




Promotoren: prof. dr. ir. W. Philips, dr. A. Ledda
Proefschrift ingediend tot het behalen van de graad van 
Doctor in de Ingenieurswetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter: prof. dr. ir. H. Bruneel
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2014 - 2015

Robuuste handdetectie en tracering in ware tijd voor monoculaire video

Robust and Real-Time Hand Detection and Tracking in Monocular Video

Vincent Spruyt



ISBN 978-90-8578-768-6
NUR 993, 984
Wettelijk depot: D/2015/10.500/12



Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en Informatieverwerking

Supervisors: Prof. Dr. ir. Wilfried Philips
Dr. Alessandro Ledda

Members of the jury:

Prof. dr. ir. Rik Van de Walle (Ghent University, chairman)
Prof. dr. ir. Wilfried Philips (Ghent University, supervisor)
Dr. Alessandro Ledda (SoftKinetic, supervisor)
Dr. ir. Hiep Luong (Ghent University)
Prof. dr. ir. Peter Veelaert (Ghent University)
Prof. dr. Jelle Saldien (Ghent University)
Prof. dr. ing. Maarten Weyn (University of Antwerp)
Prof. dr. ir. Adrian Munteanu (Vrije Universiteit Brussel)
Prof. dr. ir. Pieter Jonker (Delft University of Technology)

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en Informatieverwerking
St-Pietersnieuwstraat 41, B-9000 Gent, België

Tel.: +32-9-264.34.12
Fax.: +32-9-264.42.95



6

Proefschrift tot het bekomen van de graad van
Doctor in de Ingenieurswetenschappen

Academiejaar 2014–2015



Affiliations

Ghent University
Faculty of Engineering and Architecture
Department of Telecommunications and Information Processing
Research Group of Image processing and Interpretation (IPI)
iMinds

Sint-Pietersnieuwstraat 41
9000 Ghent
Belgium

University of Antwerp Faculty of Applied Engineering
Department of Electronics and ICT
Research Group of Constrained Systems (CoSys-lab)

Paardenmarkt 92
2000 Antwerp
Belgium

Dit werk kwam tot stand in het kader van een strategische onderzoeksbeurs van het
IWT-Vlaanderen (Instituut voor de aanmoediging van Innovatie door Wetenschap
en Technologie in Vlaanderen).





Acknowledgements

Without the extensive support, guidance and assistance of colleagues and friends,
this manuscript would simply not exist. I would therefore like to express my gen-
erous gratitude to the following people:

First and foremost, I would like to thank my supervisors, prof. dr. ir. Wil-
fried Philips, and dr. Alessandro Ledda, for the opportunity to conduct research
in the exciting field of video analysis and machine learning. They continuously
provided me with much needed guidance and support, perfectly balanced with an
equally needed freedom to pursue my own interests and research goals.

Secondly I would like to thank the members of my jury for being in my thesis
committee, and for reading and commenting on this thesis.

I would also like to thank my colleagues at both IPI, Ghent University and
CoSys-lab, University of Antwerp, for the hours of intriguing discussions on tech-
nical matters, and for the very welcomed breaks and moments of relaxation.

Finally, although explicitly mentioning names always results in the risk of for-
getting some of those who matter most, I would nevertheless like to add three
names to the above list:
Prof. dr. Maarten Weyn (CoSys-lab, University of Antwerp) for the many technical
discussions and more importantly for the personal support and countless motiva-
tional talks. Stig Geerts, friend and former colleague, for the myriad of brainstorm
sessions and discussions where science and philosophy met. Isabelle Piette, love of
my life and source of endless support, understanding, and patience, for everything.

Thank you all!

August 2014, Ghent
Vincent Spruyt





Table of Contents

Acknowledgements i

Nederlandse samenvatting xvii

English summary xxi

1 Introduction 1
1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Relevance and Applications . . . . . . . . . . . . . . . . . . . . . 4
3 Overview and contributions . . . . . . . . . . . . . . . . . . . . . 6

3.1 Real-time, Unconstrained Hand Detection . . . . . . . . . 6
3.2 Sparse, Regularized Optical Flow . . . . . . . . . . . . . 7
3.3 Real-time, Robust Hand Tracking . . . . . . . . . . . . . 8
3.4 Tracking Through Occlusion by Context Learning . . . . 8
3.5 A Transparent Floating Display . . . . . . . . . . . . . . 9

4 Summary of the Scientific Output . . . . . . . . . . . . . . . . . 10
5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Real-time, Unconstrained Hand Detection 13
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Random Hough Forests: an Introduction . . . . . . . . . . 19
3.1.1 Binary Decision Trees . . . . . . . . . . . . . . 19
3.1.2 Bagging and Random Forests . . . . . . . . . . 21
3.1.3 Random Hough Forests . . . . . . . . . . . . . 23

3.2 Rotation and Scale Invariant Hand Detection . . . . . . . 27
3.2.1 Region of Interest Detection: Defining Saliency 27
3.2.2 Region of Interest Detection: Scale Invariance . 29
3.2.3 Region of Interest Description: Color Features . 34
3.2.4 Region of Interest Description: Texture Features 37
3.2.5 Random Hough Forest Training . . . . . . . . . 44
3.2.6 Random Hough Forest Classification . . . . . . 48

3.3 Three-stage Classification . . . . . . . . . . . . . . . . . 53
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 57



iv

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Sparse, Regularized Optical Flow 73
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Feature Detection, Description and Matching . . . . . . . 79
3.2 Local Regularization . . . . . . . . . . . . . . . . . . . . 84

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 89
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Real-time, Robust Hand Tracking 101
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 107

3.1 Bayesian Filters: an Introduction . . . . . . . . . . . . . . 108
3.2 State Space Definition and Partitioning . . . . . . . . . . 113
3.3 Observation Model . . . . . . . . . . . . . . . . . . . . . 116

3.3.1 Skin Detection and Color Space Selection . . . 116
3.3.2 Adaptive Skin Detection . . . . . . . . . . . . . 119
3.3.3 Motion Detection and Dynamic Scenes . . . . . 123
3.3.4 Discriminative Hand Detection . . . . . . . . . 126
3.3.5 Likelihood Model . . . . . . . . . . . . . . . . 128

3.4 Motion Model and Proposal Distribution . . . . . . . . . 132
3.4.1 Motion Model . . . . . . . . . . . . . . . . . . 133
3.4.2 Proposal Distribution: Optical-Flow . . . . . . 134
3.4.3 A Kalman Filter Embedded Proposal Distribution 137
3.4.4 Proposal Distribution Based on Mean-shift . . . 140

3.5 The Complete Tracking System . . . . . . . . . . . . . . 144
3.5.1 Hand Segmentation . . . . . . . . . . . . . . . 144
3.5.2 Initialization and Error Recovery . . . . . . . . 147

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 153
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Tracking Through Occlusion by Unsupervised Context Learning 163
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 167

3.1 Image Patch Selection Using Structural Constraints . . . . 167
3.2 Robust Online Learning and Forgetting . . . . . . . . . . 172
3.3 A Context Based Proposal Distribution for Particle Filtering 174
3.4 Context Based Arm Tracking Using Partitioned Sampling 179

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 181
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



v

6 A Transparent Floating Display 197
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 201

3.1 Floating Imaging: an Introduction . . . . . . . . . . . . . 201
3.2 A Transparent Floating Image Display . . . . . . . . . . . 206
3.3 A Conic 360° Display . . . . . . . . . . . . . . . . . . . 212

4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 220
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7 Overall Conclusion 225
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Bibliography 249





List of Figures

1.1 Illustration of the complete tracking system. . . . . . . . . . . . . 11

2.1 Schematic illustration of random forests. . . . . . . . . . . . . . . 20
2.2 Illustration of the Hough voting process. . . . . . . . . . . . . . . 25
2.3 The hand detection pipeline. . . . . . . . . . . . . . . . . . . . . 28
2.4 Self-similarity for blob detection. . . . . . . . . . . . . . . . . . . 29
2.5 Scale invariant feature detection. . . . . . . . . . . . . . . . . . . 30
2.6 Feature detection results for hand images. . . . . . . . . . . . . . 33
2.7 Bayesian skin detector. . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Illustration of CS-LBP features. . . . . . . . . . . . . . . . . . . 38
2.9 Schematic representation of the CS-LBP operator. . . . . . . . . . 39
2.10 Orientation normalization of gradients. . . . . . . . . . . . . . . . 41
2.11 Orientation normalization of a grid. . . . . . . . . . . . . . . . . 42
2.12 Retinal sampling pattern. . . . . . . . . . . . . . . . . . . . . . . 42
2.13 Image patch classification by different decision trees. . . . . . . . 48
2.14 Illustration of the Hough voting process. . . . . . . . . . . . . . . 52
2.15 Online learning by the Random Hough Forest. . . . . . . . . . . . 53
2.16 Schematic representation of the classifier cascade. . . . . . . . . . 54
2.17 Illustration of the two-stage classifier. . . . . . . . . . . . . . . . 55
2.18 Feature usage by the random forest. . . . . . . . . . . . . . . . . 59
2.19 Illustration of detections with different VOC scores. . . . . . . . . 60
2.20 Recall-Precision curves for the Mittal dataset. . . . . . . . . . . . 61
2.21 ROC curves for the Mittal dataset. . . . . . . . . . . . . . . . . . 62
2.22 Classifier precision plotted against the number of decision trees. . 62
2.23 Hand detection results for the Mittal dataset. . . . . . . . . . . . . 63
2.24 Illustration of the two-stage classification for the Mittal dataset. . . 64
2.25 Classifier execution times plotted against image size. . . . . . . . 65
2.26 Execution timing of the detector components. . . . . . . . . . . . 67
2.27 Detection results for the Signer dataset. . . . . . . . . . . . . . . 67
2.28 Detection results for the Weizmann dataset. . . . . . . . . . . . . 68
2.29 ROC curves for the Weizmann dataset. . . . . . . . . . . . . . . . 69
2.30 Detection results for the Inria dataset. . . . . . . . . . . . . . . . 69
2.31 FPPW curves when evaluated against the Inria dataset. . . . . . . 70

3.1 Per-pixel threshold for FAST corner detection. . . . . . . . . . . . 81



viii

3.2 Delaunay triangulation for MST based clustering. . . . . . . . . . 85
3.3 Voronoi tessellation as the dual graph of a Delaunay triangulation. 87
3.4 Definitions for the non-Sibsonian interpolant weight. . . . . . . . 88
3.5 Middlebury Dataset evaluation (angular error). . . . . . . . . . . . 91
3.6 Middlebury Dataset evaluation (endpoint error). . . . . . . . . . . 92
3.7 Video frames from the Middlebury dataset. . . . . . . . . . . . . 93
3.8 Proposed video dataset with annotated ground truth flow. . . . . . 96
3.9 Visualization of the obtained flow-field. . . . . . . . . . . . . . . 97
3.10 Execution times and error measurements. . . . . . . . . . . . . . 98
3.11 Motion model evaluation for particle filter tracking. . . . . . . . . 99
3.12 Motion model evaluation for particle filter tracking. . . . . . . . . 100

4.1 Schematic representation of the partitioned sampling approach. . . 115
4.2 Skin locus (RGB color space projected onto a linear subspace). . . 117
4.3 Bayesian skin classification. . . . . . . . . . . . . . . . . . . . . 121
4.4 Combining foreground modeling and skin-color modeling. . . . . 124
4.5 Different likelihood maps used in the observation model. . . . . . 126
4.6 Combining generative and discriminative likelihood maps. . . . . 129
4.7 Bounding boxes for calculating the blob-response. . . . . . . . . . 130
4.8 Blob filter response for three special cases. . . . . . . . . . . . . . 131
4.9 Particle filter likelihood function. . . . . . . . . . . . . . . . . . . 132
4.10 Importance sampling issues in bootstrap filters. . . . . . . . . . . 136
4.11 Conceptual illustration of the segmentation process. . . . . . . . . 146
4.12 Hand segmentation in challenging illumination conditions. . . . . 147
4.13 Illustration of the two-stage hand classifier. . . . . . . . . . . . . 149
4.14 Schematic representation of the classifier cascade. . . . . . . . . . 151
4.15 State transition diagram for the particle filter. . . . . . . . . . . . 152
4.16 Schematic illustration of different types of feedback. . . . . . . . 153
4.17 VOC score comparison for different tracking algorithms. . . . . . 155
4.18 Time evolution of VOC scores for the top performing algorithms. . 157
4.19 Comparison of different proposal distributions. . . . . . . . . . . 158
4.20 Particle depletion in traditional bootstrap filters. . . . . . . . . . . 158
4.21 Tracking results on eight challenging video sequences. . . . . . . 159
4.22 Execution time, plotted against the number of pixels in an image. . 160
4.23 Execution timing of the detector components. . . . . . . . . . . . 161
4.24 Tracking results for the signer dataset. . . . . . . . . . . . . . . . 162
4.25 Automatic error recovery while processing the Signer dataset. . . 162

5.1 Illustration of contextual learning. . . . . . . . . . . . . . . . . . 164
5.2 Structured data in video. . . . . . . . . . . . . . . . . . . . . . . 168
5.3 Automatic context based patch selection. . . . . . . . . . . . . . . 170
5.4 Skin probability and CS-LBP illustration. . . . . . . . . . . . . . 172
5.5 Context classification illustration. . . . . . . . . . . . . . . . . . 173
5.6 Context learning for object tracking. . . . . . . . . . . . . . . . . 174
5.7 Cross-correlation based template matching. . . . . . . . . . . . . 175



ix

5.8 Arm tracking can disambiguate in case of occlusion. . . . . . . . 180
5.9 Particle filter’s posterior distribution. . . . . . . . . . . . . . . . . 181
5.10 Tracking hands in presence of distracting objects. . . . . . . . . . 183
5.11 Tracking hands through complete occlusion. . . . . . . . . . . . . 184
5.12 Tracking hands in case of out-of-plane motion. . . . . . . . . . . 184
5.13 Percentage of correctly tracked frames in each video sequence. . . 185
5.14 VOC score evolution. . . . . . . . . . . . . . . . . . . . . . . . . 186
5.15 Result comparison with pictorial structure tracking. . . . . . . . . 187
5.16 Pictorial structure tracking examples. . . . . . . . . . . . . . . . . 187
5.17 Execution timing of the complete system. . . . . . . . . . . . . . 188
5.18 hand tracking results for the new dataset. . . . . . . . . . . . . . . 189
5.19 Hand tracking results using context. . . . . . . . . . . . . . . . . 191
5.20 VOC score comparison. . . . . . . . . . . . . . . . . . . . . . . . 192
5.21 Illustration of hand tracking on the Signer dataset. . . . . . . . . . 195

6.1 A see-through display. . . . . . . . . . . . . . . . . . . . . . . . 198
6.2 Illustration of Integral imaging. . . . . . . . . . . . . . . . . . . . 200
6.3 Virtual image creation by reflection off a planar mirror. . . . . . . 202
6.4 Real image creation by reflection off a concave mirror. . . . . . . 202
6.5 Real image creation by concave mirrors. . . . . . . . . . . . . . . 203
6.6 Cross-section of a fresnel lens. . . . . . . . . . . . . . . . . . . . 205
6.7 Schematic representation of a floating imaging display. . . . . . . 206
6.8 Schematic representation of the Pepper’s ghost effect. . . . . . . . 207
6.9 Schematic representation of our proposed display. . . . . . . . . . 208
6.10 Ghosting effect due to the beam splitter thickness. . . . . . . . . . 210
6.11 Reflection coefficient plotted against incident angle. . . . . . . . . 212
6.12 Prototype display of our proposed solution. . . . . . . . . . . . . 213
6.13 Two prototypes of our conic display. . . . . . . . . . . . . . . . . 214
6.14 Examples of anamorphic art. . . . . . . . . . . . . . . . . . . . . 215
6.15 Anamorphic projection setup and definitions. . . . . . . . . . . . 216
6.16 Illustration of the law of reflection. . . . . . . . . . . . . . . . . . 219
6.17 The result of our anamorphic transformation. . . . . . . . . . . . 221
6.18 The final prototype display. . . . . . . . . . . . . . . . . . . . . . 222





List of Tables

2.1 Performance comparison for the Mittal dataset. . . . . . . . . . . 60
2.2 Average execution time in seconds. . . . . . . . . . . . . . . . . . 64
2.3 Results obtained on the Signer dataset. . . . . . . . . . . . . . . . 65

3.1 Proposed Dataset evaluation (angular error). . . . . . . . . . . . . 94
3.2 Proposed Dataset evaluation (endpoint error). . . . . . . . . . . . 94
3.3 Average execution time per video frame. . . . . . . . . . . . . . . 98

4.1 Test dataset specification . . . . . . . . . . . . . . . . . . . . . . 154
4.2 Tracker processing times in milliseconds . . . . . . . . . . . . . . 159
4.3 Results obtained on the Signer dataset. . . . . . . . . . . . . . . . 161

5.1 Test dataset specification, part 1. . . . . . . . . . . . . . . . . . . 182
5.2 Test dataset specification, part 2. . . . . . . . . . . . . . . . . . . 182
5.3 Evaluation results on the novel dataset. . . . . . . . . . . . . . . . 182
5.4 Test dataset specification. . . . . . . . . . . . . . . . . . . . . . . 190
5.5 VOC-score results on the Signer dataset. . . . . . . . . . . . . . . 193
5.6 Accuracy results on the Signer dataset. . . . . . . . . . . . . . . . 194

6.1 Refraction indices of different materials. . . . . . . . . . . . . . . 208
6.2 Refraction coefficients for different materials. . . . . . . . . . . . 209
6.3 Technical specifications of our prototype displays. . . . . . . . . . 220





List of Acronyms

BHMC Basin Hopping Monte Carlo
CPU Central Processing Unit
CS-LBP Center-Symmetric Local Binary Pattern
DOF Degrees of Freedom
DoH Determinant of Hessian
ESS Effective Sample Size
FAST Features from Accelerated Segment Test
FPPW False Positives Per Window
FREAK Fast Retina Keypoint
GLSL OpenGL Shading Language
GPU Graphics Processing Unit
HCI Human-computer Interaction
HOG Histogram of Oriented Gradients
HSV Hue Saturation Value
ISM Implicit Shape Model
KLT Kanade-Lucas-Tomashi
LBP Local Binary Pattern
LCD Liquid Crystal Display
LDA Linear Discriminant Analysis
LUT Lookup Table
MCT Modified Census Transform
MS Mean-Shift
MSER Maximally Stable Extremal Region
MST Minimum Spanning Tree
OF Optical Flow
PCA Principle Component Analysis
PDF Probability Density Function
QVGA Quarter VGA
QQVGA Quarter QVGA
RGB Red Green Blue
SIFT Scale Invariant Feature Transform
SIMD Single Instruction Multiple Data
SIR Sequential Importance Resampling
SIS Sequential Importance Sampling
SSE Streaming SIMD Extensions
SURF Speeded-up Robust Features



xiv

SWAR SIMD With a Register
TP Transition Prior
TV Total Variation
VOC Visual Object Classes
VGA Video Graphics Array







Nederlandse samenvatting

Laptops, tablets en smartphones zijn doorheen de jaren alomtegenwoordig gewor-
den. Intelligente sensoren worden zelfs geïntegreerd in verschillende soorten ge-
bruikersapparaten zoals brillen, horloges en televisies. Met de uitvinding van het
aanraakscherm ontstond een nieuw mens-computer interactieparadigma (HCI) dat
gebruikers toelaat om op een intuïtieve manier te interageren met een apparaat.
Met behulp van eenvoudige gebaren, zoals een ‘swipe’ of ‘pinch’ gebaar, kunnen
aanraakschermen gebruikt worden om op een directe manier een virtuele omge-
ving aan te sturen. Desalniettemin vormen aanraakschermen nog steeds een fy-
sieke barrière tussen de virtuele wereld en de reële wereld.

Een onderzoeksdomein dat de afgelopen jaren enorm populair werd en dat
probeert om dit probleem op te lossen, is videogebaseerde gebarenherkenning,
handdetectie en handtracering. Handgestuurde interactie laat de gebruiker toe om
direct te interageren met de computer op een natuurlijke wijze door een virtuele
realiteit te verkennen met behulp van de eigen lichaamstaal.

In dit proefschrift onderzoeken we hoe robuuste handdetectie en -tracering be-
reikt kan worden, rekening houdend met de vereiste dat dit moet gebeuren in ware
tijd. In de context van mens-computer interactie wordt ‘ware tijd’ gedefinieerd
door zowel een kleine vertraging tussen invoer en uitvoer, en een lage complexi-
teit. Hierdoor kan een volledig videobeeld verwerkt worden alvorens het volgende
beeld beschikbaar is. Verder moeten de algoritmen ook robuust zijn tegen be-
lichtingsveranderingen, camerabeweging, en veranderende achtergrond. Ten slotte
moet het systeem in staat zijn om automatisch te initialiseren en om traceringsfou-
ten te detecteren en te herstellen. We bestuderen daarom een brede waaier aan
bestaande algoritmen, en stellen significante verbeteringen en nieuwe methoden
voor om een volledig detectie- en trackingsysteem te bouwen dat voldoet aan al
deze vereisten.

Handdetectie, handtracering en handsegmentatie zijn conceptueel gerelateerde
maar technisch erg verschillende uitdagingen. Terwijl objectdetectors proberen
om objecten te herkennen en te localiseren in een statische afbeelding, proberen
traceringsalgoritmen temporele informatie te interpreteren om de positie van het
object te volgen doorheen de tijd in een videosequentie. Handsegmentatie gaat
over het schatten van de contour van de hand, om zo de hand te onderscheiden van
zijn achtergrond.

Detectie van handen in individuele videobeelden laat ons toe om vervolgens
een traceringsalgoritme automatisch te initialiseren, en om traceringsfouten te de-
tecteren en te herstellen. Menselijke handen zijn sterk gearticuleerde objecten,
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bestaande uit vingerkootjes die verbonden worden door gewrichten. Hierdoor kun-
nen de uiterlijke kenmerken van een hand sterk variëren, afhankelijk van de aan-
genomen handpose. Traditionele detectiealgoritmen veronderstellen vaak dat het
uiterlijk van het te detecteren object beschreven kan worden met een stug model,
waarbij de relatieve positie van individuele objectonderdelen wordt verondersteld
niet te veranderen. Deze algoritmen kunnen daarom niet gebruikt worden om op
een robuuste manier menselijke handen te detecteren in afbeeldingen.

Om die reden ontwikkelden we een algoritme dat handen detecteert door ex-
pliciet gebruik te maken van het feit dat handen gearticuleerde objecten zijn. In de
plaats van een vaak gebruikte sjabloongebaseerde aanpak toe te passen, modelleert
onze oplossing de spatiale relaties tussen de verschillende handonderdelen en het
centrum van de hand op een probabilistische wijze. Het detecteren van handonder-
delen, zoals vingertoppen, is veel eenvoudiger dan het onmiddellijk detecteren van
een volledige hand. Op basis van het spatiale model van de relatieve positie van
deze onderdelen, kan elk onderdeel gebruikt worden om een schatting te bekomen
van de handpositie. Om ook te voldoen aan de vereisten omtrent verwerking in
ware tijd, ontwikkelden we tevens technieken om het detectieproces te versnellen
door op een efficiënte manier onbelangrijke achtergrondinformatie uit het beeld
te verwijderen. Experimentele resultaten tonen aan dat onze methode competi-
tief is met de meest recente technieken in de literatuur, terwijl de computationele
complexiteit verminderd wordt met een factor 1 000. Verder tonen we aan dat
onze oplossing ook geschikt is voor detectie van andere objecten zoals mensen en
dieren, en dus niet beperkt is tot handdetectie.

Wanneer een hand gedetecteerd werd, kan een traceringsalgoritme gebruikt
worden om de hand te volgen doorheen de tijd. We ontwikkelden daarom een
probabilistisch traceringsalgoritme dat kan omgaan met onzekerheid veroorzaakt
door afbeeldingsruis, foute detecties, veranderende belichting, en camerabewe-
ging. Verder is onze methode in staat om het aantal te volgen handen automatisch
te bepalen, en kan ze omgaan met handen die het videobeeld binnenkomen of
verlaten. We introduceren hiervoor verschillende nieuwe technieken die de ro-
buustheid van het algoritme sterk verhogen en die tevens gebruikt kunnen worden
voor het traceren van andere objecten dan handen. Om te voldoen aan de vereisten
omtrent verwerking in ware tijd, onderzochten we verschillende manieren om de
zoekruimte van het probleem te verkleinen, en kozen we bewust voor methoden
die eenvoudig paralleliseerbaar zijn door moderne computerhardware. Experimen-
tele resultaten geven aan dat onze methoden beter presteren dan de nieuwste tech-
nieken die beschreven zijn in de academische literatuur, terwijl een veel kleinere
computationele complexiteit wordt bereikt.

Een van de technieken die door ons probabilistisch traceringsalgoritme wordt
gebruikt, is optische-stroomschatting. Optische stroom is gedefinieerd als een 2D
vectorveld dat de schijnbare snelheden van objecten uit een 3D scene beschrijft,
geprojecteerd op het beeldvlak. Het is geweten dat dieren zoals insecten en ver-
schillende soorten vogels gebruik maken van optische stroom om objecten te vol-
gen en om hun eigen positie te schatten. De meeste in de literatuur beschreven
methoden om optische stroom te schatten zijn echter te traag om te voldoen aan
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de vereisten omtrent verwerking in ware tijd, of zijn niet robuust bij veranderende
belichting of snelle bewegingen. Om die reden ontwikkelden we een algoritme
voor het schatten van optische stroom dat geen last heeft van deze problemen. We
introduceren ook een manier om het zoekproces te regulariseren zodat steeds een
glad vectorveld wordt bekomen. Deze regularisatiemethode reduceert het aantal
foute of slechte vectorschattingen, terwijl ons algoritme toch kan omgaan met be-
wegingsdiscontinuïteiten die veroorzaakt worden door objectgrenzen in de scene.

De bovenstaande methoden worden gecombineerd in een robuust handtrace-
ringraamwerk dat kan werken in ware tijd en dat gebruikt kan worden voor in-
teractieve applicaties in ongecontroleerde omgevingen. Om de mogelijkheden van
handgestuurde mens-computer interactie aan te tonen, ontwikkelden we een nieuw
soort computerbeeldscherm. Dit beeldscherm is volledig transparant, waardoor
meerdere gebruikers het tegelijkertijd kunnen gebruiken om samen taken te ver-
vullen, zonder oogcontact te verliezen. Het beeldscherm produceert een beeld dat
lijkt te zweven in de lucht, zodat gebruikers het kunnen aanraken met de handen.
Dit scherm werd gedemonstreerd op verschillende nationale en internationale eve-
nementen en beurzen.

Het onderzoek dat wordt beschreven in deze verhandeling werd grondig geë-
valueerd door de detectie- en traceringsresultaten te vergelijken met de resultaten
die bekomen worden door state-of-the-art algoritmes. Deze vergelijkingen tonen
aan dat het voorgestelde werk een niet eerder bereikte accuraatheid combineert
met een lage computationele complexiteit waardoor verwerking in ware tijd mo-
gelijk is. De resultaten worden telkens aan het einde van elk hoofdstuk diepgaand
besproken. Het voorgestelde onderzoek resulteerde overigens in een internatio-
nale tijdschrift-publicatie; een tweede ingediende tijdschrift-paper die op het mo-
ment van schrijven onder review is; negen internationale conferentie publicaties;
een nationale conferentie publicatie; een commerciële licentie overeenkomst be-
treffende de onderzoeksresultaten; twee hardware prototypes van een nieuw type
beeldscherm; en een software demonstrator.





English summary

In recent years, personal computing devices such as laptops, tablets and smart-
phones have become ubiquitous. Moreover, intelligent sensors are being inte-
grated into many consumer devices such as eyeglasses, wristwatches and smart
televisions. With the advent of touchscreen technology, a new human-computer
interaction (HCI) paradigm arose that allows users to interface with their device
in an intuitive manner. Using simple gestures, such as swipe or pinch movements,
a touchscreen can be used to directly interact with a virtual environment. Never-
theless, touchscreens still form a physical barrier between the virtual interface and
the real world.

An increasingly popular field of research that tries to overcome this limitation,
is video based gesture recognition, hand detection and hand tracking. Gesture
based interaction allows the user to directly interact with the computer in a natural
manner by exploring a virtual reality using nothing but his own body language.

In this dissertation, we investigate how robust hand detection and tracking can
be accomplished under real-time constraints. In the context of human-computer
interaction, real-time is defined as both low latency and low complexity, such that
a complete video frame can be processed before the next one becomes available.
Furthermore, for practical applications, the algorithms should be robust to illumi-
nation changes, camera motion, and cluttered backgrounds in the scene. Finally,
the system should be able to initialize automatically, and to detect and recover
from tracking failure. We study a wide variety of existing algorithms, and pro-
pose significant improvements and novel methods to build a complete detection
and tracking system that meets these requirements.

Hand detection, hand tracking and hand segmentation are related yet techni-
cally different challenges. Whereas detection deals with finding an object in a
static image, tracking considers temporal information and is used to track the po-
sition of an object over time, throughout a video sequence. Hand segmentation
is the task of estimating the hand contour, thereby separating the object from its
background.

Detection of hands in individual video frames allows us to automatically ini-
tialize our tracking algorithm, and to detect and recover from tracking failure.
Human hands are highly articulated objects, consisting of finger parts that are
connected with joints. As a result, the appearance of a hand can vary greatly,
depending on the assumed hand pose. Traditional detection algorithms often as-
sume that the appearance of the object of interest can be described using a rigid
model and therefore can not be used to robustly detect human hands. Therefore,
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we developed an algorithm that detects hands by exploiting their articulated na-
ture. Instead of resorting to a template based approach, we probabilistically model
the spatial relations between different hand parts, and the centroid of the hand.
Detecting hand parts, such as fingertips, is much easier than detecting a complete
hand. Based on our model of the spatial configuration of hand parts, the detected
parts can be used to obtain an estimate of the complete hand’s position. To comply
with the real-time constraints, we developed techniques to speed-up the process by
efficiently discarding unimportant information in the image. Experimental results
show that our method is competitive with the state-of-the-art in object detection
while providing a reduction in computational complexity with a factor 1 000. Fur-
thermore, we showed that our algorithm can also be used to detect other articulated
objects such as persons or animals and is therefore not restricted to the task of hand
detection.

Once a hand has been detected, a tracking algorithm can be used to continu-
ously track its position in time. We developed a probabilistic tracking method that
can cope with uncertainty caused by image noise, incorrect detections, changing
illumination, and camera motion. Furthermore, our tracking system automatically
determines the number of hands in the scene, and can cope with hands entering
or leaving the video canvas. We introduced several novel techniques that greatly
increase tracking robustness, and that can also be applied in other domains than
hand tracking. To achieve real-time processing, we investigated several techniques
to reduce the search space of the problem, and deliberately employ methods that
are easily parallelized on modern hardware. Experimental results indicate that our
methods outperform the state-of-the-art in hand tracking, while providing a much
lower computational complexity.

One of the methods used by our probabilistic tracking algorithm, is optical flow
estimation. Optical flow is defined as a 2D vector field describing the apparent ve-
locities of objects in a 3D scene, projected onto the image plane. Optical flow is
known to be used by many insects and birds to visually track objects and to esti-
mate their ego-motion. However, most optical flow estimation methods described
in literature are either too slow to be used in real-time applications, or are not ro-
bust to illumination changes and fast motion. We therefore developed an optical
flow algorithm that can cope with large displacements, and that is illumination in-
dependent. Furthermore, we introduce a regularization technique that ensures a
smooth flow-field. This regularization scheme effectively reduces the number of
noisy and incorrect flow-vector estimates, while maintaining the ability to handle
motion discontinuities caused by object boundaries in the scene.

The above methods are combined into a hand tracking framework which can be
used for interactive applications in unconstrained environments. To demonstrate
the possibilities of gesture based human-computer interaction, we developed a new
type of computer display. This display is completely transparent, allowing multiple
users to perform collaborative tasks while maintaining eye contact. Furthermore,
our display produces an image that seems to float in thin air, such that users can
touch the virtual image with their hands. This floating imaging display has been
showcased on several national and international events and tradeshows.



ENGLISH SUMMARY xxiii

The research that is described in this dissertation has been evaluated thoroughly
by comparing detection and tracking results with those obtained by state-of-the-
art algorithms. These comparisons show that the proposed methods outperform
most algorithms in terms of accuracy, while achieving a much lower computational
complexity, resulting in a real-time implementation. Results are discussed in depth
at the end of each chapter. This research further resulted in an international journal
publication; a second journal paper that has been submitted and is under review at
the time of writing this dissertation; nine international conference publications; a
national conference publication; a commercial license agreement concerning the
research results; two hardware prototypes of a new type of computer display; and
a software demonstrator.





1
Introduction

This chapter serves as an introduction and as a summary of the research and contri-
butions outlined in this dissertation. In Section 1 we discuss the research questions
that will be answered in the following chapters. Section 2 presents several possible
applications of our work and thereby justifies its significance. Section 3 contains
an overview of the major contributions of the work that will be discussed in detail
in the next chapters. In Section 4, we summarize the scientific output that has been
generated during this PhD research, in the form of publications. Finally, Section 5
briefly presents the outline of this dissertation and can be used as a guideline while
exploring the next chapters.

1 Research questions

Human-computer interaction traditionally occurs through the use of peripheral
hardware such as a keyboard, computer mouse or joystick. However, these me-
chanical devices not only behave as a physical barrier between the human and the
computer, but also act as a psychological barrier, in the sense that they limit the
effectiveness and naturalness of the interaction.

In recent years, personal computing devices such as laptops, tablets and smart-
phones have become ubiquitous. Moreover, intelligent sensors are being integrated
into many consumer devices such as eye glasses, wrist watches and smart televi-
sions. With the advent of touchscreen technology, a new human-computer inter-
action (HCI) paradigm arose that allows users to interface with their device in an
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intuitive manner. Using simple gestures, such as swipe or pinch movements, a
touchscreen can be used to directly interact with a virtual environment. Neverthe-
less, touchscreens still form a physical barrier between the virtual interface and the
real world.

An increasingly popular field of research that tries to overcome this limitation,
is video based gesture recognition, hand detection and hand tracking. Gesture
based interaction allows the user to directly interact with the computer in a natural
manner by exploring a virtual reality using nothing but his own body language.
Recent studies have shown that using a natural gestures based human computer
interface significantly reduces the cognitive workload of the user involved [Cor-
nelius 13], and allows the user to focus on the task at hand instead of focussing on
the interfacing method itself.

Reviewing the early academic literature on this topic reveals an increasing in-
terest in natural human-computer interaction, starting from the mid sixties. How-
ever, only recently robust vision based hand tracking became feasible through ad-
vances in processing speed and camera hardware. With the recent advent of inex-
pensive time-of-flight and structured light based depth cameras, real-time gesture
based human-computer interaction moved from the academic world to the indus-
trial scene, with practical applications being available today.

However, current hand tracking and detection methods impose specific con-
straints on the user, in order to overcome ambiguities in the environment. For in-
stance, the well known Microsoft Kinect sensor [Microsoft 10] requires the user’s
face to be visible at all times, and can only detect hand motion if the user’s body is
completely contained inside the camera’s field of view. Furthermore, due to hard-
ware limitations that result from their near-infrared structured light approach, the
user is expected to be positioned at a minimum distance of 60 cm from the cam-
era, the system can not operate in direct sunlight, and tracking suffers from a high
latency (60 ms for Kinect 2.0). Another well known commercial hand detection
and tracking platform was developed by the Belgian company SoftKinetic which
produces a consumer model time-of-flight camera. Their infrared time-of-flight
camera provides low latency, high resolution depth estimates, and is used by the
SoftKinetic iisu [SoftKinetic 14] software for hand tracking purposes. However,
their software can not robustly separate faces from hands, and yields unstable re-
sults when hands overlap. Furthermore, their camera can not be used in direct
sunlight, due to its operation in the near-infrared spectrum.

In general, range cameras, as used by the above methods, greatly simplify the
problem of object tracking and detection by allowing instant removal of back-
ground pixels. However, depth cameras usually rely on infrared signals and per-
form poorly in direct sunlight or in environments with other infrared light sources,
which limits their applicability. Additionally, these methods can not be applied to
existing video datasets that lack depth information. Furthermore, although the use
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of specialized hardware might indeed greatly simplify the problem at hand, from
an academic point of view it is still extremely interesting to solve the problem in
its original setting, as this might shed a light on how the human vision system is
able to perform this task. In this dissertation, we therefore focus on intelligent
algorithms and apply our methods on simple monocular video. Our focus is on the
development of real-time hand detection and tracking methods, that can operate in
unconstrained environments and changing illumination, and can automatically ini-
tialize and recover from failure. Our methods only rely on 2D video data, captured
with an inexpensive webcam device, and are able to automatically learn from and
adapt to their environment.

The research questions that are discussed and answered in this dissertation can
thus be outlined as follows:

2D Hand Tracking: How can a human hand be tracked robustly and in real-time
throughout a monocular, and possibly low-resolution video sequence, given
its initial location? Important constraints for this problem are the possibility
of sudden illumination changes in the scene, quickly changing backgrounds,
moving cameras, unconstrained hand poses, and the need for a real-time
solution.

Hand segmentation: Can we obtain a segmentation mask of the hand, based on
the hand tracker’s results? Could such segmentation mask be used to au-
tomatically adapt the tracker’s internal color and texture models in order to
increase its robustness during tracking?

Color modeling: Can skin color be modeled such that the resulting algorithm is
independent of both ethnicity and illumination? Can the color models be
made adaptive in order to cope with changing illumination?

2D Hand Detection: How can a human hand be detected automatically, and in
real-time, in static images? Can such detector be designed such that it can
detect hands in any pose, irrespective of scale and orientation? Can such
detector be used to automatically initialize a tracking algorithm for video
sequences, and can it be used for automatic error detection and recovery?

Closed-loop system: How can information be shared between the tracking, seg-
mentation, and detection modules, such that each of those can automatically
adapt their internal models as to learn about and adapt to the current envi-
ronment and context?

Unsupervised context learning: If an object of interest consistently exhibits mo-
tion patterns that are correlated with those of other objects, then can we au-
tomatically model these correlations? How could such model be used to
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perform automatic arm detection during hand tracking? How could context
learning be used to improve the tracker’s robustness to occlusions?

Real-time system: Can the complete system be implemented such that it oper-
ates in real-time on modern consumer hardware? Which sacrifices need to
be made and which implementation choices are important to achieve this
goal?

Floating display: How could we develop a holographic computer display, such
that a virtual object appears to float in thin air? What are the important
design choices and what are the production limitations? Could such a com-
puter display be controlled interactively by means of hand gestures?

2 Relevance and Applications

Robust and real-time hand detection and tracking can be applied in a variety of
industrial domains. In this section, we first discuss why 2D hand tracking is an
important field of research, and then present an overview of some of the most
important applications.

Obvious approaches to hand tracking, and object tracking in general, include
the use of specialized hardware such as time-of-flight or structured light cameras,
or the use of multiple cameras, as used in stereo-vision applications. Such solu-
tions greatly simplify the problem since the resulting depth map or disparity map
allows to quickly distinguish background objects from the object of interest. Prob-
lems such as segmentation, detection and tracking, known to be challenging for
algorithms that use monocular video, often become trivial when processing depth
information. Moreover, temporal ambiguity, caused by occlusions of the objects
of interest, can be resolved easily if multiple camera views are available.

Nevertheless, the use of such specialized hardware poses additional constraints
on the system, as discussed in section 1. These devices often fail in specific il-
lumination, need a lot of processing power, are more expensive than traditional
cameras, have a very limited range in which they operate correctly, exhibit a small
field of view, and are sometimes simply not available.

Simple monocular cameras, on the other hand, introduce different problems,
such as their limitations in very dark environments, and their 2D perspective of the
world which makes it difficult to distinguish background from foreground objects.
Most of these problems of both types of camera devices can be grouped in two
disjoined sets, suggesting that the combination of both approaches could be used
to develop a computer vision solution that benefits from the best of both worlds.

Ideally, we would like to be able to first solve the problem of hand detection
and tracking in its most difficult setting; using only a monocular video stream,
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originating from a low-end webcam device. If sufficiently robust and accurate re-
sults can be obtained in this setting, then specialized hardware can easily be added
in a later stage of the design process, to handle edge cases. Depth camera’s or
stereo- vision approaches could then be used as a fall back when monocular track-
ing fails, and vice-versa. The remainder of this dissertation therefore focuses on
monocular video, and discusses several novel solutions to perform hand detection
and tracking.

Recently, several industries have shown significant interest in robust and real-
time gestured based solutions. A first example resides in the medical industry.
Both before and during surgery, surgeons often need access to electronic medi-
cal records and imagery. Traditional peripheral hardware, such as a keyboard and
mouse, can compromise sterility of the operating room, and can spread infections.
Furthermore, operating this hardware poses an additional mental burden upon the
medical personnel. Research has shown that these problems can be elevated by
means of gesture based human computer interfaces [Jacob 13], in which the sur-
geon uses natural gestures to remotely control the computer, thereby significantly
reducing the cognitive load [Cornelius 13].

Another application of the proposed system is in collaborative industrial de-
sign, where multiple designers simultaneously try to accomplish a task, while
manipulating the same virtual model or environment. Kraut et al. [Kraut 03]
showed that visual information, such as body language, is of great importance
when performing collaborative tasks, as this information helps maintaining situa-
tional awareness and helps achieving mutual understanding. Using hand gestures
instead of traditional peripheral hardware would allow users to physically interact
while performing their tasks.

Other obvious applications reside in the entertainment and multi-media sector,
where several big companies, such as Microsoft [Microsoft 10], SoftKinetic [Soft-
Kinetic 14], and Leap Motion [LeapMotion 13] are focussing on specialized hard-
ware to solve the problem of robust hand tracking and detection. Samsung on
the other hand only uses a monocular camera to allow users to control their smart
television using a discrete set of hand gestures.

Finally, a variety of cross-domain research projects would greatly benefit from
a robust hand tracking and detection system. Examples include the study of body
language of teachers in classrooms [Cooper 13] or applicants during job inter-
views [Chollet 13]. The results of these studies are often based on careful, manual
annotation of a large set of monocular video sequences. Robust hand tracking so-
lutions can automate this process, allowing more data to be analyzed in a shorter
time frame.
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3 Overview and contributions

In this dissertation we propose several techniques for real-time, robust hand de-
tection and tracking. Each of these methods have been designed to operate in
real-time, while exhibiting robustness against unexpected environment and illumi-
nation changes.

Moreover, we developed a novel type of 3D computer display and showed how
such display can serve as a HCI component when combined with hand-tracking
software.

Each of these contributions are briefly introduced in the next sections and are
discussed in more detail in the following chapters.

3.1 Real-time, Unconstrained Hand Detection

Literature contains many examples of hand tracking methods that require a spe-
cific hand position and pose for initial hand detection before tracking can begin.
In practical applications this can be a significant limitation. On the one hand,
re-initialisation is needed each time hand tracking fails (e.g. when the hand disap-
pears from the picture). On the other hand, requesting the user to adopt a specific
hand pose is annoying if it happens too frequently. It also requires additional train-
ing, e.g. using on-screen instructions, which complicates the user interface. In
chapter 2 we therefore propose a real-time algorithm to detect hands irrespective
of pose, rotation, scale, background and illumination.

Well known object detection methods in computer vision usually employ a
template matching approach. The appearance of the object of interest is described
using several features such as color or texture descriptors. The detection of these
features in a new image then provides evidence about the existence of the object
of interest in the image. Although this approach has been proven to be useful for
a variety of problems such as face detection, it can not be used to detect highly
articulated objects whose appearance can differ greatly depending on their pose.

To robustly detect hands, we therefore propose an algorithm that detects object
parts instead of complete objects. Although the appearance of a hand highly de-
pends on its posture, the appearance of hand-parts such as fingertips, is generally
stable across different hand poses. Our method therefore models the relative posi-
tion of these object parts in a probabilistic manner. Detected object parts then cast
a probabilistic vote on the centroid of the hand. By searching for the local maxima
in this voting space, hands are detected.

Although our method was specifically designed for real-time hand detection,
we show that it can be useful for more general object detection tasks. While the
proposed solution outperforms the state-of-the-art in hand detection, it is com-
petitive with the state-of-the-art in people detection and animal detection while
providing a decrease in computational complexity with factor 1 000.
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3.2 Sparse, Regularized Optical Flow

Whereas object tracking is concerned with estimating the motion path of a specific
object in a video sequence, optical flow estimation methods try to obtain an esti-
mate of the pixel-wise motion in a video frame. For instance, if an object moves
closer towards the camera, its location, when projected onto the image plane, does
not change such that an object tracker would not report a change in position. On
the other hand, individual pixels inside the object would appear to move in a ra-
dial fashion, due to the zoom-like motion of the object. This apparent pixel-level
motion is captured by optical flow estimation methods.

Optical flow is defined as a 2D vector field describing the apparent velocities
of objects in a 3D scene, projected onto the image plane. Roughly estimating the
optical flow field is generally easier than estimating the motion of a specific object
in the scene, mostly because the object of interest is not always easily differentiable
from its background. We therefore propose an object tracking method that uses
optical flow estimates, amongst other types of information, to robustly track the
object throughout the video sequence.

Optical flow estimation methods try to estimate local flow vectors without con-
sidering high level information about the different objects in the scene. Therefore,
the precision of individual flow vector estimates can greatly differ due to noise and
ambiguity in the image. To counteract this problem, regularization is often used to
impose a smoothness constraint while estimating the optical flow field. However,
regularized optical flow estimation methods described in literature operate on a
regular grid, estimating the flow vector for every pixel in the image. As a result,
these methods are often too slow for real-time applications.

in chapter 3 we therefore propose a method that produces a sparse, yet regular-
ized, optical flow field estimate that can be obtained in real-time. Flow vectors are
only estimated for interesting points in the image, and a regularization scheme is
used to increase robustness to noise. Furthermore, our method is able to apply this
regularization locally such that vectors are only regularized based on other vector
estimates within the same object in the image. This allows our solution to cope
with motion discontinuities at boundaries between different objects in the scene.

We show that our method outperforms well known point-matching algorithms
and is competitive with the state-of-the-art in optical flow estimation while being
much more efficient to calculate. Our method can easily be used in a real-time
setting, consuming only a fraction of the available computational power. Further-
more, we show that our method is illumination invariant, and illustrate its effec-
tiveness in improving the sampling scheme of a particle filter based hand tracking.
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3.3 Real-time, Robust Hand Tracking

To continuously track hands throughout the video sequence, we use a recursive
Bayesian tracking approach as will be discussed in chapter 4. This allows us to iter-
atively refine the estimated object position, incorporating new information when it
becomes available. A well known recursive Bayesian filtering techniques that can
deal with the highly non-linear observation model and the possibly multi-modal
posterior distribution encountered in hand tracking, is the particle filter.

We employ a sensor fusion approach to combine multiple types of information
about motion estimation, object colors and textures, and background modeling into
a robust probabilistic framework. Furthermore, we present a theoretical framework
that allows us to efficiently incorporate the optical flow estimates, discussed in the
previous section, into our probabilistic sampling scheme.

The object detection method described in chapter 2 is used to initialize our
tracking algorithm, and allows it to automatically detect and recover from tracking
failure. Furthermore, the probabilistic voting mechanism used by the detector is
directly incorporated into the observation model of the particle filter to increase
tracking robustness in ambiguous situations (e.g. when the hands overlap or come
close to the face).

Finally, we present a simple segmentation method that allows us to quickly
obtain a rough estimate of the contour of the hand. Based on this contour estimate,
the color and texture models of both the detector and the tracker are automatically
updated, such that our solution can quickly adapt to changing environments.

We compare our real-time method with state-of-the-art object tracking algo-
rithms, and show that it largely outperforms these methods when applied to the
task of hand detection. The complete tracking system can automatically detect
hands when these enter the video frame, can recover from failure, and can dynam-
ically detect and track multiple objects at once.

3.4 Tracking Through Occlusion by Context Learning

A major shortcoming of many state-of-the-art tracking approaches, is their ten-
dency to be easily distracted when the object of interest is occluded by visually
similar objects.

In chapter 5 we formulate a solution to this problem, based on the idea that a
moving object is usually embedded in a specific context and rarely moves alone.
In the case of human hands, an obvious example of such contextual link would
be the arm that exhibits a motion pattern that is strongly correlated to that of the
attached hand.

We propose an efficient solution to automatically and adaptively learn the arm’s
appearance, and to incorporate this knowledge into the tracking algorith of chapter
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4. The resulting method is able to robustly track both hands and arms through in
real-time, while coping with occlusion.

Furthermore, the proposed solution is not limited to arm tracking. In many
practical applications, the tracked hand holds an object such as a smartphone or
game controller, or attributes such as an umbrella (i.e. surveillance applications).
Whereas this degrades tracking performance if a traditional tracking algorithm
were to be used, it can actually improve tracking if the system is able to learn
that the object’s position is temporally correlated with the hand. To this end, we
propose a method to exploit temporal correlation, in order to automatically learn
which objects appear to be temporally connected to the tracked object.

3.5 A Transparent Floating Display

One of the most apparent applications of real-time, robust hand detection and hand
tracking algorithms, can be found in human-computer interaction (HCI). An in-
creasingly popular subdomain of HCI research is related to multiple-user envi-
ronments for performing collaborative physical tasks. Examples can be found in
rapid prototyping or medical research, where multiple users collaborate to per-
form a single task. Kraut et al. [Kraut 03] showed that visual information, such
as the possibility of maintaining eye contact with other users, is of great impor-
tance when performing collaborative tasks. This information helps maintaining
situational awareness and helps achieving mutual understanding. However, in a
traditional HCI setting, where each user sits in front of his own computer display,
most of these cues are lost. Even if multiple users share the same computer display,
collaboration is often difficult because it is not possible to focus on the display, the
environment and the other users at the same time.

In chapter 6 we therefore propose a design of a new type of display that over-
comes these limitations. The proposed display is transparent and as such does not
block the field of view of its user, allowing the observer to maintain eye contact
with other users. Furthermore, the display effectively projects the image in thin
air, such that the virtual object seems to float at a distance from the transparent
medium. Therefore, the virtual object is perceived as being part of the real world,
and the user can interact with it based on natural hand gestures.

Prototypes of our display have been showcased at various national and inter-
national events and tradeshows, and have been received with much enthusiasm by
the public. First steps towards a spin-off company have been taken, resulting in a
license agreement related to part of the results that are presented in this disserta-
tion.
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4 Summary of the Scientific Output
This dissertation resulted in ten peer-reviewed publications at international confer-
ences, four of which as a first author [Spruyt 10a, Van den Berghe 11b, Van den
Berghe 11a,Creemers 11,Heyman 12,Heyman 11,Spruyt 12,Spruyt 13b,Spruyt 13a,
Bellekens 14]; one peer-reviewed publication at a national conference [Spruyt 10b];
and three international journal papers, one of which has been published [Spruyt 14],
one of which was under review at the time of writing this dissertation, and one of
which has been submitted.

Furthermore, the work on the development of a transparent floating imaging
display has led to a commercial license agreement between an interested party, i.e.
spin-off company in formation BI3D, and both Ghent University and the Univer-
sity of Antwerp, concerning part of this PhD research. Moreover, two hardware
prototypes have been produced and showcased on several national and interna-
tional events and tradeshows.

Finally, a demonstrator showing real-time, robust hand detection and tracking
in video using low resolution webcam input has been developed.

5 Outline
The chapters of this dissertation each describe an important component of the com-
plete tracking and detection system that was developed during our research. Every
component receives information from other components and feeds back its output.
As a result, the tracking system is able to adapt to dynamic environments and to ac-
tively update its models at run-time. To aid the reader in maintaining an overview
of the relations between these components, and thus chapters, figure 1.1 presents a
general overview of the modules, their relations, and the chapter numbers in which
they are presented.

This dissertation is outlined as follows: Chapter 2 discusses the robust and
real-time object detection algorithm that was briefly introduced in section 3.1.
In chapter 3 we propose a real-time, sparse and locally regularized optical flow
method, introduced in section 3.2. The object detector and optical flow estimator
are then combined by the Bayesian hand tracking algorithm proposed in chapter 4
and discussed earlier in section 3.3. In this chapter, we discuss a complete hand
tracking framework with automatic initialization and error recovery, and show that
it outperforms the state-of-the-art while providing a significant reduction in com-
putational complexity. Finally, in chapter 6 we discuss the design and development
of a new type of holographic computer display that is able to project a virtual im-
age in thin air. The result is an interactive human-computer interface that creates
the illusion of observing a floating object, thereby creating a truly immersive ex-
perience.
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Figure 1.1: Illustration of the complete tracking and detection system, and their relations.
Each module in this figure is accompanied with the chapter number in which it is presented.
This figure can serve as a guideline while exploring the dissertation.





2
Real-time, Unconstrained Hand

Detection

1 Introduction

Vision based hand tracking and hand detection are amongst the most challeng-
ing tasks to accomplish in modern human-computer interfaces. Although hand
pose and gesture recognition are receiving an increasing amount of attention in the
computer vision community, current approaches often assume that the initial hand
location is known to the classifier, thereby skipping the more difficult step of initial
hand detection for tracker initialization or error recovery.

Furthermore, since low cost depth cameras recently became available, focus
has shifted from object detection and tracking in monocular video, to image anal-
ysis using depth maps. However, due to their dependency on infrared signals,
depth cameras based on time of flight or structured light often perform poorly in
direct sunlight, limiting their applicability to indoor applications with restricted
lighting conditions. Additionally, these methods cannot be applied to existing im-
age databases lacking depth information. A real-time algorithm for long-term,
robust hand tracking with automatic initialization and error recovery would solve
these problems and could even be combined with depth information to increase
robustness.

As opposed to rigid or non-articulated objects such as faces, human hands lack
clear discriminative features, making it difficult to design a robust hand detector
based on low level feature detection. Additionally, the human hand has a high
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number of degrees of freedom (DOF): 27 in total, six of which represent translation
and rotation of the wrist [ElKoura 03]. Due to this high number of DOF, a hand’s
2D silhouette can assume a wide variety of shapes, further complicating robust
hand detection. As a result, even the current state-of-the-art detection methods are
unable to robustly detect hands in video sequences.

Moreover, current hand detection and tracking solutions all have limitations:
Some methods focus on constrained environments with a controlled background
[Stefanov 05, Donoser 08, Pham 09]. Other methods require the user to wear col-
ored gloves [Robert 09], or use specialized hardware such as an infrared depth
sensor [Oikonomidis 11, Liang 12, Melax 13]. Many methods assume uniform
illumination because they use a simple skin color or motion detection based seg-
mentation.

Finally, today’s state-of-the-art detection methods often need several seconds
or minutes of processing time [Gall 09, Mittal 11] per video frame, or can only
detect rigid objects from a predetermined viewpoint [Viola 04]. In most human-
computer interfaces however, hand detection is merely a small processing task in
a much larger system, and should therefore only consume a fraction of the avail-
able processing power. This real-time constraint greatly reduces the number of
techniques that can be applied, and proves to be a challenging problem.

Literature contains many examples of hand detection and tracking methods
that require a specific hand position and pose for initial hand detection (see Sec-
tion 2). In practical applications this can be a significant limitation. On the one
hand, re-initialisation is needed each time hand tracking fails (e.g., when the hand
disappears from the picture). On the other hand, the need to adopt a specific hand
pose is annoying to the user if it happens too frequently. Requiring a specific ini-
tial hand pose also requires additional training of the user, e.g. using on-screen
instructions which complicates the user interface. Therefore in this chapter, we
propose a real-time algorithm to detect hands irrespective of pose, rotation, scale,
background and illumination.

Instead of directly detecting complete hands, our solution detects hand parts,
such as finger tips, and models the spatial relation between these parts in order to
estimate the hand location. Hand parts occur in different spatial configurations,
orientations and scales, depending on the gesture and the distance from the cam-
era. Whereas most object detection techniques try to overcome this problem by
re-detecting the object in multiple scaled and rotated versions of the image, this
approach is computationally too complex for real-time systems. Therefore, we
introduce an object detection method that overcomes these problems, by directly
incorporating scale and rotation invariance into the feature description and classi-
fier training stage. This allowed us to efficiently use the available training data,
since hand parts with different orientation and scale are not considered to be dif-
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ferent object classes. Moreover, our approach allows for invariant object detection,
resulting in a fast, real-time system.

Furthermore, we propose a three-stage classifier to further reduce the false
positive rate of the system, and to incorporate temporal information. Based on this
classifier cascade, a complete tracking system with automatic initialization and
error recovery is proposed. We show that our approach outperforms the state-of-
the-art in hand detection while allowing real-time processing.

Finally, an extensive evaluation of our methods is presented, by processing
both images and videos, and by training and testing our detector on completely
different datasets, such as pictures of horses, bikers and persons. Our results are
compared with state-of-the-art detection methods, using several well known and
publicly available datasets. We show that our hand detector outperforms the state-
of-the-art, whereas our general detection results are competitive with the state-of-
the-art in object detection. Moreover, our method provides a decrease in computa-
tional complexity with factor 1 000.

This chapter is outlined as follows: In Section 2 we describe related work. In
Section 3.1, we provide an introduction into and discussion of Random Hough
Forests. Section 3.2 explains our complete Hough detection method in detail,
including the feature detection and description stage, the training stage and the
classification stage. In Section 3.3, we discuss how a cascade of the Random
Hough classifier with two additional, yet simple, classifiers increases detection
performance, and allows us to detect hands in real-time video sequences. Finally,
Section 4 provides a thorough evaluation and discussion of the detection results,
using several publicly available datasets.

2 Related Work

Object detectors can be categorized based on the model that is used to describe the
classes of interest. Traditional object detection approaches use a rigid model to
assign a score to each object location hypothesis in the image. More recent object
detection methods on the other hand, represent an object class as a deformable con-
figuration of object parts. Each part represents local characteristics of the object,
whereas their deformable spatial configuration describes the expected variance in
the relative location of these parts.

A classical example of an object detector that describes the object using a rigid
model, is the well known Viola and Jones detector [Viola 04]. Using a sliding-
window approach, a cascade of Haar-like features allows the detector to quickly
discard background pixels so that it can focus on the more likely object location hy-
potheses. This approach was used by Kölsch and Turk [Kölsch 04b], who trained
a boosted Haar-cascade to detect hands in several different postures. While a rea-
sonable detection rate between 65.8% and 92.23% was achieved, their method is
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view dependent, and can therefore only be used to detect hands in a predefined
pose.

A similar approach was proposed by Just et al. [Just 06]. However, instead
of relying on Haar-like features, the Modified Census Transform (MCT) was used
to describe the texture of the neighborhood of each pixel. The MCT is a feature
descriptor that encodes the local texture information of a pixel as an ordered set of
binary comparisons of pixel intensities between all pixels in a 3× 3 neighborhood
and the average intensity within this neighborhood. Calculating these features
involves a simple and efficient convolution. The resulting detector outperforms
the detector that was proposed by Kölsch and Turk in terms of recognition rates,
but suffers from the same problem: Due to the rigid model that is represented by
the boosted classifier cascade, only predefined hand postures can be recognized.

Another rigid model based hand detector was proposed by Ong and Bow-
den [Ong 04]. Their approach consists of a tree of boosted detectors. While the
head of the tree returns hand position hypotheses, the remaining cascades focus on
specific hand postures. The tree is learned by clustering a training set of hand im-
ages, based on their shape. Although this approach seems to outperform the meth-
ods that were discussed above when used on a dataset with uniform background,
the system fails in case of cluttered and changing backgrounds. Furthermore, due
to the rigid model that is represented by the boosted cascades at each leaf-node of
the tree, only a specific set of hand postures can be detected.

The idea of using a hierarchical approach in which child-nodes at lower lev-
els classify more specific hand postures, was taken further by Stenger et al.
[Stenger 06b], who proposed a rigid model based hand detection and tracking sys-
tem using a hierarchical Bayesian filter. A large database of hand templates is hier-
archically clustered based on their Chamfer distance. Hand detection is performed
by searching the hierarchical template tree, and temporal consistency is enforced
during tracking, by means of Bayesian filtering. Depending on the structure of the
template tree, this method either allows precise recognition of a limited set of hand
postures, or coarse detection of a larger number of hand postures. However, due to
the computational complexity of the Chamfer distance metric, only three frames
per second can be processed on a 2.4 Ghz P4 computer.

A two-stage hand detector, in which a rigid model is learned, was proposed by
the same authors [Stenger 06a]. In the first stage, the system generates hand loca-
tion and scale hypotheses, based on simple color and motion cues. The color cue
represents skin color likelihood, whereas the motion cue represents the difference
in pixel intensity between the current frame and the previous frame in a video.
Maxima are found in the distribution of these two features and are treated as hand
hypotheses. Each hypothesis is then tested by the second stage classifier. The
second stage classifier is a nearest neighbor classifier in which edge orientation
and skin color likelihood are combined in a feature vector. A distance measure
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is then calculated between the feature vectors that describe the bounding box of
a hand location hypothesis, and each entry of a template database that was gener-
ated during training. Similar to the earlier discussed rigid model based approaches,
this detector can only detect hands in specific postures. Nevertheless, the idea of
combining a high-recall classifier with a high-precision classifier, into a two-stage
classification system, is an interesting idea that is built upon in our research.

The idea of a two-stage hand detector was reused by Mittal et al. [Mittal 11],
who proposed a parts based detector. As opposed to the earlier discussed rigid
model based detectors, a parts based detector is able to cope with deformable ob-
jects by modeling the relative position of object parts, together with their expected
variance. Their method uses a parts based deformable model, based on Histogram
of Oriented Gradient (HoG) features. The proposed system consists of a two-
stage classifier, where the first stage generates hand location hypotheses, while the
second stage confirms or rejects these hypotheses, based on skin color and face
detection. Due to the parts based approach, the resulting detector is able to detect
hands, irrespective of their posture, in unconstrained environments with random
backgrounds and illumination. However, the whole detection process takes ap-
proximately two minutes for an image of 360× 640 pixels on a 2.5 Ghz quad-core
computer, and is therefore not suited for real-time HCI applications.

While well known object detection approaches, such as the Viola and Jones
detector, fail to capture the full range of hand poses, Mittal et al. showed that
parts-based classifiers can yield robust hand detectors. Despite the high number
of degrees of freedom, and the articulated nature of human hands, several parts
of the hands, such as fingers, are usually visible throughout different hand poses.
Detecting these parts, and modeling their spatial configuration, could therefore
yield a robust and fast hand detector.

Leibe et al. [Leibe 08] proposed such a parts-based detector that learns a
class-specific Implicit Shape Model (ISM). This ISM is a codebook of interest
points, obtained by a feature detection method such as SIFT (Scale-invariant Fea-
ture transform). The codebook is typical for the object class under consideration.
Furthermore, an offset vector from the interest point to the object’s centroid in the
training data is stored for each codebook entry. These vectors are used to build
a probabilistic model of the spatial configuration of the interest points. At run-
time, interest point descriptors in the image are matched against the codebook,
and matching entries cast a probabilistic vote for the centroid of the object. The
resulting detector is robust against object deformations and occlusions, but needs
between 4–7 seconds of processing time for an image of size 320× 240.

The approach that was proposed by Leibe et al. is referred to as a generalized
Hough transform, since votes are accumulated after which maxima are located in
this accumulator. While this generalized Hough based detector is able to cope
with deformable objects, partial occlusion and complex backgrounds, the method
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requires computationally expensive codebook matching at runtime, limiting its ap-
plicability in real-time applications. Moreover, in order to generate the codebook,
large scale clustering problems need to be solved.

Based on the work of Leibe et al., Gall and Lempitsky [Gall 09] proposed
a parts-based object detector, using random forests. A random forest is trained
using image patches that are selected by means of a sliding window. For each
image patch, an offset vector to the object centroid is stored, describing its relative
location. During classification, new image patches are classified by each tree in
the forest, and the offset vectors that are stored in the leaf-nodes of each tree are
used to cast a probabilistic vote for the object’s center. Despite the impressive
results, the random forest based detector is not scale and rotation invariant. In order
to cope with different scales, several scaled versions of the image are classified
sequentially, yielding high processing times. The complete detection system needs
approximately 6 seconds to process a 720×576 image, and can only detect objects
at four different scales within this time-frame. In addition, the detector is not
rotation invariant.

Based on the work of Gall and Lempitsky, we propose a real-time, scale and
rotation invariant detection method for hands in video sequences. Our detection
system consists of a three-stage classifier and can robustly detect hands, indepen-
dently of their posture. Based on our detector, we propose a complete real-time
tracking system that can operate in unconstrained environments with changing il-
lumination and background. We show that the detector can be used to efficiently
initialize tracking algorithms, and can be used to provide automated error recovery
in case of drift or tracking failure.

3 Materials and Methods

In order to detect hands in unconstrained video, we propose a cascade of three clas-
sifiers. Each classifier outputs a set of hypotheses about possible hand locations,
which are then verified by the next stage.

The first-stage classifier is a parts based classifier. A region of interest detector
is used to select blob-like structures in the image. These regions are classified as
being part of a hand, or part of the background. For regions that are part of a hand,
the spatial configuration, i.e. their offset from the hand’s centroid, is modeled,
such that during classification the centroid of hands can be inferred based on the
detection of individual hand parts. We propose to use a Random Hough Forest as
the first-stage classifier. An introduction into random forests, decision trees and
Random Hough Forests, and an explanation about our choice for this approach, is
provided in Section 3.1.

The parts based Random Hough Forest classifier takes a set of regions of in-
terest as its input. To detect these regions of interest, we search for blob-like
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structures in the image by detecting isotropic regions of high entropy and low
self-similarity across different scales, as discussed in more detail in Section 3.2.1.
Although many types of region of interest detectors, such as the well known SIFT
algorithm, are available, one of the main contributions of our research is the real-
time performance of our classifier. Therefore, the region of interest detector should
only consume a fraction of the available CPU power. In Section 3.2, we discuss
the chosen region of interest detector in detail, and describe several enhancements
to the original method. Furthermore, we discuss how to incorporate scale and
rotation invariance directly into the Random Hough Forest classifier, by keeping
track of normalized offset vectors in the leaf-nodes of each decision tree. Finally,
we discuss how the trained random forest can be used to detect hands in arbitrary
images, by means of Hough voting.

The first-stage classifier is used as a high-recall, low-precision classifier. It de-
tects almost all hands in any image, but also returns many false positive detections.
To eliminate these false positive detections, we propose a second-stage classifier
that classifies the earlier detected hand bounding boxes as a whole, instead of indi-
vidual object parts. Finally, a third-stage classifier is proposed to exploit temporal
information that is available in video data. The complete cascade is discussed in
more detail in Section 3.3.

3.1 Random Hough Forests: an Introduction

A Random Hough Forest is an object detector that is largely based on the concepts
of random forests. A random forest [Breiman 01], illustrated by figure 2.1, is an
ensemble classifier composed of several binary decision trees, each trying to solve
the same task. Therefore, before discussing Random Hough Forest classifiers, it
is important to review the basics of binary decision tree classifiers and random
forests first.

3.1.1 Binary Decision Trees

Decision trees are amongst the most simple classifiers to understand. Like any
classifier, a decision tree takes a set of features as input, and returns a class label as
its output. A decision tree consists of a set of nodes that are connected by branches.
Non-leaf-nodes are called decision-nodes. In binary decision trees, each decision-
node has exactly two child-nodes. Each branch that connects a decision-node with
its two child-nodes, corresponds to a binary decision value. During classification,
each decision-node compares a specific feature value with a threshold value, and
then follows one of the two branches that corresponds to binary outcome of this
test. This process is repeated until a leaf-node is reached. Leaf-nodes in a decision
tree correspond to class labels, and thus represent the final decision.



20 REAL-TIME, UNCONSTRAINED HAND DETECTION

Figure 2.1: A random forest consisting of N decision trees. A feature input vector r is clas-
sified by each decision tree independently. Class probability distributions are marginalized
to obtain the aggregated class decision.

Although decision tree classifiers are easy to use and can be implemented ex-
tremely efficiently, training a decision tree is a difficult problem. During tree con-
struction, one of the several available features have to be chosen for the binary
test at each decision-node. Furthermore, a threshold value has to be determined
for this test. Many different choices for these parameters can result in different
decision trees that represent the same set of final decisions. Simply calculating
the decision tree that corresponds to the smallest tree of such an unknown set of
equivalent trees that represent the same decision outcome, is an NP-hard problem.

Common methods to train decision trees are the ID3 algorithm and its succes-
sor, C4.5 [Quinlan 93], which resort to a greedy heuristic approach to determine
the splitting criteria. At each decision-node, the information gain (also know as
mutual information) for each possible splitting criterion is calculated, and the cri-
terion yielding the highest information gain is chosen. The information gain is
defined as the difference in entropy before and after a training set is split by a cer-
tain decision rule. In other words, maximizing the information gain reduces the
uncertainty in the training data.

Binary decision trees divide the feature space into axis-parallel hyperrectan-
gles, where each hyperrectangle is assigned a specific class label. The area of such
a decision region can be arbitrary small, and depends on the depth of the decision
tree. Therefore, a major disadvantage of decision trees is their tendency to overfit
the training data. In theory, it would be possible to train a tree such that each de-
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cision region contains a single training sample, such that the training error equals
zero. However, such a classifier would not perform well on unseen data, because
it does not generalize well.

Therefore, in order to increase generalization and to reduce overfitting, deci-
sion trees are usually pruned; Multiple leaf-nodes are merged with their parent
decision-node. Pruning is an important aspect of decision tree training, but is very
prone to error. If a tree is not pruned enough, overfitting occurs, while too much
pruning would result in low classification rates.

3.1.2 Bagging and Random Forests

A random forest [Breiman 01] is an ensemble classifier composed of several binary
decision trees, each trying to solve the same task. Random forests are considered
amongst the most robust classifiers currently available, and have been shown to
perform as well as or better than Support Vector Machines, while being much less
computationally expensive to train or execute. As opposed to, e.g., neural net-
works, random forests largely avoid the curse of dimensionality and are therefore
less prone to overfitting [Bosch 07].

A well known issue that should be considered when choosing a classifier, is
the bias-variance trade-off. The bias of a classifier represents the number of sam-
ples that would be consistently misclassified, if the classifier would be trained on
different subsets of the complete training population. A simple linear classifier,
for instance, can be described using only a few parameters and would therefore
yield approximately the same decision boundaries if it were trained on a different
subset of the training population. Therefore, linear classifiers would consistently
miss-classify the same samples across its training sets, and are known to be high-
bias classifiers. Decision trees, neural networks or K-nearest-neighbour classifiers
on the other hand, would result in decision boundaries that closely fit the chosen
training data, yielding low-bias classification.

The variance of a classifier measures the variability of the number of mis-
classifications when different subsets of the training population are used. A lin-
ear classifier, for instance, is a low-variance classifier, since the number of miss-
classifications would be stable across chosen training sets. Decision trees, neural
networks or K-nearest-neighbour classifiers on the other hand, are high-variance
classifiers, since the number of miss-classifications strongly depends on the chosen
training set.

In general, classifiers that are able to fit the data well, exhibit low bias but high
variance, while classifiers that result in more general decision boundaries yield
high bias but low variance.

While a low-bias, low-variance classifier is desirable, lowering the variance of
a classifier, often implicitly increases the bias, and vice versa. If a low-bias clas-
sifier, such as a decision tree, is available, an obvious way to lower the variance,
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is to train multiple decision trees on different subsets of the population, and then
use the average decision (i.e. regression) or a voting scheme (i.e. classification).
However, in practice only a limited amount of training data is available, instead of
the whole population. A well know method to approximate the distribution of the
complete population if only a limited number of observations are available, is to
construct multiple training samples by bootstrapping the original training dataset.
Bootstrapping is a resampling method that is known by statisticians as sampling
with replacement.

If the original training dataset contains N samples, then we can create boot-
strapped samples of this dataset, each containing N samples themselves. If we
would randomly pick one sample from the original dataset using a uniform dis-
tribution, the probability that an original observation is picked is 1

N . Thus, the
probability that an observation will not make it into the bootstrapped dataset after
N sampling attempts is P (¬sampled|trials = N) = (1 − 1

N )N . If N is large
enough, this probability approaches e−1 = 0.368.

The expected fraction of observations that will make it into a bootstrapped
sample, is therefore 1 − e−1 = 0.63. Since sampling with replacement means
that samples can be selected multiple times, this means that about 37% of each
bootstrapped sample contains duplicated data. As a result, each classifier that is
trained on a different bootstrapped sample, will have slightly different decision
boundaries. By aggregating the resulting decisions of each of these possibly high-
variance classifiers, by means of averaging or voting, a low-variance classifier is
obtained. This concept of bootstrap aggregating is called bagging [Giorgio 03].

Random forests use bagging to reduce the variance of the final ensemble clas-
sifier, compared to a single decision tree. However, bagged trees exhibit a high
correlation because of the duplicates in their training data and the similarity in
their training method. Highly correlated trees would therefore make the same er-
rors in similar regions of the feature space. This means that reducing the variance
by means of bagging, increased the bias of the resulting classifier. Furthermore,
this bias increases further if the decision trees are pruned, because pruning corre-
sponds to generalizing or smoothing the decision boundaries.

To decrease the bias of the ensemble classifier, random forests ensure diversity
of the tree classifiers by introducing randomness into the splitting criterion that
was explained in Section 3.1.1: Each time the training set is split, only a randomly
selected subset of size f of all features F is considered for selecting the feature for
the next decision-node (with f � F ).

Also, no pruning is performed. Although pruning is essential to avoid overfit-
ting when using a single decision tree, the randomness and bagging behavior of
random forests take over this task. Random forests have been shown to be almost
invariant to overfitting. Moreover, it has been shown that pruning the decision
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trees in a random forest would in fact decrease its performance due to an increase
in bias [Breiman 01].

Apart from avoiding overfitting, a second advantage of bagging is that it in-
creases the classifier’s robustness to noise. It has been shown that randomly chang-
ing a fraction of the labels of the training data causes a decrease in classifier per-
formance when using boosting techniques, whereas bagging seems to be immune
to the introduced noise [Breiman 01]. Intuitively this can be explained by the
fact that boosting is based on weighted resampling of the dataset, assigning higher
weights to samples that are difficult to classify and often represent noise, while
bagging performs an unweighted resampling. Furthermore, Biau recently showed
that random forests are extremely robust to noisy feature variables, whereas many
traditional classifiers perform bad in case of variable noise [Biau 12].

Thus, a random forest, is a low-bias, low-variance ensemble classifier, trained
by bootstrapping and random feature selection [Bühlmann 02]. It is robust to noisy
labels and feature noise, and largely avoids overfitting problems. Finally, classifi-
cation by means of random forests can be implemented extremely efficient, since
each decision tree can simply be represented by a set of conditional statements.

3.1.3 Random Hough Forests

Creating groundtruth data for image processing tasks by manually segmenting the
object of interest in a large set of images is a difficult and tedious task. Instead of
precisely segmenting the object, we coarsely indicate its bounding box. However,
this results in a polluted training set because each bounding box contains several
background pixels. Due to its robustness to noise, a random forest classifier is an
ideal candidate for object recognition in computer vision.

Traditional random forest classifiers store the distribution of class labels in
each of the decision tree’s leaf-nodes such that a probabilistic decision can be
made during classification. A classified instance ends up in one of the leaf-nodes,
after which the class label distribution of this leaf-node is used to assign the most
likely label to the instance.

Gall and Lempitsky [Gall 09] introduced the Random Hough Forest for object
detection in images. Apart from the class label distribution, a Random Hough For-
est stores additional information in each leaf-node, such that other latent variables
can be inferred jointly with the class label. When applied to parts-based object de-
tection, simply storing the class label distribution of the object parts, represented
by image patches, would only provide an answer to the question whether or not
an image patch is part of the object class. However, in order to detect a complete
object, the relative position to the centroid of this object needs to be known for
each image patch.

Because the position of an object part relative to the object’s centroid can fluc-
tuate for non-rigid objects, a Random Hough Forest keeps track of the distribution
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of relative positions. If an image patch is classified as being part of the object
class, this distribution is then used to perform a probabilistic voting in the param-
eter space (e.g. a 2D space, representing the x and y coordinates to be estimated).
Votes from all trees in the forest are accumulated, and the maxima are detected
in this accumulator in order to estimate the latent variables. As such, a Random
Hough Forest performs both classification and a generalized Hough transform at
the same time.

This is illustrated more clearly by figure 2.2: Figure (a) shows three regions of
interest as colored rectangles. The probabilistic votes of each region of interest are
visualized in figure (b). Notice how the blue region of interest barely contributes
to the final hand detection, since during training, most image patches that ended
up in the same leaf node as this image patch, were background patches. All votes
are accumulated in a Hough map, shown in figure (c). The maxima in this map
then correspond to the centroid locations of the hands in the image, as shown by
figure (d).

At the decision-nodes of each tree in the Random Hough Forest, the training
data is split such that the image patches that are part of the object under considera-
tion are separated from image patches that are part of the background. The result is
a set of decision trees in which each leaf-node contains mostly foreground patches,
or mostly background patches.

A key difference between a Random Hough Forest and a random forest, is the
way the quality of binary tests is evaluated at each decision-node, during training.
Traditional random forests rely on the information gain to achieve maximum sepa-
rability between the class labels, thus reducing the class-label uncertainty towards
the leaf-nodes. In Random Hough Forests on the other hand, also the uncertainty of
the relative position, represented by an offset vector, needs to be reduced towards
the leaf-nodes. The main idea is that each leaf-node will represent a code-book of
image patches that is specific for a certain object part.

Random Hough Forests therefore use a splitting criterion in the decision-nodes
to encourage patches representing the same part of an object to be stored under
the same leaf-node. As a result, leaf-nodes containing positive class labels (i.e.
labels of image patches of the object of interest as opposed to background patches)
represent a codebook for a specific part of the object. Each codebook entry consists
of a feature descriptor, and an offset vector to the centroid of the object.

Gall and Lempitsky measure dissimilarity between patches by the sum of
squared difference between the offset vector of the patch, and the average off-
set vector of all patches in the leaf-node. This dissimilarity is a measure of offset
vector uncertainty. The class-label uncertainty is represented by the information
gain as discussed in Section 3.1.1.

During training, a random decision is made to either minimize the class-label
uncertainty or the offset vector uncertainty. By randomly choosing to minimize
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(a) Regions of interest. (b) Probabilistic votes.

(c) Hough voting map. (d) Maxima detection.

Figure 2.2: Each of the three patches, shown in (a) cast probabilistic votes on the hand
centroid location (b) (each color corresponds to different region of interest). The probability,
visualized by the color intensity, of each vote depends on the likelihood of the patch being
part of a hand, whereas the location of the vote depends on the centroid distribution that is
modeled by each leaf-node of the Hough Forest. Votes of all patches are accumulated into
a Hough voting image (c), in which maxima are detected to obtain the hand location (d).
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one of both criteria with equal probability at each decision-node, both the class-
label uncertainty, and the offset vector uncertainty decrease towards the leaf-nodes.
The actual splitting criterion at each decision-node is then determined by selecting
the feature that minimizes the selected uncertainty measure.

The splitting criterion at a decision-node is simply the binary comparison of a
feature value with a threshold value. Like in traditional random forests, a subset
of features is chosen randomly from the complete set of available features at each
node. From this subset, the feature that minimizes the chosen uncertainty measure
is chosen to be used in the splitting criterion.

Each available feature describes a different aspect of the appearance of an im-
age patch. Gall and Lempitsky uniformly sample patches of size 16 × 16 pixels
from each image. The appearance of each patch is then described by 16 feature
channels, such as the grayscale intensity, the gradient information, and several His-
togram of oriented Gradient (HoG) channels which model the normalized counts
of the number of occurrences of discretized gradient orientations in local parts of
the image.

At the decision-node, a pool ofN binary tests is created, by randomly selecting
N pixel location pairs within the 16× 16 image patch, each with a corresponding,
randomly selected, feature channel. Next, for each selected pixel pair, the cor-
responding feature value at the first pixel location, is subtracted from the feature
value at the second pixel location, and this difference is compared with a ran-
domly generated threshold. After all N possible splitting criteria are generated,
the one binary test that minimizes either the class-label uncertainty or the offset
vector uncertainty is chosen as the final splitting criterion of the decision-node.
This criterion splits the training data into two subsets and therefore creates two
new child-nodes in the decision tree.

After training, each leaf-node contains an estimate of the posterior distribution
of the class labels, and an estimate of the distribution of the offset vectors. During
classification, 16 × 16 pixel patches are uniformly sampled from the image, and
are classified by each decision tree in the forest. If a patch ends up in a leaf-node of
a tree that contains foreground entries, each foreground entry casts a probabilistic
vote about the existence of an object at the centroid location that is defined by the
entry’s offset vector.

Finally, votes from different trees are averaged and these averaged votes are
accumulated additively in the Hough image. The location of the object can then
be obtained by finding the maximum in this Hough image. In order to cope with
rotated objects, and different scales, the detection process is repeated on rotated
and scaled versions of the input image, after which the maximum is located in the
resulting 3D or 4D Hough space.
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3.2 Rotation and Scale Invariant Hand Detection

Building upon the work of Gall and Lempitsky, we propose a real-time Random
Hough Forest based detector. It is able to detect hands in a scale and rotation
invariant manner. A rotation and scale invariant feature detector is used to sam-
ple image patches, which are described by carefully chosen, scale and rotation
invariant, feature descriptors. Furthermore, compared to [Gall 09] we propose an
improved splitting criterion, and we revise the probabilistic voting theory to incor-
porate scale and rotation invariance directly into the detector instead of sequen-
tially classifying rotated and scaled versions of the image. Finally, we introduce a
normalization method to cope with the sparsity of the sampled image patches and
an online learning solution to allow the detector to adapt to its environment.

3.2.1 Region of Interest Detection: Defining Saliency

During training, Gall and Lempitsky randomly sample fixed sized image patches
from the training data. During classification, they use a sliding window approach
to uniformly sample fixed sized image patches from the image under considera-
tion. However, in many realistic applications, most of the processed image patches
simply contain low entropy background and are therefore not relevant for the ob-
ject classification task. As we focus on real-time performance, such an approach
would waste a lot of processing time, without actually contributing to the final
hand detection.

Instead of uniformly selecting fixed sized image patches using a sliding win-
dow approach, we propose to use a simple, rotation and scale invariant, feature
detector to sample regions of interest in the image. A variety of feature detection
methods have been described in literature, such as the well known SIFT detec-
tor [Lowe 04], the Maximally Stable Extremal Region (MSER) detector [Matas 02],
and more advanced spatio-temporal detectors such as the method proposed by
Wang et al. [Wang 09]. A common goal of these feature detectors, is to extract
salient, blob-like regions from the image, and to robustly detect these regions, in-
dependent from their scale and rotation.

However, many of these feature detection methods exhibit a high computa-
tional complexity. In our hand detection framework, detecting salient regions is
only a small step in the complete detection pipeline, illustrated by figure 2.3, and
should therefore only consume a fraction of the available CPU power. Due to this
constraint, we use a simple feature detection method that can be implemented ef-
ficiently using SIMD (Single Instruction, Multiple Data) instructions on modern
hardware.

A feature detector that matches these constraints, was proposed by Kadir and
Bradi [Kadir 01]. In the following, we extend their method such that it can cope
with square regions instead of circular regions, and allows for scale-space sub-
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Figure 2.3: The hand detection pipeline: Regions of interest are detected in a scale and
rotation invariant manner. Each region is classified as being part of a hand or part of the
background by the Random Hough Forest. Hand regions cast a probabilistic vote for the
hand centroid. Local maxima are considered hand hypotheses and are fed to a second stage,
linear classifier which removes false positive detections.

sampling. As a result, the detector can be optimized significantly using SIMD
instructions and parallelization.

The Kadir and Bradi feature detector efficiently detects blob-like structures
in the image, jointly estimating their location and scale. Blob-like structures are
regions that are isotropic, such as faces, hands or fingertips. On the other hand,
anisotropic regions are usually only discriminative in the perpendicular direction,
while there is a high degree of self-similarity in the tangential direction. This self-
similarity extends over scale-space. Therefore, a simple method to detect blob-like
structures, would be to search for regions that exhibit a low self-similarity in scale-
space. Features that exist over a large range of scales are considered non-salient or
non-discriminative for our goal. Examples of such non-salient regions with high
self-similarity, are edges, corners, or regions in images that consist of noise. This
is illustrated by figure 2.4.

Obviously, not all image regions with low self-similarity in scale-space, are
salient regions. A single leaf in a picture of a tree for instance, would represent
a blob-like structure with low self-similarity in scale-space, but would not be a
salient feature due to its surroundings. Therefore, Kadir and Bradi propose to use
an additional measure, that describes the local ‘rarity’ and thus discriminativeness
of the region. From an information theory point of view, interesting patches are
those regions whose grayscale histogram exhibit high entropy, and thus contain
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Figure 2.4: Blob-like structures exhibit a low self-similarity in scale space. On the left, a
region of interest with three different scales is used to calculate the normalized histograms
of a blob-like structure. Histograms across scales differ greatly. On the right, the same
experiment is repeated on an image consisting of noise. In this case, self-similarity is high,
resulting in similar histograms across scales.

a lot of information. Interesting patches are those whose information can be dis-
criminative, and thus aid in the final classification task.

To understand how both entropy and self-similarity contribute to the definition
of a salient region, it can be useful to consider four extreme examples. The first
example would be an image patch with a uniformly colored background. Such
a patch can be described with a low entropy histogram with high self-similarity,
and is therefore not an interesting region. A second example on the other hand,
would be an image patch that consists of a fingertip, surrounded with background.
Such a patch can be described with a high entropy histogram and exhibits low
self-similarity, and is therefore clearly a region of interest. A third example could
be an image patch that only contains white noise. Such an image patch can be
described with a high entropy histogram, but also exhibits a high self-similarity,
and is therefore not a salient region. Finally, a fourth example would be an image
patch that contains a smoothly changing color gradient. Such a patch exhibits
low self-similarity, but would be described with a low entropy histogram and is
therefore not a salient region. Figure 2.5 illustrates this idea graphically.

3.2.2 Region of Interest Detection: Scale Invariance

Kadir and Bradi define saliency of a region as a function of both entropy and
self-similarity. The scale of the region is then selected such that this function is
maximized. For performance reasons, we use square regions instead of circular
regions. This enables an efficient implementation using SIMD instructions and in-
tegral histograms as will be discussed later, at the cost of slightly reduced rotation
invariance.

In the following let x = (x, y) be a position, around which we consider square
regions with different scale s, such that the width of the region is 2s. We denote
these regions by Rs,x. Let pn(R; b) be the normalised n-bin gray scale histogram
in an arbitrary region R of the image, where b denotes the bin number, and hn(R)
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Region:

Histograms:

Isotropic AnisotropicNoise

Self-Similarity: Low High Medium

Entropy: High High Medium

Uniform

High

Low

Best scale: None None None

Figure 2.5: Discriminative features have high entropy and low self-similarity. Different
scales are tested during feature selection (indicated in red, green and blue in this exam-
ple). The normalized histograms for all scales are compared to measure self-similarity. If
self-similarity is low, the region might be of interest, and the optimal scale is obtained by
selecting the scale that corresponds to the histogram with the largest entropy.
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be the corresponding entropy, defined by equation (3.1).

hn(R) = −
n∑
b=1

pn(R; b) log2 pn(R; b). (3.1)

Kadir and Bradi define the self-similarity between a regionRs,x and the region
Rs−1,x, as the sum of absolute differences between the grayscale histograms of the
non-overlapping subregions Rs−1,x and Rs,xrRs−1,x. The self similarity is then
defined by equation (3.2).

w(Rs,x) =

n∑
b=1

|pn(Rs,x rRs−1,x; b)− pn(Rs−1,x; b)|. (3.2)

While there are many ways of comparing two probability density functions,
many of which are considered superior to a simple sum of absolute differences
(e.g. Earth mover’s distance), our choice for this measure, in the context of real-
time hand detection, is again driven by its computational simplicity, and the ease
of which its calculation can be optimized using parallelization and SIMD instruc-
tions.

The histograms on square regions, such as Rs−1,x, can be computed in con-
stant time using integral histograms, as will be discussed in more detail on page
32. However, the regionRs,xrRs−1,x is not square, and calculating its histogram
would require more computations. Therefore, in the following, we will rewrite the
above equation directly as a function of pn(Rs,x) and pn(Rs−1,x), both of which
can be calculated efficiently.

Kadir and Bradi showed that equation (3.2) equals

‖Rs−1,x‖+ ‖Rs,x rRs−1,x‖
‖Rs,x rRs−1,x‖

n∑
b=1

|pn(Rs−1,x; b)− pn(Rs,x; b)|.

where ‖.‖ denotes the vector length and |.| the absolute value operator.
The latter equation allows computing the similarity measure directly as a func-

tion of simple local gray value histograms in the image. As opposed to Kadir and
Bradi, we chose to use square regions of interest, instead of circular regions, yield-
ing a much less computationally expensive implementation. For square regions,
‖Rs−1,x‖+ ‖Rs,x rRs−1,x‖ = ‖Rs,x‖ = 4s2.

Also, as opposed to Kadir and Bradi, we will allow our algorithm to subsample
scale-space, thereby skipping certain scales while calculating the similarity mea-
sure. This again results in a substantial decrease in computational complexity, at
the cost of lower scale-space accuracy. Let ∆s be the difference between the cur-
rent scale to consider, and the next scale to consider, such that ∆s = 1 if no scales
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are skipped and ∆s > 1 otherwise. For square regions, we then find that

‖Rs,x rRs−∆s,x‖ = ‖Rs,x‖ − ‖Rs−∆s,x‖
= 4s2 − 4(s−∆s)2

= 4(2s∆s−∆s2),

and thus

w(Rs,x) =
s2

∆s(2s−∆s)

n∑
b=1

|pn(Rs,x; b)− pn(Rs−∆s,x; b)|. (3.3)

Therefore, the self-similarity measure can be calculated easily as the sum of
absolute differences of the gray level histograms of two square regions, weighted
by a factor that depends on the scale parameter. Increasing ∆s results in faster
computation because a lower number of scales needs to be processed, whereas a
decrease in ∆s results in a more accurate scale detection.

In order to determine the best scale s of a region R located at coordinates x, a
set of scale hypotheses denoted Lx is selected, consisting of the local maxima in
the entropy function (3.1). This subset is calculated as defined by equation (3.4),
by varying the scale parameter s.

Lx = {s : hn(Rs−∆s,x) < hn(Rs,x) > hn(Rs+∆s,x)}. (3.4)

For all scales in Lx, the saliency sal(Rs,x) is then calculated by equation (3.5).

sal(Rs,x) = hn(Rs,x)w(Rs,x). (3.5)

Finally, the optimal scale ŝ of the region of interest is chosen as

ŝ = arg max
s

(sal(Rs,x))

Empirically defined thresholds are used to efficiently discard locations with very
low saliency or very high self-similarity. A relative threshold, defined as a fraction
of the maximum saliency of all detected regions R in the image, is then used to
further reduce the amount of regions of interest. Finally, non-maximal-suppression
is applied by iteratively searching for the region with the highest saliency, and
removing all other detected regions within its support.

In order to reduce the computational complexity, we set ∆s = 2, such that
only odd scales are considered. Furthermore, to avoid a time consuming histogram
calculation at every possible scale and location in the image, we use integral his-
tograms, which is made possible by our choice of square regions of interest as
opposed to circular regions of interest.

Similar to the well known integral images, proposed by Viola and Jones [Vi-
ola 04], an integral histogram is a recursive propagation method to calculate a
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Figure 2.6: Feature detection: selecting image patches for hand detection.

cumulative histogram for each pixel in the image, by means of dynamic program-
ming. At each pixel location, this cumulative histogram is the histogram of all
pixels above and to the left of the pixel under consideration. Let Il be the integral
histogram at location l = (x, y). For each pixel location an integral histogram,
represented by vectors of integers and with binsize n, is obtained using a single
pass propagation method during a preprocessing phase.

For a square regionRs,x, centered at location x = (x, y), let a = (x−s, y−s),
b = (x − s, y + s), c = (x + s, y − s), d = (x + s, y + s) respectively be the
top-left, bottom-left, top-right and bottom-right corner coordinates of the region.
The histogram for this region can then be calculated easily as pn(Rs,x) = Id +

Ia − Ic − Ib.

For an n-bin histogram, this amounts in n additions and 2n subtractions to
calculate a histogram of an arbitrary region in the image. However, the number
of instructions needed can be reduced greatly by using SIMD instructions. If each
bin is represented by a four-byte integer, then SSE2 (Streaming SIMD Extensions
2) instructions can be used on an IA-32 architecture to process four bins simulta-
neously, resulting in a total of 3

4n instead of 3n arithmetic instructions. On more
recent CPUs that support AVX instructions, this is reduced further to 3

8n instruc-
tions, and on CPUs that support the AVX-512 extension, this reduces to 3

16n. In
the latter case, and if n is chosen to be n = 16, only three arithmetic instructions
are needed to calculate the histogram of an arbitrary region in the image.

As a result, once the integral histogram is calculated during a preprocessing
step, the histogram for every region, on any scale and any location in the image,
can be obtained efficiently in constant time O(1).

Figure 2.6 illustrates the result of the feature detector for different hand sizes.
The detector clearly favors blob-like structures such as fingertips, and ignores re-
gions with low entropy or high self-similarity. The scale of the resulting image
patches varies, depending on the size of the object.
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3.2.3 Region of Interest Description: Color Features

The appearance of each region of interest, often termed ‘image patch’ in the re-
mainder of this chapter, is described using feature values that can be used as split-
ting criteria by the decision-nodes of the Random Hough Forest classifier.

Gall and Lempitsky [Gall 09] describe each image patch using 32 advanced
color and gradient based features. These features, such as the Histograms of Ori-
ented Gradients (HoG) [Dalal 05], are known to be highly discriminative, but are
computationally expensive to calculate. Moreover, the features used by Gall and
Lempitsky are not scale or rotation invariant.

Instead, due to our real-time constraints, we propose only seven very simple
features, five of which use histograms to represent first order statistics, yielding
a scale invariant, real-time detector. Furthermore, each of our features is made
rotation invariant such that two regions from a different image, representing the
same object part, are described with a similar feature descriptor, even if the object
is rotated. This enables the detector to cope with the articulated nature and the
large number of degrees of freedom of human hands.

Each image patch is resized to a fixed scale, and divided into a 3 × 3 grid.
For each cell in this grid, five histograms are calculated. While histogram based
features are inherently rotation and scale invariant locally, the grid based approach
allows us to incorporate spatial information into the final descriptor. The cell or-
dering in the grid will be normalized by the dominant orientation in the image
patch, as described in more detailed on page 40.

Three of the five histograms are color based, as skin color is one of the most
distinctive features available for hand detection. The color of human skin is known
to occupy a well defined region in color space [Gomez 02], often referred to as the
‘skin locus’.

In earlier work however, we showed that a certain degree of illumination in-
dependence can be achieved by combining multiple color spaces [Spruyt 10a].
Additionaly, Gomez [Gomez 02] used a data analysis approach to show that the
so called H-GY -Wr color space, a combination of components from multiple
color spaces, yields the most stable results for skin detection. In this color space,
a nearly convex area contains 97% of all skin colors, while only containing 5.16%

of false positives.
In the H-GY -Wr color space, H stands for the hue, as used in the Hue-

Saturation-Value (HSV) color space. In the HSV color space, the hue represents
an angle, such that H ∈ [0◦, 360◦]. Within this interval, an increase in hue con-
tinuously corresponds to a color change from red (0◦) to yellow (60◦), to green
(120◦), to cyan (180◦), to blue (240◦), to magenta (300◦), and back to red (360◦).

Due to the angular representation of color, it is clear that the red range becomes
discontinuous if the hue is described using a single numerical value. Since the red
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range is the most prominent in skin-colored pixels, we therefore shift the hue into
the range −30◦ < H̃ < 330◦, such that the red range becomes continuous.

The second component, GY, is simply obtained by subtracting the luminance
of the image, defined as Y in the standard sRGB color space, from the green
channel. The last component, Wr, is a non-linear combination of the original RGB
channels, defined originally by Soriano et al. [Soriano 00]. Soriano et al. found
that skin colored pixels, independently of the camera or illumination, generally
fall within a small cluster in chromaticity space. This so called skin locus occupies
only 3.2% of the color space, and its upper boundary is defined by Wr.

Thus, the three color features that are calculated for each image patch are sim-
ply normalized 1D histograms of 16 bins, accumulating the following color com-
ponents: 

H̃ = (H − 30) mod 360
GY = G− (0.2126R+ 0.7152G+ 0.0722B)

Wr =
(

R
R+G+B − 1

3

)2

+
(

G
R+G+B − 1

3

)2
(3.6)

Apart from the fact that these features are very simple to calculate, as opposed
to the complicated HoG and gradient based features used by Gall and Lempitsky, a
histogram based approach also greatly reduces the dimensionality of the problem
and is inherently scale and rotation invariant. During training and classification
of their random forest classifier, Gall and Lempitsky randomly select two pixel
locations out of 16× 16 = 256 possible locations in the image patch and compare
these in order to split the training set at each decision-node. Instead, per image
patch we simply select two random histogram bins from one of the histograms,
and compare those, yielding a feature that does not depend on low level spatial
information.

The previously described color histograms simply model the color of the image
patch. These features can therefore be used for any object detection task, even
though we carefully selected the color space to increase the discriminativeness of
skin-like pixels.

Apart from these histogram based features, we introduce another color describ-
ing feature descriptor by specifically calculating the probability that a pixel in the
image patch represents skin color. This feature then represents the average skin
probability within each cell of the 3× 3 grid in the image patch.

In order to reduce illumination dependence, most color based tracking and de-
tection methods [Bretzner 02, Kölsch 04a, Caifeng 04, Shan 07, Asaari 10] convert
the image from RGB color space to HSV (Hue-Saturation-Value) color space or to
a similar color space such as YCbCr, in which the two chrominance components
are separated from the luminance component. A 2D Hue-Saturation histogram is
then created by dropping the luminance component, i.e. the Value, in the hope of
reducing the illumination dependence.
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Figure 2.7: Bayesian skin detector. Bright pixels correspond to a high skin probability,
whereas dark pixels correspond to a low skin probability.

However, Phung et al. [Phung 05] showed that the choice of color space does
not have a significant impact on skin color detection if this color space is a (piece-
wise) linear transformation of the RGB space. In fact, skin classification in RGB
space performs equally well as skin classification in HSV space, and outperforms
color spaces in which the luminance information is dropped, if a large amount
of training data is available. The reason is that most color transformations that
perform a (piece-wise) linear mapping, do not introduce new information and do
not guarantee uncorrelated color channels.

We used the publicly available Compaq dataset [Jones 02] to train a Bayesian
skin classifier. The Compaq dataset contains over 3 000 manually segmented skin
colored images and over 4 000 non-skin colored images. During training of the
skin classifier, we simply model the likelihood P (r, g, b|skin) of observing a cer-
tain RGB triplet in a skin region by means of a 32-bin 3D histogram of skin pixels.
Similarly, the likelihood P (r, g, b|¬skin) of observing this color in a non-skin
region, is modeled by means of a 32-bin 3D histogram of non-skin pixels. Fur-
thermore, the prior probabilities P (skin) and P (¬skin) = 1 − P (skin), can be
obtained directly from the training data.

The posterior probability P (skin|r, g, b) can then be obtained according to
Bayes’ rule:

P (skin|r, g, b) =
P (r, g, b|skin)P (skin)

P (r, g, b)

=
P (r, g, b|skin)P (skin)

P (r, g, b|skin)P (skin) + P (r, g, b|¬skin)P (¬skin)

This probability is calculated for each pixel, as illustrated by figure 2.7. The
average skin probabilities for each cell of the 3× 3 grid of the image patch under
consideration are concatenated into a feature vector. Therefore, the skin prob-
ability based feature vector simply contains the zero-order moments of the skin
probability map.
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3.2.4 Region of Interest Description: Texture Features

Although (skin) color is a general and discriminative feature that can quickly dis-
card background objects during classification, it is also sensitive to illumination
changes, and can not distinguish between hands and faces or skin-like colors in
the environment. Therefore, next to the three color based histograms based on the
feature values of equation (3.6), and the skin probability based feature, we also
calculate two histogram based features that describe gradients and texture infor-
mation.

An efficient way to describe local texture in an image is the Modified Census
Transform (MCT) that was first used in the context of hand detection by Just et al.,
as discussed in Section 2. Very similar to the MCT, only differing in the ordering
of bits and the calculation of the average intensity in the window, are Local Binary
Patterns (LBP) [Ojala 96]. The LBP operator was introduced approximately at the
same time as the MCT operator and defines a very similar local structure feature.
The advantage of the LBP operator however, is that it can be implemented effi-
ciently using only bitwise operations, and that it can easily be modified to obtain
the image gradients, as will be discussed in more detail on page 39.

LBP was originally defined as an ordered set of binary comparisons between
a center pixel and each of its surrounding pixels, and was shown to have high
discriminative power for texture classification problems [Ojala 96, Ojala 02]. For
texture classification, LBPs of all pixels in a window can be calculated, and the
resulting local binary patterns can be stored in a histogram. A disadvantage of the
original LBP operator however, is that it yields an 8-bit descriptor and therefore,
a 256-bin histogram. If only small image patches are to be classified, the well
known ‘curse of dimensionality’ suggests the need for dimensionality reduction.

An extension to the original LBP operator, is the Center Symmetric Local Bi-
nary Pattern (CS-LBP) operator [Heikkilä 09], which has proven to outperform
both the original LBP and the well known SIFT descriptor in various image recog-
nition problems. The CS-LBP is obtained by using the sign of the difference be-
tween center-symmetric pairs of pixels, instead of the difference between each
pixel and the central pixel. Let ni be the grayscale value of the ith pixel in a 3× 3

neighborhood centered at location (x, y), where the ordering of i ∈ [0, 8] is de-
fined as shown by figure 2.9. Furthermore, let 1Z+(.) be an indicator function that
takes value 1 for all strictly positive integers and 0 for all others. The CS-LBP of
the center pixel at (x, y) is then defined as

CS-LBP(x, y) =

3∑
i=0

2i 1Z+(ni − ni+4). (3.7)

Figure 2.8 illustrates the texture modeling capabilities of local binary patterns
more clearly.
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(a) Original image. (b) CS-LBP features.

Figure 2.8: For illustration purposes, each pixel in the above image is replaced by its
CS-LBP value, after which the resulting image is equalized. For classification tasks, the
distribution of CS-LBP values in a small region of interest is captured by a histogram which
then serves as the feature vector.
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Figure 2.9: Comparison of the CS-LBP operator and the Prewitt operator.

As opposed to the original definition of Local Binary Patterns, the CS-LBP
results in a value between 0 and 24−1 = 15. Therefore, the CS-LBP values within
a region can be summarized by a 16-bin histogram instead of a 256-bin histogram,
which helps avoiding overfitting problems related to the curse of dimensionality.

Similar to the calculation of the color histograms, we compute a CS-LBP his-
togram for each of the cells in the 3×3 grid of the image patch under consideration.
To further reduce the computational complexity of our method, the CS-LBP pat-
terns are efficiently calculated using simple bit-wise operations; The sign-bits of
the difference of two grayscale values can easily be extracted by masking the most
significant bit of the integer, followed by bit-shifting. An additional bit-shift can
then be used to shift the bit to the correct position, and a binary OR operation to
combine all shifted sign-bits.

In order to ensure rotation invariance, we propose a variation on the CS-LBP
operator, which we refer to as the CS-LBPR operator. However, in order to obtain
this rotation normalized variant, the dominant gradient orientation of the image
patch needs to be computed. Since this orientation is automatically obtained during
calculation of our fifth histogram based feature, yet to be discussed, it is useful to
first describe this feature.

The sixth feature, used by our hand detector, is a simple orientation histogram.
Orientation histograms and the closely related HoG features haven been proven
to be powerful tools in gesture recognition [Mitra 07] and object classification in
general [Gall 09], as they model structural and textural information. A normalized
orientation histogram models the probability mass function of the gradient or edge
orientations in the image patch. We propose an efficient method to obtain such
an orientation histogram, by considering the close relation between the CS-LBP
operator and the Prewitt gradient operator.

The Prewitt operator is a discrete differentiation operator that computes an
approximation of the local gradient in an image. The kernels used to obtain the
gradient in the horizontal and vertical directions are shown in figure 2.9, next to
the CS-LBP definition. It is clear that the same calculations, needed to obtain the
Prewitt gradients, are needed when calculating the CS-LBP values. Therefore, an
approximation to the image gradients can be directly obtained from the CS-LBP
calculation, without further performance loss.
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Based on the image gradients∇fx and∇fy , a weighted orientation histogram

that models θ = arctan
(
∇fy
∇fx

)
is obtained. The histogram is weighted in the

sense that each gradient orientation vote in the histogram is weighted by the gra-
dient magnitude, such that the importance of the gradient is taken into account.
Weighting ensures that strong, important gradients are not dominated by noise.
Furthermore, orientations are quantized to 18 bins and are unsigned, which means
that the orientation θ ∈ [0, π]. Unsigned gradients are used as opposed to signed
gradients, because the direction of the contrast in the image patch has no impor-
tance. In other words, the same orientation would be obtained whether the back-
ground has higher or lower intensity than the foreground. In the more advanced
context of HoG features, Dalal and Triggs [Dalal 05] found that unsigned gradi-
ents were more discriminative than signed gradients, when applied to the task of
person detection.

In order to obtain rotational invariance, the orientation histogram is normalized
with respect to the dominant orientation in the image patch. To calculate this
dominant orientation, an orientation histogram of the complete image patch is first
obtained as the sum of the orientation histograms of each cell in the 3 × 3 grid of
the image patch under consideration. The peak of this histogram can be considered
the dominant orientation in the image patch. However, in order to obtain a more
precise estimate of the dominant orientation, a parabola is fit to the peak of this
histogram and its two closest neighbour bins.

Let on(Rs,x; b) be the n-bin orientation histogram of image patch Rs,x, and
let the peak of the histogram be found at bin number p, such that the maximum
histogram value is m = on(Rs,x; p), and the values of its closest, equally spaced
neighbor bins are l = on(Rs,x; p − 1) and r = on(Rs,x; p + 1). The peak of the
fitted parabola is then located at

p′ = p+
r − l

2(2m− l − r)

The peak p′ of the fitted parabola is then used as the dominant orientation of
the image patch. This procedure of determining a precise estimate of the dominant
orientation in a region of interest is very similar to the method used by the well
known SIFT descriptor [Lowe 04].

The dominant orientation of the image patch is then used to normalize the
feature histograms, in order to obtain rotation invariant descriptors. For each cell
in the 3× 3 grid of the image patch, the orientation histogram is shifted circularly,
such that the dominant orientation always corresponds to the first histogram bin.
This circular shift can be implemented efficiently and without memory copy by
manipulation of the array indices. As a result, the final orientation histograms still
represent the local structure of the gradients in that cell, but are invariant to global
rotation of their context. This normalization process is illustrated by figure 2.10.
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Figure 2.10: The dominant gradient orientation of the image patch is used to normalize the
orientation histograms of all cells by circularly shifting these.

Similarly, the dominant orientation is used to rotate the original CS-LBP op-
erator, shown in figure 2.9, to obtain a rotation invariant CS-LBPR descriptor.
The dominant orientation is first quantized into four directions, such that θ ∈{

0, 1
4π,

2
4π,

3
4π
}

. The CS-LBP patterns are then normalized with respect to θ.
Due to the structure of Local Binary Patterns, this can be implemented efficiently
by simply circularly bitwise left-shifting the original CS-LBP value.

After normalizing the CS-LBP patterns and the orientation histograms, each
of the five histogram based features is locally rotation invariant. However, each
histogram is calculated for a each cell in the 3 × 3 grid of the image patch under
consideration. If the resulting histograms for each cell would then just be concate-
nated, the resulting feature vector would not be rotation invariant.

Therefore, the dominant orientation is also used to rotate the 3× 3 grid of the
image patch to achieve rotation invariance for each of the five histogram based
descriptors. Instead of actually rotating the image patch itself, this can be imple-
mented efficiently by rotating the indices or pointers used to address the feature
vectors, as illustrated by figure 2.11.

Finally, apart from the previous three color based histogram features, the skin
probability based feature, and the two texture describing histogram features, a sev-
enth feature is used. This feature, namely the FREAK descriptor [Alahi 12], de-
scribes the global texture of the image patch whereas the earlier discussed CS-LBP
and orientation histograms describe the local texture of the image patch.
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Figure 2.11: The dominant gradient orientation of the image patch is used to rotate the cell
indices of the 3× 3 grid, in order to achieve rotation invariance.

Figure 2.12: The FREAK descriptor mimics the human vision system by quantizing a
series of Difference of Gaussians over a retinal sampling pattern to produce a bit string that
represents the texture of the underlying scene.

The Fast Retina Keypoint (FREAK) descriptor is a cascade of binary strings,
computed by efficiently comparing image intensities over a retinal sampling pat-
tern [Alahi 12], as illustrated by figure 2.12. The FREAK descriptor could be con-
sidered an elaborate version of the LBP approach, in which pixels to be compared
are sampled more densely around the center pixel, while the sampling density de-
creases exponentially farther away. Sampled pixels are smoothed using a Gaussian
kernel, in which the variance depends on the distance from the center pixel. As a
result, the FREAK descriptor mimics the human visual system, whose resolution
drops exponentially towards the edges of the retina.

The FREAK descriptor has been shown to outperform the well known SIFT
and SURF (Speeded Up Robust Features) descriptors, and is extremely fast to cal-
culate. Furthermore, the resulting descriptor is a binary string, which can be easily
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compared using the Hamming distance, instead of the more computationally ex-
pensive Euclidean distance. Finally, the 512-bit descriptor is inherently hierarchi-
cal, encoding the more fine grained spatial information in the most significant bits,
while the least significant bits contain more coarse information.

By grouping the descriptor into sixteen 32-bit vectors, our Random Hough
Forest detector can exploit this spatial topology. Whereas higher level decision-
nodes in each decision tree prefer a splitting criterion based on more coarse textural
information, the decision-nodes that are closer to the leaf-nodes will be able to
use the vectors that represent fine grained textural information to further split the
training dataset.

Since the FREAK descriptor itself is rotation and scale invariant and incor-
porates spatial information, we simply calculate the descriptor once per complete
image patch, thus ignoring the earlier defined 3 × 3 grid for this feature type.
The resulting descriptor therefore represents the global texture of the image patch.
Moreover, we choose the size of the retinal sampling pattern such that it is larger
than the image patch under consideration. This allows us to incorporate contextual
information into the descriptor, such as the wrist, lower arm or body of the person.

Summarized, we propose to calculate the following seven features per image
patch:

• Nine 16-bin H̃-histograms, encoding the shifted hue;

• Nine 16-bin GY -histograms, encoding the normalized green-channel;

• Nine 16-bin Wr-histograms, encoding the distance to the skin-locus;

• Nine 16-bin CS-LBPR-histograms, encoding the local texture;

• Nine 18-bin orientation histograms, encoding the local gradients;

• Nine average skin probability values;

• Sixteen 32-bit binary FREAK strings, encoding the global structure of the
image patch;

This carefully selected set of features is very simple to calculate, yielding a
computationally efficient, yet robust, real-time classifier that is rotation and scale
invariant. Furthermore, since in total 763 feature values per image patch are now
available to the Random Hough Forest, random selection of a small subset of these
features to be used in the decision-node of the trees, results in a low-variance,
low-bias classifier.

Each histogram based feature is calculated per cell in the 3×3 grid. Therefore,
for each arbitrary image patch R, which we will often refer to as a ‘region’ in the
remainder of this chapter, the appearance vector a consists of the set of histogram
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bins and skin probabilities from the earlier described features, as a function of the
cell number, and by the set of FREAK strings calculated for the region.

A region is then modeled by its appearance vector aR, its class-label lR, and
several parameters that define the region’s relative position to the centroid of the
hand. These parameters, denoted onR, dsR, and αR, will be defined in the next
section. Each region R that is used to train the decision trees in the Random
Hough Forest, is thus represented by its model DR:

DR = {aR,onR, dsR, αR, lR}. (3.8)

3.2.5 Random Hough Forest Training

The appearance vector aR contains three parameters that describe the location of
the image patch, relative to the centroid of the hand. In the next paragraphs, each
of these parameters will be discussed in more detail.

Let x = (x, y) be the location of a region Rs,x in the image. Furthermore,
let x̂ = (x̂, ŷ) be the centroid location of the hand in the image. We then denote
oR = x − x̂ = (∆x,∆y) the offset vector from the region’s center to the hand’s
center. In the following, let superscript s indicate normalization by scale, and let
superscript n indicate a complete normalization (by scale and by orientation).

Normalizing the offset vector by the region’s scale, results in the scale invariant
offset vector osR = oR/s = (∆xs,∆ys). This normalization ensures that differ-
ently scaled image patches from different images that represent the same object
part (e.g. a finger tip), correspond to the same offset vector.

To achieve rotational invariance, the offset vector is further normalized by the
dominant orientation θ that was described in Section 3.2.3. Orientation normal-
ization is performed by rotating the offset vector by θ in order to obtain the final
normalized offset vector onR = (∆xn,∆yn):

∆xn = ∆xs cos(θ)−∆ys sin(θ)

∆yn = ∆ys cos(θ) + ∆xs sin(θ)

This rotation normalization ensures that differently oriented image patches that
represent the same object part (e.g. a finger tip), correspond to the same normalized
offset vector.

The offset vector, onR stores the scale and rotation invariant offset to the hand’s
centroid. Because of this scale and rotational invariance, regions with similar ap-
pearance and relative offset, but with a different orientation or scale, will end up
in the same leaf-node of the decision tree. This allows the training process to
make optimal use of the available training data, since fingertips or hand parts in
different training images are correctly interpreted to be the same part of the hand,
irrespective of their scaling and rotation.
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However, due to the normalization of the offset vector, the discriminativeness
of the classifier is reduced, since small errors in the estimation of the dominant
orientation or the region’s scale, would result in very different normalized offsets,
yielding an incorrect vote at the classification stage. Therefore, apart from model-
ing the joint distribution of orientation and scale as a normalized offset value, we
also model the marginals by storing the two variables that are used to obtain this
normalization.

The first variable is the normalized distance, dsR, to the centroid of the hand.
If we denote dR the Euclidean distance from the region’s centroid to the hand’s
centroid in the training image, then dsR represents this distance after normalization
by the region’s scale, s. This normalization allows us to store a relative distance
instead of an absolute and thus scale dependent distance measure.

The second variable is the angular difference between the dominant orientation
θ, and the offset vector oR, and is calculated as

αR = arccos

(
oR
‖oR‖

· uθ
)

where uθ is the unit vector with orientation θ, and · denotes the dot-product.
Assuming independence between dsR and αR, their likelihoods can be used to

avoid the curse of dimensionality during classification stage, while at the same
time reducing the influence of noisy gradients during calculation of the dominant
orientation, as will be described on page 50.

Once a descriptorDR has been calculated for each image patch, actual training
of the Random Hough Forest is started. During training, a set of tests is randomly
selected at each decision-node. From this set, the test that results in an optimal
split of the training data is then picked as the actual splitting criterion. Instead of
defining a test as the comparison of a feature value with a threshold, we define it as
a decision rule that compares the difference between a feature values at two distinct
locations in the image patch, with a threshold value τ . This approach implicitly
incorporates spatial information into the test. Depending on the sign of this test,
the image patch is passed to either the left, or the right child-node in the tree. All
tests in the random set are evaluated, and the best test is used to define the splitting
rule for this decision-node.

In Section 3.2.3, we defined seven feature descriptors that can be categorised
into three feature types, i.e. histogram based features, a skin probability based
feature, and a FREAK descriptor based feature. Each binary test in the set of ran-
domly selected tests, corresponds to a comparison of the difference of one of these
feature descriptors at two distinct locations in the image patch, with a threshold τ .
This threshold value is discussed in more detail on page 46.

For each of the three feature types, a different type of binary test is needed.
Tests that use histogram based features, Thn(.), are defined by two cell numbers,
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c1 and c2 and a bin number b. Each cell number points to a cell of the 3× 3 grid in
the image patch. Let hn(Rs,x; c, b) represent the bth bin of the n-bin histogram of
the chosen feature descriptor, calculated at cell c. The histogram based test is then
defined as:

Thn
(aR; c1, c2, b, τ) =

{
0, if hn(Rs,x; c1, b) < hn(Rs,x; c2, b) + τ
1, otherwise

Tests that use the skin probability, Tskin(.), are only defined by two cell num-
bers, c1 and c2. Let skin(c) represent the average skin probability in cell c of the
3× 3 grid of the image patch. The skin probability based test is then defined as:

Tskin(aR; c1, c2, τ) =

{
0, if skin(c1) < skin(c2) + τ
1, otherwise

Finally, tests that use the FREAK based feature, TFREAK(.), are simply de-
fined by a substring u, which represents one of the sixteen available bit strings
of length 32. Let d(u1, u2) be the Hamming distance between the binary strings
u1 and u2. For simplicity, we simply compute the Hamming distance between
the FREAK string u, and the 0 value, which corresponds to a population count
of the number of ones in the FREAK string. This can be implemented efficiently
by means of bitwise operations, using a SWAR (SIMD With A Register) algo-
rithm [Fisher 03]. The FREAK based test is then defined as:

Tfreak(aR;u, τ) =

{
0, if d(u, 0) < τ
1, otherwise

The handicap value τ is randomly generated by sampling from a uniform dis-
tribution, whose lower and upper bound are determined by the minimum and maxi-
mum values of the chosen feature descriptor, in all image patches from the training
set at that decision-node. In our implementation, we generate 200 random tests at
each decision-node. Given the large number of feature values and parameters,
this is only a fraction of the amount of tests that is actually available, ensuring a
low-bias classifier.

In order to select the best test out of the set of all randomly selected tests, a
selection criterion is defined. As discussed in Section 3.1.3, the training phase
of a Random Hough Forest tries to optimize two criteria. The first criterion is
chosen to maximize the class separability, in order to separate hand patches from
background regions, and therefore minimizes the ‘class-label uncertainty’. The
second criterion is chosen to maximize the similarity between image patches, in
terms of their offset vector, and therefore minimizes the ‘offset uncertainty’.

At each decision-node, one of both optimization criteria is randomly selected
with equal probability, and the test, from the set of random tests, that minimizes
the criterion is used as a splitting rule. Gall and Lempitsky use the information



CHAPTER 2 47

gain as a measure for the class-label uncertainty. Information gain was originally
introduced as a splitting criterion for decision trees in the ID3 algorithm [Quin-
lan 86]. The information gain is defined as the difference of entropy before and
after a training set is split by a certain decision rule. In other words, maximizing
the information gain, reduces the class-label uncertainty of the training data.

However, it has been found that the information gain is biased in favor of those
splits that have the largest number of successors in the decision tree. Consider the
extreme example where each sample of a training set has a unique identifier. If
this identifier is used as a feature in the splitting criterion, the training data would
be partitioned such that each partition contains only one training tuple. Therefore,
the entropy of the class labels at each leaf-node would be zero, after the data has
been split. The difference between the entropy before and after splitting, and thus
the information gain, would thus be maximized by choosing this unique ID as a
splitting criterion. However, it is clear that this splitting criterion is nonsensical
and leads to large decision trees that overfit the data.

The information gain is therefore strongly affected by the number of possible
outcomes of a test. The normalized information gain compensates for this by
normalizing by a uniformity measure of the distributions of the split data, as shown
by Wehenkel and Pavella [Wehenkel 91]. The normalized information gain is also
the criterion used in the C4.5 decision tree algorithm [Quinlan 93], which is the
successor of the ID3 algorithm. Therefore, we propose to use the normalized
information gain instead of the standard information gain, as a measure of class
label uncertainty.

The offset uncertainty is a measure of the variability of the offset vectors in the
training data subset. The leaf-nodes in a Hough forest represent code books for
parts of the object. Therefore, image patches in those leaf-nodes should preferably
represent the same object part. Minimizing the offset uncertainty at the decision-
nodes, results in codebook clustering towards the leaf-nodes. Similar to Gall and
Lempitsky, we calculate the offset uncertainty for each subset Si of training data,
after a split, as a function of the difference between the offset vector of an image
patch, and the average offset vector in the subset:

Ui =
∑
R∈Si

α(ōn − onR)2 + β(d̄s − dsR)2 + γ(ᾱ− αR)2

where α, β, γ are normalization factors.
The total offset uncertainty is then defined as the sum of the offset uncertainties

in the individual subsets: U = U1 + U2. At each decision-node, either the offset
uncertainty or the class-label uncertainty is chosen to be minimized, and the test,
from the random subset of available tests, that corresponds to the best split is
chosen as the final splitting criterion.

During training, each tree Tj in the random forest is grown without pruning.
However, if a maximum depth is reached (d = 20), or if the size of the subset Si
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Figure 2.13: Image patch classification by four different decision trees in the random for-
est. Hand patches are shown in green, whereas background patches are shown in red. The
brightness of the image patch region boundaries are randomized only for visualization pur-
poses and serve no further meaning.

in a node is very small (|Si| = 20), or if all samples in the subset of the node share
the same class label, the node is declared a leaf-node. Each leaf-node stores the
region’s information DR for positive image patches, and maintains statistics about
the number of positive and negative patches that reached the node.

3.2.6 Random Hough Forest Classification

During classification, each image patch Rs,x that is returned by the region of in-
terest detector, is classified by the Random Hough Forest as being part of a hand,
or part of the background, by propagating the image patch through the decision
trees until a leaf-node is reached. For a given decision tree Tj , the probability of
the image patch being part of a hand (lR = 1), given its appearance aRs,x , can be
estimated by:

P (lRs,x = 1|aRs,x ; Tj) =
|{Rj : lRj = 1}|

|{Rj : lRj = 1}|+ λ|{Rj : lRj 6= 1}| , (3.9)

where {Rj} is the complete set of regions that are stored in the leaf-node of tree
Tj . The scaling factor λ is the ratio of positive and negative patches in the original
training dataset and ensures a correct weighting in case the original training set is
highly unbalanced.

For illustration purposes, the probability P (lRs,x = 1|aRs,x ; Tj) was calcu-
lated for each region of interest of figure 2.13, and for four different decision trees
of our trained random forest. Regions of interest are indicated by a green box if
P (lRs,x = 1|aRs,x ; Tj) ≥ 0.5, and by a red box otherwise. This example clearly
shows that each individual decision tree makes slightly different decisions and
mistakes, due to it being trained using a bootstrapped data sample, and random
features.

However, in order to detect hands in an arbitrary image, knowing whether or
not an image patch is part of a hand does not suffice. Instead, the centroid location
of the hand, which the image patch is part of, needs to be determined. To estimate
the hand location, we need to obtain an estimate of the probability that a hand is
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centered at each possible position c in the image. By searching for the maxima
in this distribution, the hand locations can then be found. The next paragraphs
discuss how this probability distribution is obtained.

As discussed in Section 3.2.5, a region Rs,x is defined by its model DR. After
propagating the image patch through a decision tree of the random forest, only one
parameter of this model is known, namely the region’s appearance vector aR.

Therefore, the probability of observing a hand at position c, given a region’s
appearance vector aR, corresponds to the probability that the unknown parameters
of DR take on values that correspond with a hand being centered at position c,
conditioned on the region’s appearance vector.

In the case that Rs,x is part of a hand centered at c, the class label for this
region lR = 1 by definition. Furthermore, let the real, unknown normalized offset
vector from the region to the hand centroid be ônR. Similarly, let the normalized
distance be d̂sR, and let the angular difference be α̂R.

The likelihood that the appearance of region Rs,x corresponds with a hand be-
ing positioned at c, can then be written as p(onR = ônR, d

s
R = d̂sR, αR = α̂R, lR =

1|aR; Tj) for each decision tree Tj in the random forest. In the following, we omit
the random variable names, to simplify the notations. For each decision tree, the
evidence we are interested in, is then given by:

p(ônR, d̂
s
R, α̂R, lR = 1|aR; Tj). (3.10)

Although it is not directly obvious how to estimate this probability density
from the training data, equation (3.10) can be rewritten as follows:

p(ônR, d̂
s
R, α̂R, lR = 1|aR; Tj) = p(ônR, d̂

s
R, α̂R|aR, lR = 1; Tj)p(lR = 1|aR; Tj).

(3.11)
The last factor, p(lR = 1|aR; Tj), represents the probability that the image patch
is part of a hand, and can easily be calculated from the leaf-node statistics as we
defined earlier in equation (3.9).

The first factor represents the joint distribution of the normalized offset vec-
tor, the normalized distance from image patch to hand centroid, and the angular
difference between the dominant orientation of the image patch, and the vector
from image patch to hand centroid. As discussed in Section 3.2.5, these parame-
ters depend on the scale of the region, and the dominant orientation of the image
patch.

If we now assume independence between the scale estimate and the orientation
estimate, we can further simplify the first factor as follows:

p(ônR, d̂
s
R, α̂R|aR, lR = 1; Tj)

= p(ônR|aR, lR = 1; Tj)p(d̂sR|aR, lR = 1; Tj)p(α̂R|aR, lR = 1; Tj) (3.12)
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In equation (3.12), the probability p(ônR|aR, lR = 1; Tj) simply corresponds
to the percentage of offset vectors stored in the leaf-node that are equal to offset
vector ônR. The probabilities p(d̂sR|aR, lR = 1; Tj) and p(α̂R|aR, lR = 1; Tj)
can be extracted directly from the statistics in the leaf-node in a similar manner.
During training, a Parzen window density estimation is computed for each of these
probabilities, at the leaf-nodes of each decision tree. During classification, these
densities are simply evaluated, yielding the desired likelihood.

While the assumption of independence in equation 3.12 is not necessarily cor-
rect, this assumption leads to a computationally efficient approximation of the de-
sired posterior. Furthermore, the independence assumption allows us to deal with
marginal likelihoods, instead of complicated joint probability distributions. As a
result, the curse of dimensionality and thereby the problem of overfitting, is largely
avoided. It is a well known fact in pattern recognition that a strong, possibly incor-
rect assumption of independence, yielding a naive Bayesian classifier, often out-
performs a Bayesian classifier that tries to model the joint probability distributions
[Friedman 97]. The reason is that the assumption of independence greatly simpli-
fies decision boundaries and therefore avoids overfitting. Since a naive model can
be described with much less parameters than a complicated joint distribution, the
curse of dimensionality is avoided.

To aggregate the probabilistic votes coming from each tree, we marginalize
equation (3.12) over all n trees in the random forest F = {T1, T2, ..., Tn}:

p(ônR, d̂
s
R, α̂R, lR = 1|aR) =

∑
j∈F

p(ônR, d̂
s
R, α̂R, lR = 1|aR; Tj)p(Tj) (3.13)

=
1

n

∑
j∈F

p(ônR, d̂
s
R, α̂R, lR = 1|aR; Tj).

Finally, let A = {a1,a2, ...,ap} be the set of appearance vectors of all q de-
tected image patchesR. To integrate the votes coming from the q different patches,
we assume that all possible patches have been detected such that the elements of
A are collectively exhaustive. Furthermore, we assume a uniform prior, such that
each element of A has equal probability of occurrence. To integrate the votes
coming from the different patches, we then marginalize equation (3.13) over all q
patches:

p(ônR, d̂
s
R, α̂R, lR = 1) =

∑
j∈A

p(ônR, d̂
s
R, α̂R, lR = 1|aj)p(aj) (3.14)

=
1

q

∑
j∈A

p(ônR, d̂
s
R, α̂R, lR = 1|aj).

For each possible (x, y) location in the image, the probability defined by equa-
tion (3.14) can be calculated, resulting in a so called Hough accumulator image.
By finding the local maxima in this image, the hands are then detected.
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In practice however, calculating the Hough image as suggested by equation
(3.14) would be very time consuming, since it would require the algorithm to iter-
ate over all possible (x, y) locations, while calculating the normalized offset vector
towards each image patch, and then computing the resulting probabilities. If the
image patches were sampled on a regular grid, similar to the approach of Gall and
Lempitsky, the same result, apart from a multiplicative constant, could be obtained
by simply iterating over the training patches in the leaf-node of each tree that was
reached after classification, casting a probabilistic vote for the hand centroid, and
postprocessing the resulting Hough image by means of a Gaussian smoothing fil-
ter.

However, as opposed to the approach used by Gall and Lempitsky, our im-
age patches are the result of a region of interest detector which only returns high
entropy features. Therefore, parts of the image will contain a lot of regions of
interest, while others will only have a few. If we let each region of interest cast
a probabilistic vote, maxima in the Hough image would be biased towards image
locations surrounded by many regions of interest. The reason for this is that these
locations have a higher prior probability of obtaining a vote than locations with
only few regions of interest in their neighbourhood.

Therefore, the Hough image needs to be normalized to account for the spatial
distribution of detected regions of interest. The spatial distribution of votes v, cast
by the image patches, can be modeled by a Gaussian mixture model, representing
P (v|R0, R1, ..., Rp), where each component of the mixture model is centered on
the centroid of an image patch Ri that is returned by the feature detector. As a
result, centroid locations close to an image patch have an exponentially higher
probability of obtaining a vote than centroid locations farther away. Similarly,
centroid locations surrounded by many regions of interest have an exponentially
higher probability of obtaining a vote than centroid locations that are close to only
a few image patches.

The variance of the Gaussian components is inversely proportional to the scale
of the image patch, as large image patches usually contain a larger part of the ob-
ject than small image patches. To normalize the Hough voting map, we simply
multiply each probability as calculated by equation (3.14) by the spatial distri-
bution of expected voting behavior, P (¬v|R0, R1, ..., Rp). This is illustrated in
figure 2.14 (c), while figure 2.14 (d) shows the resulting Hough voting map. Fig-
ure 2.14 (b) shows the top 20% salient image regions, returned by the region of
interest detector.

The mean-shift algorithm is used to detect local maxima in the Hough image,
which are then considered to be detected hand locations. However, apart from
binary classification in static images, the Hough image can easily be integrated
into a probabilistic tracking method for video, due to its probabilistic nature. Since
the classifier is trained offline, the resulting Hough image can be considered an
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(a) Original image. (b) Salient features.

(c) Normalization. (d) Hough voting map.

Figure 2.14: Illustration of the Hough voting process.

appearance based prior to a probabilistic tracking algorithm such as a Kalman
filter or particle filter.

However, instead of considering the Hough image as a static, appearance based
prior, we propose to dynamically adapt this prior, based on past detections and
misclassifications in the video. In a specific video sequence, it is likely that some
leaf-nodes of the decision trees are reached more frequently than others. For in-
stance, the appearance of objects in the background would not change very often,
resulting in the same image patches to be classified or misclassified in every sub-
sequent video frame.

This temporal consistency can then be used to adapt the random forest classifier
to its specific environment. If several image patches are misclassified consistently
over a period of time, our Random Hough Forest classifier can learn and adapt, in
order to avoid these mistakes in subsequent video frames. To detect misclassifi-
cations however, an error detection procedure is needed. As will be explained in
Section 3.3, we augment the detector with a second spatial, and a third temporal
classifier in order to remove false positive hand detections. Therefore, at each time
instance, we can feedback this knowledge about false positive detections to the
Hough forest in order to avoid future mistakes.

To automatically adapt the Hough classifier based on this feedback, statistics
are kept in each leaf-node about the number of times Tp the node was reached by
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Figure 2.15: Online learning by the Random Hough Forest. The second image shows
the Hough voting map in the first video frame, whereas the third image shows the voting
map several seconds later. Note that no face detection algorithms were used: the Random
Forest classifier automatically adapts, based on information from the second and third stage
classifiers.

a positive patch, and the number of times Tn this node was reached by a negative
patch. A positive patch is a patch that is classified as being part of a hand by each
of the three stages of our classification system, and whose Hough probability is
higher than a certain threshold δ (δ = 0.5).

We define a context C as the set of all hand positions that have been encoun-
tered up till now, in the current video sequence. During classification of an image
patch, we then consider the Hough probability resulting from equation (3.14) as
the prior probability that the image patch is part of this context C. Bayesian theory
then allows us to obtain the posterior probability by multiplying this prior with the
likelihood, shown by equation (3.15).

P (R ∈ C|aR, lR = 1) =
Tp

Tp + γ Tn
, (3.15)

where γ is the ratio of the total number of positive patches and the total number of
negative patches, detected over time.

Figure 2.15 illustrates the effect of this online learning behavior of the Random
Hough Forest. The first Hough image shown is the result after only a few seconds
and clearly assigns a high hand probability to the face region. However, this false
positive detection is corrected by the second and third stage classifiers, after which
this information is fed back to the Hough detector. The second Hough image is the
result several seconds later, and shows that the Hough detector learned to assign a
lower probability to the face region, avoiding similar mistakes in this context.

3.3 Three-stage Classification

In the previous Section, we described an efficient and robust hand detector, based
on Random Hough Forest classification. This detector is a high recall detector,
which means that it can positively detect the occurrence of a human hand in an
image most of the time. However, as a result, the detector yields a low precision,
which means that only a fraction of the hand detections are in fact hands.

Similar to the approach described by Mittal et al., we propose a cascade of
classifiers to solve this problem. The first classifier in the cascade is the earlier
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Figure 2.16: Schematic representation of the cascaded hand classification and tracking
algorithm with automatic initialization and error recovery.

described Random Hough Forest classifier that solves the most difficult problem
of generating high quality hand location hypotheses. The second classifier in the
cascade is a simple linear classifier that quickly rejects a large amount of false
positive detections by classifying the resulting hand bounding box as a whole,
instead of classifying the parts that make up the hand. The third classifier in the
cascade is a decision tree that uses only temporal information to further reject false
positive detections in video tracking applications.

Cascading an advanced high recall classifier with two simple high precision
classifiers results in a fast and robust classifier that can be used for tracker initial-
ization and error recovery. Furthermore, results from each of the cascades can be
fed back such that the previous detector can learn from its past mistakes. The next
paragraphs explain each of the cascade stages, shown in figure 2.16

The Random Hough Forest classifier returns a probability map that, for each
pixel, indicates the probability of being the centroid of a hand. In order to actually
extract possible hand locations from this voting map, the local maxima need to
be located. The variance or support of each local maximum, indicates the size of
the hand. To quickly obtain a set of hand hypotheses, we use the camshift proce-
dure [Exner 10] to obtain the location and size of each hand hypothesis. Camshift
is an adapted version of the meanshift method, a discrete and iterative optimization
algorithm. By using a rectangular window with uniform kernel, in combination
with integral images, a camshift iteration can be executed extremely fast and with
constant O(1) complexity.

The Random Hough Forest classifies image patches instead of images. There-
fore, if several parts of an object have a similar appearance and spatial configura-
tion as hand parts, a local maximum is generated in the voting map, resulting in
a false positive detection. To quickly discard obvious false positives, we trained a
simple classifier using linear discriminant analysis (LDA), such that the precision
of the resulting classifier is higher than the precision of the Random Hough Forest
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(a) Hough voting map (d) Hand detection

Figure 2.17: A second stage linear classifier rejects most of the false positive hand hypothe-
ses (shown in red) that were generated by the first stage Random Hough Forest detector.

classifier. The linear classifier classifies hypothesized hand bounding boxes instead
of image parts, and simply reuses the earlier calculated features for performance
reasons. An example of the filtering capabilities of the second stage classifiers is
shown in figure 2.17, where the red rectangles represent hand hypotheses that were
rejected by the linear classifier.

The resulting two stage classifier is able to robustly detect hands in images
captured in unconstrained environments and is independent of the hand pose, scale
or rotation. However, for video sequences, even a high precision in individual
video frames would lead to many false positive detections per second, due to the
high framerates used nowadays. Therefore, we use a third stage classifier that
further reduces the amount of false positive detections in case of video sequences.

This third stage classifier only uses features that describe the temporal behav-
ior of the detected object. In order to gather this temporal information, for each of
the hypotheses that result from the second stage classifier, a hypothesis verifying
particle filter is used. This particle filter does not update any of the color models
and does not assume to be tracking a real hand. Instead, it is only used as an aux-
iliary background process, to gather temporal information describing the tracked
object, which can then be uses by the third stage classifier to verify or reject the
hand hypothesis.
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While the first and second stage classifier only use spatial information to de-
tect hand hypotheses and to reject false positive detections, the third stage clas-
sifier exploits the available temporal information to further refine the set of hand
hypotheses. The third stage classifier is a simple decision tree that was trained
using 10-fold cross validation, and pruned afterwards. This decision tree evaluates
wether an object is a hand, by examining its temporal behavior during the past N
frames.

The hypothesis verifying particle filter that is used to gather temporal infor-
mation is based on the method that we described earlier in [Spruyt 13b] and will
be discussed in chapter 4. Once a hand has been detected by our two-stage clas-
sifier, the tracker is initialized to start tracking the hand hypothesis in the back-
ground, while gathering four distinct temporal statistics using a temporal sliding
window. At each incoming video frame, the third stage decision tree classifier de-
cides whether or not the tracked object actually is a hand. The resulting decision
can then be used to initialize the final hand tracking algorithm, or to detect tracking
errors and drift. Furthermore, this decision is fed back to the first stage classifier
to dynamically adapt the Hough classifier to the current context.

The next paragraphs explain the four types of temporal features that are used
by the third stage classifier. These features have been carefully selected based on
both their discriminativeness and their low computational complexity.

A first feature that discriminates correctly tracked hands from incorrectly
tracked objects, is a measure of the variance and covariance of the estimated (x, y)

positions in the recent past. A small variance often indicates a stable track, while a
large variance often indicates a tracking error that causes sudden, large changes in
the tracked state. In order to transform this covariance matrix into a single feature
value, we calculate its Frobenius norm, which is often used as a measure to com-
pare covariance matrices. For an m × n matrix C with m rows and n columns,
consisting of real elements cij , the Frobenius norm ‖C‖F is defined as follows:

‖C‖F =

√√√√ m∑
i=1

n∑
j=1

|cij |2 =
√

trace(CᵀC) .

This measure allows us to efficiently combine the variances and covariances into a
single feature value, thereby reducing the risk of overfitting as compared to using
each matrix element as a distinct feature.

A second feature that could indicate tracking problems, is the uncertainty of
the tracking algorithm itself. In case of a particle filter, this uncertainty is defined
by its covariance matrix. This covariance matrix defines the spatial distribution
of the particle estimates. Thus, whereas the first feature measures the temporal
variance of the mode of this distribution, the second feature measures its current
spatial variance. If particles are widely spread, the observations during the past few
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frames were either very ambiguous, or very unlikely. Similar to the first feature,
we combine all elements of this covariance matrix into a single feature value, by
calculating its Frobenius norm.

The third feature that is used to detect incorrectly tracked hands, is the av-
erage amount of motion during the recent past. Motion is detected by means of
frame differencing, followed by Gaussian smoothing. If the amount of motion
within the tracking window is very small for a long period of time, the tracked
object might be a background object instead of a hand. Furthermore, if the amount
of motion, detected by frame differencing, is not proportional to the first feature
value that describes the spread of the particle filter’s expectation over time, there
might be a tracking error.

Finally, the fourth feature used by the decision tree, is simply the classifica-
tion consistency of the first two stages of our hand detector in the recent past. If
a certain hand hypothesis is being detected consistently in every video frame, its
likelihood to be an actual hand is larger than if the hypothesis is only generated
sporadically.

Temporal statistics are gathered by each hypothesis verifying particle filter us-
ing a sliding window of size N , such that the classifier’s decision at each point in
time is based on the past N frames. If the third stage classifier decides that a hy-
pothesis, resulting from the second stage classifier, really is a hand, the hypothesis
is considered verified, and actual hand tracking is started. During hand tracking,
the third stage classifier continues to verify the validity of the tracked object in
each new video frame, in order to detect tracking errors or drift.

This approach allows for automatic initialization and error recovery, which is
of great importance in real life applications. Finally, the tracked bounding box is
fed back to the Random Hough Forest classifier. The classifier can then adapt itself
to the context in which it is used as shown by equation (3.15) and explained earlier.
Figure 2.16 schematically illustrates this complete process, which is repeated for
every video frame.

4 Results and Discussion

In this Section, we evaluate both our two-stage detector on static images, and our
three-stage detector on video sequences, by comparing the results with two state-
of-the-art object detection methods.

Impressive hand detection results were recently obtained by Mittal et al. [Mit-
tal 11] using a parts based deformable model. Similar to our solution, their classi-
fier was specifically designed for the difficult task of unconstrained hand detection
and is therefore used as a benchmark. We present our results on several publicly
available and widely used datasets.
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Furthermore, we compare our results with the results obtained by the origi-
nal Random Hough Forest classifier proposed by Gall and Lempitsky [Gall 09],
since our method is partially based on several concepts described in their paper.
Apart from the hand detection results, we also show how our classifier performs
when trained for general object detection tasks, such as person detection and horse
detection. Although our classifier was specifically designed for real-time hand de-
tection, testing its general classification capabilities allows for a fair comparison
with the Gall and Lempitsky algorithm, and can serve as an indicator for future
possibilities with the proposed techniques.

The main goal of our work was not to design a classifier that outperforms the
state-of-the-art in terms of detection rate. Instead, our goal was to design a classi-
fier that can be executed in real-time, without sacrificing too much precision and
recall. In this section, we show that our proposed method achieves this goal and as
a by-product often even outperforms the state-of-the-art in terms of detection rate,
for the specific task of hand detection.

Mittal et al. [Mittal 11] constructed a comprehensive dataset of hand images
that were collected from various publicly available sources. This dataset was made
available for research purposes, together with its manually created ground truth an-
notations. We trained our Random Hough Forest classifier using the 4071 training
images in this dataset. Additionally, 1397 images from different publicly available
datasets were used to represent the non-hand class during training. Performance
of our classifier is evaluated by classifying the 827 test images from the Mittal
dataset.

During training, 48 213 positive patches and 50 368 negative patches were ex-
tracted, and used to train 15 decision trees. Each decision tree was grown without
pruning until a maximum depth of d = 20 was reached. As described in the pre-
vious sections, a set of features is selected randomly at each decision-node, after
which the feature that results in the best split is chosen from this set. Figure 2.18
illustrates the percentage of decision-nodes in the forest that use a certain feature.

This clearly illustrates the randomness during training, resulting in approx-
imately half of the decision-nodes using color based features, and half of the
decision-nodes using texture based features. On the other hand, certain features
such as the orientation histograms and the non-linear color component, obviously
are much more discriminative than features such as skin probability, when describ-
ing a hand’s appearance.

To evaluate a classifier’s performance, the Pascal VOC (Visual Object Classes)
score [Everingham 10] is widely used in literature [Gall 09, Mittal 11]. The VOC
score defines the amount of overlap between the detected bounding box, resulting
from the classifier, and the given ground truth bounding box. The score can be
calculated as
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Figure 2.18: Distribution of the feature types that are used by the decision-nodes of the
random forest.

V OC =
Bg ∩Bd
Bg ∪Bd

,

where Bg represents the pixels within the ground truth bounding box, whereas Bd
represents the pixels within the detected bounding box. Only those detections for
which V OC ≥ 0.5 are then considered true positive detections, while the rest are
considered false positive detections.

While the VOC criterion allows for a standardized comparison of research re-
sults, it should be noted that a VOC score lower than 0.5 is often still very useful
for practical applications. Moreover, as the VOC score depends on the bounding
box definition, its quality inherently depends on the quality of the ground truth
annotations. For illustration purposes, figure 2.19 shows several results that were
obtained using our two-stage classifier, while evaluating the Mittal hand dataset.
For each bounding box, the VOC score is listed, and boxes that correspond to a
VOC score lower than 0.5 are shown in red.

We trained the classifier of Gall and Lempitsky [Gall 09], whose source code
is publicly available, using the Mittal dataset in order to compare their results with
ours. During evaluation, an image pyramid of three scales is used, as described in
their paper, in order to allow for their algorithm to detect objects of different scale.

Mittal et al. report the average precision, i.e. the area under the recall-precision
curve, together with their maximum recall, as a measure of their classifier quality.
Table 2.1 compares these statistics with the results obtained using our classifier and
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Figure 2.19: Hand detection results with a VOC score lower than 0.5 are shown in red.
Detections with a VOC score higher than or equal to 0.5 are shown in green.

Table 2.1: Performance comparison for the Mittal dataset. Precision and recall are listed as
percentages and detections are considered true positives if V OC ≥ 0.5.

Gall & Lempitsky Mittal Ours
Average Precision 41.02 48.20 62.18
Maximum Recall 79.36 85.30 92.83

with the results obtained using the Gall and Lempitsky algorithm, using V OC ≥
0.5 as an evaluation metric for each detection.

While our method seems to outperform the others, we believe that average
precision in combination with maximum recall is not a very informative way of
describing classification results. Instead, it is interesting to see how a classifier’s
precision changes when the classifier is configured to yield a certain recall. Figure
2.20 shows the recall-precision curves for each of the three algorithms.

We also show what the precision-recall curve would look like if a VOC score
of 0.25 were considered to be acceptable, as will often be the case in real-life appli-
cations. This clearly shows that the method proposed by Mittal et al. outperforms
the algorithm of Gall and Lempitsky when applied to the task of hand detection.
This result is to be expected, since the classifier described by Gall and Lempitsky
is a general purpose classifier, while the method described by Mittal et al. was
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Figure 2.20: Recall-Precision curves for hand detection results on the Mittal dataset. Dif-
ferent recall values are obtained by varying the classifier’s certainty threshold, i.e. moving
the decision boundaries towards the negative class instances.

specifically designed for hand detection. Furthermore, this result shows that our
proposed solution performs slightly better than the Mittal detector.

Figure 2.21 shows how the precision increases if the VOC threshold is lowered,
for several fixed recall values. If a VOC threshold of 0.5 is used, a precision of
55% is obtained if the recall is 50%. For practical applications however, a VOC
threshold of 0.25 can be used, as discussed earlier. In this case, a precision of 55%

corresponds to a recall that is larger than 60%.

Figure 2.22 illustrates the increase in precision if the number of decision trees
in the Random Forest is increased. The fluctuations in the curve can be explained
by the high variance of decision tree classifiers. However, the more trees are in
the forest, the less pronounced the fluctuations become. This can be explained by
the variance-bias tradeoff that was discussed in Section 3.1.2. Due to the bagging
principle, an overall increase in precision is observed when adding trees to the
forest. Therefore, this graph clearly illustrates the strengths of a Random Forest
classifier as opposed to a decision tree classifier.

However, since each decision tree is used to cast a probabilistic vote for each
image patch, increasing the number of decision trees also increases the computa-
tional complexity of the classifier. Since the precision seems to converge when at
least 15 decision trees are used, this is the value we chose in our configuration, as
a trade-off between execution time and classifier precision.

Figure 2.23 shows several of the results obtained with our two-stage classifier.
True positive detections are shown in green, while their corresponding ground truth
annotation is shown in blue. False positive detections are shown in red.
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Figure 2.21: Precision values for a specific Recall value, corresponding to a minimum VOC
score on the Mittal dataset. A detection is only considered to be a true positive detection, if
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Figure 2.23: True positive hand detections are shown in green. False positive detections
are shown in red. Ground truth bounding boxes are shown in blue.
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Figure 2.24: False detections, resulting from the Random Hough Forest detector, that were
successfully rejected by the second stage linear classifier are shown in cyan.

Table 2.2: Average execution time in seconds, for a 320× 240 image.

Gall & Lempitsky Mittal Ours
Execution time (s) 19.5 40.0 0.0248

Figure 2.24 shows some intermediate detection results, where true positive
detections that result from the first stage Random Hough Forest, but that were
reclassified as being false positive by the second stage linear classifier, are shown
in cyan.

In figure 2.25, the performance of our two-stage classifier is plotted against the
number of pixels in an image. This graph shows that the computational complexity
of our classifier is linear in the number of pixels. Also, it can be seen that small
image sizes such as QQVGA and QVGA can easily be processed in real-time,
allowing us to use the classifier in a hand tracking setup, where the classifier is
responsible for tracker initialization and error detection.

Table 2.2 shows the average execution time for each of the evaluated algo-
rithms on a QVGA image, which is often used in real-time video streaming appli-
cations. The results were obtained by classifying a modern quadcore 2.10Ghz i7
laptop with 8GB of memory.

In order to evaluate our complete, three-stage classifier described earlier, we
tested our classifier using the Signers dataset [Buehler 08] that contains five BBC
news sequences. We compare our results on this Signers dataset, with the results
obtained by both Mittal et al. and Karlinsky et al. [Karlinsky 10].

Karlinsky et al. fit a chain model to the body of the signer in order to detect
hands. Chain fitting starts from the ground truth bounding box of the face and
thus only works if such ground truth is available and if the face is visible. The
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Figure 2.25: Execution time of our classifier, plotted against the number of pixels in the
image.

Table 2.3: Results obtained on the Signer dataset, reported as a percentage by counting the
number of times the correct detection was amongst the k-highest-confidence detections in
each image.

2 max 3 max 4 max
Mittal 90.0 95.6 97.4
Karlinsky 92.8 95.4 96.7
Ours (2-stage) 87.5 96.1 97.3
Ours (3-stage) 98.7 98.7 98.7

detected hand is considered to be correct if it is within half face width from the
ground truth location of the hand. Detection performance is reported within the
top k detections per ground truth hand instance. The main disadvantage of this
technique is that the initial head position has to be known, and that the technique
is rather computationally expensive and thus not suitable for real-time applications.

Table 2.3 shows a comparison of our results with the results obtained by Mittal
et al. and those of Karlinsky et al.. These results show that our two-stage classifier
slightly outperforms the state-of-the-art when k > 2. If k < 2 however, our
method performs slightly worse. This can be explained by the fact that Karlinksky
and Mittal perform face detection in order to eliminate false positives due to the
face of the signer. In our case, the signer’s face is sometimes detected as a hand
with a strong Hough score, and is therefore misclassified. Even when this happens,
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if k becomes larger, the second and third best detections are always the hands,
which explains the better performance for k ≥ 3.

To test our tree-stage classifier, temporal information needs to be available to
the classifier. Therefore, we use the particle filter tracker that we described in an
earlier publication [Spruyt 13b] and that will be discussed in chapter 4. While
using this tracking algorithm was convenient to the authors, any tracking method,
such as Camshift, Kalman filtering, Flocks of Features tracking and others, could
be used instead. The goal of the tracking algorithm is simply to gather the neces-
sary statistics to be used by the third stage decision tree classifier.

The third stage classifier is then responsible for making the final decision about
promoting a detection hypothesis from the second stage classifier, to a final detec-
tion. Similarly, the third stage classifier is responsible for demoting an erroneous
detection from the previous stages to a false positive detection. Table 2.3 shows
that the addition of temporal information greatly increases detection performance.
Simultaneously, this test case illustrates that a cascade of relatively weak spatial
classifiers and a weak temporal classifier, can together become a robust solution
for automatic filter initialization and error recovery.

Figure 2.26 shows the average execution time of each of the components of
our three-stage classifier. The first stage classifier, solving the difficult task of
generating hand location hypotheses consume 91% of the total detection time. The
second and third stage classifiers simply need to reject false positive detections,
resulting in an execution time that is negligible.

Figure 2.27 shows several classification results for the Signer dataset. Boxes
that are colored cyan are early stage detections that were rejected by the second or
third stage classifier.

Finally, it is interesting to evaluate our algorithm for general object detection
tasks, not related to hand detection. Since our method is largely inspired by the
work of Gall and Lempitsky, we evaluate our classifier on the same data they used.
Note, however, that our classifier was specifically designed for hand detection,
both by choice of the region of interest detector, and by choice of the feature de-
scriptors (e.g. skin probability).

We trained our two-stage classifier on the Weizmann Horses dataset [Boren-
stein 02], containing side-views of horses in their natural environment. Similar to
Gall and Lempitsky, we split the dataset such that 100 positive images were used
for training, and 228 positive images were used for testing. As opposed to Gall and
Lempitsky, we did not make special adjustments to obtain a more precise center
of mass annotation before training. Also, we did not apply boosting to improve
recognition rate of some of the decision trees. Figure 2.28 shows several detection
results from our classifier.

We compare our results, obtained on the Weizmann horse dataset, with the
method of Gall and Lempitsky, and with the classifier that was proposed by Shot-
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Figure 2.26: Execution timings of each component of the three-stage hand detector, ob-
tained by averaging the timing results of 5000 video frames of size 320× 240.

Figure 2.27: Detection results for the Signer dataset. True positive detections are shown
in green. False positive detections are shown in red. Cyan boxes indicate false positive
detections that were eliminated by the second and third stage classifier.
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Figure 2.28: Detection results for the Weizmann horse dataset.

ton et al. [Shotton 08]. Figure 2.29 shows the recall-precision curves of these
algorithms on the Weizmann Horses dataset. It is clear that our algorithm, while
being outperformed by the state of the art methods, still is competitive, especially
when taken into consideration that our classifier operates in real-time, and uses
features such as skin probability and color components that were selected specif-
ically for the task of hand detection, instead of more general features such as the
well known HoG descriptors.

Moreover, our classifier is both rotation and scale invariant, while the Weiz-
mann dataset only contains horses that are facing the left hand side of the picture
frame. Since adding rotation invariance decreases the classifier’s discriminative
power, it is expected that non-invariant classifiers easily perform better on such
data.

Finally, for the same reasons given above, we trained our classifier on the In-
ria Person database. Figure 2.30 shows several results obtained by our two-stage
classifier.

Gall and Lempitsky evaluate their detection on the Inria dataset by counting
the number of false positives per window (FPPW). This is a well known way of
presenting results and is especially interesting for sliding window based classifiers.
For comparison purposes, we report the same information in figure 2.31.

It is clear that our classifier has a lower maximum recall than the results ob-
tained by Gall and Lempitsky on this dataset. This can be explained by the fact
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Figure 2.29: Recall-Precision curves of several algorithm when evaluated against the Weiz-
mann Horses dataset.

Figure 2.30: True positive detections are shown in green. False positive detections are
shown in red. False negatives are shown in blue.
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Figure 2.31: FPPW curves when evaluated against the Inria dataset.

that we incorporated scale and rotation invariance into the classifier, and only use
a few computationally efficient features. For mostly symmetric objects such as
people silhouettes, rotation and scale invariance is less important than for greatly
deformable objects such as human hands.

5 Conclusion

We presented a real-time hand detector, capable of detecting human hands in static
images, and we introduced a cascade system that incorporates temporal informa-
tion to even further improve detection results in case of video sequences. Our
method is based on incremental research and therefore combines several well
known techniques such as the generalized Hough transform, random forest classi-
fication, and parts based object detection.

The resulting detector was compared with two state-of-the-art object detection
methods on a large, publicly available dataset. We showed that our detector out-
performs these methods when applied to the task of hand detection. This is of great
importance because of the rising demand for interactive applications and real-time,
robust hand detection and tracking.

Furthermore, we showed that our proposed solution could be of use when solv-
ing a more general object detection problem: When classifying highly articulated
persons of the Inria dataset, and size varying horses of the Weizmann dataset, our
method yields results that are competitive with state-of-the art classifiers, while
providing a decrease in computational complexity with factor 1 000.
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Finally, we presented an extensive evaluation of the computational complexity
of our method which was shown to be linear in the number of pixels of the image.
The resulting system operates in real-time, processing 40 images of size 320×240

per second.





3
Sparse, Regularized Optical Flow

1 Introduction

In chapter 2, we proposed a novel method to detect hands in static images. We
showed that this method can be used to initialize a hand tracking algorithm, and to
automatically detect tracking failures. The hand tracking algorithm used to test the
detector’s capabilities will be discussed in more detail in chapter 4. An important
feature that is used by this tracking algorithm, is the optical flow field of the video
frame. In this chapter, we present a novel method to obtain such optical flow
field in real-time, thereby bridging the gap between chapter 2 and chapter 4. For
an overview of the relations between the components, introduced in each chapter,
please refer to figure 1.1.

Optical flow is defined as a 2D vector field describing the apparent velocities of
objects in a 3D scene, projected onto the image plane. Most techniques to calculate
such flow fields rely on the so called brightness constancy assumption, assuming
that the intensity of an object remains constant between two frames, despite its
movement. In the following, let I(x, y) be the pixel intensity of image I at position
(x, y), and let (∆x,∆y) and ∆t respectively represent the motion offset and time
difference between subsequent video frames. The brightness constancy constraint
is then given by:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t). (1.1)
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If ∆x, ∆y and ∆t are small, equation (1.1) can be written by its approximated
Taylor expansion:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t. (1.2)

Therefore, equation (1.1) only holds if

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (1.3)

⇔∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
= −∂I

∂t
. (1.4)

Equation (1.4), contains the optical flow-vector components ∆x
∆t and ∆y

∆t as its
two unknowns and is often called the optical flow equation. The optical flow equa-
tion represents an underdetermined system and is therefore an ill-posed problem.
This is often referred to as the aperture problem which can be understood intu-
itively by considering the horizontal motion of a horizontal edge in the image, or
the vertical motion of a vertical edge.

To solve the aperture problem, optical flow estimation methods need to intro-
duce an additional constraint. The first optical flow estimation method in literature
was proposed by Lucas and Kanade [Lucas 81] and is still widely used in the video
processing domain due to its computational simplicity. Their method assumes that
the flow-field is constant within a small neighborhood of the pixel under consid-
eration. Under this assumption, equation (1.4) should hold for each pixel within
this neighborhood, resulting in an overdetermined system that can be solved by the
least-squares method. Furthermore, to relax the local linearity assumption of the
Taylor expansion in equation (1.1), a pyramidal approach is often used such that
large displacements can still be estimated reliably.

However, in uniform regions of the image, where the horizontal and vertical
gradients are zero, the Lucas-Kanade method can not provide optical flow infor-
mation. Therefore, the Lucas-Kanade algorithm is mostly used to calculate optical
flow only at corner points, where the flow equations are well defined. The result-
ing flow field is then sparse, and algorithms computing such flow field are called
sparse optical flow algorithms.

On the other hand, methods that are able to estimate the flow field at each point
in the image are called dense optical flow algorithms. The first dense optical flow
method described in literature, was proposed by Horn and Schunck [Horn 81].
In their method, the aperture problem is overcome by introducing a smoothness
constraint as a regularization term instead of assuming a locally constant flow-
field. The optical flow equation shown by (1.4) is extended by a regularization
term, and the optimal flow estimate is obtained by minimizing this cost function.
In the following, let (Ix, Iy, It)=̇( ∂I∂x ,

∂I
∂y ,

∂I
∂t ), and let (Vx, Vy)=̇(∆x

∆t ,
∆y
∆t ). The
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optical flow field is then obtained by Horn and Schunk by minimizing a global
energy functional:

argmin
Vx,Vy

� �
(IxVx + IyVy + It)

2 + α2(‖∆Vx‖2 + ‖∆Vy‖2)dxdy. (1.5)

where α is a constant that defines the regularization importance. Therefore, the
Horn and Schunck method tries to minimize both the optical flow equation, and
the gradients of the flow vectors, resulting in a smooth flow-field. This smoothness
constraint effectively regularizes the optimization process, allowing the calcula-
tion of flow-vectors at each image point. The main disadvantage of the Horn and
Schunk approach however, is that estimated flow-vectors at motion discontinuities
are unreliable because of the global regularization term.

Several solutions [Xu 12, Schikora 11, Kim 13, Zhuoyuan 13] have been pro-
posed in literature to solve the above problem, and most of these solutions only
differ in the way the flow-field is regularized. However, all of these methods focus
on the estimation of a dense flow-field. Dense optical flow estimation is of interest
in many applications such as depth-from-motion, stereo-matching or image seg-
mentation. On the other hand, for applications such as object tracking, the goal is
usually to obtain an estimate of the motion direction and velocity of the tracked
object, often represented by a bounding box or contour descriptor. In this case, a
dense optical flow field does not add much value compared to a sparse optical flow
field.

Furthermore, since most dense optical flow estimation techniques depend on
computationally expensive optimization algorithms, these can often not be used
directly for real-time applications. Although GPU implementations can reduce
the computational cost, for practical tracking applications the optical flow estima-
tion method should only consume a fraction of the available computational power.
Therefore, many tracking algorithms resort to simple sparse flow-field estimators
such as the Lucas-Kanade algorithm.

A major disadvantage of sparse optical flow methods, is the lack of regulariza-
tion, such that the resulting flow-field is often noisy and less reliable than dense
flow estimates. In this chapter, we propose an extremely efficient real-time sparse
optical flow estimation method that incorporates a regularization term in its cost
function, resulting in a smooth flow-field estimate. We introduce a method to regu-
larize a sparse flow-field on a non-regular grid while preserving motion boundaries
and discontinuities. The proposed algorithm combines the best of both worlds by
yielding computation times that are lower than the sparse Lucas-Kanade flow al-
gorithm and a flow estimation accuracy that is competitive with the state-of-the-art
dense optical-flow algorithms.

This chapter is outlined as follows: In Section 2 we describe related work. Sec-
tion 3.1 proposes an efficient feature detection and description method, resulting
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in a sparse set of regions of interest, which are used to find point matches in the
previous video frame. In Section 3.2 we propose an iterative regularization proce-
dure that efficiently regularizes the obtained flow vectors in a local neighborhood.
Finally, Section 4 provides a thorough evaluation and discussion of the detection
results, using several publicly available datasets.

2 Related Work

The original method of Horn and Schunck suffers from the fact that its quadratic
regularization term, imposing a smoothness constraint, does not allow abrupt
changes in the final flow-field and can therefore not cope with motion disconti-
nuities at the borders of moving objects in the scene. Furthermore, the L2 norm
that is used as a regularizer is not robust to outliers, resulting in a noisy flow-field.

Many authors have proposed enhancements to the work of Horn and Schunck
to solve these problems. Aubert et al. [Aubert 99] replaced the L2 data fidelity
term by an L1 term to increase robustness to outliers, and used several disconti-
nuity preserving regularization terms to cope with motion discontinuities. Based
on this work, Papenberg et al. [Papenberg 06] proposed a differentiable approx-
imation of the L1 norm as a regularization term, and suggested an iterative op-
timization scheme. The L1 norm of the gradient, i.e.

�
|∇f(x)|dx instead of�

‖∇f(x)‖2dx, essentially counts the amount of variation in the data without re-
gard to the smoothness of this variation. This norm is therefore called the total
variation norm of f(x), and optical flow estimation methods that use the L1 norm
as a regularizer are referred to as Total Variation (TV) minimizing optical flow al-
gorithms. In contrast with the quadratic regularization method used by Horn and
Schunck, TV-based algorithms are no longer biased towards smooth flow-fields.

However, another disadvantage of the original flow estimation method of Horn
and Schunck, is its reliance on the Taylor expansion of the otherwise non-linear
image intensity function I(x+ Vx, y + Vy). Local linearization converts the gen-
eral non-convex optimization problem to a convex problem. As a result, optical
flow estimates are only reliable for very small displacements for which the lin-
ear approximation is valid. To be able to cope with large object displacements, a
scale-space approach is usually employed [Alvarez 99, Brox 04] such that flow
estimates are obtained using a coarse-to-fine strategy. A well known publicly
available dataset that is used as the de facto standard for evaluating and compar-
ing optical flow algorithms in the computer vision literature, is the Middlebury
dataset [Baker 11]. Almost all top-ranked methods on the widely referred Mid-
dlebury website use the earlier described Total Variation minimization approach,
combined with a coarse-to-fine search strategy.

Although a coarse-to-fine search works well if foreground and background
pixels exhibit similar motion vectors and if the moving objects are large, it tends
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to fail otherwise. Small foreground object such as the finger of a human hand,
tend to disappear in coarse approximations of the image. As a result, the coarse
flow estimate that is used to initialize the minimization procedure at the finer level
is completely based on the background flow. This can cause a violation of the
linearity assumption, resulting in unstable flow estimates. Li Xu et al. [Xu 12]
recently proposed a method that overcomes this problem by extensively computing
initial flow vectors in each pyramid level, instead of solely relying on the estimate
at the previous scale. Their implementation is currently top-ranked at the widely
referred Middlebury optical flow evaluation dataset and is able to maintain fine
object boundaries while calculating a dense flow field.

A third disadvantage of traditional optical flow estimation methods, is their
dependency on the so called brightness constancy assumption. In practice, this
assumption is often violated due to shadows, specular reflection, non-uniform il-
lumination in the image, or changing illumination in the video sequence. To solve
this problem, Vaudrey et al. [Vaudrey 10] calculate the optical flow on the nor-
malized gradients of the image, instead of directly using the image intensities.
Since normalized gradients are invariant to both multiplicative and additive inten-
sity changes, this approach greatly increases robustness to changing illumination.
Wedel et al. [Wedel 09] use a similar approach by decomposing the original image
into a structural component and a textural component. The textural component
is obtained by subtracting a smoothed version of the image from its original, and
shows an increased robustness to illumination changes by only representing the
high-frequency parts of the scene.

Most of the earlier described difficulties in optical flow estimation, i.e. illumi-
nation dependence, computational complexity, and large displacements, coincide
with the problems that are being solved in the image registration domain of com-
puter vision literature. However, for image registration purposes, a dense vector
field is often not needed. Instead, a sparse set of point matches can be searched
for, effectively avoiding the aperture problem by focussing on the well defined
regions of the image. Many keypoints detector and descriptor algorithms such
as SIFT [Lowe 04], SURF [Bay 06] or FREAK [Alahi 12] can be used for this
task. These feature detection and description methods are often scale and rotation
invariant, can cope with changing illumination, and are able to handle large dis-
placements. However, spatial accuracy of the obtained point-matches using these
techniques is generally lower than the accuracy that is obtained by dense optical
flow estimation methods. The main reason for this is that point-matching methods
treat all individual points as independent, and do not incorporate regularization
constraints.

Brox et al. [Brox 09] proposed to combine both methods by using the SIFT
detector and descriptor to obtain a sparse set of matching hypotheses, and then us-
ing these hypotheses to refine a dense optical flow field by means of total variation
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minimization. Weinzaepfel et al. [Weinzaepfel 13] extended this work by design-
ing a more robust feature point descriptor and by combining a convolutional net
based matching approach with a Total Variation based optimization process to ob-
tain a dense optical flow field.

However, all of the above Total Variation based schemes are computationally
expensive due to their iterative optimization (e.g. using a primal-dual formulation)
and pyramidal coarse-to-fine search. As a result, dense optical flow algorithms
usually need seconds up to minutes of calculation per video frame on current
hardware, before obtaining the resulting flow field and are therefore not suited
for real-time applications.

For many applications such as object tracking, only a sparse flow-field is needed.
In this case, optical flow computation is only a small part of the complete algo-
rithm, and computing a dense flow field would waste a lot of processing power
that could be spent more wisely. Although sparse flow methods such as the Lucas-
Kanade algorithm or point-matching methods such as the SURF algorithm could
be used for such purposes, both approaches often result in noisy flow estimates
due to the lack of regularization.

In this chapter, we build upon the idea of Brox et al. [Brox 09]. However,
instead of incorporating a point-matching approach into a regularized dense op-
tical flow estimation method, we propose a method to regularize a sparse point-
matching algorithm directly. The point-matching based approach allows our
method to cope with large displacements, and results in illumination indepen-
dence, eliminating the need for a brightness constancy assumption. Due to the
sparse nature, our real-time algorithm is extremely computational efficient, con-
suming only a fraction of the processor time without resorting to GPU calcula-
tions. A local regularization term is included in the optimization function, yielding
a smooth flow field while preserving motion boundaries. The algorithm runs faster
than the pyramidal Lucas-Kanade algorithm, and outperforms more advanced al-
gorithms in accuracy. The proposed solution can therefore replace sparse optical
flow algorithms such as the Lucas-Kanade method, used in real-time applications,
in order to improve their robustness without negatively impacting their computa-
tional performance.

3 Materials and Methods

To obtain a sparse optical flow field estimate, regions of interest need to be se-
lected. These regions represent locations in the video frame that can be easily
matched with corresponding regions in the previous video frame. Once a set of re-
gions has been selected, each region is described using a feature descriptor. Both
the feature detector and feature descriptor should be easy to calculate, to guar-
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antee real-time performance, and should exhibit a certain degree of illumination
independence, to cope with dynamic video scenes.

Two sets of feature points are obtained; one describing the current video frame,
and one describing the previous video frame. Sparse optical flow estimation then
reduces to an optimization problem in which an optimal match is found between
the two sets. However, the sets do not necessarily contain the same number of
elements because feature points can be occluded or can split, merge or disappear
in subsequent video frames.

To solve this problem and to increase robustness to noise, we introduce a regu-
larization term in the cost function that is minimized iteratively during the feature
matching process. To cope with motion discontinuities at the boundaries of mov-
ing objects, this regularization term only incorporates local information. Since the
feature points are sampled on a non-regular grid, a method is needed to determine
the influence of near-by regions of interest.

In the following sections, each of these steps are discussed in more detail.

3.1 Feature Detection, Description and Matching

A variety of feature detection methods have been described in literature, such as
the well known SIFT [Lowe 04] and SURF [Bay 06] detectors, the Maximally
Stable Extremal Region (MSER) detector [Matas 02], and more advanced spatio-
temporal detectors such as the method proposed by Wang et al. [Wang 09]. A
common goal of these feature detectors, is to extract salient, blob-like regions
from the image, and to robustly detect these regions, independent from their scale
and rotation.

However, many of these feature detection methods exhibit a high computa-
tional complexity. Moreover, most of these detectors are designed as general-
purpose feature detectors that are often also used for image registration and object
classification. For optical flow estimation on the other hand, any region in the
image that avoids the aperture problem can be used. In other words, any region
that exhibits both a large horizontal gradient and a large vertical gradient, can be
considered a region of interest.

Regions with large gradients in both directions are defined by points where a
horizontal and a vertical edge intersect. These points are corner points in the image
and can be extracted much more efficiently than general blob-like structures. A
widely used corner detector is the Harris corner detector [Harris 88], which relies
on the magnitude of the eigenvalues of a structure tensor matrix describing the
local change in brightness. This solution however is rather slow and consumes a
large portion of the resources available to the optical flow algorithm.

More recently, E. Rosten et al. [Rosten 10] introduced a machine learning
based corner detector named FAST (Features from Accelerated Segment Test),
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which is approximately 20 times faster than the Harris corner detector, and 40
times faster than the SIFT detector. They trained a decision tree that detects cor-
ners in the image by quickly comparing the intensity of the pixels surrounding a
center pixel. The learned decision tree is then converted into computer code, yield-
ing an extremely fast corner detector. Furthermore, the authors showed that their
detector has great repeatability under various aspect changes. Due to the real-
time constraints of our research, we therefore propose to use the FAST detector
to quickly select a set of regions of interest in the image. A region of interest is
simply defined as a square region, centered on the detected corner point.

Most corner detection methods compute a corner response function for each
pixel location in the image. A threshold is then applied to this corner response.
This threshold can either be static, such that only the best corners are returned, or
dynamic such that a predefined number of corners is always detected. However,
both approaches have obvious drawbacks. If a static threshold is used, the number
of corners that are detected in subsequent frames can vary widely, especially if the
scene illumination changes abruptly. On the other hand, if a dynamic threshold
is used, the number of detected corners is fixed. Therefore, if a highly textured
object is visible in one frame, almost all corners would be located on this object,
ignoring other objects in the scene. If this object disappears in the next video
frame, almost all corners would be located on the background objects, without
having a corresponding match in the previous frame.

The original FAST implementation uses a fixed threshold and would therefore
not be suited for point matching in scenes with changing illumination. We propose
a simple and efficient change to the original FAST detector allowing it to detect
an approximately fixed number of corners that are uniformly distributed over the
image while automatically adapting to changing environments and illumination
conditions. Instead of defining a single threshold, the image is divided into square
regions of size N × N , and an adaptive threshold is calculated automatically for
each of these regions such that an approximately constant number of corner de-
tections is maintained in each region. Once such threshold is obtained, bilinear
interpolation is used to determine a distinct threshold for each pixel location in the
image.

To obtain a threshold for each N × N block, a simple iterative procedure is
used. Initially, the threshold is set to the threshold used in the previous frame.
The corner response function is then calculated, after which the thresholds are
decremented if less than a certain number of corners Nl is found in the block,
while they are incremented if more than a maximally allowed number of corners
Nh is found, with Nl < Nh. This approach resembles a hysteresis threshold.
The lower threshold Nl is limited in order to avoid detecting noisy corners in
untextured regions of constant brightness. This procedure is repeated until the
desired number of corners is detected or a maximum number of iterations has
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(a) Frame 1. (b) Frame 2.

(c) Corner thresholds 1. (d) Corner thresholds 2.

Figure 3.1: Per-pixel corner threshold (bottom row: darker colors correspond to lower
threshold values) for two subsequent video frames (top row) with changing illumination.
Detected corners are shown as colored dots and are clustered as discussed in Section 3.2.

passed. This ensures that approximately the same number of corners is found in
subsequent video frames, even under extreme lighting changes, or when highly
textured objects suddenly appear in the scene. This is illustrated by figure 3.1
that shows two subsequent video frames with different illumination, together with
the per-pixel corner response threshold value. Detected corners are illustrated by
colored dots, the color of which is defined by a clustering process that will be
discussed in Section 3.2.

Each detected corner defines a region of interest, the size of which was empir-
ically determined as 18 × 18 pixels. An illumination invariant descriptor is then
calculated for each region such that it can be matched to a region in the previous
video frame. A well known illumination independent primitive used in texture
classification are Local Binary Patterns (LBP) [Ojala 96, Ojala 02], in which the
sign of the difference between a center pixel and each of its neighboring pixels
in a 3 × 3 neighborhood is multiplied with a binomial factor in order to obtain a
binary number between 0 and 28 − 1 = 255. This number then represents the
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local texture in that area. Since only simple addition and subtraction is needed
and multiplication by a power of two, which can be implemented efficiently using
shifting operators, calculating a LBP is extremely fast. The histogram of the LBPs
computed over a region can then be used as a texture descriptor.

If a white illumination change occurs in the scene, pixel intensities are scaled.
On the other hand, if a colored illumination change occurs, pixel intensities are
shifted. Furthermore, due to non-linearities in the camera capturing process (e.g.
gamma correction), illumination changes in general can be approximated linearly
by an intensity shift and a scaling factor. Invariance against additive intensity
changes can be obtained using a gradient operator whereas invariance against mul-
tiplicative intensity changes can be obtained by only regarding the sign of the gra-
dient instead of its real value. Local binary patterns are based on this idea and
have been shown to be robust against uniform illumination changes in the scene
by modeling the high-frequency components of the image [Ojala 02].

However, the classical LBP operator yields very long histograms of 256 bins,
many of which would be empty if calculated on a small region, resulting in sparse
histograms. Moreover, comparing two such histograms would be too slow for our
application. M. Heikkilä et al. [Heikkilä 09] defined a modified operator which
they call the Center-Symmetric LBP (CS-LBP), in which the sign of the differ-
ence between center-symmetric pairs of pixels is used instead of the difference
between each pixel and the central pixel, as illustrated by equation (3.1). In a 3×3

neighborhood this results in a CS-LBP number between 0 and 24 − 1 = 15 which
greatly reduces the number of histogram bins, thereby avoiding sparse histograms.
The authors showed that CS-LBP based descriptors exhibit superior performance
when compared to classical LBP, and often outperform computationally expensive
descriptors such as the SIFT descriptor.

CS-LBP(x, y) =
3∑
i=0

2i 1Z+(ni − ni+4). (3.1)

where 1Z+ is an indicator function.
In order to incorporate spatial information into the descriptor, the 18 × 18

region is divided into 9 cells of size 6 × 6, and a CS-LBP histogram is calculated
for each cell. The histograms are then concatenated to obtain the final spatially
enhanced CS-LBP based feature vector of size 16× 9 = 144.

In the larger context of this dissertation, the choice for an LBP-based descrip-
tor greatly reduces the computational complexity of the complete hand tracking
and detection system, because the same LBP descriptors where already calculated
for hand detection purposes in chapter 2 and can simply be re-used here without
additional calculations.

In order to obtain the optical flow field, regions of interest from the current
frame are matched with regions from the previous frame, based on their CS-LBP
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descriptors. In the following, let LBP 144(r; b) be the 144-bin CS-LBP descriptor
for a region r, parameterized by its bin number b. The goodness of a match be-
tween two regions rt−1 and rt can then be defined by a cost function involving the
corresponding descriptors LBP 144(rt−1) and LBP 144(rt), and the best match is
found by minimizing this cost function.

Because our feature descriptor LBP 144(r; b) represents a histogram, well
known distance measures for comparing histograms could be used, such as the
Chi-Square distance, Bhattacharya distance or Earth Mover’s distance. However,
for performance reasons, we propose to use the L1 norm, which is much faster to
calculate and can easily be implemented using SIMD instructions. The quality of
a match between a region rt−1 in the previous video frame and a region rt in the
current video frame is thus defined as:

‖LBP 144(rt−1)− LBP 144(rt)‖1 =

144∑
i=1

|LBP 144(rt−1; i)− LBP 144(rt; i)|.

(3.2)
In the following, let ct be the detected corner coordinates that correspond to

the centroid of region rt and let ct−1 be the corner that corresponds to the centroid
of region rt−1. Matches from a corner ct−1 in the previous frame to a corner ct
in the current frame are searched for within a certain radius s surrounding ct−1.
This radius defines the maximally allowed motion vector length and was set to
s = 30 in our experiments. Using a frame resolution of 320 × 240, this means
that very large displacements are allowed between subsequent frames. However,
while such large displacements are allowed, they are highly unlikely to occur in
real video. Assuming this likelihood drops linearly with the displacement distance,
the Euclidean distance between corner ct and a candidate corner ct−1 is added to
the cost function to be minimized. The addition of this term makes sure that large
displacements are penalized more than small flow vectors.

Finally, a regularization term λ(ct−1, ct) is added to steer the search process
such that the obtained flow field is locally smooth. The regularization term will be
defined in Section 3.2 and biasses the optimization process to prefer matches that
result in a smooth and locally consistent flow-field. Local regularization increases
robustness to noise and allows our method to cope with motion discontinuities at
object boundaries. The complete cost function is then defined as follows:

C(ct−1, ct) = ‖LBP 144(rt−1)−LBP 144(rt)‖1+α‖ct−1−ct‖2+βλ(ct−1, ct).

(3.3)
where α and β are weighting factors indicating the importance of the regularization
terms. In our experiments, α = 1 and β = 100.

Equation (3.3) is optimized iteratively as will be discussed in Section 3.2. Ini-
tially, the regularization term is defined as λ(.) = 0. Therefore, during the first
iteration, the non-regularized optical flow is obtained. Based on this flow field, the



84 SPARSE, REGULARIZED OPTICAL FLOW

regularization term for the next iteration is calculated, and the process is repeated
until convergence or until the maximum number of iterations has been reached.

3.2 Local Regularization

Global regularization of the optical flow field, such as performed by the Horn and
Schunck method, would assume a globally smooth vector field and thus cannot
handle motion discontinuities at object boundaries. Instead, the optical flow field
should only be regularized locally. Therefore, a method is needed to define a
local neighborhood of corners for each detected corner, in an illumination invariant
manner. The solution should have low complexity and should resemble a rough
segmentation of the objects in an image.

Dense optical flow estimation techniques often incorporate a segmentation
phase to obtain object boundaries and to guide the local regularization process [Zit-
nick 05, Xu 08, Deqing 12]. However, image segmentation is usually slow, and
inherently depends on the scene illumination due to its use of pixel colors during
the segmentation process. Instead of segmenting the image based on its lighting
dependent color distribution, we propose to segment it based on its corner distri-
bution. This means that image regions containing high spatial frequencies such
as textures will be separated from regions containing only low spatial frequencies
such as smoothly varying background. The main advantage of this approach is that
it can be implemented extremely efficiently as a clustering operation on a sparse
set of corner points. Furthermore, the clustering process is independent of the
scene illumination and roughly corresponds to a texture based segmentation.

However, corner locations often exhibit clear patterns and can be almost co-
linear if they are part of an edge, which means that fast traditional clustering al-
gorithms such as k-means clustering, which tries to find spherical clusters, are
not suited for this goal. Although more advanced clustering algorithms such as
spectral clustering exist, these are often computationally expensive, and can not be
used for real-time applications. Instead, we propose to use a hierarchical cluster-
ing method that is capable of detecting clusters with irregular boundaries [Grygo-
rash 06] and does not need to know the number of clusters in advance.

A single-link hierarchical clustering can be obtained by treating the set of cor-
ner points as a planar Euclidean graph such that each corner is represented by a
vertex that is connected to its neighbors by edges with a weight that is equal to
their Euclidean length. By calculating the Minimum Spanning Tree (MST) of this
graph, we obtain a tree structure that connects only the corner points that are clos-
est to each other. A clustering can then be obtained by removing inconsistent edges
(i.e. edges that are significantly longer than surrounding edges) from this tree. The
connected components that are defined by the resulting subtrees are considered to
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(a) Original image. (b) Delaunay triangulation.

(c) Minimum spanning tree. (d) Final clusters.

Figure 3.2: The Delaunay triangulation of figure (b) is used to obtain a MST representation
shown in figure (c). Inconsistent edges, shown in red, are removed from the MST, and small
clusters are ignored. The final clusters are shown in figure (d).

be clusters. Finally, small clusters are considered noise, and are eliminated. This
process is illustrated by figure 3.2.

In order to efficiently determine the MST, a Delaunay triangulation is calcu-
lated for the detected corners, which can be implemented very efficiently for Eu-
clidean point sets by using a radial sweep-hull scan [Sinclair 10]. From the result-
ing triangulation, when considered as a Euclidean graph, the minimum spanning
tree can be obtained by means of the well known Kruskal algorithm.

To obtain a clustering, inconsistent edges are removed from the MST. An edge
is regarded inconsistent if one of following conditions holds:{

‖N1 −N2‖ > µN1
+ c σN1

‖N1 −N2‖ > µN2 + c σN2

(3.4)

where ‖N1−N2‖ is de Euclidean length of the edge and µN1 and µN2 are respec-
tively the average length of nearby edges at the side of node N1 and the average
length at the side of node N2. Similarly, σN1 and σN2 are the standard deviations
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of the edge lengths at both sides. In our implementation, c was set to c = 1.5

such that an edge is considered an outlier if its length differs more than 1.5 stan-
dard deviations from the mean. The mean and standard deviations are calculated
in a neighborhood around N1 and N2 such that only nearby corners are taken
into account. Two nodes are considered ‘nearby’ if their geodesic distance is not
larger than three. Figure 3.1 illustrates the result of this clustering approach on
the detected corners of a scene in two video frames. In the second video frame,
illumination has changed and objects have moved compared to the first frame.

To enforce local smoothness, local regularization is based on weighted vector
median filtering. Vector median filters are known to be able to smooth estimated
velocity fields while maintaining motion discontinuities or edges. L. Alparone et
al. [Alparone 99] showed that the application of a weighted vector median filter
after dense optical flow calculation improves the smoothness and accuracy of the
result. The disadvantage of such approach however, is that the median filter is
only used as a non-linear postprocessing filter to reduce noise in a non-regularized
flow field instead of incorporating the smoothness constraint directly into the cost
minimization process itself.

Furthermore, while it is clear how to apply such a filter on a dense optical flow
field on a regular grid, it is less obvious how to use a similar technique on a sparse
flow field in a non-regular grid. In the next paragraphs, we discuss how vector
weighted median filtering can efficiently be used on a non-regular grid to directly
incorporate the smoothness constraint as a regularization term in the cost function
defined by equation (3.3).

The vector median filter is basically just a median filter applied to each com-
ponent of the vectors. In order to regularize the optical flow search process, we
define the optimal flow vector for a corner ct as the vector obtained in that point
after weighted vector median filtering of the flow field obtained in a previous iter-
ation, and then minimize the difference between a candidate flow vector and the
optimal flow vector by means of a well chosen regularization term λ(ct−1, ct).

In order to obtain the median vector within a neighborhood of corner ct, the
concept of neighborhood must be defined for a sparse, non-regular grid. We pro-
pose to adopt the concept of natural neighbors as used in Voronoi interpolation
schemes. The natural neighbors of corner ct are those corners whose Voronoi cell
in a Voronoi tessellation are adjacent to the Voronoi cell of ct. Furthermore, only
corners belonging to the same cluster as corner ct are considered which effec-
tively allows us to perform regularization locally and to deal with motion discon-
tinuities. Calculating the Voronoi tessellation incurs almost no extra performance
cost, since a Delaunay triangulation was obtained already in the clustering stage,
and the Voronoi diagram is nothing more than the dual graph of this Delaunay
triangulation. This is illustrated by figure 3.3.
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(a) Delaunay triangulation. (b) Voronoi tessellation.

Figure 3.3: The Delaunay triangulation that was used during clustering is re-used to obtain
its dual graph; the Voronoi diagram. Voronoi cells define the concept of natural neighbors
for a non-regular grid, and are used for local regularization.

For each corner ct, the weighted median flow vector can then be calculated
based on its valid neighbors, which are those corners that are natural neighbors
and belong to the same cluster as corner ct. A weighted median filter replicates
each element several times, based on its weight, before finding the median value.
The weighting factor for a flow-vector of a neighboring point lt should depend on
both the reliability r of the estimated flow vector for this neighboring corner in the
previous iteration, and a distance measure d indicating how close the neighbor is
to corner ct.

As a result, our vector median filter behaves like a bilateral filter. In the image
restoration domain, bilateral filters are known as linear filters that combine two
types of information into the weight calculation, and have been shown to behave
both noise-reducing and edge-preserving. This concept was extended to non-linear
filters by Francis et al. [Francis 03], resulting in the bilateral median filter. The
weights of our bilateral filter are defined by a reliability measure r and a distance
measure d.

The reliability r of the estimated flow vector for a neighboring point lt in the
previous iteration can be obtained directly from the cost r = C(lt−1, lt) associated
with the match of this point with a corner in the previous frame. For the distance
measure d, we propose to use the weighting factor as used in the non-Sibsonian
Voronoi interpolant for non-regular grids, described by Belikov et al. [Belikov 97].
In the following, let scl be the vector representing the edge of the voronoi diagram
that separates points ct and lt, and let hcl be the vector from ct to lt. The non-
Sibsonian Voronoi interpolant weighting factor effectively uses the natural neigh-
bor concept by defining the weight as the quotient of the distance between the
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Figure 3.4: Definitions for the non-Sibsonian interpolant weight.

centroids of the cells |hcl| and the length of the edge |scl| that is shared by the two
Voronoi cells. This is illustrated more clearly in figure 3.4.

To calculate the weighted median flow vector for corner ct, all natural neigh-
bors lt that are also within the same cluster are assigned a weight. Natural neigh-
bors for which no matching point could be found in the previous video frame are
removed once the Voronoi diagram is obtained, and are therefore ignored by the
weighted median calculation. Let lt−1(j) be the corner point in the previous frame
that was matched to the corner point lt(i) in the current frame, where lt(i) is a nat-
ural neighbor of the corner ct for which we try to estimate the optical flow vector.
The weight for the i-th natural neighbor, lt(i), is then defined as wi:

wi = C(lt−1(j), lt(i))
|hcl(i)|
|scl(i)|

. (3.5)

Let w = (w1, ..., wi, ...wn) be the vector containing the bilateral filter weights for
all n neighboring corners. The optical flow-vectors of all these neighboring cor-
ners, obtained in the previous iteration, are then replicated N i times, after which
the median vector oct of the resulting set of flow-vectors is calculated. This flow-
vector is the result of the bilateral filtering process.

N i =
max(w) + 1

wi + 1
. (3.6)

Flow vector oct is considered to be the optimal, noise-free flow vector for a
corner point ct, and thus for its region rt since it is obtained by weighted median
filtering the u and v components of the neighbors of this corner. While search-
ing for a better match for corner ct during the next iteration, we would therefore
like to encourage matches that result in a flow vector that resembles the optimal



CHAPTER 3 89

vector oct . Thus, in the next iteration, the difference between a possible candi-
date vector and this optimal vector is minimized in order to obtain a smooth flow
field. Minimization of this difference is achieved by defining the regularization
term λ(ct−1, ct) in the cost function shown by equation (3.3) as follows:

λ(ct−1, ct) = | |oct | − |fct | | arccos

[ 〈oct , fct〉
|oct ||fct |

]2

, (3.7)

where fct is the candidate flow vector from corner ct to a corner ct−1 in the previ-
ous frame.

Adding the regularization term to the cost function makes sure that the dif-
ference in magnitude between the optimal vector oct and the candidate vector fct
is minimized, together with the squared angle difference between both vectors.
Moreover, a change in direction is penalized more than a change in length. Be-
cause only corners in the same cluster as the corner under consideration are used
while calculating the optimal flow vector, the minimization process is biased to-
wards a smooth flow field but can still cope with sudden motion discontinuities at
object boundaries.

Before the first iteration, λ(.) was set to zero. Therefore, after the first iteration,
the non-regularized flow-field is obtained. After each subsequent iteration, flow-
vectors are biased more towards the median flow-vector in their natural neighbor-
hood. The final flow field can be chosen to be either the result of the last iteration,
or the result of the last median calculation. In the latter case, this corresponds
to applying a final weighted median filter as a postprocessing step to the already
regularized optical flow field.

4 Results and Discussion

Evaluating optical flow algorithms is a tedious and difficult task, mainly due to the
lack of ground truth data. The most widely used dataset of ground truth optical
flow vectors is the Middlebury optical flow database [Baker 11]. However, the
Middlebury dataset was created for typical optical flow algorithms based on the
constant brightness assumption and local linearization and therefore does not con-
tain sequences with changing illumination or large displacements. Furthermore,
the available test sequences are synthetically generated and often do not resemble
real video very well as the video frames contain very fine grained details, a lot of
similarity in texture, and frame to frame displacements are rather small. Also the
sequences lack motion blur and realistic illumination, resulting in unfair compari-
son between algorithms that can deal with noisy observations, and algorithms that
assume perfect data.
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This led us to the creation of a real-video dataset, which is made publicly avail-
able1 together with its carefully annotated ground truth [Spruyt 13b]. However,
even though the algorithm described in this chapter was designed with changing
lighting conditions and fast motion in mind, it might still be interesting to see how
it performs on artificial data, allowing for an easy comparison to many of the state-
of-the-art algorithms that are listed on the Middlebury website. Therefore, in the
next sections, our algorithm is evaluated both on the Middlebury dataset, and on
a dataset with changing illumination and fast motion for which ground truth data
was manually created.

In the following experiments, the image size was 320× 240, the search radius
for point matching was 30 and three iterations were used for regularization.

For each sequence in the dataset, optical flow fields are calculated by our pro-
posed algorithm, indicated as LBP-flow, by the pyramidal Lucas-Kanade algo-
rithm, by the Total Variation based MDP-flow algorithm [Xu 12], and by SURF
descriptor based matching. While Lucas-Kanade represents the most widely used
motion estimation technique in real-time object tracking, MDP-flow is currently
the top-ranking algorithm when evaluated on the Middlebury dataset. SURF de-
scriptor based matching is often used for point tracking and is considered one of
the most robust descriptors currently available. Since our method combines con-
cepts from traditional optical flow estimation techniques with a point matching
methodology, comparison with state-of-the-art algorithms of both types gives a
clear view on its capabilities.

For the pyramidal Lucas Kanade algorithm, a window size of 10 × 10 and
a 2-level pyramid was used, resulting in a maximally allowed displacement of
(22−1)×10 = 30 pixels. This windows size was chosen such that the maximally
allowed displacement is equal to the search radius used by our algorithm and the
SURF algorithm. However, changing these parameters did not affect the results
much. For the SURF algorithm, it is important to note that only SURF descriptors
were used to describe and match the FAST feature points, and that the SURF
detector itself was not used. The reason for this is that the SURF detector returns
Determinant of Hessian (DoH) based features which can not be fairly compared
with corners. For each of the algorithms that are tested in this section, the same
sparse set of FAST keypoints are used to evaluate the performance.

The major contribution of our work is a sparse regularization scheme that al-
lows very simple feature descriptors to yield robust point matching results. How-
ever, it should be noted that any kind of feature detector could replace the FAST
detector if real-time performance is not a concern.

For evaluation purposes we report both the angular error and the endpoint error,
similar to [Baker 11]. The angular error between an estimated flow-vector (u, v)

and the corresponding ground truth vector (uGT , vGT ) is commonly used to com-

1http://telin.ugent.be/~vspruyt/ICME2013/

http://telin.ugent.be/~vspruyt/ICME2013/
http://telin.ugent.be/~vspruyt/ICME2013/
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Figure 3.5: Middlebury Dataset evaluation (angular error).

pare optical flow algorithms in the computer vision community. It is defined as the
angle in 3D space between the vectors f = (u, v, 1) and fGT = (uGT , vGT , 1).
The angular error AE is calculated as:

AE = arccos

(
f · fGT
|f | |fGT |

)
. (4.1)

The popularity of the angular error is due to the fact that it provides a relative
error in the sense that errors in large flows are penalized less than errors in small
flows. However, for practical applications both types of errors are usually equally
important. Therefore, Baker et al. [Baker 11] introduced a second error measure,
termed the endpoint error. The endpoint error EE simply corresponds to the
Euclidean distance between the groundtruth point match and the estimated point
match, and is defined as:

EE =
√

(u− uGT )2 + (v − vGT )2. (4.2)

To allow for easy comparison of our results with results reported in litera-
ture, we report both types of error measures. Figure 3.5 shows the resulting an-
gular deviation from the given ground truths for each of the algorithms tested on
the Middlebury sequences. Figure 3.6 shows the resulting endpoint deviation for
these same sequences and algorithms. These results indicate that the proposed
algorithm, LBP-flow, outperforms both Lucas-Kanade and the SURF matching al-
gorithm. For each of the test sequences, except for the Grove2 sequence, a lower
average angular error is obtained, accompanied by a lower endpoint-error. While
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Figure 3.6: Middlebury Dataset evaluation (endpoint error).

SURF descriptors are much more descriptive than our CS-LBP descriptor and are
rotation invariant, our proposed regularization scheme effectively reduces match-
ing noise and allows the use of much simpler feature descriptors resulting in faster
execution with robust matching characteristics.

The results also show that the offline MDF-flow algorithm seems to be much
more robust than the proposed real-time algorithm. However, it is important to note
that the Middlebury dataset does not try to mimic real-life, low-quality video se-
quences. Real video data tends to lack sharp textures and edges, contains large and
irregular displacements, a minimal amount of spatial self-similarity, and greatly
violates the brightness constancy assumption. Therefore, algorithms performing
well on the Middlebury dataset might not perform well on real video data and vice
versa. Figure 3.7 shows frames from two sequences of the Middlebury dataset,
illustrating their artificial characteristics.

Table 3.1 shows the angular errors and table 3.2 shows the endpoint errors ob-
tained by each algorithm on the real-life video sequences we created and made
public for the research community, together with their ground truth. These se-
quences contain large and irregular displacements up to 30 pixels, camera artifacts
such as vignetting, noise and motion blur, and sudden changes in lighting condi-
tions.

These results illustrate the robustness of the proposed approach for real-life
video. The bad performance of Lucas-Kanade is easily explained by the violation
of the brightness constancy constraint. While the MDP-Flow algorithm performs
reasonably well when compared to the Lucas-Kanade algorithm, it also fails when
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(a) Frame 7 from the Grove3 sequence. (b) Frame 8 from the Grove3 sequence.

(c) Frame 7 from the Urban sequence. (d) Frame 8 from the Urban sequence.

Figure 3.7: Video frames from the Middlebury dataset.
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Table 3.1: Proposed Dataset evaluation (angular error).

Sequence Algorithm Angular error
Median Avg. Std. Dev.

Desk

Lucas-Kanade 87.6 87.9 65.0
SURF 2.0 2.5 3.0
LBP-Flow 1.9 2.0 2.9
MDP-Flow 12.9 44.6 48.8

Drinks

Lucas-Kanade 84.7 75.1 62.0
SURF 7.4 15.9 31.5
LBP-Flow 1.1 3.8 4.2
MDP-Flow 79.7 91.4 75.2

Office

Lucas-Kanade 7.2 41.5 54.5
SURF 8.7 27.4 41.8
LBP-Flow 3.3 3.5 2.3
MDP-Flow 11.2 16.2 17.5

Classroom

Lucas-Kanade 6.6 21.5 37.5
SURF 5.4 22.0 43.4
LBP-Flow 5.2 4.8 3.9
MDP-Flow 8.0 23.1 38.8

Table 3.2: Proposed Dataset evaluation (endpoint error).

Sequence Algorithm Endpoint error
Median Avg. Std. Dev.

Desk

LBP-Flow 1.0 2.2 3.0
Lucas-Kanade 46.2 44.4 27.0
MDP-Flow 26.0 32.0 26.8
SURF 2.1 2.8 3.3

Drinks

LBP-Flow 1.4 1.8 1.5
Lucas-Kanade 18.4 23.3 25.3
MDP-Flow 17.9 32.0 29.6
SURF 4.0 12.0 26.1

Office

LBP-Flow 1.0 1.1 0.6
Lucas-Kanade 2.2 8.6 10.1
MDP-Flow 3.9 5.5 4.3
SURF 2.0 8.3 15.8

Classroom

LBP-Flow 1.4 1.3 0.7
Lucas-Kanade 1.8 5.1 11.1
MDP-Flow 3.5 7.7 11.7
SURF 1.4 10.9 22.8
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lighting conditions change. The best result for the MDP-Flow was obtained with
the Office sequence, which contains the least amount of lighting change. Figure 3.8
shows the video frames and corresponding flow field for each of the sequences
used for evaluation. These sequences, together with their ground truth, are made
freely available for the research community.

For these challenging sequences, which represent typical scenarios in object
tracking applications, point matching algorithms such as the SURF method or the
proposed CS-LBP based method, outperform most optical flow approaches. These
results clearly show the advantage of our regularization scheme in combination
with a simple feature descriptor as opposed to a more advanced feature descriptor
without regularization constrains. Figure 3.9 visually shows the flow-field ob-
tained using each of the algorithms for the classroom sequence. The calculated
flow-vectors are illustrated by green arrows, whereas the ground truth vectors are
shown in black. The classroom sequence contains individually moving objects,
each moving to a different direction. By visually inspecting and comparing the
results, it becomes clear that the regularization helps to avoid outliers.

It is important to note that we do not claim that our algorithm outperforms the
SURF method for point matching in general. For example, SURF matching would
largely outperform our method when used for tasks such as image registration or
object classification. Moreover, the SURF detector would yield much more stable
regions of interest than the FAST detector used by our method. However, we do
claim that our method outperforms the traditional SURF point matching algorithm
when applied to the task of sparse optical flow estimation. This is achieved by our
efficient and local regularization scheme.

Similarly, we do not claim to present an optical flow algorithm that outper-
forms the MDP-flow method in general. The MDP-flow algorithm is able to es-
timate a dense optical flow field, which makes it suitable for tasks such as mo-
tion segmentation and depth estimation. Our algorithm can not be used for such
purposes. We do claim, however, that our method outperforms the MDP-flow
algorithms when applied to the task of sparse optical flow estimation which is
much simpler to solve because the aperture problem is largely avoided. Therefore,
for specific applications such as real-time tracking in video, where only a sparse
flow-estimate is needed, our method could replace more advanced optical flow
algorithms to maintain real-time performance.

The major focus of our work is real-time performance. Most object tracking
algorithms [Kodama 10, Lucena 03] resort to simple and sparse optical flow esti-
mators such as the Lucas-Kanade method due to their real-time constraints. For
these applications, a quick estimate of the motion direction and velocity of a re-
gion in the image is more useful than a dense and precise estimate of the complete
flow-field. Therefore, the ultimate goal of our work is to present a method that
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Figure 3.8: Proposed video dataset with annotated ground truth flow.
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(a) Lucas-Kanade. (b) SURF.

(c) MDP-Flow. (d) LBP-Flow.

Figure 3.9: Visualization of the obtained flow-field. Calculated vectors are shown in green,
whereas ground truth vectors are shown in black. For each method, the FAST corner detec-
tor was used to determine the points for which optical flow vectors are calculated. Ground-
truth vectors are obtained by careful manual annotation.
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Table 3.3: Average execution time per video frame.

Algorithm Execution time (ms) # corners
LBP-Flow 6.6 300
Lucas-Kanade 8.4 300
MDP-Flow 618.4 300
SURF 20.3 300
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Figure 3.10: Execution times and error measurements.

outperforms the still widely used Lucas-Kanade algorithm in terms of robustness
and accuracy, while having a lower computational cost.

Table 3.3 lists the average execution times for each algorithm when the flow
is calculated for 300 corner points. Timings were measured on an Intel 2.4 Ghz
dual core CPU. The proposed algorithm is extremely fast thanks to the simple
LBP based feature descriptors used, and can thus be used in real-time tracking
applications.

Figure 3.10 shows both the average execution time and the average angular
error as a function of the number of regularization iterations. As indicated by
the dotted line, the complexity of the proposed regularization scheme is linear in
the number of iterations. Furthermore, the error clearly reduces after the first few
iterations, illustrating the benefit of local regularization.

If only a single iteration is used, no regularization is performed, and the angular
error would be larger than the error obtained by more advanced point matching
algorithms such as SURF. However, after a few regularization iterations, the error
becomes much lower than the error obtained by other, non-regularized, methods.
Generally, the algorithm converges after 3 or 4 iterations which corresponds to
an execution time of about 7 milliseconds on our current hardware. The small
increase in error after the fourth iteration can be explained by imperfect clustering,
causing local over-smoothing of the flow field.
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Figure 3.11: Motion model evaluation for particle filter tracking.

The proposed algorithm is used to improve the proposal distribution of a par-
ticle filter based hand tracker, discussed in chapter 4. Tracking results were evalu-
ated on the publicly available dataset, proposed in [Spruyt 12], that contains eight
challenging video sequences. Results are reported in terms of the achieved VOC
score [Everingham 10]. The VOC score defines the amount of overlap between
the tracked bounding box, and the given ground truth bounding box. The score is
calculated as V OC =

Bg∩Bd

Bg∪Bd
, where Bg represents the pixels within the ground

truth bounding box, whereasBd represents the pixels within the detected bounding
box.

Figure 3.11 shows the widely used VOC score for each of the 8 video se-
quences used for evaluation. These results show that the error is lower for each of
the sequences if optical flow is used by the proposal distribution. On average, the
optical flow based proposal distribution outperforms a traditional bootstrap filter
by 11.8%.

Figure 3.12 shows several frames of sequence 4, used for evaluation. The top
row illustrates the results obtained using a simple constant velocity motion model,
while the bottom rows shows the results obtained using our proposed optical flow
solution.
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(a) Particle filter tracking with constant velocity motion model (sequence 4).

(b) Particle filter tracking with optical flow based motion model (sequence 4).

Figure 3.12: Motion model evaluation for particle filter tracking.

5 Conclusion
A fast algorithm was proposed to calculate a sparse optical flow field. The pro-
posed solution combines concepts from both point matching algorithms and opti-
cal flow estimation methods. Regularization is performed iteratively, based on me-
dian filtering and Voronoi interpolation for sparse, non-regular grids. The resulting
method is illumination invariant and able to handle large displacements making it
a perfect candidate for incorporation into real-time applications for uncontrolled
environments such as object tracking.

The method was evaluated thoroughly, and appears to be much more robust
than a pyramidal Lucas Kanade implementation while yielding similar or better
results then a SURF-descriptor based tracker. Furthermore, the algorithm outper-
forms the state-of-the-art in variational optical flow calculation, when used for
sparse flow estimation on a real-life video dataset. While the accuracy and robust-
ness of our method is comparable to state-of-the-art point matching and optical
flow estimation algorithms, its computational complexity is lower than the widely
used and very simple Lucas-Kanade method.

Finally, we showed that the incorporation of our optical flow method into a
state-of-the-art tracker greatly improves its robustness while the computational
overhead introduced by our method is negligible compared to the computation
time of the tracking algorithm itself. Our optical flow dataset is made publicly
available together with its carefully annotated ground truth.



4
Real-time, Robust Hand Tracking

1 Introduction

In the previous chapter, we introduced a computationally efficient method to obtain
a sparse optical flow field. In this chapter, we build upon these results to introduce
a real-time hand tracking algorithm. Furthermore, our hand tracking algorithm
incorporates the hand detector of chapter 2 to allow for automatic initialization and
error recovery. Whereas chapter 2 focussed on hand detection in static images, this
chapter focusses on hand tracking throughout video sequences. For an overview
of the relations between the components, introduced in each chapter, please refer
to figure 1.1.

Tracking rigid objects with a stable appearance, or tracking non-rigid objects
with a varying appearance but with clear, discriminative features (e.g. mouth, nose,
eyes) has been largely solved in academic literature. However, the appearance of
human hands varies greatly depending on their pose, and can therefore not be
described easily using clearly discriminative features. Hands are non-rigid, highly
articulated objects with a large number of degrees of freedom: 27 in total, six of
which represent translation and rotation of the wrist [ElKoura 03]. As a result, the
visual appearance of a human hand can vary widely, making hand detection and
tracking a challenging task.

To reduce the dimensionality of the problem, many hand detection and tracking
methods resort to detecting hands in predefined poses only [Huang 12,Kölsch 04b,
Ong 04, Stenger 06a]. Such methods have limited applicability in real-life appli-



102 REAL-TIME, ROBUST HAND TRACKING

cations where the user’s behavior should be restricted as little as possible. On the
other hand, many hand tracking methods, allowing free hand poses, resort to a sim-
ple (skin-)color based tracking approach due to the lack of other discriminative and
easily exploitable features [Asaari 10,Pham 09,Donoser 08,Kölsch 10,Shan 07,Bi-
lal 12, Dawod 10, Soriano 00, Spruyt 10a]. These methods however, tend to fail in
unconstrained environments with changing background and illumination.

With the advent of cheap, commercially available time-of-flight and structured
light cameras over the past few years, many researchers circumvent the above
problem by incorporating depth information into their algorithms [Huang 12,
Oikonomidis 11,Melax 13]. Depth maps greatly simplify the problem by allowing
instant removal of background pixels. Nevertheless, depth cameras usually rely
on infra-red signals and perform poorly in direct sunlight or in environments with
other infra-red light sources, which limits their applicability. Additionally, these
methods can not be applied to existing datasets lacking depth data.

In this chapter, we propose a real-time hand detection and tracking system
for monocular video, that could easily be combined with depth information when
available, but can also operate well without it. Our approach includes methods for
automatic initialization and error recovery, and yields a rough segmentation of the
tracked hand.

Object tracking in general is a widely researched domain in computer vision.
Object tracking can be considered a temporal extension of object detection. In each
video frame, the object of interest is re-detected, and temporal information about
past detections is used to overcome ambiguous observations, thereby decreasing
the error rate.

An important aspect of object tracking that is generally ignored in literature,
is initialization and error recovery. Robust tracking methods often model the ob-
ject of interest dynamically, such that the model adapts to changing illumination
or appearance. However, non-uniform illumination, caused by various unknown
light sources, is difficult to model accurately. As a result, these tracking methods
suffer from drift, caused by the accumulation of small estimation errors that are
introduced during each model update. Academic literature often ignores this prob-
lem by evaluating the tracking methods on very short video sequences or on video
sequences that are captured in controlled environments.

Due to the accumulation of tracking drift or due to unexpected environment
changes, trackers tend to fail too frequently in long-term object tracking. Further-
more, even if a tracking method would be able to detect drift, current tracking
algorithms are usually unable to automatically re-initialize. The reason for this is
that automatic initialization requires a robust object detector that operates without
temporal information. If such a detector were readily available, any object tracking
problem would simply be solved by re-detecting the object in each video frame,
thereby rendering the research field of object tracking useless.
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Literature usually treats object tracking and object detection as two indepen-
dent research domains. Yet tracking methods can not be initialized without a robust
detector, and a detector is generally not robust without temporal information. It is
clear that both topics are closely related, and are better solved jointly.

Similarly, object segmentation is closely related to object tracking. Object seg-
mentation is the task of obtaining the contour of the object of interest, thereby sep-
arating the object from its background. Whereas simple background subtraction
techniques are unable to cope with moving cameras, skin color based segmenta-
tion often fails in changing lighting conditions, and edge based segmentation tech-
niques tend to fail in case of motion blur due to fast hand motion. We therefore
propose a method that iteratively performs detection, tracking and segmentation,
feeding back new information to automatically adapt our probabilistic models and
to automatically recover from errors.

In most human-computer interfaces, all three steps (hand detection, hand track-
ing and hand segmentation) are merely a small part of the complete system, and
should only consume a fraction of the available processing power. This low latency
and low complexity constraint is not met by many techniques from literature, and
proves to be a challenging problem.

In the following, we propose a complete, real-time detection, tracking and
segmentation system, that is able to robustly track hands in unconstrained envi-
ronments and changing illumination, against cluttered backgrounds, by using a
simple monocular camera. The proposed algorithm automatically detects hands to
initialize the tracker, and can cope with a dynamic number of tracked objects in
the scene. Furthermore, error recovery procedures automatically detect drifted or
failed tracker instances. We show that our method outperforms the state-of-the-
art in hand tracking, while providing a low computational complexity, allowing
real-time processing.

The chapter is outlined as follows: In Section 2, we discuss related work. Sec-
tion 3.1 provides an introduction into Bayesian tracking methods such as Kalman
filters and particle filters, each of which are used by our tracking system. Sec-
tion 3.2 proposes a method to partition our state space in order to reduce the dimen-
sionality of the tracking problem. In Section 3.3, the observation and likelihood
models of our particle filter approach are detailed, and in Section 3.4 we discuss
our motion model and propose several improvements to the traditional particle fil-
ter approach. In Section 3.5 we propose the integration of the detection, tracking
and segmentation components into a closed loop tracking system with automatic
initialization and error recovery. Finally, Section 4 presents an extensive evalua-
tion of our methods, and a discussion of the results.
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2 Related Work

Continuous hand tracking is a challenging task, due to the fast, non-linear motion
of human hands and the changing backgrounds and illumination in unconstrained
environments. Although visual object tracking in general is a well researched
topic, tracking hands proves to be difficult, even for state-of-the-art tracking meth-
ods. Specifically, no single feature is able to unambiguously discriminate a hu-
man hand from its background. Nevertheless, most hand tracking methods try to
model the hand appearance by means of its color distribution [Asaari 10,Pham 09,
Donoser 08,Kölsch 10,Shan 07,Bilal 12,Dawod 10,Soriano 00,Spruyt 10a]. Skin
color is known to occupy a well defined region in color space [Gomez 02], often
referred to as the ‘skin locus’, and can therefore be modeled efficiently. However,
pure skin-based color trackers tend to fail if other skin-like objects such as faces
are present in the scene.

In [Spruyt 10a], we proposed a skin color based hand tracking method that
combines multiple color spaces to obtain a certain degree of illumination inde-
pendence. Skin color was modeled by means of a Gaussian Mixture Model, and
a particle filter was used for temporal smoothing. While the results of this work
were promising, the tracking method only relied on first order statistical infor-
mation by randomly sampling color values and evaluating their likelihood. As a
consequence, the particles of this particle filter implementation were only defined
by their spatial location (x, y), and did not capture any information about their sur-
roundings, such as background colors around the object, or the size of the object of
interest. As a result, this method tends to be sensitive to outliers in the skin color
likelihood function and the tracker is easily distracted by skin-like objects in the
background.

To increase tracking robustness, Shan et al. [Caifeng 04] proposed the inte-
gration of the mean-shift optimization algorithm within a skin-color based particle
filter framework. Mean-shift is an optimization procedure that finds the local mode
of a discrete distribution. By incorporating a mean-shift iteration after assigning
likelihoods to each sample in the particle filter framework, less particles are needed
to efficiently model the distribution as each particle is essentially pushed towards
the local maximum in the skin likelihood function. However, the approach of
integrating the mean-shift algorithm into the particle filter framework is rather ad-
hoc and is difficult to extend to non-conventional particle filter implementations in
which a specific proposal distribution is used. In Section 3.4 we extend the idea
by generating a proposal distribution using a mean-shift embedded Kalman filter.
Shan et al. further defined a constant velocity motion model. While they clearly
show the advantages of a mean-shift embedded particle filter (MSEPF), their hand
tracking method itself fails to robustly track hands in unconstrained environments,
due to their simple motion and observation models.
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A constant velocity motion model simply predicts the next hand location based
on the previous hand location and a current velocity estimate. Due to the irregular-
ity of hand motion, this prediction is often plain wrong, resulting in tracking errors.
To solve this, Kölsch and Turk [Kölsch 05] developed a deterministic tracking sys-
tem that incorporates sparse optical flow estimates into the motion model. Their
method, referred to as the HandVu system, tracks hands using a combination of
color and Harris corner feature matching. Instead of randomly sampling image
points to evaluate the color likelihood, they evaluate the likelihood at corner points
as returned by a Harris corner detector. These corner points are tracked between
consecutive frames, by means of the Kanade-Lucas-Tomashi (KLT) [Shi 94] track-
ing method and by relying on spatial constraints, defined as flocking behavior. A
well known disadvantage of the KLT tracker however, is its reliance on the so
called ‘brightness constancy constraint’, causing it to fail in environments with
non-uniform or changing illumination. Furthermore, due to the lack of a distinct
texture in human hands, Harris corners are usually found on the contour of a hand,
describing the local gradients, and are therefore not stable enough for accurate
tracking.

Each of the above methods depend on histogram based color based models
that are used to estimate the posterior probability of a pixel representing skin. As
a result, these algorithms can not distinguish between actual hands and skin-color
like background objects. To solve this, Kölsch and Turk extended the original
HandVu system by incorporating a discriminative Haar-classifier [Kölsch 10]. In-
stead of using the final binary decision of this classifier, Kölsch and Turk define a
likelihood function, based on early-stage votes that result from the Haar cascade.
This likelihood is then used as an appearance based prior in their tracking system,
guiding the sampling process. Although this approach is rather sensitive to back-
ground clutter and greatly increases the tracker’s computational complexity, part
of our tracking method is loosely inspired by their idea of incorporating a discrim-
inative classifier into the generative model of a probabilistic tracking algorithm.

Liu et al. [Liu 12] take this idea one step further by combining the HandVU
tracker with a Random Hough Forest based detector. Their method integrates the
flock of features tracking algorithm with the object detector proposed by Gall and
Lempitsky [Gall 09]. Although this greatly increases robustness against back-
ground clutter, the proposed system can not cope with fast motion, changing il-
lumination and hand-like objects such as human faces. Additionally, the grab-
cut [Rother 04] algorithm is used for segmentation purposes, such that the com-
plete system can not be used for real-time human-computer interaction.

Independently of Liu et al., we also proposed a particle filter based hand tracker
that uses a Random Hough Forest detector to generate an appearance based prior
that is incorporated into the likelihood model [Spruyt 12]. Our detector is scale
and rotation invariant, and operates in real-time. We showed that this method
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outperforms many of the state-of-the-art tracking algorithms when applied to hand
tracking, while being competitive with state-of-the-art classifiers when applied to
different problems such as person detection.

Liu et al.,showed that incorporating a segmentation step into the tracking al-
gorithm can further increase robustness and allows the tracker to adapt to its envi-
ronment. Using a similar idea, Wan et al. [Jun 12] combined an optical-flow based
motion model with a grab-cut based observation model in a deterministic track-
ing framework. Like the work of Kölsch and Turk, their motion model relies on
KLT feature tracking, and the Harris corner feature points are filtered using several
heuristics. The estimated hand state is then used to initialize a grab-cut segmen-
tation step, which incorporates energy terms representing skin color, motion cues
and edge information. However, this method depends on the KLT feature tracking
algorithm, which assumes a constant brightness, small motion vectors and spatial
motion smoothness. Therefore, this method is not robust against sudden lighting
changes and fast motion. Moreover, due to the use of advanced algorithms such as
grab-cut and Chamfer matching, the proposed solution can only process a single
frame per second, on modern hardware.

Whereas the above methods treat hands as individual objects, several solutions
incorporate contextual information to increase tracking robustness. Buehler et al.
[Buehler 08] try to fit a complete arm model to each video frame, and use this
model to infer the position of the hand. The model is fitted to both frames in
the past and frames in the future, and temporal tracking is applied between the
keyframes in which arm detection succeeded. For this reason, their method can
not be used for real-time tracking. Furthermore, the algorithm takes about two
minutes of processing time per frame on modern hardware.

Based on this idea, Karlinsky et al. [Karlinsky 10] used a hierarchical chains
model to detect and track articulated objects. The start node of this chain is config-
ured by means of face detection, after which an iterative procedure automatically
aligns the rest of the chain with the limbs of the person. Consequently, this method
can only be used in situations where the face of the person is visible and can be
detected robustly, and where the complete upper body of the person is contained
inside the video frame.

Pfister et al. [Pfister 12] extended the work of Buehler et al. by learning a
random forest classifier to find the limb joints in the image. While their method
outperforms the method proposed by Buehler et al. in one specific dataset of video
sequences, their algorithm strongly depends on a foreground-background segmen-
tation step, which they developed and tuned specifically for these video sequences.

In this chapter, we propose a complete hand tracking framework. A major nov-
elty is the introduction of a closed-loop detection-tracking-segmentation frame-
work that adapts to its environment and automatically recovers from tracking fail-
ure. Secondly, we propose a theoretical framework to enhance the traditional par-
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ticle filter by designing a strongly peaked proposal distribution. Our proposal dis-
tribution integrates tracking methods such as mean-shift, optical flow and Kalman
filtering into the particle filter framework in a probabilistic manner. Furthermore,
we propose a partitioning of the state space to avoid the curse of dimensionality
when estimating both the location and the size of on object, and we introduce sev-
eral enhancements to the traditional particle filtering approach in order to achieve
real-time tracking. Finally, we provide an in-depth discussion of our observation
model that is based on data-fusion concepts instead of relying simply on color his-
tograms or motion detection. We show that our method can cope with background
clutter and skin-like objects such as human faces. Furthermore, the proposed so-
lution does not make assumptions about the scene and does not require the face,
arms or body to be visible in the video.

3 Materials and Methods

Tracking methods such as Kalman filtering [Asaari 10], mean-shift tracking
[Exner 10] and optical-flow based tracking [Spruyt 13b] each have their strengths
and pitfalls. Many of these shortcomings are related to noise in the image, to the
lack of a closed form solution to describe the expected hand motion, or to the dif-
ficulties in approximating the shape of the posterior distribution. Particle filters
are known to be able to cope with such situations by incorporating noise in their
models and by modeling the posterior distribution by a set of discrete samples.

However, instead of choosing one of the above tracking approaches, we pro-
pose a method to incorporate optical-flow, mean-shift and Kalman smoothing into
the particle filter framework. Furthermore, we do this in a way that this combi-
nation also solves the largest problem with conventional particle filters; i.e. inef-
ficient use of the particles by sampling regions of the image that are unlikely to
contain the object of interest.

Incorporating the above methods in the observation model of the particle filter
would not solve this problem. On the other hand, using these methods in the mo-
tion model of the particle filter would result in particle weights that have no proba-
bilistic meaning, and would force us to abandon the Bayesian framework. Hence,
we propose to incorporate these techniques into the importance sampling stage of
the particle filter, by designing a new proposal distribution. To do this, we need to
redefine the particle filtering problem in the context of importance sampling, in-
stead of the widely used prediction-update concept of traditional bootstrap particle
filters.

In the following section, we provide an introduction into Bayesian filtering
methods such as Kalman and particle filtering to further develop the above idea.
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3.1 Bayesian Filters: an Introduction

Tracking methods can be coarsely classified as being either deterministic or prob-
abilistic. The Camshift algorithm [Exner 10] is a well known example of a deter-
ministic method for visual tracking. Deterministic methods, such as the Camshift
algorithm or the flocks of feature based tracker [Kölsch 10], typically return a pre-
dictable result that only depends on the system’s input. These methods assume
that their model of the state to be estimated is deterministic and complete. Proba-
bilistic trackers such as particle filters on the other hand, incorporate randomness
into their model and thus yield results that are a function of both the input and a
random sample from a predefined probability distribution. These methods assume
that their model of the state to be estimated is incomplete or non-deterministic,
and accordingly model this uncertainty by a random noise variable from a known
distribution.

Although deterministic tracking methods may intuitively seem to be prefer-
able, they often exhibit a hit-or-miss characteristic. If the model used by the tracker
is accurate, the result will be correct, while an inaccurate model automatically re-
sults in tracking failure. Due to the difficult problem of hand tracking, it is of-
ten impossible to take all possible parameters that describe the environment into
account. Observations are influenced by camera parameters, illumination, back-
ground colors and dynamics, motion velocity and the user’s appearance, amongst
others. A probabilistic tracking algorithm explicitly assumes that the model used
to describe the object of interest is insufficient, and that the influence of unknown
parameters can be modeled as an additive noise term that is sampled from a chosen
distribution.

For example, if the motion of an object would be modeled by a first order
autoregressive model, while its actual motion follows an n-th order autoregressive
model, then deterministic tracking methods would simply fail, while probabilistic
tracking methods would be able to model the higher order additive terms by means
of a white noise term.

Moreover, in visual tracking, observations about the object of interest, such as
colors or gradient information, are almost always polluted by clutter and noise.
Probabilistic tracking methods are able to incorporate this noise into their models,
while deterministic methods assume perfect observations.

In the following, let x = (x1, x2, ...xn) be the n-dimensional state vector to
be estimated (e.g. position of a hand), and let y be an observation (e.g. an image).
From a probabilistic tracking perspective, the problem of object tracking can be
described by the following state space representation:

p(xt|xt−1) : xt = f(xt−1,mt−1) (3.1)

p(yt|xt) : yt = h(xt,nt), (3.2)
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where xt represents the state of the random variable of interest at time t, yt rep-
resents the corresponding observation or output, mt is the system noise, and nt is
the measurement noise. Whereas the system noise is a random variable that mod-
els the inaccuracies of the prediction model f(.), the measurement noise models
the discrepancy between an observed object position and the true object position
and thereby represents the sensor noise. Thus, the state to be estimated is a func-
tion of the previous state and a noise component, whereas the observed output is a
function of the current state and a noise component.

The goal of visual tracking is then to estimate the state xt, such that the belief
in this state is maximized, given the past observations y1:t. To that end, Bayesian
tracking methods estimate the posterior density function p(xt|y1:t) based on equa-
tions (3.1) and (3.2). In theory, this estimate can be obtained recursively, in two
stages: prediction and update.

In the prediction step, only the previous estimate p(xt−1|y1:t−1) is known
and no observations are available yet. In this step, the previous state estimate is
propagated into the current time instance, by means of the state transition prior
p(xt|xt−1):

p(xt|y1:t−1) =

�
p(xt|y1:t−1,xt−1)p(xt−1|y1:t−1)dxt−1 (3.3)

=

�
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (3.4)

The equality between equation (3.3) and (3.4) is valid because equation (3.1) mod-
els a first order Markov process, such that the current state is independent of the
previous observations given the previous state.

Once a new observation yt becomes available, the update step is executed.
During the update step, Bayes’ rule is used to combine the latest observation yt
with the predicted state. This amounts to the computation of:

p(xt|y1:t) =
p(y1:t|xt)p(xt)

p(y1:t)
(3.5)

=
p(y1:t−1|xt)p(yt|xt)p(xt)
p(y1:t−1)p(yt|y1:t−1)

(3.6)

=
p(xt|y1:t−1)p(yt|xt)

p(yt|y1:t−1)
. (3.7)

The equality between equation (3.5) and (3.6) again depends on the Markov as-
sumption. This implies that observations are independent given the current state.

In the numerator of equation (3.7), the first factor is computed by equation
(3.4) and is the result of the prediction step. The second factor corresponds to the
likelihood function that is computed from an observation model and indicates how
likely the current measurements yt are, given the hypothesized state xt. Finally, the
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normalization factor in the denominator can be written as a function of these two
known distributions, again using the Markov assumption such that observations
are independent given the current state:

p(yt|y1:t−1) =

�
p(yt|xt)p(xt|y1:t−1)dxt. (3.8)

If this probability density function (PDF) is known to be normally distributed,
and if both the motion model as defined by equation (3.1) and the observation
model as defined by equation (3.2) are linear functions of their input, then the
corresponding prior and likelihood distributions are inherently Gaussian too. In
such case, where all distributions are Gaussian, and all transformations are linear,
the integrals shown in equations (3.4) and (3.8) can easily be calculated analyti-
cally. The resulting algorithm is called a Kalman filter and will be of importance
in Section 3.4.2.

However, in many practical problems the PDFs are not Gaussian, and the mo-
tion model or observation model is not linear. In visual tracking, for instance,
multiple locations in the image might have an equal likelihood of representing
the object, resulting in a multimodal distribution. Furthermore, motion models
are often quadratic, or piecewise linear. In such case, an exact solution for these
high dimensional integrations and thus for the posterior density, is hard to obtain.
Instead, an approximate solution can be found by means of Monte Carlo sampling.

Particle filters do not try to solve the above equations but instead use Monte
Carlo simulation to directly represent the posterior PDF as a weighted sum of N
discrete samples (a.k.a. particles) as shown by equation (3.9).

p(xt|y1:t) ≈
N∑
i=1

witδ(xt − xit), (3.9)

where xit is a random sample from this distribution xit ∼ p(xt|y1:t), δ represents
the Dirac delta function, and wit = 1

N . In practice, drawing samples from the
posterior is impossible because the posterior distribution is exactly what we are
trying to estimate. On the other hand, for a given observation yt, the likelihood
p(yt|xit) can easily be obtained from the observation model defined by equation
(3.2).

If a distribution can not be sampled directly, but its likelihood can easily be
evaluated, an approximation of this distribution can be obtained by means of im-
portance sampling. Instead of sampling the posterior distribution, samples are
drawn from any other distribution, called the proposal distribution, the support of
which must include the support of the true posterior. The weights wit of the sam-
ples from this proposal distribution are then obtained by evaluating these samples
using the likelihood function, such that the weighted set of samples approximates
the true posterior distribution.
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Let the proposal density, also called importance density, be q(.). According to
Bayes’ rule, we can write the posterior as p(xt|y1:t) = αp(y1:t|xt)p(xt), where α
is a normalization factor that is equal for all the samples drawn from q(.). Then the
importance weight of each particle can be calculated as shown by equation (3.10).

wit =
p(y1:t|xit)p(xit)
q(xit|y1:t)

. (3.10)

Moreover, under the Markov assumption, these weights can be estimated re-
cursively [van der Merwe 01] as

wit = wit−1

p(yt|xit)p(xit|xit−1)

q(xit|xi1:t−1,y1:t)
. (3.11)

The numerator of equation (3.11) is then simply the product of the likelihood
(i.e. observation model) p(yt|xit) and the state transition prior (i.e. motion model)
p(xit|xit−1). The only remaining problem now is to choose the proposal distribu-
tion in the denominator of equation (3.11).

Particle filters that use recursive importance sampling to obtain a weighted,
discrete approximation of the posterior distribution are called Sequential Impor-
tance Sampling (SIS) particle filters.

The optimal proposal distribution has been shown to be the one that minimizes
the variance of the importance weights, conditioned on x1:t−1 and y1:t [van der
Merwe 01]. Nevertheless, in practice it is usually impossible to calculate this op-
timal distribution. Most current particle filter implementations, such as the well
known CONDENSATION algorithm [Isard 98], therefore simply use the state tran-
sition prior p(xit|xit−1), returned by the motion model, as the proposal distribution.
Particle filter implementations that employ this strategy are called bootstrap filters
and are the most widely used particle filter variant.

Bootstrap filters ignore the fact that the proposal distribution is conditioned on
the latest observation. Instead, they assume that the current state is only a function
of the previous state and is independent of the latest observation. In other words,
the posterior is assumed to change smoothly over time thereby closely resembling
the transition prior at each time step t. Plugging the state transition prior into
equation (3.11) results in a greatly simplified weight calculation:

wit = wit−1

p(yt|xit)p(xit|xit−1)

p(xit|xit−1)
= wit−1p(yt|xit). (3.12)

The proposal distribution is cancelled out in the bootstrap filter equation, and as
a result only a prediction and an update needs to be performed. Although bootstrap
filters are the most widely used type of particle filter, failing to introduce the latest
observation into the proposal distribution has several problematic disadvantages.
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In Section 3.4.2 we propose a solution to these by abandoning the bootstrap filter
idea, and designing a more appropriate proposal distribution.

The complete set of particles represents a probability mass function, such that
the final state estimate x̄ can be obtained by searching for the mode of this discrete
distribution, or by calculating the average state of all particles if the distribution is
Gaussian:

x̄ = E(xi) =

∑N
i wixi∑N
i wi

. (3.13)

At each time instance t, some particles that represent a close approximation
to the actual state will be assigned a high weight, whereas others will be assigned
a low weight. At the next time instance, t + 1, particles with a low weight will
probably be assigned an even lower weight, since the new estimate is based on the
bad state approximation of the previous time instance t. As a result, after a while,
only few particles with a corresponding high weight will model the mode of the
posterior, whereas most of the particles with corresponding low weight will model
the tails of the posterior distribution.

This problem is called particle depletion [Shan 07]. Sparse sampling of the
mode of the posterior distribution causes the filter to get easily distracted by noise
towards the tails of the distribution. To solve this problem, resampling techniques
are often used to replicate particles with high weights, while removing particles
with a low weight. SIS particle filters that employ resampling are called Sequential
Importance Resampling (SIR) filters.

A widely used resampling scheme is multinomial resampling. In multinomial
resampling, the set ofN new particles is sampled with replacement from the set of
N old particles. The probability that a particle i is picked at each sampling round
is defined by its weight wi. After resampling, all weights are set to wi = 1

N such
that the new sample set represents the same distribution as the original sample set
before resampling.

Although resampling solves the particle depletion problem, it introduces a new
problem called particle impoverishment [Shan 07]. After resampling, most sam-
ples are located on or around the peaks of the distribution, while few samples are
available to represent the tails. As a result, the tracker fails to explore the complete
search space and easily gets stuck on local maxima. As a compromise, most SIR
filters only perform resampling when needed, instead of resampling at every time
instance t.

In order to determine when resampling should be performed, an estimate is
needed for the performance of the particle filter state estimation at each time step.
Neal [Neal 01] showed that the variance of the estimator can be approximated as
follows:

Var(x̂) =
Var(xi)(1 + Var(wi))

N
. (3.14)
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If we were able to draw N samples directly from the posterior distribution,
instead of the proposal distribution, all weights would be wi = 1

N and the variance
of the estimator would be:

Var(x̂) =
Var(xi)

N
. (3.15)

Although we can not directly sample from the posterior, an estimator with
the variance of equation (3.15) could be obtained by increasing the number of
samples N in equation (3.14). A good measure of the performance of the particle
filter would thus be the number of samples N1 that would be needed by a particle
filter that would draw its samples directly from the posterior, in order to obtain a
variance that is equal to the variance observed in the current particle filter with N2

particles:

Var(xi)(1 + Var(wi))

N2
=

Var(xi)

N1
(3.16)

⇔N2 =
N1

1 + Var(wi)
. (3.17)

This numberN2 of independent and identically distributed (i.i.d.) particles that
would be needed by an ideal sampler to obtain the current variance is called the
Effective Sample size (ESS) and can be further simplified as follows:

ESS = N2 =

(∑N
i=1 ŵ

i
t

)2

∑N
i=1(ŵit)

2
=

1∑N
i=1(ŵit)

2
, (3.18)

where ŵit is the normalized weight, such that the sum of all weights equals 1. If
all particles are assigned the same weight, the effective sample size equals the real
sample size. If a single particle has a weight of 1 and all other particles have a
weight of 0, then the effective sample size is 1. In order to avoid impoverishment,
most SIR filters therefore only resample if ESS < αN with α ∈ [0, 1].

In general, we want to resample as little as possible, while still being able to
model the mode of the posterior density accurately. Hence, a proposal distribution
that closely matches the posterior distribution is extremely important as it greatly
reduces the need for resampling. In Section 3.4.4 we further extend our proposal
distribution to accomplish this.

In the next sections we discuss our observation and motion models, and we
propose solutions to several of the problems described above. Moreover, we pro-
pose several design choices to reduce the computational complexity of the system,
in order to accomplish real-time tracking.

3.2 State Space Definition and Partitioning

Since hands are highly articulated and non-rigid objects, a complicated model
would be needed if a deterministic tracker were to be used. Instead, we use a prob-
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abilistic particle filter, and propose to coarsely model the human hand by means of
its bounding box. Using such a simple model allows the tracker to operate in real-
time, since many calculations can be simplified, as will be explained later. The
orientation of this box, and a fine grained segmentation of the hand, can easily be
obtained during a postprocessing step. The bounding box, and thus the unknown
state b, is parameterized as follows:

b = (x, y, w, h), (3.19)

where x and y represent the hand location, whereas w and h represent its width
and height respectively.

However, even with the coarse simplification of representing the human hand
by its bounding box, the search space is still 4-dimensional. Since particle filters
depend on random sampling, the accuracy of the estimated posterior distribution
heavily depends on the sample density in this search space. Due to the curse of
dimensionality, the number of samples needed to achieve a certain sample density,
increases exponentially with each added dimension. If 30 particles would suffice
to sample a 1-dimensional unit interval, then 304 = 810 000 samples would be
needed to sample a 4-dimensional unit hyperspace with the same sample density.

MacCormick et al. [MacCormick 00] proposed a technique to reduce this di-
mensionality in case a hierarchical relation exists between the parameters to be
estimated. As an example, they showed how the finger position, hand location and
arm orientation can be tracked sequentially instead of simultaneously. We propose
to use this concept of partitioned sampling to reduce our 4D tracking problem to
two connected 2D tracking problems.

Partitioned sampling can be considered the statistical equivalent of a hierar-
chical search, in which the child node in a tree depends on the state of its parent.
Instead of simultaneously estimating the joint state of parent and child, partitioned
sampling proposes to first estimate the parent’s state, and to use this estimate to
obtain an estimate of the child’s state. After estimating the parent’s state, the state
space is resampled using the parent’s likelihood as an importance density, in or-
der to populate the regions of highest likelihood in the known state partition. The
child’s state is then estimated, using this resampled particle set.

To be able to apply partitioned sampling, the state space b must be partition-
able into a Cartesian product b = b1 × b2. Furthermore, the dynamics f or the
motion model, must be decomposable as f = f1 ∗ f2, where ∗ represents convo-
lution, and where f1 acts on b1, while f2 acts on b2. Finally, a factorization of the
observation model h must be found, such that each factor is peaked in the same
region as the posterior of the corresponding partition bi.

In other words, independent subsets of state variables must exist in the original
state b. In our case, it is safe to assume that the 2D location (x, y) of the hand is
independent of the hand’s size (w, h). Consequently, we can split the state space
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Figure 4.1: Schematic representation of the partitioned sampling approach.

b into bloc = (x, y) and bsize = (w, h). We also define a motion model floc that
acts on bloc, and a motion model fsize that acts on bsize. Similarly, an observation
model hloc is defined to represent the likelihood of bloc, and an observation model
hsize is defined to represent the likelihood of bsize.

The first state partition, bloc, is predicted by motion model floc, after which
the resulting distribution is resampled such that the majority of samples occupy
the region of maximum likelihood according to the corresponding observation
model hloc. This weighted resampling can easily be implemented by first assigning
weights to each particle based on the observation model hloc, and then executing
resampling like any conventional SIR particle filter.

Resampling results in a new set of samples describing state b′. These sam-
ples are then used by the second motion model, fsize, to predict the width and
height of the hand. After prediction, the corresponding observation model, hsize,
is used to assign weights to each of the particles, and finally the resulting particle
set is resampled again if the effective sample size (ESS) is smaller than a certain
threshold.

This process of partitioned sampling corresponds to factorization of the likeli-
hood function as shown in equation (3.20).

h(bt) = hloc(bloc)hsize(b
′), (3.20)

where b′ is the state estimate from the first motion model floc.
Furthermore, the motion model is decomposed hierarchically, such that the

second motion model, fsize acts upon the resampled particles representing b′, as
shown by equation (3.21).

f(bt−1) = floc(bt−1) ∗ fsize(b′). (3.21)

This complete process of partitioned sampling is illustrated graphically by fig-
ure 4.1.

Summarized, we converted the 4-dimensional problem into a sequence of two
2-dimensional problems which can be solved much easier. This enables our tracker
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to robustly track hands using only 50 particles while maintaining a sample density
in each partition that is equal to the density that would be obtained when using
(
√

50)4 = 2500 particles in the original 4-dimensional problem. Thus, this ap-
proach greatly reduces the computational complexity of the tracking algorithm.

3.3 Observation Model

In this section, the observation models hloc and hsize that are needed to assign
weights to the particles are discussed. An observation model is a function of the
current state, as defined by equation (3.2), and is used to calculate the likelihood
of this state, given the observation.

3.3.1 Skin Detection and Color Space Selection

The most distinctive cue that can be used to describe the appearance of human
hands is color. Skin color has been shown to occupy a small cluster of possible
values in the complete color space [Soriano 00], often called the skin locus, and
can be used to quickly discard background pixels in the video frame.

To illustrate this, figure 4.2 shows a scatter plot of skin-pixels in a 2D color
space. The skin pixels were gathered from over 4000 images using the well known
Compaq dataset [Jones 02]. These images have been segmented manually and
were randomly selected using a web-crawler. The dataset contains pictures of
persons of different ethnicities and skin colors.

For visualisation purposes, the 3D RGB color space has been projected onto a
2D linear subspace. This subspace is spanned by the two largest eigenvectors of the
covariance matrix of the skin-pixel data, and is obtained using PCA. Figure 4.2
shows the convex hull of the projected RGB cube, together with the skin-pixels
themselves, and clearly illustrates the concept of the ‘skin locus’.

Phung et al. [Phung 05] showed that skin color of different races (black, yel-
low, brown, white) have very similar chrominance, whereas only the skin color
luminance varies widely. This means that the skin color in a picture of a white per-
son, captured in a dark scene, is similar to the skin color of a black person, whose
picture was captured in a bright scene. As a result, all skin color occurrences,
across races, form a tight and continuous region within the RGB color space, as
can be seen clearly in figure 4.2.

However, color is inherently sensitive to illumination changes, causing a shift
and scaling of the skin color of a specific individual, and should therefore be com-
bined with other cues to achieve robust hand tracking in unconstrained environ-
ments.

A well known method to model color in images, taking into account the illu-
mination, is based on the Lambertian reflectance assumption, which states that the
surface reflects light with equal intensity in all directions [Van de Sande 10]. The
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Figure 4.2: Skin locus (RGB color space projected onto a linear subspace).

image I(x, y) can then be represented by equation (3.22).

Ii(x, y) =

�
λ

c(λ)si(λ)r(x, y, λ)dλ, (3.22)

where λ is the light’s wavelength, c(λ) represents the color of the light source,
si(λ) with i ∈ {R,G,B} defines the sensitivity of the camera sensors, and
r(x, y, λ) is the reflectivity of the object at location (x, y). While more advanced
models exist, this simple model illustrates two of the most important problems in
color based object tracking.

The first problem is that the color in the image I(x, y) depends on the sensi-
tivity si(λ) of the camera sensors. In practice, the sensitivity curves of the red,
green and blue sensors tend to overlap, which introduces significant correlations
between the color channels. Accordingly, the R, G and B channels of the im-
age should not be modeled by three marginal probability distributions, but with
a single joint distribution instead. Modeling the colors by their joint distribution
would require exponentially more training data than modeling three independent
1D distributions, due to the curse of dimensionality.

The second problem that can be noticed in equation (3.22), is that the color
of a pixel clearly depends on the color and intensity c(λ) of the light source, and
not only on the reflectivity of the object itself. Moreover, the intensity of the
light source is a function of the wavelength. This means that an increase in white
illumination results in a scaling of the R, G and B components with a single scaling
factor. An increase in illumination that is not white however, results in different,
unknown scaling factors for the R, G and B components. Moreover, although not
modeled by a simple Lambertian model, changes in diffuse light can cause color
and intensity shifts. As a result, the color of a pixel consists of three dependent
random variables that are all scaled and shifted by unknown parameters, due to
environmental illumination.
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To solve the second problem, i.e. illumination dependence of the color values,
most color based tracking implementations [Asaari 10, Bretzner 02, Kölsch 04a,
Shan 07, Caifeng 04] convert the image from RGB color space to HSV (Hue-
Saturation-Value) color space or to a similar color space such as YCbCr, in which
the two chrominance components are separated from the luminance component. A
2D Hue-Saturation histogram is then created by dropping the luminance compo-
nent, i.e. the Value, in the hope of reducing the illumination dependency.

The first problem, i.e. the need for a joint PDF and the corresponding dimen-
sionality issue, is often solved in a similar manner: Dropping the luminance com-
ponent reduces the dimensionality of the problem, making it possible to calculate
the joint Hue-Saturation histograms using a limited amount of training data. The
chrominance components are often quantized to further reduce the number of his-
togram bins, in an effort to avoid the curse of dimensionality.

However, Phung et al. [Phung 05] showed that the choice of color space does
not have a significant impact on skin color detection. In fact, skin classification
in RGB space performs equally well as skin classification in HSV space, and out-
performs color spaces in which the luminance information is dropped if a large
amount of training data is available. The reason is that standard color transforma-
tions that perform a one-to-one mapping, do not introduce new information and do
not guarantee uncorrelated color channels.

If only a limited amount of training data is available on the other hand, skin
detection in HS space (dropping the Value component) outperforms detection in
HSV or RGB space. However, as opposed to what is often assumed, this per-
formance increase is not due to an increased robustness to illumination changes.
Instead, it can be explained simply by the curse of dimensionality, since the re-
duced dimensionality avoids sparse histogram bins that would result in overfitting
of the classifier. This statement is supported by the fact that skin detection in a
quantized RGB space (reducing the number of histogram bins) yields the same
detection results as skin detection in the non-quantized HS space.

Summarized, although conversion to another color space such as HS(V) or
(Y)CbCr could accidently result in uncorrelated color channels, and can certainly
help in reducing the number of dimensions, the general assumption that these color
spaces are illumination invariant is incorrect.

Color normalization techniques such as white patch normalization or gray
world normalization [Rizzi 02, Ebner 07] could increase illumination indepen-
dence in some cases, but usually introduce new problems because these techniques
only try to remove either the multiplicative or the additive illumination compo-
nent. Additionally, normalization inherently decreases the discriminativeness of
the color feature.
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3.3.2 Adaptive Skin Detection

Based on the above, we propose the combination of three different skin classifiers.
The first classifier is a static skin classifier that was trained offline using a large
set of images in quantized RGB space. The second classifier is a slowly adapting
classifier that models skin color appearance in the past few video frames using the
quantized HS color space (dropping the Value component). The final classifier is a
very adaptive classifier that models the skin color in the previous video frame us-
ing only the quantized Hue component of the HSV color space. Due to the angular
representation of color in the HSV color space, it is clear that the red range be-
comes discontinuous if the hue is described using a single numerical value. Since
the red range is the most prominent in skin-colored pixels, we therefore shift the
hue into the range −30◦ < H̃ < 330◦, such that the red range becomes continu-
ous: H̃ = (H − 30) mod 360.

Thus, our skin classifiers that have more training data at their disposal use a
more fine grained model than the classifiers that only have few training pixels. The
second, dynamic, classifier is constantly re-trained using the skin pixels within the
bounding box of the previous hand detections. Since these bounding boxes can be
small, only few pixels are available in each hand bounding box. Therefore, mod-
eling the skin color for this classifier in full RGB space, instead of quantized HS
space, would increase the risk of overfitting and would result in sparse histograms.
Similarly, using quantized HS space instead of the quantized Hue component for
the third, dynamic, classifier would again result in sparse histograms because it is
only trained on the skin pixels of the previous video frame.

For the RGB skin classifier, a 3D histogram of skin pixels and a 3D histogram
of non-skin pixels is created, each consisting of 32 uniformly spaced bins. While
a larger number of bins could result in a more discriminative classifier, a smaller
number of bins results in less memory storage and faster computation times. Phung
et al. [Phung 05] showed that 32 bins is an acceptable compromise between mem-
ory storage and recognition rate. For the online HS classifier, we use a 16-bin
2D histogram, because less training data is available to populate the histogram.
Similarly, a 16-bin 1D Hue histogram is used for the third classifier.

While the choice for the Hue-Saturation color space, when learning the online
histogram, is mostly driven by the need for fast dimensionality reduction, an added
advantage is that the combination of multiple color spaces such as RGB and HSV,
leads to superior skin classification, as we showed in earlier work [Spruyt 10a].

To train the offline static skin classifier, we used the well known Compaq
database [Jones 02], consisting of over 4000 manually segmented skin colored
images, and over 8000 images that do not contain any skin segments. We define
the random variable skin ∈ {1, 0} that represents the skin-membership of a pixel
i = (r, g, b), where r, g, b are the red, green and blue color values in RGB color
space.
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In the following, let ¬ denote the logical complement of a binary random vari-
able. By simply counting the number of skin pixels Nskin and the total number
of pixels N in the training dataset, we obtain the prior probabilities shown by
equations (3.23) and (3.24).

P (skin) =
Nskin

N
= 0.16 (3.23)

P (¬skin) = 1− P (skin) = 0.84 (3.24)

Furthermore, a normalized 32-bin histogramHskin(r, g, b) is created by count-
ing the number of occurrences Nskin(r, g, b) of each (r, g, b) triplet in the skin-
regions of the training dataset, and a similar normalized histogram,H¬skin(r, g, b),
is created by processing all non-skin pixels in the dataset. These histograms rep-
resent the probability density functions shown by equations (3.25) and (3.26).

P (r, g, b|skin) =
Hskin(r, g, b)

Nskin(r, g, b)
(3.25)

P (r, g, b|¬skin) =
Hnonskin(r, g, b)

Nnonskin(r, g, b)
(3.26)

Using Bayesian theory, we can now calculate the posterior probability that a
certain (r, g, b) triplet, found in a video frame, represents skin color, as shown in
equation (3.27).

P (skin|r, g, b) =
P (r, g, b|skin)P (skin)

P (r, g, b)
(3.27)

=
P (r, g, b|skin)P (skin)∑

skin P (r, g, b|skin)P (skin)

=
P (r, g, b|skin)P (skin)

P (r, g, b|skin)P (skin) + P (r, g, b|¬skin)P (¬skin)
.

Although more advanced skin classification methods exist, such as those based
on Markov Random Fields, Phung et al. [Phung 05] showed that a simple Bayesian
skin classifier outperforms more advanced algorithms if a very large training
dataset is available. More importantly, both the likelihoods and the normaliza-
tion factor of equation (3.27) can be precalculated and stored efficiently in lookup
tables, yielding an extremely fast classifier, suited for real-time applications.

Figure 4.3 (b) illustrates the result of the Bayesian skin classifier in normal
illumination conditions, with a neutral background. Figure 4.3 (d) shows the result
when the foreground lights are dimmed, and when skin-like colors occur in the
background. The second result clearly shows the need for other features and online
histogram adaption, while the first model illustrates the discriminativeness of the
skin classifier in average illumination conditions.
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(a) Original image. (b) Skin probability.

(c) Original image. (d) Skin probability.

Figure 4.3: The second column shows the result of Bayesian skin classification, where a
bright pixel corresponds to a high skin probability and a dark pixel corresponds to a low
skin probability. Top row: an example of successful Bayesian skin classification. Bottom
row: an example of classification failure due to background illumination.
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Apart from the offline trained static RGB skin classifier, two online classifiers
are created and constantly updated. For the first online classifier, the histograms
are updated slowly, while the histograms of the second online classifiers are up-
dated every frame. The fast adapting histogram allows the tracking algorithm to
cope with sudden illumination changes, while the slow adaptive histogram models
gradual changes in appearance and stabilizes the tracker. The static RGB his-
togram helps to avoid drift by incorrect updates of the online histograms, as will
be explained on page 122.

The online histograms are initialized by a Haar-cascade based face detector, or
by the first detected hand that results from the Random Hough Forest detector (ex-
plained in Section 3.3.4), in case no face detection result is available. The slowly
adapting histograms are updated based on previous tracking results, by only incor-
porating pixels that fall within the hand segmentation region, as explained in Sec-
tion 3.5.1, and that have a high skin probability. The histograms are only updated
once a certain number of observations is available, in order to avoid overfitting to
a single observation. The fast adaptive histogram, on the other hand, is updated
every frame, by incorporating all pixels within the bounding box of the hand from
the previous frame.

Each skin classifier results in a skin probability map. The final probability im-
age, Pfinal, used in the observation model of the particle filter, is a linear combi-
nation of the three individual probability maps, Pstatic, Pslow and Pfast as shown
by equation (3.28).

Pfinal = α1Pstatic + α2Pslow + α3Pfast, (3.28)

where
∑3

1 αi = 1.
When tracking starts, or after a tracking error was detected, the online his-

tograms are not trained well yet, and the static histogram is the only reliable color
cue. The longer the tracker is able to correctly track the hands, the better the online
histograms represent their appearance. Therefore, the weights are initially defined
as α1 = 1, α2 = 0, α3 = 0. The weight of the fast updated histogram, α3, is
incremented after each successfully tracked frame, while the weight of the static
histogram, α1 is decremented after each successfully tracked frame. The weight
of the slowly adapting histogram is then calculated as α2 = 1 − (α0 + α1). The
weights are capped, such that they satisfy the condition α0 > α1 > α2. This
condition helps avoiding tracker drift that can be caused by incorrect updates of
the online models.

Figure 4.3 shows that a simple skin probability map, representing
P (skin|r, g, b), is not sufficient to cope with skin-like background pixels. To solve
this, we would like to obtain a probability map that represents P (skin, FG|r, g, b)
for each pixel, where FG ∈ {1, 0} is a random variable that indicates whether or
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not the pixel is part of a foreground object:

P (skin, FG|r, g, b) = P (FG|skin, r, g, b)P (skin|r, g, b). (3.29)

Hence, a new probability map SFG, that represents P (FG|skin, r, g, b), is
needed. If we ensure that FG is conditionally independent of (r, g, b) given skin,
equation (3.29) reduces to equation (3.30).

SFG ∼ P (skin, FG|r, g, b) = P (FG|skin)P (skin|r, g, b). (3.30)

To obtain the foreground probability map, representing P (FG|skin), we first
assume that all skin-like pixels are part of the background. Consequently, the
probability that a pixel is part of the foreground is calculated as P (¬skin|r, g, b) =

1−P (skin|r, g, b) and stored in a foreground map. Since pixels that are part of the
tracked hand region are definitely foreground, all pixels within the bounding box
of each tracked hand in the previous video frame are assigned a probability of one
in this foreground map. The resulting map represents the probability P (FG|skin)

that a pixel is foreground, conditioned on its skin-likelihood.
To cope with noise and motion, this foreground probability map is slowly

adapted in time by exponentially weighted temporal averaging over several frames.
This is a simple technique that is often used by background subtraction methods.
The smoothed model thus contains high probability values for skin pixels that are
part of a hand, and low probability values for skin pixels that are not part of a hand,
and can therefore be considered to model P (FG|skin). The skin-foreground
probability map SFG can now be obtained as shown by equation (3.30), by mul-
tiplying the skin probability map P (skin|r, g, b) and the foreground probability
map P (FG|r, g, b).

Figure 4.4 (b) illustrates the skin probability map representing P (skin|r, g, b).
Figure 4.4 (c) shows the foreground probability map, representing P (FG|skin).
Figure 4.4 (d) shows the combined skin-foreground probability map, representing
P (skin, FG|r, g, b). The background model clearly helps the particle filter to
successfully track the hand in cluttered environments with skin-like backgrounds.
Figure 4.4 (b) illustrates the skin probability map representing P (skin|r, g, b).

3.3.3 Motion Detection and Dynamic Scenes

To further increase tracking robustness in environments with changing illumina-
tion or skin-like backgrounds, the observation model is designed such that moving
objects are assigned a higher likelihood than static objects with the same skin
probability. To detect motion in the video frame, we perform temporal frame dif-
ferencing, which is simple to calculate and can easily be parallelized. The resulting
frame difference is smoothed by a Gaussian filter, and thresholded to obtain a mo-
tion mask that indicates the moving regions in the image.
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(a) Tracking result. (b) Skin probability map.

(c) Foreground probability map. (d) Combined probability map.

Figure 4.4: Combining foreground modeling and skin-color modeling. Figure (b) shows
the original skin probability map, where a bright pixel corresponds to a high skin probability
and a dark pixel corresponds to a low skin probability. Figure (c) shows the foreground
probability map representing p(FG|skin). All skin-like pixels (e.g. face) that are not part
of the foreground have a low foreground probability, whereas skin-like pixels (e.g. hands)
that are part of the foreground have a high foreground probability.
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Similar to the approach of Shan et al. [Shan 07], a skin-motion map, Smotion
is calculated by multiplying the skin probability map with the motion mask. This
skin-motion map represents the joint probability that a pixel is part of a foreground
skin region and part of a moving region in the image:

Smotion ∼ P (skin, FG|r, g, b)P (motion|r, g, b) (3.31)

= P (skin, FG,motion|r, g, b).

The final skin probability based cue Cskin, used in the observation model of
the particle filter, is then calculated as a linear combination of the skin-motion
map Smotion, and the original skin-foreground probability map, SFG:

Cskin = αSmotion + (1− α)SFG, (3.32)

where α is proportional to the velocity of the tracked hand. As a result, the like-
lihood for particles that are tracking a static hand is mostly determined by SFG,
while the likelihood of particles that track a moving hand, is determined more by
Smotion, depending on the hand velocity. As a result, the particle filter is able to
robustly track the hand through time, even if the moving hand comes close to static
or slowly moving objects with a higher skin probability. Furthermore, it should be
noted that even very fast moving objects that are part of the background, often
appear to move much slower than the hand itself, due to the parallax principle.

The motion mask indicates which pixels cover objects that are currently mov-
ing. However, objects that have moved in the recent past should also be of more
interest to the tracker than objects that are known to be static, since static objects
are most probably part of the background. To this end, we use the probabilistic
background subtraction method, introduced by Zivkovic [Zivkovic 04] to obtain a
background model. Yet instead of thresholding the background probability map,
we directly combine the obtained likelihood map with the skin-motion map. Using
the likelihood map instead of a thresholded foreground mask, allows the tracker to
also consider static objects and to cope with changing backgrounds and incorrect
background models.

The Zivkovic foreground likelihood map is an image in which each pixel rep-
resents the likelihood of observing a specific (r, g, b) triplet, given the background
model that is represented by a mixture of Gaussians. By assuming uniform and
equal priors, we obtain P (BG|r, g, b). If the complement of the BG random vari-
able describes how dynamic an object has been in the recent past, we easily find
P (dyn|r, g, b) = 1−P (BG|r, g, b), where dyn ∈ {1, 0} is a random variable that
indicates whether the pixel represents a dynamic or a static object.

Assuming independence between the different cues that have been calculated
up till now, we can combine this background subtraction based model multiplica-
tively with the skin and motion based cue Cskin. Each value of the resulting like-
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(a) Tracking result. (b) P (FG|skin). (c) P (dynamic|r, g, b).

(d) P (motion|r, g, b). (e) P (skin|r, g, b). (f) Final cue L

Figure 4.5: Different likelihood maps used in the observation model.

lihood map L then represents a sample from an approximation of the joint proba-
bility distribution that is shown in equation (3.33).

L ∼ P (skin, FG,motion, dyn|r, g, b). (3.33)

Finally, if a face has been detected by the Haar-cascade that was also used to
initialize the online learning skin histograms, the values of the probability map
within the bounding box of the face are reduced, to avoid particles to get trapped
on the local maximum that is caused by the similar appearance of faces and hands.
This operation can be considered as incorporating an informed prior spatial distri-
bution into L.

Figure 4.5 shows the different likelihood maps that have been discussed so far,
and Figure 4.5 (f) illustrates the combination of these likelihood maps into the
final cue, L. This example clearly shows that the probabilistic fusion of all cues
increases the discriminativeness of the final likelihood function. While each of the
individual cues clearly has its pitfalls, the final cue is able to combine the strengths
of each individual feature.

3.3.4 Discriminative Hand Detection

Although the observation model as described above results in a fast tracker that
is able to track hands in a variety of environments, the model heavily depends on
color information. While several steps have been taken to reduce this color depen-
dence, as discussed earlier, tracking still fails in very dark or very light illumination
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environments. Additionally, tracking tends to fail if hand-sized, skin-like objects
appear in the background, especially when these objects are moving.

To solve this, we propose to combine our generative skin color based model,
with a discriminative Random Hough Forest based model that we proposed in
earlier work [Spruyt 12]. Whereas the previously discussed cue L mainly depends
on color information, the Random Hough Forest classifier incorporates structural
and textural features which greatly increases its robustness against illumination
changes.

The Random Hough Forest classifier is a parts-based classifier, that outputs
a probability map indicating the likelihood of representing a hand’s centroid for
each pixel coordinate in the image. As opposed to traditional rigid model based
detectors that try to model the object as a whole (e.g. template matching), a parts
based detector is able to cope with deformable objects by modeling the relative
position of small object parts, together with their expected variance.

In [Spruyt 12], we proposed such a parts based classifier that is able to ro-
bustly detect hands in real-time. Small blob-like structures are first detected using
an extended version of the Kadir and Brady [Kadir 01] feature detector. Several
decision trees are then trained that classify these image patches as being part of a
hand or part of the background. For patches that are part of a hand, the decision
trees store the offset vector from the image patch to the hand’s centroid. This offset
vector is normalized to ensure rotation and scale invariance.

Each decision tree is trained using a randomly selected subset of features. Fur-
thermore, each decision tree is trained on a bootstrapped sample of the original
training data. As a result, all decision trees are distinct. During classification,
blob-like regions of interest are detected again, and for each detected region, all
decision trees cast a probabilistic vote on the centroid location of the hand. These
votes are accumulated in a so called Hough voting map, representing the probabil-
ity that each pixel coordinate corresponds to the centroid location of a hand.

The complete set of features, from which a subset is randomly selected by each
decision tree, is made up of four color based histograms, and three texture based
features. The texture based features include the local binary pattern descriptor
[Ojala 96], gradient orientation histograms, and the FREAK descriptor [Alahi 12].

Incorporating this classifier into our observation model greatly increases the
tracker’s robustness to illumination changes, due to the detector’s dependence
on texture based features. The reason is that texture is mainly defined by high-
frequency information such as image gradients, which are known to be invariant
to several types of color transformations.

The Random Hough Forest classifier is a discriminative classifier, whereas our
previously described models used to generate L are generative classifiers. Both
types of classifiers aim to solve the same task, namely obtaining the conditional
density P (x|z), where x represents the class label and z represents the observation.
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However, the methodology used to obtain an estimate of this density differs for
each classifier type. A generative approach models both the joint density P (x, z)

and the prior distribution of the observations P (z), and combines both using the
Bayes rule to obtain the posterior P (x|z). In practice, the joint distribution is of-
ten obtained indirectly by estimating the conditional likelihood of the observation
P (z|x), and the prior distribution of class labels P (x). Discriminative models on
the other hand, directly try to estimate the conditional PDF P (x|z), and thus the
classifier’s decision boundaries, thereby skipping the difficult step of estimating
the likelihood distributions.

Discriminative models do not make assumptions about the shape of the likeli-
hood functions and therefore often outperform generative models if a lot of labeled
training data is available. Generative models on the other hand, make assumptions
about the shape of the likelihood function and the marginal distributions, allowing
an accurate model to be learned more quickly if few training samples are available.
While both approaches have their merits and pitfalls, it has been shown that com-
bining generative and discriminative methods in a classifier can greatly improve
the detection rates [Kölsch 10].

Our particle filter’s observation model combines the probability map L that
was obtained using the generative skin models, described in earlier sections, with
the hand probability map that was obtained using a discriminative Random Hough
Forest classifier. Since each model is trained on different features, we can assume a
weak form of orthogonality and can simply combine both models multiplicatively.
LetD be the probability map obtained by the discriminative Random Hough Forest
classifier. In the next section, the combined probability map will then be referred
to as M = DL.

Figure 4.6 illustrates the combination of both probability images, resulting in
the final likelihood map that is used to weigh the random samples of the particle fil-
ter. While each model has its own shortcomings, combining them clearly increases
the difference between the peaks of the local maxima, and the global maximum in
the likelihood.

3.3.5 Likelihood Model

The final cue M contains a probability value for each pixel in the image. This
probability map is considered to be the observation at time instance t. In this sec-
tion, we explain how each particle of the particle filter is assigned a weight, based
on this observation. The model that calculates the likelihood of a state estimate,
based on the available observation, is often called the likelihood model.

As discussed in Section 3.2, and shown by equation (3.19), the state to be
estimated is the bounding box of the hand, defined by its position (x, y) and its
dimensions (w, h). After state prediction by the motion model f(bt−1), the ob-
servation model h(bt) is used to assign weights to each particle representing a
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(a) Tracking result. (b) Generative model L.

(c) Discriminative model D. (d) Combined prob. map M .

Figure 4.6: Combining the generative skin likelihood map with the discriminative Random
Hough Forest likelihood map increases the discriminativeness of the final probability map.

different state estimate. In our case, the observation corresponds to the likelihood
map, y .

= M , and the weight of a particle therefore depends on this likelihood
map.

One way to assign a weight to a particle, represented by a bounding box, would
be to calculate the average of the values of the probability map inside the bounding
box and use this as a weight. Such an approach would also assign height weights to
particles that completely cover a small part of a larger skin-like background region.
Furthermore, particles that cover part of the arm of a person would be weighted
similar to particles that cover the hand of a person.

Instead, a particle should be assigned a larger weight if it covers a blob-like
structure, which is a region of the probability image in which the average prob-
ability is significantly larger than its surrounding. As such, we propose a simple
operator that results in a high response for blob-like structures and a low response
for uniform regions in the probability map.

The proposed operator resembles a simplified version of the Laplacian opera-
tor, which is known for its capabilities for blob-detection, and is used by the well
known SIFT and SURF detectors. We define an outer bounding box bo, surround-
ing the bounding box b of a particle. The dimensions of bo are chosen such that
its area is twice the area of b. Hence, bo is defined by equation (3.34).

bo = (b[x],b[y],
√

2b[width],
√

2b[height]). (3.34)
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(a) Tracking result. (b) Probability image.

Figure 4.7: Bounding boxes for calculating the blob-response.

Figure 4.7 shows the bounding boxes b in green and bo in red.
In the following, letB be the set of all (x, y)-coordinates within the rectangular

region defined by b and let Bo be the set of all (x, y)-coordinates that fall within
the region defined by bo.

Similar to the well known approximation of a Laplacian operator as the dif-
ference of two Gaussians kernel functions, we define the blob operator simply as
the normalized difference between the sum of all pixel inside region B, and those
inside the region surrounding this box, defined by the pixel coordinates Bo \ B.
Alternatively, the blob response, R(B), can be calculated efficiently for each par-
ticle by subtracting the sum of all pixels inside region Bo from twice the sum of
all pixels inside region B, as shown by equation (3.35).

R(B) =

2
∑
x,y∈B

M(x, y)−
∑

x,y∈Bo

M(x, y)

b[width]× b[height]
. (3.35)

Directly calculating the blob response as proposed by equation (3.35) would
require the execution of computationally expensive nested loops and out of order
memory access for each particle. Moreover, the complexity would depend on the
size of the object to be tracked and would thus increase if a hand approaches the
camera. To avoid these issues, we use integral images, originally proposed by
Viola and Jones [Viola 04].

An integral image, also known as a summed area table, is an image in which
each pixel represents the sum of all values to the upper-left side of this pixel. This
integral image can be calculated easily by a single pass algorithm withO(width×
height) complexity.

The integral image IM (x, y) is calculated based on the probability image
M(x, y), before the next iteration of the particle filter is executed. Based on the
integral image, the sum of all pixels within any rectangular area of M(x, y) can be
computed in constant time O(1). Let j, x, y and z represent the coordinates of the
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(a) R(B) = −1. (b) R(B) = 0. (c) R(B) = 1.

Figure 4.8: Blob filter response for three special cases.

left-top corner, the right-top corner, the left-bottom corner and the right-bottom
corner of region B respectively. Similarly, let jo, xo, yo and zo be the corner
coordinates of region Bo. Then equation (3.35) can be rewritten as follows:

R(B) =
2 (IM (z)− IM (x)− IM (y) + IM (j))

b(width)× b(height)

− (IM (zo)− IM (xo)− IM (yo) + IM (jo))

b(width)× b(height)
. (3.36)

As a result, once the probability map M has been calculated, the likelihood of
each particle can be evaluated in constant time. This great reduction in complexity
further encourages the use of rectangular areas and a rectangular blob detector as
opposed to shapes that more accurately capture the contour of a human hand.

The response of the blob detector is defined by the interval {R(B) ∈ R|− 1 ≤
R(B) ≤ 1}. This can easily be understood by calculating the response for the
interval boundaries. If all pixel values inside the inner region B equal zero, and
all pixel values in the region defined by Bo \ B equal one, then R(B) = −1.
In this case, the bounding box definitely does not represent a hand, because its
surroundings have a much higher probability. If all pixel values inside the inner
region B equal one, and all values in the region defined by Bo \B equal zero, then
R(B) = 1. In this case, the blob is very likely to represent a hand. Finally, if all
pixels inside region Bo are equal, then R(B) = 0. In this case the region is not
a blob, but might still represent a hand with equal probability as its background.
Figure 4.8 illustrates each of these three special cases visually.

The weight wi, assigned to a particle, represents the likelihood of the observed
blob response, given the current state. We define a truncated Gaussian probability
density function by its parameters µ = 1 and σ = (1−(−1))

3 = 2
3 , such that approx-

imately 98% of the observed data can be explained by this distribution. Assuming
a non-informative prior, we obtain the probability mass function. Figure 4.9 illus-
trates the truncated Gaussian function that is used to map blob detection responses
to particle weights. Each of the special cases shown in figure 4.8 are indicated.
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Figure 4.9: Particle filter likelihood function.

This shows that a blob response of R(B) = −1 corresponds to a particle
weight wi ≈ 0. Higher blob responses result in an exponentially increasing obser-
vation likelihood. A blob response of R(B) = 0 corresponds to a particle weight
wi ≈ 0.3, and a blob response of R(B) = 1 corresponds to a particle weight of
wi = 1.

3.4 Motion Model and Proposal Distribution

In this section, the motion models floc and fsize that were defined in section 3.2
are discussed in more detail. The motion models are functions of the previous
state, as defined by equation (3.1), and predict the next state, given this previous
state.

The most widely used particle filter variant is the bootstrap filter, which is
also the most prevalent in visual tracking literature. The bootstrap filter is a SIR
particle filter, where the state transition prior p(xit|xit−1), as returned by the motion
model, is used as the proposal distribution. Although this greatly simplifies the
importance sampling process, the main disadvantage of this approach is that the
proposal distribution does not take the most recent observation into account. In
the second part of this section, we propose to incorporate optical-flow information
and a mean-shift optimization iteration directly into the proposal distribution to
enhance the importance sampling step.
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3.4.1 Motion Model

As discussed in Section 3.1, a particle filter can be considered a discrete time, non-
linear, non-Gaussian dynamic system, defined by its motion model and observation
model, shown by equations (3.1) and (3.2). In visual tracking applications, it is
usually difficult to accurately predict and model the expected motion of an object.
Apart from specific applications such as avionics, learning an accurate motion
model based on training data would result in tracking failure when unexpected
motions are encountered.

Instead of learning an accurate motion model, we proposed a robust observa-
tion model to compensate for a simple motion model that only roughly approx-
imates the object’s expected motion. Non-linear or unknown components of the
hand’s motion are simply modeled by a Gaussian process, such that prediction er-
rors are explained by a Gaussian white noise variable. In time series prediction,
this is often accomplished by means of an autoregressive model. Equation (3.37)
shows the definition of a general autoregressive model of order n, where c is a
constant, αi are the model parameters, and εt is a white noise component.

bt = c+

n∑
i=1

αibt−i + εt. (3.37)

Probably the most widely used motion model in visual tracking, is the random
walk that models Brownian motion. A random walk model is a first order autore-
gressive model, and assumes that the difference between the previous state and
the current state can be modelled as a Gaussian process, such that (bt − bt−1) ∼
N (µ,Σ). Usually, a white process is assumed, such that the motion model be-
comes bt = bt−1 + εt, where εt is a white noise component. The result is a first
order autoregressive model with parameters c = 0, n = 1 and α1 = 1.

In Section 3.2 we partitioned the state space, such that b = (bloc,bsize).
Partition bsize represents the width and height of the bounding box of the tracked
object. These dimensions can quickly and arbitrarily change. For instance, if the
user shows his hand with open palm at time instance t − 1, but quickly makes a
fist pose in time instance t, the width and height of the bounding box will change
due to the apparent disappearance of the fingers. These abrupt changes in bsize
are difficult to predict but can be expected to behave as white Gaussian noise and
are therefore modeled by a random walk.

However, hand motion, described by bloc, is not completely random. If a hand
travels in a specific direction, there is a high likelihood that the hand will follow
that same direction in the next frame. Modeling such motion with a random walk
model, would result in autocorrelated estimation errors. Therefore, we propose
to use a second order autoregressive motion model to predict this state partition,
which incorporates one extra ‘lag’ into the prediction equation.
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The parameters of the model are chosen as c = 0, n = 2, α1 = 2 and α2 = −1,
such that our motion model is defined as

bt = 2bt−1 − bt−2 + εt (3.38)

= bt−1 + (bt−1 − bt−2) + εt (3.39)

= bt−1 + ∆V + εt. (3.40)

where ∆V represents the velocity of the object in the previous video frame.
Equation (3.40) shows that this prediction equation assumes that the velocity

of the object remains constant between two subsequent time steps. Consequently,
this motion model is often termed a ‘constant velocity’ model in literature. The
Gaussian noise component, εt, models non-linearities or unexpected accelerations
as a zero-mean random process. Next to the random walk model, a constant veloc-
ity model is probably one of the most popular motion models used in probabilistic
visual tracking [Asaari 10, Shan 07].

In equation (3.19), we defined the state vector b = (x, y, w, h). As illustrated
by equation (3.38), at time instance t − 1, the prediction of the state at time t
also depends on the previous state at time t− 2. However, as defined by equation
(3.1), the motion model is a function of only the state at time t − 1, due to the
Markov principle. Therefore, the originally defined state vector b is augmented
with (xt−1, yt−1) and denoted ḃ.

The complete motion model then becomes ḃt = f(ḃt−1,Mt−1) = A ḃt−1 +

M, where M is a column vector containing white noise components, and matrix
A and augmented vector ḃt−1 are defined as follows:

A =


2 0 −1 0 0 0
0 2 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , ḃt−1 =


xt−1

yt−1

xt−2

yt−2

w
h

 . (3.41)

3.4.2 Proposal Distribution: Optical-Flow

A major shortcoming of the bootstrap particle filter is that it only uses the latest
available information after the state prediction has been made. The latest observa-
tions are then used to assign a likelihood (i.e. weight) to each particle. However, in
case of irregular motion, many of the predicted states will be inaccurate, such that
the resulting set of particles mainly model the tails of the posterior distribution. In
this case, only a few particles will be assigned a high likelihood, and tracking will
be lost if the irregular motion continues.

In contrast, many successful deterministic tracking approaches use the lat-
est observations to predict the next state, instead of relying on a simple motion
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model that only depends on the previous state estimate. As an example, Kolsch et
al. [Kölsch 04b] use the Kanade-Lucas-Tomasi (KLT) tracker to estimate optical-
flow in the video, and use the obtained flow vectors to guide their deterministic
sampling process.

Optical-flow is the apparent motion of objects in a 3D scene, projected onto
the 2D camera plane. Intuitively, such an optical-flow vector field would represent
the actual motion in a scene much more accurately than a state prediction that is
based simply on a constant velocity model.

Several approaches can be found in literature to incorporate optical-flow into
the motion model of a particle filter. Belgacem et al. [Belgacem 12] directly use the
optical-flow vectors to steer the motion model. Yao et al. [Yao 10] use a weighted
combination of the flow vectors and the vector resulting from their constant veloc-
ity model, as a motion model. Lucena et al. [Lucena 03] use optical-flow in the
observation model of the particle filter instead of the motion model.

However, while these methods have been shown to increase tracking robust-
ness, using optical-flow in the observation model does not solve the earlier men-
tioned problem of inaccurate state prediction. Directly incorporating the optical-
flow results into the particle filter’s motion model on the other hand, is mathe-
matically incorrect and would force us to abandon the Bayesian framework which
forms the theoretical foundation of particle filters. As shown by equation (3.1), the
motion model of a particle filter should only depend on the previous state estimate,
such that the state transition prior p(xt|xt−1) is obtained.

Although the state transition prior is not allowed to depend on the latest obser-
vation, the opposite is true for the proposal distribution q(xit|xit−1,y1:t) shown in
the denominator of equation (3.11). Conventional bootstrap particle filters ignore
this, and use the state transition prior as the proposal distribution. Although this
greatly simplifies the importance weight calculations because the prior distribu-
tion in the numerator and the proposal distribution in the denominator cancel each
other out, it is the cause of the above described problem.

Figure 4.10 illustrates this problem graphically. The proposal density, which
equals the state transition prior p(xt|xt−1) in bootstrap filters, determines the par-
ticle density, whereas the observation likelihood function p(yt|xt) defines the par-
ticle weights. As a result, in this example most particles model the tails of the
posterior density. In this illustration, particles are drawn with a radius that is pro-
portional to the assigned likelihood.

To solve this problem, we propose to incorporate optical-flow estimates in the
proposal distribution, such that the proposal distribution depends both on the pre-
vious state estimate, and on the latest measurements. In this case, it is important
to note that the transition prior in the numerator of equation (3.11) is no longer
cancelled out by the denominator. Therefore, not only do we need an analytic ex-
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Figure 4.10: Importance sampling issues in bootstrap filters: If the proposal distribution
q(.) equals the state transition prior, overlap with the observation likelihood function is
small. As a result, the particles with the largest weight only model the tail of the true, but
unknown, posterior distribution instead of its mode.

pression of the proposal distribution such that it can be sampled, we also need to
calculate the actual transition prior likelihood during weight assignment.

Van der Merwe et al. [van der Merwe 01] proposed to generate the proposal
distribution for each particle using an Unscented Kalman filter [Julier 02]. Their
method solves the above problem for non-linear filtering problems. However, the
unscented transform is performance intensive, and unnecessary in our case, be-
cause the motion model that was defined in Section 3.4.1 is a linear model.

Based on this idea, we propose to generate the proposal distribution for each
particle using a standard Kalman filter. For each particle, the Kalman filter allows
us to generate a proposal distribution that incorporates both the optical-flow esti-
mate, and the earlier defined constant velocity estimate. Due to the Kalman filter’s
properties, the resulting proposal distribution represents an optimally weighted av-
erage of the constant velocity motion model and the observed optical-flow vectors.
The resulting particle filter suffers less from particle depletion, and can cope with
peaked and narrow likelihood functions, even if these lie in the tails of the transi-
tion prior.

In Section 3.1, we discussed Bayesian filters in general, and concluded that
Kalman filters assume Gaussian likelihoods and linear models. However, it is im-
portant to note that our particle filter solution, with Kalman filter proposal distribu-
tions, does not require the posterior to be normally distributed and does not require
linear observation models. Instead, a Kalman filter is used per individual particle,
hence only the distribution of each single particle is assumed to be Gaussian. Dur-
ing importance sampling, the particle is drawn from this normal distribution that
serves as the proposal distribution, as shown by equation (3.42).

q(xit|xit−1,y1:t) ∼ N(x̄it, P
i
t ) i = 1, ..., N, (3.42)
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where x̄it represents the Kalman filter’s state estimate and P it represents its covari-
ance matrix.

Thus, at time t, the latest observation, which is the optical-flow field in our
case, is used to calculate the mean, x̄it, and covariance P it of the proposal distribu-
tion of each particle i, using the Kalman filter measurement and update equations.
Next, the ith particle is sampled from this distribution, and is assigned a weight by
the observation model, as in a traditional particle filter. This method requires us to
propagate the covariance P it for each particle since multiple particles might share
the same covariance matrix after resampling.

Because optical-flow mostly contains information regarding the displacement
of the object of interest and is not very informative about its size, we only apply
this method to the first state partition bloc. The second state partition bsize is then
treated in a conventional bootstrap filtering manner, using the transition prior as
the proposal density. Like in Section 3.4.1, we define the augmented state vec-
tor ḃtloc = (xt, yt, xt−1, yt−1). In the following, we denote bloc as b to simplify
further notations. We introduce the subscripts (.)0 and (.)1 to indicate the pre-
diction (no measurement has been incorporated yet) and update (the optical-flow
measurement has been incorporated) stage respectively.

3.4.3 A Kalman Filter Embedded Proposal Distribution

For the Kalman filter, several important matrices have to be defined. Let Q be the
process noise covariance matrix that defines the noise component m from equation
(3.1). Let R1 be the measurement noise matrix that defines the noise component
n from equation (3.2). Let y1 be the state estimate that is obtained by the optical-
flow observation. Let H be the observation model matrix that describes how the
predicted state corresponds to the observed state, such that y1 = H bloc(t|t−1)+

n, where n is a white noise component. Finally, let F be the motion model matrix
that defines how the next state is predicted based on the previous state, such that
bloc(t|t− 1) = F bloc(t− 1|t− 1) + m, where bloc(t|t− 1) is the state estimate
at time t, given observations up to and including time t−1, and m is a white noise
component.

The motion model matrix F then corresponds to the 4 × 4 matrix whose ele-
ments are the first four rows and columns of matrix A, defined by equation (3.41).
The observation matrix H is defined by equation (3.43), since the state that is ob-
served using the optical-flow field is described by a coordinate pair y1 = (x, y).
Each optical-flow vector represents a mapping of a pixel location in the previous
video frame, to a corresponding location in the current video frame. The average
of all flow vectors within the bounding box bt−1 is used to obtain the observed
state estimate y1.

H =

[
1 0 0 0
0 1 0 0

]
. (3.43)
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For each particle i in the set of N particles, the Kalman filter estimates the
mean µi = b̂1(t|t) and covariance matrix P i = P1(t|t) of the multivariate Gaus-
sian proposal distribution q(.) ∼ N(µi, P i). The state prediction at time t, given
observations up to and including time t− 1 is:

b̂0(t|t− 1) = A b̂1(t− 1|t− 1), (3.44)

and the corresponding covariance is

P0(t|t− 1) = AP1(t− 1|t− 1)Aᵀ +Q. (3.45)

The new estimate, after incorporating the optical-flow measurement, is then:

b̂1(t|t) = b̂0(t|t− 1) +K1(t)[y1(t)−Hb̂0(t|t− 1)], (3.46)

with covariance

P1(t|t) = P0(t|t− 1)−K1(t)S1(t)K1(t)ᵀ, (3.47)

where the Kalman gain is

K1 = P0(t|t− 1)HᵀS−1
1 (t), (3.48)

and the innovation covariance is

S1(t) = HP0(t|t− 1)Hᵀ +R1. (3.49)

The particle filter then draws N new particles, each from their corresponding
proposal distribution. In the following, let b̂it be the state of the particle that is
sampled from this proposal distribution of particle i at time instance t. Let ḃit be
the state estimate of the same particle, obtained by the constant velocity model
which is discussed in Section 3.4.1. The state transition prior for particle i is then
obtained by evaluating the likelihood of the sample b̂it by the motion model. If the
motion model’s likelihood function is a Gaussian distribution, centered at the state
that was predicted by the constant velocity model, then the state transition prior is:

p(b̂it|b̂it−1) ∼ exp

(
−1

2
(b̂it − ḃit)

ᵀQ−1(b̂it − ḃit)

)
. (3.50)

The proposal density likelihood for sample i is defined by the Gaussian poste-
rior that is estimated by the Kalman filter, and can be obtained as follows:

q(b̂it|b̂i1:t−1,y1:t) ∼
1√
|P it |

exp

(
−1

2
(b̂it − µit)ᵀ(P it )

−1(b̂it − µit)
)
. (3.51)

Finally, the observation likelihood p(yt|b̂it) can be obtained as explained in
Section 3.3.5. Based on the previous weight, the state transition prior, the proposal
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density likelihood, and the observation likelihood, the particle weights wit are then
calculated as follows:

wit = wit−1

p(yt|b̂it)p(b̂it|b̂it−1)

q(b̂it|b̂i1:t−1,y1:t)
. (3.52)

As opposed to the widely used bootstrap filter, our approach makes use of the
latest observations in the proposal distribution, resulting in a more efficient use
of the samples. As a result, relatively few particles (50 in our experiments) are
needed for robust tracking.

The system noise and measurement noise matrices of a Kalman filter are usu-
ally chosen by hand during filter design, and are usually chosen to be diagonal
matrices if no informative choice can be made. Nevertheless, we can estimate the
measurement noise matrix R1, based on the local uniformity of the optical flow
field. The measurement noise matrix R1 is obtained by calculating the covariance
matrix of the components of all flow vectors inside the bounding box that is de-
fined by bit. If all vectors are similar, the observation noise is assumed to be small,
whereas a large error is assumed if the optical flow field is noisy.

Similarly, we dynamically estimate the process noise matrix Q, based on the
amount of predicted displacement ∆v = |bit − bit−1|. If the hand is moving
slowly, the prediction error is likely to be smaller than when it is moving fast.
Furthermore, if a hand suddenly moves to the opposite direction with the same
speed ∆v, the error of the predicted state is twice the predicted displacement.
Because approximately 99.7% of normally distributed data (N(µ, σ2)) lies within
the interval µ ± 3σ, we simply set the variances of Q equal to (‖∆v‖ + u)2,
where ‖.‖ denotes the vector norm and u is an empirically defined constant. This
slight overestimation of the variance allows the model to cope with unexpected
non-linearities such as accelerations. The off-diagonal elements are set to zero.

While many optical-flow algorithms exist, and any of them could be used in our
tracking framework, most optical-flow algorithms adhere to the so called bright-
ness constancy assumption. As a result, these algorithms, such as the KLT method
used by Kolsch et al. [Kölsch 04b], can not be used in unconstrained environments
with unexpected illumination. Moreover, most regularized optical-flow algorithms
are too slow to be incorporated into a real-time tracking system.

To cope with changing illumination, a real-time, sparse regularized optical-
flow method that we proposed earlier in [Spruyt 13b] is used in our framework.
This optical-flow algorithm uses a fast feature detector and a Local Binary Patterns
descriptor for point matching. A sparse regularization method based on the non-
Sibsonian interpolant, described in chapter 3, is used to obtain a smooth flow field,
and the average of all flow vectors within the bounding box, defined by b, is used
as the observation vector of the Kalman filter. An added advantage of using our
optical-flow method in the context of our tracking algorithm, is that the Local



140 REAL-TIME, ROBUST HAND TRACKING

Binary Patterns that were already calculated during hand detection, as explained
in Section 3.3.4, can simply be reused without additional computations.

3.4.4 Proposal Distribution Based on Mean-shift

Incorporation of the optical-flow estimate into the proposal distribution largely
counteracts the shortcomings of the simple constant velocity motion model. How-
ever, integration of the latest observations into the proposal density could be taken
even further. As an example, the tracking approach of Kolsch et al. [Kölsch 04b]
guides its deterministic sampling process based on the color likelihood map of
the image. As discussed in the previous section, directly incorporating such in-
formation into the motion model of the particle filter would yield particles that
are meaningless from a Bayesian point of view. In the next paragraphs, we pro-
pose a method to use this information to further fine-tune the proposal distribution
instead.

A well known deterministic tracking approach that tries to model the mode of
a color based PDF, is the Camshift algorithm [Exner 10]. The Camshift method
uses the mean-shift optimization algorithm to iteratively shift the previous state
estimate closer to the local maximum of the PDF. However, due to its deterministic
approach and the gradient based search, the mean-shift procedure on its own only
finds one local maximum, and is therefore not suited for tracking objects in a
complicated environment, where the approximated PDF has many local maxima.

If many skin-like background objects are present in the scene, we would like
the proposal distribution of our particle filter to be based mostly on the constant
velocity motion model and the optical-flow estimation. If only few skin-like back-
ground objects are present however, we would like the proposal distribution to be
determined mainly by the skin likelihood in the neighborhood of the particle. The
skin likelihood map was defined in Section 3.3.1.

Shan et al. [Caifeng 04] proposed to integrate mean-shift into their bootstrap
particle filter tracker. They draw samples from the state transition prior and per-
form a mean-shift iteration after particle prediction, and before likelihood assign-
ment. Additionally, they model the particle distribution before mean-shift correc-
tion using a Gaussian mixture model (GMM), and create a second GMM to model
the distribution after the mean-shift iteration. Finally, they weight the particle like-
lihood by the ratio of both Gaussian mixture models to correct for the fact that the
mean-shift iteration in fact altered their proposal distribution.

Shan et al.,’s method corresponds to generating a proposal distribution based
on the mean-shift process, and then using the local maxima of this distribution di-
rectly as the particle states instead of sampling from it. As a result, this approach
suffers from particle impoverishment, since many particles will end up represent-
ing the same state. Moreover, this method implicitly models a single proposal
distribution for the complete particle set, instead of designing the proposal distri-



CHAPTER 4 141

bution specifically for each particle. Because of this, it can not cope with situations
where the mean-shift observation is unreliable. In order to deal with the fact that
the mean-shift iteration might in fact degrade the result sometimes, Shan et al.
heuristically propose to only use this for 50% of the particles. Finally, this ap-
proach is tailored to bootstrap filters and can not be easily combined with different
proposal distributions.

In the following paragraphs, we propose to incorporate the mean-shift result di-
rectly into the proposal distribution instead of performing the mean-shift iterations
on the samples of the transition prior. The mode of our final proposal distribution
will be a weighted average of the constant velocity motion model, the optical-flow
estimate, and the mean-shift result. The weights are determined dynamically and
optimally, based on the performance of each of these predictions in the recent past.
Thus, our method automatically adapts its parameters such that the most reliable
prediction (i.e. constant velocity, optical flow based or mean-shift based) dom-
inates the final proposal PDF. Our method avoids the particle impoverishment
problem by sampling the particles from their proposal distribution instead of using
the proposal PDF’s maxima directly as the particle state.

The effect is that each particle is shifted closer towards the mode of the pos-
terior distribution before assigning weights to the particles, compared to conven-
tional bootstrap filter approaches. This greatly reduces the need for resampling as
will be shown in Section 4, and helps to avoid both the depletion and the particle
impoverishment problems. Moreover, particles are used more efficiently, such that
only a limited number of particles is needed for robust tracking.

In Section 3.4.2, the mode of the optical-flow based proposal distribution for
each particle was defined as µit. This mode, together with the corresponding co-
variance matrix P it , was obtained by means of Kalman filtering. In the following,
let the mode of the skin-likelihood based proposal distribution be sit, and let its
corresponding covariance matrix be Sit .

Let εt = µit − sit be the difference between the mode locations of the two dis-
tributions. The normal proposal distribution that optimally combines both types of
information, would then be a distribution with its mode chosen such that the error∑t
n=1 ε

2
n is minimized. This corresponds to a least-squares regression problem,

and can be solved using a recursive least-squares filter. Thus, the mode of the op-
timal proposal distribution at time instance t is a weighted linear combination of
the modes sit and µit, where the dynamic weight depends on the errors in the past.
The covariance matrix of this proposal distribution is a measure of the spread of
this error. If an exponential weighting scheme is used such that old data is grad-
ually discounted, the optimal algorithm to calculate this recursive least-squares
regression is the Kalman filter.

In fact, the above problem could be seen as a sequential data fusion prob-
lem [Durrant-Whyte 01]. At time instance t, optical-flow information becomes
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available, and is used to update the Kalman prediction, yielding µit and P it . This
state estimate µit allows us to measure the skin-likelihood at that position, and
should be further updated based on this likelihood. Also, the covariance matrix P it
needs to be updated, to incorporate the uncertainty of the skin-likelihood observa-
tion.

Since both observations are obtained synchronously, the state does not evolve
between observation of the optical-flow field, and observation of the skin likeli-
hood. Therefore, we can simply use the optical-flow based Kalman prediction
itself as the prediction for the next update which will incorporate the skin likeli-
hood.

Like in Section 3.4.2, we need to define the Kalman matrices. Let R2 be
the measurement noise matrix for the skin likelihood measurement. Let y2 be
the state estimate that is obtained by the mean-shift procedure. The mean-shift
algorithm uses µit as its initial estimate, and returns a new state estimate y2 =

(x, y). Consequently, the observation matrix H from Section 3.4.2 can be re-used.
Finally, we introduce the subscript (.)2 to indicate a Kalman update stage that is
based on the second observation, namely the skin likelihood.

The parameters of the final proposal distribution are then calculated recursively
as follows: In the prediction stage, we calculate the state estimate based on the
constant velocity model using equation (3.44). In the update stage, we update
this prediction by the optical-flow measurement using equation (3.46). Finally, we
update the resulting state estimate to incorporate the skin likelihood observation
by considering b̂1(t|t) to be the prediction for this update step. The final state
estimate, is then:

b̂2(t|t) = b̂1(t|t− 1) +K2(t)[y2(t)−Hb̂1(t|t− 1)], (3.53)

where the covariance matrix is calculated similar to equation (3.47), with P1, K2

and S2 replacing P0, K1 and S1 respectively.
The above equations show that a different gain matrix K is used for each ob-

servation type. As a result, the final state estimate is a weighted combination of the
constant velocity motion model, the optical-flow observation, and the skin likeli-
hood observation. The weights are dynamically adapted, based on the estimation
errors in the recent past. Instead of sequentially incorporating the new evidence
(i.e. optical flow and mean-shift optimization), once could opt to group all ob-
servations such that a single Kalman gain matrix is calculated. The advantage of
this approach would be that correlations between the observations can be mod-
eled. However, if many observations are grouped, the size of the matrices grows
exponentially, resulting in slow computation times.

The final proposal distribution, used by the particle filter, is the normal dis-
tribution that is defined by its parameters µit = b̂2(t|t) and covariance matrix
P it = P1(t|t). Plugging these parameters into equation (3.51) yields the final pro-
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posal density for the particle filter, used to sample new particles before weights are
assigned.

The skin likelihood based observation is obtained by performing the mean-shift
procedure after an initial optical-flow based state estimate b̂1(t|t− 1) is obtained.
Mean-shift is a gradient based optimization method that, given a coarse estimate
of the local maximum, finds the peak of a discrete PDF. We use the result of the
optical-flow based Kalman state prediction as the initial estimate for the Mean-
shift algorithm.

Let L(x) be the skin probability map that was defined in Section 3.3.1, with
x = (x, y). Let W be the set of all pixel coordinates within the bounding box
defined by b̂1(t|t − 1). Finally, let c = (x, y) be the vector with as its compo-
nents the coordinates of the center of this bounding box. Then the skin likelihood
observation y2 is obtained by performing a single mean-shift iteration:

y2 = b̂1 + ∆b̂1 : ∆b̂1 =

∑
x∈W

K(x− c)L(x) (x− c)∑
x∈W

K(x− c)L(x)
, (3.54)

where K(.) defines a smoothing kernel.
Often a Gaussian kernel is used such that points that are closer to the initial

estimate receive more weight than points farther away. Nevertheless, we propose
to use a simple uniform kernel, the bandwidth of which is defined by the state of
the particle under consideration. This allows us to re-use the previously calculated
integral images to execute the mean-shift iteration in constant time.

The measurement noise matrix of a Kalman filter is usually chosen by hand
during filter design. However, we can estimate the measurement noise matrix
R2, based on the skin likelihood map, by considering all (x, y) coordinates in the
bounding box defined by y2 as weighted samples, where the weights are again
defined by the skin likelihood. We then find the weighted mean µ∗ by running
a second mean-shift iteration. Finally, if W represents the set of all coordinates
within the bounding box defined by y2, we find the weighted covariance matrix
[Price 72] as follows:

R2 =

∑
x∈W

L(x)

(∑
x∈W

L(x)

)2

−
∑
x∈W

L(x)2

∑
x∈W

L(x) (x− µ∗)T (x− µ∗) . (3.55)

This covariance matrix is used as the measurement noise matrix for the Kalman
filter and represents the uncertainty about the skin likelihood based measurement.
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3.5 The Complete Tracking System

In this section, we introduce an efficient segmentation method to obtain a rough
approximation of the contour of the tracked hand. This segmentation is then used
to dynamically update the color models of the particle filter, and to introduce a
learning stage in the Random Hough Forest classifier.

Furthermore, an error detection and recovery method is discussed, which al-
lows the object tracker to automatically and dynamically determine the number of
objects to be tracked.

3.5.1 Hand Segmentation

Segmenting the tracked hand from the video frame, allows us to feed back the hand
contour information to the particle filter, in order to refine the color models and to
ease the detection of tracking failure. Additionally, many tasks that are outside
the scope of this dissertation, such as hand pose recognition, benefit from a hand
segmentation result.

Although image segmentation in general is an ill posed problem with many
possible solutions, our segmentation problem can be solved relatively easily, be-
cause the location and size of the hand is already known from the particle filter
tracking stage. The parameters b̂ = (x, y, w, h) of the bounding box of the tracked
object are obtained by calculating the expected value of the posterior distribution
p(bt|z1:t) that is represented by the sample set of the particle filter, as illustrated
by equation (3.56).

b̄t = E[p(bt|z1:t)] =

N∑
i=1

witbt, (3.56)

where wit are the normalized particle weights such that
∑N
i=1 w

i
t = 1.

During tracking, a hand was represented by its bounding box, mainly because
such an approach allows us to greatly reduce the computational complexity by
using integral images. Also, an upright bounding box can be represented by only
four distinct parameters, which reduces the dimensionality of the real problem. A
more accurate description of the size and location of the hand could be obtained
by representing the hand by its surrounding ellipse, instead of its bounding box.
Moreover, an even more precise description would also model the in-plane rotation
of the hand, apart from its location and size. Therefore, before trying to solve the
segmentation problem, we propose to fit an ellipse to the tracked hand, based on
knowledge that originates from the particle filter. The oriented ellipse represents
a more precise approximation of the hand contour than the bounding box, and is
used to obtain a rough segmentation as explained in the next paragraphs.

The observation model of the particle filter, described in Section 3.3, already
provides a probabilistic description of the most likely hand locations, as illustrated
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in figure 4.6. This probability image is an integration of skin detection, background
modeling, motion detection and discriminative Hough detection, and is a more
discriminative base for segmentation than the original RGB video frame.

To obtain an elliptical description of the hand, starting from its bounding box
and the probability image that resulted from the particle filter’s observation model,
the Camshift algorithm [Exner 10] is used. In essence, the Camshift algorithm
consists of a mean-shift optimization step, and a size and orientation estimation
step. During the mean-shift optimization, the bounding box is iteratively shifted
towards the expected value, or normalized first moment, within its support. After
convergence, The size of the bounding box is adapted as a function of the zeroth
moment which has already been calculated by the mean-shift operation. The ori-
entation of the bounding box is determined as a function of the second moments,
which describe the variance within the bounding box.

The Camshift iteration thus yields an oriented ellipse that more closely fits the
hand than the original bounding box, especially if the hand is rotated. We then
propose a simple active contour based approach to obtain the final segmentation.
While complicated and robust active contour like algorithms exist, these are often
computationally expensive due to their need for a global optimization algorithm
or due to their iterative nature. Instead, we propose a very simple algorithm that
corresponds to an active contour approach where the internal energy is set to zero.
Smoothness is then imposed by a postprocessing step on the resulting contour.

First, the ellipse, obtained by the Camshift iteration, is approximated by a finite
set of discrete points. Each of these points, (p1, p2, ...pk), serves as a control point
of the active contour, and is only allowed to move along the normal vector of the
ellipse at that point. The normal vector n = (x, y), at a point pi = (xi, yi) and
with length M , is defined by equation (3.57).

n = M
(yi+1 − yi, xi − xi+1)

|pi+1 − pi|
, (3.57)

where |.| is the length of the vector.
The length M of the normal vector defines the maximum distance in pixels

that the point can deviate from its original location on the ellipse. In our imple-
mentation, we set M = 20. The line along which the control point pi is allowed
to travel, is then defined by equation (3.58).

N = pi + s · n s ∈ [−1, 1]. (3.58)

By varying parameter s, a cost function can be calculated at each location on
this line, after which the location that corresponds to the smallest cost is chosen
as the final location of the control point. The cost function is based on the prob-
ability image that was calculated earlier and used in the observation model of the
particle filter. However, due to non-uniform illumination, cluttered backgrounds
and motion, and camera noise, this probability image is often very noisy.
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ŝ

Figure 4.11: Conceptual illustration of the segmentation process: The bounding box, re-
turned by the particle filter tracker, is used to initialize a Camshift iteration. The Camshift
algorithm yields an oriented ellipse, surrounding the hand. This ellipse serves to initial-
ize an active contour segmentation algorithm which relocates a set of contour points in the
direction defined by their normal vector.

For this reason, traditional cost functions that are often used in active contour
approaches, such as the image gradient, can not be used directly. Instead, we as-
sume that the optimal value ŝ of parameter s should be chosen such that difference
between the average skin probability on this line for s < ŝ and the average prob-
ability for s > ŝ, is maximized. This can be interpreted as finding the maximum
gradient on a line segment, where the gradient is approximated using finite differ-
ences with a window size that equals 2M , and where the boundaries of the line
segment are extended by the average value between the boundary and the window
center. Due to the smoothing introduced by this operator, the cost function is ro-
bust against noise and errors in the probability image. The complete process is
illustrated conceptually by figure 4.11.

After each control point has been relocated to its optimal position, the resulting
contour is smoothed by a Gaussian kernel. Figure 4.12 illustrates the probability
image that is used as the input for the segmentation algorithm, and each of the
subsequent segmentation steps for several very challenging video frames where
most traditional segmentation methods would fail.

To significantly decrease the computational complexity of finding the optimal
value ŝi for each control point pi, we extend the concept of integral images to
lines, resulting in a simple two pass algorithm. In the first pass, the line integral
I(s) is calculated for each line Ni that corresponds to control point pi. In the
second pass, the optimal value ŝi can then easily be computed, since the sum of
all skin probabilities on this line for s < ŝ equals I(s − 1), while the sum of all
probabilities for s > ŝ equals I(M)− I(s).

The resulting algorithm is extremely efficient, its computational complexity
being negligible when compared to the complexity of the tracking and detection
algorithms. Also, the segmentation method does not depend on sharply defined
edges or smooth gradients, and does not directly use color information, making it
robust against motion blur, illumination changes and camera noise.
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(a) Input image (b) Tracking result (c) Camshift result (d) Segmentation

Figure 4.12: Hand segmentation in challenging illumination conditions.

3.5.2 Initialization and Error Recovery

The proposed tracking algorithm is able to overcome local maxima that are caused
by background clutter, moving objects, illumination changes, skin-like colors or
noise. This robustness is mainly achieved by assuming temporal consistency, ex-
pressed by means of a motion model. However, at some point in time, the tracking
algorithm will inevitably make a mistake, causing tracking failure.

Since our tracking system continuously learns about and adapts to its envi-
ronment, tracking failure results in incorrect models, inducing even more tracking
failures in the future. This is often referred to as ‘drift’. To avoid such behavior,
error recovery procedures are necessary, allowing the particle filter to recognize
tracking errors and to re-initialize.

Before tracking can even begin, the tracking algorithm needs to be initialized
since the distribution p(xit|xit−1), in the numerator of equation (3.11), is unknown
before initialization at time instance t = 0. Therefore, tracking initialization cor-
responds to choosing a prior distribution p(xi0) over the filter state variables.

Both the error detection and recovery problem, and the (re)initialization prob-
lem, could be solved if a real-time hand detector were available that is more reli-
able than the tracking algorithm. However, if such detector were available, then
particle filtering itself would not be needed, as tracking could then be achieved
simply by re-detecting the object in each video frame. A reliable detector would
be a detector yielding both a high precision, and a high recall. Precision measures
the fraction of true positive detections in the set of positive detections returned by
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the classifier, while recall measures the fraction of true positive detections in the
set of all detections that should have been positive.

In Section 3.3.4, we introduced an efficient and robust hand detector, based on
Random Hough Forest classification. This detector is a high recall detector, which
means that it can positively detect the occurrence of a human hand in an image
most of the time. As a result, the detector yields a low precision, which means that
only a fraction of the hand detections are in fact hands.

The Hough voting map that is generated by the classifier, is used in the like-
lihood map of the particle filter, were a high recall is more important than a high
precision, as a particle filter can easily overcome noisy observations due to its
probabilistic nature. For reliable tracking initialization or error detection and re-
covery, both recall and precision should be low. Moreover, since the detection
process needs to run in parallel with the tracking algorithm, the classifier needs to
be efficient and should only use a fraction of the available CPU power.

Similar to the approach described by Mittal et al. [Mittal 11], we propose a
cascade of classifiers to solve this problem. The first classifier in the cascade is
the earlier described Random Hough Forest classifier that solves the most difficult
problem of generating hand location hypotheses. The second classifier in the cas-
cade is a simple linear classifier that quickly rejects a large amount of false positive
detections by classifying the resulting hand as a whole, instead of classifying the
parts that make up the hand. The third classifier in the cascade is a decision tree
that uses only temporal information to further reject false positive detections. This
temporal information includes the temporal variance of the estimated hand loca-
tion amongst others, and will be discussed on page 149. Cascading an advanced
high recall classifier with two simple high precision classifiers results in a fast and
robust classifier that can be used for particle filter initialization and error recovery
in video. The next paragraphs explain each of the cascade stages.

The Random Hough Forest classifier returns a probability map that, for each
pixel, indicates the probability of being part of a hand. In order to actually extract
possible hand locations from this voting map, the local maxima need to be located.
The variance or support of each local maximum, indicates the size of the hand.
To quickly obtain a set of hand hypotheses, we first locate the maxima in the
probability map, and then use the Camshift procedure that was described earlier to
obtain the location and size of each hand hypothesis.

The Random Hough Forest classifies object parts instead of complete objects.
As a result, if several objects have a similar appearance and spatial configuration
as hand parts, a local maximum is generated in the voting map, resulting in a
false positive detection. To quickly discard obvious false positives, we trained a
simple linear classifier such that its precision is higher than the precision of the
Random Hough Forest classifier. The linear classifier classifies hypothesized hand
bounding boxes instead of image parts, and simply reuses the earlier calculated
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(a) Hough voting map (d) Hand detection

Figure 4.13: Hand hypotheses, generated by the Random Forest classifier, are illustrated
in green, while several false positives, shown in red, are rejected by the second stage linear
classifier.

features for performance reasons. An example of the filtering capabilities of the
second stage classifiers is shown in figure 4.13, where the red rectangles represent
hand hypotheses that were rejected by the linear classifier.

For each video frame, the first stage of the hand detector yields a set of hand
hypothesis which is then refined by the second stage linear classifier. For each of
these hypotheses, a hypothesis verifying particle filter is then used to gather tem-
poral statistics during the next N frames. This particle filter does not update any
of the color models and does not assume to be correctly tracking a hand. Instead,
it is only used to gather temporal information describing the tracked object, which
can then be uses by the third stage classifier to verify or reject the hand hypothesis.

Initializing the particle filter corresponds to choosing the prior distribution
p(xi0) at time t = 0 in equation (3.11). Because the hand detector returns bound-
ing boxes, the location and dimension of these bounding boxes correspond to the
state variables used by the particle filter. Hence, we can directly use the bounding
boxes obtained by the detector, to generate the prior distribution from which initial
samples are drawn by the particle filter. We define the prior distribution as a four
dimensional normal distribution, the means of which are defined by the detected
hand’s bounding box parameters. A diagonal covariance matrix is used, with em-
pirically defined variances that represent the uncertainty of the hand detector.
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While the first and second stage classifier only use spatial information to detect
hand hypotheses and to reject false positive detections, the third stage classifier ex-
ploits the available temporal information in video, to further refine the set of hand
hypotheses and to detect tracking errors. The third stage classifier is a simple de-
cision tree that was trained using 10-fold cross validation, and pruned afterwards.
This decision tree evaluates whether the tracked object is a hand, by examining
its temporal behavior during the past N frames. This classifier uses four simple
temporal features that are discussed in the next paragraphs.

A first feature that often discriminates correctly tracked hands from incor-
rectly tracked objects, is the variance of the estimated (x, y) positions in the recent
past. A small variance often indicates a stable track, while a large variance often
indicates a tracking error. For instance, when the hand leaves the camera’s field
of view, the particle filter tries to find a new local maximum in the probability im-
age, resulting in random behavior and an increased temporal variance. In order to
transform this covariance matrix into a single feature value, we calculate its Frobe-
nius norm, which is often used as a measure to compare covariance matrices. This
measure allows us to combine the variances and covariances instead of using each
matrix element as a distinct feature, thereby reducing the risk of overfitting.

A second feature that could indicate tracking problems at time instance t, is
the uncertainty of the particle filter itself at this time instance. The current uncer-
tainty of the state estimator, is defined by the covariance of the current particle
set. Although this covariance is calculated at a single time instance, it implicitly
contains temporal information because of the recursive nature of the particle fil-
ter algorithm. If particles are widely spread, the observations during the past few
frames were either very ambiguous, or very unlikely. Alternatively, if the particles
have a small variance, the observations closely matched the predictions in the past
few frames, indicating stable tracking. Similar to the first feature, we also combine
all elements of this covariance matrix into a single feature value, by calculating its
Frobenius norm.

The third feature that is used to detect incorrectly tracked hands, is the aver-
age amount of motion during the recent past, as detected by our frame differencing
motion detector that was described earlier. If the amount of motion is very small
for a long period of time, the tracked object might be a background object instead
of a hand. Furthermore, if the amount of motion, detected by frame differencing,
is not proportional to the first feature value that describes the spread of the particle
filter’s expectation in the past, there might be a tracking error.

The fourth feature used by the decision tree, is simply the Random Hough
Forest’s detection consistency in the recent past. If a certain hand hypothesis is
being detected consistently in every video frame, its likelihood to be an actual
hand is larger than if the hypothesis is only generated sporadically.
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Figure 4.14: Schematic representation of the cascaded hand classification and tracking
algorithm with automatic initialization and error recovery.

Finally, the fifth feature is related to the segmentation algorithm. If an object
resulted in a very inconsistent segmentation during the recent past, this might indi-
cate a tracking error. For instance, if a hand is occluded or outside the video frame,
the particle filter might get stuck on a skin-like surface in the background. During
segmentation, the contour will then try to expand as much as possible. However, its
radius can not be larger than M , due to the nature of our segmentation approach.
Therefore, if the particle filter gets stuck on a skin like background surface, the
segmented contour will have a radius close to M such that its area is similar to the
area of the original bounding box. Accordingly, the average ratio of contour area
and bounding box area in the recent past is used as a feature.

Temporal statistics are gathered by each hypothesis verifying particle filter us-
ing a sliding window of size N , such that the classifier’s decision at each point
in time is based on the past N frames. If the third stage classifier classifies a hy-
pothesis to be hand, the hypothesis is considered verified, and actual hand tracking
is started. During hand tracking, the third stage classifier continues to verify the
validity of the tracked object in each new video frame, in order to detect tracking
errors or drift. This approach allows for automatic initialization and error recovery,
which is of great importance in real life applications. Figure 4.14 schematically
illustrates this process, that is repeated for every video frame.

Each particle filter is described by one of three states: ‘correct’, ‘uncertain’
or ‘incorrect’. A hypothesis verifying particle filter is assigned the state ‘uncer-
tain’. Based on its decisions in the next frames, the state then transitions to either
‘correct’ or ‘incorrect’. Incorrect filters are removed, whereas correct filters are
continuously verified for n time instances, and can transition to ‘uncertain’ and
eventually ‘incorrect’, based on the three-stage classifier’s decisions during this
timespan. The effect of the ‘uncertain’ state is similar to that of hysteresis thresh-
olding. A hypothesis is only considered verified when a lot of evidence is available,
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Figure 4.15: Each particle filter transitions through three possible states, based on the
results of the three-stage hand classifier.

but needs little evidence to be kept alive. This state transition scheme is illustrated
by figure 4.15.

Based on the known position and dimensions of the tracked hands, each hand
is segmented using the algorithm described in Section 3.5.1. This segmentation is
then used to adapt and improve the classifiers and tracking models in three ways.

First, the ratio of the area of the segmented object and the area of the tracked
bounding box is used as a feature by the third stage hand classifier. If the area of
the segmented object is much larger or much smaller than the area of the bounding
box, a tracking error likely occurred.

Second, the segmented contour is used to learn a context for the first stage
Random Hough Forest classifier. In the first stage classifier, object patches cast
a probabilistic vote on their learned centroid location. For each hand hypothesis
that is extracted from the resulting probability map using the Camshift algorithm,
we know the set of patches that contributed to this hypothesis. For each hand
hypothesis, all contributing patches that correspond to centroid locations falling
within the segmented area, are then considered positive patches, while patches
whose centroid location falls outside of the segmented area, are considered nega-
tive patches. In each leaf node of each decision tree in the random forest, statistics
are kept about the number of times Tp the node was reached by a positive patch,
and how many times Tn the node was reached by a negative patch. This allows
us to generate a context specific prior that steers the classifier, such that patches
that are consistently classified incorrectly are assigned a lower probability in the
future. For more information about our Random Hough Forest classifier, we refer
to chapter 2.

The third way in which the segmented contour is used to adapt the tracking
system is related to the color models. The segmented area is used to update the
color models that are used in the observation model of the particle filter. Pixels
that fall within the contour are used to update the skin histograms, while pix-
els falling outside the contour are used to update the non-skin histograms. As
discussed in Section 3.2, three different Bayesian skin classifiers are used. The
offline trained skin classifier operates in RGB space, and is considered static, in
that its models are not updated online. This makes sure that the classifier still
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Figure 4.16: Each module feeds back information to previous modules, in order to allow
for error detection and automated learning about a specific environment.

yields reasonable results in case of tracking drift. The second classifier operates
in the Hue-Saturation color space and its skin and non-skin models are updated,
based on the segmentation results. To update these histograms, only those pixels
are used that fall within the segmented area, and that have a high skin probability.
The histograms are accumulated and smoothed over a certain number of frames,
to allow for gradual illumination changes, while maintaining stability. The third
classifier is updated every video frame, and allows the tracker to cope with sudden
illumination changes.

Figure 4.16 illustrates this feedback concept. The hand detection module feeds
bounding boxes to the hand tracking module, which feeds information back to the
third stage hand classifier to allow for error detection. Furthermore, the track-
ing module delivers bounding box information to the segmentation module, which
feeds back segmented contour information, to allow the particle filter to update its
color models. Finally, the segmentation module feeds back segmentation informa-
tion to the detector module, to enable an online learning process in the first stage
hand classifier, and to improve error detection by the third stage hand classifier.

4 Results and Discussion

In this section, we evaluate the proposed tracking scheme on two challenging
datasets, and we compare our results with state-of-the-art tracking solutions. The
first dataset was proposed in [Spruyt 12] and contains eight video sequences, each
of a duration of approximately 80 seconds. The video sequences are extremely
challenging, containing fast motion, occlusion, changing illumination, cluttered
backgrounds, and a moving camera. Table 4.1 summarizes the characteristics of
each video sequence. These sequences are publicly available1 for research pur-
poses and contain carefully annotated ground truth locations and sizes for each
hand.

1http://telin.ugent.be/~vspruyt/icip2012/

http://telin.ugent.be/~vspruyt/icip2012/
http://telin.ugent.be/~vspruyt/icip2012/
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Table 4.1: Test dataset specification: Each video sequence used to evaluate the tracking
algorithm can be described by a set of characteristics such as whether or not hand occlusions
(Occl. in this table) occur, or whether the person is wearing short or long sleeves.

# Scene Lighting Motion Sleeves Camera Occl. Length
1 cluttered dark normal long fixed no 83 s
2 cluttered bright normal long fixed no 82 s
3 normal normal fast long fixed no 85 s
4 normal bright normal long moving no 88 s
5 normal normal normal long fixed no 89 s
6 cluttered normal normal short fixed no 84 s
7 normal changing normal long fixed no 85 s
8 normal normal normal short fixed yes 83 s

To evaluate a tracker’s accuracy, the Pascal VOC score [Everingham 10] is
widely used in literature [Gall 09, Mittal 11]. The VOC score defines the amount
of overlap between the detected bounding box, and the given ground truth bound-
ing box. The score can be calculated as V OC =

Bg∩Bd

Bg∪Bd
, where Bg represents

the pixels within the ground truth bounding box, whereas Bd represents the pixels
within the detected bounding box. Therefore, detected bounding boxes that com-
pletely contain the ground truth bounding box, are penalized if their size is much
larger. On the other hand, detected boxes that are completely contained within the
ground truth bounding box, are penalized if their size is much smaller. In gen-
eral, only those detections for which V OC ≥ 0.5 are considered ‘true positive’
detections.

In the following, we compare our tracking solution with six well known track-
ing methods from literature. The first method is the Camshift algorithm [Exner 10].
Although the Camshift algorithm might not be considered a state-of-the-art track-
ing solution, it is often used as a baseline when evaluating tracking methods in
computer vision. The second method is the HandVU system [Kölsch 10] that was
discussed in Section 2. The HandVU algorithm tracks hands using a combina-
tion of color and Harris corner feature matching, by propagating random samples
that are spatially constrained by flocking behavior rules. Third, we compare our
method with the RTseg solution that was proposed in [Spruyt 10a], and discussed
in Section 2. This method combines multiple color and motion cues in a Gaussian
Mixture Model to track hands in unconstrained environments.

Whereas the above methods could be considered generative tracking ap-
proaches, we also compare our results with three state of the art object
tracking algorithms based on discriminative template matching. The Predator
tracker [Kalal 12] is a recent patch-based tracking solution that is able to auto-
matically learn the object’s appearance over time in order to adapt to its environ-
ment. The adaptive basin hopping Monte Carlo filter (BHMC) proposed in [Jun-
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Figure 4.17: VOC score comparison for different tracking algorithms.

seok 09] is another adaptive patch based tracker, specifically designed for tracking
non-rigid objects. Finally, the Fragtrack algorithm [Amit 06] is an adaptive patch
based tracker using a Hough voting scheme and integral histograms.

For each video sequence, all of the above methods were initialized manually
based on the ground truth bounding box in the first video frame. Figure 4.17 shows
the average VOC scores that were obtained with each of these methods on every
video sequence. The variances of the VOC scores are indicated as error bars.

This result illustrates the difficulty of robustly tracking hands in unconstrained
environments. Although methods such as the Predator tracker and the BHMC
tracker are sophisticated tracking solutions that are able to robustly track object
such as cars or persons, they fail to accurately track human hands due to the lack
of clear discriminative features. Furthermore, the variance of the VOC scores
obtained with our method is much smaller, indicating very stable tracking results.

Figure 4.18 shows the VOC score of the three top performing algorithms, plot-
ted against time, for the first 2000 frames of several videos of this dataset. Whereas
most methods tend to fail when the hands overlap with the face (e.g. Video 2, frame
number 600) or with each other (e.g. Video 8, frame number 700), or in case of
sudden changes in hand size (e.g. Video 8, frame number 1200), our solution is
able to cope with these situations and to quickly recover from failure. Moreover,
while the optical flow estimates, used in our proposal distribution, allow the fil-
ter to cope with challenging (Video 2) and changing (Video 7) illumination, the
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mean-shift iteration in the proposal distribution enables it to overcome incorrect
flow estimates in case of fast camera motion (Video 4).

The advantage of sampling from a proposal distribution that incorporates the
latest observations, instead of using the transition prior as a proposal distribution,
is illustrated more clearly by figure 4.19. In this experiment, we first changed the
proposal distribution of our method such that it corresponds to the transition prior,
resulting in a bootstrap particle filter (Proposal: TP). Next, we added the mean-
shift optimization step using the Kalman filter approach discussed in Section 3.4.4
(Proposal: TP+MS). Finally, the optical flow estimates were added as discussed
in Section 3.4.2 (Proposal: TP+MS+OF). These results clearly show that incor-
porating the latest observations into the proposal distribution greatly increases the
tracker’s accuracy and stability.

The main reason for this increase in performance, is that the limited number
of samples (50 samples in our experiments) is used much more efficiently. Instead
of wasting particles by sampling from the transition prior and assigning a low
weight to most of them, our proposal distribution yields samples that closely model
the final posterior. As a result, our method suffers less from particle depletion
and therefore does not depend on the resampling process as much as traditional
bootstrap filters. By limiting the number of resampling steps, the algorithm is able
to explore the tails of the posterior distribution while at the same time concentrate
most of its computational power on the mode of the distribution.

To illustrate this, we disabled resampling and generated figure 4.20 by drawing
particles in red and the mode of the distribution in white. For illustrative purposes,
only the tracking results for a single hand are shown. The first and the third row
show the sample set when using our proposal distribution, whereas the second
and fourth row show the sample set when using a bootstrap filtering approach.
In the traditional bootstrap filter case, the particle set quickly diverges, resulting
in particle depletion where few particles have a high likelihood. Therefore, this
method heavily depends on the resampling process which in turn tends to cause
particle impoverishment.

Figure 4.21 shows the tracking result on several randomly selected video frames
of each of the videos in the dataset.

Finally, table 4.2 shows the processing times for each of the tested algorithms
on a single 320×240 video frame of the dataset. Our method operates in real-time,
processing approximately 24 frames per second on modern hardware (I7 quadcore
CPU, 8 GB RAM). This includes the hand detection, segmentation, automatic
initialization, error recovery and online learning procedures.

Furthermore, figure 4.22 shows that the computational complexity of our
method is linear in the number of pixels, and that video resolutions up to QVGA
can easily be processed in real-time. Moreover, the algorithm was not parallelized
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Figure 4.18: Time evolution of VOC scores for the top performing algorithms.
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Figure 4.20: Particle depletion in traditional bootstrap filters (second and bottom row).
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Figure 4.21: Tracking results on eight challenging video sequences.

Table 4.2: Average processing times in milliseconds per video frame of size 320 × 240
pixels.

Method Processing time (ms)
Camshift 13.56
Ours 41.69
HandVU 53.18
Predator 45.62
Fragtrack 79.98
RTseg 95.72
BHMC 1036.85
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Figure 4.22: Execution time, plotted against the number of pixels in an image.

such that it did not benefit from a multi-core system. Parallelizing parts of our
algorithm would therefore reduce processing times even further.

Figure 4.23 shows the execution times of each the components of the track-
ing and detection system, obtained by averaging the timing results of 5000 video
frames of size 320× 240.

Whereas the above results clearly illustrate the superior accuracy and robust-
ness and the real-time characteristics of our tracking solution, it does not nec-
essarily prove its error recovery capabilities. Therefore, a second experiment
was used to test the long-term tracking behavior and the error recovery proce-
dures of our method. For this experiment, we used the publicly available ‘Signers
dataset’ [Buehler 08] that contains five BBC news sequences. We compare our
results on this Signers dataset with the results obtained by Karlinsky et al. [Kar-
linsky 10].

As discussed in Section 2, Karlinsky et al. fit a chain model to the body of the
signer in order to detect hands. Chain fitting starts from the ground truth bounding
box of the face and thus only works if such ground truth is available and if the face
is visible. The main disadvantage of this technique is that the initial head position
has to be known, and that the technique is rather computationally expensive and
thus not suitable for real-time applications. The detected hand is considered correct
if it is within half face width from the ground truth location of the hand. Detection
performance is reported within the top k detections per ground truth hand instance.
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Figure 4.23: Execution timings of each component of the tracking and detection system,
obtained by averaging the timing results of 5000 video frames of size 320× 240.

Table 4.3: Results obtained on the Signer dataset, reported as a percentage by counting
the number of times the correct detection was amongst the k-highest-confidence tracking
hypotheses in each image.

2 max 3 max 4 max
Karlinsky 92.8 95.4 96.7
Ours 98.7 98.7 98.7

Table 4.3 shows a comparison of our results with the results obtained by Kar-
linsky et al., whereas figure 4.24 illustrates our results on several video frames
from the Signer dataset.

Although tracking fails several times while processing the Signer dataset, our
algorithm is able to automatically recover an re-initialize. To illustrate this, figure
4.25 shows an example of tracking error and recovery. The video frames have been
cropped for illustrative purposes.

5 Conclusion

We proposed a real-time hand tracking method that robustly tracks hands in un-
constrained video. Our solution automatically recovers from failure and does not
need a manual initialization step.
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Figure 4.24: Tracking results for the signer dataset.

Figure 4.25: Automatic error recovery while processing the Signer dataset.

The traditional bootstrap particle filter is extended by a Kalman filter driven
proposal distribution that incorporates the latest optical flow and skin likelihood
observations. Furthermore, partitioned sampling is used to greatly reduce the
search space dimensionality such that only 50 particles are needed to accurately
track hands in challenging conditions.

We integrated a discriminative hand detector with several generative cues to
further increase the tracker’s robustness, and to provide a method for automatic
initialization. A simple yet efficient segmentation method is proposed, and several
types of feedback are introduced such that both the tracker and the detector are
able to adapt to the video under consideration while avoiding error drift.

We showed that our method outperforms several state of the art tracking al-
gorithms, and we provided an extensive evaluation on three publicly available
datasets. Furthermore, the error recovery capabilities of the tracker were evalu-
ated and shown to enable long-term tracking in challenging conditions.



5
Tracking Through Occlusion by
Unsupervised Context Learning

1 Introduction

Whereas the task of tracking rigid objects with a known appearance has been
largely solved in academic literature, tracking non-rigid objects remains a diffi-
cult problem. Specifically, the appearance of human hands greatly depends on
their pose and can not be easily described using discriminative features.

In chapter 4 we proposed to combine a particle filter based tracking framework
with a discriminative classifier to overcome these difficulties. By combining dif-
ferent cues such as skin-color probability, motion likelihood and optical flow esti-
mates into a probabilistic framework using a sensor-fusion approach, local maxima
in the likelihood function can be overcome. We showed that our method can track
hands robustly in unconstrained environments and greatly outperforms the state-
of-the-art solutions. However, a major shortcoming of the proposed technique is
its tendency to be easily distracted when the hand occludes the face, another hand,
or skin-colored background objects that exhibit a hand-like visual appearance.

In this chapter we formulate a solution to the above problem, based on the idea
that a moving object is usually embedded in a specific context and rarely moves
alone. In the case of human hands, an obvious example of such contextual link
would be the arm which exhibits a motion pattern that is strongly correlated to that
of the attached hand. Although an arm detector could be trained offline based on
color cues [Stefanov 05], edge detection [Metaxas 06] or background subtraction
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Figure 5.1: Illustration of contextual learning. Objects colored in green exhibit a tempo-
rally correlated behavior to the hands, and are learned automatically. Hand and arm bound-
ing boxes are estimated by partitioned sampling particle filtering, and the hand segmentation
mask is obtained by active contour modeling.

[Goncalves 95], these methods tend to fail in unconstrained environments where
the appearance of the subject’s arm is unknown before tracking starts. Instead, we
propose a method to exploit temporal correlation, in order to automatically learn
which objects appear to be temporally connected to the hand. These objects can
then be used to increase tracking performance in case of occlusion of the hand
itself.

Furthermore, the proposed solution is not limited to arm tracking. In many
practical applications, the tracked hand holds an object such as a smartphone or
game controller, or attributes such as an umbrella (i.e. surveillance applications).
Whereas this degrades tracking performance if a traditional hand tracking algo-
rithm were to be used [Spruyt 13a], it can actually improve tracking if the system
is able to learn that the object’s position is temporally correlated with the hand.

Apart from increasing tracking robustness, our temporal learning scheme au-
tomatically results in a rough segmentation of the supporting object (e.g. human
arm). This could be of interest in many applications such as surveillance or human-
computer-interaction. Figure 5.1 illustrates this by drawing the supporting pixels
in green, where the intensity of the color indicates the probability of correct clas-
sification. The segmentation mask shown by Figure 5.1 and all following figures
was obtained by means of a simple and efficient active contour segmentation of
the likelihood image described in [Spruyt 13a]. The internal energy was set to
zero, and smoothing is imposed by a postprocessing step on the resulting contour.
The segmentation mask does not directly contribute to the context learning method
described in this chapter and is only shown for visualisation purposes.

It is important to note that the context segmentation, shown in green, is ob-
tained using a single, static video frame, and is not the result of motion detection.
Therefore, our method is able to detect and segment the supporting objects even in
video frames that do not contain any motion.

We introduce a technique to automatically learn this context in real-time. Based
on this continuous learning process, we propose two methods to increase object
tracking performance. The first method models the spatial relationship between
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context and object of interest, and incorporates this information into the proposal
distribution of a particle filter. Therefore, this method naturally extends to object
tracking in general. The second method extends the state space of the hand tracker
with an extra parameter representing the arm and uses a context-based observation
model to obtain the likelihood estimates. This not only yields an estimate of the
arm location, but also increases tracking robustness in case of occlusion.

The remainder of this chapter is outlined as follows: In section 2 we briefly
discuss related work from literature. Sections 3.1 and 3.2 provide an extensive
discussion of the online learning process. In section 3.3 we discuss how the con-
textual information is incorporated into the proposal distribution of a particle filter
to improve tracking robustness, and in section 3.4 we propose an efficient method
to track the arm together with the corresponding hand. Finally, in section 4 we
evaluate our algorithm by comparing the results with state-of-the-art solutions us-
ing three publicly available datasets.

2 Related Work

Learning the context of an object of interest is known to increase detection perfor-
mance of object detectors. For instance, Mittal et al. [Mittal 11] explicitly train a
parts based deformable model to capture the arm’s appearance while designing a
hand detector. Their evaluation shows that including contextual information yields
a 10% increase in recall.

Similarly, Torralba [Torralba 03] proposes to use a statistical model of low-
level features to obtain a prior that is used to improve object detection rates. How-
ever, since object detectors are trained offline and should be able to detect objects
embedded in an unknown context, only statistically significant relations between
the context of the training data and the objects of interest can be learned. In con-
trast, object trackers are embedded in one specific context and could learn this
context online. Furthermore, tracking can benefit from learning temporary links
between the context and the tracked object. These links might appear and disap-
pear at any time but can greatly increase robustness against occlusion and back-
ground clutter when available.

Therefore, our goal is to automatically learn a model of the current context
that supports the object of interest in an unsupervised manner, based on few and
unreliable measurements. The model should adapt online and should be able to
quickly learn and forget new information without overfitting.

The idea of unsupervised learning of unlabeled data was explored by Kalal et
al. [Kalal 10, Kalal 12], resulting in the well known ‘predator’ tracking algorithm.
Kalal et al. introduce the concept of structured unlabeled data which is based on the
observation that the labels of data in computer vision often exhibit strong spatio-
temporal dependencies. Structured unlabeled data is then defined as unlabeled
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data for which the label is restricted if the label of related data is known. In a
video sequence, the location of an object defines a trajectory in time. Unlabeled
image patches close to this trajectory are likely to be samples from the same object
class and are therefore considered structured data that can be used to train an online
classifier.

However, although the predator algorithm is able to quickly learn an appear-
ance model for the object of interest, it was shown to fail when applied to the task
of hand tracking [Spruyt 12]. The main reason for this is that the appearance of
hands varies widely throughout the video sequence, making it difficult to learn an
accurate model. In this chapter, we therefore extend the concept of structured un-
labeled data by considering trajectories of other objects in the scene that show a
temporal correlation to the trajectory of the object of interest. Instead of trying to
learn the appearance of the object of interest, we propose to learn the appearance of
surrounding objects that move coherently with the object of interest, as illustrated
by Figure 5.2. These surrounding objects can then be used to steer the tracking
algorithm in case of uncertainty due to occlusion or cluttered backgrounds.

A related idea was explored by Cerman et al. [Cerman 09]. In their work,
objects are tracked using an affine system model. A foreground model represent-
ing all coherently moving objects is learned online. Although their approach il-
lustrates that contextual learning can greatly improve tracking performance, this
method takes approximately 10 seconds to process a single video frame on mod-
ern hardware. Furthermore, a background model is learned offline by processing
the complete video before actual tracking starts. Therefore, this solution is not
suited for real-time tracking applications.

Grabner et al. [Grabner 10] extended the work of Cerman et al. by defining
so called ‘supporters’ instead of trying to obtain a complete model of the fore-
ground and background. Supporters are regions in the image that seem to move
coherently with the object of interest. An online learned implicit shape model
is used to describe the object of interest and its supporting regions by means of
SIFT descriptors. A generalized Hough transform is then employed such that each
supporting region votes for the object’s position. However due to the use of the
implicit shape model and several computationally expensive feature descriptors,
this approach can not be used for real-time purposes. Furthermore, if supporting
regions are anisotropic they can often not be used to obtain an estimate of the ob-
ject’s location. An obvious example are regions on a human arm which are not
discriminative in the tangential direction. Finally, the method proposed by Grab-
ner et al. simply performs tracking by detection in each video frame and therefore
does not fully exploit temporal consistency.

Inspired by the work of Grabner et al., we propose an online learning scheme to
model image regions that move coherently with the hand, and we incorporate this
information probabilistically in a particle filter framework. Our solution operates
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in real-time and as a side-effect also produces a rough segmentation of the sup-
porting objects. Supporting regions provide an estimate of the object’s location,
which is used to steer the particle filter. We propose a novel proposal distribution
that greatly increases sampling efficiency, resulting in robust tracking with only a
few particles to represent the posterior distribution of the state estimate.

3 Materials and Methods

Online contextual learning is a continuous process, such that the tracking algo-
rithm becomes more robust as time progresses. At each time instance, parts in the
scene that are close to and move coherently with the hand are used to train a clas-
sifier in an online manner. Both the process of selecting these training samples,
and the classifier that is trained based on these samples, are discussed in the next
sections.

At each time instance, every pixel in the image is labeled by this classifier as
being either part of the context, or part of the background. Pixels that are part
of the hand’s context are then used to steer the particle filter, thereby increasing
its robustness against occlusion and cluttered backgrounds. In the next sections,
we propose two methods to incorporate contextual information into a probabilistic
tracking scheme. Whereas the first method can be generally applied to any object
tracking problem, the second method is specifically focussed on hand-tracking,
and involves estimating the arm’s position.

3.1 Image Patch Selection Using Structural Constraints

The remainder of this chapter is based on the hand detection and tracking algo-
rithm that we proposed earlier in [Spruyt 12, Spruyt 13a] and discussed in chapter
4. This method was shown to be able to robustly track hands in unconstrained
environments, and to automatically initialize and recover from errors.

Given the hand location and trajectory, we define positive image patches as
those patches that appear to move coherently with the tracked hand, whereas nega-
tive patches are defined as those image regions that do not exhibit such correlation.
This is illustrated by Figure 5.2 in which positive patches are shown in blue, while
randomly sampled negative patches are indicated by red rectangles.

We define positive image patches as those patches that are close to the trajec-
tory of the tracked hands. These patches are therefore defined by spatio-temporal
constraints. Only those patches within a neighborhood of the hand that move co-
herently with the hand are considered positive. The labels of patches within this
neighborhood that do not exhibit coherent movement, and the labels of patches
outside this neighborhood that do move coherently with the hand, are considered
unknown. Finally, patches outside this neighborhood that do not move coherently
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Figure 5.2: Structured data, shown in red and blue, is defined by the known hand trajecto-
ries shown in cyan and green. Blue patches exhibit motion that is correlated to the motion
of the labeled hands, whereas red patches are negative samples.

with the hand, are labelled as negative patches. This concept of using structured
data for unsupervised learning was introduced by Kalal et al. [Kalal 10, Kalal 12]
and is known as PN-learning. Kalal et al. showed formally that iterative PN-
learning can converge to a zero-error classifier if certain assumptions are met such
that errors that are introduced by incorrectly labeled positive patches and incor-
rectly labeled negative patches cancel out each other. Although this assumption
does not necessarily hold in practice, it was shown that PN-learning using imper-
fect constraints greatly boosts classification performance.

Since we use spatio-temporal constraints to exploit the structural nature of the
unlabeled data, training data is only available at time instances where the tracked
hands actually move. To obtain a measure of motion coherence, the real-time,
sparse optical flow algorithm that we proposed earlier in [Spruyt 13b] is used. This
method yields a sparse, regularized flow-field and was used to steer the motion
model of the hand tracking particle filter in [Spruyt 12, Spruyt 13a]. Based on the
optical flow estimates, positive samples can easily be defined as those samples in
a neighborhood of the hand, whose optical flow vector is similar to the average of
all flow vectors within the hand region itself.

In the following let x = (x, y) be a position in the image, around which we
consider a square region with scale s, such that the width of the region is 2s.
We denote these regions by Rs,x. Let f(x) = (u, v) be the optical flow vector
that represents the velocity and direction of the motion of this region from the
previous frame to the current frame. Finally, let h = (x, y) represent the position
of the hand in the video frame, and let f̄(h) represent the average flow within the
bounding box of the tracked hand.

A spatial constraint can then be defined simply by considering only patches
for which ε = ‖x − h‖2 < τ , where τ is a parameter that defines the size of
the neighborhood. Similarly, the temporal constraint is defined simply by θ =

‖f(x) − f̄(h)‖2 < δ, where δ is a parameter that defines the temporal coherence
of two optical flow vectors.
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Each image patch Rs,x can then be assigned a label l(Rs,x) ∈ {−1, 0, 1},
where l = −1 represents the fact that no informed decision can be made, whereas
l = 0 represents a background patch and l = 1 represents a patch that moves
coherently with the hand. Image patches are labeled as follows:

l(Rs,x) =


0 if ε ≥ τ and θ ≥ δ
−1 if ε ≥ τ and θ < δ

1 if ε < τ and θ < δ

−1 if ε < τ and θ ≥ δ

(3.1)

The scale s of the square image patches at time instance t is chosen such that
2s = min(r), where r = (w, h) represents the width and height of the hand in
that video frame. Dynamic scale selection results in a more efficient usage of the
available training data and increases scale invariance of the final classifier.

Although real-time, dense optical flow algorithms exist [Newcombe 11, Sun-
daram 10], in the context of our particle filter framework the optical flow estima-
tion stage should only consume a fraction of the available CPU power. The sparse
optical flow estimation method used in this chapter was proposed in [Spruyt 13b]
and discussed in detail in chapter 3, and only needs 6 milliseconds of processing
time on QVGA video. Similar to most dense optical flow algorithms, this method
could easily benefit from GPU parallelization to decrease processing times even
further. Due to the nature of the sparse optical flow algorithm used, optical flow
vectors are often found around the edges of an object. As a result, positive regions
centered at those edge points tend to contain a lot of background pixels, slowing
down the learning process. Therefore, we propose to slightly relocate each positive
image patch such that it contains as much foreground pixels as possible. Assum-
ing the foreground contains moving pixels while the background consists of static
objects, this corresponds to shifting the region’s centroid such that the amount of
moving pixels within the region is maximized. Since training data is only gathered
if the hands are moving, the first assumption is valid per definition. The second
assumption does not necessarily hold. However, in case both the background and
foreground contain moving pixels, the current position of the positive region al-
ready maximizes the amount of motion within the bounding box such that no new
position will be found. Therefore, in the worst case the region is not moved at all,
whereas the best case scenario moves the region closer towards the center of the
supporting object.

For performance reasons we simply detect moving pixels by temporal frame
differencing. Since the frame difference image T is also used by the particle filter
framework during hand tracking [Spruyt 12], no additional computational cost is
incurred. Each positive region is then pushed towards its closest local maximum
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(a) Patches are selected automatically, based on the optical flow estimates.

(b) Patches are pushed towards the center of the arm.

Figure 5.3: Positive (context) and negative (background) patches are sampled automatically
to train an online Random Forest classifier. Positive samples are shown in blue, whereas
negative samples are shown in red.

within the frame difference image T by executing a mean-shift iteration:

x̂ = x + ∆x : ∆x =

∑
p∈W

K(p− x)T (p) (p− x)∑
p∈W

K(p− x)T (p)
, (3.2)

where K(.) defines a smoothing kernel and W represents the set of pixels within a
window surrounding x. We use a simple uniform kernel, the bandwidth of which
is defined by the scale s of the region under consideration. This allows us to re-use
the integral images that are also used by the hand tracking particle filter, to execute
the mean-shift iteration in constant time.

Finally, several slightly shifted versions of each region are added to the set
of positive image patches, in order to increase translational invariance of the final
classifier. Figure 5.3 illustrates the PN-learning process graphically. The top-row
shows the positive (l(Rs,x) = 1) and negative (l(Rs,x) = 0) patch candidates
respectively by blue and red rectangles. The bottom-row shows the positive patch
candidates after mean-shift iteration and the introduction of small spatial shifting.

Each region Rs,x is described using several simple feature descriptors. Al-
though robust spatial descriptors such as Histograms of oriented Gradients (HoG)
[Dalal 05], SIFT [Lowe 04] and SURF [Bay 06] or spatio-temporal descriptors as
discussed in [Wang 09] could be used to further improve our detection rates, these
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descriptors introduce a high computational complexity. Therefore, to allow real-
time processing, we use several simple feature descriptors to model the color and
texture of each image patch.

Color is represented simply by three 16-bin histograms. To reduce the compu-
tational complexity of our solution, we first calculate the integral histograms after
which the histogram of each arbitrary region in the image can be obtained in con-
stant time. Similar to the well known integral images, proposed by Viola and Jones
[Viola 04], an integral histogram is a recursive propagation method to calculate a
cumulative histogram for each pixel in the image, by means of dynamic program-
ming. At each pixel location, this cumulative histogram is the histogram of all
pixels above and to the left of the pixel under consideration. For each pixel loca-
tion an integral histogram, represented by vectors of integers and with bin size 16,
is obtained using a single pass propagation method during a preprocessing phase.

Although color can be a discriminative cue, it is inherently sensitive to illu-
mination changes and can not represent local structure. Therefore, we model fine
texture details by a 16-bin local binary pattern (LBP) [Ojala 96] histogram. The
local binary pattern was originally defined by Ojala et al. [Ojala 96] as an ordered
set of binary comparisons between a center pixel and each of its surrounding pix-
els, and was shown to have high discriminative power for texture classification
problems. The LBPs are calculated for each pixel in the image, after which the
histogram of LBPs within a region can be used to describe the texture of this re-
gion. However, since each pixel is surrounded by eight neighbors, an 8-bit LBP
descriptor results in a 256-bin histogram, many of which are empty if small regions
have to be described. Therefore, to avoid the well known ‘curse of dimensionality’,
we propose to use the Center Symmetric Local Binary Pattern (CS-LBP) opera-
tor [Heikkilä 09], which has been proven to outperform both the original LBP
and the well known SIFT descriptor in various image recognition problems. The
CS-LBP is simply obtained by using the sign of the difference between center-
symmetric pairs of pixels, instead of the difference between each pixel and a cen-
tral pixel, resulting in a 4-bit descriptor and thus a 16-bin histogram. The CS-LBP
can be implemented efficiently using only bit-shifting operations.

While the LBP descriptor models fine grained texture details, we use several
Haar-like features [Viola 04] to model larger structural properties of the image
patch. Haar-like features are defined as the normalized difference between distinct
subregions of the image patch under consideration and can therefore model larger
structural properties of the object. Haar-like features can be calculated efficiently
and in constant time by first obtaining the so called integral image, similar to the
concept of integral histograms as was explained above.

Finally, these Haar-like features are not only calculated using the grayscale
version of the video frame, but also based on a skin probability map in which
each pixel contains the probability of it representing human skin. We used the
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Figure 5.4: The original image, the skin probability map and the CS-LBP image.

publicly available Compaq dataset [Jones 02] to train a Bayesian skin classifier.
The Compaq dataset contains over 3 000 manually segmented skin colored images
and over 4 000 non-skin colored images. During training of the skin classifier,
we simply model the likelihood P (r, g, b|skin) of observing a certain RGB triplet
in a skin region by means of a 32-bin 3D histogram of skin pixels. Similarly,
the likelihood P (r, g, b|¬skin) of observing this color in a non-skin region, is
modeled by means of a 32-bin 3D histogram of non-skin pixels. Furthermore,
the prior probabilities P (skin) and P (¬skin) = 1 − P (skin), can be obtained
directly from the training data. The posterior probability P (skin|r, g, b) can then
be obtained according to Bayes’ rule:

P (skin|r, g, b) =
P (r, g, b|skin)P (skin)

P (r, g, b)

=
P (r, g, b|skin)P (skin)

P (r, g, b|skin)P (skin) + P (r, g, b|¬skin)P (¬skin)

Figure 5.4 shows the skin probability map and the CS-LBP image together
with the original video frame for illustrative purposes.

3.2 Robust Online Learning and Forgetting

Since the training data becomes available only incrementally as time progresses,
an online learning scheme is needed. Furthermore, the chosen classifier needs to
be extremely robust to noise in the training data, since it is expected that errors oc-
cur during the image patch selection process described in the previous paragraph.
Finally, the classifier should be able to automatically select the most discriminative
features from the set of available features, and should be able to forget outdated
information that was learned in the past.

A recently proposed classification approach that is known to be robust against
overfitting, exhibits a low variance and a low bias, and can cope with noisy labels
and missing values in the training data, are random forests. A random forest is
an ensemble of decision tree classifiers, each of which are trained using a boot-
strapped sample of the original training data. Random forests were discussed in
detail in section 3.1 of chapter 2.
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Figure 5.5: Pixels that are classified as being part of the hand’s context are shown in green.
The brightness indicates the posterior probability (classifiers certainty) that the label assign-
ment was correct.

Saffari et al. [Saffari 09] recently reformulated the problem of training random
forests to an incremental learning process using an online decision tree growing
procedure. Furthermore, their method allows for a temporal weighting scheme to
automatically discard old and irrelevant trees while adding new trees to the ensem-
ble when needed. Saffari et al. further showed that the performance of the online
random forest algorithm converges to that of an offline trained random forest.

In this chapter, we therefore use the online random forest algorithm proposed
by Saffari et al. to dynamically learn a representation of the supporting regions of
the tracked hand. In our experiments we use 10 decision trees that are grown to a
maximum depth of 20. Furthermore, 200 random tests are executed during each
feature selection iteration while growing the trees.

Figure 5.5 shows several classification examples. The center pixel of each
region Rs,x is indicated in green if classified as being part of the hand’s context.
The brightness represents the posterior probability of being part of this context and
thus indicates the classifier’s certainty.

Furthermore, although we are mostly interested in learning the appearance of
the arm, due to our related research on hand tracking, the proposed context learning
scheme can also be used to learn the appearance of other attributes. This is illus-
trated by Figure 5.6, in which the person holds a magazine. The classifier learns
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Figure 5.6: Context learning allows our hand tracker to automatically learn the appearance
of any object that exhibits coherent motion with the hand itself. In this image, the person is
holding a magazine.

that the magazine exhibits coherent motion with the hand and therefore learns its
appearance in real-time.

3.3 A Context Based Proposal Distribution for Particle Filter-
ing

The random forest classifier yields a probabilistic estimate about the class label of
each pixel in the image. In Figure 5.6, these probabilities for the positive class la-
bels are represented by the intensity of the green overlay. This set of probabilities
therefore represents a spatial distribution. Throughout the video frame, the modes
of this distribution will shift due to the motion of the arm or the supporting objects.
Therefore, instead of tracking the hand directly, we can track the changes in the
context classification distribution around the hand, and use these changes to pre-
dict the location of the hand in the next video frame. Although robust histogram
comparison methods, such as the Earth Mover’s Distance, are available, many of
these have a high computational complexity. Instead, we propose to simply use the
normalized cross-correlation as a measure of correspondence between the spatial
context-histograms of subsequent frames, since this can be implemented efficiently
using integral images [Lewis 95]. On a side node, normalized cross-correlation is
often used for template matching. Therefore, our approach of finding the hand in
the next frame could also be interpreted as a template matching solution, where
the template is defined by the context classification result of the previous frame.
This is illustrated more clearly by Figure 5.7, in which the position of the left hand
is estimated.

Normalized cross-correlation is defined as

r(u, v) =

∑
x,y(f(x, y)− f̄u,v)(t(x− u, y − v)− t̄)√(∑

x,y(f(x, y)− f̄u,v)2
∑
x,y(t(x− u, y − v)− t̄)2

) , (3.3)
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Figure 5.7: In this illustration, the location of the left hand is estimated in frame t+1,
based on its context in frame t. Cross-correlation based template matching is used to match
a region of interest in the context classification distribution of frame t, with the context
classification distribution of frame t+1. The result is a prediction of the hand location,
purely based on static, contextual information.

where f(x, y) represents the image under consideration, t(x, y) is the template,
f̄u,v represents the mean of f(x, y) in the region of the template centered at (u, v),
and t̄ is the mean of the template image t(x, y).

To obtain an estimate of the hand location we simply want to maximize this
correlation. Therefore, the estimate ŷ = (x̂, ŷ) is obtained as

ŷ = arg max
y

r(y). (3.4)

This state estimate is complementary to the skin-color and motion based state
estimate as obtained by the hand tracker used [Spruyt 13a]. The question now
remains how to incorporate this estimate into the particle filter framework to im-
prove tracking performance. The skin-color and motion based likelihood, used by
the hand tracker’s observation model [Spruyt 12], represents p(yt|xit), where y

is the latest observation and x is the state to be estimated, i.e. the hand location
hypothesis of particle i. In earlier work, we showed that this likelihood function is
extremely accurate if a good estimate xit is available. Therefore, instead of incor-
porating the contextual information in the observation model of the particle filter,
we propose to use it to improve the estimate xit of each particle, which is then
simply assigned a skin-color and motion based likelihood.

One way of improving the estimate xit would be to adapt the motion model of
the particle filter. Several approaches can be found in literature that incorporate
the latest measurements directly into the motion model of a particle filter [Bel-
gacem 12,Yao 10]. However, from a Bayesian perspective, the motion model of the
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particle filter, yielding the state transition prior p(xt|xt−1), should only depend on
the previous state estimate and not on the current observations. Therefore, directly
incorporating the latest measurements into the particle filter’s motion model, is
mathematically incorrect and would force us to abandon the Bayesian framework
which forms the theoretical foundation of particle filters.

In section 3.4 of chapter 4 we proposed a method to directly incorporate the
latest observations into the proposal distribution of a particle filter by means of
Kalman filtering. In this section, we reuse this method to incorporate contextual
information into the proposal distribution.

Although Kalman filters assume Gaussian likelihoods and linear models, it is
important to note that our particle filter solution, with Gaussian proposal distribu-
tions, does not require the posterior to be normally distributed and does not require
linear observation models. The reason for this is that a distinct Kalman filter is used
per individual particle, from which the new particle state will be sampled during
the importance sampling process. Hence only the distribution of each single parti-
cle is assumed to be Gaussian. During importance sampling, the particle is drawn
from the normal distribution that serves as the proposal distribution, as shown by
equation (3.5).

q(xit|xit−1,y1:t) ∼ N(x̄it, P
i
t ) i = 1, ..., N, (3.5)

where x̄it represents the Kalman filter’s state estimate and P it represents its covari-
ance matrix.

Thus, at time t, the latest observation ŷ, defined by equation (3.4), is used
to obtain the mean, x̄it, and covariance matrix P it of the proposal distribution of
each particle i, using the Kalman filter measurement and update equations. Next,
the ith particle is sampled from this distribution, and is assigned a weight by the
observation model, as in a traditional particle filter. This method requires us to
propagate the covariance P it for each particle since multiple particles might share
the same covariance matrix after resampling.

In the following, let x(t|t − 1) be the state estimate at time instance t, given
observations up to and including time t − 1. We need to define the motion model
matrix A that is used to predict the next state based on the previous state estimate
as x(t|t−1) = Ax(t−1|t−1)+m, where m is the noise component. In our case,
A corresponds to the 4 × 4 matrix that represent the following constant velocity
transformation:

xt = 2xt−1 − xt−2 (3.6)

= xt−1 + (xt−1 − xt−2) (3.7)

= xt−1 + ∆V, (3.8)
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where ∆V models the velocity of the object in the previous video frame. For state
vector xt = (xt, yt, xt−1, yt−1), the motion model matrix A then becomes:

A =


2 0 −1 0
0 2 0 −1
1 0 0 0
0 1 0 0

 ,xt−1 =


xt−1

yt−1

xt−2

yt−2

 . (3.9)

Similarly, the observation matrixH needs to be defined, such that ŷ = H x(t|t−
1) + n, where n is a white noise component and where ŷ is the context classifier
based observation defined by equation (3.4). Since both the state estimate x and
the observation ŷ consists of a coordinate pair (x, y) representing the hand loca-
tion, the observation matrix H simply reduces to:

H =

[
1 0 0 0
0 1 0 0

]
. (3.10)

In the following, letQ be the covariance matrix that defines the white Gaussian
process noise component m, and let R be the covariance matrix that defined the
white Gaussian measurement noise component n. For each particle i in the set
of N particles, the Kalman filter estimates the mean µi = x(t|t) and covariance
matrix P i = P (t|t) of the multivariate Gaussian proposal distribution q(.) ∼
N(µi, P i). The state prediction at time t, given observations up to and including
time t− 1 is:

x(t|t− 1) = Ax(t− 1|t− 1), (3.11)

and the corresponding covariance is

P (t|t− 1) = AP (t− 1|t− 1)Aᵀ +Q. (3.12)

The new estimate, after incorporating the context classification result ŷ, is
then:

x(t|t) = x(t|t− 1) +K(t)[ŷ(t)−Hx(t|t− 1)], (3.13)

with covariance

P (t|t) = P (t|t− 1)−K(t)S(t)K(t)ᵀ, (3.14)

where the Kalman gain is

K = P (t|t− 1)HᵀS−1(t), (3.15)

and the innovation covariance is

S(t) = HP (t|t− 1)Hᵀ +R. (3.16)
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If N particles are used to represent the posterior distribution, then also N

Kalman filters are used to generate particle-specific proposal distributions. The
particle filter then draws N new particles, each from their corresponding proposal
distribution. In the following, let xit be the state of the particle that is sampled
from this proposal distribution of particle i at time instance t. Let ẋit be the state
estimate of the same particle, obtained by the motion model of the particle filter.
The state transition prior for this particle i is then obtained by evaluating the likeli-
hood of the sample xit by the particle filter’s motion model. If the motion model’s
likelihood function is normally distributed, centered at the state that was predicted
by the constant velocity model, then the state transition prior is:

p(xit|xit−1) ∼ e− 1
2 (xi

t−ẋi
t)

ᵀQ−1(xi
t−ẋi

t). (3.17)

The above equation shows that, although we do not assume a linear observation
model for the particle filter, and we do not assume a Gaussian posterior distribu-
tion, we do assume a Gaussian state transition prior and a linear motion model.
However, most particle filter implementations use simple linear motion models
like the constant velocity or the random walk model, such that this constraint does
not pose a practical problem.

The proposal density likelihood for sample i is defined by the Gaussian poste-
rior that is estimated by the Kalman filter:

q(xit|xi1:t−1, ŷ1:t) ∼
1√
|P it |

e−
1
2 (xi

t−µi
t)

ᵀ(P i
t )−1(xi

t−µi
t). (3.18)

Finally, the observation likelihood p(yt|xit) is obtained using the skin-color
and motion based measurement model of our particle filter as proposed in
[Spruyt 13a] and discussed in chapter 4. Substituting equations (3.17), (3.18) and
the observation likelihood into equation (3.11) allows us to calculate the particle
weights wit as follows:

wit = wit−1

p(yt|xit)p(xit|xit−1)

q(xit|xi1:t−1, ŷ1:t)
. (3.19)

In contrast to the widely used bootstrap filter, our approach is able to incorpo-
rate the latest observations into the proposal distribution to greatly improve sam-
pling efficiency. As a result, relatively few particles (50 in our experiments) are
needed for robust tracking. Furthermore, since the proposal density is based on the
context classification result, particles are samples around the maxima of the cross-
correlation map shown by Figure 5.7 and are therefore less sensitive to distractions
caused by hand-like objects in the neighborhood.
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3.4 Context Based Arm Tracking Using Partitioned Sampling

In the previous section we proposed a method to incorporate contextual informa-
tion into a particle filter tracking framework. Contextual information in this setting
could be the arm if tracking a hand, but might as well be a shadow when tracking
vehicles [Mosabbeb 07] or a limb when tracking articulated objects in general.

In this section we introduce a second method to improve tracking performance.
This solution however is specific to hand tracking, and improves robustness against
occlusion by explicitly tracking the arm. In the previous section, the state vector
was defined as x = (x, y) and represented the coordinates of the hand to be esti-
mated. We now extend the state vector with a parameter that describes the angle θ
of the arm. The state vector then becomes x = (x, y, θ).

Directly estimating the joint probability p(x, y, θ|y1:t) would require expo-
nentially more particles to be used compared to estimating the previous posterior
p(x, y|y1:t). Intuitively this can be explained as follows: If 10 samples would be
needed to sample a 1-dimensional unit interval with sufficient sample density, then
102 = 100 samples would be needed to model a two-dimensional problem with
the same density, and 103 = 1000 samples would be needed in the 3D case. In the
above problem, 50 particles are used such that (

√
50)3 = 354 particles would be

needed to maintain the same sample density in the current 3D state space. How-
ever, this would greatly increase the computational complexity of the particle filter,
preventing real-time operation.

To avoid the curse of dimensionality, we partitioned our search space based
on the assumption that the arm angle is independent of the (x, y) location of the
hand. Particle filtering in a partitioned state space is called partitioned sampling
and was proposed by MacCormick et al. [MacCormick 00]. They showed that
different state partitions can be solved for sequentially instead of simultaneously
if a hierarchical relation exists between the subspaces. We use this concept to
transform our 3D search space to a sequence of a 2D and a 1D estimation problem.

Partitioned sampling was discussed in chapter 4, where it was used to effi-
ciently estimate the hand’s position and bounding box size. In the current setting,
we first estimate the hand coordinates, and use this estimate to obtain an estimate
of the arm angle if contextual information is available. An additional advantage of
this approach is that the second partition, i.e. estimating θ, can easily be omitted if
no contextual information is available at a time instance t.

A valid question is now how estimating θ would improve the estimate of the
hand location (x, y), since the hand location is estimated before and independently
from the arm angle. However, it is important to note that particle filters employ
a resampling strategy to avoid the particle depletion problem. When the vari-
ance of the particle weights becomes large, the sample set is replaced by a new
sample set by resampling with replacement. This means that particles with a bad
θ estimate and corresponding low arm-likelihood, get replaced by duplicates of
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(a) Hand tracking as proposed in [Spruyt 13a].

(b) Arm and hand tracking using partitioned sampling.

Figure 5.8: Top row: Hand tracking fails due to occlusion. Bottom row: Arm tracking
helps to disambiguate in case of clutter or occlusion.

particles with a good θ estimate with corresponding high arm-likelihood. In the
next iteration, the (x, y) location of the hand is then estimated for this new set
of particles. Therefore, arm tracking makes sure that particles with a high skin-
color and motion likelihood are deleted from the sample set if they correspond to
a low arm-likelihood. Furthermore, resampling only occurs if the variance of the
particle weights becomes large and thus when the covariance of the particles in-
creases. Therefore, the correcting effect of the arm tracking partition is negligible
during stable hand tracking (almost no resampling occurs), whereas it becomes
more apparent in case of clutter, and occlusion (resampling occurs often). This is
illustrated in Figure 5.8, where the top row shows the tracking result if only the
first partition is estimated, whereas the bottom row shows the result if also the arm
angle is tracked.

Whereas a custom proposal distribution was used to estimate the parameters
of the first state partition, i.e. the hand location, a simple bootstrap filter was used
for the second partition, i.e. the arm angle. The state transition prior is therefore
used as a proposal distribution, and the motion model for this partition is a random
walk model.

Our choice of observation model used to obtain the likelihood for each estimate
θi of the arm location is again driven by the real-time constraints of our tracking
solution and is therefore computationally inexpensive. For each particle, the arm
is represented by a straight line segment, the length of which is proportional to
max(w, h), where (w, h) defines the width and height of the hand’s bounding
box. Each point on this line corresponds to a context probability p(l = 1|x, y) ,
indicated in green in Figure 5.8. We obtain the probability that a line represents the
arm by marginalizing this conditional density such that p(l = 1; θ) =

∑
x,y p(l =

1|x, y; θ), where θ is the arm angle that defines which points (x, y) are considered.
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Figure 5.9: Visual representation of the particle filter’s posterior distribution. The
(x, y, width, height) parameters of the particles are represented by colored rectangles,
whereas the arm angle θ is represented by line segments.

The actual arm angle then corresponds to

θ̂ = arg max
θ

p(l = 1; θ).

Iterating over all pixel coordinates (x, y) defined by the line segment with angle
θ can be implemented extremely efficiently using the well known Bresenham line
algorithm. Figure 5.9 shows all particles of each particle filter visually for illustra-
tive purposes.

4 Results and Discussion
In this section, we compare our hand tracking results with several state-of-the-
art tracking algorithms using three publicly available datasets. The first dataset
was created to specifically test tracking robustness against occlusion and cluttered
backgrounds. This dataset contains eight video sequences with an average duration
of 45 seconds, and is made publicly available online1 for research purposes to
allow for fair comparison with future methods. The sequences contain cluttered
backgrounds, fast motion, both long and short sleeved arms, and several cases of
occlusion. Tables 5.1 and 5.2 list the characteristics of each video in this dataset.

To evaluate the increase in robustness by incorporating contextual information
into the original hand tracking method described in [Spruyt 12], we simply count
the number of tracking errors in each video sequence. A tracking result is consid-
ered erroneous if the Pascal VOC score [Everingham 10] is below 0.5. The VOC
score defines the amount of overlap between the detected bounding box, and the
given ground truth bounding box and is calculated as V OC =

Bg∩Bd

Bg∪Bd
, where Bg

represents the pixels within the ground truth bounding box, whereasBd represents
the pixels within the detected bounding box.

Table 5.3 compares the number of tracking errors for the original algorithm
of [Spruyt 12] with the number of tracking errors obtained using the approach pro-
posed in this chapter based on the new proposal distribution and our arm tracking
solution.

1http://telin.ugent.be/~vspruyt/sensors/

http://telin.ugent.be/~vspruyt/sensors/
http://telin.ugent.be/~vspruyt/sensors/
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Table 5.1: Test dataset specification, part 1.

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
Scene clutter no yes yes yes yes
Fast motion no yes no no yes
Short sleeves no no no no yes
Hand occlusion yes yes yes yes yes
Face occlusion yes yes yes yes yes
Arm hidden no no no no no
Hand hidden no no no no no
Textured clothing yes yes yes no no
Background motion no no no no no
Length 34s 46s 67s 35s 35s

Table 5.2: Test dataset specification, part 2.

Seq. 6 Seq. 7 Seq. 8 Seq. 9
Scene clutter yes yes no yes
Fast motion yes no no no
Short sleeves yes no no no
Hand occlusion yes yes yes yes
Face occlusion yes yes yes no
Arm hidden no no yes no
Hand hidden no no yes no
Textured clothing no yes no no
Background motion no no no yes
Length 56s 47s 45s 45s

Table 5.3: Evaluation results on the novel dataset. For each algorithm, the number of
tracking errors is reported. Column Proposal corresponds to the results where the custom
proposal distribution was used. Column Arm tracking shows the results where only the
partitioned sampling based arm tracking solution was used. Column Combined lists the
results where both approaches are combined. Both the custom proposal distribution and the
partitioned sampling based arm tracking reduce the number of tracking errors on average.

Sequence # [Spruyt 12] Proposal Arm tracking Combined
Video 1 2 0 0 0
Video 2 1 0 1 0
Video 3 1 0 0 0
Video 4 4 1 2 0
Video 5 3 1 0 1
Video 6 2 1 0 0
Video 7 6 3 1 1
Video 8 4 2 0 0
Video 9 6 1 1 0
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(a) Our result (proposal + arm tracking).

(b) Result of [Spruyt 12].

Figure 5.10: Several video frames from sequence 7, in which only the left hand is tracked
such that the right hand can serve as a distraction to test robustness against occlusion with
unknown hand-like objects.

These results illustrate that both methods proposed in this chapter to incorpo-
rate contextual information into the tracking framework contribute to an increased
tracking robustness. Both methods are complementary as can be seen by the de-
crease in tracking errors when combined, e.g. in video 2, video 4, video 7 and
video 8.

The first six video sequences are meant to test the tracker’s robustness against
occlusion. Results for these sequences are shown by Figure 5.18.

Video 7 serves as a special case. In this sequence we deliberately tracked
only one hand, such that the other hand and its corresponding arm can serve as a
distraction as if it was any moving, hand-like object. This allows us to evaluate
the behavior of the tracking algorithm in case of occlusion with unknown, hand-
like objects. Figure 5.10 compares the tracking results of this sequence by the
algorithm described in [Spruyt 12] with the results obtained using the proposed
method. These results clearly show the benefits of incorporating contextual infor-
mation into the tracking process. Whereas the original hand tracking algorithm is
unable to distinguish between the tracked left hand and the unknown right hand,
context learning allows the particle filter to use spatial dependencies to resolve
ambiguous situations.

Video 8 contains several cases of severe occlusion of both the object of inter-
est, i.e. the hand moves out of picture, and its context, i.e. the arm moves behind a
chair, as shown in Figure 5.11. When the hand is completely occluded, the context
based proposal distribution allows the particle filter to overcome the local mini-
mum of the observation likelihood, thereby increasing tracking robustness. When
the context itself is completely occluded, it does not contribute to the proposal
distribution, such that the particle filter falls back to its normal bootstrap filter be-
havior. However, the partitioned sampling based arm tracking stage still predicts
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(a) Tracking hands through occlusion.

(b) Tracking context (i.e. arms) through occlusion.

Figure 5.11: Several video frames from sequence 8, in which both the hands (a) and the
arms (b) are completely occluded. Incorporating context in the proposal distribution re-
solves ambiguity when the object of interest is occluded. On the other hand, if the con-
text itself is occluded, the proposal distribution becomes non-informative and does not hurt
tracking performance. The predicted arm location in this case still increases robustness of
the hand tracker.

Figure 5.12: Several video frames from sequence 9, in which the hand only moves perpen-
dicular to the camera plane while background motion serves to test the tracker’s robustness.

the most likely position of the arm, which in turn helps the hand tracking stage to
overcome ambiguity due to occlusion between the left and right hands.

Sequence 9 contains a lot of background motion. The video sequence was
captured while projecting a movie clip on the background wall. The hand only
moves perpendicular to the camera plane, i.e. towards and away from the cam-
era. Therefore, this sequence challenges the capabilities of the context learning
method which depends on optical flow similarity between the tracked hand and its
context. Figure 5.12 shows several frames from sequence 9. Although the context
segmentation is less accurate than in the other videos, due to the challenging back-
ground motion, the results illustrate the robustness of our method in unconstrained
environments.

Figure 5.13 shows the percentage of frames that is tracked correctly in each
video sequence. Whereas Table 5.3 listed the number of times a tracking error
begins, Figure 5.13 also incorporates the duration of each tracking failure by re-
porting the fraction of video frames that was tracked correctly.
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Figure 5.13: Percentage of correctly tracked frames in each video sequence. When tracking
failure occurs (Table 5.3), all frames are considered incorrectly tracked until the VOC score
exceeds 0.5 again.

These results consider tracking to be failed when the resulting bounding box
corresponds to a VOC score lower than 0.5. However, many practical applications
would benefit from a lower threshold, since even a VOC score of 0.2 corresponds
to a reasonable tracking results. Therefore, Figure 5.14 shows the percentage of
correctly tracked video frames, plotted against the corresponding VOC score. A
VOC threshold of 0.5 is often used in object detection research to indicate correct
detections, whereas a VOC threshold of 0.25 is common in face detection litera-
ture.

Although the focus of this chapter is context based hand tracking, we showed
that the context can be used to obtain an estimate of the arm location. To evaluate
the arm tracking capabilities, we compared our method with the pictorial structure
based upper body pose detector described by Eichner et al. [Eichner 12]. This
method estimates the spatial structure of the upper body. Although no temporal
information is used by their method, the algorithm requires a bounding box of
the upper body as input and can therefore be compared fairly with our tracking
algorithm.

In [Eichner 12], the algorithm is evaluated by reporting the Percentage of cor-
rectly estimated body Parts (PCP). An estimated body part, i.e. the arm, is con-
sidered correct if its segment endpoints lie within a fraction f of the length of
the ground-truth segment. In the following, we adopt this evaluation measure and
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Figure 5.14: Percentage of correctly tracked frames in each video sequence, plotted against
the VOC score. Perfect tracking is obtained if results with a VOC score of 0.4 and higher
are considered to be correctly tracked instances. A VOC threshold of 0.5 is often used in
object detection research to indicate correct detections.

compare their method with ours by reporting the PCP while varying the threshold
f ∈ (0, 1.5). The results are illustrated by Figure 5.15.

Although our method appears slightly less accurate when the PCP threshold is
low, its accuracy increases rapidly and outperforms [Eichner 12] for higher PCP
thresholds. Our method is able to provide a rough estimate of the arm pose, even in
cluttered scenes with complicated interactions, whereas the algorithm proposed by
[Eichner 12] provides an accurate estimate in simple sequences but quickly breaks
down in cluttered scenes. Furthermore, [Eichner 12] requires approximately 1.5
seconds of processing time per video frame, whereas our solution processes 17
frames per second. Figure 5.16 illustrates some of the results obtained by both
methods.

Figure 5.17 shows the execution times of each the components of the complete
tracking and detection system, including context learning. This figure summarizes
and combines the previous chapters and is based on figures 1.1, 2.26 and 4.23.

Finally, Figure 5.18 shows several results on the proposed dataset for illustra-
tive purposes.

Whereas evaluation results on this challenging dataset clearly indicate the ad-
vantages of our solution, a second question of interest is whether or not con-
text learning would degrade tracking performance in the cases where near-perfect
tracking can already be accomplished without contextual information.
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Figure 5.15: Comparison of the arm tracking results of our method with the results obtained
with the pictorial structure based algorithm proposed by [Eichner 12]. The PCP score repre-
sents the percentage of correctly tracked arm instances, whereas the PCP-threshold defines
when a detected instance is considered correct.

(a) Arm tracking by context.

(b) Pictorial structure based pose estimation [Eichner 12].

Figure 5.16: Some example frames comparing our arm tracking method with the pictorial
structure based algorithm proposed by [Eichner 12].
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Figure 5.17: Execution timings of each component of the complete tracking and detection
system, obtained by averaging the timing results of 5000 video frames of size 320× 240.
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Figure 5.18: Several hand tracking results for the newly proposed publicly available
dataset. Each row corresponds to a different video sequence in this dataset.
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Table 5.4: Test dataset ( [Spruyt 12]) specification.

# Scene Lighting Motion Sleeves Camera Occlusion Length
1 cluttered dark normal long fixed no 83 s
2 cluttered bright normal long fixed no 82 s
3 normal normal fast long fixed no 85 s
4 normal bright normal long moving no 88 s
5 normal normal normal long fixed no 89 s
6 cluttered normal normal short fixed no 84 s
7 normal changing normal long fixed no 85 s
8 normal normal normal short fixed yes 83 s

To evaluate this question, we performed additional tests using the publicly
available dataset from [Spruyt 12]. This dataset contains eight video sequences
each spanning approximately 90 seconds. These sequences contain changing il-
lumination, fast motion, camera motion, and both long and short sleeved arms.
The dataset was proposed in [Spruyt 12] and is publicly available for academic
research, together with manually annotated groundtruth bounding boxes for both
hands. Table 5.4 summarizes the characteristic of each video sequence in this
dataset.

As listed by Table 5.4, this dataset does not contain occlusions. Even for se-
quence 8, the occlusions that occur are partial occlusions behind semi-transparent
objects. The hands never completely overlap in these sequences, whereas the ma-
jor novelty introduced in this chapter specifically increases robustness in case of
occlusion. Furthermore, the results obtained by the original hand tracker upon
which the work presented here is based, are already impressive; yielding an aver-
age VOC score of 76%. This means that the tracker of [Spruyt 12] never looses
track of the target object and is able to accurately model its appearance at all times.

Figure 5.19 shows the VOC scores obtained on these sequences using the
method proposed in this chapter. These results clearly show that a VOC score
around 75% represents almost perfect tracking in the sense that higher VOC scores
would probably not be very meaningful because even the groundtruth annotations
might not be that perfect. Therefore it is obvious that no tracker could largely out-
perform the near perfect results reported in [Spruyt 12] on this dataset. Neverthe-
less, it would be interesting to see if the addition of contextual information would
degrade the results in this case, especially since this dataset contains abruptly
changing illumination, moving camera’s and very fast motion.

Figure 5.20 shows the VOC scores for several state-of-the-art algorithms, ap-
plied to this dataset. Each method was initialized manually based on the ground
truth bounding boxes in the first video frame to allow for a fair comparison. The
first method is the Camshift algorithm [Exner 10] which is often used as a base-
line when evaluating tracking methods in computer vision. The second method is



CHAPTER 5 191

VOC: 71 VOC: 70

VOC: 74

VOC: 76

VOC: 83

VOC: 61

(a) Sequence 1.

VOC: 69 VOC: 71

VOC: 67
VOC: 66
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VOC: 74

(b) Sequence 5.

VOC: 79

VOC: 76

VOC: 62

VOC: 80

VOC: 84

VOC: 63

(b) Sequence 7.

Figure 5.19: Several hand tracking results for the publicly available dataset from
[Spruyt 12] with corresponding VOC score (expressed as a percentage). The groundtruth is
indicated by a green rectangle. VOC scores higher than 0.5 are usually considered correct
detections in object detection literature.
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Figure 5.20: VOC score comparison for several state-of-the-art tracking algorithms on the
publicly available hand dataset from [Spruyt 12].

the HandVU system [Kölsch 10], a well known hand-tracking method based on a
combination of color cues and Harris corner features that are spatially constrained
using flocking behavior rules. Third, we compare our method with the RTseg solu-
tion that we proposed earlier in [Spruyt 10a]. The RTseg method combines multi-
ple color spaces using a Gaussian Mixture Model, in an attempt to decrease illumi-
nation dependence. The fourth algorithm is the Predator tracker [Kalal 12] which
was discussed in section 2 and is a patch-based tracking solution that employs
PN-learning to automatically learn the object’s appearance over time. Whereas
the predator tracker is designed to track rigid objects and is therefore expected
to fail when the hand undergoes large deformations, the adaptive basin hopping
Monte Carlo filter (BHMC) proposed in [Junseok 09] is an adaptive patch based
tracker designed for tracking non-rigid objects. Finally, the Fragtrack algorithm
[Amit 06] implements the generalized Hough transform to perform patch based
tracking and uses integral histograms to efficiently represent the object’s appear-
ance. The method labelled [Spruyt 12], is the hand tracking algorithm we proposed
in [Spruyt 12] and forms the base of the solution described in this chapter. This
method use a combination of color and motion cues, optical flow and a discrimi-
native Hough voting scheme.

These results show that our solution maintains the near perfect tracking results
on this dataset, with the added value that the location and a segmentation of the
arm is obtained automatically.
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Table 5.5: Results on the Signer dataset, reported as the percentage of video frames for
which the VOC score exceeds a predefined threshold.

VOC threshold Buehler [Buehler 11] Spruyt [Spruyt 12] Our method
V OC ≥ 0.2 100.0% 96.0% 100.0%
V OC ≥ 0.5 94.3% 91.9% 96.8%
V OC ≥ 0.6 83.4% 75.8% 82.6%

Finally, similar to the HandVU and Predator algorithms, our non-optimized
C++ code processes QVGA data in 70 milliseconds, resulting in a framerate of
14 fps on a quadcore Intel I7 architecture with 8 gigabytes of RAM. The original
hand tracking algorithm proposed in [Spruyt 12] runs at 18 fps such that the over-
head, introduced by the contextual learning, is negligible compared to the benefit
of increased robustness. As a comparison, both the BHMC and the Fragtrack al-
gorithms need several seconds per video frame and are unable to robustly track
hands.

Finally, it would be interesting to compare our hand tracking results with track-
ing algorithms that employ pictorial structure to track articulated objects. To this
end, we compared our method with two well know upper body tracking solu-
tions [Buehler 11,Karlinsky 10], applied to the publicly available and widely used
Signers dataset [Buehler 08]. The Signers dataset contains five real and challeng-
ing BBC news sequences with signers performing a sign language translation.

Pictorial structure based approaches employ prior knowledge about the artic-
ulated nature of an object of interest to infer its joint configuration. Buehler et
al. [Buehler 11] proposed an efficient method to sample from a pictorial picture
proposal distribution to perform upper body tracking. Their method searches for
key frames in which accurate detection can be achieved, and performs temporal
tracking between these key frames based on HOG features and color cues. Their
solution is able to accurately detect and track upper and lower arms, and uses this
information to infer the hand location.

Buehler et al. [Buehler 11] report the percentage of video frames in which
hands were correctly tracked. Hands are considered to be tracked correctly, if the
VOC score is above a certain threshold. Results are reported for VOC scores of
V OC ≥ 0.2, V OC ≥ 0.5 and V OC ≥ 0.6. Table 5.5 compares the results
obtained by Buehler et al. with the results obtained by [Spruyt 12] and with the
results obtained by the method proposed in this chapter.

These results show that the incorporation of context clearly improves track-
ing performance for this real-life dataset, when compared to the original tracking
method, proposed in [Spruyt 12]. This can be explained by observing the first row
of Table 5.5: Without context based information, the target hand is lost during
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Table 5.6: Results on the Signer dataset, reported as the percentage of video frames for
which the detected hand location is less than one hand-width from the ground truth location.

[Karlinsky 10] [Kumar 09] [Spruyt 12] Ours
84.9 % 78.95% 97.3% 100.0%

tracking several times. When context is added however, tracking accuracy still
varies, but the hand is never truly lost.

Furthermore, our method provides a higher precision (row two of Table 5.5)
than the method proposed by Buehler et al., when applied to the task of hand track-
ing. On the other hand, Buehler’s approach yields a slightly higher accuracy (last
row of Table 5.5) than ours, and has the added advantage of returning an accu-
rate estimate of both the upper and lower arm position. However, their approach
requires approximately 100 seconds of processing per video frame, whereas our
proposed solution operates in real-time, processing approximately 17 frames per
second.

A related, pictorial structure based approach was proposed by Karlinsky et
al. [Karlinsky 10], who detect hand and arm configurations using an ensemble of
feature chains leading from the face location to the hand location. In their method,
a face detector is used to estimate the face location, after which the chains model
infers the upper body configuration. Karlinsky et al. assume the hand width equal
to half the face size, and consider a hand detection to be correct if it is within one
hand width from the ground truth location.

Finally, Kumar et al. [Kumar 09] proposed a discriminative parts based clas-
sifier to detect the upper body of a person by embedding pictorial structure. Al-
though their method performs object detection and therefore does not incorporate
temporal information, we include their results on the Signers dataset for complete-
ness.

Table 5.6 shows the results for both methods on the Signer dataset, compared
to the results obtained by our method with and without contextual information.

Although the chains model proposed by Karlinsky does not employ tempo-
ral information, it does require the face location to be known for initialization
purposes in each video frame. As such, it can be compared fairly to tracking al-
gorithms. The results illustrated by Table 5.6 show the advantage of incorporating
contextual information into a tracking framework, considering the real-time per-
formance of our solution whereas the pictorial structure based approach of Kumar
et al. needs approximately 15 seconds of processing time per video frame.

Figure 5.21 shows several frames from the Signer data set for illustrative pur-
poses.
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Figure 5.21: Illustration of hand tracking on the Signer dataset. Although context modeling
is not perfect due to the uniform color of arms and body of the signer, the tracker clearly
benefits from the local contextual information.

5 Conclusion
In this chapter we proposed a novel method to automatically learn the context
of a tracked object in an unsupervised manner. Furthermore, we introduced two
approaches to incorporate this information into a particle filter tracking framework
to improve the tracker’s robustness against occlusion and distracting background
objects. Our algorithm operates in real-time, and as a by-product can output a
rough segmentation of the object’s context, i.e. the arm in the case of hand tracking.
We showed that our solution outperforms the state-of-the-art when dealing with
occlusions, whereas tracker performance is not degraded when no occlusions are
present. Finally, our method runs in real-time, processing approximately 14 frames
per second on modern hardware.





6
A Transparent Floating Display

1 Introduction

One of the most apparent applications of real-time, robust hand detection and hand
tracking algorithms, can be found in human-computer interaction (HCI). Tradi-
tional HCI occurs through the use of peripheral hardware such as a keyboard,
computer mouse, touchpad or joystick. However, these mechanical devices behave
not only as a physical barrier between the human and the computer, but also as a
psychological barrier, in the sense that they limit the effectiveness and naturalness
of the interaction.

Gesture based interaction allows users to directly interact with the computer
in a natural manner, e.g. to manipulate objects in a virtual reality space. Recent
studies have shown that using a natural gestures based human computer interface
significantly reduces the cognitive load on the user [Cornelius 13]. However, a well
known problem with gesture based interaction, is the so called ‘gorilla’ effect: If
users are required to raise their arms for a long period of time, fatigue arises in the
upper arms [Kyung 12]. For practical applications, a gesture based HCI system
using camera input should therefore not require users to keep their hands inside the
camera’s field of view continuously. Instead, users should be allowed to act freely,
which leads to the need for quick re-detection of hands as they appear in the field
of view. This problem is often underestimated in real systems. The hand tracking
method that was discussed in chapter 4 is capable of automatic re-initialization
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Figure 6.1: A see-through display allows multiple users to interact with a virtual object
while maintaining eye-contact.

and error recovery, and is therefore a perfect candidate for a gesture based HCI
interface.

An increasingly popular subdomain of HCI research is related to multiple-user
environments for performing collaborative physical tasks. Examples can be found
in rapid prototyping or medical research, where multiple users collaborate to per-
form a single task. Kraut et al. [Kraut 03] showed that visual information, such
as the possibility of maintaining eye-contact with other users, is of great impor-
tance when performing collaborative tasks. This information helps maintaining
situational awareness and helps achieving mutual understanding. In a face-to-face
setting, people normally use visual cues to interpret the intentions of others and
to estimate the current progress in executing a particular task [Kraut 03]. These
visual cues include facial expressions, body language and gestures, and views of
the environment and of the object or task of interest. However, in a traditional
HCI setting, where each user sits in front of his own computer display, most of
these cues are lost. Even if multiple users share the same computer display, col-
laboration is often difficult because it is not possible to focus on the display, the
environment and the other users at the same time.

In this chapter, we discuss the design of a transparent see-through display, il-
lustrated by figure 6.1, that allows multiple users to cooperate while maintaining
eye-contact. Furthermore, our display combines an optical illusion, known as the
Pepper’s ghost effect [Secord 02], with an optical lens system, to create the impres-
sion that a 3D virtual object shown on the display is floating in thin air. Although



CHAPTER 6 199

the underlying idea of this display is simple and well known, several technical de-
tails have to be considered during its implementation. Moreover, we extend the
idea of a 2D planar display surface to a 3D conic display surface which increases
the illusion of observing a 3D holographic floating object. Finally, we discuss
several difficulties that were encountered during the production of our prototype
display devices.

This chapter is outlined as follows: In Section 2 we describe related work.
Section 3.1 describes the development of a transparent, holographic display that
produces an image that seems to float in thin air. In Section 3.2 this display is
extended into a full 360-degrees display, and a theoretical analysis is provided to
cope with optical distortion. Finally, Section 4 provides the technical details of our
prototype displays, and compares different interpolation schemes.

2 Related Work

The ability to project floating 3D objects in thin air, combined with a gesture based
HCI interface, would result in a truly immersive augmented reality experience,
where the user could actually touch the non-existing object. Recently, Kimura et
al. [Kimura 06] were able to generate a floating 3D hologram, with a maximum
resolution of 37 × 37 × 37 dots at 15 frames per second. To achieve this, they
ionize air particles by focussing several lasers onto a single 3D point. The result is
a monochromatic floating 3D object. Although their research is promising, the low
resolution and framerate, the lack of full color support, and the physical danger of
using high power lasers, limit its practical use.

Kakeya et al. [Kakeya 07] proposed the MOEVision system, which generates
a 3D floating image using a complicated optical setup. A large array of carefully
aligned projectors generates a multi-view image to achieve a true auto-stereoscopic
3D experience. A fly-eye lens array is used as an anisotropic diffuser to guide the
light-field towards each viewing zone. Finally, a set of convex lenses is used to
converge the light at a distance from the lens system, such that a real image is
generated. This real image is then perceived by the viewers as a 3D image that
seems to float in thin air.

The method proposed by Kakeya et al. effectively combines two well-known
principles in 3D display design. The first principle is often referred to as ‘integral
imaging’. The second principle is often referred to as ‘floating imaging’.

Integral imaging [Stern 06] is a technique to create an auto-stereoscopic effect,
which means that depth can be perceived without the need for specialized glasses.
Integral imaging uses an array of small fly-eye lenses in front of an LCD panel,
each of which cover multiple pixels of the LCD display, to guide the light towards
a specific direction. Each small lens of the lens array is called a lenslet, and every
pixel underneath a single lenslet shows a different 3D perspective of the image.
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Figure 6.2: Integral imaging: Fly-eye lenses are used to steer the light of distinct, adjacent
pixels to different observers.

Depending on the observer’s physical position, a different 3D perspective is there-
fore perceived. As a result, the user experiences both a horizontal and a vertical
parallax, which in turn results in an apparent depth, as illustrated by figure 6.2.

The main disadvantage of integral imaging is the loss of spatial resolution. If
ten different perspective views are to be generated, both horizontally and verti-
cally, then each lenslet covers 10 × 10 = 100 pixels. The horizontal and vertical
resolutions of the original display are therefore divided by ten. To mitigate this ef-
fect, lenticular lenses are often used instead of fly-eye lenses. Lenticular lenses are
cylindrical lens structures, such that only the horizontal resolution of the display
is reduced while the vertical resolution is kept intact. In this case, only horizontal
parallax can be observed, which means that the user only perceives depth if the
head is not tilted.

Although integral imaging can yield an auto-stereoscopic display, the maxi-
mally perceived depth depends on the focal length of the lenslets and is therefore
small. In order to create a pop-out effect, such that the projected image seems to
float in front of the viewer, integral imaging can be combined with so called ‘float-
ing imaging’ concept [Min 05]. Floating imaging is an old 3D display technique
that uses a concave mirror or converging lens to produce a real image at a distance
that is at least twice the focal length of the chosen optics.

Although integral imaging and floating imaging are often com-
bined [Joohwan 09], each of these techniques can be used individually.
Hoshi et al. [Hoshi 09] used a large concave mirror to produce a floating image
of a 2D display. Although concave mirrors do not suffer from optical abberation
effects as much as convex fresnel lenses, large concave mirrors are expensive and
difficult to produce.
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Whereas the above methods generate a floating image in front of the display,
it is also possible to generate a floating image that appears behind the projection
surface. A well known and obvious technique to accomplish this is called the
‘Pepper’s ghost effect’: An LCD display is placed on top of a mirror, which is
tilted at an angle of 45 degrees. An observer, looking at the tilted mirror, observes
the reflection of the LCD display, which appears to be floating behind or ‘inside’
the mirror itself.

If the mirror is replaced by a transparent reflective material, a see-through dis-
play is obtained, which shows a virtual image, floating at a distance behind the
projection material. This is used by Sidharta et al. [Sidharta 06] to develop an
augmented reality display: Layered pieces of LCD material are positioned on top
of a tilted mirror, and each LCD layer shows a different parts of an object. As a
result, each reflected image appears at a different depth from the projection ma-
terial, resulting in an auto-stereoscopic display [Sidharta 07]. However, the main
disadvantage of this method, is the fact that the user can not touch the floating im-
age, since it appears to float behind a solid, reflective surface. The main advantage
compared to the previously discussed methods, is that the display can be made
transparent, such that multiple users can keep eye-contact while using the system.

3 Materials and Methods

In this section, we discuss the methods used to develop a transparent, floating
imaging display, by combining several of the earlier discussed concepts. We pro-
pose to combine floating imaging, based on a convex fresnel lens system, with the
Pepper’s ghost approach. The result is a transparent display that produces a float-
ing image in front of its projection surface. Furthermore, we extend this idea by
designing a conic reflection surface instead of a planar surface. The transparent,
conic display shows a holographic image inside its volume, and allows the viewer
to walk around the image. This increases the illusion of observing a volumetric
object.

In the next paragraphs, both the materials needed to develop this display, and
the software needed to cope with optical distortion of the reflected images, are
discussed in more detail.

3.1 Floating Imaging: an Introduction

In optics, an important distinction exists between real images and virtual images.
Convex mirrors (and planar mirrors) always generate a virtual image, which seems
to exist inside or behind the mirror surface. Light rays that seem to originate from
the reflected object inside the mirror do not actually exist, hence the term ‘virtual
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Real objectVirtual image
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Figure 6.3: Reflection off a planar mirror always produces a virtual image. Light-rays seem
to diverge from each point on this virtual image.

Real object

Real image

Mirror

F
C

Figure 6.4: Reflection off a concave mirror can produce a real image, if the original object
is positioned at a distance that is equal to or larger than the focal length of the mirror. The
real image appears in front of the mirror.

image’, and always diverge. This is illustrated by figure 6.3. Virtual images can
also be created using a concave lens, instead of a convex mirror.

Concave mirrors, on the other hand, can produce a real image if the object is
placed at a distance of at least one focal length from the mirror. A real image
is an inverted version of the actual object, such that the reflection of the object
appears upside-down. A real image is produced at the location where light rays,
originating from an object, converge, and appears in front of the mirror. This is
illustrated by figure 6.4. Real images can also be created using a convex lens,
instead of a concave mirror. A well known example of real image formation, is the
image that is produced on the eyeball retina, due to the convex lens in the human
eye.

Floating imaging is based on this optical concept, and uses either a concave
mirror, or a convex lens to produce a real image of the LCD display, that seems to
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Figure 6.5: Real and virtual image creation by concave mirrors or convex lenses depending
on the object’s position, relative to F and C. Objects are represented by solid black lines,
real images by dotted blue lines, and virtual images by dotted green lines.

be floating in front of the optical system. In the following, let P denote the pole of
the mirror or the center of the lens, let F be the focal point of the optical system,
and let C be the center of curvature (C = 2F for spherical mirrors and lenses).
We denote f = ‖P − F‖2 the focal length of the lens, and c = ‖P − C‖2 the
Euclidean distance from the center of the optical system to the center of curvature.
A convex lens or concave mirror only produces a real image if the object is placed
at a distance d ≥ f . If d < f , a virtual image is formed behind the optical
system instead. The distance from the object to the optical system also defines
the magnification factor, and the position of the produced image. This can be
summarized as follows, and is illustrated by figure 6.5:

If d > c

A real, inverted and diminished image is produced between C and F .

If d = c

A real, inverted image of equal size to the object is produced at C.

If f < d < c

A real, inverted and magnified image is produced beyond C.

If d = f

A real, inverted and magnified image is produced at infinity. All light rays
leaving the optical system are parallel.

If d < f

A virtual, erected and magnified image is produced behind the mirror.

Optical systems can suffer from several types of aberration. The most impor-
tant are chromatic aberration and spherical aberration. Chromatic aberration is
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caused by the fact that the magnification factor of the lens depends on the wave-
length, such that different colors of the image are focussed at different depths. On
the other hand, Spherical aberration occurs because a spherical lens refracts light
entering at its edges to a slightly different focus point, compared to light entering
at its center. Moreover, these differences in focus become more apparent if the
optical system is used to produce a magnified image. Thus, for floating imaging,
magnification should be avoided, and the LCD display is usually placed at the
center of curvature of the optical system.

Optical systems are often characterized by their f-number, which is defined as
the ratio of the focal length of the system to the lens diameter. Systems with a
lower f-number can collect more light, but are more difficult to produce, partially
because a small focal length implies a highly curved optical surface. As a result,
lenses with a higher f-number usually suffer less from aberration [Min 01,Ren 07].
For imaging purposes, one might therefore be inclined to opt for a lens system with
a large f-number, and thus a focal length that is much larger than the width of the
LCD display.

However, since the display needs to be placed at a distance d = 2f from
the lens, if no magnification is desired and if a spherical lens is used, a larger f-
number implies a larger distance between lens and display. This distance in turn
limits the maximal viewing angle under which the observer can still observe object
completely. Indeed, let a be the aperture of the lens and let s be the width of the
LCD display; If the display is placed at a distance d = 2f from the lens, then the
viewing angle in which the complete object can still be observed is given by:

α = 2 arctan

(
a− s

4f

)
. (3.1)

For example, if a standard 19-inch display is used with an aspect ratio of 16 : 9,
then the display width is s = 42 cm. If the lens has an aperture size a = 84 cm,
and an f-factor of 2, then the focal length f = 168 cm. In this example, the real
image would be produced at a distance of 336 cm in front of the lens, and the
LCD display would have to be placed at a distance of 336 cm behind the lens.
The viewing angle in which the complete floating object can be observed is then
α = 7.15◦. If the f-factor would have been 1, then α = 14.25◦, and the floating
image would appear at a distance of 168 cm in front of the lens. If the f-factor
would have been 0.5, then α = 28.07◦, and the floating image would have been
produced at a distance of 84 cm in front of the lens.

Finally, the intensity of light, coming from a point source (e.g. LCD pixel)
follows the inverse-square law, which means that it is inversely proportional to the
square of the distance from the source. For floating imaging, this means that the
light collection capabilities of the lens varies inversely proportional to the square
of its f-number. Therefore, smaller f-numbers result in brighter images. On the



CHAPTER 6 205

Figure 6.6: Cross-section of a fresnel lens. Fresnel lenses mimic the optical properties of
traditional lenses but can be much thinner and cheaper to produce.

other hand, the f-number generally also determines the quality of the collimated
output, and abberation effects increase with a decreasing f-number as discussed
earlier.

Due to these many contradicting physical limitations, combined with produc-
tion limitations, it is often difficult to design an optimal optical system. Because
of production process limitations, very large convex lenses and concave mirrors,
needed for floating imaging purposes, usually have an f-number close to 1.5. This
means that the diameter of the LCD display directly determines the distance at
which the real image will be perceived to be floating in the air, and the intensity
and aberration artifacts of the perceived image.

Hoshi et al. [Hoshi 09] used a large concave mirror to achieve the floating
image effect, whereas Min et al. [Min 05] used a convex lens. Although both
methods are theoretically equivalent, mirrors usually suffer less from aberration
than lenses. Moreover, a traditional convex lens, with a diameter equal to the
diameter of a modern LCD display, would be extremely heavy and expensive, due
to its required thickness.

Although this might seem to indicate that the use of a concave mirror is prefer-
able over a convex lens, thin and inexpensive fresnel lenses can be used instead.
A fresnel lens consists of a number of concentric rings, each of which have the
same optical properties as the corresponding ring of a normal lens. The surface
of a fresnel lens closely mimics the optical properties of the surface of a normal
lens, while the vast body of material in a spherical lens, that would have no opti-
cal importance, is removed. This is illustrated by figure 6.6. Since fresnel lenses
can easily be produced in much larger dimensions than concave mirrors, lenses
should be preferred over mirrors in large-scale floating imaging systems. How-
ever, it should be noted that fresnel lenses introduce additional aberration artifacts,
depending on their groove density. A high groove density results in better image
quality by avoiding diffraction problems, while a low groove density yields better
efficiency which results in a brighter image.
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Figure 6.7: A real image of an LCD display is produced by a convex Fresnel lens, placed
at a distance 2f from the display.

3.2 A Transparent Floating Image Display

Floating imaging produces a real image that is perceived to float at a specific depth
in space. When combined with the robust hand detection and tracking methods
discussed in previous chapters, this allows for the development of a holographic
display, such that the observer can use his hands to touch and manipulate the float-
ing object.

Holographic displays could solve one of the problems related to HCI inter-
faces, discussed in Section 1, namely the psychological barrier of peripheral hard-
ware. In an interactive floating imaging setup, the user does not need external
mechanical devices to manipulate the presented data. Additionally, the data is pre-
sented as being part of the real world in which the user operates, instead of being
part of a virtual world that seems to exist inside or behind an LCD display. Fig-
ure 6.7 illustrates the floating imaging concept schematically. The lens diagram
also shows the region in which the full floating object can be perceived, and the
region in which a part of the floating object can still be seen.

However, this approach alone does not solve the second problem that was dis-
cussed in Section 1; namely the lack of visual information about the real environ-
ment, needed to maintain situational awareness and to achieve mutual understand-
ing when executing collaborative tasks. If the lens is placed in front of an LCD
display, the observer still sees an opaque medium behind the floating object. This
medium, i.e. the lens itself and the display behind it, blocks the user’s view such
that he can not observe its surroundings.

To solve this problem, we propose to use the Pepper’s ghost effect, as discussed
in Section 1. A semi-transparent mirror is placed at an angle of 45 degrees w.r.t. an
LCD display, such that a virtual image is produced behind the reflective medium.
Due to this transparency, a holographic image seems to float in thin air. Since
only part of the light is reflected, while the other part passes through the medium
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Figure 6.8: A virtual image of an LCD display is produced by a planar reflection medium,
acting as a beam splitter.

and is lost, a transparent reflector is often referred to as a ‘beam splitter’ in optics.
The beam splitter can be any kind of transparent material with a high reflection
coefficient. The resulting Pepper’s ghost display is illustrated conceptually by
figure 6.8.

The major disadvantage of the Pepper’s ghost display, however, is the fact
that the produced image is virtual. Because the image seems to float behind the
transparent medium, it can not be interacted with directly. We therefore propose to
combine the concepts of floating imaging with the Pepper’s ghost effect to develop
a display that is transparent and that produces a real image, floating in front of the
transparent material. As a result, the object seems to float in the real world, and
the user can see through the object in order to observe its surroundings. This is
shown schematically in figure 6.9.

The beam splitter should both be transparent and highly reflective. Obvious
material choices that exhibit both properties are glass, polyacrylate (acrylic) and
polycarbonate. We propose the use of tinted polycarbonate due to its interesting
reflection properties, as will be explained in the following paragraphs. Since only
a small fraction of the light is reflected by the beam splitter, the produced image
will be much less bright compared to the original LCD display. To be viewable in
daylight conditions, a high reflection coefficient is therefore extremely important.
The percentage of light that is reflected by the beam splitter depends on several
system parameters:

1. The wavelength of the light to be reflected;

2. The refraction index of the beam splitter;

3. The refraction index of the surround material (air);

4. The polarization of the light to be reflected;

5. The reflection angle, measured towards the normal of the beam splitter.
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Figure 6.9: A virtual image of an LCD display is produced by a planar reflection medium,
acting as a beam splitter.

Table 6.1: Refraction indices of different materials.

Red (625 nm) Green (550 nm) Blue (440 nm)
Glass 1.541 1.544 1.554
Acrylic 1.493 1.496 1.505
Polycarbonate 1.581 1.590 1.610

The wavelength of the light to be reflected depends on the color of the LCD
pixels and the type or brand of LCD display. To roughly estimate the reflection
properties of the different types of material, we assume typical consumer model
hardware, with a maximal spectral radiance for the red sub-pixels at 625 nm, for
the green sub-pixels at 550 nm, and for the blue sub-pixels at 440 nm [Kwak 00,
Sharma 02].

The refraction index of the beam splitter is a property of the material that also
depends on the wavelength of the incoming light beam. Table 6.1 lists the refrac-
tion indices for three types of highly transparent material [Polyanskiy 14]. The
surrounding medium is assumed to be air, with a refraction coefficient of 1.

The light to be reflected is assumed to be s-polarized (horizontal polarization).
The polarization of the light and its effects on the reflection properties will be
discussed in more detail on page 209. Finally, since the beam splitter is positioned
at an angle of 45 degrees towards the LCD display, light beams always hit the
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Table 6.2: Fraction of light that is reflected by each of the different materials.

Red (625 nm) Green (550 nm) Blue (440 nm)
Glass 10.16% 10.24% 10.47%
Acrylic 9.03% 9.11% 9.32%
Polycarbonate 11.12% 11.32% 11.79%

beam splitter with an angle of 45 degrees or less, towards the normal vector on the
beam splitting surface. To obtain an estimate of the reflection properties of each
material, we assume the angle to be 45 degrees.

Based on these parameters, the reflection properties of each of the materials
listed in table 6.1 can be calculated using the well known Fresnel equations which
describe the behavior of light that moves from a medium with one refractive index,
to a medium with another refractive index. For simplicity, we assume the beam
splitter to be infinitely thin, and thus only consider the top surface of the refractive
material.

Let n1 = 1 be the refraction index of air, n2 be the refraction index of the
beam splitter material, θi be the incident angle of the light, and θt be the angle of
transmission of the light. The reflection coefficient Rs for horizontally polarized
light is then given by the Fresnel equation:

Rs =

∣∣∣∣n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

∣∣∣∣2 =

∣∣∣∣∣∣∣∣
n1 cos θi − n2

√
1−

(
n1

n2
sin θi

)2

n1 cos θi + n2

√
1−

(
n1

n2
sin θi

)2

∣∣∣∣∣∣∣∣
2

. (3.2)

Plugging in the known parameters yields the percentage of horizontally po-
larized light that is reflected by each of the materials. These results are listed in
table 6.2. The reflection coefficients show that polycarbonate is able to reflect
more of the light, resulting in a brighter image, when compared to glass or acrylic.
An additional advantage of polycarbonate is that it has an extremely high impact
resistance and therefore does not break easily as opposed to acrylic or glass. For
these reasons, polycarbonate was used as a beam splitter material for our final
prototype. However, instead of using a completely transparent polycarbonate re-
flector, we propose to use a tinted version of the material. This helps reducing the
apparent brightness of the ambient light that enters the display from the back-side
and thus increases the contrast of the produced image.

The above analysis reveals two possible disadvantages of the Pepper’s ghost
display. Firstly, the reflection coefficient depends on the angle of incidence of the
light wave. This angle of incidence differs for each pixel location of the LCD dis-
play. Therefore, the produced floating image will not exhibit uniform brightness;
Pixels in the center of the display appear brighter than pixels at the edges of the
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display. Secondly, the reflection coefficient depends on the wavelength of the in-
cident light beam. Therefore, the produced image will not exhibit an exact color
reproduction. Blue light is reflected more efficiently than red light, which in turn
is reflected more than green light. However, the first problem can be largely solved
by calibrating the brightness of the individual pixels of the LCD display, based on
the expected position of the observer. The second problem can be counteracted by
varying the pixel brightness in real-time, based on the pixel color.

Another unwanted effect that results from the proposed setup, is ghosting. In
the above analysis, the thickness of the beam splitter was ignored. However, due
to its thickness, light reflects and refracts both at the front side (air-polycarbonate
boundary) and at the back size (polycarbonate-air boundary) of the material. For
example, if 11% of the light is reflected by a polycarbonate beam splitter at an
angle of 45 degrees, then 89% of the light is transmitted by the beam splitter mate-
rial. However, due to the difference in refraction index between the polycarbonate
material and air, the angle of transmission changes for the light that is not reflected.
Using the Fresnel equations, it can be shown that the transmission angle becomes
26 degrees. A fraction of the light therefore hits the back side of the beam splitter
at this angle of 26 degrees. Using the Fresnel equation again shows that 11% of
the light that hits the back side is not transmitted outside the beam splitter, but is
reflected back instead. This fraction of light hits the front side of the beam splitter
at an angle of 26 degrees. At this angle, 93.4% of the light is transmitted outside
the beam splitter, and thus reaches the observer’s eye. This means that the ob-
server sees at least two images. The first image has a brightness of 11% of the
original LCD brightness. The second image is perceived at a slightly different an-
gle and is seen as a shifted version of the first image. This image has a brightness
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of 89%× 11%× 93.4% = 9.14% of the original LCD brightness, and is referred
to as a ‘Ghost image’. This is illustrated by figure 6.10.

Ghosting effects can be greatly reduced by applying an anti-reflective coating
on the back side of the beam splitter. This is a transparent coating consisting of
several thin layers, with diminishing refraction index. The refraction index of the
first layer is close to the refraction index of the beam splitter material, whereas
the refraction index of the outer layer is close to the refraction index of air. Since
the reflection coefficient depends on the refraction index of the material, gradually
lowering the refraction index allows the light to be bent slowly, until it transmits
into the surrounding air.

Although we proposed to use a polycarbonate beam splitter, mainly due to its
low price, impact resistance, and optical properties, several improvements can be
considered to reduce some of the earlier described problems. If transparency is less
important than the brightness of the final image, the beam splitter can be coated
with a thin and highly reflective coating such as aluminum or titanium. This is
often used in optics to produce beam splitters with different reflection / transmis-
sion ratios. A disadvantage of this technique is the fact that a metallic coating
increases the amount of light absorption, resulting in a reduced transparency. A
more expensive method that effectively solves this problem, is the use of a dielec-
tric material. A dielectric reflector is composed of several thin layers of dielectric
material. By varying the thickness of each layer, the resulting reflector can be
produced such that it has low absorption. Furthermore, dielectric reflectors can be
designed such that specific wavelengths of light are reflected more, whereas others
are transmitted. This can be used to design a beam splitter that efficiently reflects
the light produced by the LCD display, while transmitting ambient light. Such a
beam splitter would reduce glare and ghosting, would be highly transparent, and
would produce high brightness images.

Finally, it is important to consider the polarization of the LCD display when
designing the Pepper’s ghost display. Modern LCD displays contain a back-light
that produces unpolarized light. The LCD panel itself is squeezed between a hor-
izontal polarization filter and a vertical polarization filter. If a pixel is supposed
to be black, the liquid crystal is set to its inactive state, such that the horizon-
tal and vertical polarization filters effectively block most of the light from exiting
the display. If a specific color needs to be produced the liquid crystal actively
changes the polarization of the light, such that light of the expected wavelength ex-
its the display. Since there is no official production standard, some manufacturers
use a vertical-LCD-horizontal polarization configuration, whereas others employ a
horizontal-LCD-vertical configuration. However, if the light that exits the display
is vertically polarized (p-polarized), the brightness of the produced image will be
extremely low. The reason for this is that vertically polarized light is reflected less
efficiently than horizontally polarized light. This can be verified by calculating
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Figure 6.11: Reflection coefficient of polarized light, plotted against the incident angle for
a polycarbonate reflector.

the reflection coefficient for different incident angles, using the Fresnel equations.
Figure 6.11 shows a plot of the reflection coefficient Rs for horizontally polarized
light, and the reflection coefficient Rp of vertically polarized light against the inci-
dent angle of light, for a polycarbonate beam splitter. This shows that the reflection
angle for vertically polarized light approaches zero if the incident angle is close to
45 degrees. The reason for this is that 45 degrees is close to Brewster’s angle for
vertically polarized light in polycarbonate. Brewster’s angle is the angle at which
all light is transmitted instead of reflected.

Therefore, if an LCD display is known to produce vertically polarized light,
simply positioning it in portrait mode, instead of landscape mode, increases the
brightness of the produced image with a factor 9 due to the change in polarization.

Figure 6.12 shows our Pepper’s ghost display, showcased at a tradeshow for
the company Tomra NV.

3.3 A Conic 360° Display

The Pepper’s ghost display, discussed in Section 3.2, can be made transparent such
that users can see their natural environment through the floating object. However,
due to the planar reflection surface, the viewing angle is limited. Moreover, al-
though the produced image seems to float at a certain distance from the observer,
the illusion of perceived depth is limited because of the planar character of the
beam splitter.

To enhance the perceived depth experience, we propose a three dimensional
beam splitter in the shape of a cone. The produced image appears to float inside
the transparent cone. Due to the curved surface, and the fact that the observer
can walk around the display, the illusion of observing a holographic 3D image is
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Figure 6.12: Our Pepper’s ghost display prototype, showcased at an international tradeshow
for Tomra NV.
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Figure 6.13: Two conic 360 degrees displays prototype of size 80 cm× 80 cm× 50 cm.

created, even though only a 2D projection is shown. Furthermore, by projecting
an image at two opposing sides of the cone, multiple observers can interactively
perform collaborative physical tasks while maintaining eye contact. Figure 6.13
shows two of our final prototype displays, both of which have a physical size of
80 cm×80 cm×50 cm and can be interactively controlled by using hand gestures.
The cone was produced by means of vacuum forming the polycarbonate material
onto a mold.

A major difference with the Pepper’s ghost display presented in Section 3.2, is
the fact that the beam splitting material is now a three dimensional curved surface
instead of a 2D planar surface. Although a spherical surface could have been
used instead of a conic surface, this would introduce both horizontal and vertical
distortion of the image. A conical surface allows us to produce an image with
full vertical resolution, limiting the optical distortion to the horizontal direction.
Similarly, a cylindrical surface could have been used. However, this would require
the LCD display to be tilted, limiting the user’s viewing angle. By using a cone
with apex angle 2θ = 90 degrees, the pixel column that is in front of the observer
behaves as if it would have been reflected by an infinitely narrow planar mirror.
Towards the edges of the image however, the optical distortion increases rapidly
due to curvature of the reflective surface.

This distortion can be described by a non-linear transformation. By digitally
applying the inverse of this transformation to the image displayed on the LCD, an
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(a) Jean-Francois Niceron. (b) István Orosz.

(c) John Dalton. (d) Awtar Singh Virdi.

Figure 6.14: Anamorphic art from several well known artists.

undistorted floating image can be produced. While the context of this research is
image formation, the same idea has been explored in literature in the context of
image capturing [Burbridge 08]. In this case, a conical mirror is used to create an
omnidirectional camera. These types of cameras are often referred to as ‘catadiop-
tric cameras’ since they combine both refraction (lenses) and reflection (mirrors).
Whereas catadioptric cameras are concerned with the forward transformation, i.e.
finding the world coordinate of each distorted image coordinate, we are more in-
terested in the backward transformation, i.e. calculating the image coordinate that
would be observed at a specified world coordinate.

The backward transformation used to map world coordinates to their corre-
sponding image coordinates after distortion by reflection on a curved surface has
been a subject of interest by many artists since the 16th century in the form of
anamorphic art [Hunt 00]. One of the most notable artists in this field was Jean-
Francois Niceron [Niceron 52], who produced anamorphic images for several
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types of curved surfaces such as cylinders, spheres and cones. These images look
distorted when viewed on canvas, but appear undistorted when observed after re-
flection off the curved surface, as illustrated by figure 6.14. Anamorphic art is
created by manually mapping image regions from a rectangular grid to a non-
rectangular grid, as illustrated by figure 6.14 (a). However, for our purpose, an an-
alytical solution is needed for this transformation such that it can be implemented
in software. To our knowledge, a solution to this problem for a conical reflector
that is observed at a perpendicular angle to the cone’s axis, has not been proposed
in literature yet. The next paragraphs discuss the derivation of our proposed solu-
tion.

In the following analysis, we assume a left-handed coordinate system, with
the LCD display positioned in the (x, y)-plane, and the optical axis of the cone
passing through the origin. The cone segment is defined by its height h, the radius
r of its base, and the aperture or apex angle 2θ. This is illustrated by figure 6.15.
Although the apex of the cone coincides with the origin in figure 6.15, this is not a
requirement in the following derivation. In practice, a truncated cone will be used,
such that the virtual apex is shifted in the z-direction with respect to the origin.
The reason is that the apex itself has no dimensions and can therefore not be used
to reflect light.

The observer is assumed to be positioned at point V , looking at a virtual image
pixel at point P :

P = (px, py, pz),

V = (vx, vy, vz).
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The virtual image point P is produced by reflection of a light ray, exiting the LCD
pixel at point D. The problem to be solved is then to find the coordinates of D,
such that viewer at V perceives the image point to be floating inside the cone, at P .

To do so, we first find the coordinates of point I , which defines the intersection
of the virtual light ray in the direction V − P with the cone’s surface. Due to
the Pepper’s ghost effect, the viewer observes image point D as if it was located
at point P , and thus assumes that a light ray travels in the direction V − P . We
define the line connecting V and P by its parametric form:

L(t) = P + t(V − P ) (3.3)

= (px, py, pz) + t((vx, vy, vz)− (px, py, pz)) (3.4)

= ((px + t(vx − px)), (py + t(vy − py)), (pz + t(vz − pz))), (3.5)

where t ∈ [0, 1].
To determine the coordinates of I , equation (3.5) can simply be plugged into

the equation of a cone. The equation of a truncated cone, such that the virtual apex
is shifted in the z-direction with a distance −z0 is defined as follows:

x2 + y2 = (z + z0)2 tan2 θ. (3.6)

The intersection point I can then be found as follows:

x2 + y2 = (z + z0)2 tan2 θ

⇔ 0 = x2 + y2 − (z + z0)2 tan2 θ

⇔ 0 = (p2
x + 2pxt(vx − px) + t2(vx − px)2)

+ (p2
y + 2pyt(vy − py) + t2(vy − py)2)

− tan2 θ((p2
z + 2pzt(vz − pz) + t2(vz − pz)2) + 2(pz + t(vz − pz))z0 + z2

0)

⇔ 0 = t2(v2
x − 2vxpx + p2

x + v2
y − 2vypy + p2

y − tan2 θ(v2
z − 2vzpz + p2

z))

+ t(2pxvx − 2p2
x + 2pyvy − 2p2

y − tan2 θ(2pzvz − 2p2
z + 2z0vz − 2z0pz))

+ (p2
x + p2

y − tan2 θ(p2
z + 2pzz0 + z2

0))

which is a quadratic equation in t:

at2 + bt+ c = 0

with

a = v2
x − 2vxpx + p2

x + v2
y − 2vypy + p2

y − tan2 θ(v2
z − 2vzpz + p2

z)

b = 2pxvx − 2p2
x + 2pyvy − 2p2

y − tan2 θ(2pzvz − 2p2
z + 2z0vz − 2z0pz)

c = p2
x + p2

y − tan2 θ(p2
z + 2pzz0 + z2

0).
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Although this quadratic equation has two possible solutions (L(t) intersects
the cone both at the front side and at the back side), only the positive solution is of
interest to us:

ti =
−b+

√
b2 − 4ac

2a

The intersection point I can now be obtained by replacing t in equation (3.5)
by ti:

L(ti) = ((px + ti(vx − px)), (py + ti(vy − py)), (pz + ti(vz − pz)))
= (Ix, Iy, Iz)

= I.

Once the coordinates of I are known, the direction of the vector r = D − I ,
towards the LCD display, can be found by reflecting vector v = I − V around the
normal vector n at point I . This is the result of the law of reflection which states
that angle of incidence equals the angle of reflection, where the angles are defined
towards the normal of the reflective surface. The normal vector of the conic surface
f(x, y, z) = 0 at I = (x0, y0, z0) is the unit vector in the direction of the gradient
of f(x,y,z):

∇f(x, y, z) = (
∂f(x, y, z)

∂x
,
∂f(x, y, z)

∂y
,
∂f(x, y, z)

∂z
)

where 
∂f(x,y,z)

∂x = 2x
∂f(x,y,z)

∂y = 2y
∂f(x,y,z)

∂z = −2 tan2 θ(z + z0).

The normal vector of the conic surface at point I is therefore defined as:

n = (Ix, Iy,− tan2 θ(Iz + z0)).

In order to find pointD of the LCD display, from which the light ray originates,
we simply reflect light ray L(t) around n. Since L(t) is defined by v = I − V ,
this corresponds to reflecting vector v around the normal vector n at point I . The
reflected vector is denoted r = D − I , and can be obtained by considering the
projection of v onto n. This is illustrated by figure 6.16.

From figure 6.16, it is clear that vector r can be written as:

r = v + 2a. (3.7)

Furthermore, since p = v + a, vector a is obtained as:

a = p− v. (3.8)
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Finally, since p is the projection of v on n, we find p as:

p =
〈n,v〉
|n|2 n. (3.9)

Thus, from equations (3.8) and (3.9), it follows that:

a =
〈n,v〉
|n|2 n− v, (3.10)

and from equations (3.7) and (3.10), it then follows that the reflection vector can
be found as:

r = v + 2(
〈n,v〉
|n|2 n− v)

=
2〈n,v〉
|n|2 n− v

= (rx, ry, rz).

Using the same parametric form as was used to define light rayL(t) in equation
(3.5), the reflected light ray along vector r is now defined as:

R(t) = (Ix, Iy, Iz) + t(rx, ry, rz) (3.11)

= (Ix + trx, Iy + try, Iz + trz). (3.12)

Finally, to determine the coordinates of D, the point of intersection between R(t)

and the LCD display needs to be calculated.
We assumed that the LCD display is positioned in the (x, y)-plane, such that

by definition z = 0. Thus, setting the z-component in equation (3.12) to zero,
allows us to find t:

Iz + tjrz = 0

⇔ tj =
−Iz
rz

,
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Table 6.3: Parameter specifications for the transformation results of figure 6.17.

Display resolution 1920 px× 1200 px
Display diagonal 24.0678 inches
Viewer coordinates (cm) (0, 1000, -50)
Cone aperture 90°
Cone height 345 mm
Cone cutoff size(truncated) 15 mm
LCD display bezel size 21.05 mm
Air gap between display and cone 5 mm

such that finally the intersection is found as:

D = R(tj) = (Ix −
Izrx
rz

, Iy −
Izry
rz

, 0). (3.13)

4 Results and Discussion

In order to transform an original image such that it is displayed correctly after
reflection on the cone, each pixel P of the image has to be moved to its new
coordinates defined by equation (3.13). This can be efficiently implemented in
a fragment shader program (GLSL) such that the transformation is obtained in
real-time. To further avoid redundant computations, we generated a lookup-table
(LUT) which is transferred to the GPU as a texture map. This LUT allows the frag-
ment shader to quickly obtain the destination coordinates for each of the original
image coordinates.

An important side note is that the above analysis was carried out in world
coordinates. Therefore, the coordinates of point D, i.e. distances in millimeters
or centimeters, need to be translated to display coordinates, i.e. number of pixels.
This transformation depends of the pixel size, and therefore the pixel density of
the LCD display. The parameters of our prototype display, needed to apply the
anamorphic transformation, are listed in table 6.3.

For illustration purposes, figure 6.17 shows the result of the transformation,
applied to two different images, for a conic display with the specifications listed in
table 6.3.

Note that the transformation, needed to undo the optical distortion introduced
by the conical mirror, stretches the original image towards the apex of the cone.
As a result, interpolation is needed to solve for unknown pixel values. Because
the image is stretched more towards the apex of the cone, anisotropic interpolation
along the iso-contours of the cone would yield smoother results than interpolation
on a rectangular grid. However, in the context of our current research we use
simple bilinear interpolation and consider more advanced techniques future work.
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Figure 6.17: Anamorphic transformation applied to two different images. Bilinear interpo-
lation was used to produce the results.

Figure 6.18 shows the final prototype display that was built based on the prin-
ciples explained in this chapter.

The proof-of-concept display, illustrated by figure 6.18 was showcased at sev-
eral national and international trade shows and conferences. Simple software
demonstrator applications allowed visitors to rotate a virtual object by moving
their hands in the air. Another software demonstrator presented the user with a
racing game, in which the user controlled the car by means of hand gestures. The
next few paragraphs present an overview of the shortcomings of the current gesture
controlled interface, reported by these users.

Hand gestures used for controlling the objects were chosen to be simple swipe
and pinch gestures as the learning curve for correctly executing more difficult ges-
tures appeared to be too high for most users. An interesting point of future research
would therefore focus on the human side of gesture controlled interfaces: Even if
hands can be detected and tracked robustly, users might not want to use their hands
to control an interface if it requires them to learn to execute certain gestures in a
specific manner.

Moreover, although our algorithms allow for automatic error recovery and re-
detection when the hand leaves or enters the video frame, users still need to keep
their hands within the camera’s field of view as long as they are executing a task.
For example, when playing the racing game, many users got tired and weren’t
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Figure 6.18: The final prototype display.

willing to keep their hands in an upwards position long enough to complete the
game. This is often referred to as the ‘gorilla’ effect [Kyung 12], and should be
taken into account when designing HCI software.

Finally, it is often difficult for users to estimate where their hands are posi-
tioned, relative to the boundaries of the camera’s frustrum. It is thus important to
notify the users when the hands tend to leave the video frame, or become invisible
to the camera. Future research should therefore focus on the need for feedback
towards the user.

5 Conclusion

In this chapter we discussed two related methods to create a transparent display
that produces a 3D illusion by introducing a sense of depth. Each of the design
steps involved were discussed in detail, and suggestions for future work were pre-
sented.

The first method combines the well known Pepper’s Ghost effect with a tech-
nique known as ‘floating imaging’. A large, convex fresnel lens is positioned in
front of a beam-splitter, at a distance of twice the focal length of the lens. The
beam-splitter is placed at an angle of 45 degrees towards an LCD panel, and re-
flects a virtual image towards the fresnel lens. The fresnel lens then produces a
real image of this LCD panel in front of the lens such that the image seems to float
in thin air.
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The second method extends this idea to 3D by using a transparent, conic re-
flection surface instead of a planar beam-splitting medium. To undo the optical
distortion, introduced by the conic reflection volume, we proposed an algorithmic
solution that effectively inverts this distortion before the image is displayed.

The prototypes of our displays have been showcased at various national and
international tradeshows and expos, and were received with much enthusiasm by
the public. By integrating gesture recognition into the display, users can perform
collaborative tasks while maintaining visual information. This results in a more
immersive experience when compared to traditional computer displays and pe-
ripheral hardware.





7
Overall Conclusion

In the past chapters we discussed several important building blocks of the novel,
robust object tracking method described in chapter 4. Furthermore, a new type of
interactive human-computer interface was developed and discussed in chapter 6.

The main conclusions of this PhD research are summarized in Section 1 of this
chapter. The scientific output of this research is summed up in Section 2. Finally,
we discuss several possible areas for future research in Section 3.

1 Conclusions

In chapter 2, we proposed a novel object detector that is scale and rotation invari-
ant, and operates in real-time. Scale and rotation invariance is directly incorporated
in the training stage of the classifier, whereas traditional methods achieve invari-
ance by repeatedly executing the detector on scaled and rotated versions of the
image.

Our method can detect articulated and deformable objects, and can cope with
occlusion by modeling the object as a collection of object parts, together with the
spatial distribution of these parts. Experimental results showed that the proposed
algorithm outperforms the state-of-the-art in hand detection, and is competitive
with the state-of-the-art when applied to general object detection tasks such as
people detection and animal detection. Nevertheless, our method provides a sig-
nificant decrease in computational complexity, resulting in a real-time solution.
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In chapter 3, a novel sparse optical flow estimation method was proposed. Due
to its sparsity, this method is extremely efficient, consuming only a fraction of the
available CPU power. We proposed a technique to incorporate a regularization
scheme into the matching process, resulting in a smooth and noise-free optical
flow field estimate. Moreover, a method is introduced to allow for local regular-
ization such that the algorithm can cope with motion discontinuities due to object
boundaries.

Experiments showed that our solution both outperforms traditional point-
matching algorithms such as SURF and traditional sparse optical flow methods
such as the Lucas-Kanade algorithm. Our method is also competitive with the
state-of-the-art in dense optical flow estimation, while being faster to calculate
than simple sparse flow estimation techniques. We showed that incorporation of
our optical flow method into a particle filter based object tracker greatly improves
its robustness and accuracy.

In chapter 4 we discussed a particle filter based hand tracking approach. Sev-
eral techniques were introduced to reduce the computational complexity of the
system. Several types of color, texture and motion related information are com-
bined by a sensor fusion approach, resulting in a robust, illumination independent
tracking method.

The hand tracker was combined with the earlier discussed hand detector to
allow for automatic initialization and error recovery. Moreover, a segmentation
algorithm was developed and used to gather information that is used by a feedback
loop, such that the tracking algorithm can automatically adapt to its environment.

Experimental results showed that our solution largely outperforms the state-of-
the-art in object tracking, when applied to the task of hand tracking. Additionally,
our method is faster than most of the state-of-the-art algorithms, and is unique due
to its automatic initialization and error recovery capabilities.

In chapter 5, we introduced a method to automatically learn which objects
exhibit temporally correlated motion patterns. This allows our algorithm to quickly
adapt in dynamic environments, and to cope with occlusions, even when occluding
objects have similar appearance as the tracked object.

The contextual learner was used in a partitioned sampling based particle frame-
work to track the arm, along with the user’s hand. Moreover, we introduced a
method to incorporate contextual information into the proposal distribution of the
particle filter itself, to improve tracking robustness against occlusion.

Extensive evaluation showed that our solution outperforms state-of-the-art in
object tracking. Moreover, we showed that the proposed approach yields com-
parable results as pictorial structure based tracking and detection methods, while
showing a much lower computational complexity.
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In chapter 6 we discussed a novel interactive human-computer display. Multi-
ple users can use the display which is completely transparent, such that they can
maintain eye-contact when performing collaborative tasks.

Moreover, the display produces an image that appears to float in thin air, such
that the virtual object seems to be part of the real world. This results in a truly im-
mersive experience, allowing the user to touch and manipulate the floating object
with his hands. The display was showcased at several national and international
events and tradeshows, and the first steps towards a spin-off company were taken,
based on this research.

2 Contributions

The research during this PhD resulted in a number of scientific contributions that
are summed up in this section. In order to discuss these contributions, it is useful
to revisit the research questions that were posed in section 1, and to formulate an
answer on each of these questions.

2D Hand Tracking: Given its initial location, a hand can be tracked throughout
a video sequence in real-time by means of particle filtering. Due to the dif-
ficulty of predicting the hand’s motion, it is important to choose a proposal
distribution that closely resembles the posterior distribution of interest. We
showed how such proposal distribution can be obtained, by combining an
optical flow field with color information, motion information and context
modeling. We showed that this approach greatly outperforms traditional
bootstrap filters, and allows for robust hand tracking in real-time throughout
a monocular, and possibly low-resolution video sequence. Moreover, we
showed that this approach can cope with sudden illumination changes in the
scene, quickly changing backgrounds, moving cameras, and unconstrained
hand poses.

Hand segmentation: Although hand segmentation in video can be challenging
due to motion blur in case of fast motion, we showed that it is possible to
at least obtain a rough segmentation of the hand in real-time, even in cases
where the edges of the hand are blurred. More importantly, we introduced
a method that uses the resulting segmentation mask to automatically adapt
the likelihood models of the particle filter, thereby increasing its robustness
to illumination changes.

Color modeling: Chapter 2 showed that skin color alone does not suffice as a cue
for robust hand detection. Instead, texture based cues and context modeling
are needed to achieve robust hand detection. On the other hand, in chapter
4, we showed that skin color is an important feature for hand tracking, when
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temporal information is available. We introduced a method to dynamically
adapt the skin color model such that it is invariant to illumination changes
and ethnicity of the human subject. Finally, we combined skin color with
several other types of information such as motion detection and optical flow
in order to overcome ambiguities when skin-like objects appear in the scene.

2D Hand Detection: In chapter 2, we discussed that robust hand detection is not
feasible by means of traditional template matching based detection tech-
niques. However, we introduced a parts-based method that is able to detect
hand parts, such as fingers, and that models their spatial distribution in order
to detect the hand’s position. We showed that it is possible to model this
distribution in a rotation and scale invariant manner, and applied the result-
ing detector in our hand tracking framework, where it takes care of error
detection and recovery.

Closed-loop system: All components of our complete tracking and detection sys-
tem share information and allow for the internal models to be adapted at
run-time. Color models of the particle filter are updated based on the seg-
mentation mask and the Hough voting map. Prior probability distributions
of the random Hough forest are adapted automatically based on the hand
tracking results, such that mistakes that were made in the past are unlikely
to be made again in future video frames. Context, defined as objects whose
motion patterns appear to be correlated with those of the hand, is learned
automatically based on the hand bounding box, obtained from the particle
filter. The context models are updated continuously and are able to adapt
when the context changes. Optical flow is used in both particle filter track-
ing and context learning.

Unsupervised context learning: We showed that it is possible to automatically
train a statistical model of the context, surrounding the tracked hand. Our so-
lution was shown to be able to learn which objects exhibit correlated motion
with the hand itself. These object can either be object such as a magazine or
umbrella the hand interacts with, or can be objects that are attached to the
hand, such as the arm. We showed that arm tracking becomes feasible even
if the arm’s appearance is unknown beforehand, for instance do to the color
and texture of the sleeves. Finally, our context learning method was shown
to increase the tracker’s robustness to occlusion.

Real-time system: Each of the chapters in this dissertation focussed on real-time
performance. We discussed and evaluated the computational complexity
of all modules in detail, and introduced several design choices to achieve
real-time performance. Some of these design choices are on the algorithmic
level, e.g. by using integral histograms and integral images, whereas others
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are on the implementation level, e.g. by using SSE2 instructions, paralleliza-
tion, and GPU implementation by means of shaders.

Floating display: In chapter 6 we showed that it is possible to build a holo-
graphic display at relatively low cost. Although the quality of the resulting
image is not perfect, due to the need of anisotropic interpolation, the proof-
of-concept displays we built were much appreciated by the public at several
demonstrations and trade shows. The displays can be controlled using hand
gestures, based on the algorithms introduced in this dissertation.

The work on real-time object detection has led to three peer-reviewed publica-
tions at international conferences [Spruyt 12, Spruyt 13a, Bellekens 14].

The work on real-time sparse optical flow regularization resulted in three peer-
reviewed international conference publications [Spruyt 13b, Van den Berghe 11b,
Van den Berghe 11a].

The research on object segmentation has led to two peer-reviewed international
conference publications [Spruyt 10a, Creemers 11].

The research work on object tracking resulted in one published international
journal paper [Spruyt 14], one journal publication that is currently under review,
one submitted journal paper, four peer-reviewed international conference publi-
cations [Spruyt 12, Spruyt 13a, Heyman 12, Heyman 11] and one peer-reviewed
national conference publication [Spruyt 10b].

The work on the development of a transparent floating imaging display has led
to a commercial license agreement between an interested party, i.e. spin-off com-
pany in formation BI3D, and both Ghent University and the University of Antwerp,
concerning part of this PhD research. Furthermore, two types of hardware proto-
types were developed and showcased on several national and international events.

3 Future Work

This section lists some important areas with potential of improvement in future
research:

The region of interest detector used in chapter 2 is based on the entropy of the
gray-scale histogram of each region of interest, and a measure of self-similarity
at different scales. Therefore, this method does not incorporate any information
about the temporal stability of the region if the detector is used for hand detection
in video. Instead of simply detecting regions that are of interest from a spatial point
of view, one could detect regions that are also of interest from a temporal point of
view. Several spatio-temporal feature detection methods have been described in
literature and could be used to improve the detection performance when applied to
video.
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The probabilistic Random Hough Forest voting mechanism of chapter 2 can be
extended to a 3D Hough parameter space, such that it can be used to detect objects
directly in a point cloud obtained by a depth camera. This would greatly increase
the robustness of the algorithm, since background objects can often be discarded
quickly based on their 3D shape.

Even human observers often have difficulties in detecting hands if no contex-
tual information such as the wrist or arm is visible. An interesting extension of the
detector proposed in chapter 2 would therefore allow the incorporation of contex-
tual information. The detector could be tailored specifically to articulated objects,
such that detection of the arm would improve detection of the hand, and vice versa.

In chapter 3, a simple and fast corner detector is used for point matching.
As discussed above, spatio-temporal feature detection could be used in video se-
quences, and would potentially result in a higher repeatability of the feature point
detector.

In chapter 4, a depth map can be combined easily with the probability images
used by the particle filter tracker. By incorporating depth information, background
objects can be discarded quickly, which increases the robustness of the tracking
method. Furthermore, in the current implementation of the tracking algorithm,
a custom proposal distribution is designed to estimate the position of the hands,
whereas a standard bootstrap filtering approach is used to estimate the hand size.
However, it would be possible to design a proposal distribution, which incorpo-
rates a segmentation step, such that the size of the hands can be estimated more
accurately using less particles.

Based on the bounding box estimate, obtained by the particle filter tracker of
chapter 4, a rough segmentation of the hand is obtained. This segmentation is
then used to improve the detection and tracking models adaptively. However, the
segmented contour could also be used directly in the particle filter framework to
improve the obtained estimate instead of only using it in a post-processing step.
Finally, The appearance of the hands is currently described using general color and
texture based histograms. However, it would be interesting to use a P-N learning
based approach to gather image patches of both the hands and the background
over time. These patches then represent a codebook of the object of interest, and
could be used to increase the robustness and adaptivity of both the tracking and
the detection methods.

Chapter 5 introduced a method to improve hand tracking robustness by in-
corporation local context into the proposal distribution of the particle filter. We
applied this framework to arm tracking. This concept could easily be extended to,
or combined with, a fully articulated upper body tracker to further improve robust-
ness of the arm location estimates in case of occlusion with other body parts.

In chapter 6 a novel type of transparent computer display was described. The
main shortcoming of the proposed 360 degrees conic display is that the floating
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3D appears flat to the human eye. An obvious extension would therefore be the
use of a fly-eye lens sheet to introduce a true auto-stereoscopic effect.
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a Companion Improves Robustness of the Tracker. In Scan-
dinavian Conference on Image Analysis, SCIA ’09, pages
291–300, Berlin, Heidelberg, 2009. Springer-Verlag.



[Chollet 13] Mathieu Chollet, Magalie Ochs & Catherine Pelachaud.
A multimodal corpus for the study of non-verbal behav-
ior expressing interpersonal stances. In Intelligent Virtual
Agents Workshop on Multimodal Corpora, 2013.

[Cooper 13] Todd Cooper, Akira Tsukada, Yoshinari Naruse & Akifumi
Yamaguchi. From Interviews to Total Communication: Vir-
tualizing the English Foreign Language Classroom. In
Ron McBride & Michael Searson, editeurs, Proceedings of
Society for Information Technology & Teacher Education
International Conference 2013, pages 336–342, New Or-
leans, Louisiana, United States, March 2013. Association
for the Advancement of Computing in Education (AACE).

[Cornelius 13] C.J. Cornelius, Mai Anh Nguyen, C.C. Hayes & R. Mak-
ena. Supporting Virtual Collaboration in Spatial Design
Tasks: Are Surrogate or Natural Gestures More Effective?
IEEE Transactions on Human-Machine Systems, vol. 43,
no. 1, pages 92–101, Jan 2013.

[Creemers 11] C. Creemers, K. Guerti, S. Geerts, K. Van Cotthem,
A. Ledda & V. Spruyt. HEp-2 Cell pattern segmentation
for the support of autoimmune disease diagnosis. In Inter-
national Symposium on Applied Sciences in Biomedical
and Communication Technologies, 2011.

[Dalal 05] N. Dalal & B. Triggs. Histograms of Oriented Gradients
for Human Detection. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 886–893,
2005.

[Dawod 10] A.Y. Dawod, J. Abdullah & M.J. Alam. Adaptive skin
color model for hand segmentation. In International Con-
ference on Computer Applications and Industrial Electron-
ics, pages 486–489, 2010.

[Deqing 12] S. Deqing, E.B. Sudderth & M.J. Black. Layered segmenta-
tion and optical flow estimation over time. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
1768–1775, June 2012.

[Donoser 08] M. Donoser & H. Bischof. Real time appearance based
hand tracking. In International Conference on Pattern
Recognition, pages 1–4, 2008.



[Durrant-Whyte 01] H. Durrant-Whyte. Multi Sensor Data Fusion. Technical
report, Australian Centre for Field Robotics, The Univer-
sity of Sydney NSW, 2001.

[Ebner 07] M. Ebner. Color constancy. Wiley, 2007.

[Eichner 12] M. Eichner, M. Marin-Jimenez, A. Zisserman & V. Ferrari.
2d articulated human pose estimation and retrieval in (al-
most) unconstrained still images. International Journal of
Computer Vision, vol. 99, no. 2, pages 190–214, 2012.

[ElKoura 03] G. ElKoura & K. Singh. Handrix: animating the human
hand. In ACM SIGGRAPH/Eurographics symposium on
Computer animation, SCA ’03, pages 110–119, Aire-la-
Ville, Switzerland, Switzerland, 2003. Eurographics Asso-
ciation.

[Everingham 10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn &
A. Zisserman. The Pascal Visual Object Classes (VOC)
Challenge. International Journal of Computer Vision,
vol. 88, no. 2, pages 303–338, June 2010.

[Exner 10] D. Exner, E. Bruns, D. Kurz, A. Grundhofer & O. Bimber.
Fast and robust CAMShift tracking. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
pages 9–16, 2010.

[Fisher 03] R. Fisher. General-purpose SIMD within a register: Paral-
lel processing on consumer microprocessors. PhD thesis,
Purdue University, 2003.

[Francis 03] J.J. Francis & G. de Jager. The Bilateral Median Filter.
In Symposium of the Pattern Recognition Association of
South Africa, 2003.

[Friedman 97] N. Friedman, D. Geiger & M. Goldszmidt. Bayesian Net-
work Classifiers. Journal of Machine Learning, vol. 29,
no. 2-3, pages 131–163, 1997.

[Gall 09] J. Gall & V. Lempitsky. Class-specific Hough forests for
object detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1022–1029, 2009.

[Giorgio 03] V. Giorgio. Ensemble Methods Based on Bias-Variance
Analysis. PhD thesis, Dipartimento di Informatica e
Scienze, 2003.



[Gomez 02] G. Gomez. On selecting colour components for skin detec-
tion. In International Conference on Pattern Recognition,
volume 2, pages 961–964, 2002.

[Goncalves 95] L. Goncalves, E. Di Bernardo, E. Ursella & P. Perona.
Monocular tracking of the human arm in 3D. In IEEE
International Conference on Computer Vision, pages 764–
770, Jun 1995.

[Grabner 10] H. Grabner, J. Matas, L. Van Gool & P. Cattin. Tracking
the invisible: Learning where the object might be. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1285–1292, June 2010.

[Grygorash 06] O. Grygorash, Y. Zhou & Z. Jorgensen. Minimum Span-
ning Tree Based Clustering Algorithms. IEEE International
Conference on Tools with Artificial Intelligence, vol. 0,
pages 73–81, 2006.

[Harris 88] C. Harris & M. Stephens. A combined corner and edge de-
tector. In Alvey Vision Conference, pages 147–151, 1988.

[Heikkilä 09] M. Heikkilä, M. Pietikäinen & C. Schmid. Description
of interest regions with local binary patterns. Journal of
Pattern Recognition, vol. 42, no. 3, pages 425–436, March
2009.

[Heyman 11] T. Heyman, V. Spruyt & A. Ledda. 3D Face tracking and
gaze estimation using a monocular camera. In Interna-
tional Conference on Positioning and Context-Awareness,
pages 23–28, 2011.

[Heyman 12] T. Heyman, V. Spruyt, S. Grünwedel, A. Ledda &
W. Philips. A canonical correlation analysis based mo-
tion model for probabilistic visual tracking. In IEEE Vi-
sual Communications and Image Processing, pages HO2–
25. Proceedings of Visual Communications and Image Pro-
cessing, 2012.

[Horn 81] B. Horn & B. Schunck. Determining Optical Flow. Artifi-
cial Intelligence, vol. 17, pages 185–203, 1981.

[Hoshi 09] T. Hoshi, M. Takahashi, K. Nakatsuma & H. Shinoda.
Touchable Holography. In ACM SIGGRAPH 2009 Emerg-
ing Technologies, SIGGRAPH ’09, pages 23:1–23:1, New
York, NY, USA, 2009. ACM.



[Huang 12] T.F. Huang, P. Chao & Y. Kao. Tracking, recognition, and
distance detection of hand gestures for a 3-D interactive
display. Journal of the Society for Information Display,
vol. 20, no. 4, pages 180–196, 2012.

[Hunt 00] J. L. Hunt, B. G. Nickel & C. Gigault. Anamorphic im-
ages. American Journal of Physics, vol. 68, pages 232–
237, March 2000.

[Isard 98] M. Isard & A. Blake. ICONDENSATION: Unifying Low-
Level and High-Level Tracking in a Stochastic Framework.
In European Conference on Computer Vision, ECCV ’98,
pages 893–908, London, UK, UK, 1998. Springer-Verlag.

[Jacob 13] Mithun George Jacob, Juan Pablo Wachs & Rebecca A
Packer. Hand-gesture-based sterile interface for the op-
erating room using contextual cues for the navigation of
radiological images. Journal of the American Medical In-
formatics Association, vol. 20, no. e1, pages e183–e186,
2013.

[Jones 02] M. Jones & J. Rehg. Statistical Color Models with Applica-
tion to Skin Detection. International Journal of Computer
Vision, vol. 46, no. 1, pages 81–96, 2002.

[Joohwan 09] K. Joohwan, M. Sung-Wook & L. Byoungho. Viewing win-
dow expansion of integral floating display. Applied Optics,
vol. 48, no. 5, pages 862–867, Feb 2009.

[Julier 02] S.J. Julier. The scaled unscented transformation. In Amer-
ican Control Conference, volume 6, pages 4555–4559,
2002.

[Jun 12] W. Jun, R. Qiuqi, A. Gaoyun & L. Wei. Hand tracking and
segmentation via graph cuts and dynamic model in sign
language videos. In International Conference on Signal
Processing, volume 2, pages 1135–1138, 2012.

[Junseok 09] K. Junseok & Mu. Kyoung. Tracking of a non-rigid ob-
ject via patch-based dynamic appearance modeling and
adaptive Basin Hopping Monte Carlo sampling. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1208–1215, 2009.



[Just 06] A. Just, Y. Rodriguez & S. Marcel. Hand Posture Classi-
fication and Recognition using the Modified Census Trans-
form. In International Conference on Automatic Face and
Gesture Recognition, pages 351–356, 2006.

[Kadir 01] T. Kadir & M. Brady. Saliency, Scale and Image Descrip-
tion. International journal of computer vision, vol. 45,
no. 2, pages 83–105, November 2001.

[Kakeya 07] H. Kakeya. MOEVision: simple multiview display with
clear floating image. In Stereoscopic Displays and Vir-
tual Reality Systems XIV, volume 6490, pages 64900J–
64900J–8, 2007.

[Kalal 10] Z. Kalal, J. Matas & K. Mikolajczyk. P-N learning: Boot-
strapping binary classifiers by structural constraints. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 49–56, June 2010.

[Kalal 12] Z. Kalal, K. Mikolajczyk & J. Matas. Tracking-Learning-
Detection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 34, no. 7, pages 1409–1422, July
2012.

[Karlinsky 10] L. Karlinsky, M. Dinerstein, D. Harari & S. Ullman. The
chains model for detecting parts by their context. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 25–32, 2010.

[Kim 13] T. Kim, H. Lee & K. Lee. Optical Flow via Locally Adap-
tive Fusion of Complementary Data Costs. International
Computer Vision Conference, 2013.

[Kimura 06] H. Kimura, T. Uchiyama & H. Yoshikawa. Laser Produced
3D Display in the Air. In ACM SIGGRAPH 2006 Emerg-
ing Technologies, SIGGRAPH ’06, New York, NY, USA,
2006. ACM.

[Kodama 10] T. Kodama, T. Yamaguchi & H. Harada. A method of object
tracking based on particle filter and optical flow to avoid
degeneration problem. In SICE Annual Conference, pages
1529–1533, Aug 2010.



[Kölsch 04a] M. Kölsch & M. Turk. Fast 2D Hand Tracking with Flocks
of Features and Multi-Cue Integration. In IEEE Confer-
ence on Computer Vision and Pattern Recognition Work-
shop, pages 158–158, 2004.

[Kölsch 04b] M. Kölsch & M. Turk. Robust hand detection. In IEEE
International Conference on Automatic Face and Gesture
Recognition, pages 614–619, 2004.

[Kölsch 05] M. Kölsch & M. Turk. Flocks of Features for Track-
ing Articulated Objects. In Real-Time Vision for Human-
Computer Interaction, pages 67–83. Springer US, 2005.

[Kölsch 10] M. Kölsch. An Appearance-Based Prior for Hand Track-
ing. In Jacques Blanc-Talon, Don Bone, Wilfried Philips,
Dan Popescu & Paul Scheunders, editeurs, Advanced Con-
cepts for Intelligent Vision Systems, volume 6475 of Lec-
ture Notes in Computer Science, pages 292–303. Springer
Berlin Heidelberg, 2010.

[Kraut 03] R.. Kraut, S. Fussell & J. Siegel. Visual Information As a
Conversational Resource in Collaborative Physical Tasks.
Human-Computer Interaction, vol. 18, no. 1, pages 13–49,
June 2003.

[Kumar 09] M.P. Kumar, A. Zisserman & P. H S Torr. Efficient dis-
criminative learning of parts-based models. In IEEE Inter-
national Conference on Computer Vision, pages 552–559,
Sept 2009.

[Kwak 00] Y. Kwak & L. MacDonald. Characterisation of a desktop
LCD projector. Displays, vol. 21, no. 5, pages 179–194,
2000.

[Kyung 12] S. Kyung, B. Gi & L. Sangwon. Fatigue problems in re-
mote pointing and the use of an upper-arm support. Inter-
national Journal of Industrial Ergonomics, vol. 42, no. 3,
pages 293–303, 2012.

[LeapMotion 13] LeapMotion. Leap Motion Controller. San Francisco,
USA, 2013.

[Leibe 08] B. Leibe, A. Leonardis & B. Schiele. Robust Object De-
tection with Interleaved Categorization and Segmentation.
International journal of computer vision, vol. 77, no. 1–3,
pages 259–289, May 2008.



[Lewis 95] J. Lewis. Fast template matching. In Vision interface, vol-
ume 95, pages 15–19, 1995.

[Liang 12] H. Liang, J. Yuan & D. Thalmann. Hand pose estima-
tion by combining fingertip tracking and articulated ICP.
In ACM SIGGRAPH International Conference on Virtual-
Reality Continuum and its Applications in Industry, VR-
CAI ’12, pages 87–90, New York, NY, USA, 2012. ACM.

[Liu 12] H. Liu, W. Cui & R. Ding. Robust Hand Tracking with
Hough Forest and Multi-cue Flocks of Features. In Ad-
vances in Visual Computing, volume 7432 of Lecture Notes
in Computer Science, pages 458–467. Springer Berlin Hei-
delberg, 2012.

[Lowe 04] D. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International journal of computer vision,
vol. 60, no. 2, pages 91–110, November 2004.

[Lucas 81] B. D. Lucas & T. Kanade. An Iterative Image Registra-
tion Technique with an Application to Stereo Vision. In In-
ternational Joint Conference on Artificial Intelligence, vol-
ume 2 of IJCAI’81, pages 674–679, San Francisco, CA,
USA, 1981. Morgan Kaufmann Publishers Inc.

[Lucena 03] M.J. Lucena, J.M. Fuertes, N. P. de la Blanca & A. Garrido.
Using optical flow as evidence for probabilistic tracking.
In Scandinavian conference on Image analysis, SCIA’03,
pages 1044–1059, 2003.

[MacCormick 00] J. MacCormick & M. Isard. Partitioned Sampling, Articu-
lated Objects, and Interface-Quality Hand Tracking. In Eu-
ropean Conference on Computer Vision, ECCV ’00, pages
3–19, London, UK, 2000. Springer-Verlag.

[Matas 02] J. Matas, O. Chum, M. Urban & T. Pajdla. Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions.
In British Machine Vision Conference, pages 36.1–36.10.
BMVA Press, 2002.

[Melax 13] S. Melax, L. Keselman & S. Orsten. Dynamics based 3D
skeletal hand tracking. In ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D ’13, pages
184–184, New York, NY, USA, 2013. ACM.



[Metaxas 06] D. Metaxas, G. Tsechpenakis, Z. Li, Y. Huang & A. Kanau-
jia. Dynamically Adaptive Tracking of Gestures and Fa-
cial Expressions. In International Conference on Compu-
tational Science, ICCS’06, pages 554–561, Berlin, Heidel-
berg, 2006. Springer-Verlag.

[Microsoft 10] Microsoft. Kinect for XBox 360. Redmond WA, 2010.

[Min 01] S.-W. Min, S. Jung, J.-H. Park & B. Lee. Three-
dimensional display system based on computer-generated
integral photography. In A. J. Woods, M. T. Bolas, J. O.
Merritt & S. A. Benton, editeurs, Stereoscopic Displays
and Virtual Reality Systems VIII, volume 4297 of Society
of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series, pages 187–195, June 2001.

[Min 05] S.-W. Min, M. Hahn, J. Kim & B. Lee. Three-dimensional
electro-floating display system using an integral imaging
method. Optics Express, vol. 13, no. 12, pages 4358–4369,
June 2005.

[Mitra 07] S. Mitra & T. Acharya. Gesture Recognition: A Survey.
Transactions on Systems, Man and Cybernetics, vol. 37,
no. 3, pages 311–324, May 2007.

[Mittal 11] A. Mittal, A. Zisserman & P. Torr. Hand detection using
multiple proposals. In British Machine Vision Conference,
pages 75.1–75.11. BMVA Press, 2011.

[Mosabbeb 07] E. Mosabbeb, M. Sadeghi & M. Fathy. A New Approach
for Vehicle Detection in Congested Traffic Scenes Based on
Strong Shadow Segmentation. In International Conference
on Advances in Visual Computing, ISVC’07, pages 427–
436, Berlin, Heidelberg, 2007. Springer-Verlag.

[Neal 01] R. Neal. Annealed importance sampling. Statistics and
Computing, vol. 11, no. 2, pages 125–139, 2001.

[Newcombe 11] R. Newcombe, S. Lovegrove & A. Davison. DTAM: Dense
tracking and mapping in real-time. In IEEE International
Conference on Computer Vision, pages 2320–2327. IEEE,
2011.

[Niceron 52] J.F. Niceron. La perspective curieuse. Chez la veufue F.
Langlois, dit Chartres, 1652.



[Oikonomidis 11] L. Oikonomidis, N. Kyriazis & A. Argyros. Efficient
model-based 3D tracking of hand articulations using
Kinect. In British Machine Vision Conference, pages
101.1–101.11. BMVA Press, 2011.

[Ojala 96] T. Ojala. A comparative study of texture measures with
classification based on featured distributions. Journal of
Pattern Recognition, vol. 29, no. 1, pages 51–59, 1996.

[Ojala 02] T. Ojala, M. Pietikäinen & T. Mäenpää. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 24, no. 7, pages 971–
987, 2002.

[Ong 04] E.J. Ong & R. Bowden. A boosted classifier tree for hand
shape detection. In IEEE International Conference on Au-
tomatic Face and Gesture Recognition, pages 889–894,
2004.

[Papenberg 06] N. Papenberg, A. Bruhn, T. Brox, S. Didas & J. Weickert.
Highly accurate optic flow computation with theoretically
justified warping. Internaltional Journal of Computer Vi-
sion, vol. 67, pages 141–158, 2006.

[Pfister 12] T. Pfister, J. Charles, M. Everingham & A. Zisserman. Au-
tomatic and Efficient Long Term Arm and Hand Tracking
for Continuous Sign Language TV Broadcasts. In British
Machine Vision Conference, pages 4.1–4.11. BMVA Press,
2012.

[Pham 09] T.B. Pham, T.B. Nguyen & D. Tu. A New Approach to
Hand Tracking and Gesture Recognition by a New Fea-
ture Type and HMM. In International Conference on Fuzzy
Systems and Knowledge Discovery, volume 4, pages 3–6,
2009.

[Phung 05] S.L. Phung, A. Bouzerdoum & D. Chai. Skin segmentation
using color pixel classification: analysis and comparison.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 1, pages 148–154, 2005.

[Polyanskiy 14] M.N. Polyanskiy. Refractive index database.
http://refractiveindex.info, 2014.



[Price 72] G. Price. Extension of covariance selection mathematics.
Annals of Human Genetics, vol. 35, no. 4, pages 485–490,
1972.

[Quinlan 86] J. R. Quinlan. Induction of Decision Trees. Journal of
machine learning, vol. 1, no. 1, pages 81–106, March 1986.

[Quinlan 93] J. R. Quinlan. C4.5: programs for machine learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[Ren 07] H. Ren & S.-T. Wu. Variable-focus liquid lens. Optics
Express, vol. 15, pages 5931–5936, May 2007.

[Rizzi 02] A. Rizzi, C. Gatta & D. Marini. Color correction between
gray world and white patch. In Electronic Imaging 2002,
pages 367–375. International Society for Optics and Pho-
tonics, 2002.

[Robert 09] Y. W. Robert & P. Jovan. Real-time hand-tracking with a
color glove. ACM Transactions on graphics, vol. 28, no. 3,
pages 63:1–63:8, July 2009.

[Rosten 10] E. Rosten, R. Porter & T. Drummond. FASTER and bet-
ter: A machine learning approach to corner detection.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 32, pages 105–119, 2010.

[Rother 04] C. Rother, V. Kolmogorov & A. Blake. "GrabCut": Inter-
active Foreground Extraction Using Iterated Graph Cuts.
ACM Trans. Graph., vol. 23, no. 3, pages 309–314, August
2004.

[Saffari 09] A. Saffari, C. Leistner, J. Santner, M. Godec & H. Bischof.
On-line Random Forests. In IEEE International Conference
on Computer Vision Workshops, pages 1393–1400, Sept
2009.

[Schikora 11] M. Schikora, W. Koch & D. Cremers. Multi-object tracking
via high accuracy optical flowand finite set statistics. In
IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 1409–1412, May 2011.

[Secord 02] J. A. Secord. Quick and Magical Shaper of Science. Sci-
ence, vol. 297, no. 5587, pages 1648–1649, 2002.



[Shan 07] C. Shan, T. Tan & Y. Wei. Real-time hand tracking using
a mean shift embedded particle filter. Pattern Recognition,
vol. 40, no. 7, pages 1958–1970, July 2007.

[Sharma 02] G. Sharma. LCDs versus CRTs-color-calibration and
gamut considerations. Proceedings of the IEEE, vol. 90,
no. 4, pages 605–622, April 2002.

[Shi 94] J. Shi & C. Tomasi. Good features to track. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 593–600, 1994.

[Shotton 08] J. Shotton, M. Johnson & R. Cipolla. Semantic texton
forests for image categorization and segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2008.

[Sidharta 06] R. Sidharta, A. Hiyama, T. Tanikawa & M. Hirose. The
Development of Multi-Depth Pepper’s Ghost Display for
Mixed Reality System. In International Conference on Arti-
ficial Reality and Telexistence, pages 115–118, November
2006.

[Sidharta 07] R. Sidharta, A. Hiyama, T. Tanikawa & M. Hirose. Vol-
umetric Display for Augmented Reality. In International
Conference on Artificial Reality and Telexistence, pages
55–62, November 2007.

[Sinclair 10] D. A. Sinclair. S-hull: a fast radial sweep-hull routine for
Delaunay triangulation, July 2010.

[SoftKinetic 14] SoftKinetic. DepthSense 325. Brussels, Belgium, 2014.

[Soriano 00] M. Soriano, B. Martinkauppi, S. Huovinen & M. Laakso-
nen. Skin detection in video under changing illumination
conditions. In International Conference on Pattern Recog-
nition, volume 1, pages 839–842, 2000.

[Spruyt 10a] V. Spruyt, A. Ledda & S. Geerts. Real-time multi-
colourspace hand segmentation. In IEEE International
Conference on Image Processing, pages 3117–3120, 2010.

[Spruyt 10b] V. Spruyt, A. Ledda & W. Philips. Gesture based human-
computer interface for 3D design. In FEA PhD Sympo-
sium, Abstracts. Ghent University, Faculty of Engineering
and Architecture, 2010.



[Spruyt 12] V. Spruyt, A. Ledda & W. Philips. Real-time hand tracking
by invariant hough forest detection. In IEEE International
Conference on Image Processing, pages 149–152, 2012.

[Spruyt 13a] V. Spruyt, A. Ledda & W. Philips. Real-time, long-term
hand tracking with unsupervised initialization. In IEEE In-
ternational Conference on Image Processing, pages 3730–
3734, September 2013.

[Spruyt 13b] V. Spruyt, A. Ledda & W. Philips. Sparse optical flow reg-
ularization for real-time visual tracking. In IEEE Inter-
national Conference on Multimedia and Expo, pages 1–6,
July 2013.

[Spruyt 14] V. Spruyt, A. Ledda & W. Philips. Robust Arm and Hand
Tracking by Unsupervised Context Learning. Sensors,
vol. 14, no. 7, pages 12023–12058, 2014.

[Stefanov 05] N. Stefanov, A. Galata & R. Hubbold. Real-time Hand
Tracking With Variable-Length Markov Models of Be-
haviour. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’05, page 73, Washington, DC,
USA, 2005. IEEE Computer Society.

[Stenger 06a] B. Stenger. Template-Based hand pose recognition us-
ing multiple cues. In Asian conference on Computer Vi-
sion, ACCV’06, pages 551–560, Berlin, Heidelberg, 2006.
Springer-Verlag.

[Stenger 06b] B. Stenger, A. Thayananthan, P. H. S. Torr & R. Cipolla.
Model-based hand tracking using a hierarchical Bayesian
filter. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 9, pages 1372–1384, 2006.

[Stern 06] A. Stern & B. Javidi. Three-Dimensional Image Sensing,
Visualization, and Processing Using Integral Imaging. Pro-
ceedings of the IEEE, vol. 94, no. 3, pages 591–607, March
2006.

[Sundaram 10] N. Sundaram, T. Brox & K. Keutzer. Dense point trajecto-
ries by GPU-accelerated large displacement optical flow.
In European Conference on Computer Vision, pages 438–
451. Springer, 2010.



[Torralba 03] A. Torralba. Contextual Priming for Object Detection.
International Journa on Computer Vision, vol. 53, no. 2,
pages 169–191, July 2003.

[Van de Sande 10] K. Van de Sande, T. Gevers & C. Snoek. Evaluat-
ing Color Descriptors for Object and Scene Recognition.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 32, no. 9, pages 1582–1596, 2010.

[Van den Berghe 11a] S. Van den Berghe, M. Weyn, V. Spruyt & A. Ledda. Com-
bining wireless and visual tracking for an indoor environ-
ment. In International Conference on Indoor Positioning
and Indoor Navigation, page 4, 2011.

[Van den Berghe 11b] S. Van den Berghe, M. Weyn, V. Spruyt & A. Ledda. Fus-
ing camera and Wi-Fi sensors for opportunistic localiza-
tion. In International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, pages
169–174. 5th International Conference on Mobile Ubiq-
uitous Computing, Systems, Services and Technologies,
2011.

[van der Merwe 01] R. van der Merwe, N. Freitas, A. Doucet & E. Wan. The
Unscented Particle Filter. In Advances in Neural Informa-
tion Processing Systems, November 2001.

[Vaudrey 10] T. Vaudrey, A. Wedel, C. Chen & R. Klette. Improving
Optical Flow Using Residual and Sobel Edge Images. In
Fay Huang & Reen-Cheng Wang, editeurs, Arts and Tech-
nology, volume 30 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommuni-
cations Engineering, pages 215–222. Springer Berlin Hei-
delberg, 2010.

[Viola 04] P. Viola & M. Jones. Robust Real-time Object Detection.
International Journal of Computer Vision, vol. 57, pages
137–154, 2004.

[Wang 09] H. Wang, M. Muneeb Ullah, A. Klaser, I. Leptev &
C. Schmid. Evaluation of local spatio-temporal features
for action recognition. In British Machine Vision Confer-
ence, page 127, September 2009.

[Wedel 09] A. Wedel, T. Pock, C. Zach, H. Bischof & D. Cre-
mers. An Improved Algorithm for TV-L 1 Optical Flow.



In Daniel Cremers, Bodo Rosenhahn, AlanL. Yuille &
FrankR. Schmidt, editeurs, Statistical and Geometrical Ap-
proaches to Visual Motion Analysis, volume 5604 of Lec-
ture Notes in Computer Science, pages 23–45. Springer
Berlin Heidelberg, 2009.

[Wehenkel 91] L. Wehenkel & M. Pavella. Decision trees and transient
stability of electric power systems. Journal of Automatica,
vol. 27, no. 1, pages 115–134, January 1991.

[Weinzaepfel 13] P. Weinzaepfel, J. Revaud, Z. Harchaoui & C. Schmid.
DeepFlow: Large displacement optical flow with deep
matching. In International Conference on Computer Vi-
sion, Sydney, Australia, December 2013.

[Xu 08] L. Xu, J. Chen & J. Jia. A Segmentation Based Variational
Model for Accurate Optical Flow Estimation. In European
Conference on Computer Vision, pages 671–684. Springer,
2008.

[Xu 12] L. Xu, J. Jia & Y. Matsushita. Motion Detail Preserving
Optical Flow Estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 9, pages
1744–1757, September 2012.

[Yao 10] A. Yao, D. Uebersax, J. Gall & L. Gool. Tracking People in
Broadcast Sports. In Michael Goesele, Stefan Roth, Arjan
Kuijper, Bernt Schiele & Konrad Schindler, editeurs, Jour-
nal of Pattern Recognition, volume 6376 of Lecture Notes
in Computer Science, pages 151–161. Springer Berlin Hei-
delberg, 2010.

[Zhuoyuan 13] C. Zhuoyuan, J. Hailin, L. Zhe, S. Cohen & W. Ying.
Large Displacement Optical Flow from Nearest Neighbor
Fields. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2443–2450, June 2013.

[Zitnick 05] C.L. Zitnick, N. Jojic & B.K. Sing. Consistent segmenta-
tion for optical flow estimation. In IEEE International Con-
ference on Computer Vision, volume 2, pages 1308–1315,
October 2005.

[Zivkovic 04] Z. Zivkovic. Improved adaptive Gaussian mixture model
for background subtraction. In International Conference
on Pattern Recognition, volume 2, pages 28–31, 2004.








	Acknowledgements
	Nederlandse samenvatting
	English summary
	Introduction
	Research questions
	Relevance and Applications
	Overview and contributions
	Real-time, Unconstrained Hand Detection
	Sparse, Regularized Optical Flow
	Real-time, Robust Hand Tracking
	Tracking Through Occlusion by Context Learning
	A Transparent Floating Display

	Summary of the Scientific Output
	Outline

	Real-time, Unconstrained Hand Detection
	Introduction
	Related Work
	Materials and Methods
	Random Hough Forests: an Introduction
	Binary Decision Trees
	Bagging and Random Forests
	Random Hough Forests

	Rotation and Scale Invariant Hand Detection
	Region of Interest Detection: Defining Saliency
	Region of Interest Detection: Scale Invariance
	Region of Interest Description: Color Features
	Region of Interest Description: Texture Features
	Random Hough Forest Training
	Random Hough Forest Classification

	Three-stage Classification

	Results and Discussion
	Conclusion

	Sparse, Regularized Optical Flow
	Introduction
	Related Work
	Materials and Methods
	Feature Detection, Description and Matching
	Local Regularization

	Results and Discussion
	Conclusion

	Real-time, Robust Hand Tracking
	Introduction
	Related Work
	Materials and Methods
	Bayesian Filters: an Introduction
	State Space Definition and Partitioning
	Observation Model
	Skin Detection and Color Space Selection
	Adaptive Skin Detection
	Motion Detection and Dynamic Scenes
	Discriminative Hand Detection
	Likelihood Model

	Motion Model and Proposal Distribution
	Motion Model
	Proposal Distribution: Optical-Flow
	A Kalman Filter Embedded Proposal Distribution
	Proposal Distribution Based on Mean-shift

	The Complete Tracking System
	Hand Segmentation
	Initialization and Error Recovery


	Results and Discussion
	Conclusion

	Tracking Through Occlusion by Unsupervised Context Learning
	Introduction
	Related Work
	Materials and Methods
	Image Patch Selection Using Structural Constraints
	Robust Online Learning and Forgetting
	A Context Based Proposal Distribution for Particle Filtering
	Context Based Arm Tracking Using Partitioned Sampling

	Results and Discussion
	Conclusion

	A Transparent Floating Display
	Introduction
	Related Work
	Materials and Methods
	Floating Imaging: an Introduction
	A Transparent Floating Image Display
	A Conic 360° Display

	Results and Discussion
	Conclusion

	Overall Conclusion
	Conclusions
	Contributions
	Future Work

	Bibliography

