increasing the number of anchors or users in the

network can adversely affect the localization accuracy.
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Figure 5. Effect of movement (max 5km/h) on the accuracy of cooperative
localization, given for an increasing number of users.
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