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Abstract— In this extended abstract, we gather results
on the performance of Fiber Delay Line (FDL) buffers,
having access to multiple wavelengths on an output fiber.
In both optical burst switching (OBS) and optical packet
switching (OPS), bursts (or packets) can contend for the
same output at the same time, and have to be dealt
with. Here, we consider both wavelength conversion and
buffering as a means to resolve this contention. By applying
an analytical model from a different context, we are
able to evaluate performance of a multi-wavelength buffer
handling independent arrivals. Several numerical examples
assess the accuracy of our approximation, and show that
our approach is highly accurate when burst sizes are fixed,
and, when a round-robin scheduling policy is adopted, also
when burst sizes vary.

Index Terms— fiber delay lines, loss probability, multi-
server, multi-wavelength, optical buffers, optical switching,
OBS, OPS, queueing.

I. INTRODUCTION

How are future networks to cope with ever-increasing
traffic demands? State-of-the-art fiber links unleach huge
capacities [1]. However, whenever a burst (or packet) is
switched to an alternate route, or buffered, it is converted
to the electronical domain, then handled electronically,
and then converted back to light. This becomes un-
feasible in the near future, for reasons of port count
figures, required switching speeds and the related power
consumption [2]. All-optical packet- or burst-switching
nodes promises to alleviate these problems [3], and have
received considerable attention over the last years (e.g.,
[4], [5]).

Key issue in optical switching is how to resolve
contention. This arises inevitably, even without internal
blocking, whenever two or more packets contend for
the same outgoing channel at the same time. Possible
remedies for this are deflection routing, wavelength
conversion and buffering [6], of which the latter two
are the preferred approaches. Wavelength conversion is

an obvious choice, as it creates additional channels.
Buffering poses a challenging problem: as light cannot
be stored (in the RAM sense), it has to be delayed
by means of Fiber Delay Lines (FDL), which cannot
realize all delay values exactly, but only a multiple of
D, the so-called granularity of the system. Clearly, as
not all delays will be realizable, some capacity will be
lost on the outgoing channel, because, even when some
bursts (or packets) are present in the buffer, they may
not be available yet for transmission. This results in
performance loss, that is to be minimized.

A considerable amount of work has already been done
on the analysis of a single-wavelength optical buffer [7],
[8], [9], [10], [11]. In [12], a multi-wavelength optical
buffer is studied, in the case of a negative exponential
distribution for the burst size. In [13], [14], work has
already been done on (limited) wavelength conversion,
by means of simulations.

In this contribution, we will apply an analytic discrete-
time performance model to a multi-wavelength optical
buffer. Performance is in terms of burst loss probability
(BLP). First, we explain the FDL model setting, and
assumptions on the scheduling policy. Next will be a
very concise analysis, followed by numerical results, for
both fixed and varying burst sizes, that allow us to draw
conclusions.

II. STOCHASTIC MODEL

A. FDL buffer

The FDL buffer under consideration can only realize
delays that are a multiple ofD. We define the sizeN
of the buffer as the index of the largest delay line, and
assume that also a delayless connection is present in the
buffer; this brings the total number of connections in a
buffer of sizeN to N + 1. However, our model and
analysis will assume buffer size to be infinite, and it is
only in Section IV that we will move to finite sizes.
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This buffer is dedicated to a single output port of
an optical switch, and feeds intoc different channels
i, i = 1 . . . c, with associated wavelengthsλi, i =
1 . . . c, possibly within the same fiber. We assume that
the FDL’s are able to convey all involved wavelengths
independently, and so allow forc independent queues,
each queuei associated with its wavelengthλi, and its
channeli, i = 1 . . . c. Further, all arriving bursts can be
converted to each of thec possible wavelengths, that is,
we assume full wavelength conversion (as opposed to
limited or no wavelength conversion).

B. Scheduling Policy

When the system is empty, and several bursts, sayr,
want to be switched to the output port of the considered
FDL buffer at the same time, contention does not nec-
essarely arise. Sincec wavelengths are available for the
single output port, no bursts have to be buffered ifr ≤ c,
and all can be transmitted directly, on distinct wave-
lengths. Whenr > c, c bursts can be transmitted directly,
and the others are queued. Asc different wavelengths
are available to queue for, a scheduling discipline has
to be adopted. A similar case arises when the system is
non-empty upon arrival, and bursts have to queue for all
channels that are already reserved by previously arrived
bursts. Here too, a scheduling discipline decides what
queue to join. We consider three possibilities, that are
well-known from classical (i.e., non-optical) buffers.

• Random (RND): Each burst is sent to one of the
channels in random order. Performance is worst
in this case, because the load is in not spread
among different queues, and one queue can have
an overflow, while another is almost empty.

• Round-Robin (RR): Whenever a burst is sent to
queue i, the next one is sent to channeli + 1,
and so on until channelc, that is followed by
channel1 again. Performance is less than for JSQ,
but is sometimes comparable, as will be shown be-
low. Further, hardware implementation complexity
is low.

• Join-The-Shortest-Queue (JSQ): Here, in all cir-
cumstances, bursts join the shortest of thec queues.
Of the three, this policy is known to have best per-
formance, but highest implementation complexity.

Our analysis will yield approximate results for RR and
RND, while the case of JSQ, that is very hard to trace
analytically, will be simulated.

C. Poisson Arrival Process

We will assume that bursts arrive in the system ac-
cording to a Poisson arrival process. This means bursts

arrive in the system one by one, with inter-arrival times
that are distributed geometrically. Now, the inter-arrival
time T of arrivals in a given queue is directly related to
the scheduling policy.

• RND: Here, the arrivals in the queue are selected
from a Poisson arrival process in a random manner.
Therefore, the same type of arrival process occurs
at the level of the queue, andT is also distributed
geometrically.

• RR: Here, for everyc arrivals in the system, an
arrival is selected to join the given queue. As such,
the rv T is the sum ofc different geometrically
distributed rv’s.

For JSQ, we do not trace the inter-arrival timeT analyt-
ically, and rely on simulations.

D. Scheduling Horizon

Having mentioned when bursts enter the buffer, and at
what wavelength, we now discuss in what way they join
the chosen queue. Let us consider bursts that arrive at a
given queue of thec queues, and are numbered in the
order in which they arrive at that queue byk. An arriving
burstk has to be buffered for at leastHk, the time needed
for all previous bursts in that queue to be transmitted.
Instead, it is scheduled to wait for a time periodWk, that
is a multiple ofD, and is sufficiently long, i.e.,Wk ≥
Hk. Depending on the sizeN , the burst is either queued
(Wk ≤ ND) or dropped (Hk > ND). The measureHk

is the so-called scheduling horizon of the given queue,
as seen by thekth burst;Wk is the waiting time in the
given queue, of thekth burst. Mathematically, we have
that

Wk = D · d
Hk

D
e (1)

The expressiondxe is shorthand for the smallest integer
greater than or equal tox.

Further, thekth burst has a burst sizeBk, that amounts
to the time needed for its transmission. The time between
its arrival, and the next, is captured by the inter-arrival
time Tk. As a result, the evolution of the involved
variables can be captured by

Hk+1 = [Wk + Bk − Tk]
+ (2)

The expression[x]+ is shorthand formax(0, x). Equa-
tions (1) and (2) together fully capture the system’s
behavior.

E. Traffic Model

To analyze (1) and (2), we impose certain restrictions
on the burst sizesBk and inter-arrival timesTk. We
assume both to form a sequence of iid (independent
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and indentically distributed) random variables (rv’s), thus
being independent of the indexk. In our analysis, we use
the probability generating function (pgf) of the prob-
ability mass function (pmf) of the involved variables.
The burst sizesBk, e.g., have a common distribution of
general form with a pgf

B(z) = E[zBk ] =

+∞∑

n=1

znPr[Bk = n]

For the current application, we will consider two cases
for the burst sizes

• Fixed burst sizes, having thus a deterministic distri-
bution.

• Varying burst sizes, having a geometric distribution.

As for the inter-arrival times, we also distinguish two
situations

• RND: T has a geometric distribution.
• RR: T has a so-called negative binomial distribu-

tion, and the rvT is the sum ofc rv’s with geometric
distribution.

III. A NALYSIS

For the analysis of the presented model, we refer to
[15]. There, the analysis is done for

• general iid burst sizes, with E[B] < ∞.
• inter-arrival time distributions with rational pgf, i.e.,

T (z) rational.

Clearly, the fixed and varying burst sizes considered here
comply to these conditions, and, although we did not
mentionT (z) here explicitly, so do the involved inter-
arrival time distributions. As such, we are in the position
to apply the method explained in [15]. This consists of
solving (1) and (2) separately, combining results, and
thus obtaining a closed-form expression forW (z), that
is exact, but under the assumption of infinite buffer
size (N = ∞). A heuristic is then applied, to obtain
approximate results for finite buffers. Such is also done
here, and yields the results coming up next.

IV. N UMERICAL RESULTS

At this point, we evaluate the performance of different
multi-wavelength buffer settings, with three different
scheduling disciplines, two distinct burst size distribu-
tions, and two buffer sizes. All figures are made for an
average burst size of E[B] = 100 slot lenghts. For a slot
length of20ns, we obtain a burst size of2µs, which is
a possible value in the context of OBS. The number of
wavelengths is four,c = 4. Further, the traffic load is
fixed to 60%. Simulation results (sim) are given at the
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Fig. 1. varying burst size, N=10
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Fig. 2. varying burst size, N=20

simulation points, that are multiples of ten slots, while
the analytic results (ana) yield continous curves.

We first consider varying burst sizes, with mean
E[B] = 2µs, in Fig. 1 (for buffer sizeN = 10) and
Fig. 2 (N = 20). Clearly, the main difference between
the figures is in the BLP, and they further display a
similar behavior. Also, the analytic results for RND and
RR both match simulation results very well. However,
the simulation shows that JSQ outperforms RR by far,
if burst sizes vary. This can be understood intuitively,
if one realizes that the next queue (as selected in RR)
seldom is the shortest queue (as selected in JSQ) if burst
sizes vary.

For burst sizes fixed to2µs, we obtain Fig. 3 (N =
10) and Fig. 4 (N = 20). Again, both display a similar
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Fig. 3. fixed burst size, N=10

behavior, and again, analytic results for RND and RR are
confirmed by simulation. The main difference is that the
gap in performance between JSQ and RR is really small.
Because this is so for classical buffers, it comes not as
an entire surprise; however, these results show that it is
valid also for optical buffers, which is not trivial. Thus,
the intuition applies, that to select the next queue (RR)
often comes down to selecting the shortest one (JSQ), if
burst size is fixed. This means that the analytical model,
obtained for RR, offers a good approximation for the
case of JSQ, which is often the scheduling discipline of
practical interest.

V. CONCLUSIONS

In this extended abstract, we presented results that es-
timate performance of a multi-wavelength optical buffer,
by means of an analytical model. We have considered
three different scheduling disciplines (RND, RR, JSQ),
that handle either varying- or fixed-sized bursts. In the
case of varying burst sizes, we found that performance
is matched accurately in the case of RND and RR, but
not in the case of JSQ. For fixed-sized bursts, we found
that our model can estimate performance very well for
all three scheduling disciplines.
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