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Kitting is the process that gathers all of the components necessary to assemble a batch of circuit boards on production machines. An
objective in kitting storage design is to minimize the travel involved in collecting the components in the storage area so as to decrease
labor costs. From outward appearances, the kitting process is similar to order picking in a warehouse. Closer observation, however,
reveals that its unique characteristics favor a cluster-based allocation over the storage strategies usually adopted in warehouses. We
present a clustering and cluster assignment method. In the clustering method we develop a new objective function and incorporate
it into a genetic algorithm. In the cluster assignment method we first develop a new index for cluster assignment priorities. We then
prove optimum assignments of clusters under restrictive conditions and extend the result to realistic storage configurations using filling
curves. We analyze the properties affecting the quality of filling curves and develop a class of filling curves with good performance
characteristics. Finally, we perform numerical analyses to show that the cluster and filling-curve-based assignment in the kitting area
can reduce travel distances.
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1. Introduction

The components used in circuit board assembly are gener-
ally stored in an area that is similar to a small warehouse.
When the order to produce a batch of boards is released,
the components required to assemble the boards need to be
gathered from their storage locations and delivered to the
production line. This process is called kitting, and the area
where it is performed is called the kitting area. Hundreds
of different board types tend to be assembled at individual
assembly plants. Each individual board design may con-
tain hundreds of different components. Therefore, a plant
usually needs to store thousands of different components,
often in reels. Going to various locations to pick these com-
ponents involves a considerable amount of travel and incurs
labor cost. If the batch size is small, the kitting time can be
longer than the time spent on the production machines and
can be a bottleneck to efficient operation of the expensive
assembly line.
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The travel time is determined by the travel distance, which
in turn is determined by the storage location assignment
(or allocation) and picking route. Our objective in this re-
search is to minimize the long-term average travel distance
by optimizing the storage allocations. The problem can be
considered to be a Storage Location Assignment Problem
(SLAP). The major objective of location assignment is to
reduce the travel distance. The SLAP is known to be NP-
complete. The decision variables in this study include the
combination of two sets of factors: component allocations
and the picking tours. The size of the former is in the hun-
dreds to thousands whereas the size of the later is NP-hard
by itself.

A kitting area is similar to a warehouse in that a
picker goes around the storage area following a pick
sheet. However, closer observations reveal that the kitting
area has several unique features not normally found in a
warehouse.

1. In kitting, the pick sheet is the Bill of Materials (BOM)
as opposed to customer orders in a warehouse. BOMs
are based on the product designs, which are relatively
stable compared to customer orders.
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2. BOMs contain components for certain functional
blocks. Therefore, the correlations among BOMs are
higher and deterministic compared to customer orders
in a warehouse.

3. BOMs usually contain tens to hundreds of line items in
the form of a Stock Keeping Unit (SKU). However, the
number of line items of customer orders in warehouses
varies from a few to many.

4. The cost of many electronic components is high but the
size of a component is small. As a result, a reel can hold
all the components of one SKU available in a plant. It is
not desirable to keep them in both fast pick and reserve
locations.

5. A picker can carry many reels in one trip in the kit-
ting area. However, the sizes of items vary a lot in ware-
houses, and a picker often can pick only one case per
trip.

To reduce travel distances, warehouses adopt fast pick,
batch picking and zone picking with a common pick area
strategies. The use of a fast pick approach requires storage in
both the pick and reserve areas, which is often not desirable
in kitting because of feature 4 above. In addition, it is not
likely that all SKUs in a BOM will be in the fast pick area.
A large amount of travel for a few SKUs in the scattered
reserve area would negate any savings created by the fast
pick approach. Batch picking consists in picking a batch of
orders in a single trip. It is often beneficial when the pick list
is short. Nonetheless, feature 3 indicates that BOMs often
contain a long list of SKUs. Zone picking uses staffed pick-
ing zones to share the task of order picking. It reduces the
travel distances for pickers in zones and achieves a shorter
pick cycle. However, if the volume is low, the utilization of
dedicated pickers in the zones can be low. If the volume
is high, our proposed clustering approach would further
speed up picking in the zones. The use of a common pick
area will not significantly reduce the travel distance if nat-
ural clusters exist because a picker has to visit the clusters
for other SKUs.

These characteristics in the kitting area suggest that a
good strategy to reduce the travel distance is to place
the SKUs of a BOM into a single or just a few clus-
ters. A picker can travel to the cluster(s) and pick multi-
ple components with little travel inside a cluster. Ideally,
we would like to find SKU–BOM clusters such that each
cluster of SKUs contains exactly all the components re-
quired by one type of circuit boards. Further travel re-
duction is possible by allocating clusters to more conve-
nient locations based on the pick frequency and space
requirements.

Based on the aforementioned rationale, we develop a
cluster and cluster allocation method for SLAPs. This paper
addresses the theoretical aspects of the method and presents
a preliminary numerical study. It is structured as follows. We

develop a new objective function able to cluster BOMs and
SKUs that is incorporated into an existing genetic algo-
rithm. For cluster allocation, we first develop a new Cube-
per-Order Index (COI) for the prioritization of clusters.
We first find the optimum allocation in a one-dimensional
space. Then we apply the concept of filling curves to expand
the results to two-dimensional space to find the optimum
solution under certain conditions. We discuss the character-
istics of filling curves and their importance to our applica-
tion and present some effective filling curves. We then study
the effect of correlations between the clusters and develop
the adjusted COI and objective function. Finally, we per-
form numerical analyses to show that the cluster and filling-
curve-based storage in the kitting area can reduce travel
distances.

We will present the literature related to clustering and op-
timum location assignment problems in the corresponding
sections.

2. Cluster analysis

2.1. BOM/SKU incident matrix

Cluster analysis consists in findings clusters in the
BOM/SKU incidence matrix F, defined as follows. Let:

j ∈{1, . . . , J} be the index for SKUj, i.e., a component
type in the board assembly;

i ∈{1, . . . , I} be the index for BOMi, i.e., the list of com-
ponents of a board design i;

F be a BOM/SKU incidence matrix where

Fij =
{1 if SKU j is in BOM i,

0 otherwise.

Assume that after the clustering process, N clusters are
generated along the diagonal of the matrix F, labeled as
h1, h2, . . . , hN . We use Shn and Bhn to represent the corre-
sponding sets of SKUs and BOMs of cluster hn. Define a
set of cluster matrices H = {H1, H2, . . . Hn, . . . , Hn} where
Hn is the nth diagonal block in the BOM/SKU matrix F.
We will use Hn(i,j) to represent the corresponding elements
in Hn. Hn(i,j) = 1 if the corresponding BOM i contains
SKU j. Hn is a matrix of size(Bhn )× size(Shn ). We define the
correlation matrix between cluster matrices Hm and Hn by
Corrm,n:

Corrm,n = {Fij} for m, n = 1, 2, . . . , N,

where i ∈ Bhm , j ∈ Shn . We will use Corrm,n(i, j) to repre-
sent elements in Corrm,n. Corrm,n(i, j) = 1 if the BOM i
belongs to cluster hm, SKU j belongs to cluster hn, and
BOM i contains SKU j. These definitions are shown in
Equation (1).
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(1)

In general, Corrm,n �= Corrn,m
Analysis of clustering behavior has been reproted in the

literature using various methods. Rather than focusing on
the clustering process itself, we focus on producing an ob-
jective function that is suitable for kitting.

2.2. Clustering objective: Weighted grouping efficiency

The ideal clustering result is an incidence matrix in which
all entries are in the diagonal blocks with no gaps being
present in these blocks. However, the ideal result may not
exist, or it may be intractable, meaning that a solution can
not be found in a reasonable amount of time for practi-
cal problems. When there are entries outside the diagonal
blocks, the picker has to travel outside of the clusters. When
there are gaps within the diagonal blocks, the picker has to
travel more within the clusters. A good objective should pe-
nalize both entries outside of the cluster and gaps inside the
cluster with an appropriate weight. One may surmise that
entries outside of a cluster can lead to more travel than gaps
inside the cluster.

Chandrasekharan and Rajapopalan (1986) introduced
the grouping efficiency η. It is the weighted sum of the
fraction of entries in the clusters and the number of voids
outside the clusters. Kumar and Chandrasekharan (1990)
found that the entries and voids are not balanced when the
number of blocks becomes large. They suggested a group-
ing efficacy � that represents an improvement. However, it
does not consider the build frequency of a BOM or pro-
vide a weight to trade-off between undesirable entries and
voids. Adding the build frequency, weight for entries out-
side of the diagonal and gaps in the cluster, and normalizing
the measure, we arrive at a new cluster objective function,
the weighted grouping efficiency:

max � = e
e + βe0 + (1 − β)ev

(2)

where

e = ∑
Ai × bi is the sum of frequency-weighted entries

in the diagonal blocks;

ev = ∑
Ai × vi is the sum of frequency-weighted gaps in

the diagonal blocks;
e0 = ∑

Ai × (si−1) is the sum of frequency-weighted en-
tries outside of the diagonal blocks;

Ai = build frequency of BOM i;
bi = number of entries in the diagonal blocks in row i;
vi = number of gaps in the diagonal blocks in row i;
si = number of clusters that BOM i encounters;
β = weight between zero and one to weigh the effect of

ev and e0.

This objective incorporates build frequencies and a weight
β, where 0 ≤β ≤ 1. If one wants to weight the entries outside
the clusters more, one can increase β and vice versa. Note
that 0 < � ≤ 1, and � = 1 if and only if ev = e0 = 0 (or
perfect clustering).

2.3. Cluster formation

We adopt the genetic algorithm proposed by Joines et al.
(1996) to form the clusters due to its ability to accommo-
date different objective functions. In our case, the objective
function is the grouping efficiency �. We define two sets of
variables for chromosome representation: xi ∈{1, . . . , N},
i ∈{1, 2, . . . , I} and yj ∈{1, . . . , N}, j ∈{1, 2, . . . , J}. If
xi = m, BOM i is assigned to cluster m; if yj = m, SKU j is
assigned to cluster m.

We define individual to be a vector of I + J integers with
values from one to N, where N represents an upper bound
on the number of clusters to be formed:

Individual → (x1, x2, . . . , xI︸ ︷︷ ︸
BOMs

, y1, y2, . . . , yJ︸ ︷︷ ︸
SKUs

).

We chose N before starting the execution. The larger the
value of N, the larger the search space, but if the chosen N
is too large, the algorithm will generate empty clusters, i.e.,
clusters that contain neither SKU nor BOM.

We randomly generate a set of individuals as the initial
population. Each individual will correspond to a differ-
ent BOM/SKU matrix, and we evaluate each individual’s
grouping efficiency �. The individual with the highest
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grouping efficiency � is assigned a higher probability of
being a parent in all successive generations.

Mutation and crossover operations are used to search
for a higher grouping efficiency � from generation to gen-
eration. In mutation, only one individual is picked to be a
parent. Starting from this individual, we randomly pick an
SKU or BOM and move it to another cluster. This is equiv-
alent to changing the position of the corresponding column
or row in the BOM/SKU matrix. In the chromosome repre-
sentation, this is equivalent to assigning a random element
of the individual to another valid value. In the crossover
operation we pick two individuals from the population to
be parents. We name them parent 1 and parent 2. Then, a
splice point will be chosen randomly. Both parents are cut at
the splice point. The front portions of each parent are com-
bined with the end portion of the other parent. To keep the
candidate pool at a stable size, we replace some parents with
their children after each generation if a higher grouping ef-
ficiency � is discovered. We terminate the genetic algorithm
when the maximum generation limit is met.

3. Allocation of perfect clusters

Results are available for optimum single-command cycle
location assignments in the literature, but clustered storage
does not fit into single-command cycles. We first assume
that the created clusters are perfect—that is there are no
gaps in the clusters and no correlations between clusters
exist. In reality, the clusters are normally imperfect; we will
discuss the effect of gaps and correlations in Section 5. We
assume that a picking tour starts from an Input/Output
(I/O) location, travels to the near end of the cluster, passes
each location in the cluster, reaches the far end of the cluster,
and returns to the I/O location. We assume the travels form
a path with the shortest distance along the aisles. We first de-
fine a suitable COI for clusters and find an optimal location
assignment in one-dimensional space. We then extend the
result to two-dimensional space with various filling curves,
find the optimum solution for this two-dimensional space
under certain conditions and develop quantitative metrics
to show the degree of deviation from optimum conditions.

3.1. Location assignment in one-dimensional space

Consider a simple one-dimensional rack that has one layer
and an unlimited length. The I/O point is located at one
of its ends. Starting from this end, the rack is divided into
equal slots of unit length d, labeled l, shown in Fig. 1. The
travel distance from the I/O point to the lth slot equals l
unit lengths.

The problem is to find the optimum sequence among the
N! possible sequences that minimize the total travel dis-
tance. For single-item storage and a single-command cycle,
an O(N log N) algorithm based on the concept of a COI
was introduced by Heskett (1964). The index for an item

Fig. 1. One-dimensional rack.

is defined as the ratio of its space requirement and order
frequency. In his solution, SKUs are sorted by the COI in
ascending order and allocated to storage locations in non-
decreasing order of distance from the I/O point. Francis
and White (1974) and Harmatuck (1976) later proved that
this method is optimal for single-command cycles. However,
when picking is not performed under a single-command cy-
cle, as is the case for cluster storage, the optimality no longer
holds.

Frazelle (1990) and Lee (1992) applied the COI concept
to clusters. They defined the COI for clusters as the ratio
of the total space requirement of a cluster and the sum
of the build frequencies of all SKUs in the cluster. This
definition captures the visit frequencies to the individual
locations in a cluster. However, in cluster-based storage,
the travel affected by cluster assignment is between the I/O
point and the clusters. The frequency of visiting a cluster is
that of the BOMs supported by the cluster. This frequency
is lower than the sum of frequencies of all individual SKUs
in the cluster. Therefore, we define COIn for cluster n as the
ratio of the total space requirement of a cluster and the sum
of the build frequencies of the BOMs in the cluster:

COIn =
∑
j∈Shn

Cj

/∑
i∈Bhn

Ai, (3)

where Cj is the number of locations required to store
SKU j.

Later, we will prove that the optimum assignment of per-
fect clusters in the one-dimensional space is in increasing
order of COIn values. This provides an efficient algorithm
with complexityO(Nlog N).

3.2. Mapping two-dimensional spaces using filling curves

In reality, kitting areas are two-dimensional or three-
dimensional and have different shapes and sizes. Using
the concept of a filling curve, we can map a general space
into a one-dimensional rack. A filling curve is a continu-
ous mapping from a one-dimensional space into a higher-
dimensional space. In our application, any curve going
through each location of the kitting area is a potential fill-
ing curve. For example, a curve connecting non-decreasing
Chebychev distance locations (applicable in automatic stor-
age/automatic retrival systems with an I/O point at the
lower-left corner) is a filling curve, as shown in Fig. 2. Fol-
lowing the sequence along this filling curve, locations in a
two-dimensional picking face can be mapped into a one-
dimensional rack. We will label the cells along the curve as
l ∈{1, . . . , L}, where L is the last location on the curve.
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Fig. 2. A feasible filling curve of a square-in-time automatic stor-
age and retrieval system.

A special type of filling curve is the space-filling curve.
Nulty (1993) noted that some space-filling curves have
excellent clustering properties. Bartholdi and Goldsman
(2001) showed that the use of space-filling curves can lead
to the creation of a simple heuristic to solve the Traveling
Salesman Problem (TSP). Another feature of a space-filling
curve is the interchangeability of blocks along the curve.
Bozer et al. (1994) and Meller and Bozer (1996) used this
feature and the clustering property of space-filling curves
to solve facility layout problems when interdepartmental
material flow is of concern.

3.3. Location assignment along filling curves

Let � = {1, . . . , ω,. . . } be a set of filling curves, ω(1), ω(2),
. . . , ω(l). . . , ω(L) be the locations along the filling curve
ω, dω

lk be the distance between location l and location k
along the filling curve ω, and Dl be the shortest distance
from the I/O point to location l. The shortest distance can
be Euclidean, rectilinear or another metric that is suitable
for the problem. In warehouses with perpendicular aisles, a
suitable metric is the rectilinear distance.

For convenience, let the space requirements for cluster n
be

rn =
∑
j∈Shn

Cj,

and the cluster build frequency

fn =
∑
i∈Bhn

Ai.

If we store clusters h1, . . . , hn, . . . , hN sequentially along
the filling curve ω, then the location of the first SKU for
the nth cluster is after location Rn = ∑n−1

k=1 rk and the total
travel distance is

T =
N∑

n=1

fn(Dω(Rn + 1) + dω
Rn+ 1,Rn + 1

+ Dω(Rn + 1)), (4)

where the first term in the parentheses is the distance from
the I/O point to the first item in cluster n, the second term is
the travel distance within cluster n along the curve, and the

Fig. 3. Picking route of a cluster stored along a filling curve.

last term is the travel distance from the last SKU in cluster
n back to the I/O point as shown in Fig. 3.

For a one-dimensional rack with a pick face of one unit
in width, one can verify that Equation (4) becomes:

T = 2
N∑

n=1

(
fn

n∑
k=1

rn

)
.

In two dimensions, a lower bound of the shortest total travel
distance can be obtained as follows. Sort locations in the
kitting area in increasing order by their rectilinear distance
to the I/O point, represented by D(1), D(2), . . . , D(L). Sort
the picking frequency of each cluster in decreasing order,
represented by f(1), f(2), . . . , f(N). The number of locations
occupied by these clusters are r(1), r(2), . . . , r(N). We can find
a lower bound by using the lowest possible distances for all
three terms in Equation (4):

TLB =
N∑

n=1

f(n)(D(2n − 1) + D(2n) + (r(n) − 1)d), (5)

where d is the distance between adjacent locations. Adjacent
locations share a common edge, as in a one-dimensional
rack.

3.4. Properties of filling curves and their metric

Racks in higher-dimensional spaces along the filling curves
in realistic warehouses differ significantly from the simple
one-dimensional rack. There are turns, aisles and obsta-
cles. We now discuss three factors that provide quantitative
measures of deviation from the one-dimensional rack.

3.4.1. Curve length factor μ

In the simple one-dimensional rack, the distance between
adjacent locations is a constant. However, the travel be-
tween adjacent locations along a filling curve at turns, across
aisles, and around the end can be different. Let the shortest
distance between any pair of locations (l, l + 1) be dmin(l,
l + 1). One desirable factor for a curve to stay close to



574 Hua and Zhou

optimality in two dimensions is to have minimum extra
distances. We define the curve length factor as the ratio of
the total length of a filling curve to the minimum length:

μω =
dω

ω(1),ω(L)∑L−1
l=1 dmin (l, l + 1)

(6)

In practical situations, dmin(l, l+ 1) is equal to or greater
than the minimum distance in a one-dimensional rack, d.
Then, μω ≥ 1, and μω = 1 if and only if all the distances
between nearby locations along curve ω are equal to the
minimum linear distance between adjacent locations. The
value of μω depends not only on the filling curve but also on
the physical configuration of the kitting area. Most kitting
areas have multiple racks. When a picker goes from back-
to-back locations, that picker should go around the end (as
in being at the end of library shelves). A picker may also
need to travel across the aisle between two racks. The width
of the aisle is normally greater than the distance between
nearby locations within the same rack.

3.4.2. Gap variation factor σ

Unlike a one-dimensional rack, the distances between con-
secutive locations along the curve in a two-dimensional rack
change at turns and at the end of aisles. If large gaps oc-
cur in the middle of a cluster, the total travel distance may
increase. Large gaps can also be found with hallways or
columns. The gap variation can be captured by the coeffi-
cient of variation for random variables:

σω =
√

avg
((

dω
n,n+1

)2) − (
avg

(
dω

n,n+1

))2

avg
(
dω

n,n+1

) , (7)

where avg(dω
n,n+1) is the average distance between adjacent

locations along the curve and avg((dω
n,n+1)2) is the average of

the square of the distances. The expression inside the square
root of the numerator is the evaluation using variance for
random variables although the distances are deterministic
with a given design. Here,σω ≥0, withσω =0 if all distances
between nearby locations along the filling curve are the
same.

3.4.3. Distance proportionality property λ

In a simple one-dimensional rack, the distance from the
I/O point to a location l is proportional to index l. The
proportionality is required for optimality using COI-based
allocation for multi-command cycles. However, in higher-
dimensional spaces, the minimum distance from the I/O
point to a location l along a curve is most likely not pro-
portional to the index on the filling curve.

Theorem 1. If μω = 1 and the shortest distance from the I/O
point to each location is proportional to its index in the filling
curve, the cluster with the lower COI should be stored closer to
the I/O point along this filling curve in the optimal sequence.

Proof. A proof is given in Appendix A. �
Since the one-dimensional rack is a special case of Theo-

rem 1, the assignment of clusters in increasing order of COI
for a one-dimensional rack is optimum. In many cases, how-
ever, a filling curve satisfying the conditions of Theorem 1
cannot be found. However, we can use the departure from
proportionality condition to measure a curve. We define
the distance proportionality factor as the average difference
from the proportional distance:

λω =
(

L∑
l=1

|Dω(l) − g(l − 1)|
)/

L, (8)

where g is a constant. In one-dimensional racks, g = 1. In
two-dimensional spaces, g is usually less than unity because
the shortest distance between two points is a straight line
and not a curve. If the distance to the I/O point along a
curve is proportional to the index of the locations, the total
distance from the I/O point to every location will be

g + 2g + · · · + (L − 1)g = L(L − 1)
2

g,

which is equal to
∑L

l=1 Dl . Thus,

g = 2
∑L

l=1 Dl

L(L − 1)
. (9)

Equation (9) shows that the value of g is a function of the
shape of the area but not of the filling curves. We call g the
geometric constant.

One can verify that the proportional distance factor λω ≥
0 with λω = 0 if and only if the distance from the I/O point
to each location along the filling curve is proportional to
its index in the filling curve.

These three factors, μω, σω and λω, affect the quality
of using the COI method along filling curves. If a curve
satisfies the conditions μω = 1, σω = 0 and λω = 0, an in-
creasing COI will provide the optimal sequence of cluster
assignments along the curve. Any violation of the above
conditions will lead to less confidence in the optimality.

3.5. Multiple filling curves

One way to improve the filling curve quality with racks is
by using multiple filling curves. For example, we can divide
Moore’s version of the Hilbert space-filling curve (Sagan,
1994) from corner to corner, shown in Fig. 4. Before divi-
sion, the three properties of the single curve are:

μω = 1, σω = 0, λω = 3.87.

After division into two half curves (the two curves start and
end at different locations), the properties are:

μw1 = μw2 = 1, σw1 = σw2 = 0, λw1 = 1.25, λw2 = 1.82.

Whereas the length and gap factors remain constant, the
average proportionality factors have been reduced by about
60% for both half curves.
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Fig. 4. Two filling curves in an 8 × 8 square space.

A special type of multiple filling curve is a set of parallel
finite-length one-dimensional racks linked at one end as
shown by the dashed lines shown in Fig. 5. All three factors
for this curve will be ideal. This multiple curve is especially
suitable to pick along the aisles.

When a group of V infinite-length parallel one-
dimensional filling curves is used in a zoning process, the
structure will be similar to V independent one-dimensional
racks as in Fig. 6. The different racks are independent of
one another except that they are connected to the same
I/O point with different offsets, which are modeled by
the shaded areas. Assume that the clustering process gen-
erates N perfect clusters. The problem is how to assign
and sequence the N uncorrelated clusters in the V one-
dimensional racks.

Theorem 2. If all clusters are of the same build frequency, the
optimal zoning can be obtained in polynomial time.

Proof. See Appendix A. �

Fig. 5. Multiple filling curves in an 8 × 8 square space.

Fig. 6. Multiple one-dimensional racks.

Theorem 3. If all clusters are of the same size, the optimal
sequence can be found in polynomial time.

Proof. See Appendix A. �

The condition in Theorem 3 is a practical one. The kitting
area manager may want to assign zones of equal size to
every cluster to simplify operations. If a zone can hold more
SKUs than a cluster requires, some locations in the zone
may remain empty. If other clusters are assigned beyond this
zone, there is “waste” of closer spaces. However, the extra
capacity can be helpful if BOMs change later. If the zones
assigned to all clusters are equal, the COI is equivalent to
the index of the build frequency.

In the above discussion, we did not consider a finite rack
length. This constraint may not be binding if the available
locations are more than those required by all the SKUs. If
no clusters have to be split at the end of the aisle, the con-
straint is not binding. Even when the constraint is binding,
only the less visited clusters with a higher COI are affected.
Normally, aisles connect the ends of racks; therefore, split-
ting a cluster into adjacent racks at the end of an aisle
may not cause excessive travel. In other words, the extra
travel due to a finite rack length should not be excessive in
practice.

3.6. Concept of a dual filling curve

Observe that in the simple one-dimensional rack, after vis-
iting the last SKU at the end of a cluster, a picker will
revisit all the SKUs in the same cluster on his or her return
to the I/O point. This means that the picker will visit the
same location twice in the one-dimensional rack structure.
This travel distance can be reduced if SKUs in a cluster are
arranged in a “U” shape. Consider a kitting area of two
parallel one-dimensional racks. If COI-based allocation is
applied, the zoning result is shown in Fig. 7. The distance
from the starting position of cluster n to the I/O point is(

1
2

Rn − 1
2

rn−1,
1
2

Rn

)
.

If the number of locations occupied by each cluster is uni-
formly distributed, the expected starting position of cluster
n is

1
2

Rn − 1
4

r̄n = 2n − 3
4

r̄n,
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Fig. 7. Zoning in two one-dimensional racks.

where r̄n is the average number of locations occupied by
each cluster. The expected total travel distance is

N∑
k=1

fn2
(

2n − 3
4

r̄n + r̄n

)
=

N∑
k=1

fn

(
n + 1

2

)
r̄n. (10)

If the two racks are close to one another, we can store
half of the SKUs in each cluster on one rack and the other
half on the opposite rack. In this case, the picker can pick
part of each BOM while traveling along one rack and finish
the BOM on the way back, as shown in Fig. 8.

The expected starting position and ending position of
cluster n are (n − 1)r̄n/2, the expected total travel distance
is

∑N
k=1 fnnr̄n, and the savings are

1
2

N∑
k=1

fnr̄n. (11)

We call two parallel curves with U-shaped cluster storage in
two-dimensions a dual filling curve. The dual filling curve
is a mapping from two-dimensional space into two parallel
continuous curves. A pair of dual filling curves ω1 and ω2 in
a 2p× 2q rectangular space can be generated from a filling
curve ω in a p × q space. Each location in the p × q space
can be mapped into a two-by-two square block in the 2p×
2q space. The mapping from the square-in-time filling curve
shown in Fig. 2 yields the pair of dual filling curves shown
in Fig. 9.

In the p × q space, the filling curve ω passes each lo-
cation either in a straight line or with a 90◦ turn (called
the straight-and-turn configuration). In the 2p× 2q space,
the dual filling curves ω1 and ω2 pass each 2 × 2 block as
shown in Fig. 10(a) and Fig. 10(b). In a straight path, both
curves in the dual filling curve pass two locations. In turn,
one curve passes three locations while the other curve only
passes one. As a result, when we separate a cluster into two
groups and assign each group along one curve respectively,

the two groups may not occupy the exact same number of
locations. However, if μω = 1, then μω1 = μω2 = 1. By ad-
justing the SKUs into two groups, the total travel distance
within each cluster will not be more than (rn + 1) times the
direct distance between adjacent locations. The distance be-
tween the ending location and the starting location will be
less than twice that of the direct distance between the loca-
tions.

If the length or width of the kitting area is an odd num-
ber, one row or one column of the location cannot be cov-
ered by the dual filling curves. In that case, we can map the
remaining locations using a single filling curve and store
any remaining clusters along this curve. An example can be
found in the numerical study.

4. The effect of correlation and procedures to handle its
effects

In reality, perfect clusters may not be found. Correlations
can affect both the COI-based cluster allocation and the
performance of the resulting storage policies. We develop
two methods to handle the correlations: adjustment of the
COI definition and use of a common pick area.

4.1. The adjustment of the COI based on correlations

The COI method used in the allocation process depends
on two factors of each cluster n: the build frequency fn and
the required space rn. If correlations exist, fn should equal
the sum of the picking frequency of all BOMs encountering
SKU cluster hn. The set of these BOMs can be represented
by

B
′
hn

=
{

i|
∑

k∈Shn

Aik > 0
}
.

Fig. 8. Zoning along two parallel one-dimensional racks.
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Fig. 9. The dual filling curves of the 2p× 2q space.

Note that B′
hn

⊇ Bhn since it includes BOMs other than Bhn .
In other words, a cluster of SKUs will be visited more fre-
quently because of the correlation. Therefore, the COI of
cluster hn needs to be adjusted as follows:

COI′
n =

∑
j∈Shn

Cj

/(∑
i∈B′

hn

Ai

)
. (12)

This definition is also valid for multiple filling curves and
dual filling curves.

4.2. Common pick areas

Certain SKUs, such as power components, are so popular
that they are included in almost every BOM. As a result,
their SKU columns in the BOM/SKU matrix F have a lot
of entries. After cluster analysis, these entries remain out-
side the diagonal blocks. One approach is to store them in
the most convenient locations, such as adjacent to the pro-
duction machines. By doing so, the decrease in correlation
between clusters can be significant. However, the available
convenient locations have a limited amount of space. We
will refer to them as the common pick area.

We can construct the common pick area during the clus-
ter analysis. We need to define a special cluster with limited
capacity, for example, cluster 0. An SKU may be assigned
to either a regular cluster or cluster 0. We will need one
additional constraint:

∑J
j=1 Cjyj0 ≤ U , where yj0 is a binary

Fig. 10. (a) A straight path; and (b) a straight-and-turn configu-
ration.

variable:

yj0 =
{

1 if SKUj is assigned to cluster 0,
0 otherwise.

We also need to revise the grouping efficiency � by modi-
fying the definition of e0 to e′

0 = ∑
Ai(s ′

i−1) where s ′
i equals

the number of clusters that BOM i encounters other than
cluster 0.

We can also construct the common pick area after the
cluster analysis. Because the area is limited in size, the
problem can be modeled as a knapsack problem. The ca-
pacity of the knapsack is U and the weight of SKU j is
Cj. If SKU j is assigned to cluster n and moved into the
knapsack, we shorten the trips of all BOMs that contain
SKUj but do not belong to cluster n. The value of this
move is ∑

i/∈Bhn

AiFij.

With these knapsack problem parameters, we can find the
SKUs for the common pick area after cluster analysis.

5. Numerical study

We use both computer-generated data and industrial data
to evaluate the benefit of the various aspects of clustering
and the cluster allocation method. First, we study the effect
of the number of clusters that BOMs visit. We derive an
approximation method based on a theoretical estimate to
compare the random storage of items to the random stor-
age of clusters. Second, we study the COI-based allocation
method to allocate perfect clusters to different filling curves.
Third, we test the effect of weights in weighted grouping ef-
ficiency on an industrial data set. Last, we study the effect
of a common pick area on the industrial data set.
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Table 1. Estimated travel distance as a function of the number of extra clusters visited (m)

Average m

0 1 2 3 4 5 6 7

E(T) 65 283 75 241 83 636 91 033 97 720 103 869 109 593 114 968
Percentage reduction 46.5 38.3 31.5 25.4 19.9 14.9 10.2 5.8

5.1. The effect of the number of clusters

Daganzo (1984) showed that under rectilinear metrics and
random storage, the estimated travel distance along the op-
timum TSP path is approximately E(TSP) ≈ G

√
AL, where

G = 1.15 for rectilinear metrics, L is the number of uni-
formly distributed locations to be visited and A is the area.
When correlations exist between clusters, a picker needs to
visit other clusters. Daganzo’s estimate can be modified to
estimate the average total travel distance for the extra ran-
domly located clusters.

Consider the case when the cluster analysis assigns BOM
i with Bi SKUs to cluster n, and it is allocated along a
filling curve ω with μω = 1. In addition to SKU cluster n,
BOMi also encounters mi other SKUs, which are uniformly
distributed in the kitting area. Thus, the total travel distance
for this BOM can be estimated as

Ti = E(TSP(A, mi)) + (rn − 1)d
= G∗√A(mi + 2) + (rn − 1)d, (13)

where d is the distance between two adjacent locations.
Here, we assume that the picker visits each SKU in its cor-
responding cluster, or mi + 1 clusters in addition to the I/O
point. For a specific BOM, this does not have to be the op-
timal route. Thus, Equation (13) is a suboptimal estimation
of the travel distance of the cluster-based storage policy. The
savings of the cluster-based storage policy over a random
storage policy are

G
√

A(Bi + 1) − (G
√

A(mi + 2) + (rn − 1)d)

= G
√

A(
√

Bi + 1 −
√

mi + 2) − (rn − 1)d. (14)

If the area of the aisle is neglected and each location is
square, the area of the kitting area will be A = Ld2. The
savings will be

(G
√

L(
√

Bi + 1 −
√

mi + 2) − (rn − 1)) d. (15)

The cluster-based storage policy will outperform the ran-
dom storage policy if

G
√

L(
√

Bi + 1 −
√

mi + 2) ≥ rn − 1. (16)

Equation (16) can be used to estimate the cluster analy-
sis effect without having information on the kitting area’s
physical configuration.

Consider a 15 × 20 storage area. Each slot is a 1 ×
1 square block. We create 100 active BOMs. The picking

frequencies range from one to 30 and are uniformly dis-
tributed. We arbitrarily assign the 100 BOMs to 20 clusters.
The number of SKUs in each cluster ranges from ten to 19,
respectively, and is uniformly distributed. We generate data
sets using different seeds. We pick the data set that contains
just under 300 SKUs or the capacity of the storage area.
The number of SKUs in the first four sets that satisfy our
condition are 289, 295, 285 and 280. The details of the data
sets are given in Appendix B. We assume the picker travels
in perpendicular aisles; therefore, rectilinear metrics apply.
For the first data set, the total travel distance for random
storage and the lower bound are

TR =
N∑

i=1

fi

√
A(ri + 1) = 122 A 044,

TLB = 36129.

The average number of extra clusters visited, expected
travel distances (using Equation (13)), and the relative re-
duction from random storage are listed in Table 1.

5.2. Effect of filling curves on the application of COI-based
allocation

We apply COI-based cluster allocation to five filling curves
assuming perfect clusters are achieved. The curve descrip-
tions, length factor, gap variation factor and proportion-
ality factor are listed in Table 2. The two values of λω for
ω3 are for two curves. Every σω is zero because we do not
consider obstructions or gaps in the area. The geometries,
distances and cluster allocations are listed in Appendix C.

Table 2. Curve parameters and travel distance using different
filling curves

Description μω σω λω

ω2 Non-decreasing rectilinear
distance

1.89 0 2.30

ω3 Variant of Moore’s Hilbert
space-filling curve

1 0 3.02/4.63

ω4 Multiple filling curves 1 0 0
ω5 Dual filling curve 1 0 1.75
ω6 Multiple dual filling curves 1 0 0
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Table 3. Estimated travel distance of different data sets

Curve ω2 ω3 ω4 ω5 ω6 Random Lower

Data set 1 80 321 64 314 64 775 57 775 55 324 122 044 36 129
Data set 2 116 783 91 324 94 599 88 455 79 337 174 938 52 275
Data set 3 66 569 54 053 53 991 50 146 44 845 105 163 31 913
Data set 4 104 638 85 337 86 357 79 412 71 988 163 775 50 854
Average percentage 35 48 47 51 56

improvement

The average distances traveled, the percentage improve-
ments and the averages among all four data sets are sum-
marized in Table 3.

The average percent improvement among the four data
sets over the random storage policy is significant and con-
sistent.

5.3. Effect of weight β on the clustering objective

Our contention is that the entries outside of clusters lead
to a larger distance increase than that of gaps in the clus-
ters. To get some concrete quantitative evidence, we conduct
cluster analysis using a weighted grouping efficiency with
different weight values of β and then randomly allocate
the clusters on multiple dual filling curves extended from
ω5. We do not apply the COI-based allocation algorithm
to see the isolated effect of β, which leads to conservative
benefit estimates. To be more realistic, we use data from
a medium-sized circuit board assembly original equipment
manufacturer in a mid-volume, mid-mix manufacturing en-
vironment. The kitting area has 44 × 44 storage locations.
The picker enters and departs the kitting area via a single
entry at the corner. In a 3-month period, the 90 BOMs con-
tain 1,759 SKUs. In this case, we conduct cluster analysis on
the 90 × 1759 BOM/SKU matrix with different β values.
The objective functions, average extra clusters visited and
percentage improvement over random storage are listed in
Table 4.

The improvement is about 30% when β is between 0.5
and 0.9, and the β∗ seems to fall between 0.7 and 0.9. It is
consistent with our hypothesis that the correlation between
clusters affects the travel distance more significantly than
does additional walking within a cluster.

Table 4. Clustering result using different β values

β

0.5 0.6 0.7 0.8 0.9

�∗ 0.68 0.69 0.72 0.74 0.76
Average m 7.94 7.62 7.65 7.64 7.15
Percentage improvement 29.5 30.5 31.0 31.4 27.6

5.4. Effect of a common pick area

Finally, we investigate whether a common pick area can
further improve performance using the industrial data. We
consider the common pick areas to be at the lower-left cor-
ner with an area of U . We choose the cluster result of β

= 0.8. The SKUs are assigned to the common pick areas
based on the most clusters encountered.

We assume that the SKUs are in the common pick area
and the clusters are uniformly distributed. The picker will
visit the SKUs of the common pick area and then the other
SKUs outside the common pick area. Among the SKUs
of BOM i, pi of them are selected for the common pick
area. BOM i encounters m′

i additional clusters. The ex-
pected travel distance for picking this BOM is

Ti = E(TSP(A − U, m′
i + 2)) + E(TSP(U, pi + 1))

+ (rn − 1)d

= G
√

(A − U)(m′
i + 2) + G

√
U(pi + 1)

+ (rn − 1)d. (17)

Compared with the case with no common pick area, the
travel distances with the common area at different sizes of
U are shown in Fig. 11. The horizontal line represents the
travel distance when there is no common pick area. Each ×
represents the travel distances at the corresponding size of
the common pick area. The total travel reaches its minimum
value at U = 10.

Compared to the no common pick area situation, the
difference in travel is very small. The lack of change is not
a surprise, as we argued in the Introduction.

Fig. 11. Savings obtained using a common pick area with different
sizes.
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5.5. Numerical study summary

From the numerical study, we see that the cluster and filling-
curve-based storage assignment can significantly reduce
travel distances. Without COI-based allocation on filling
curves, the savings can be more than 40%. When COI-based
clustering is used on multiple dual filling curves, the savings
can be more than 50%. The savings with clustering alone,
without the cluster allocation method, on a large industrial
data set equaled 31%. We believe that β∗ should be greater
than 0.5 because our results indicate that the travel between
clusters affects the total travel distance more significantly
than that of gaps in the clusters. A common pick area is not
effective in kitting applications.

6. Conclusions

In this research, we developed a cluster and filling-curve-
based storage method for the kitting area in circuit board
assembly operations. We discovered the unique character-
istics of the kitting area, and we developed a more suitable
cluster objective and COI for clusters. We identified the var-
ious theoretical aspects of the COI-based location assign-
ment on filling curves. Our numerical analysis shows that
the filling curve is a simple yet effective method to assign the
clusters of SKUs. The method can reduce travel distances
significantly in comparison with a random storage policy if
natural clusters exist.
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Appendices

Appendix A: Proof of theorems

Proof of Theorem 1. With given conditions, Dl = g(l − 1),
where g is a constant.

The total travel distance of the nth cluster along the filling
curve will be

fn

(
g

(
n−1∑
k=1

rk

)
+ (rn − 1) d + g

(
n∑

k=1

rk − 1

))
. (A1)

Assume that there is one optimal sequence, in which hn
is stored just in front of cluster hn+1 along the filling curve,
and COIn ≥ COIn+1. The total travel distance for picking
hn and hn+1 is

fn

(
g

n−1∑
k=1

rk + (rn − 1) d + g

(
n∑

k=1

rk − 1

))

+ fn+1

(
g

n∑
k=1

rk + (rn+1 − 1) d + g

(
n+1∑
k=1

rk − 1

))
. (A2)

Switch hn and hn+1, so that hn+1 is stored in front of hn
along the filling curve. The total travel distance for picking
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hn and hn+1 will become:

fn+1

(
g

n−1∑
k=1

rk + (rn+1 − 1)d + g

(
n−1∑
k=1

rk + rn+1 − 1

))

+ fn

(
g

(
n−1∑
k=1

rk + rn+1

)
+ (rn − 1)d + g

(
n+1∑
k=1

rk − 1

))
(A3)

while the travel distances for the other clusters are not af-
fected.

The saving in total travel distance is Equation (A2) minus
Equation (A3):

fn+1(2grn) − fn(2grn+1)

= 2gfn fn+1

(
rn

fn
− rn+1

fn+1

)
= 2gfn fn+1(COIn − COIn+1).
≥ 0. (A4)

This is in contradiction with the optimality of the original
sequence.

In a one-dimensional rack, adjacent clusters can be
switched without influencing other clusters. However, in
higher-dimensional spaces, the two clusters may require dif-
ferent storage spaces, and the switch may not be possible
or it may affect other locations. In a one-dimensional rack,
the return distance is equal to the one-way travel distance.
Thus, the total travel distance should be doubled for both
Equations (A2) and (A3). However, this does not affect the
proof. �

Proof of Theorem 2. Without loss of generality, assume
that all build frequencies are equal to unity. We will map
the cluster assignment problem into a non-preemptive par-
allel machine scheduling problem. V parallel racks can be
mapped into V parallel machines represented in a Gantt
chart. The length of clusters can be mapped to processing
time on machines. The objective of minimizing the total
travel is then equivalent to minimizing the total flow times
of all jobs. Bruno et al. (1974) showed that polynomial-time
solution can be obtained by a bipartite matching process
for this problem. The details are as follows.

Using an idea stated in Bruno et al. (1974) we state that
if a cluster that requires r locations is assigned as the last
cluster on a rack than it will contribute r to the total travel
distance. Similarly, if it is next to last, it contributes 2r and
so forth, contributing kr if assigned as the kth cluster from
the last. If this rack is offset by distance xv from the I/O
point there will be an additional travel distance xv. The total
travel distance corresponding to such an assignment is kr
+xv. A bipartite graph G = (X , Y , E) with X corresponding
to the N clusters and Y given by vertices labeled as {11, 12,
.., 1V , 21, 22, . . . , 2V , . . . , N1, N2, . . . , NV}. The edge E
from a vertex “n” in X to a vertex “kv” in Y is weighted
by the corresponding travel distance as if cluster n is the
kth cluster from the last on rack v. If the offset of rack v

is x and the cluster occupies rn locations, the weight equals
krn + xv. The minimum weight matching from each vertex
in X solves the problem. �
Proof of Theorem 3. We prove Theorem 3 by giving a
polynomial-time algorithm, and then proving that the re-
sult generated by the algorithm is optimal.

The algorithm is presented in a pseudo code Algorithm 1.
In Algorithm 1, we sort the COI of each cluster in increas-
ing order as h1, h2, . . . , hN . The cluster h1 should be placed
first in an empty rack, and it should start with the closest
location from the I/O point. Then the cluster h2 should
be placed in the same manner. Keep on placing each clus-
ter step by step. At each step, the cluster should be placed
in a rack that has the shortest distance from its remaining
empty space to the I/O point. For example, in a three one-
dimensional rack system, the clusters should be placed as
shown in Fig. A1. In this example, clusters have different
sizes, but the algorithm works in the same manner. �
Algorithm 1:
Variables:

	v: The set of clusters assigned to rack v.
Pv: The nearest vacant space in rack v.

: The set of unassigned clusters.

Initialization:

	v ← ∅.
Pv ← The nearest vacant space in rack v.
M ← N.

 ← h1, h2, . . . , hN

Begin Procedure
Repeat

v ← Minv(Pv)
i ← Minn∈
 (COIn)
	v ← 	v + hi

 ← 
 − hi
Pv ← Pv + Space required by hi
M ← M − 1

Until M = 0
End Procedure

The above algorithm generates a setup in which the start-
ing location of a cluster with a smaller COI is stored closer
to the I/O point no matter to which rack it is assigned. For
example, if COI7 > COI5, although cluster 5 and cluster 7
are assigned to different racks, the starting location of clus-
ter 5 is closer to the I/O point in Fig. A1. This is true for
each pair of clusters.

Lemma A1. Algorithm 1 is of polynomial calculation time
O(N log N).

Lemma A2. When all clusters have the same size, the layout
of clusters generated by Algorithm 1 is optimal.
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Fig. A1. Zoning result on three one-dimensional racks using Algorithm 1.

Proof. Since all clusters are the same size, the starting loca-
tion and ending location of each cluster is fixed. The kitting
area can be considered as a series of fixed zones. Each zone
contains exactly one cluster of SKUs. This is equivalent
to the single one-dimensional rack, where a location is re-
placed by a zone. These zones are indexed in increasing
order on the basis of their distances to the I/O point. In
Algorithm 1, the clusters are indexed in increasing order of
their COIs, and the cluster with the smallest COI will be
assigned to a zone with shorter distance to the I/O point.
Although the consecutive zones in the distance index may
not be consecutive physically, they can be switched because
they all have the same size. By applying the same switching
process as in the proof of Theorem 1, we get the optimality
of Algorithm 1. �

From Lemma A1 and Lemma A2, Theorem 3 follows.

Appendix B: The generated data sets

We create 100 active BOMs. The picking frequencies range
from one to 30 and are uniformly distributed. We arbitrarily
assign the 100 BOMs to the 20 clusters. The number of
SKUs in each cluster ranges from ten to 19 each and is
uniformly distributed. There are 289 SKUs altogether. We
test different seeds to limit the number of SKUs to less
than 300, i.e., the capacity of the storage area. The number
of BOMs, total pick frequency, and total number of SKUs
in each cluster are listed in Table A1.

Table A1. The generated data sets

Data set 1 Data set 2 Data set 3 Data set 4

BOMs rn fn BOMs rn fn BOMs rn fn BOMs rn fn

1 5 10 127 5 12 224 5 6 149 5 5 123
2 4 16 145 4 11 140 4 7 97 4 5 117
3 6 11 99 6 10 124 6 6 82 6 10 196
4 6 11 96 6 11 120 6 10 90 6 5 83
5 4 18 144 4 14 147 4 7 61 4 6 89
6 4 10 79 4 18 157 4 10 60 4 7 102
7 5 11 65 5 16 132 5 15 87 5 8 114
8 5 13 76 5 11 90 5 8 46 5 9 110
9 4 12 65 4 16 124 4 10 56 4 21 182

10 6 17 89 6 14 108 6 22 115 6 16 137
11 3 11 55 3 17 129 3 10 49 3 17 133
12 5 14 66 5 12 86 5 22 87 5 20 135
13 5 15 69 5 11 74 5 12 46 5 14 86
14 3 19 78 3 19 118 3 18 67 3 19 104
15 4 15 60 4 17 89 4 20 60 4 15 79
16 4 17 68 4 18 86 4 21 62 4 20 100
17 4 18 65 4 19 90 4 21 59 4 18 76
18 9 16 43 9 14 65 9 16 43 9 17 70
19 6 16 41 6 17 72 6 23 57 6 24 92
20 8 19 43 8 18 62 8 21 35 8 24 61
Total 100 289 1573 100 295 2237 100 285 1408 100 280 2189
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Appendix C: Filling curves and zoning results
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Note: The filling curves only cover part of the kitting
area; the rest of the SKUs in cluster 20 will be stored
in the remaining spaces.
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