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ABSTRACT
In this paper, we propose a novel algorithm for hyper-spectral
(HS) image deblurring with principal component analysis
(PCA) and total variation (TV). We first decorrelate the
HS images and separate the information content from the
noise by means of PCA. Then, we employ the TV method
to jointly denoise and deblur the first principal components
(PCs). Subsequently, noise in the last principal components
is suppressed using a simple soft-thresholding scheme, for
computational efficiency. Experimental results on simulated
and real HS images are very encouraging.

Index Terms— Hyper-spectral images, deblurring, prin-
cipal component analysis, total variation

1. INTRODUCTION

Despite advances in sensor technology, HS images are in-
evitably degraded by noise and blur, which can affect infor-
mation retrieval and content interpretation. Using denoising
and deblurring as a preprocessing tool will improve various
post-processing tasks, e.g. classification, target detection, un-
mixing, etc.

Many techniques have been developed for denoising and
deblurring of HS data [1, 2, 3, 4]. Li et al. [1] propose a
TV-based coupled segmentation and deblurring model for HS
material identification. Zhao et al. [2] present a model con-
taining both TV and sparsity promoting terms to deal with
deblurring and unmixing of HS data. Chen et al. [3] pro-
pose a HS image denoising algorithm using PCA and wavelet
shrinkage. Their algorithm utilizes PCA to decorrelate the
fine HS features from the noise, and then reduce the noise
only in the low-energy PCA channels with wavelet shrink-
age denoising. Zhang et al. [4] propose a multi-frame image
super-resolution reconstruction algorithm for HS images in
the PCA transform domain. Their algorithm divides all PCs
into three groups, and only utilizes the first few PCs for both
the motion estimation (between the HS image sequences) and
super-resolution reconstruction processes.

This work was supported by the SBO-IWT project Chameleon: Domain-
specific Hyperspectral Imaging Systems for Relevant Industrial Applications.

However, to the best of our knowledge, the HS deblurring
method in PCA transform domain has not been investigated
yet. In many real world applications, the high dimensional-
ity of HS data as well as the redundancy (high correlation)
between the bands, make the processing of HS images very
computationally intensive. To overcome this problem, dimen-
sion reduction is firstly applied to the HS images, and then
image restoration is applied to a few dimension-reduced HS
bands. The effect of HS image processing based on dimen-
sion reduced HS bands has been discussed in several studies
[4, 5].

In this paper, we propose a novel deblurring algorithm
for HS images. Fig. 1 depicts an overview of the proposed
method. Our method first uses PCA to decorrelate the HS
images and separate the information content from the noise.
The first k PCA channels contain most of the total energy of
a HS image (i.e. most information of the HS image), and the
remaining B − k PCA channels (where B is the number of
spectral bands of HSI and B � k) mainly contain noise. If
deblurring is performed on these noisy and high-dimensional
B− k PCs, then it will amplify the noise of the data cube and
cause high computational cost in processing the data, which is
undesirable. Therefore, we use a fast TV method with group
sparsity [7] to jointly denoise and deblur only the first k PCA
channels. We remove the noise (without deblurring) in the
remaining PCA channels using a soft-thresholding scheme.
The results demonstrate effectiveness of the proposed method
both visually and quantitatively.

2. PROPOSED METHOD

In this section, we develop a joint deblurring and denois-
ing method for HS images. TV denoising and deblurring is
widely used in image processing applications [1, 2, 4, 6, 8],
because of its good edge preserving capabilities and also due
to its computational efficiency, which is important when pro-
cessing large data cubes. Suppose ui is the reference band,
fi (i ∈ {1, · · · , B}) the acquired bands of HS image, and
H the linear blur operator. The most direct solution, for HS
image deblurring, is to apply the following well-developed



Fig. 2: Principal components of real HS image.

Fig. 1: Flow chart of the proposed deblurring method.

optimization problem to restore every separate spectral band
individually:

ûi = argmin
ui

|∇ui|+
βi
2
||Hui − fi||22 (1)

where ûi is the estimated band of the ui (the result of deblur-
ring), ∇ the discrete gradient operator. The first term on the
right side of (1) is the TV regularization, which is responsi-
ble for smoothing (i.e. noise reduction). The second term
||Hui − fi||22 is commonly referred as data fidelity term. The
parameter βi controls the relative contribution of the data fi-
delity term and smoothing term. However, deblurring HS im-
age band by band cannot fully exploit correlation across the
spectral bands. Furthermore, both the parameter estimation
of β and the image reconstruction for each band will cause
high computational cost.

To overcome the problem, some approaches explore spec-
tral information for HS restoration by combining 1D spectral
denoising [3, 6]. In particular, we use the the group sparsity
[7] to combine the spectral information. The group sparsity
combines all the gradient coefficients of the different channels
at the same spatial position into one group such that the re-
solving operator (soft-thresholding) does not act component-
wise but treats the group as one vector:

ûi = argmin
ui

B∑
j=1

||∇uj ||2 +
β

2
||Hui − fi||22 (2)

where ||∇ui||2 is the TV group sparsity regularization. How-
ever, in real HS images, different bands suffer different level
of noise, using the same parameter β in all bands (similar ap-
proaches [6] as group sparsity here) will lead to some artifacts
in the resulting restoration HS image. Moreover, these simi-
lar optimization problems (like (2)) will cause high memory
and computational cost in image reconstruction, particularly
for HS images with a large number of bands.

Some approaches first apply PCA to decorrelate the HS
images, and then perform image restoration in PCA transform

domain [3, 4]. After the PCA transform, the signal compo-
nents are decorrelated, we can solve the optimization problem
of (1) in PCA transform domain band by band:

ûPC
i = argmin

uPC
i

|∇uPC
i |+

βi
2
||HuPC

i − fPC
i ||22 (3)

However, similarly to (1), the optimization problem of (3) will
cause high computational cost both due to the parameter (βi)
estimation and due to the image reconstruction.

In fact, the signal components are decorrelated after the
PCA transform, and the energy contained in the HS image
is maximally concentrated in a small number of components.
Fig. 2 illustrates PCA transform on a HS image with 900 spec-
tral bands. We note that most of the information is concen-
trated in the first 10 PCs, while the remaining 890 PCs in the
second part contain a large amount of noise with much less
information. If deblurring is performed on these remaining
PCs based on the optimization problem (3), the parameter βi
(i ∈ {k + 1, · · · , B}) should be set to a very small value,
which is approximately TV denoising problem (the H in (3)
is set to an identity operation). That is why we propose an
implementation as a denoising problem (5), to avoid noise
enhancement due to inaccurate parameter choice.

Therefore, we propose a novel algorithm to approximately
solve the optimization problem of (3). We first divide all the
PCs into two groups according to the information content they
contain. Then, denoising and deblurring are only performed
on the first k PCs through the minmizations:

ûPC
i = argmin

uPC
i

k∑
j=1

||∇uPC
j ||2 +

λ1
2
||HuPC

i − fPC
i ||22 (4)

and denoising is only conducted on the remaining B − k PCs
(we call this method PCATV TV in the following) through the
following estimation:

ûPC
i = argmin

uPC
i

B∑
j=k+1

||∇uPC
j ||2 +

λ2
2
||uPC

i − fPC
i ||22 (5)

However, when dealing with these large data cubes in real-
time, solving the optimization problem (5) will require a high
memory and computational cost. Therefore, we only apply
2D (band by band) wavelet soft-thresholding denoising to re-
move the noise in these remaining PCs due to its efficiency
and effectiveness (we call it PCATV ST ). In our implemen-
tation, (2), (4) and (5) are solved by a very fast and memory
efficient first-order primal-dual algorithm [8].



Fig. 3: Left: the spectral signatures (SS) of eight materials; middle: the thematic map; right: the PSNR per spectral band. The
colors of the spectral signatures correspond to the colors of the thematic map.

3. EXPERIMENTAL RESULTS

To assess the quantitative performance of the proposed HS de-
blurring method, we perform an experiment involving a syn-
thetic HS image. The synthetic HS image is generated in the
following way: first, a remote sensing thematic map corre-
sponding to landcover types from the National University of
Singapore1 is used. Second, eight spectral signatures2 (labo-
ratory measured absolute reflectances) are randomly selected
from the UCGS digital library [9]. In particular, the thematic
map with the size of 278× 329 has eight classes (labeled with
different color in Fig. 3). The USGS digital library [9] con-
tains 501 spectral signatures with 224 spectral bands. We then
associate different colors of spectral signatures to the eight
corresponding colors of regions in the thematic map, resulting
in a 278× 329× 224 (spatial× spatial× spectral) HS image.
The simulated HSI is blurred spatially with a Gaussian point
spread function (with σ = 1), and then degraded by white
Gaussian noise of SNR 30 dB. We compare the Peak Signal-
to-Noise Ratio (PSNR) of each spectral band (Fig. 3 (right))
among TV (TV deblurring with group sparsity on original HS
image), and our proposed method PCATV TV (first using PCA
to decorrelate the HS image, then TV deblurring with group
sparsity on first k PCs and only TV denoising on the remain-
ing B − k PCs) and PCATV ST (the same as PCATV TV for
the first k PCs, but differing in only denoising the remaining
B − k PCs by 2D soft-thresholding). The PSNR is computed
by PSNR = 10log10(MAX2

i /MSE), where MAXi is the
maximal intensity of the HS band (if 16-bit hyperspectral data
then MAXi = 216 − 1), and where the mean squared error
(MSE) is directly computed based on the processed HS band
and the original (ideal) image. We do not compare the re-
sults of deblurring band by band because of its high computa-
tional cost in estimating the parameter βi. The parameters β
and λ1 are automatically optimized according to the average
PSNR of all bands using cross-validation within big range in
the given set {2−8, 2−6, · · · , 26, 28}, the parameter λ2 in (5)

1http://www.crisp.nus.edu.sg/˜research/tutorial/xsc8.gif.
2For the sake of reproducible research, we mention the exact index

(and name) of the signatures from this database, these are signature num-
ber (and name) 79 (Carnallite HS430.3B), 103 (Clinochlore Fe SC-CCa-
1.a), 174 (Grossular WS484), 247 (Kaolin/Smect H89-FR-5 30K), 330
(Oligoclase HS143.3B), 418 (Sodium Bicarbonate GDS55), 433 (Strontian-
ite HS272.3B) and 464 (Topaz Glen Cove #8).

is set to 10−10.
It is clear that our proposed method (PCATV TV and

PCATV ST ) provides a higher PSNR (around 2dB) than when
deblurring is directly performed on the original HS image.
This is due to the noisy and blurred information in most
bands, and the strong correlation between the spectral bands.
After the PCA transform, the HS image is decorrelated and
most information is concentrated in the first k PCs. The
remaining B − k PCs mainly contain the noise, which is
efficiently removed by only denoising.

To further verify the effectiveness of our proposed ap-
proach, we applied the deblurring methods to the real HS im-
age with size of 1392× 731× 1040 (spatial× spatial× spec-
tral) pixels, which was captured by the department of Biosys-
tems from KU Leuven with a rotary hyperspectral measur-
ing setup (with wavelength range from 321nm to 995 nm and
spatial resolution of approximately 0.5 mm). The application
here is detecting and counting the floral pear buds [10]. In our
experiments, we select a sub-image with size of 400 × 350 ×
900 (spatial × spatial × spectral) pixels by cropping the hy-
perspectral datacube, which corresponds to wavelength range
from 411nm to 995 nm (after removing noise). Fig. 4 shows
some deblurred bands. We assume the real data is blurred
spatially with Gaussian point spread function (σ = 2) and
we select the parameter β empirically from visual inspection.
Alternatively, this can also be done by blur estimation [11].

The experiments (in Matlab 2012b) are carried out on 64-
bit, Intel Core i7-3930K @ 3.20GHz (6 core) CPU computer
with 32 GB memory. The elapsed times for TV, PCATV TV

and PCATV ST are 342.4 seconds, 184.9 seconds and 43.7
seconds, respectively. When applying TV denoising and de-
blurring to the original HS image, the noise in some noisy
bands is amplified, see band 1 and band 900 in Fig. 4. Our
proposed method (PCATV TV and PCATV ST ) reconstructs
the HS image better than TV, with less remaining noise and
more detail information. Furthermore, the proposed method
(especially the PCATV ST ) is much faster.

4. CONCLUSION

A novel deblurring method for hyperspectral images is pro-
posed in this paper. We first use a PCA transform to decor-
relate the HS image and to separate the information content



(a) Band 1 of the original HS image, deblurring results with TV, proposed PCATV TV and PCATV ST , respectively.

(b) Band 550 of the original HS image, deblurring results with TV, proposed PCATV TV and PCATV ST , respectively.

(c) Band 900 of the original HS image, deblurring results with TV, proposed PCATV TV and PCATV ST , respectively.

Fig. 4: Part of the deblurring result on the real hyperspectral data.

from the noise. We then employ a fast TV method with group
sparsity to denoise and deblur only the first k PCs, and a soft-
thresholding denoising scheme to only remove noise in the
remaining B− k PCs. Experimental results on simulated and
real HS images show the efficiency of the proposed method.
Our future work will perform classification experiments (e.g.
flower bud detection, target detection in remote sensing) to
further validate the proposed method.

5. REFERENCES

[1] F. Li, M. Ng, and R. Plemmons, “Coupled segmentation
and denoising/deblurring models for hyperspectral mate-
ria identification,” Numer. Linear Algebra, vol. 19, no. 1,
pp. 153–173, 2012.

[2] X. Zhao, F. Wang, T. Huang, M. Ng and R. Plemmons,
“Deblurring and Sparse Unmixing For Hyperspectral Im-
ages,” IEEE Trans. Geosci. Remote Sens, Preprint, 2013.

[3] G. Chen, S. Qian, and W. Xie, “Denoising of Hyperspec-
tral Imagery Using Principal Component Analysis and
Wavelet Shrinkage,” IEEE Trans. Geosci. Remote Sens.,
49(3):973–980, 2011.

[4] H. Zhang, L. Zhang, H. Shen, “A super-resolution re-
construction algorithm for hyperspectral images,” Signal
Processing, vol. 92, no. 9, pp. 2082–2096, 2012.

[5] W. Liao, R. Bellens, A. Pižurica, W. Philips and Y. Pi,
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