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ABSTRACT

Nowadays, advanced technology in remote sensing allows us
to get multi-sensor and multi-resolution data from the same
region. Fusion of these data sources for classification remains
challenging problems. We proposed a novel framework for
fusion of low spatial-resolution Thermal Infrared (TI) hyper-
spectral (HS) and high spatial-resolution RGB data. First, we
do super-resolution on TI HS data by using RGB image and
guided filter in principal component analysis (PCA) domain.
Then, we couple feature extraction and data fusion of spec-
tral features (from TI HS data) and spatial features (morpho-
logical features generated on RGB data) through supervised
fusion graph. Finally, the fused features are used by SVM
classifier to generate the final classification map. Experimen-
tal results on the classification of fusing real TI HS and RGB
images demonstrate the effectiveness of the proposed method
both visually and quantitatively.

Index Terms— Data fusion, multi-resolution, remote
sensing, hyperspectral image

1. INTRODUCTION

Recent advances in the sensors technology of remote sens-
ing (RS) have led to an increased availability of acquir-
ing multi-sensor and multi-resolution data from the same
area. In particular, hyperspectral (HS) images provide a
detailed description of the spectral signatures of ground cov-
ers but with low spatial resolution, whereas visual RGB
images with high resolution give detailed spatial informa-
tion the same surveyed area. Many techniques have been
developed for fusion of multi-sensor and multi-resolution
RS imagery [1H5]. To super-resolve the low spatial res-
olution HS/multispectral (MS) to the same spatial size of
high resolution RGB/panchromatic (PAN) image, some of
these approaches employ the so-called component substitu-
tion methods [/1] or their generalization [2]. Others model
PAN image as a linear combination of the ideal MS bands,
and restore an ideal high-resolution MS image by utilizing
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Fig. 1: Proposed framework for super-resolution and data fu-
sion of thermal Infrared hyperspectral and RGB imagery.

different regularization [3]]. Recently, Licciardi et al. [4] com-
bined non-linear PCA (NLPCA) and Indusion to enhance the
spatial resolution of the HS image by fusing a PAN image.
Their method first applied NLPCA to project the original HS
data into a lower space, then enhanced the derived nonlin-
ear PCs by the Indusion process; finally, got the high spatial
resolution HS data by inversing NLPCA. However, these ap-
proaches either suffer from spectral distortions or from high
cost on computational time to estimate a good solution.

For classification tasks, Thoonen et al. [5]] proposed com-
posite decision fusion to fuse the classification maps obtained
from both a low spatial HS image and a high spatial RGB
image using color attribute profiles. However, their method
super-resolved HS by just using simply cubic interpolation,
which will cause spatial distortions in the classification map.
Our graph-based data fusion method won the “Best Paper
Challenge” award of 2013 IEEE Data Fusion Contest, but
with unsupervised fusion graph [6]], which does not take the
class discrimination into account.

In this paper, we propose a novel framework for both
super-resolution and data fusion of a low spatial resolution
Thermal Infrared (TI) HS image and a high spatial RGB im-
age of the same scene. Fig.[T|shows our proposed framework.
We first use RGB image and guided filter [7] to do super-
resolution of TI HS image in PCA domain, and generate mor-
phological features on original RGB image. Then, we couple
dimensionality reduction and data fusion of the spectral infor-
mation (of super-resolved TI HS image) and the morpholog-



ical features (computed on RGB image) together with super-
vised graph-based fusion method. Finally, the fused features
are used by SVM classifier to generate the final classifica-
tion map. Experimental results demonstrate the proposed fu-
sion method can not only preserve the original spectral infor-
mation and spatial details from RGB image, but also couple
dimension reduction and data fusion in a supervised fusion
graph for an effective and efficient classification.

2. MORPHOLOGICAL FEATURES OF RGB IMAGE

Morphological features are generated by either applying mor-
phological openings or closings by reconstruction on the im-
age, using a structural element (SE) of predefined size. An
opening acts on bright objects compared with their surround-
ing, while closings act on dark objects. For example, an open-
ing deletes bright objects that are smaller than the SE. By in-
creasing the size of the SE and repeating the previous opera-
tion, a complete morphological profile (MP) is built, carrying
information about the size and the shape of objects in image.

In our experiments, morphological features are generated
by applying morphological openings and closings with partial
reconstruction on RGB image. The effect of using morpho-
logical features with partial reconstruction for classification
of remote sensing data from urban areas has been discussed
in our previous work [6}9]. MPs with 10 openings and clos-
ings (ranging from 1 to 10 with step size increment of 1) are
computed on RGB image with disk SE.

3. PROPOSED METHOD FOR SUPER-RESOLUTION
AND DATA FUSION

3.1. Proposed super-resolution by PCA and guided filter

One of the main challenges of fusion a low spatial HS and a
high resolution RGB to get a high spatial resolution HS, is not
easy to make a balance on spectral and spatial preservations.
Recently, the guided filter [[7] has been widely used in many
applications (e.g. edge-aware smoothing, detail enhancement
and etc.), as its efficient and strong abilities to transfer the
structures of the guidance image to the filtering output. Its
application to HS data can be found in [§].

In this paper, we propose a novel method to enhance the
spatial resolution of TI HS image by using PCA and guided
filter. Instead of component substitution which may cause
spectral distortions, we use a high resolution RGB image to
guided filter the super-resolution of low spatial resolution HS
image. By guided filtering the super-resolution process, our
method can not only preserve the spectral information from
the original HS image, but also transfer the spatial structures
of high resolution RGB image to the enhanced HS image. To
speed up the processing time, our method first uses PCA to
decorrelate the HS images and separate the information con-
tent from the noise. The first K PCA channels contain most of
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Fig. 2: Part of fused TI HS image. The top row shows RGB
image and enhanced images by cubic interpolation, PCA sub-
stitution and our proposed method; the second row shows the
original spectra from grey roof and its difference with cubic
interpolation, PCA substitution and our proposed method.

the total energy of a HS image (i.e. most information of the
HS image), and the remaining B — k PCA channels (where
B is the number of spectral bands of HSI and B > k) mainly
contain noise. If guided filtering is performed on these noisy
and high-dimensional B — k PCs, then it will amplify the
noise of the data cube and cause high computational cost in
processing the data, which is undesirable. Therefore, we use
cubic interpolation and guided filter to only enlarge the first
k PCA channels and preserve the structures of RGB image.
Let PC; denote the first ¢ (z) PC after enlarging with cubic
interpolation, the filtering output PC/ can be represented as a
linear transform of guided image I p in a local window w
of size (2r + 1) x (2r + 1) as follows:

PC;ZGjIRGB‘i‘bj,VZIGWj (D)

The above model ensures that the output PC/ has an edge
only if the guided image Ircp has an edge, as VPC' =
aVIrap. The following cost function was used to find the
coefficients a; and b;:

E(aj,b;) = Siew, (a;Irap + bj — PC;)* + ea3)  (2)

where € is a regularization parameter determining the degree
of the blurring for the guided filter. For more details about
guided filter, we refer the readers to [7]. In the cost func-
tion, the PC; = ajIrap + b; should be as close as much to
the PC;, which can make sure the preservation of the origi-
nal spectral information. We remove the noise in the remain-
ing PCA channels using a soft-thresholding scheme and en-
large their spatial sizes to the same as the RGB image only
using cubic interpolation (and without guided filter). Fig. [2]
shows the effectiveness of our proposed image fusion method
in spectral and spatial preservations.

3.2. Proposed Graph Embedding Fusion Method

Using single data source may not be sufficient for a reli-
able classification, but combining many of them can lead to



problems like the curse of dimensionality, excessive com-
putation time and so on. We proposed a graph-based data
fusion method [6] to fuse hyperspectral and LiDAR data
for classification, but with unsupervised fusion graph. In
this paper, we extend it to supervised version, which take
into account class discrimination. Let X7 = {x/S}n_
XMPs — (xMPsin o and Y = {y;}7, denote the spec-
tral features after our proposed super-resolution, MPs com-
puted on original RGB image, and the class labels (where
yi € {1,---,C}, C is the number of classes), respec-
tively. X% = {xPte}r = [XH% XMP%] denotes the
vector stacked by the spectral and spatial features.

We assume all data sources are scaled to the same ranges
before fusion. We first build a graph for each data source,
for example, the graph constructed by our super-resolved HS
Ge., GT® = (XHS7 AHS)), where A5 represents the edges
of the graph. The edge between data point x. S and Xf 5 s
here denoted as A5 € {0,1}; Al = 1if x/’5 and x/'$
are “close” and y; = y;, whereas A/15 = 0 if x/'® and x}'*
are “far apart” or y; # y;. The “close” is defined as belong-
ing to K nearest neighbors (A'NN) of the other data points.
The KNNs of the data point x/7 are its K nearest neigh-
bors in terms of spectral signatures. On the other hand, when
the graph is constructed by MPs, the K NN of the data point
xMPs are its K nearest neighbors in terms of spatial charac-
teristics. We define a fusion graph G*™* = (X5t AF“s)
where A7"* = ATS ) AMP* The operator ‘¢’ denotes

element-wise multiplication, i.e. Af‘;"s = Ags A{;f Ps,

1
Fus __
Aijug _{ 0
Sta Sta

This means that the stacked data point x;’“* and X7 are con-
nected only if they have similar both spectral and spatial char-
acteristics and they are from the same class. For more details
to obtain the fused features, we refer the readers to our recent
work reported in [|6].

ingS/\Ayps =landy; =y;
ifAijS\/AijPS =0ory; #y;

4. EXPERIMENTAL RESULTS

Experiments are done on a thermal infrared hyperspectral
data and a visual RGB image which were acquired by Telops
Inc. on May 2013 over an urban area near Thetford Mines in
Québec, Canada. The TI HS image has 84 spectral bands that
covers the wavelengths between 7.8 to 11.5 pm with approx-
imately 1-m spatial resolution. The visible RGB image is a
series of color images acquired during separate flight-lines
with approximately 20-cm spatial resolution. The whole
scene of both data contains 7 classes, but with different spa-
tial size of which the TI HS consists of 874751 pixels while
RGB of 4386x3769. Fig. [3|shows an RGB composition with
the labeled classes highlighted, for details, see [[10].

The SVM classifier with radial basis function (RBF)
kernels is applied in our experiments. We apply a grid-

Table 1: Average classification accuracies and consumed
time (hour) obtained according to the described scheme.

Cub | PCA [ GFP | MPs [ Sta [ UGF | SGF

Feat. 84 84 &4 60 144 23 18

OA (%) | 78.1 | 788 [ 91.6 | 887 | 90.6 | 932 | 96.7
AA (%) | 724 | 739 | 847 | 86.4 | 87.3 | 90.7 | 96.6
& (%) 72.8 | 73.8 | 89.5 | 87.8 | 889 | 915 | 95.9

Time (h) [ 3.87T | 2.82 | 1.17 [ 0.67 [ 6.86 | 0.61 [ 0.53

search on the two parameters C' and v of SVM using 5-
fold cross-validation to find the best C' within the given set
{1071,10°,10%,10%,10%} and the best v within the given
set {1073,1072,1071,10%, 10 }. We compare our proposed
fusion method (SGF) with the schemes of (1) Simply enlarg-
ing the original HS image by cubic interpolation (Cub); (2)
PCA component substitution method (PCA), similar as [1ff;
(3) Our proposed image fusion using guided filter in PCA
domain (GFP); (4) Using MPs computed on original RGB
image (MPs); (5) Stacking our enhanced HS image and MPs
(Sta); (6) Unsupervised graph-based fusion method (UGF) [6]
to fuse our enhanced HS image and MPs. For quantitative
comparisons, we divide all labeled samples spatially isolated
into two equal groups, one group for training set, the other
for test. Within the training set, we randomly select 1000
samples per class for training, the results are averaged over
five runs. The classification results are quantitatively evalu-
ated by measuring the Overall Accuracy (OA), the Average
Accuracy (AA) and the Kappa coefficient (k) on the test data.
The experiments were carried out on 64-b, 3.40 GHz Intel
17-4930K (1 core) CPU computer with 64 GB memory, the
consumed time includes image fusion, feature fusion and
classification. Table [I] shows the accuracies and consumed
time (hours) obtained from the experiments, Fig. [3]shows the
best result of each method.

It can be found that our proposed feature fusion method
perform better than the others fusion schemes, with more than
3% improvements in accuracies and less consumed time. It is
obvious that using single data source is not enough for reliable
classification. For example, the spatial information of classes
‘Red roof” and ’Grey roof” or 'Bare soil’ is similar, objects
from ‘Red roof” are misclassified as soil by only using MPs.
While spectral information from image fusion by the schemes
(1) and (2) suffered either spectral distortions or spatial distor-
tions. By using guided filter, the proposed SGF image fusion
method performs better on both spectral and spatial preserva-
tions, and benefits its classification accuracies with 12.5%-3%
improvements than the schemes (1), (2) and (4).

Data fusion by simply stacking different data sources
performs even worse than using single data source, but cost
more computational time on classification due to the high
dimension of stacking features. By taking the class discrim-
ination into account, the proposed supervised graph fusion
method performs better than the others, with more than 4% «
improvements over unsupervised graph-based fusion. More-
over, the number of extracted fused features are less than the
others, which benefits less consumed time in the process of
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Fig. 3: Part of classification maps obtained by each method.
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classification.

5. CONCLUSION

The contribution of this paper is a methodology to fuse a low
spatial resolution HS image and a high resolution RGB image
in the classification task. Some existing image fusion meth-
ods suffer either spectral distortions or spatial distortions. Our
proposed image fusion method can preserve both spectral and
spatial information by using RGB image and guided filter in
PCA domain. Our supervised graph-based fusion considers
the class discrimination to couple dimension reduction and
data fusion, it can make full advantage of each data sources
and reduce the computational cost for classification. Experi-
mental results on the classification of the real TI HS and RGB
images show the efficiency of the proposed method.
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