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Abstract—Extended attribute profiles (EAPs) have been widely
used for the classification of high-resolution hyperspectral im-
ages. EAPs are obtained by computing a sequence of attribute
operators. Attribute filters (AFs) are connected operators, so they
can modify an image by only merging its flat zones. These filters
are effective when dealing with very high resolution images since
they preserve the geometrical characteristics of the regions that
are not removed from the image. However, AFs, being connected
filters, suffer the problem of “leakage” (i.e., regions related to
different structures in the image that happen to be connected
by spurious links will be considered as a single object). Objects
expected to disappear at a certain threshold remain present when
they are connected with other objects in the image. The attributes
of small objects will be mixed with their larger connected objects.
In this paper, we propose a novel framework for morphological
AFs with partial reconstruction and extend it to the classification
of high-resolution hyperspectral images. The ultimate goal of the
proposed framework is to be able to extract spatial features which
better model the attributes of different objects in the remote
sensed imagery, which enables better performances on classifica-
tion. An important characteristic of the presented approach is that
it is very robust to the ranges of rescaled principal components,
as well as the selection of attribute values. Our experimental re-
sults, conducted using a variety of hyperspectral images, indicate
that the proposed framework for AFs with partial reconstruction
provides state-of-the-art classification results. Compared to the
methods using only single EAP and stacking all EAPs computed
by existing attribute opening and closing together, the proposed
framework benefits significant improvements in overall classifica-
tion accuracy.

Index Terms—Attribute profiles (APs), classification, high spa-
tial resolution, hyperspectral data, partial reconstruction.

I. INTRODUCTION

R ECENT advances in sensor technology have led to an
increased availability of hyperspectral data at very high

spatial resolution (VHR). The exploitation of spatial informa-
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tion (e.g., contextual relations and geometrical and structural
features) plays a fundamental role in the classification of re-
mote sensing data. A possible approach to incorporate the
spatial information is the use of mathematical morphology [1].
Pesaresi and Benediktsson [1] built a morphological profile
(MP) of an image by applying a sequence of opening and clos-
ing by reconstruction operators [3], using a structural element
(SE) of predefined and increasing sizes. The approach in [2]
extended the method in [1] for hyperspectral data with high
spatial resolution. The resulting method built the MPs on the
first principal components (PCs) extracted from a hyperspectral
image, leading to the definition of extended MP (EMP). The ap-
proach in [4] performs spectral-based morphology using the full
hyperspectral image without dimensionality reduction. In [5],
kernel PCs are used to construct the EMP, with significant im-
provement in terms of classification accuracies compared with
the conventional EMP built on PCs. Bellens et al. [8] proposed
two MPs using both disk-shaped and linear structuring elements
(SEs) to model both the width and the length of the objects
in the very high resolution panchromatic urban imagery. Their
method extracted the smallest size of objects by constructing
MP with disk-shaped SEs and the maximum size of objects by
directional profiles.

While appealing due to their efficiency to extract spatial
information from VHR remote sensed imagery, the MPs have
some limitations on modeling other geometrical features (e.g.,
textures, etc.), as well as the strong constraint of the SEs to
model the concepts of different characteristics of the spatial
information (e.g., size, shape, homogeneity, etc.). Recently,
Dalla Mura et al. [9] proposed morphological attribute pro-
files (APs) to reduce the limitations of the MPs. The APs are
obtained by applying a sequence of attribute filters (AFs) to a
gray-level image [9]. AFs are operators defined in the mathe-
matical morphology framework which operate by merging con-
nected components at different levels in the image according
to some measure computed on the components (i.e., attributes)
[3]. The APs can be used to extract features that are related
not only to the scale of the regions in the image but also to
any measures (e.g., geometrical, textural, and spectral) that can
be computed on the regions. In [10], the APs [9] were applied
to the first PCs extracted from a hyperspectral image, gener-
ating an extended AP (EAP). The approach in [11] improved
the classification results by constructing the EAP with the inde-
pendent component analysis. Pedergnana et al. [12] fused mor-
phological APs [10] computed on both hyperspectral (HS) and
LiDAR data for a classification task. Pedergnana et al. [13] pro-
posed a novel iterative technique based on genetic algorithms
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to automatically optimize the selection of the optimal fea-
tures from the APs. Ghamisi et al. [14] presented an auto-
matic spectral–spatial classification framework for an HS image
based on morphological APs and supervised feature extraction.
The approach in [15] exploited sparse representations of mor-
phological APs for HS image classification. Li et al. [16] de-
veloped a new framework for the classification of hyperspectral
scenes combining multiple features, where EAPs were applied
to model the spatial information of HS images.

However, being connected filters, AFs [18], [30] together
with operators based on geodesic reconstruction [3], suffer the
problem of “leakage” [19] (i.e., regions related to different
semantic objects in the image that happen to be connected by
spurious links will be considered as a single region), which
was also referred to as “overreconstruction” problems in [8].
This phenomenon might lead to some unexpected results for
remote sensed images. For example, objects which are expected
to disappear at a certain scale remain present when using
connected filters (e.g., AFs [9] and geodesic reconstruction [3]).
The attributes of connected objects (e.g., buildings and roads
and roads and parking lots are connected) in an image will be
mixed together. For example, the pixels from a small building
will not be characterized by the attribute (e.g., area) of the
building itself but by the area of the largest connected object
(possibly a highway). The situation will be even worse if the
image is quantized on a small range of values, where many
objects are connected, or for noisy images (regardless the quan-
tization) since the noise component might make two adjacent
nonconnected regions connected. Clearly, this might lead to
poor classification performances. The leakage problem was
also contrasted in mask-based second-generation connectivity
and the AFs [18], [20], in which different connectivities were
considered.

To overcome the limitation of overreconstruction in geodesic
reconstruction [3], the approach in [8] proposed a partial re-
construction for morphological opening and closing and better
modeled the shape and size of objects in an image. The effective
performances of using morphological openings and closings by
partial reconstruction to extract spatial information for classifi-
cation can be found in our recent work [22]–[25].

In this paper, we propose a novel framework for morpholog-
ical AFs with partial reconstruction and extend it to the clas-
sification of high-resolution hyperspectral images. The main
characteristic of the proposed approach is that it can separate
connected objects, thus better modeling the spatial information
of objects in an image. It should be noted that the proposed
approach is also very robust to quantization levels since, if
the input images happen to be quantized on a small range of
values, many objects will be connected, leading to poor perfor-
mances in the analysis. Last but not least, the APs generated
by using our proposed approach contain less redundant in-
formation because connected objects will disappear according
to their scales. This makes our proposed method more robust
on selecting values for different attributes and enables better
performances when stacking all single attributes together.

The organization of this paper is as follows. Section II gives
a brief review of the morphological opening and closing with
partial reconstruction. Section III introduces morphological

APs and its extension to hyperspectral images. In Section IV,
we detailed our proposed framework for morphological AFs
with partial reconstruction and its extension to hyperspectral
images. The experimental results on real hyperspectral images
are presented and discussed in Section V. Finally, the conclu-
sions of this paper are drawn in Section VI.

II. MORPHOLOGICAL OPENING AND CLOSING

WITH PARTIAL RECONSTRUCTION

Morphological operators act on the values of the pixels
according to transformations that consider the neighborhood
(with a given size and shape) of the pixels. The basic operators
are dilation and erosion [3]. These operators are applied to
an image with a set of known shapes, called the structuring
elements. In the case of erosion, a pixel takes the minimum
value of all the pixels in its neighborhood, defined by the SE.
By contrast, dilation takes the maximum value of all the pixels
in its neighborhood. Dilation and erosion are usually employed
in pairs, either the dilation of an image followed by the erosion
of the dilated result or the erosion of an image followed by the
dilation of the eroded result. These combinations are known as
opening and closing. An opening acts on bright objects com-
pared with their surrounding, while closings act on dark objects.
For example, an opening deletes (this means that the pixels in
the object take on the value of their surrounding) bright objects
that are smaller than the SE. By increasing the size of the SE,
more and more objects are removed. We will use the term scale
of an opening or closing to refer to this size. A vector containing
the pixel values in openings and closings by the reconstruction
of different scales is called the MP. The MPs carry information
about the size and shape of the objects in the image.

Aside from deleting objects smaller than the SE, morpholog-
ical openings and closings also deform the objects which are
still present in the image [see Figs. 1(a) and 2(a)]; the corners
of rectangular objects in Fig. 1(a) (square objects) are rounded.
To preserve the shapes of objects, morphological openings and
closings by reconstruction (i.e., geodesic reconstruction [6], [7])
are generally the tool of choice [27], [28]. The geodesic dilation
(of size 1) of the grayscale marker image f and the mask image
g is defined as

δ1g(f) = δ1(f) ∧ g (1)

where δ1 is the elementary dilation [6] with SE of elementary
size and ∧ is the pointwise minimum. To perform the recon-
struction by dilation Rg(f) of f from g, we use the operator
iteratively until stability (i.e., until no further change occurs)

Rg(f) = lim
n→∞

δng (f) = δ1gδ
1
g , . . . , δ

1
g(f)︸ ︷︷ ︸

until stability

. (2)

An opening by reconstruction γ of an image f can be
obtained by first performing a regular opening σ on the image
f and using the result of this opening as the marker image and
the original image as the mask for the reconstruction process

γ = Rf (σ(f)) . (3)
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Fig. 1. Openings with disk-shaped SEs of increasing size on a synthetic image
[the original image is in Fig. 3(a)]. The scales of SEs vary from 2 to 6, with
steps of 2. (a) Without reconstruction. (b) Geodesic reconstruction. (c) Partial
reconstruction.

Closing by reconstruction φ can be defined by duality (i.e.,
first invert the image, then perform the opening by reconstruc-
tion, and finally invert the result). We can see the results in
Figs. 1(b) and 2(b); the shapes of the objects are well preserved,
and some small objects disappear as the scale (here, the scale
is related to the size of the SE) increases. However, an MP
with reconstruction will lead to some undesirable effects (such
as overreconstruction), and a lot of objects that disappeared in
the MP without reconstruction remain present in the MP with
reconstruction. Objects which are expected to disappear in the
image at a low scale are still present at the highest scales, as
shown in Fig. 1(b) (road connected with the square object on
the bottom) and Fig. 2(b) (small bright road on the right).

In the geodesic reconstruction process, a pixel is recon-
structed if it is connected to another pixel that was not deleted
after the opening or closing. Equivalently, we can say that a
pixel is reconstructed if the geodesic distance d in the mask g
of that pixel is less than infinite to at least one of the pixels in
the marker image f [6], [7]. The approach in [8] proposed a
novel partial reconstruction, in which a pixel is reconstructed
if the geodesic distance is smaller than d < ∞. Opening with
partial reconstruction γ [8] is defined as follows:

γ = δdf (σ(f)) . (4)

The partial reconstruction is actually the same as a geodesic
dilation [6], [7] of size d. The easiest and fastest way to
implement this is by doing d successive elementary geodesic
dilations. This is a dilation with an elementary SE followed
by an intersection with the mask. In grayscale morphology, the
intersection of two images is the minimum of the two grey-scale

values for each pixel. For rectangular objects with disk-shaped
structuring elements, the geodesic distance d between a corner
and the closest not deleted pixel equals (

√
2− 1) ∗R, with

R being the radius of the structuring element. Consequently,
partial reconstruction with d > (

√
2− 1) ∗R completely re-

constructs the corners of rectangular objects. For more details
on morphological filters with partial reconstruction, we refer
the reader to [8].

This way, the partial reconstruction [8] solved the problem
of overreconstruction while preserving the shape of objects
as much as possible and made a great improvement in the
classification of remote sensing imagery [22]–[25]. As shown
in Figs. 1(c) and 2(c), the shapes of objects are better pre-
served with partial reconstruction compared to the MP without
reconstruction. However, some of the more complex shapes are
not so well preserved as with geodesic reconstruction. On the
other hand, many small objects which remain present in the MP
with reconstruction now disappear in the case of partial recon-
struction. Basically, this is because, in remote sensing (urban)
scenes, different objects lie closely together, and because of
noise and other effects, different objects are often connected
by a sequence of pixels with similar (or more extreme) pixel
values. Therefore, reconstruction considers all those connected
objects as a single object, and objects will only disappear
when the SE does not fit the broadest part of the connected
object, even though this part might be far away from the actual
object. Partial reconstruction only reconstructs the immediate
surrounding of the surviving part. For more details on MP with
partial reconstruction and directional MP, the readers should
consult [8]. The edges of simple objects are reconstructed well,
but a full retrieval of complex elongated shapes might not
be obtained. For simple objects like rectangles for example,
the reconstruction is complete. Since, in urban remote sensing
scenes, most objects are not very complex and even rectangular
shaped, partial reconstruction is very well suited.

III. MORPHOLOGICAL APS

In this section, we will briefly review the concept of APs
[9] and its extension to hyperspectral images, leading to the
definition of EAP [10], [11]. APs are obtained by applying a se-
quence of morphological AFs to a gray-level image [9]. AFs are
connected operators defined in the mathematical morphology
framework which process an image by merging its connected
components at different gray levels. AFs process connected
components by evaluating how an attribute A compares to a
given reference value λ in a binary predicate P (e.g., P :=
A(Ci) > λ, with Ci being the ith connected component of the
upper or lower level sets of an image). If P holds true, then
the region is kept unaltered; otherwise, it can be set to the
grayscale value of the adjacent region with the closest gray
level, thereby merging the connected components. When the
region is merged to the adjacent region of a lower (greater)
gray level, the operation performed is a thinning (thicken-
ing). When the criterion (e.g., area and volume associated
to increasing attributes) is increasing, the attribute thinning
and thickening transformations are also increasing, leading to
attribute opening and attribute closing [29], respectively. For
the nonincreasing criterion, we recall that different outputs of
the filter are obtained according to the filtering rules that one
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Fig. 2. Openings with disk-shaped SEs of increasing size. The scales of SEs vary from 2 to 8, with steps of 2. The image processed is part of the first PC extracted
from University Area [see the original PC in Fig. 8(a)]. (a) Without reconstruction. (b) Geodesic reconstruction. (c) Partial reconstruction.

selects [30] because, if P holds true for a connected component,
it will be merged to a darker or brighter surrounding region
according to the transformation. Given a sequence of ordered
criteria λ = {λ1, λ2, . . . , λn} (i.e., λi <= λj , with i < j), an
AP is obtained by applying a sequence of attribute thinning and
thickening operations to the grayscale image f

AP(f) = {ϕn(f), . . . , ϕ1(f), f, ρ1(f), . . . , ρn(f)} (5)

where ϕi and ρi denote the attribute thinning and thickening
transformations with reference values λi, respectively.

EAPs [7] are an extension of APs for the analysis of hyper-
spectral images. Feature reduction techniques are first applied
to decorrelate the hyperspectral image and extract the first
m features (Fi). An EAP is obtained then by concatenating
different APs computed on these m features

EAP = {AP(F1),AP(F2), . . . ,AP(Fm)} . (6)

When them EAPs obtained using different types of attributes
(i.e., {A1, A2, . . . , Ak}) are stacked together, the resulting
profile was defined as extended multiattribute profile (MAP)
(EMAP) [28]

EMAP =
{

EAPA1
,EAP′

A2
, . . . ,EAP′

Ak

}
(7)

where Ai is the ith generic attribute and EAP′ =
EAP/{F1, . . . , Fm}.

We recall here that, as connected operators, attribute thinning
and thickening [9] operations suffer the same leakage effect.
Some objects that one would expect to disappear at certain val-
ues of lambda, however, remain present after attribute filtering
[see Figs. 3, 4(a), and 5(a)]. The attributes of some objects
are mixed with their connected objects. This means that, in an
EAP, the pixels from a small building will not be characterized
by the attribute (e.g., area) of the building but by the area of
the largest connected object (possibly a highway). Clearly, this
might affect the classification performance.

IV. PROPOSED MORPHOLOGICAL APS

WITH PARTIAL RECONSTRUCTION

This section details the proposed morphological AFs with
partial reconstruction,1 and its extension to hyperspectral
images. Fig. 6 shows our proposed framework for morpho-
logical AFs with partial reconstruction. Our approach first
uses morphological filters with partial reconstruction [8] to
separate connected objects (e.g., road and parking lots) of a
binary image (i.e., at one gray level) into two disjoint parts.
We define two binary images to include each part of the

1A MATLAB application that implements the proposed morphological AFs
with partial reconstruction is available on request.
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Fig. 3. Example of some connected objects and their attributes in an image. (a) Input image. (b) Connected objects with same gray level (P1) and different gray
level (P2), and their divisions in (c) and (d).

Fig. 4. Attribute thinning with “area” attribute. From left to right, the size of area was set to 200, 350, 450, 600, and 800. (a) Original attribute. (b) Proposed
attribute.

Fig. 5. Attribute thinning with “MI” attribute. From left to right, the value of MI was set to 0.15, 0.17, 0.2, 0.3, and 0.8. (a) Original attribute. (b) Proposed
attribute.

separated objects. Then, we apply AFs to these two binary
images. Finally, we integrate all the residuals of the filtered
images and get the final output image by repeating this for all
gray levels.

Suppose that fi is the binary in gray level i [note: for
opening, fi refers to the upper level set (fi = f > i), while for
closing, fi is the lower level set (fi = f ≤ i)]. A connected
object Pk (kth connected component) in fi can be separated
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Fig. 6. Proposed framework for attribute thinning with partial reconstruction. Note: For opening, fi refers to upper level set (fi = f > i), while for closing, fi
is lower level set (fi = f ≤ i).

into two different adjacent and nonoverlapping parts Pk1 and
Pk2 which satisfy

Pk = Pk1 ∪Pk2 Pk1 ∩Pk2 = ∅. (8)

A binary image fi can be partitioned in its connected
components (here, we refer to the foreground) P1,P2, . . .,
such that fi is the union of all Pk and each Pk is a con-
nected component, with Pk ∩Pl = ∅ if k �= l. Let γj and

φ
j

denote morphological opening and closing operators by
partial reconstruction using the structuring element of size j.
For opening, we first apply morphological opening with partial
reconstruction in the binary image fi (at gray level i). As the
size of the SE j increases, more and more small bright objects
will “disappear.” We define a binary image fo

i1 as the filtering
out at scale j, which contains one part of the connected objects
Pk1 in fi as

fo
i1 = γj(fi). (9)

The image which includes all “disappeared” objects of fi,
i.e., the other parts of the connected objects Pk2 of fi, can be
obtained by

fo
i2 = fi − fo

i1. (10)

Then, the two images f c
i1 and f c

i2 which contain the two
disjoint parts of objects in closing can similarly be defined as

f c
i1 =φ

j
(fi) (11)

f c
i2 = fi − f c

i1. (12)

In an opening, for gray level i, we apply the binary attribute
opening [29] on both binary images of fo

i1 and fo
i2 and suppose

that fo
i1 and fo

i2 are their corresponding filtered-out results. We
integrate the survived objects in both fo

i1 and fo
i2 into one image

(fo
i ) which can be formalized as

fo
i = fo

i1 + fo
i2. (13)

When repeating the binary attribute opening to the binary
images fo

i1 and fo
i2 at each gray level, we define our proposed

grayscale attribute thinning with partial reconstruction by the
maximum gray level of the results of the filtering for each
pixel x as

ρλ(f)(x) = max
{
i : x ∈ fo

i

}
(14)

where λ = {λ1, λ2, . . . , λn} is a sequence of ordered criteria,
same as defined in [9]. We can straightforwardly extend the
definition of thinning to thickening, leading to our proposed
grayscale attribute thickening with partial reconstruction

ϕλ(f)(x) = min
{
i : x ∈ f c

i

}
(15)

where f c
i = f c

i1 + f c
i2, f c

i1, and f c
i2 are the filtered-out images

of f c
i1 and f c

i2 by using the binary attribute closing.
By applying a sequence of attribute thinning and thickening

with partial reconstruction to the grayscale image f , we obtain
an AP with partial reconstruction (AP)

AP(f) = {ϕn(f), . . . , ϕ1(f), f, ρ1(f), . . . , ρn(f)} (16)

where ϕi and ρi denote the proposed attribute thinning and
thickening with criterion λi, respectively.

In the original attribute thinning and thickening [9], the
connected objects will survive or disappear together. As a
result, different objects are considered as a single object if,
in the original image, they are connected. In typical remote
sensing scenes, many objects are arranged in a complex manner
(similarly as simulated in Fig. 3): Roads are connected to a lot
of other objects, such as parking lots (with the same gray level)
and buildings (with a different gray level), etc. These individual
but connected objects are often seen as a single object by the
original attribute thinning and thickening [9]. For example,
objects P11 and P21 in Fig. 3 are expected to disappear in the
image when the sizes of the area attribute are set to 350 and 450,
respectively; see Fig. 4(a). However, they remain present even
when the area size is set to 800 in the original attribute thinning
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and thickening [9]. While these two objects are assumed to
remain with moment of inertia (MI) [9] attributes of 0.3 and
0.8, they, however, even disappear at 0.2 and 0.3, respectively,
in Fig. 5(a). This means that, in an AP, the pixels from road will
not be characterized by the attributes (e.g., area, MI, etc.) of the
road but by the attributes of the whole connected object (and
these connected objects belong to different classes). Clearly,
this will lead to poor classification performances.

The proposed attribute thinning and thickening with partial
reconstruction better model the spatial information of an image.
The connected objects are separated and merged to a darker
(opening) or brighter (closing) surrounding region according to
their real attributes. By using the proposed attribute thinning
and thickening with partial reconstruction, we can see objects
disappear according to their real area size in Figs. 4(b) and 5(b).
The algorithmic procedure of the proposed attribute thinning
and thickening with partial reconstruction is formally stated in
Algorithm 1.

Algorithm 1 Proposed AFs with partial reconstruction

1: Separate connected objects in the binary image fi of gray
level i into two disjoint parts by using morphological
filters with partial reconstruction [8]. Note: For open-
ing, fi refers to upper level set (fi = f > i), while for
closing, fi is lower level set (fi = f ≤ i). Define two
binary images fo

i1 and fo
i2 as (9) and (10) to include the

corresponding parts of separated objects in an opening
with partial reconstruction and f c

i1 and f c
i2 as defined by

(11) and (12) for a closing with partial reconstruction;
2: Apply a binary AF independently to the two binary

images fo
i1 and fo

i2 (f c
i1 and f c

i2 for binary attribute
closing) containing different parts of connected objects,
and get their corresponding filtered-out fo

i1 and fo
i2 (f c

i1

and f c
i2 for binary attribute closing);

3: Integrate the survived objects in both fo
i1 and fo

i2 (f c
i1 and

f c
i2 for binary attribute closing) into one image fo

i (f c
i for

binary attribute closing), the same as we defined in (13);
4: Repeat 1), 2) and 3) to all gray levels, and get the results

of the proposed attribute thinning and thickening with
partial reconstruction by (14) and (15).

A. Extended to Hyperspectral Imagery

An AP consists of the opening profile (OP) and the closing
profile (CP). For the panchromatic image, AP is built on the
original single band image directly. The OP with p scales of an
attribute λi (e.g., area) at pixel x forms an n× p-dimensional
vector, and so does the CP. Given a sequence of ordered criteria
λ = {λ1, λ2, . . . , λn} [suppose that the filter parameter λi of
each attribute has the same scale (e.g., p scales)], a MAP can be
obtained by simply concatenating all APs in a single vector of
features, with a dimensionality of (2np+ 1).

When applying MAPs to the hyperspectral data, feature ex-
traction is used as a preprocessing to reduce the dimensionality
of the high-dimensional original data as well as reduce the
redundancy within the bands. Then, the selected features are
transferred into the grayscale image by rescaling their intensi-
ties into defined ranges because the AF works on a grayscale

Fig. 7. Extended morphological APs with partial reconstruction for hyperspec-
tral image.

image. An EMAP is constructed on these rescaled features.
EMAP built on different features has been discussed in several
studies [9], [10], [12]–[16].

Motivated by the construction of EMAP, we construct an
EMAP with partial reconstruction (EMAPPR). The resulting
method applies the proposed attribute thinning and thickening
operations with partial reconstruction to construct a MAP on
each rescaled feature independently. An EMAPPR is formed as
a stacked vector which is constructed from all the MAPs with
partial reconstruction. Supposing that m features are extracted
from the original hyperspectral data to construct the EMAPPR,
then the EMAPPR of pixel x is a m(2np+ 1)-dimensional
vector. Fig. 7 shows our framework to build EMAPPR on
hyperspectral data.

When rescaling the selected features to the grayscale image,
it is not easy to determine a good range of rescaled features. For
high ranges, it will increase the computational time. For lower
ranges, although with reduced processing time, we smooth the
rescaled features, which will lead to unexpected effects (e.g.,
many objects will be connected). These connected objects are
often treated as a single object by original attribute thinning and
thickening, which consequently leads to a reduced classification
performance. Figs. 8 and 9 show examples on feature with
different rescaled ranges by using the original attribute thinning
and the proposed attribute thinning with partial reconstruction.
We can see that many small objects which should disappear
at a certain scale of area attribute still remain even at a very
high scale when using the original attribute thinning. This is
even much worse when the selected features were rescaled to
a lower range (e.g., [0, 10] in Fig. 8). This is because more
objects are connected as the ranges of the rescaled features are
set lower. Then, the attributes of all connected objects are mixed
together, and these connected objects will remain or disappear
together. In these cases, the original attribute thinning and thick-
ening cannot well model the spatial information of objects in
an image.

For another, the EMAP generated by using the original at-
tribute thinning and thickening contains redundant information
because the connected objects will survive in many scales. To
test this assumption, the normalized mutual information (NMI)
between each AP has been computed (see Fig. 10)

NMI(f, g) =
MI(f, g)√

MI(f, f)
√

MI(g, g)
(17)

where the mutual information MI(f, g) =
∑

x∈f
∑

y∈g p(x, y)

log(p(x, y)/p(x)p(y)), p(x, y) is the joint probability distribu-
tion function of f and g, and p(x) and p(y) are the marginal
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Fig. 8. Examples of “area” attribute profile computed with the first PC rescaled into range [0, 10]. The scales of area are in 500, 1000, and 5000. (a) First PC of
HS image. (e) PC rescaled into range [0, 10]. (b), (c), and (d) are the AP computed by original attribute thinning. (f), (g), and (h) are the AP computed by using
our proposed attribute thinning with partial reconstruction.

probability distribution functions of f and g, respectively. We
apply NMI to test the independence between two variables
and measure the information that the two variables share. An
NMI close to 0 indicates independence, while a high NMI
indicates dependence and, consequently, feature redundancy.
From Fig. 10, APs generated by the proposed attribute thinning
and thickening contain less redundant information than those
generated by the original attribute thinning and thickening
since they correspond to a lower NMI. However, some algo-
rithms were developed to automatically select the threshold for
morphological APs [26]. Recently, some artificial intelligence
algorithms were used for optimal feature selection in APs [13].
However, this will increase the processing time.

The proposed attribute thinning and thickening with partial
reconstruction treat the connected objects well and better model
the spatial information of VHR remote sensed imagery. The
connected objects are separated and merged to a darker (thin-
ning) or brighter (thickening) surrounding region according to
their real attributes. By using the proposed attribute thinning
and thickening with partial reconstruction, we can see objects
disappear according to their real area size in Figs. 8 and 9.

Moreover, the EMAPPR generated by our proposed attribute
thinning and thickening with partial reconstruction contains
less redundant information. The algorithmic procedure which
uses the proposed attribute thinning and thickening with partial
reconstruction to build EMAPPR on an HS image for classifi-
cation is formally stated in Algorithm 2.

Algorithm 2 EMAP constructed by the proposed AFs with
partial reconstruction (EMAPPR)

1: Use feature extraction methods (e.g., PCA) to extract the
most m significant features from the original hyperspec-
tral data;

2: Transfer these m features into grayscale images with
their intensities rescaled in a defined range;

3: Build the MAPs on each rescaled feature by using the
proposed attribute thinning and thickening with partial
reconstruction. Then, an EMAPPR is obtained by simply
concatenating all MAPs;

4: Use the EMAPPR as an input to do classification.
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Fig. 9. Examples of “area” attribute profile computed with the first PC rescaled into range [0, 1000]. The scales of area are in 500, 1000, and 5000. (a) First PC
of HS image. (e) PC rescaled into range [0, 1000]. (b), (c), and (d) are the AP computed by original attribute thinning. (f), (g), and (h) are the AP computed by
using our proposed attribute thinning with partial reconstruction.

Fig. 10. Mutual information matrices for the APs of University Area computed on the first PC rescaled into range [0, 10]. (a) Original APs. (b) Proposed APs
with partial reconstruction.

V. EXPERIMENTAL RESULTS

A. Hyperspectral Image Data Sets

Experiments were run on three data sets, namely, the “Pavia
Center,” “Pavia University,” and “Houston University.” The
first two data sets are from urban areas in the city of Pavia,

Italy. The data were collected by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor, with 115 spectral bands
in the wavelength range from 0.43 to 0.86 μm and a very fine
spatial resolution of 1.3 m by pixel.

Pavia University: The data with 610 × 340 pixels were
collected over the University of Pavia, Italy. It contains 103
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spectral channels after the removal of noisy bands [see
Fig. 11(a) for a color composite]. The data also include nine
land cover/use classes (see Table I).

Pavia Center: The data with 1096 × 492 pixels were collect-
ed over Pavia city center, Italy. It contains 102 spectral chan-
nels after the removal of noisy bands (see Fig. 12(a) for a color
composite). Nine ground-truth classes were considered in exper-
iments (see Table I). Note that the color in the cell denotes
different classes in the classification maps (see Figs. 11 and 12).

Houston University: The third hyperspectral image was
acquired by the National Science Foundation (NSF)-funded
Center for Airborne Laser Mapping in June 2012 over the
University of Houston campus and the neighboring urban area.
The hyperspectral imagery has 144 spectral bands with a wave-
length range from 380 to 1050 nm and with a spatial resolution
of 2.5 m. The whole scene of the data, consisting of the full
349 × 1905 pixels, contains 15 classes. In our experiments,
we use a subimage with a size of 349 × 1360 by removing
the cloud-cover region. Available training and testing sets are
given in Table V (number of training samples/number of test
samples), and Fig. 13 shows the false color image of HS data
and test samples. For more information, see [24] and [32].

The training and test sets for each data set (in Tables I and V)
are selected pixels from the data by the experts [31], [32], corre-
sponding to a predefined species/classes. Pixels from the train-
ing set are excluded from the test set in each case and vice versa.

B. Experimental Setup

Prior to applying the attribute thinning and thickening to
hyperspectral images, principal component analysis (PCA) was
first applied to the original hyperspectral data set, and the
first few PCs (the first four PCs for both Pavia Center and
University Area and the first two PCs for Houston University)
were selected (representing 99% of the cumulative variance) to
construct the EAPs. We used a support vector machine (SVM)
[33] classifier, as it performs well even with a limited number
of training samples, limiting the Hughes phenomenon [35].
The SVM classifier with radial basis function (RBF) kernels
in Matlab SVM Toolbox, LIBSVM [34], is applied in our
experiments. SVM with RBF kernels has two parameters: the
penalty factor C and the RBF kernel widths γ. We apply a grid
search on C and γ using fivefold cross-validation to find the
best C within the given set {10−1, 100, 101, 102, 103} and the
best γ within the given set {10−3, 10−2, 10−1, 100, 101}. Three
EAPs were computed by considering three different attributes
on rescaled PCs: 1) a, area of the regions; 2) s, standard
deviation (Std) of the gray-level values of the pixels in the
regions; and 3) i, first moment invariant of Hu, MI. The area
extracts information on the scale of the objects. The standard
deviation and the MI are not dependent on the size dimension,
but they are related to the geometry of the objects and the
homogeneity of the intensity values of the pixels, respectively.
We compare each single existing AP (EAPa, EAPs, and EAPi)
with our proposed AP with partial reconstruction (EAPPRa,
EAPPRs, and EAPPRi). We also compare the performances of
stacking all EAPs or EAPPRs together, which are defined as
EMAP and EMAPPR.

The classification results are quantitatively evaluated by mea-
suring the overall accuracy (OA), the average accuracy (AA),

and the Kappa coefficient (κ) on the test samples. Furthermore,
the statistical significance of differences was computed using
McNemar’s test, which is based upon the standardized normal
test statistic [36]

Z =
f12 − f21√
f12 + f21

where f12 indicates the number of samples correctly by classi-
fier 1 and incorrectly by classifier 2. The difference in accuracy
between classifiers 1 and 2 is said to be statistically significant if
|Z| > 1.96. The sign of Z indicates whether classifier 1 is more
accurate than classifier 2 (Z > 0) or vice versa (Z < 0). The
experiments were carried out on a 64-b 2.64-GHz Intel Xeon
(1 core) CPU computer with 32-GB memory. The elapsed time
includes both AP generation and classification.

C. Fair Comparisons With the Existing APs [10] on Both
Pavia University and Pavia Center Data Sets

In this experiment, we make fair comparisons with the exist-
ing APs [10] on both Pavia University and Pavia Center data
sets. We set the following parameters (e.g., the range of the
rescaled PCs, the values of different attributes, and the training
sample size) similarly as what Dalla Mura et al. have done in
[10]. The selected PCs were rescaled to the range [0, 1000] and
converted to integer in order to be processed by the AFs. Three
EAPs with their values λa = [100, 500, 1000, 5000], λs =
[20, 30, 40, 50], and λi = [0.2, 0.3, 0.4, 0.5] were computed on
rescaled PCs. We compared the classification performances
on each single AP (EAPs and proposed EAPPRs) and all
stacked APs (EMAP and our proposed EMAPPR). All the
samples of the training set were used for the Pavia University
data set, the resulting accuracies are reported in Table II, and
the classification maps are shown in Fig. 11. For the Pavia
Center data sets, only 50 samples per class were randomly
selected from the full training set to train SVM classifiers, and
all results were evaluated against the test set. After repeating
the selection of training samples and the classification process
five times, we report the mean classification results in Table III.
Fig. 12 shows the best results (in terms of OA) of each method.
The scene of Pavia Center is a very dense urban area in the
center of Pavia City. Results in Table III show that only using
a single attribute can provide very high classification accuracy.
The APs generated by original AFs produce similar accuracies
as the proposed APs. Therefore, we report the Z tests for Pavia
Center in Table IV. From the tables and figure, we have the
following findings.

1) The results confirm that including the spatial information
extracted by the existing EAPs or our proposed EAPPRs
in the analysis resulted in higher accuracies (up to 15% of
OA) than those obtained by considering only the spectral
information. In particular, for the Pavia University data
set, the EMAPPR generated by our proposed attribute
thinning and thickening with partial reconstruction pro-
duced the best results, with 15.5%–22.36% OA improve-
ments over only using spectral features (raw and PCs),
with 1.44%–17.37% OA improvements over using a sin-
gle attribute (e.g., area, Std, or MI), and with 5.86% OA
improvements over the EMAP generated by using the
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Fig. 11. Classification maps for University Area when the first four PCs are rescaled into range [0, 1000]. (a) RGB composition with nine classes labeled and
highlighted in the image. Thematic maps using (b) morphological profile with partial reconstruction (MPPR), (c) original HS image, (d) rescaled PCs, (e) EAPa,
(f) proposed EAPPRa, (g) EMAP, and (h) proposed EMAPPR.

TABLE I
TRAINING AND TEST SAMPLES FOR “Pavia Center” AND “Pavia University”

original attribute thinning and thickening [10]. For Pavia
Center, the EMAPPR generated by our proposed attribute
thinning and thickening with partial reconstruction pro-
duced the best average accuracies on OA, AA, and κ with
relative lower standard deviation and leads to a signifi-
cant increase of the classification accuracies, Z > 1.96
(see the last row in Table IV) compared to the others.

2) When considering the contribution of the single AP,
the EAPa and EAPPRa built with the area attribute
performed best in both the original APs and proposed
APs. For each single AP, the EAPPRs constructed by the
proposed attribute thinning and thickening with partial re-
construction perform better than the EAPs constructed by
the existing attribute thinning and thickening. For Pavia
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Fig. 12. Classification maps for Pavia Center when the first four PCs are rescaled into range [0, 1000]. (a) False color image. Thematic maps using (b) original
HS image, (c) rescaled PCs, (d) EMAP, and (e) proposed EMAPPR.

University, the improvements of the proposed EAPPRs
over EAPs are 2.52%, 1.38%, and 4.7% for area, Std,
and MI attributes, respectively. For Pavia Center, the
differences between the classification using the proposed
EAPPRs and EAPs to build “area” and “MI” attributes are
statistically significant, with Z > 1.96. The difference of
the “Std” attribute between using the proposed EAPPRs
and the existing EAPs is not statistically significant, as
Z = 0.48 which is smaller than 1.96. When using the
EAPs, it is better sometimes to use single EAPs than
simply stacking many of them for classification. By sim-
ply stacking all single AP s together to form an EMAP,
the OA drops almost by 2% compared to the single area
attribute in Pavia University.

The hyperspectral remote sensing data from the urban area
were a mix between man-made structures and natural materials.
Many objects are made of the same material (e.g., roofs and
roads made with the same asphalt), so only using single spectral
features is not enough for a reliable classification. The effect of
object connecting is not so obvious when rescaling the selected
PCs into a larger range [see the Fig. 11(d)]. However, the
EMAP generated by using original attribute thinning and thick-
ening contains redundant information because some connected
objects will survive in many scales (see the top row in Fig. 8).
That is why EMAP sometimes performs even worse than single
EAPs, and this will be much worse when the selected PCs
are rescaled into the lower range (we will discuss this in the
following section).

D. Results on Houston University

In this experiment, we apply the existing APs and our
proposed APs with partial reconstruction to a new data set. The
selected PCs were rescaled to the range [0, 100] and converted
to integer in order to be processed by the AFs. Three EAPs with
their values λa = [100, 500, 1000, 2000, 3000, 4000, 5000],

λs = [0.5, 1, 2, 3, 4, 5, 6], and λi = [0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45] were computed on rescaled PCs. After computing
the classification performances on each single AP (EAPs
and EAPPRs) and stacking all APs together (EMAP and
EMAPPR), we report the resulting accuracies and the Z tests
in Tables V and VI and show the classification maps in Fig. 13.
This data set is very challenging for classification since the
spectral and the spatial information are very similar in some
man-made objects (e.g., “Residential” and “Commercial,”
“Road” and “Highway,” and “Parking Lot 1” and “Parking
Lot 1”). Results show that only using the spectral information
can provide high classification accuracy (with OA up to 92%)
because very limited ground truth is available for validation.
Some objects are obviously misclassified [see Fig. 13(c)];
“Roads” are misclassified into “Railway.” Including the spatial
information extracted by the EAPPRs in the analysis resulted
in almost 3% improvements in OA over those obtained by
considering only the spectral information. In particular, the
proposed EMAPPR produced the best results on OA, AA,
and κ and leads to a significant increase of the classification
accuracies, with Z > 1.96 (see the last row in Table VI), with
2.64%–15.27% OA improvements over only using spectral
features (raw and PCs), with 1.9%–8.84% OA improvements
over using a single attribute (e.g., area, Std, or MI), and with
2.28% OA improvements over the EMAP generated by using
the existing attribute thinning and thickening [10].

For the classification performances of using the single EAP,
the area attribute performed the best in both EAPs and proposed
EAPPRs. For each single AP, the EAPPRs perform better than
EAPs. The improvements of using the proposed EAPPRs over
using EAPs are almost 2% for the area, Std, and MI attributes,
respectively. Moreover, the differences between the classifi-
cation using the proposed attribute thinning and thickening
with partial reconstruction and the existing attribute thinning
and thickening to build “area,” “Std,” and “MI” attributes are
statistically significant, with Z > 1.96. The improvements of
EMAP over raw data are not statistically significant because
Z = 1.23, which is lower than 1.96. Even using single
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Fig. 13. Classification maps for University Houston when the first few PCs are rescaled into range [0, 100]. (a) False color image. (b) Ground truth. Thematic
maps using (c) Original HS image. (d) Rescaled PCs. (e) EAPs. (f) Proposed EAPPRs. (g) EAPi. (h) Proposed EAPPRi. (i) EMAP, and (j) Proposed EMAPPR.

EAPPRa, we have significant improvement over raw data, with
Z = 2.8, which is higher than 1.96. From the classification
maps, we can see visually that the connected objects are better

classified by using our proposed APs with partial reconstruc-
tion because the spatial information is better modeled by our
proposed method.
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TABLE II
University Area: CLASSIFICATION ACCURACIES OBTAINED BY ORIGINAL APS AND OUR PROPOSED APS WITH PARTIAL RECONSTRUCTION.

THE FIRST FOUR PCS ARE ALL RESCALED INTO RANGE [0, 1000]. MPPR (MORPHOLOGICAL PROFILE WITH PARTIAL RECONSTRUCTION)

TABLE III
Pavia Center: CLASSIFICATION ACCURACIES OBTAINED BY ORIGINAL APS AND OUR PROPOSED APS WITH PARTIAL

RECONSTRUCTION. THE FIRST FOUR PCS ARE ALL RESCALED INTO RANGE [0, 1000]

TABLE IV
Pavia Center: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) WHEN THE FIRST FEW PCS ARE RESCALED

INTO RANGE [0, 1000]. EACH CASE OF THE TABLE REPRESENTS Zrc WHERE r IS THE ROW AND c IS THE COLUMN

Fig. 14. Classification accuracy and consumed time with different ranges
of rescaled PCs to generate single APs. (a) Overall classification accuracy.
(b) Consumed time.

E. Results on Rescaling PCs Into Different Ranges

In this experiment, we take University Area as an exam-
ple to investigate the robustness of the existing APs and our
proposed APs with partial reconstruction to the ranges of the
rescaled PCs.

We first rescale the selected PCs to different ranges (e.g.,
[0, 10], [0, 50], [0, 100], and [0, 200]) and convert them
into gray-level image according to the corresponding ranges

Fig. 15. Classification accuracy and consumed time with different ranges
of rescaled PCs to generate EAPs. (a) Overall classification accuracy.
(b) Consumed time.

before applying AFs. In order to compute different attributes
on the rescaled PCs, we keep the values of “area” and
“MI” fixed: λa = [100, 500, 1000, 2000, 3000, 4000, 5000] and
λi = [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45]. The values of the
“Std” attribute are changed according to the gray level of
rescaled PCs: λs = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] for the PCs
rescaled into range [0, 10], λs = [0.25, 0.5, 1, 1.5, 2, 2.5, 3] for
range [0, 50], and λs = [0.5, 1, 2, 3, 4, 5, 6] for range [0, 100].
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TABLE V
University Houston: CLASSIFICATION ACCURACIES OBTAINED BY ORIGINAL APS AND OUR PROPOSED APS

WITH PARTIAL RECONSTRUCTION. THE FIRST TWO PCS ARE ALL RESCALED INTO RANGE [0, 100]

TABLE VI
UNIVERSITY HOUSTON: STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION (Z) WHEN THE FIRST FEW PCS ARE

RESCALED INTO RANGE [0, 100]. EACH CASE OF THE TABLE REPRESENTS Zrc WHERE r IS THE ROW AND c IS THE COLUMN

Fig. 14 shows the OA and consumed time to generate each
individual EAPs and EAPPRs with different ranges of rescaled
PCs. Fig. 15 shows the relationship of OA by stacking all
EAPs/EAPPRs (i.e., EMAPs/EMAPPRs) and total consumed
time of generated EMAPs/EMAPPRs with different ranges of
rescaled PCs. We take a very low range as an example to
see the effects of connecting objects in classification for a
remote sensed image. The resulting accuracies are reported in
Table VII, and the classification maps are shown in Fig. 16.

From the tables and figure, we can make the following
remarks.

1) By using morphological thinning/thickening with partial
reconstruction to separate connected objects in each gray
level, our proposed attribute thinning and thickening take
much more time to compute the APs but enable better per-
formances on classification. The consumed time depends
on the range of rescaled PCs; the bigger the range is,
the more consumed time it takes. The attribute of “MI”
consumes more time than other attributes. For example,
with PCs rescaled in the lower range [0, 10], the original
AFs consume 9.82, 15.68, and 52.21 s to generate the
attributes of “area,” “Std,” and “MI,” respectively, while
the proposed AFs with partial reconstruction require
383.29, 389.04, and 440.49 s for the attributes of “area,”
“Std,” and “MI,” respectively. With morphological partial

reconstruction, the proposed AFs increase the processing
time to generate different APs, by eight times more than
the original AFs. We do benefit much better performances
for classification with partial reconstruction. The classifi-
cation by using EAPi is really worse, and many classes
are misclassified as “Soil,” with very low OA (11.76%).
The proposed EAPPRi produces much better results than
other attributes, with 77% OA improvements over EAPi

and 7%–20% OA improvements over other attributes.
Moreover, our proposed EMAPPR can get much better
results with PCs rescaled in such a lower range than
that EMAP built on PCs rescaled to range [0, 200] and
[0, 1000], with less processing time.

2) The proposed APs with partial reconstruction are more
robust to the ranges of rescaled PCs. The performances
of classification by using our proposed EMAPPR are
more stable, even with PCs rescaling to a very low range
(e.g., [0, 10]), where the original EMAP performs very
worse.

3) Many objects are connected when the selected PCs are
rescaled into a very low range (e.g., [0, 10]; see Fig. 8),
which leads to very poor classification performance
[see Fig. 16(a)]. Although the classification map looks
smoother, many objects are misclassified by using the
original EMAP because many objects are connected, par-
ticularly for class “Gravel,” with less 10% accuracies by
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TABLE VII
University Area: CLASSIFICATION ACCURACIES OBTAINED BY ORIGINAL APS AND OUR PROPOSED APS WITH

PARTIAL RECONSTRUCTION. THE FIRST FOUR PCS ARE ALL RESCALED INTO RANGE [0, 10]

Fig. 16. Classification maps for University Area when the first four PCs are rescaled into range [0, 10]. (a) Rescaled PCs, (b) EAPa, (c) proposed EAPPRa, and
(d) proposed EMAPPR.

using the original “area” and “Std” attributes, because it is
misclassified into its bigger connected object “Asphalt.”

4) When using the existing attribute thinning and thick-
ening, it is better sometimes to use single EAPs than
simply stacking many of them for classification. The
original EMAP produces much worse results than only
using single EAPs built with “area” and “Std” attributes.
For each single AP, the EAPPRs constructed by using
the proposed attribute thinning and thickening with par-
tial reconstruction perform better than EAPs constructed
by the existing attribute thinning and thickening. The
improvements of our proposed EAPPRs over EAPs are
almost 6.75%, 10.99%, and 76.38% for area, Std, and
MI attributes, respectively. Moreover, when stacking all
single EAPPRs generated by our proposed method, it
enables better performances on classification.

In many real applications, the users want to get a classifi-
cation map with satisfying accuracies and without waiting too
long. They may not have enough backgrounds on parameter
optimizing (e.g., which ranges will be good for rescaling the
selected PCs, the size of the objects in an image, etc.). They
always select all these parameters randomly. The original at-

tribute opening and closing are not robust to the ranges of
the rescaled PCs. This is because more and more objects are
connected when the selected PCs are converted into gray-level
images with a lower range. The attributes of an object will
mix with its largest connected object, which will lead to poor
classification performances.

The APs generated by our proposed attribute thinning and
thickening with partial reconstruction better model the spatial
information of objects in an image. Our approach is more robust
to the ranges of rescaled PCs as it can separate connected
objects. Moreover, our proposed APs with partial reconstruc-
tion contain less redundant information because connected
objects will disappear according to their scales. This makes our
proposed method more robust on selecting values for different
attributes and enables better performances when stacking each
single attribute together.

VI. CONCLUSION

In this paper, we have developed a novel framework for
attribute thinning and thickening with partial reconstruction.
A main contribution of the presented approach is that it can
separate connected objects and thus better models the spatial
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information of objects in an image. Our main goal is to address
a common situation in the existing attribute thinning and thick-
ening by reconstruction, in which the attributes of the connected
objects in an image are not well modeled. Objects expected
to disappear at a certain threshold remain present when they
are connected with other objects in the image. The attributes
of small objects are mixed with their larger connected objects,
which leads to poor performances on classification. Morpho-
logical APs have been widely used in many applications and
improved the performances of classification compared to only
using spectral information. However, in many real applications,
the users may not have enough backgrounds on parameter
optimizing (e.g., which ranges will be good for rescaling the
selected features, how to select the values of different attributes,
etc.). They always select all these parameters randomly. The
existing attribute thinning and thickening are not robust to the
ranges of the rescaled PCs. This is because more and more
objects are connected when the selected features (e.g., the first
few PCs) are converted into gray-level images with a lower
range. Moreover, the EAPs generated by using the existing
attribute thinning and thickening by reconstruction contain
redundant information because objects will survive in many
scales if connected with larger objects.

The experiments on a variety of hyperspectral scenes con-
firmed expected improvements of our approach over the ex-
isting attribute thinning and thickening by reconstruction. The
improvements become more significant when more objects
from different classes are connected (e.g., the selected features
are converted to a lower rescaled range) or when stacking all
single attributes together. The proposed approach better models
the spatial information of objects in an image and thus enables
better performances on classification. In addition, the proposed
approach is very robust to the ranges of rescaled features; it
can separate connected objects and enable good classification
performances even when the selected features are rescaled
into a very low range, where EAPs generated by the existing
attribute thinning and thickening perform worse. Last but not
least, the EAPs generated by our proposed approach contain
less redundant information, which makes our proposed method
more robust on selecting values for different attributes and
enables better performances when stacking all single attributes
together.

Our future work will include, but will not be limited to, the
following topics.

1) Data fusion of multiple features generated by the pro-
posed thinning and thickening with partial reconstruction.
Recent work on multiple feature learning [16] and graph
fusion [37] shows the efficiency of fusion multiple fea-
tures (e.g., MPs and EAPs) for classification. Some recent
methods on advanced classifiers (e.g., rotation forest [38]
and random subspace ensembles [39]) and automatic
threshold selection [40] for APs will be exploited.

2) Exploitation of high-level features by using the proposed
thinning and thickening with partial reconstruction to
construct some information indexes, such as morphologi-
cal building/shadow index [41], which has been proven
efficiently for the classification and change detection
of high-resolution remotely sensed images over urban
areas [42], [43].

3) Developing parallel versions of the proposed framework
in a variety of architectures, such as commodity graphics
processing units (GPUs) or multi-GPU platforms.
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