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Abstract— In Optical Burst Switching and Optical Packet
Switching, contention of bursts (or packets) can be dealt with
most effectively through a combination of wavelength conversion
and optical buffering. While this is generally accepted in the
optical networking community, and validated through simulation,
analytic performance results for optical buffers were limited
to the single-wavelength case, and the performance gain from
wavelength conversion was never traced analytically for general
assumptions.

Quantifying this gain analytically is the scope of the current
contribution. Relying on generating functions, we developed a
Fiber Delay Line (FDL) buffer model with wavelength conversion,
which assumes the buffer located at the output of an optical
switch, having access to multiple wavelengths. This document
presents our model, validates its accuracy, and compares its
output for different burst sizes (fixed or varying), scheduling
policies and buffer sizes. Several numerical examples assess the
applicability of our approximation, and show that our approach
yields accurate results.

Index Terms— optical fiber delay lines, wavelength division
multiplexing, queueing analysis, stochastic processes, buffers.

I. INTRODUCTION

How are future networks to cope with ever-increasing
traffic demands? With new, bandwidth-consuming applications
(Video-On-Demand, interactive television over VDSL,...) head-
ing towards us in the very near future, backbone infrastructure
is bound to evolve fast, so as to keep up with demand.

State-of-the-art fiber links unleash huge capacities. How-
ever, whenever a burst (or packet) is switched to an alternate
route, or buffered, it is first converted to the electronic domain,
then handled electronically, and finally converted back to light.
This becomes infeasible in the near future, for reasons of
port count figures, required switching speeds and the related
power consumption [1]. All-Optical Packet Switching (OPS)
[2] and Optical Burst Switching (OBS) [3] promise to alleviate
these problems, and have received considerable attention over
the last years, as e.g. witnessed by research projects such as
LASOR [1], [4], ATMOS [5], KEOPS [6], DAVID [7] and
LASAGNE [8].

A key issue in optical switching is contention resolution.
This arises inevitably, even without internal blocking, when-
ever two or more packets contend for the same outgoing
channel at the same time. Possible remedies for this are
deflection routing, wavelength conversion and buffering [9],
of which the latter two are preferred. Wavelength conversion

is an obvious choice, as it capitalizes on multiplexing gain.
Buffering poses a challenging problem [4]: as light cannot
be stored, it has to be delayed by means of Fiber Delay
Lines (FDLs), which cannot realize all delay values exactly,
but typically only a multiple of D, the so-called granularity
of the system. Clearly, as not all delays are realizable, some
capacity is lost on the outgoing channel, because, even when
some packets or bursts are present in the buffer, they may
not be available yet for transmission. The ensuing periods
during which the channel remains unused, are called voids.
This is opposed to the situation in a Random Access Memory
(RAM) buffer, where bursts are available for access at any
(random) instant, and no voids occur. This difference results
in performance loss, that can be mitigated only if one chooses
the involved design parameters with care.

The objective of this contribution is to evaluate the per-
formance of a heterogeneous contention resolution scheme
for optical switching that uses FDL buffering, in addition to
wavelength conversion. Performance is measured in terms of
the burst loss probability (BLP). The emphasis lies, as in
previous work, on FDL buffering. However, as this works
best in combination with wavelength conversion, we incor-
porate both into one model, by adopting the model of [10]
without wavelength conversion, to accommodate for multiple
wavelengths. In [11], [12], work has already been done on
(limited) wavelength conversion, by means of simulations. In
contrast, we study performance analytically, by a discrete-time
queueing model, offering the benefit of being valid for a broad
range of parameter values at once.

In literature, many authors already analyzed single-
wavelength optical buffers: the fore-mentioned [10], but also
[13]–[21]. Callegati [13] provides an approximate analysis for
the optical buffer with exponentially-distributed burst sizes
and inter-arrival times. Making use of general notions of
queueing theory, an iterative procedure is constructed which
yields performance measures for the infinite and finite optical
buffer. An exact analysis of the discrete-time optical infinite-
capacity buffer with geometric inter-arrival times and general
burst-sizes is presented in [14]. In [18], the finite counterpart
thereof is treated in an exact manner in both discrete-time
and continuous-time. Also in [18], a closed-form solution
for waiting times and loss probability is presented in case
of upper-bounded burst-size distribution. The extension to
generally distributed inter-arrival times and burst-size dis-



tributions is the subject of [10] and [15] for infinite and
finite buffers respectively. Infinite optical buffers with batch
Markovian arrivals and fixed burst-sizes were investigated in
[17]. Finally, we mention that similar models are also analyzed
in a completely different context. Lakatos [19], [20] studied
the stability of the “optical buffer problem” in the context
of airplane landings, where arriving airplanes must orbit the
airport in case it is occupied by previously arrived airplanes.
In this context, the granularity corresponds to the cycle time
needed for one orbit, the airplanes to bursts, the single server
to the airport, and the burst length itself to the landing times.
A recent contribution in which also the authors have also been
involved [21] presents stability results of a generalized setting
with general line lengths, general inter-arrival time and burst
size distribution.

In contrast to the single-wavelength case, multiple-
wavelength buffers have attracted less attention. In [22], Mu-
rata and his co-authors are the first to deal with wavelength
conversion through analysis, by extending Callegati’s approach
to multiple wavelengths. However, they only consider a sit-
uation where burst lengths are distributed according to a
negative-exponential distribution, while our model allows for
any burst-size distribution. Further, these authors assume an
optical buffer with full wavelength conversion: buffer control
can convert incoming bursts to every wavelength and every
FDL, given that it is available. As discussed below, we have
adopted full wavelength conversion in this paper as well.
Optical buffers with limits on the number of wavelength
converters [11] or on their wavelength conversion capabilities
[23] have been studied by means of simulation, and, most
recently, also analytically [24], [25]. In general, limitations on
wavelength conversion capabilities can severely degrade per-
formance. However, it is known that this degradation remains
small if limitations are not too tight, that is, if there are a
sufficient number of wavelength converters [11], or sufficient
wavelength conversion capability [23].

The remainder of this paper is organized as follows. In
Section II, we explicate the FDL buffer setting. We high-
light three different possible scheduling policies: Round-Robin
(RR), Join-the-Shortest-Queue (JSQ), and Random (RND). We
also discuss the arrival process, and the modeling thereof in
terms of probability generating functions (pgf’s). In Section
III, we analyze the system, in the case where we apply a RR
or RND policy. We only foreground the crucial steps, and refer
to the appendix for details. In Section IV, the analytic results
are backed by simulations, and find that the applied heuristic is
very accurate. Further, we present simulation results for JSQ.
Considering different burst sizes (fixed or varying) and buffer
sizes, we find that, for fixed burst sizes, RR approximates
JSQ very well. We also focus on the impact of an increase
in the number of wavelengths on loss performance. Finally,
conclusions are drawn in Section V.

II. STOCHASTIC MODEL

A. FDL Buffer

We consider an output buffer of a multiple-wavelength
optical switch. Time is discrete, arrivals and departures are

synchronized with respect to slot boundaries. Optical bursts
arrive at the switch at the different inputs and on different
wavelengths and are routed through a switching element to
the different outputs and wavelengths. The switch is assumed
to be an ideal non-blocking switch and the output buffer under
consideration is dedicated to c wavelengths on an output link.
If none of the destination output wavelengths are available,
the bursts are delayed by sending them through one of the
available FDLs which can carry at least c wavelengths as well.
There is no FDL buffer recirculation; a burst can traverse at
most one FDL and is dropped if no suitable FDL can be found.
For a practical implementation of such a switch, the reader is
referred to [26].

The FDL buffer can only realize delays that are multiples of
the granularity D (0×D, 1×D, 2×D, . . .). A buffer of this
type is called degenerate, a term coined in [13]. We further
define the size N of the buffer as the index of the largest delay
line, and assume that also a delayless connection is present in
the buffer; this brings the total number of connections in a
buffer of size N to N + 1.

As we work in discrete-time, D is (as all involved variables)
expressed in slots. To have an idea of typical values for the
granularity, consider OBS, and a granularity equal to the mean
burst size. Considering a 10 Gbps link per wavelength, and
burst sizes of 100 kbit on average, we obtain a delay of
about 10 µs. This corresponds to about 2 km of fiber for
D, 4 km for 2 × D, . . . Also, notice that the discrete-time
assumption is not restrictive. The slot length can be chosen,
sufficiently small slot lengths yield accurate approximations
for the corresponding continuous model; see [16] where a limit
procedure is developed which translates discrete-time results
into corresponding continuous-time results.

As mentioned in the previous section, an FDL buffer suffers
from performance loss due to voids, that occur whenever the
outgoing channel remains unused, while bursts are present in
the buffer, but not yet available. Allowing for newly arriving
bursts to be scheduled inside such voids can mitigate their
impact, but calls for a far more complex scheduling (a void-
filling policy) and allows for bursts to overtake one another,
i.e., they might arrive out-of-order at the end nodes of the
network. We, however, will always assign delays to newly
arriving bursts, so as not to overlap with previous ones, and
leave after all previously arrived ones.

B. Scheduling Policy
When buffer control detects that a number of bursts, say r

(0 ≤ r), want to be switched to the same output port at the
same time, contention does not necessarily arise. Some of the
wavelengths, say t (0 ≤ t ≤ c), are available immediately,
while the other ones (c− t in number) are already reserved by
other bursts (some of them being transmitted, others waiting
their turn in the buffer). As such, no bursts have to be buffered
if r ≤ t, and all can be transmitted directly, on separate
wavelengths. When r > t, t bursts can be transmitted directly,
and the others (r − t in number) are queued. As c different
wavelengths are available to queue for, a scheduling discipline
has to be adopted. What queue to join—each wavelength rep-
resents a separate queue—is decided upon by the scheduling



discipline. We consider here three possibilities, that are well-
known from classical (i.e., non-optical) buffers.
• Join-The-Shortest-Queue (JSQ): Here, in all circum-

stances, bursts join the shortest of the c queues. In other
words, the burst is routed through the shortest FDL which
is available on some wavelength. This policy is known to
be optimal for a large class of service time distributions
[27]. Of the three, this policy has the best performance
in terms of loss and delay, but in return has highest
implementation complexity since one needs to keep track
of the number of bursts in each queue.

• Round-Robin (RR): Whenever a burst is sent to queue
i, the next one is sent to queue i + 1, and so on until
queue c, that is followed by queue 1 again. Hence, the
burst is routed to the shortest FDL possible, given the
wavelength. Performance is less than for JSQ, but is
sometimes comparable, as will be shown below. Further,
hardware implementation complexity is low.

• Random (RND): Each burst is sent to one of the channels
in random order. Hence, a wavelength is selected at
random and the burst is routed to the shortest available
FDL for this wavelength. Performance is worst in this
case, because the load is not spread intelligently among
different queues, and one queue can have an overflow,
while another is almost empty. As such, performance is
equal to that of c separate single-wavelength buffers, that
receive a fraction 1/c of the total load. From the im-
plementation point-of-view, this performance weakening
occurs when bursts are passed on to the queues in a more
or less random order.

Our analysis yields analytical results for RR and RND. Our
method transforms the multi-wavelength optical buffer to c
identical single-wavelength optical buffers, by studying the
arrival process of the bursts at one of the single-wavelength
buffers. This approach is not feasible for JSQ, which is known
to be very hard to trace analytically, even in the case of
classical buffers [28]. Therefore, JSQ performance is obtained
by simulation.

C. Bernoulli Arrival Process

We assume that bursts arrive in the system according to a
Bernoulli arrival process with parameter p, the probability that
there is an arrival in a slot. This process is known to be mem-
oryless — no process state is involved — which significantly
simplifies the analysis. Bursts arrive in the system one by one,
with inter-arrival times that are distributed geometrically, the
geometric distribution being the discrete-time counterpart of
the negative exponential distribution. In the following, we no
longer consider the arrival process at the entire output port.
Instead, we transform the system’s arrival process to an arrival
process at the level of a single-wavelength buffer. As such, we
are able to model RND and RR with a queueing model for
a single wavelength. For RR, this comes at the price that the
arrival process for the single queue is no longer memoryless
as shown below.
• RND: Here, the arrivals in the buffer are selected from a

Bernoulli arrival process in a random manner. Therefore,
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Fig. 1. Evolution of Hn in time. A burst Bn arrives, and has to wait for
DdHn/De, so as to avoid contention with previously arrived bursts.

the same type of arrival process occurs at the level of
the single-wavelength buffer, and T is also distributed
geometrically with parameter p/c. The probability mass
function (pmf) and probability generating function (pgf)
of the inter-arrival times are given by,

Pr[Tn = k] =
p

c

(
1− p

c

)k−1

(k ≥ 1) ,

T (z) =
pz

c− (c− p)z
.

• RR: Here, for every c arrivals in the system, an arrival is
selected to join the given buffer. As such, the random vari-
able T is the sum of c different geometrically-distributed
random variables. This is the so-called negative-binomial
distribution (sometimes referred to as the Pascal distribu-
tion), which is the discrete-time counterpart of the Erlang
distribution. The pmf and pgf are given by,

Pr[Tn = k] =
(

k − 1
c− 1

)
pc (1− p)k−c (k ≥ c) ,

T (z) =
(

pz

1− p̄z

)c

.

D. Scheduling Horizon

Focusing on a single wavelength, we now introduce the
scheduling horizon which captures the "state" of the single-
wavelength buffer. The scheduling horizon at the beginning
of a slot is defined as the number of slots till all bursts that
are present in the optical buffer at that slot, are transmitted.
Now, assume that arriving bursts are numbered and let Hn

denote the scheduling horizon upon arrival of the nth burst.
Since no void filling is allowed, an arriving burst n has to be
buffered for at least Hn slots, the time needed for all previous
bursts in that queue to be transmitted. Since there is no FDL
for each possible Hn, bursts are scheduled to wait for a time
period Wn, that is a multiple of D, and is sufficiently long, i.e.,
Wn ≥ Hn. Depending on the size N , the burst is either queued
(Wn ≤ ND) or dropped (Wn > ND). Wn is the waiting time



in the given queue, of the nth burst. Mathematically, we have
that

Wn = D ·
⌈

Hn

D

⌉
(1)

The expression dxe is shorthand for the smallest integer greater
than or equal to x. Further, the nth burst has a burst size Bn,
that amounts to the time needed for its transmission. The time
between its arrival, and the next, is captured by the inter-arrival
time Tn. As a result, the evolution of the involved variables
can be captured by

Hn+1 = [Wn + Bn − Tn]+ , (2)

as illustrated in Fig. 1. The expression [x]+ is shorthand for
max(0, x). Equations (1) and (2) together fully capture the
behavior of the single-wavelength optical buffer.

E. Burst sizes

To analyze (1) and (2), we already imposed that the bursts
arrive in accordance with a Bernoulli arrival process. Addition-
ally it is imposed that the burst sizes Bn constitute a series
of independent and identically distributed random variables.
For further use, let B(z) denote their common probability
generating function. Although the analysis holds for any burst
size distribution, we consider the following distributions for
the numerical examples.

• Fixed burst sizes. Bursts thus are distributed according to
a deterministic distribution, with parameter B, equal to
the mean burst size E [Bn]. The pmf and associated pgf
are

Pr[Bn = k] = δk−B (k ≥ 1) , B(z) = zB .

where δi denotes the Kronecker delta, that is one if i = 0,
and zero everywhere else.

• Varying burst sizes. Bursts are distributed according to
a geometric distribution, with parameter q, and mean
E [Bn] = 1/q. The pmf and corresponding pgf are given
by,

Pr[Bn = k] = q (1− q)k−1 (k ≥ 1) ,

B(z) =
qz

1− (1− q)z
.

III. ANALYSIS

In this section, we analyze the queue associated with a
single wavelength, making use of the pgf approach. First, we
assume that the FDL buffer size N is infinite. Then, we use a
heuristic to move to finite systems, and derive an expression
for the burst loss probability in the finite FDL buffer. As the c
different queues all display similar behavior, the performance
measures are valid for the entire system.

A. Exact Result for Infinite System

Assume that the infinite size optical buffer is stable, this
means that the load is sufficiently low such that the scheduling
horizon does not grow unbounded. One can show that this is
the case if

E
[⌈

Bn − Tn

D

⌉]
< 0 . (3)

Under this condition, the distributions of Hn (and likewise,
for other variables involved) converge, for n → ∞, to
a unique stochastic equilibrium distribution, that no longer
relates to the initial condition of the system. Associated with
this distribution is a common pgf H(z). In the Appendix,
an exact expression is derived, under the assumption that the
inter-arrival times have a common rational pgf. Clearly, this
assumption is satisfied for the inter-arrival time distributions
for RND and RR.

The expectation in the stability condition (3) is not easy
to evaluate. However, the analysis of the optical buffer pro-
vides a practical way to obtain stability conditions. We can
characterize the case of unbounded growth by

lim
n→∞

Pr[Hn = 0] = H(0) = 0 ,

the expression for H(0) being obtained during the analysis.
From this, one defines a maximum tolerable arrival intensity
λmax, that puts an upper limit to the arrival intensity λ, defined
as 1/E [T ]. Using the results of the Appendix, it follows that
λmax is the solution to the implicit expression (implicit, as p,
or, λ, also occurs in the expression for T (z)),

1
λmax

= E [B] +
D − 1

2
+

D−1∑

k=1

B(εk)T (1/εk)
εk − 1

(4)

The symbols εk represent the D different complex Dth roots
of one, see the Appendix. The solution is thus function of
the FDL granularity D, and the (complete) pgf’s of both
inter-arrival and burst-size distribution, and can be found from
(4) with a simple bisection algorithm. Related, we define an
equivalent load, that is given by

ρeq = λ ·
(

E [B] +
D − 1

2
+

D−1∑

k=1

B(εk)T (1/εk)
εk − 1

)

Hence, the effect of voids is incorporated into an altered
definition of the load. Remark that ρeq equals one when the
arrival intensity reaches λmax, which in general happens for a
(classic) load ρ = λmax E [B] smaller than one. As mentioned,
infinite size optical buffers are thus unstable for lower loads,
compared to classical (RAM) buffers.

Given the expression for H(z), moments of the steady-
state scheduling horizon are easily obtained by means of the
moment-generating property of probability generating func-
tions. For example, the mean scheduling horizon upon arrival
of a burst in steady state is given by H ′(1). We however
mainly focus on the burst loss probabilities which are the
subject of the next subsection.



B. Approximate Result for the Finite System

Results up to now are valid for an optical buffer of infinite
size. Now, we derive the loss probability for a buffer of finite
size, with N + 1 delay lines. Like we did before in [14], [16]
(there referred to as “heuristic B”), we will rely on a heuristic
to make this transition, that is defined as

BLP ≈ (1− ρeq) · Pr[H > N ·D]
1− Pr[H > N ·D]

Here, H denotes the steady-state scheduling horizon in an in-
finite optical buffer and ρeq is the above-mentioned equivalent
load. This heuristic is motivated by the similarity in shape of
tail probability curves for infinite size buffers and burst loss
probability curves for finite capacity buffers. The accuracy of
this heuristic is demonstrated in section IV.

The tail probabilities Pr[H > N · D] can be obtained in
many different ways; here, we choose to apply a dominant pole
approximation. This approximation exploits the fact that the
asymptotic behavior of curves closely relates to the poles of
the probability generating functions with the smallest radius,
the so-called dominant poles. We first impose some (rather
general) restrictions on the distribution of B(z): assume that
B has a rational pgf. We adopt this convention from here on,
and note that it poses no problem for our application. Remark,
however, that the model up to now is valid for any B(z) with
E [B] < ∞. Under this additional assumption, tail probabilities
have a quasi-geometrical tail decay, with decay rate z0, as

Pr[H > N ·D] ≈ cst

zN ·D+1
0

with z0 the (single) dominant pole along the positive real
axis. Its value can easily be determined by means of a simple
bisection algorithm. The constant follows from the application
of residue theory and is, in its final form, given by

cst = − 1
z0

lim
z→z0

(W (z) · (z − z0))
D

zD
0 − 1

The limit in the above can easily be calculated explicitly. The
function W (z) relates to H(z), see Appendix, and both have
the same dominant poles. There are D of them, of the form
|z0| · εk, k = 0 . . . D− 1. How to obtain them is explained in
more detail in [10].

Applying the heuristic to the result of the appendix, we are
able to obtain numerical results for both RR and RND.

IV. NUMERICAL COMPARISON

At this point, we evaluate the performance of different
multi-wavelength buffer settings. Our scope here is twofold.
On one hand, we want to assess the accuracy of our analytic
results for RR and RND. On the other hand, we study the
relation between RR and JSQ, that will show to be intimate for
fixed-sized bursts. To do this, we consider all three scheduling
disciplines, varying and fixed burst sizes, and two buffer sizes.
In the remainder, the slot length is fixed to 100 ns.
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Fig. 2. For geometrically-distributed burst sizes, the three wavelength
assignment algorithms lead to much difference in terms of performance: JSQ
outperforms RR, that in its turn outperforms RND. This figure was obtained
for E [B] = 100 slots, ρ = 60%, c = 4, and N = 10.
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Fig. 3. Identical setting as in Fig. 2, except that here, N = 20.

A. Varying Burst Sizes

We first consider varying burst sizes, with a mean length
of 100 slots, in Fig. 2 (for buffer size N = 10) and Fig. 3
(N = 20). Making the same assumptions as in Section II-A
(100 kbit burst, 10 Gbps link per wavelength), this corresponds
to a mean burst size E [B] = 10 µs, and granularity values
ranging from 10 to 150 slots, about 3 km of fiber. The load
is fixed to 60%. Simulation results (sim) are calculated for D
equal to multiples of 10 slots, and analytic results (ana) for
all intermediate integer values. The number of wavelengths is
four (c = 4).
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Fig. 4. For deterministic burst sizes, JSQ and RR yield much better
performance than RND. However, the difference between JSQ and RR is
much less pronounced than in the case of geometrically-distributed burst sizes
(Fig. 2 and 3). This figure was obtained for E [B] = 100 slots, ρ = 60%,
c = 4, and N = 10.

Obviously, the main difference between the figures is in the
range of the BLP, and they further display a similar behavior.
In both figures, the analytic results for RND and RR both
match simulation results very well. This asserts the functioning
of our heuristic for varying burst sizes.

From the figure, it is obvious that RND is a policy that
is to be avoided, as both RR and JSQ perform significantly
better. Comparing JSQ and RR, the simulation shows that JSQ
outperforms RR by far, if burst sizes vary. Therefore, it is
understandable that JSQ often is the scheduling discipline of
practical interest. This can be understood intuitively, if one
realizes that the next queue (as selected in RR) seldom is the
shortest queue (as selected in JSQ) if burst sizes vary. This is
different for fixed burst sizes.

B. Fixed Burst Sizes

For burst sizes fixed to 10 µs (or, 100 slots), we obtain
Fig. 4 (N = 10) and Fig. 5 (N = 20). Again, granularity
ranges from 1 to 150 slots, the load is 60%, the number of
wavelengths is four, simulation results (sim) are calculated for
multiples of 10 slots, and analytic results (ana) for the whole
range of D.

Similar to the case of varying burst sizes, the impact of
buffer size is only in the range of the BLP, and both figures
display a similar behavior. As for the optimal granularity, well-
pronounced minima are observed for RND around the burst
size and around half of the burst size. Further, simulation
results for RND and RR assert the functioning of our heuristic
again, now for fixed-sized bursts.

The RND scheduling discipline is again the one to avoid.
The main difference with varying bursts, is that the gap in
performance between JSQ and RR is really small, and this is
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Fig. 5. Identical setting as in Fig. 4, except that here, N = 20.

true for the whole range of D. Because this is so for classical
buffers, it comes not entirely as a surprise. However, since
optical buffers differ from classical buffers in a non-trivial way
(one can think of the voids, non-existent for classical buffers),
these results show that this is also valid for optical buffers.
Thus, the intuition applies that to select the next queue (RR)
often comes down to selecting the shortest one (JSQ), if burst
sizes are fixed.

With the observation that JSQ resembles RR for fixed-size
bursts, two implications go. On one hand, considering also
that RR has lower implementation complexity than JSQ, a
hardware designer can choose implementing RR instead of
JSQ. On the other hand, disregarding the choice between RR
and JSQ, the analytical model obtained for RR, offers a good
approximation for both RR and JSQ.

C. Multiplexing Gain

In Fig. 6 (varying burst sizes) and Fig. 7 (fixed burst
sizes), we focus on the impact of wavelength conversion on
loss performance. Therefore, we consider FDL buffers with
one, two and four wavelengths (c =1, 2 or 4). For a single
wavelength, no scheduling discipline is specified (as there
is only one channel to queue for), while for two and four
wavelengths, we consider both RR and JSQ. For RND, the
results are also shown (albeit implicitly), as they are identical
to the results for c = 1, independent of the number of
available wavelengths. As such, RND does not benefit from
multiplexing gain in any way.

We assume a buffer size N = 10, a mean burst size E [B] =
100 slots (or, 10 µs), and a load of 60%. As we have assessed
the accuracy of our heuristic in the above, we only show the
analytic results for RND and RR (ana), for integer values of
D. (Simulation results for c = 2 not included here, display a
good match.) Simulation results for JSQ (sim) are calculated
for multiples of 10 slots.
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Fig. 6. For geometrically-distributed burst sizes, JSQ performs much better
than RR, which in its turn outperforms RND. The difference between JSQ
and RR is much larger than in case of deterministic burst sizes, see Fig. 7.
This figure was obtained for E [B] = 100 slots, ρ = 60%, and N = 10.

As a reference, we also mention the loss in case wavelength
conversion is applied without FDL buffering. For both varying
and fixed burst sizes, the BLP is then approximately 0.38 for
one server, 0.25 for two, and 0.14 for four servers. These
results are obtained by the well-known Erlang-B formula, with
1, 2 and 4 servers respectively. Although this formula by
definition only applies in a continuous-time setting, it serves
a good approximation in this specific case.

Figure 6 shows loss performance for varying burst sizes. For
both RR and JSQ, performance does benefit from multiplexing
gain, and the curves lower for increasing c. Results not in-
cluded here, demonstrate a further decrease in loss probability,
when one adds even more wavelengths. In this respect, an FDL
buffer behaves similarly to a classical multiplexer.

Clearly, the gain is a lot more pronounced for JSQ than for
RR: loss for JSQ lowers significantly for two wavelengths,
while RR needs four wavelengths to obtain a comparable
lowering. For RR and JSQ, we note how the optimum for
the granularity (for which BLP is minimal) lowers a little, but
not much, as the number of wavelengths increases. Results not
shown here, illustrate that this optimum is more sensitive to
the load, than to the number of wavelengths.

Figure 7 displays the burst loss probability for fixed burst
sizes. Again, RND does not benefit at all from multiplexing
gain. Loss performance for JSQ and RR is further very similar,
and both clearly capitalize on multiplexing gain. Here, the
optimal granularity for JSQ and RR drops markedly as the
number of wavelengths increases.

V. CONCLUSIONS

In this contribution, we presented an analytic model for
a multi-wavelength optical buffer, and its application for
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Fig. 7. Identical setting as in Fig. 6, except that here, burst sizes have
deterministic distribution. Again, both JSQ and RR perform much better than
RND; however, the performance difference between JSQ and RR is much less
than in case of geometrically-distributed burst sizes, see Fig. 6. This figure
was obtained for E [B] = 100 slots, ρ = 60%, and N = 10.

performance assessment. We have considered three differ-
ent scheduling disciplines: Random (RND), Round-Robin
(RR), and Join-the-Shortest-Queue (JSQ). These handle either
varying- or fixed-sized bursts. For RND and RR, we developed
an analytic model, while for JSQ, we relied on simulation.

In the case of varying burst sizes, we found that performance
is matched accurately in the case of RND and RR. Further,
we found that the performance of JSQ can in no case be
approximated by that of RR, as they differ too much. We also
found that the optimal granularity is not much influenced by
the number of wavelengths.

For fixed-sized bursts, we found that our model can estimate
performance very well for RND and RR. As we found that
JSQ performance is close to that of RR, our model is also a
good approximation for JSQ. Finally, we also observed that
the optimal granularity drops markedly, for RR and JSQ, as
the number of wavelengths increases.

The same methodology can also be applied to the more
general setting of GI/G/c optical buffers whereby the proba-
bility generating function of the inter-arrival times is a rational
function. However, it is not clear if the JSQ approximation
is sufficiently accurate in this more elaborate case. For this,
further research is required. Other future work further includes
capturing the performance gap between RR and JSQ for
varying burst sizes in a more accurate way.

APPENDIX

In this appendix, we derive an expression for H(z), the
equilibrium pgf of the scheduling horizon H as seen by
arrivals. We assume that the system is stable (and can thus
reach equilibrium), that E [B] is finite, and that the pgf of T
is rational. The evolution of this random variable is described



by (1) and (2), and illustrated in Fig. 1. There, index n denotes
the nth arrival; here, we will no longer write down this index
explicitly. The overall solution for H involves tackling two
equations separately and combining the results.

A. Two Effects

Equation (2) captures the queueing effect. First of all, we
emphasize that W + B and T are statistically independent,
which is essential to our current analysis. To solve (2), we
rewrite the rational pgf of T as

T (z) =
N(z)
P (z)

=
∑N

i=0 niz
i

∑P
i=0 pizi

.

In other words, we label the numerator as a polynomial N(z)
of degree N , and the denominator as a polynomial P (z) of
degree P . Explicitly writing all involved pgf’s in terms of
power series, reordering several finite sums, and rebundling
these sums in pgf’s, yields

H(z) = W (z)B(z)T (z−1) + T ∗(1)− T ∗(z−1) . (5)

Here, T ∗(z) is a rational function (not a pgf, however, as
T ∗(1) 6= 1) that has the same denominator as T (z), P (z),
but a different numerator N∗(z), N∗(z) 6= N(z), of degree
N or less. For details on the analysis, the interested reader is
referred to [10]. As we do not need the exact expression of
N∗(z) in the following, we move to the second effect.

Equation (1) captures the FDL effect. By some standard
z-transform manipulations and the identity 1

D

∑D−1
k=0 εm

k =
δdm/De−m/D, we find [14],

W (z) =
D−1∑

k=0

1
D

zD − 1
zεk − 1

H(zεk) (6)

where the symbols εk denote the D different complex Dth
roots of 1, i.e., εk = ej2πk/D, k = 0 . . . D − 1.

B. Combining the results

Plugging (6) in (5), and solving for W (z) yields,

W (z) =

∑D−1
k=0

1
D

zD−1
zεk−1

{
T ∗(1)− T ∗((zεk)−1)

}

1−∑D−1
k=0

1
D

zD−1
zεk−1B(zεk)T ((zεk)−1)

.

Here we used the equality W (zεk) = W (z), which follows
from the observation that waiting times are always integer
multiples of D. This is no solution for W (z) yet, as we do
not know the exact expression for T ∗(z). However, making use
of Rouché’s theorem, the formula simplifies, and W (z) can
be expressed in terms of only B(z) and T (z); more details
are given in [10]. As already mentioned, we do not need the
explicit form of T ∗(z). For N ≤ P the final result reads,

W (z) =
K∗(zD − 1)

R̂(zD)

P−1∏

i=1

zD − βi

1− βi
(7)

with

R̂(zD) =
J∏

j=1

(
1− zDγD

j

)mj

·
{

1−
D−1∑

k=0

1
D

zD − 1
zεk − 1

B(zεk)T ((zεk)−1)

}
.

Here, βi, i = 0 . . . P − 1, are the P different zeroes within
|z| ≤ 1 of the numerator in (7), one of which (β0) equals one.
The values γj , j = 1 . . . J , are the J different poles of T (z),
each with associated multiplicity mj , mj ∈ N0. A similar
expression can be obtained for N < P .

Finally, the constant K∗ is determined by requiring normal-
ization of W (z), i.e., W (1) = 1, and results in

K∗ =
J∏

j=1

(
1− γD

j

)mj ·
{

E [T ]−Beq

D

}
,

with Beq the equivalent burst length, defined as

Beq = E [B] +
D − 1

2
+

D−1∑

k=1

B(εk)T (ε−1
k )

εk − 1
. (8)

Note that the two last terms in (8) reflect the effect of the
voids. Now, it suffices to substitute W (z) in (5), using (7),
to obtain an explicit formula for H(z), which was the aim of
this Appendix.
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