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Abstract—Recent advances in sensor design allow us to gather
more useful information about the Earth’s surface. Exam-
ples are hyperspectral (HS) and Light Detection And Ranging
(LiDAR) sensors. These, however, have limitations. HS data cannot
distinguish different objects made from similar materials and
highly suffers from cloud-shadow regions, whereas LiDAR cannot
separate distinct objects that are at the same altitude. For an
increased classification performance, fusion of HS and LiDAR data
recently attracted interest but remains challenging. In particular,
these methods suffer from a poor performance in cloud-shadow
regions because of the lack of correspondence with shadow-free
regions and insufficient training data. In this paper, we propose a
new framework to fuse HS and LiDAR data for the classification
of remote sensing scenes mixed with cloud-shadow. We process the
cloud-shadow and shadow-free regions separately, our main con-
tribution is the development of a novel method to generate reliable
training samples in the cloud-shadow regions. Classification is per-
formed separately in the shadow-free (classifier is trained by the
available training samples) and cloud-shadow regions (classifier is
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trained by our generated training samples) by integrating spectral
(i.e., original HS image), spatial (morphological features computed
on HS image) and elevation (morphological features computed on
LiDAR) features. The final classification map is obtained by fusing
the results of the shadow-free and cloud-shadow regions. Exper-
imental results on a real HS and LiDAR dataset demonstrate the
effectiveness of the proposed method, as the proposed framework
improves the overall classification accuracy with 4% for whole
scene and 10% for shadow-free regions over the other methods.

Index Terms—Classification, cloud–shadow, feature fusion, hy-
perspectral (HS) image, Light Detection And Ranging (LiDAR).

I. INTRODUCTION

R ECENT advances in sensor technology allow us to mea-
sure different aspects of the objects on the Earth’s surface,

e.g., the spectral radiance using hyperspectral (HS) images, and
height information using Light Detection And Ranging (Li-
DAR) data [1]. Nowadays, HS images of both high spatial and
spectral resolutions are available and can provide valuable spec-
tral information for land use/cover applications [2]. However,
their use is still limited in very complex scenes in which many
objects are made up of similar materials (e.g., roofs, parking
lots, and roads) [3], [4]. Moreover, optical in nature, HS sen-
sors suffer from cloudy weather conditions. On the other hand,
LiDAR image provides complementary information related to
the size, structure, and elevation of different objects [5], but
fails to discriminate between different objects that are similar
in altitude while quite different in nature (e.g., grass field and
swimming pool). Therefore, using a single data source (either
HS or LiDAR data) alone might not be sufficient to obtain reli-
able classification results.

Due to an increased availability of HS and LiDAR data from
overlapping areas, the fusion of HS and LiDAR data has re-
cently been explored intensively. In [6], Gu et al. proposed a
multiple-kernel learning model to integrate heterogeneous fea-
tures from HS and LiDAR data for urban area classification.
Elakshe et al. [7] explored the fusion of HS and LiDAR data
for coastal mapping by using HS imagery to discriminate be-
tween road and water pixels, and LiDAR image to detect and
create a vector layer of building polygons. Dalponte et al. [8]
investigated the joint use of HS and LiDAR data for the clas-
sification of complex forest areas. Yokoya et al. [9] fused HS
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Fig. 1. (a) False RGB image of HS data; (b) LiDAR image; (c) available training samples; and (d) testing samples.

and LiDAR data for landscape visual quality assessment and
enabled the prediction of landscape quality from any viewpoint
using large-scale remote sensing observations. In [10], classifi-
cation of eight common savanna tree species was performed by
fusing HS and LiDAR data with an automated random forest
modeling approach. Shimoni et al. proposed a score-level fusion
approach to detect stationary vehicles under shadows in [11],
where detection scores from both HS and LiDAR data are de-
rived separately and combined with a simple sum rule. It is clear
that the combination of HS and LiDAR data can contribute to a
more comprehensive interpretation of ground objects [6]–[13].

As the footprint of one object often contains more than one
pixel and thus a high spatial correlation is expected between
neighboring pixels, many approaches [14]–[16] incorporated
spatial information to improve the fusion process of HS and
LiDAR data and address the salt and pepper phenomenon in
classification. In [12], Pedergnana et al. applied morphological
attribute profiles (MAPs) [17] to model information from both
HS and LiDAR data, and fused multiple feature sources in a
stacked architecture. Recently, Khodadadzadeh et al. [18] de-
veloped a new strategy to fuse HS and LiDAR data by stacking
multiple types of features (spatial and spectral features from
HS, elevation features from LiDAR). The methods mentioned
above have demonstrated that combining spectral, spatial, and

elevation features further boosts the accuracy of land cover clas-
sification maps. However, stacking the high-dimensional spec-
tral and morphological features directly may lead to the curse of
dimensionality problem [19] and excessive computation time.

In 2013, the Data Fusion Technical Committee of the IEEE
Geoscience and Remote Sensing Society (GRSS) organized a
contest involving two types of data sources: a cloud-shadow HS
image and a LiDAR-derived digital surface model (DSM) [20]
(see Fig. 1). The competition was established to stimulate the
development of advanced methods to fuse HS and LiDAR data
for classification [21]. More than 900 researchers from univer-
sities, national labs, space agencies, and corporations across the
globe registered to the contest and provided solutions. In par-
ticular, a graph-based fusion method [21] and its generalized
version [22] were proposed to couple dimensionality reduction
and feature fusion of the spectral information (of the original
HS image) and MAPs (built on both HS and LiDAR data).
Debes et al. [21] proposed a two-stream classification frame-
work which combined the HS and LiDAR data by a parallel
process that involves both unsupervised and supervised clas-
sification. In very recent work, Ghamisi et al. [25] fused HS
and LiDAR data by using extinction profiles and deep convo-
lutional neural networks and achieved improved classification
results.
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Fig. 2. Radiance (at-sensor spectral radiance units: μW · cm−2 · sr−1 · nm−1 ) of different materials.

It is noteworthy that a large cloud shadow was present during
the acquisition of the HS image. As cloud shadows blur most of
the spectral information, they prevent accurate land cover map-
ping [26]. Moreover, as the clouds emerge and move irregularly
and unpredictably, it is very difficult to label training samples
and acquire remote sensing images at the same time, and to pre-
pare two distinct sets of training samples for shadow-free and
cloud-shadow regions in a remote sensing scene. Typically, most
of the pixels in the cloud-shadow regions will be misclassified
when only using training samples selected from shadow-free
regions, as the spectral radiance information of samples located
within and out of the cloud-shadow are totally different (see
Fig. 2). For example, even though all the available training sam-
ples located in shadow-free regions were used to train the clas-
sifiers discussed in [18]–[24], the classification performances of
the cloud-shadow regions were not satisfactory.

In this paper, we propose a novel framework to fuse HS and
LiDAR data for the classification of remote sensing scenes
mixed with cloud shadow. The proposed method performs
classification separately on the cloud-shadow and shadow-free
regions. We solve the problem of missing training samples in
the cloud-shadow regions by developing a method to generate
reliable training samples. This method is based on the assump-
tion that in the cloud-shadow regions different feature sources
share similar intracluster distance relations, and that elevation
features are more reliable than spectral and/or spatial features.
We then classify the shadow-free (using the available training
samples) and cloud-shadow regions (using the generated

training samples) separately by integrating spectral, spatial, and
elevation features, obtained by exploiting attribute profiles (AP)
[27]. The final classification map is produced by the decision
fusion of the obtained cloud-shadow and shadow-free maps.

We can also interpret our proposed framework from the view-
point of domain adaptation [28]. The shadow-free region can be
seen as the source domain, whereas the cloud-shadow region
can be seen as a target domain. The labeled training set is only
available for the source domain. According to the condition that
the source and target domains share the same set of classes
and elevation features (LiDAR), we make use of the informa-
tion from the source domain to select training samples for the
classification of the target domain.

The remainder of this paper is organized as follows: Section II
describes the proposed framework, with a detailed description
of every part of the proposed method. The experimental results
on real urban cloud-shadow HS and LiDAR data are presented
and discussed in Section III. Finally, the conclusions of the paper
are drawn in Section IV.

II. PROPOSED FRAMEWORK

Clouds heavily distort the Sun’s reflectance and information
analysis based on such distorted optical images is not always re-
liable. Meanwhile, collection of training data is preferably done
on the ground, and since the clouds emerge and move irregularly
and unpredictably, it is very difficult to obtain remote sensing
images and label training samples from both cloud-shadow and
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TABLE I
SOME NOTATIONS USED IN THIS PAPER

Notations Description

HS image Raw data cube: M ×N ×D , D is the number of the spectral bands
EMAPsh s i AP generated from HS image: M ×N ×D1 , D1 is the dimension of EMAPsh s i

MAPsl i d AP generated from LiDAR image: M ×N ×D2 , D2 is the dimension of MAPsl i d

n Number of labeled training samples
C Number of classes
yi Label of ith training sample

y
′
i Label of ith sample in Maplid

xs p e
i ith sample in HS image, xs p e

i ∈ RD

xs p a
i ith sample in EMAPsh s i , x

s p a
i ∈ RD 1

xSta
i ith sample in the profile by stacking HS image and EMAPsh s i , xSta

i = {xs p e
i ; xs p a

i } ∈ RD + D 1

d The number of extracted features from each data source
F spe Spectral features extracted from HS image: M ×N × d

F spa Spatial features extracted from EMAPsh s i : M ×N × d

F lid Elevation features extracted from MAPsl i d : M ×N × d

G = {gi j } Cloud-shadow mask

X
′
c (k ) Cotraining samples for class c in k th iteration

nk
c Number of samples in X

′
c (k )

m s p e
c (k ) Center of X

′
c (k −1 ) in spectral feature space, m s p e

c (k ) ∈ RD

m s p a
c (k ) Center of X

′
c (k −1 ) in spatial feature space, m s p a

c (k ) ∈ RD 1

Fig. 3. Flowchart of the proposed framework, here HSInocloud and HSIcloud
denote the shadow-free and cloud-shadow regions of HS image, EMAPhsi and
EMAPhsi mean MPs extracted from hyperspecral and LiDAR data. “Cotraining
samples” are generated training samples by our methods for cloud-shadow
regions.

shadow-free regions at the same time. Moreover, users prefer to
select training samples from shadow-free regions for better visu-
alization and interpretation. For example in Fig. 1(c), all training
samples were collected from shadow-free regions. When clas-
sifying a remote sensing scene with a classifier, trained on a
shadow-free training set only, the results on the cloud-shadow
regions will be very poor, the main reason being that objects
made up of the same material have different spectral signatures
in cloud-shadow and shadow-free regions (see Fig. 2). However,
it is important to notice that within the cloud-shadow regions,
objects made up of different materials have different spectral
signatures (see Fig. 2), indicating that these regions still contain
sufficient distinctive information. Some notations used through-
out this paper are summarized in Table I.

Therefore, we propose a novel framework for the classifi-
cation of remote sensing scenes containing cloud shadows. In
the proposed framework, as shown in Fig. 3, we first divide the
HS image into two different parts: cloud-shadow (HSIcloud ) and

shadow-free (HSInocloud ) regions. EMAPshsi and MAPslid de-
note the additional spatial and elevation information extracted
from HS and LiDAR data by AP [27], respectively. For the clas-
sification of shadow-free regions HSInocloud , we fuse multiple
features using a similar framework as in [29]. To reduce the in-
formation redundancy, we first use feature extraction (FE) tech-
niques to extract relevant information from each single feature
source. Then, we concatenate all extracted features together, and
use these as input for a classifier to obtain the classification map
of shadow-free regions Mapnocloud . In order to generate a clas-
sification map of cloud-shadow regions Mapcloud , we propose a
novel method to select new training samples from cloud-shadow
regions, which will be detailed in the following section. Using
these training samples, the same multiple feature classification
method as with the shadow-free regions is applied. Last but
not least, the final classification map of a cloud mixed remote
sensing scene is obtained by fusing Mapnocloud and Mapcloud .

A. Morphological Attribute Profiles (MoAP)

For the classification of very high-resolution remote sensing
data, spatial information has been widely exploited [30]–[33].
To model the spatial information from HS and LiDAR data, Pe-
saresi et al. [30] build so-called morphological profiles (MP). As
an extension of the concept of MP, AP [27] provide a multilevel
characterization of an image by the sequential application of
morphological attribute filters, which model different specifica-
tions of the structural information contained in the scene, such
as length, area, and shape of objects. In [31] and [32], extended
multiattribute profiles (EMAPs) were developed to extract abun-
dant spatial information in HS images and these profiles make
an obvious contribution to the classification.

AP generate a multilevel decomposition of the input image
based on attribute filters, which can properly extract and model
the spatial information of the adjacent pixels with progressively
higher threshold values. Suppose λ = {λ1 , λ2 , . . . , λn} (λi <
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Fig. 4. General architecture of EMAPs, λa i denotes the predefined conditions
of attribute ai .

λj with i < j) is a sequence of ordered predefined criteria, for
a gray scale image g, then an AP of g can be defined as

AP(g) = {φn (g), . . . , φ1(g), g, ϕ1(g), . . . , ϕn (g)} (1)

where φi and ϕi denote the attribute thinning and thickening
operations with reference values λi , respectively.

The above AP only works on a gray scale image. In order to
extend the concept of the AP to HS image, one possible way is to
perform a feature reduction approach (such as PCA) on the input
data and then apply APs to the first principle components [32].
Let PCi i = {1, . . . , c} demotes the first principle components
of HS image, then extended-AP (EAP) can be mathematically
given as

EAP = {AP(PC1),AP(PC2), . . . ,AP(PCc)}. (2)

The presented EAPs model the size and structure of different
objects based on one attribute. If more attributes (e.g., area,
diagonal of bounding box, length, and standard deviation) are
considered, EMAPs can be denoted as

EMAPshsi = {EAPa1 ,EAPa2 , . . . ,EAPam
} (3)

where ai is a generic attribute and EAP = EAP \ (PC1 ,
PC2 , . . . , PCc), deleting PCs from EAPai

, i > 1 is necessary
for avoiding redundancy since the original components PCi are
present in each EAP. Fig. 4 shows the general architecture of
EMAPshsi .

AP can also be applied to model elevation information from
LiDAR image. An attribute thinning acts on bright objects (for
LiDAR image, the bright regions are actually areas with high
elevation, such as the top of a roof), while thickening act on
dark (low height) objects. For example, an attribute thinning
deletes bright objects that are smaller than the threshold λi .
By computing a series of attributes, a complete AP is built,
carrying information about the elevation information of objects
in the image. Suppose L denotes a LiDAR image, L can be seen
as a gray scale image where the value of a pixel denotes the

altitude at that point. Then, the AP of L can be defined as

AP(L) = {φn (L), . . . , φ1(L), L, ϕ1(L), . . . , ϕn (L)}. (4)

As LiDAR-derived image has only single band, we use the
term multi-attribute profiles (MAPs) when different types of
APs are applied to the LiDAR image. Then, the MAPs from
LiDAR image (MAPslid ) can be expressed as

MAPslid = {APa1 (L),APa2 (L), . . . ,APam
(L)} (5)

where ai, i = {1, . . . , m} denotes different types of attributes.
Fig. 5 shows some of the obtained APs on the HS and Li-

DAR image. The objects of the HS image under cloud shadow
appear to be darker. Moreover, many objects (even in dif-
ferent categories) exhibit similar intensities [see Fig. 5(a)].
APs of LiDAR image are clearly less influenced by the
cloud [see Fig. 5(b)], small objects disappear as the scale in-
creases. With EMAP, additional spatial and elevation can be
extracted.

B. Multiple Features Classification

From HS and LiDAR data, three types of feature sources can
be obtained: spectral values from the original spectrum of the
HS image, EMAPshsi from the HS image, and MAPslid from the
LiDAR image, all of them having high dimensionality. If these
features would be fused using a stacked structure, the dimen-
sionality of this stacked vector will be very large, thus leading
to the problem of the curse of dimensionality. Moreover, the
stacked vector will contain redundancy and noisy. Therefore, it
is necessary to use FE methods to reduce the dimensionality of
the spectral features, the EMAPshsi and MAPslid before fusing
the extracted low-dimensional features together for classifica-
tion. Here, nonparametric weighted feature extraction (NWFE)
[34] is chosen, as it is proven to be efficient to extract discrimi-
native features for the classification of HS image [32].

Fig. 6(a) shows the proposed multiple feature classification
strategy. First, the original HS data are transformed by FE to
obtain a reduced set of effective spectral features (F spe) that
contains the spectral information of the HS data. In parallel, the
HS image is transformed by PCA, and the first few important
PCs that correspond to 99% of the cumulative variance are
used to construct the EMAPshsi . If there are c PCs, each AP is
composed of n thickening and n thinning transformations of the
corresponding PC for each attribute and the number of attributes
is m, then there are in total c× (m× (2n) + 1) features in
the EMAPs. In order to reduce redundancy and noise, avoid
the curse of dimensionality and save processing time, FE is
applied to extract an effective feature set (F spa) from EMAPshsi
before classification. On the LiDAR image, exactly the same is
done to extract an effective elevation feature set (F lid) from
the MAPslid . Finally, the obtained F spe, F spa, and F lid are
concatenated into one stacked vector F fusion.

Another strategy would be to make up a large stacked vec-
tor from the spectral features, the spatial profiles of EMAPshsi
and elevation profiles of MAPslid [18], and then extract ef-
fective features from this large stacked vector [see Fig. 6(b)].
In that case, however, since the different feature sources have
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Fig. 5. Attribute thinning with “area” attribute. From up to down, the area size was set to 200, 500, and 1000, respectively. (a) APs of HS image with first PC
and (b) APs of LiDAR image.

Fig. 6. (a) Proposed multiple feature classification. (b) Multiple feature classification proposed in [18].

different distributions, the information is not equally repre-
sented in the stacked vector, and some important features may
get lost or mixed if we project stacked features from dif-
ferent sources into a low-dimensional feature space together.
We verified experimentally that the first strategy is the more
effective one.

C. Cloud-Shadow Detection

Cloud shadow cannot be always avoided during the acquisi-
tion of optical remote sensing data. The presence of cloud and
shadow complicates the analysis of remote sensing data, lead-
ing, e.g., to false detection of land cover change [26], biased
estimation of normalized difference vegetation index values,
and mistakes in classification tasks. Therefore, the detection of
cloud shadow is an initial and important step [35]. Actually,
many approaches have been developed to detect cloud shadow,

such as geometry-based methods [36] and the Fmask algorithm
[37], [38].

Since cloud-shadow detection is not the primary goal of this
work, we will apply a simple method based on area attribute
filters [31] to detect the big cloud-shadow region, because in our
specific case study area, the area of the cloud-shadow is much
larger and darker than other ground objects. By increasing the
thresholds of the area attribute, more and more bright objects are
filtered out, leaving finally the largest dark cloud shadow region
[see Fig. 7(b)]. The cloud-shadow mask is then obtained by
binarizing the result [see Fig. 7(c)]. In fact, there is a very small
cloud-shadow region present at the top center-right of the image.
We just choose the large main cloud-shadow as an example
here, as all shadowed testing samples are located in this large
cloud-shadow region. Denote G = {gij} as the cloud-shadow
mask, with pixel values gij = 0 in the cloud-shadow region and
gij = 1 in the shadow-free region.
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Fig. 7. (a) False RGB image of HS data. (b) Area attribute thinning with area size 3000 of HS data. (c) Extracted cloud-shadow map.

D. Cotraining Samples Selection

In this section, we describe a new method to select and label
a separate training set (called cotraining samples) for the cloud-
shadow regions. Since LiDAR image are not influenced by
clouds, our proposed method uses single elevation information
(i.e., F lid, see Section II-B) to obtain an initial classification
map (Maplid). However, single elevation information from
LiDAR image is not sufficient for a reliable classification, as
many man-made objects in urban areas are of similar height.
Therefore, we combine the spectral and spatial information
from the HS image with Maplid to select new cotraining
samples from cloud-shadow regions in the following way
[see Fig. 8(a)]:

Suppose XSta = {xSta
i }ni=1 denotes the set of samples, xSta

i =
{xspe

i ;xspa
i }, Y

′
= {y ′i}ni=1 , xspe

i and xspa
i denote the spec-

tral information in the HS image and spatial information in
EMAPshsi of the i th pixel, respectively, y

′
i ∈ {1, . . . , C} de-

notes the label of pixel i in the classification map [Maplid, see
Fig. 8(a)] obtained by the LiDAR feature source.

In fact, multiple feature sources (i.e., original spectrum of HS
image, EMAPshsi from HS image, and MAPslid from LiDAR
image) can be seen as information from different aspects for
pixels. For two samples, if their information are similar from
all aspects, we assume they belong to same class and share
same labels. Let X

′
c(1) be a set of initial selected cotraining

samples which belong to class c. X
′
c(1) can be obtained from

the following criterion:

X
′
c(1) =

{
xSta

i : xspe
i ∈ knn

(
mspe

c(1)

) · · ·

∧ xspa
i ∈ knn

(
mspa

c(1)

)}
(6)

where

mspe
c(1) =

1
n0

c

n0
c∑

i=1

xspe
i , where y

′
i = c (7)

mspa
c(1) =

1
n0

c

n0
c∑

i=1

xspa
i , where y

′
i = c (8)

“∧” here means “and,” mspe
c(1) and mspa

c(1) can be seen as the ini-
tial center of class c in spectral feature space and spatial feature
space, respectively, n0

c is the number of initial selected cotrain-
ing samples in class c based on Maplid, knn(mc(1)) denotes the
set of k-nearest neighbors of mc(1) . Here k-nearest neighbors
are selected based on Euclidean distance, as Euclidean distance
is simple and widely used in k-nearest neighbors searching. In
this way, the selected cotraining samples for each class have
similar spectral, spatial and elevation information. For details
see Fig. 8(b).

However, as it is only based on a single elevation feature
source, the classification accuracies for some classes are rela-
tively low in Maplid, leading to less accurate class center. As
a result, the cotraining samples selected based on (6) are not
reliable. In order to solve this problem, we iteratively update
the class centers, similar as in a mean shift algorithm. Suppose
X
′
c(k) is a set of training samples belonging to class c, generated

in the kth iteration. This set can be obtained from the training
set at the (k − 1)th iteration through the following criterion:

X
′
c(k) =

{
xSta

i : xspe
i ∈ knn

(
mspe

c(k)

) · · ·

∧ xspa
i ∈ knn

(
mspa

c(k)

)}
(9)
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Fig. 8. (a) Cotraining samples selection; xsp e
i and xspa

i represent spectral radiance and EMAPshsi of the ith pixel; (b) xSta
i = {xsp e

i ; xspa
i }; the pixel is labeled

c in Maplid (y
′
i = c); msp e

c and mspa
c are the centers of class c in spectral and spatial feature space, here xSta

1 and xSta
3 are the nearest neighbors of the center of

class c, both in spectral and spatial feature space, and selected as candidate cotraining samples.

where

mspe
c(k) =

1

n
(k−1)
c

n
(k −1 )
c∑
i=1

xspe
i , where xSta

i ∈ X
′
c(k−1) (10)

mspa
c(k) =

1

n
(k−1)
c

n
(k −1 )
c∑
i=1

xspa
i , where xSta

i ∈ X
′
c(k−1) (11)

mspe
c(k) and mspa

c(k) denote the centers of X
′
c(k−1) in spectral fea-

ture space and spatial feature space, respectively, n
(k−1)
c is the

number of samples in X
′
c(k−1) . The iteration procedure can be

stopped by introducing two thresholds εspe and εspa . When
∣∣mspe

c(k) −mspe
c(k−1)

∣∣ < εspe ∧ ∣∣mspa
c(k) −mspa

c(k−1)

∣∣ < εspa

(12)
the centers of cotraining samples in each class are sta-
ble. We define the final cotraining samples set as: X

′
train =

{X′
1(k) ,X

′
2(k) , . . . ,X

′
c(k)}. The algorithmic procedure of the

proposed cotraining samples selection method is formally stated
in Algorithm 1.

E. Classification Map Fusion

After obtaining the new cotraining samples under cloud-
shadow regions, multiple features classification is applied in
the same way as for cloud-free regions, the only difference be-
ing the way the training samples were obtained, where in the
cloud-free regions, we use available training samples outside of
the cloud mask, while in the cloud-shadow regions, we apply
our proposed cotraining samples selection procedure. The final
classification map is obtained by the fusion of the two maps:
Mapcloud and Mapnocloud

Map = gi,j Mapcloud + gi,j Mapnocloud (13)

where gi,j is the logical inverse of gi,j .

Algorithm 1: Co-training samples selection algorithm.
1: Input: Samples under cloud shadow

XSta = {xSta
i }ni=1 , xSta

i = {xspe
i ;xspa

i }, and their
labels Y

′
= {y ′i}ni=1 in Maplid.

2: Calculate the initial spectral center of every class
mspe

c(1)(c ∈ {1, · · · , C}) via (7).
3: Calculate the initial spatial center of every class

mspa
c(1)(c ∈ {1, · · · , C}) via (8).

4: Find the common nearest neighbors X
′
c(1) via (6).

5: k = 2
6: Loop
7: Update mspe

c(k) via (10).

8: Update mspa
c(k) via (11).

9: if (|mspe
c(k) −mspe

c(k−1) | < εspe and

|mspa
c(k) −mspa

c(k−1) | < εspa) then
10: break Loop
11: end if
12: Update X

′
c(k) via (9).

13: k ← k + 1
14: End Loop
15: Output: Final selected co-training samples

X
′
train = {X′

1(k) ,X
′
2(k) , · · · ,X

′
C (k)}.

III. EXPERIMENTS

A. Data Description

In 2013, the Data Fusion Technical Committee of the IEEE
GRSS organized a contest involving two types data sources: a
cloud-shadow HS image and a LiDAR-derived DSM, both at the
same spatial resolution (2.5 m) [20]. The competition was estab-
lished to devise advanced methods for the fusion and classifica-
tion of HS and LiDAR data [21]. This dataset was captured by
the NSF-funded Center for Airborne Laser Mapping (NCALM)
using the compact airborne spectrographic imager (CASI-1500)
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TABLE II
CLASSIFICATION ACCURACIES FOR THE SHADOW-FREE REGIONS OBTAINED BY THE DIFFERENT METHODS

on June 2012 over the University of Houston campus and its
neighboring urban area. The HS image has 144 spectral bands
(D = 144) with a wavelength range from 380 to 1050 nm. The
whole scene of the data contains 349× 1905 pixels. The ground
truth provided for this dataset contains 15 classes, summed up in
Table II, also mentioning between brackets the available num-
bers of training/test samples. The false color image and LiDAR
image are shown in Fig. 1(a) and (b), the distribution of training
and test samples are shown in Fig. 1(c) and (d). The given scene
contains a large cloud-shadow region [see Fig. 1(a)], which dis-
torts the spectral radiance of objects in the HS image (darkening
effect). More information can be found in [20].

B. Experimental Setup

The input HS image is transformed by PCA, and the first two
PCs are kept since they contain almost all of the variance in the
dataset (cumulative variation of more than 99%). For the FE, we
use a supervised method: NWFE [34], as it has been shown to
be efficient in many classification applications [32]. To generate
the EMAPs, four attributes are considered:

1) “a” area λa (related the size of the objects);
2) “s” standard deviation λs (as a measure of homogeneity

of the objects);
3) “d” diagonal of the box bounding the objects λd ;
4) “i” moment of inertia λi (as a measure of the elongation

of the objects).
The values of each attribute are given as follows:
λa = [50 100 200 300 500 700 1000 1500 2000 2500 3000

4000];
λs = [5 10 15 20 25 30 35 40 50 60];
λd = [5 10 25 50 75 100 150 200 300 400 500];
λi = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1].
According to the number of selected values of each attribute,

the dimension (denoted by D1) of EMAPshsi is D1 = 134, the
dimension (denoted by D2) of MAPslid is D2 = 67.

The SVM classifier [39] with radial basis function (RBF) ker-
nels is applied, containing two parameters: the penalty factor C
and the RBF kernel widths γ. C is optimized within the given set

{10−1 , 100 , 101 , 102 , 103} and γ is optimized within the given
set {10−3 , 10−2 , 10−1 , 100 , 101} by fivefold cross validation.

We compare our proposed framework with the following
schemes:

1) using the original HS image (Rawhsi);
2) using spectral features F spe extracted from the HS image

by NWFE;
3) using spatial features F spa extracted from EMAPshsi by

NWFE;
4) using elevation features F lid extracted from MAPslid by

NWFE;
5) using stacked features (FEstacked), stacking all spectral

features, EMAPshsi and MAPslid first, similar to the ap-
proach of [18], and then extracting low-dimensional fea-
tures by NWFE, as shown in Fig. 6(b);

6) using fusion of stacked features F spe, F spa, and F lid but
only using the original training samples (F fusion); this
is the proposed approach without the cotraining samples
selection procedure.

7) using fused features from the generalized graph-based
fusion method (Fggf), the same as in the approach
of [22].

The classification results are quantitatively evaluated by mea-
suring the overall classification accuracy (OA), the average ac-
curacy (AA), Kappa coefficient (κ) on the test samples, as shown
in Fig. 1(d).

C. Effect of Number of Nearest Neighbors for Cotraining
Selection

The number of nearest neighbors of each class center (e)
is an important parameter in the cotraining samples selection
procedure. On the one hand, when e is too small, there will
be insufficient cotraining samples. On the other hand, large e
will lead to mislabeling of cotraining samples, as some samples
with different labels will be included in the nearest neighbors. To
investigate the effect of the number of nearest neighbors on the
classification accuracy, we performed classification experiments
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Fig. 9. (a) OA on the whole scene with increasing number of nearest neighbors. (b) OA on shadow area with increasing number of nearest neighbors.

TABLE III
CLASSIFICATION ACCURACIES FOR THE CLOUD-SHADOW REGIONS OBTAINED BY THE DIFFERENT METHODS

with different numbers of e. The number of nearest neighbors
was changed from 50 to 250 with a stepsize of 10. Fig. 9 shows
the OA for the whole scene and for the shadow area in the
function of an increasing number of nearest neighbors. As can
be seen, the average OA increases as the number of nearest
neighbors grows from 50 to 200, and then decreases with more
nearest neighbors. This indicates that if e is set to a small value,
the selected number of cotraining samples will be too small to
allow us to train the classifier; if e is set to a large value, the
possibility of mislabeling cotraining samples increases, leading
to poor classification performances. For this dataset, we have
set the number of nearest neighbors to 200 in our experiments.

D. Classification Results on the Dataset

This section mainly explores the efficiency of the pro-
posed method, compared with the other methods. The resulting
accuracies are reported in Tables II–IV, and the classification

maps are shown in Fig. 10 for visual comparison. The best ac-
curacy among different methods (in row) is highlighted in bold.
From the tables and figures, we conclude the following.

1) The proposed framework improves all results in terms
of the OA, the AA, the Kappa coefficient (κ), and the
quality of the classification map. On the shadow-free re-
gion, it outperforms the state of the art by 2%, in the
cloud-shadow region, the improvements are dramatic. On
the whole scene, the proposed framework improves the
OA with 3.87–20.10% over the other schemes.

2) In general, it can be observed that fusion of multi-
ple features (spectral, spatial, and elevation features)
leads to better classification performances in compari-
son with using one single type of features. This shows
that the chosen sets of features are efficient and fus-
ing them exploits the information contained in both data
sources.
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TABLE IV
CLASSIFICATION ACCURACIES FOR THE WHOLE IMAGE OBTAINED BY THE DIFFERENT METHODS

Fig. 10. Classification maps produced by the different methods. (a) F spe; (b) F spa; (c) F lid; (d) FEstacked; (e) F fusion; (f) F ggf; and (g) Proposed.
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3) When investigating the classification accuracies for each
class separately in Table IV, it can be clearly noticed that,
when single features are used, the Rawhsi approach pro-
duces better results on class “Tree,” whereas the F spa
scheme performs better on classes “water,” “Residential”
and “Road.” However, spectral or spatial features from
the HS image perform poor on classes “Commercial” and
“Railway.” On the contrary, F lid, extracted from the Li-
DAR image performs much better on these two classes.
Classification accuracies for most classes improve by
fusing those three features, especially for classes “Res-
idential,” “Road,” and “Parking Lot 2.” The generalized
graph-based fusion method (Fggf) [22] improves the clas-
sification accuracy on classes “Grass Stressed,” “Tree,”
and “Highway.” The proposed framework obtains the best
classification accuracies on 9 of the 15 classes.

4) From the results reported on the shadow-free region (see
Table II) and the whole image (see Table IV), one can
infer that fusing the features extracted from each source
(HS image, EMAPshsi , and MAPslid ) works better than
using the features extracted from the stacked vector of
the original HS image, EMAPshsi , and MAPslid , with
an improvement of almost 3%. The main reason behind
this is that, because of their different nature, when fusing
features from different sources and then projecting them
on a lower dimensional space, information gets mixed up
and lost.

5) By comparing the classification maps in Fig. 10 and
classification accuracies on the cloud-shadow region (see
Table III), we can see that most of the objects under the
cloud-shadow region are not well classified when only us-
ing the training samples located in the shadow-free region.
Some objects in the cloud-shadow region are classified
better by using features extracted from LiDAR image, be-
cause the elevation information contained in the morpho-
logical features of LiDAR image is not influenced by the
cloud. But for many other objects, the results are not good
as the elevation information is not sufficiently discrimina-
tive. Taking all feature sources into consideration does not
much improve the classification accuracy for most of the
classes. The proposed framework leads to an improved
classification of most classes due to the selection and use
of specific training samples in the cloud-shadow region.

Moreover, as the described dataset [20] is very popular and
open access, it has been used in many recently state of the
arts, such as in [18] and [22]–[24]. Compared with the ex-
perimental results from these references, the proposed scheme
performs better on either cloud-shadow or shadow-free regions,
with overall classification accuracy 97.91% and 81.15%, respec-
tively. Thus proves the proposed fused features are effective and
distinguishable, and selecting new training samples from the
cloud-shadow regions is an efficient solution.

IV. CONCLUSION

In this paper, we developed a new method for the classifica-
tion of cloud mixed remote sensing scenes by the fusion of HS

and LiDAR data. The proposed method selects new samples as
cotraining samples in the cloud-shadow regions and classifies
shadow-free and cloud-shadow regions separately using their
own sets of training samples. In order to better combine HS
and LiDAR data, additional spatial and elevation features are
extracted from HS and LiDAR data, and effectively integrated
without any regularization or weight parameters. Experimental
results on the classification of the real cloud-shadow HS and
LiDAR data show the efficiency of the proposed framework. In
addition, the proposed approach can be thought of as a general
framework, in which the FE step can be replaced by any other
technique (kernel PCA, supervised or semisupervised FE, ...),
possibly to improve classification accuracies. Moreover, the pro-
posed framework is completely open and flexible in its capacity
to integrate more features.

Recent Earth observation missions (Landsat series from
NASA, Sentinel series from ESA) boost the use of the mul-
tisensor remote sensing imagery. However, cloud/shadow ef-
fects cannot be avoided in the optical sensors. Other sensors
(e.g., synthetic aperture radar, thermal infrared, LiDAR, etc.)
can provide complementary information for these cloud/shadow
regions. The proposed framework is applicable for the fusion
of optical HS images and other images (e.g., SAR, thermal in-
frared), where multisensor images are available. On the other
hand, deshadowing is typically used as a preprocessing step be-
fore applications. Fusion of multisensor data for deshadowing
(e.g., HS image restoration) will be our future work.
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