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Abstract. Optical Burst Switching proposes a future-proof alternative to the cur-
rent electronic switching in the backbone. The involved optical buffers are imple-
mented with a set of Fiber Delay Lines, and suffer serious performance loss,
when compared to RAM. Various existing models trace this loss, but either lack
generality, accuracy, or effectiveness.
The optical buffer model we constructed is valid for generalline lengths and burst
sizes. An effective approach allowed to strongly reduce thesolution’s complexity,
while remaining exact. This document presents the key formulas and performance
graphs. The obtained model serves as a basic optimization tool, yielding results
fast.
keywords: OBS, optical buffer, FDL, fiber delay lines, discrete-time optimization.

1 Introduction

In a decade where bandwidth-consuming web services (with YouTube.com as a fash-
ionable example) and peer-to-peer data exchange are working their way into everyday
life, backbone infrastructure needs to be prepared for thisever-increasing bandwidth
demand. Although data packets travel through the backbone in the form of light, they
are still converted into electricity at every hop, in order to extract header information,
buffer them, convert them back to light and transmit them to the next hop. Since this
conversion is expected to be the bottleneck in the near future, the research community
proposes alternative switching approaches, such as Optical Burst Switching (OBS) [1]
and Optical Packet Switching (OPS) [2].

Just like conventional switches, optical switches need to resolve contention. Even
without internal blocking, this arises inevitably, whenever two or more bursts (or pack-
ets) head for the same output at the same time. In general, wavelength conversion and
buffering offer the most viable solutions to date.

Since light cannot be frozen, optical buffering is implemented by sending the bursts
through sufficiently long pieces of fiber, often referred to as Fiber Delay Lines (FDLs).
An optical buffer is thus a set of FDLs, each with different lengths. This way of im-
plementing, though implementable with off-the-shelf components, has two drawbacks
if compared to electronic RAM memory. On the one hand, optical buffers cannot re-
alize all possible delays, which results in performance loss. Incoming bursts can only
undergo delays equal to the length of one of the lines. For this reason, some capacity
will be lost on the outgoing channel because, even when some bursts (or packets) are



present in the buffer, they may not be available yet for transmission. The ensuing pe-
riods during which the outgoing channel remains unused, despite it’s availability, are
referred to as voids. They account for additional waiting time for the burst, and thus
lead to increased loss. On the other hand, optical buffers have a large physical size.
For typical OBS specifications (10 Gbps link, 100 kbit burst sizes), it takes about 2 km
of fiber to apply a delay for the duration of a burst, and the physical size of a buffer
thus grows quickly with the number of fibers. As such, an optical buffer typically has
a smaller storage capacity than a RAM buffer, which leads to further increased loss.
Therefore, quantifying this loss by means of an analytic model, and tuning the design
parameters for optimal performance, are main questions in the ongoing research.

A prime contribution in the study of optical buffer performance, is [3]. There, and
in [4, 5], Callegati studied an optical buffer with fiber lengths that are a multiple of a
basic unitD, that is,0, D, 2D, 3D, . . .(that is, equidistant line lengths). The type of
buffer he called a degenerate buffer, while for the basic unit D he coined the term
granularity. The analysis explored an approximation basedon the iteration of a clas-
sic M/M/1/N buffer model, and yields approximate results for memoryless burst sizes.
Extending the analysis to general burst sizes, and improving accuracy, [6] presents an
accurate performance model for a degenerate buffer in discrete time, that is extended
to continuous time in [7]. Murata and his co-authors [8] extend the approach of Calle-
gati to multiwavelength systems, while in [9, 10], a method is provided to account for
non-equidistant FDL lengths, that are not necessarely a multiple of the granularity. This
approach is examined more thoroughly by Lambert and her co-authors in [11], and also,
alternatively, in [12].

While much of the previous work is approximate [3, 6–8], here, exact performance
measures are obtained. The model we constructed yields exact formulas, that offer the
benefit of being valid for a broad range of parameter values atonce. Like in [11], we
worked in a discrete-time setting, with arbitrary sets of FDLs, and made no restric-
tive assumptions on the burst size distribution. Main difference with [11] is that we
obtained a more effective modeling approach, by focusing onthe waiting time only.
In [11], the analysis is based on the evolution of the scheduling horizon, and compu-
tational complexity depends on the length of the longest delay line. By ruling out the
scheduling horizon as a measure, our model’s complexity is independent thereof, and
depends solely on the number of delay lines, which is small inall practical cases. Our
modeling thus allows to easily compute results for any burstsize distribution, and any
size, and this also in the case of very long delay lines. Therefore, it allows to approxi-
mate the continuous-time case arbitrary close without augmenting the calculation time.

In Sect. 2, we present the FDL buffer setting and modeling variables. The analysis
of this model will be given in Sect. 3, proposing a simple Markov chain, and showing
how to derive the waiting time and loss characteristics fromthis. Some numerical exam-
ples follow in Sect. 4. The latter show how the optical buffer’s performance is strongly
impacted by the buffer size, in a way that depends much on the burst size distribution.



2 Stochastic Model

Here, we first focus on the FDL buffer setting, to then move to the assumptions of
the traffic model. Consequently, we look at the system equations, that are expressed in
terms of the waiting time of an arbitrary burst.

2.1 Optical Buffer Setting

The optical buffer under consideration is a set ofN + 1 Fiber Delay Lines, one of them
with lengthω0 = 0, andN lines with different lengthsωi, i = 1 . . .N . As the set of
lines are intented to resolve contention, it is necessary that contending bursts undergo
different delays. Therefore, a useful FDL set never contains the same length twice,
ωi 6= ωj for i 6=j . For notational convenience, we denote the set of FDL lengths as
Ω = {ω0, ω1, . . . ωN}, and we sort the line lenghts ascendingly,ω0 < ω1 < . . . < ωN .
Note that although a common choice is to choose equidistant lengths (ωi = i × D,
i = 0 . . .N ), the analysis is done for arbitrary lengths.

This buffer is located at the output of a backbone switch, andis dedicated to a single
outgoing wavelength. We consider bursts arriving at the buffer randomly, and possibly
overlapping in time. Since there is only one wavelength to queue for, all overlap during
transmission should be prevented. By means of a switching matrix that allows to send
any burst to any of theN + 1 delay lines, buffer control exercises a FIFO (First-In-
First-Out) scheduling discipline, and sends every burst toa sufficiently long delay line,
so as not to overlap with the one-but-last burst. If such a (sufficiently long) delay line is
present, the burst is accepted and enters; if not, the burst is dropped. The periods during
which the system can accept any possibly arriving burst, arecalled available periods;
the periods during which the system drops arriving bursts are called unavailable periods.

2.2 Arrivals and Acceptances

We work in a discrete-time setting, which implies that all random variables (rv’s) and
parameters (such as theωi) are expressed in multiples of a (generic) time slot length.
We assume the bursts arrive in the system according to a Bernoulli arrival process, with
parameterp. This implies that at the most one arrival occurs during a slot, andp gives
the probability of such a burst arrival, for an arbitrary slot.

Arriving bursts are either accepted upon arrival (during available periods), or drop-
ped (unavailable periods). We number the bursts in the orderat which they arrive, but
only assign an index to those bursts that are accepted. With each accepted burstk, we
associate an inter-arrival timeTk, that captures the time between thekth arrival and the
next burst arrival, being the arrival of (i) burstk + 1, if this next burst is accepted or (ii)
a burst without number, if this next burst is dropped. For theassumed Bernoulli arrival
process, these inter-arrival timesTk form a sequence of identical and independently
distributed (iid) random variables (rv’s) that have a common geometric distribution,
with parameterp

Pr[Tk = n] = t(n) = p · p̄n−1, n ≥ 1. (1)



Here,p̄ is the commonly adopted shorthand for1 − p. The inter-acceptance timeAk

is defined as the time between thekth acceptance and the(k + 1)th, and is in general
larger (and never smaller) thanTk.

To track the system’s performance in an easy way, we considertwo mutually exclu-
sive events, for an arbitrary accepted burstk.

Next-Accept. The burst that arrives just after thekth burst is accepted, and
counted as burstk + 1. The inter-acceptance timeAk is identical toTk, and thus, it
follows from (1) that

Pr[Ak = n|Next-Accept] = t(n) = p̄ · pn−1, n ≥ 1. (2)

Next-Drop. The burst that arrives just after burstk is dropped. Now, the burst
following burstk is not assigned an index, and possibly, even more bursts are dropped
before burstk + 1 is accepted. The inter-acceptance timeAk clearly differs from the
inter-arrival time, and has a more complicated probabilitydistribution. Luckily, the lat-
ter need not be tracked, and we rely on an additional measure:the reactivation timẽAk,
defined as the time between the end of the unavailable period following thekth burst,
and the arrival of burstk + 1. Note that the reactivation time is only relevant if the as-
sociated burstk effectively causes burst loss, by driving the system into anunavailable
state. Invoking the memoryless nature of the arrival process, the reactivation time is
easy to trace, and intimately linked to the inter-arrival times (1),

Pr[Ãk = n|Next-Drop] = t̃(n) = p̄ · pn, n ≥ 0. (3)

The complementary use of the series of random variablesAk and Ãk suffices to
capture the timing aspects of arrival and acceptance, relevant for our analysis.

2.3 General Burst Sizes

For the characterization of the burst sizes, we adopt the mentioned numbering of bursts,
and so thekth burst has a burst sizeBk. The burst sizes, just like the inter-arrival times,
form a sequence of iid rv’s with a common distribution, but have no further restriction
on their distributions. Therefore, we consider general probabilities

Pr[Bk = n] = b(n), n ≥ 1, (4)

that are arbitrary, except for the conditions that any useful probability mass function has
to comply with:0 ≤ b(n) ≤ 1,

∑
n b(n) = 1.

2.4 System Equations

As mentioned, the system’s evolution can be captured by means of the waiting time of
a burst only. Still using the same numbering, we associate the waiting timeWk with the
kth burst, and define it as the time between the acceptance of burst k, and the start of
it’s transmission. Again considering that either the next burst is accepted or dropped,
we have



Next-Accept. The condition for this to happen, in terms of waiting times and
FDL lengths, is that the burst that arrives just after thekth burst can be provided a
sufficiently long delay, that is,

Wk + Bk − Tk ≤ ωN .

Then,Ak equalsTk, and

Wk+1 = ⌈Wk + Bk − Ak⌉Ω, (5)

where we adopted the notation⌈x⌉Ω = inf{y ∈ Ω, y ≥ x}, x ≤ ωN .
Next-Drop. Now, the burst that arrives just after thekth burst can not be provided

a sufficiently long delay, and

Wk + Bk − Tk > ωN .

As a result of this (and of the memoryless nature of the arrival process), the waiting time
of burstk + 1 no longer relates toWk, andWk+1 is characterized by the reactivation
time, through

Wk+1 = ⌈ωN − Ãk⌉Ω. (6)

These two system equations (5) and (6), together with their respective probability
mass functions (2) and (3), provide the input for the analysis.

3 Analysis

In this section, the limited set of waiting times serves a state variable for a Markov
chain, of which we trace the transition probabilies. Inversion yields the waiting time
probabilities of accepted bursts, and this in turn allows toextract the loss ratio.

3.1 Markov Chain for Waiting Time

Before delving into the analysis, we note that the waiting time can only take onN +
1 different ωi ∈ Ω. Therefore, it is an attractive state variable for a Markov chain
approach to the system.

The Markov chain we consider consists ofN + 1 states, that correspond toN + 1
possible waiting timesωi, i = 0 . . .N . It is characterized by a transition matrix with
probabilitiesβij ,

βij = Pr[Wk+1 = ωj |Wk = ωi], 0 ≤ i, j ≤ N.

For ease of notation, we introduceω−1 = −∞. We splitβij in two separate contribu-
tions, that correspond to the events discussed in Sect. 2.4.

βij = Pr[ωi + Bk − Tk ≤ ωN , ωj = ⌈ωi + Bk − Ak⌉Ω]

+Pr[ωi + Bk − Tk > ωN , ωj = ⌈ωN − Ãk⌉Ω]

= Pr[ωj−1 − ωi < Bk − Tk ≤ ωj − ωi]

+Pr[Bk − Tk > ωN − ωi]Pr[ωN − ωj−1 > Ãk ≥ ωN − ωj ]. (7)



Since the burst sizesBk and inter-arrival timesTk only occur asBk −Tk, we introduce
the series of random variablesUk = Bk − Tk, and it’s cumulative distribution function
(CDF)U(n). Taking into account the distribution ofBk andAk, calculations show that
U(n) simplifies to

U(n) = Pr[Bk − Ak ≤ n] =

n∑

i=1

b(i)(1 − p̄i−n−1) + p̄−n−1B(p̄), (8)

where the sum overn disappears ifn ≤ 0, andB(z) is the probability generating
function ofBk, defined asB(z) = E[zBk ] =

∑
∞

n=1
b(n)zn. Similarly, we consider (3)

to obtain the CDF of̃Ak, Ã(n), as

Ã(n) = Pr[Ãk ≤ n] = 1 − p̄n+1, n ≥ 0, (9)

and zero whenn < 0. Adopting these notations, (7) can be stated as

βij = U(ωj − ωi) − U(ωj−1 − ωi) (10)

+[1 − U(ωN − ωi)][Ã(ωN − ωj−1 − 1) − Ã(ωN − ωj − 1)]

Combining the last three expressions, we obtain an explicitexpression for the coef-
ficientsβij , in terms of the (given)ωi, b(n) andp.

From here, we obtain the vector of the waiting times as the normalized left eigen-
vector [w(n)] of the matrix [βij ], associated with the eigenvalue 1, that is to satisfy
w(n) =

∑N

j=0
w(j)βjn, 0 ≤ n ≤ N . This eigenvector can easily be obtained numer-

ically, posing no problem for the smallN we are interested in. It contains theN + 1
different steady-state waiting time probabilities

lim
k→∞

Pr[Wk = ωn] = Pr[W = ωn] = w(n), 0 ≤ n ≤ N. (11)

From this, we can also define a mean waiting time E[W ] =
∑N

i=1
w(i)ωi.

3.2 Loss Ratio

Up to now, we considered only bursts that were accepted, and even chose to leave the
dropped bursts unnumbered. We now focus on the burst loss ratio (LR), defined as the
fraction of arriving bursts that is dropped, and study the unavailable period, associated
with an accepted burstk, in two cases. If on the one hand, the arrival of burstk does
not push the system into unavailability, then the unavailable period following burstk
equals zero. This implies that, the time slot after the arrival of burstk, a new arrival can
already be accepted. In terms of the involved rv’s, this means thatWk + Bk − 1 ≤ ωN .

On the other hand, if the unavailable period following burstk is larger than zero,
thenWk + Bk − 1 > ωN . Now, it takes the system a number of slots equal toWk +
Bk − ωN − 1, to become available again. The last measure is the unavailable period
following burst k, under the conditionWk + Bk − 1 > ωN . Combination of both
cases leads to the conclusion that the unavailable period, following burstk, is given



by (Wk + Bk − ωN − 1)+, where(x)+ is shorthand formax{0, x}. Invoking the
memoryless nature of the arrival process, we can write down an expression for E[Xk],
the average number of lost bursts during the unavailable period following burstk,

E[Xk] = p · E[(Wk + Bk − ωN − 1)+]. (12)

With (4) and (11), this becomes

E[Xk] = p ·


E[B] + E[W ] − ωN − 1 −

N∑

i=0

w(i)

ωN−ωi∑

j=1

b(j)(j + ωi − ωN − 1)


 .

Now, it suffices to note that, with every accepted burst, a number of E[Xk] bursts on
average is dropped, resulting in a burst loss ratio (LR)

LR = E[Xk]/(1 + E[Xk]).

4 Numerical Results and Discussion

With the above results at hand, one can easily study the impact of the various design
parameters on loss performance. More specifically, one wants to determine optima for
the granularity, which are values that yield a minimal burstloss ratio. While similar
curves already occur in [6] forN = 20, the approximation applied there lost accuracy
for smallN . As such, the examples given here yield additional information, for the case
of smaller (more realistic) buffer sizes. We look at four examples.
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Fig. 1. Loss ratio as function of the FDL granularity (slots), for various buffer sizesN , burst size
distributions (a) and (b), both with E[B] = 50 slots, for a loadρ = 0.2.

In both panes of Fig. 1, we assess the impact of a small buffer size on loss perfor-
mance. They show the burst loss ratio (LR) as a function of thegranularityD, for an



equidistant delay line setting, E[B] = 50, and a load ofρ = 0.2. The left pane displays
the situation for geometric burst size distribrution, withthe expected rise of the loss
ratio, when the buffer sizeN decreases. Also, it can be seen that the LR lowers for
increasing granularity, and only starts to rise again forD larger than about 150 slots.
Considering the five curves together, the figure suggests that the optimal granularity,
for a given load, only slightly increases when the buffer size approaches its minimum
of N = 1. Results for higher loads, not included here, confirm that the influence of
diminishing buffer size on optimal granularity is but weak,especially if compared to
the impact of variations in the load. The latter is illustrated in [6], and is much stronger
than the influence observed here.

On the right pane of Fig. 1, we have the same setting, for fixed burst sizes, E[B] =
B = 50. Again, a smaller buffer suffers more loss, but now the optima alter in a more
surprising way. More precisely, the “notches” atD = (B − 1)/n, n = 1, 2, . . . , known
from previous work, are not uncountable (as was the case in [6] for an infinite-sized
buffer), but are limited in number toN . Exactly N notches occur for each curve, at
D = (B−1)/n, n = 1, 2, . . .N . Since it is known from [6] that these values correspond
to optima (withD = B − 1 being the optimum for low load, andD = (B − 1)/2, then
(B−1)/3,... for increasing load), we verified and found that the set of potential optima,
for a load0 ≤ ρ ≤ 1, is indeed limited to (at the maximum) the number of fibers.
Also, it was found that the same optimum shift as known from [6] takes place, but now
only over the available values: firstD = B − 1 for low load, thenD = (B − 1)/2 for
increasing load ifN ≥ 2, and so on ifN ≥ 3...
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Fig. 2. Loss ratio as function of the FDL granularity (slots), for E[B] = 50 slots, with (a) uniform
burst size distributions (various radiiQ) and (b) different burst size distributions for an equidistant
and non-equidistant setting, loadρ = 0.5.

To verify if the optima for deterministic burst sizes also apply to varying burst sizes,
we consider a uniform burst size distribution with radiusQ, that has a mean burst size



E[B] = 50, and is uniform within the range[50−Q, 50+Q]. For smallQ, this distribu-
tion resembles the deterministic distribution. As such, this setting allows to verify what
influence variances on the burst size have on loss performance. In Fig. 2, the left pane
compares the performance of an optical buffer of sizeN = 3 for three uniform distri-
butions, having a narrow range (Q = 5, range[45, 55]), an intermediate range (Q = 25,
range[25, 75]) and a broad range (Q = 49, range[1, 99]), and this for loadρ = 0.2,
ρ = 0.4, respectively. For the narrow-ranged one, the curves look very similar to those
of the deterministic distribution, and the same optimum around D = B − 1 shows.
The curves for the intermediate-ranged and broad-ranged case show that increasingQ
makes the granularity optimum shift toward higher values, at least for loadρ = 0.2 and
ρ = 0.4. Curves not included here, for higher load, show that the optima for a narrow
range (smallQ) concentrate around the limited setD = (B − 1)/n, n = 1, 2, . . .N ,
known from the deterministic distribution, while for larger Q, the optimum only gradu-
ally decreases.

Choosing non-equidistant lengths for the delay lines can insome cases provide bet-
ter performance. As is shown in [11] for deterministic burstsizes, a non-equidistant set
of FDLs can outperform an equidistant set of the same size. However, it turns out that
this happens only when the load rises above a certain value (for example60.17%, for
N = 10, B = 20, D = 19). Further, even when the non-equidistant one outperforms
the equidistant one, the performance gain is rather small. This said, non-equidistant set-
tings remain interesting, since for more general assumptions (correlated arrivals, multi-
wavelength output), the performance gain might be larger. For the right pane of Fig. 2,
we chose non-equidistant FDL lengths in a way similar to [11], with shortened lengths
for the largest lines. An equidistant set (continuous curves) and non-equidistant set
(dashed curves) are considered, for a buffer sizeN = 5, loadρ = 0.5, and the burst
size distributions geometric, deterministic and uniform (Q = 49). The non-equidistant
set has FDL lengthsD, 2D − 2, 3D − 3, 4D − 4, 5D − 8. The curves show how
the non-equidistant set just outperforms the equidistant one, for geometric and uniform
burst size distribution, while the opposite is true for a deterministic burst size distribu-
tion. Although not included here, figures for the same setting, for a load ofρ = 0.3,
ρ = 0.6 andρ = 0.8 resp., show the same qualitative result, while the performance
difference itself always remains small.

5 Conclusions

Unlike previous work, we have studied an optical buffer by considering only the waiting
times, that correspond to the lengths of the Fiber Delay Lines (FDLs). This straightfor-
ward approach allowed us to obtain exact results for a small computional load, espe-
cially for small buffers. Without posing restrictions on the lengths of these lines, we
constructed a model valid for a Bernoulli arrival process, and a general burst size dis-
tribution, based on the analysis of the involved Markov chain. The results of the latter
we used to obtain (i) the steady-state waiting time probabilities and, by considering the
unavailable periods, (ii) the loss ratio.

The presented performance graphs show the impact of reducedbuffer size on per-
formance, and the associated optimal value for the granularity. While the optimum for



geometric burst size distributions hardly changes when we lower the buffer size, the
optimum for a deterministic burst size distribution does change. Also, a study of a uni-
form distribution showed how smaller and larger variation around an average burst size
impacts performance. Finally, performance results for a non-equidistant set were com-
pared to those of an equidistant set.

Concluding, the model presented here is rather elementary in it’s approach, and
therefore provides a basic tool, ready to use for optimization studies. The extension
of the model toward (i) multi-wavelength systems, (ii) correlated arrivals, we consider
challenging, and would surely lead to a more profound insight in the operation of optical
buffers.
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