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Abstract. Optical Burst Switching proposes a future-proof altefreato the cur-
rent electronic switching in the backbone. The involvedagbbuffers are imple-
mented with a set of Fiber Delay Lines, and suffer seriousop@ance loss,
when compared to RAM. Various existing models trace this,lbstit either lack
generality, accuracy, or effectiveness.

The optical buffer model we constructed is valid for genéra lengths and burst
sizes. An effective approach allowed to strongly reducestiation’s complexity,
while remaining exact. This document presents the key ftasand performance
graphs. The obtained model serves as a basic optimizatibnyielding results
fast.
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1 Introduction

In a decade where bandwidth-consuming web services (witlTbe.com as a fash-
ionable example) and peer-to-peer data exchange are wyadhéir way into everyday
life, backbone infrastructure needs to be prepared forewés-increasing bandwidth
demand. Although data packets travel through the backbotteeiform of light, they
are still converted into electricity at every hop, in ordermeitract header information,
buffer them, convert them back to light and transmit themh®sriext hop. Since this
conversion is expected to be the bottleneck in the neardyutbe research community
proposes alternative switching approaches, such as OBticst Switching (OBS) [1]
and Optical Packet Switching (OPS) [2].

Just like conventional switches, optical switches need$mlve contention. Even
without internal blocking, this arises inevitably, wheeetwo or more bursts (or pack-
ets) head for the same output at the same time. In generaglevegth conversion and
buffering offer the most viable solutions to date.

Since light cannot be frozen, optical buffering is implentgehby sending the bursts
through sufficiently long pieces of fiber, often referred sdréber Delay Lines (FDLS).
An optical buffer is thus a set of FDLs, each with differentdéhs. This way of im-
plementing, though implementable with off-the-shelf caments, has two drawbacks
if compared to electronic RAM memory. On the one hand, opticéfers cannot re-
alize all possible delays, which results in performancs.léscoming bursts can only
undergo delays equal to the length of one of the lines. Fsrrfason, some capacity
will be lost on the outgoing channel because, even when saomstsh(or packets) are



present in the buffer, they may not be available yet for tnaiasion. The ensuing pe-
riods during which the outgoing channel remains unuseditéest’s availability, are
referred to as voids. They account for additional waitingetifor the burst, and thus
lead to increased loss. On the other hand, optical bufferse haarge physical size.
For typical OBS specifications (10 Gbps link, 100 kbit buizes), it takes about 2 km
of fiber to apply a delay for the duration of a burst, and thestg size of a buffer
thus grows quickly with the number of fibers. As such, an @btiwffer typically has
a smaller storage capacity than a RAM buffer, which leadsutthér increased loss.
Therefore, quantifying this loss by means of an analytic ehoaind tuning the design
parameters for optimal performance, are main questiorttsilohgoing research.

A prime contribution in the study of optical buffer performee, is [3]. There, and
in [4, 5], Callegati studied an optical buffer with fiber lehg that are a multiple of a
basic unitD, that is,0, D,2D, 3D, ...(that is, equidistant line lengths). The type of
buffer he called a degenerate buffer, while for the basi¢ fhhe coined the term
granularity. The analysis explored an approximation basethe iteration of a clas-
sic M/M/1/N buffer model, and yields approximate resultsftemoryless burst sizes.
Extending the analysis to general burst sizes, and impgoaaturacy, [6] presents an
accurate performance model for a degenerate buffer inedistime, that is extended
to continuous time in [7]. Murata and his co-authors [8] exit¢he approach of Calle-
gati to multiwavelength systems, while in [9, 10], a methsgiovided to account for
non-equidistant FDL lengths, that are not necessarely tipteubf the granularity. This
approach is examined more thoroughly by Lambert and heotwmees in [11], and also,
alternatively, in [12].

While much of the previous work is approximate [3, 6—8], heveact performance
measures are obtained. The model we constructed yields fexauilas, that offer the
benefit of being valid for a broad range of parameter valuemeg. Like in [11], we
worked in a discrete-time setting, with arbitrary sets ofLBDand made no restric-
tive assumptions on the burst size distribution. Main défeee with [11] is that we
obtained a more effective modeling approach, by focusinghenwaiting time only.
In [11], the analysis is based on the evolution of the schiaguiorizon, and compu-
tational complexity depends on the length of the longestyd&he. By ruling out the
scheduling horizon as a measure, our model's complexitydependent thereof, and
depends solely on the number of delay lines, which is smalllipractical cases. Our
modeling thus allows to easily compute results for any bsigst distribution, and any
size, and this also in the case of very long delay lines. Taszgit allows to approxi-
mate the continuous-time case arbitrary close without aungimg the calculation time.

In Sect. 2, we present the FDL buffer setting and modelingalsées. The analysis
of this model will be given in Sect. 3, proposing a simple Marichain, and showing
how to derive the waiting time and loss characteristics ftoist Some numerical exam-
ples follow in Sect. 4. The latter show how the optical buff@erformance is strongly
impacted by the buffer size, in a way that depends much onutst size distribution.



2 Stochastic M odédl

Here, we first focus on the FDL buffer setting, to then moveh® assumptions of
the traffic model. Consequently, we look at the system equstithat are expressed in
terms of the waiting time of an arbitrary burst.

2.1 Optical Buffer Setting

The optical buffer under consideration is a sef\of- 1 Fiber Delay Lines, one of them
with lengthwy = 0, and N lines with different lengthss;, i = 1... N. As the set of
lines are intented to resolve contention, it is necessayadbntending bursts undergo
different delays. Therefore, a useful FDL set never costdire same length twice,
w; # wj for ¢ #j . For notational convenience, we denote the set of FDL lengs
2 ={wg,w1,...wn}, and we sort the line lenghts ascendingly,< w; < ... < wy.
Note that although a common choice is to choose equidistagftths (w; = ¢ x D,

1 =0...N), the analysis is done for arbitrary lengths.

This buffer is located at the output of a backbone switch,isdedicated to a single
outgoing wavelength. We consider bursts arriving at thégbutindomly, and possibly
overlapping in time. Since there is only one wavelength teugufor, all overlap during
transmission should be prevented. By means of a switchirtgxihat allows to send
any burst to any of théV + 1 delay lines, buffer control exercises a FIFO (First-In-
First-Out) scheduling discipline, and sends every bursatsafficiently long delay line,
S0 as not to overlap with the one-but-last burst. If such Hi¢sently long) delay line is
present, the burst is accepted and enters; if not, the lmusbpped. The periods during
which the system can accept any possibly arriving burstcalled available periods;
the periods during which the system drops arriving burg€alled unavailable periods.

2.2 Arrivalsand Acceptances

We work in a discrete-time setting, which implies that alhidam variables (rv's) and
parameters (such as the) are expressed in multiples of a (generic) time slot length.
We assume the bursts arrive in the system according to a Biéiraival process, with
parametep. This implies that at the most one arrival occurs during & slodp gives
the probability of such a burst arrival, for an arbitrarytslo

Arriving bursts are either accepted upon arrival (duringilable periods), or drop-
ped (unavailable periods). We number the bursts in the @adahich they arrive, but
only assign an index to those bursts that are accepted. \Akith &ccepted burgt we
associate an inter-arrival tin¥g,, that captures the time between #th arrival and the
next burst arrival, being the arrival of (i) burstt 1, if this next burst is accepted or (ii)
a burst without number, if this next burst is dropped. Forabgumed Bernoulli arrival
process, these inter-arrival tim&% form a sequence of identical and independently
distributed (iid) random variables (rv's) that have a comnggometric distribution,
with parametep

PT, =n]=t(n)=p-p" ', n>1 Q)



Here,p is the commonly adopted shorthand for- p. The inter-acceptance timé;,
is defined as the time between thidn acceptance and thé + 1)th, and is in general
larger (and never smaller) thdi.

To track the system'’s performance in an easy way, we consigiemutually exclu-
sive events, for an arbitrary accepted bufst

Next - Accept . The burst that arrives just after thgh burst is accepted, and
counted as burst + 1. The inter-acceptance timéy, is identical toTy, and thus, it
follows from (1) that

PriA, = n|Next - Accept] =t(n) =p-p"~ !, n>1. 2)

Next - Dr op. The burst that arrives just after buistis dropped. Now, the burst
following burstk is not assigned an index, and possibly, even more burstsepped
before burst + 1 is accepted. The inter-acceptance tirig clearly differs from the
inter-arrival time, and has a more complicated probabdistribution. Luckily, the lat-
ter need not be tracked, and we rely on an additional mea$greeactivation timed,,
defined as the time between the end of the unavailable pesllmiving the kth burst,
and the arrival of burst + 1. Note that the reactivation time is only relevant if the as-
sociated bursk effectively causes burst loss, by driving the system intamewvailable
state. Invoking the memoryless nature of the arrival precti®e reactivation time is
easy to trace, and intimately linked to the inter-arrivaids (1),

PrA; = n|Next-Drop] =t(n) =p-p", n>0. (3)

The complementary use of the series of random varialAlesind A, suffices to
capture the timing aspects of arrival and acceptance,aetdor our analysis.

2.3 General Burst Sizes

For the characterization of the burst sizes, we adopt theiomesd numbering of bursts,
and so thecth burst has a burst siz8y,. The burst sizes, just like the inter-arrival times,
form a sequence of iid rv's with a common distribution, butdao further restriction
on their distributions. Therefore, we consider generabphilities

PiBy =n] =b(n), n>1, (4)

that are arbitrary, except for the conditions that any uggfibability mass function has
to comply with:0 < b(n) < 1,3, b(n) = 1.

24 System Equations

As mentioned, the system’s evolution can be captured by sheftie waiting time of
a burst only. Still using the same numbering, we associatevditing timelV;, with the
kth burst, and define it as the time between the acceptancestfipland the start of
it's transmission. Again considering that either the naxtsbis accepted or dropped,
we have



Next - Accept . The condition for this to happen, in terms of waiting timesl an
FDL lengths, is that the burst that arrives just after itle burst can be provided a
sufficiently long delay, that is,

Wi + B, — T < wn.
Then, A, equalsTy, and
Wit1 = [Wi + Bi — Al o, ©)

where we adopted the notatipn], = inf{y € 2,y > z}, 2 < wy.
Next - Dr op. Now, the burst that arrives just after thth burst can not be provided
a sufficiently long delay, and

Wi + By, — Ty > wn.

As aresult of this (and of the memoryless nature of the dpiracess), the waiting time
of burstk + 1 no longer relates tdV, andW},; is characterized by the reactivation
time, through B
Wit = [wy — Ax]o. (6)
These two system equations (5) and (6), together with tlespective probability
mass functions (2) and (3), provide the input for the analysi

3 Analysis

In this section, the limited set of waiting times serves destariable for a Markov
chain, of which we trace the transition probabilies. Ini@rsyields the waiting time
probabilities of accepted bursts, and this in turn allowsxtract the loss ratio.

3.1 Markov Chain for Waiting Time

Before delving into the analysis, we note that the waitimgetican only take oV +
1 differentw; € 2. Therefore, it is an attractive state variable for a Markbain
approach to the system.

The Markov chain we consider consists/éf+ 1 states, that correspond 16 + 1
possible waiting timesy;, 7 = 0...N. It is characterized by a transition matrix with
probabilitiess; ;,

5@' = Pr[WkH = wj|Wk = wi], 0< i,j < N.

For ease of notation, we introduce.; = —oo. We split3;; in two separate contribu-
tions, that correspond to the events discussed in Sect. 2.4.

Bij = Pflw; + By, — T, < wn,wj = [w; + By, — Ai] o]
+Prlw; + By, — T, > wy,w; = [wy — Zk]g]
=Plw;_1 —w; < By — T, < wj — wy]
+PiBy, — T}, > wy — w;|Pllwny —wj_q1 > Ay > wy — wj]. 7)



Since the burst sizeB;, and inter-arrival timed’, only occur asB;, — T}, we introduce
the series of random variabl&g = B;, — T}, and it's cumulative distribution function
(CDF)U(n). Taking into account the distribution &f;, and Ay, calculations show that
U(n) simplifies to

n

Un) =Pr[By— A, <n] =Y b(i)(1—-p"" ) +p "'B(p), (8

i=1

where the sum over disappears ilx < 0, and B(z) is the probability generating
function of By, defined asB(z) = E[z5] = 377 | b(n)z". Similarly, we consider (3)
to obtain the CDF ofd;, A(n), as

A(n) =Pr[A, <n]=1-p"t", n>0, 9)

and zero whem < 0. Adopting these notations, (7) can be stated as

ﬁij = U(wj - wi) — U(Wj_l — wi) (10)

+[1 = U(wy —wi)][A(wy —wj1 — 1) = A(wy —wj —1)]

Combining the last three expressions, we obtain an explkgtession for the coef-
ficientsg;;, in terms of the (given);, b(n) andp.

From here, we obtain the vector of the waiting times as thenabzed left eigen-
vector [w(n)] of the matrix[3;;], associated with the eigenvalue 1, that is to satisfy
w(n) = Z;V:Ow(j)ﬁjn, 0 < n < N. This eigenvector can easily be obtained numer-
ically, posing no problem for the smaN we are interested in. It contains thé + 1
different steady-state waiting time probabilities

klim PiWi = wy] =PIW =w,] =w(n), 0<n<N. (11)
From this, we can also define a mean waiting tinf/E= Zfil w(?)w;.

3.2 LossRatio

Up to now, we considered only bursts that were accepted, @ &hose to leave the
dropped bursts unnumbered. We now focus on the burst Ideq k&), defined as the
fraction of arriving bursts that is dropped, and study thavailable period, associated
with an accepted burgt, in two cases. If on the one hand, the arrival of burstoes
not push the system into unavailability, then the unavélgieriod following burst:
equals zero. This implies that, the time slot after the atf burstk, a new arrival can
already be accepted. In terms of the involved rv's, this rméhatiVy, + B, — 1 < wy.
On the other hand, if the unavailable period following burss larger than zero,
thenWy, + B — 1 > wy. Now, it takes the system a number of slots equdlitp+
B, — wy — 1, to become available again. The last measure is the unblajeriod
following burstk, under the conditiori?,, + By — 1 > wy. Combination of both
cases leads to the conclusion that the unavailable pedtldwing burstk, is given



by (Wi + Br, — wy — 1)T, where(z)* is shorthand formaz{0, z}. Invoking the
memoryless nature of the arrival process, we can write dowexaression for EX;],
the average number of lost bursts during the unavailablegé&vllowing burstk,

E[Xk] =p- E[(Wk + By —wn — 1)+]. (12)
With (4) and (11), this becomes

WN —W;

N
E[Xe] =p- |EBJ+EW] —wy —1=Y w(i) Y b(j)(j+wi—wy—1)
i=0 j=1

Now, it suffices to note that, with every accepted burst, almemof EX}] bursts on
average is dropped, resulting in a burst loss ratio (LR)

LR = E[X,]/(1 + E[Xy]).

4 Numerical Results and Discussion

With the above results at hand, one can easily study the ingfahe various design
parameters on loss performance. More specifically, onessardetermine optima for
the granularity, which are values that yield a minimal bdwoss ratio. While similar
curves already occur in [6] faV = 20, the approximation applied there lost accuracy
for small V. As such, the examples given here yield additional inforomafor the case

of smaller (more realistic) buffer sizes. We look at four rexdes.

1E+O T T T T T T
0 50 100 150 0
D 1E-1-

1E-2
1E-3 1

N=5
1E-44 LR 1E-54 LR

(a) geometric burst size distribution (b) deterministic burst size distribution

Fig. 1. Loss ratio as function of the FDL granularity (slots), forieas buffer sizesV, burst size
distributions (a) and (b), both with[B] = 50 slots, for a loach = 0.2.

In both panes of Fig. 1, we assess the impact of a small bufferom loss perfor-
mance. They show the burst loss ratio (LR) as a function ofythaularity D, for an



equidistant delay line setting/B] = 50, and a load op = 0.2. The left pane displays
the situation for geometric burst size distribrution, witie expected rise of the loss
ratio, when the buffer sizé&V decreases. Also, it can be seen that the LR lowers for
increasing granularity, and only starts to rise againfolarger than about 150 slots.
Considering the five curves together, the figure suggestdhibeoptimal granularity,
for a given load, only slightly increases when the buffeesapproaches its minimum
of N = 1. Results for higher loads, not included here, confirm thatittluence of
diminishing buffer size on optimal granularity is but weakspecially if compared to
the impact of variations in the load. The latter is illusdécin [6], and is much stronger
than the influence observed here.

On the right pane of Fig. 1, we have the same setting, for fixesdtisizes, EB] =
B = 50. Again, a smaller buffer suffers more loss, but now the optatter in a more
surprising way. More precisely, the “notchesat= (B —1)/n,n =1,2,..., known
from previous work, are not uncountable (as was the case]ifofan infinite-sized
buffer), but are limited in number t&/. Exactly N notches occur for each curve, at
D= (B-1)/n,n=1,2,...N. Since itis known from [6] that these values correspond
to optima (withD = B — 1 being the optimum for low load, an? = (B — 1) /2, then
(B—1)/3,... for increasing load), we verified and found that the $§pbtential optima,
for aload0 < p < 1, is indeed limited to (at the maximum) the number of fibers.
Also, it was found that the same optimum shift as known froptd&es place, but now
only over the available values: fir&t = B — 1 for low load, thenD = (B — 1)/2 for
increasing load ifV > 2, and so on iftN > 3...

T T T 1E+0 T T T

1E-1+

1E-34 LR p=0,2 1E-24 LR
(a) various uniform burst size distributior  (b) equidistant (continuous) or not (dashed)
Fig. 2. Loss ratio as function of the FDL granularity (slots), fdiE = 50 slots, with (&) uniform

burst size distributions (various radj) and (b) different burst size distributions for an equialgt
and non-equidistant setting, load= 0.5.

To verify if the optima for deterministic burst sizes als@bgto varying burst sizes,
we consider a uniform burst size distribution with radipisthat has a mean burst size



E[B] = 50, and is uniform within the rangé0 — @, 50+ Q]. For small@, this distribu-
tion resembles the deterministic distribution. As sucls sletting allows to verify what
influence variances on the burst size have on loss perfoendmé&ig. 2, the left pane
compares the performance of an optical buffer of size-= 3 for three uniform distri-
butions, having a narrow rang€@ (= 5, range[45, 55]), an intermediate rang€)(= 25,
range(25, 75]) and a broad range&) = 49, rangel1, 99]), and this for load = 0.2,
p = 0.4, respectively. For the narrow-ranged one, the curves leok similar to those
of the deterministic distribution, and the same optimunuathD = B — 1 shows.
The curves for the intermediate-ranged and broad-rangssl steow that increasing
makes the granularity optimum shift toward higher valué&ast for load = 0.2 and
p = 0.4. Curves not included here, for higher load, show that thexapfor a narrow
range (small)) concentrate around the limited set= (B — 1)/n,n = 1,2,... N,
known from the deterministic distribution, while for larg®@, the optimum only gradu-
ally decreases.

Choosing non-equidistant lengths for the delay lines caoime cases provide bet-
ter performance. As is shown in [11] for deterministic buwiges, a non-equidistant set
of FDLs can outperform an equidistant set of the same sizeieMer, it turns out that
this happens only when the load rises above a certain vadbuexample60.17%, for
N =10, B = 20, D = 19). Further, even when the non-equidistant one outperforms
the equidistant one, the performance gain is rather smai.Said, non-equidistant set-
tings remain interesting, since for more general assumgf{jcorrelated arrivals, multi-
wavelength output), the performance gain might be largartitie right pane of Fig. 2,
we chose non-equidistant FDL lengths in a way similar to [%dfh shortened lengths
for the largest lines. An equidistant set (continuous csinand non-equidistant set
(dashed curves) are considered, for a buffer &ize- 5, loadp = 0.5, and the burst
size distributions geometric, deterministic and uniforgh=€ 49). The non-equidistant
set has FDL length®, 2D — 2, 3D — 3, 4D — 4, 5D — 8. The curves show how
the non-equidistant set just outperforms the equidistaat for geometric and uniform
burst size distribution, while the opposite is true for aetletinistic burst size distribu-
tion. Although not included here, figures for the same sgitiar a load ofp = 0.3,

p = 0.6 andp = 0.8 resp., show the same qualitative result, while the perfagea
difference itself always remains small.

5 Conclusions

Unlike previous work, we have studied an optical buffer bysidering only the waiting
times, that correspond to the lengths of the Fiber Delay4.(f®Ls). This straightfor-
ward approach allowed us to obtain exact results for a smafiptitional load, espe-
cially for small buffers. Without posing restrictions orettengths of these lines, we
constructed a model valid for a Bernoulli arrival procesy] a general burst size dis-
tribution, based on the analysis of the involved Markov nh@he results of the latter
we used to obtain (i) the steady-state waiting time proliadsland, by considering the
unavailable periods, (ii) the loss ratio.

The presented performance graphs show the impact of redwdfs=at size on per-
formance, and the associated optimal value for the gratylsvhile the optimum for



geometric burst size distributions hardly changes whenomett the buffer size, the
optimum for a deterministic burst size distribution doearue. Also, a study of a uni-
form distribution showed how smaller and larger variatioousad an average burst size
impacts performance. Finally, performance results fora@guidistant set were com-
pared to those of an equidistant set.

Concluding, the model presented here is rather elementaitsiapproach, and

therefore provides a basic tool, ready to use for optimizattudies. The extension
of the model toward (i) multi-wavelength systems, (ii) @ated arrivals, we consider
challenging, and would surely lead to a more profound insigthe operation of optical
buffers.
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