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Foreword

The present textbook contains the records of a two–semester course on queue-

ing theory, including an introduction to matrix–analytic methods. This course

comprises four hours of lectures and two hours of exercises per week and has

been taught at the University of Trier, Germany, for about ten years in se-

quence. The course is directed to last year undergraduate and first year grad-

uate students of applied probability and computer science, who have already

completed an introduction to probability theory. Its purpose is to present ma-

terial that is close enough to concrete queueing models and their applications,

while providing a sound mathematical foundation for the analysis of these.

Thus the goal of the present book is two–fold.

On the one hand, students who are mainly interested in applications easily

feel bored by elaborate mathematical questions in the theory of stochastic

processes. The presentation of the mathematical foundations in our courses

is chosen to cover only the necessary results, which are needed for a solid

foundation of the methods of queueing analysis. Further, students oriented to-

wards applications expect to have a justification for their mathematical efforts

in terms of immediate use in queueing analysis. This is the main reason why

we have decided to introduce new mathematical concepts only when they will

be used in the immediate sequel.

On the other hand, students of applied probability do not want any heuris-

tic derivations just for the sake of yielding fast results for the model at hand.

They want to see the close connections between queueing theory and the theory

of stochastic processes. For them, a systematic introduction to the necessary

concepts of Markov renewal theory is indispensable. Further, they are not in-

terested in any technical details of queueing applications, but want to see the

reflection of the mathematical concepts in the queueing model as purely as

possible.
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A prominent part of the book will be devoted to matrix–analytic methods. This

is a collection of approaches which extend the applicability of Markov renewal

methods to queueing theory by introducing a finite number of auxiliary states.

For the embedded Markov chains this leads to transition matrices in block form

having the same structure as the classical models. With a few modifications

they can be analyzed in the same way.

Matrix–analytic methods have become quite popular in queueing theory dur-

ing the last twenty years. The intention to include these in a students’ intro-

duction to queueing theory has been the main motivation for the authors to

write the present book. Its aim is a presentation of the most important matrix–

analytic concepts like phase–type distributions, Markovian arrival processes,

the GI/PH/1 and BMAP/G/1 queues as well as QBDs and discrete time ap-

proaches. This is the content of part III of this book.

As an introductory course for students it is necessary to provide the required

results from Markov renewal theory before. This is done in part I, which con-

tains Markovian theory, and part II which combines the concepts of part I with

renewal theory in order to obtain a foundation for Markov renewal theory. Cer-

tainly only few students would like to acquire this theoretical body without

some motivating applications in classical queueing theory. These are intro-

duced as soon as the necessary theoretical background is provided.

The book is organized as follows. The first chapter gives a short overview of

the diverse application areas for queueing theory and defines queues and their

system processes (number of users in the system). The appendix sections in

chapter 15 provide an easy reference to some basic concepts of analysis and

probability theory.

For the simple Markovian queueing models (in discrete and continuous time)

it suffices to give a short introduction to Markov chains and processes, and

then present an analysis of some queueing examples. This is done in chapters

2 through 4. Chapter 5 gives an introduction to the analysis of simple queue-

ing networks, in particular Jackson and Gordon–Newell networks as well as

BCMP networks. This concludes the first part of the book, which deals with

Markovian methods exclusively.

The second part is devoted to semi–Markovian methods. In chapter 6 the most

important results of renewal theory are provided. Chapter 7 contains a short

introduction to Markov renewal theory. This will be necessary for the analy-

sis of the classical semi–Markovian queues (namely the GI/M/1 and M/G/1

systems), which is presented in chapter 8.

More recent approaches which are usually subsumed under the term ”matrix–

analytic methods” are presented in the third part of the book. In chapters
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9 and 10 the basic concepts of phase–type distributions and Markovian ar-

rival processes are introduced. The matrix–analytic analogues to the GI/M/1

and M/G/1 queues, namely the GI/PH/1 and BMAP/G/1 systems are analyzed

in chapters 11 and 12. Chapter 13 gives a short overview on discrete time

analogues. Further blockwise skip–free Markov chains, also known as QBD

processes, are analyzed, with an application to the PH/PH/1 queue in dis-

crete time. Finally, in chapter 14 a generalization of BMAPs towards spatial

Markovian arrival processes is presented.

Of course, most of the more classical material can be found in existing text-

books on stochastic processes. For example, Çinlar [25] and Ross [75] stillCC

contain, in our view, the most systematic treatment of semi–Markovian queues.

Also of great value, mostly for the theory of Markov chains and processes, are

the courses on stochastic processes by Karlin and Taylor [46, 47]. Further im-

portant results may be found in Doob [31], Asmussen [5], and Nelson [61].

The material on queueing networks can be found in Mitrani [60], Kelly [48],

and Kleinrock [50]. Monographs on matrix–analytic methods are the pioneer-

ing books by Neuts [65, 66], and Latouche and Ramaswami [52]. For discrete

time methods the overview paper by Alfa [2] was helpful.

However, some aspects of standard presentation have been changed in order to

alleviate the mathematical burden for the students. The stationary regime for

Markov chains has been introduced as an asymptotic mean over time in order

to avoid the introduction of periodicity of states. The definition of Markov

processes in chapter 3 is much closer to the derivation of immediate results. It

is not necessary to derive the standard path properties in lengthy preliminary

analyses, since these are already included in the definition. Nevertheless, the

close connection between the phenomena observed in queueing systems and

the definition given in our textbook is immediately clear to the student.

The introduction of renewal theory has been postponed to the second part of the

book in order to show a variety of queueing application of a purely Markovian

nature first. The drawback that a proof for asymptotic behaviour of Markov

processes must be deferred appears bearable for an average student. The proof

of Blackwell’s theorem, and thus also for the equivalent key renewal theorem,

has been omitted as it is too technical for a student presentation in the authors’

opinion. The same holds for proofs regarding the necessity of the stability

condition for the queues GI/PH/1 and BMAP/G/1. Only proofs for sufficiency

have been included because they are easily based on the classical Foster crite-

ria.

At the end of each chapter there will be a collection of exercises, some of them

representing necessary auxiliary results to complete the proofs presented in
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the lectures. Additional material is given as exercises, too, e.g. examples of

computer networks or certain special queueing system.

The book is written according to the actual scripts of the lecture courses given

at the University of Trier, Germany. It is intended not only to collect material

which can be used for an introductory course on queueing theory, but to pro-

pose the scripts of the lectures themselves. The book contains exactly as much

material as the authors (as lecturers) could present in two semesters. Thus a

lecturer using this textbook does not need to choose and reassemble the ma-

terial for a course from sources which must be shortened because there is no

time to treat them completely. This entails saving the work of reformulating

notations and checking dependencies. For a course of only one semester we

propose to teach parts I and II of this book, leaving out sections 5.3 and 8.3.



Chapter 1

QUEUES: THE ART OF MODELLING

Stochastic modelling is the application of probability theory to the descrip-

tion and analysis of real world phenomena. It is thus comparable to physics,

with the distinguishing property that mostly technical and not natural systems

are investigated. These are usually so complex that deterministic laws cannot

be formulated, a circumstance that leads to pervasive use of stochastic con-

cepts. Application fields as telecommunication or insurance bring methods

and results of stochastic modelling to the attention of applied sciences such

as engineering or economics. On the other hand, often new technological de-

velopments give rise to new questions in an application field, which in turn

may open a new direction in stochastic research, and thus provide an impetus

to applied probability. Stochastic modelling is a science with close interaction

between theory and practical applications. This is nice because it combines the

possibility of theoretical beauty with a real–world meaning of its key concepts.

On the other hand, it is difficult to cover the whole width from theoretical foun-

dations to the details of practical applications. The present book is an essay to

give an introduction to the theory of stochastic modelling in a systematic way

without losing contact to its applicability.

One of the most important domains in stochastic modelling is the field of

queueing theory. This shall be the topic of this treatise. Many real systems

can be reduced to components which can be modelled by the concept of a

so–called queue. The basic idea of this concept has been borrowed from the

every–day experience of the queues at the checkout counters in a supermarket.

A queue in the more exact scientific sense consists of a system into which there

comes a stream of users who demand some capacity of the system over a cer-

tain time interval before they leave the system again. It is said that the users are

served in the system by one or many servers. Thus a queueing system can be
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described by a (stochastic) specification of the arrival stream and of the system

demand for every user as well as a definition of the service mechanism. The

former describe the input into a queue, while the latter represents the function-

ing of the inner mechanisms of a queueing system. Before we give an exact

definition of a queueing system, a few examples shall provide an idea of the

variety of applications.

Example 1.1 Single Server Queue

serverqueuearrival process departure
process

Figure 1.1. Single server queue

A queue in front of the checkout counter of a supermarket may serve as the

simplest illustration for a queueing system. There is one input stream, and one

server who serves the customers in order of their appearance at the counter.

This service discipline, which does not admit any preferences among users, is

called first come first served (abbr.: FCFS).

Example 1.2 Multi–Server Queue

queuearrival process departure
 process

servers

Figure 1.2. Multi–server queue
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The first real application of queueing theory, in fact the one that engendered

the development of the whole field of research, has been the design and analy-

sis of telephone networks. In the early days of Erlang at the beginning of the

20th century, telephone calls first went to an operator before they could be

conected to the person that was to be reached by the call. Thus an important

part of a telephone network could be modelled by a queueing system in which

the servers are the operators in a call center who connect the incoming calls

(which are modelled by the input stream of users) to their addressees. Here,

the time of connecting is represented by the service demand of a user. A cru-

cial performance measure of such a system is the probability that a person who

wants to get a connection for a call finds all operators busy and thus cannot

be served. This value is called the loss probability of the system. For a mod-

ern call center, where questions are answered instead of cables connected, the

service times represent the time of the call between the user and the operator.

Example 1.3 In recent times, computer networks (the most prominent exam-

ple is the internet) have increasingly become the object of applications of

queueing theory. For example, a server in a computer network receives de-

mands from its clients and needs to serve them. The demands make up the

input stream into the queueing sytem that represents the server utilization. A

service discipline that is often used in these kinds of application is the follow-

ing: The processing capacity of the server is divided into equal parts among

the jobs such that none of the clients is favoured, but each client’s service

time depends on the total number of clients that are resident at the same time.

Because of its prevalence in computer applications, this service discipline is

called processor sharing.

Example 1.4 Queues find further applications in airport traffic. Here, the

servers are the several landing fields available for arriving airplanes, while the

latter are the users of the system. Obviously, there cannot be any queue of

planes waiting in the air, so that an arriving airplane finding all landing fields

in use needs instead to fly an extra circle around the airport and then try again

for a possibility to land. Such a manoeuver is called a retrial, and the corre-

sponding queueing model is called a retrial queue. Since with every extra circle

that a plane has to perform its gasoline is reduced more, the priority of such

an aircraft to obtain a landing permission is increasing and should be higher

than that of more recent airplanes with fewer retrials. Such an influence on the

service schedule is called priority queueing.

Example 1.5 More complicated queueing models have been developed for the

design of traffic lights at crossroads. In such a model, there are several distin-

guishable queues which represent the different roads leading to the intersec-

tion. A green light at one road means that vehicles waiting on it are served



4 AN INTRODUCTION TO QUEUEING THEORY

on a first come first served base. There are as many servers as there are traffic

lights at the intersection, and it is obvious that these servers must function in

dependence on each other. Such queueing systems are called polling systems.

Example 1.6 In modern production systems an analysis of assembly lines has

become a fundamental necessity. They are modelled by so–called tandem

queueing networks, which are defined as a series of several single queueing

systems where the output of one queue forms the input of the next.

Example 1.7 Finally, perhaps the most interesting object of analysis for to-

day’s computer science, the internet, would merely appear as a highly complex

queueing network, at least so from the point of view of stochastic modelling.

These examples illustrate the very different interpretations and thus applica-

tions that queueing systems can assume. They should suffice as a motivation

to undergo the strain of developing methods and concepts for the analysis of

queueing systems of the highest possible complexity and generality. Our in-

troduction to the theory of queues gives a (hopefully) balanced presentation of

potentially very general methods of analysis based on the theory of Markov

renewal processes, and at the same time tries to apply these to the practically

relevant analyses of queueing systems. Opening the exact part of the presenta-

tion we begin with a definition of the concept of a queue:

For every n ∈ N, let TnTT and SnSS denote positive real–valued random variables

with TnTT +1 > TnTT for all n ∈ N. The sequence T = (TnTT : n ∈ N0) is called

arrival point process and S = (SnSS : n ∈ N) is the sequence of service

times. Further choose a number k of servers and the system capacity c, with

k, c ∈ N ∪ {∞}.

Finally a service discipline B needs to be specified. This can be first come first

served (FCFS), last come first served (LCFS), processor sharing (PS), some-

times working with certain priorities or preemption rules. Normally we choose

FCFS, meaning that the first user who arrives in the system will be the first to

get access to a server. If other service disciplines will be used, they will be

explained whenever introduced.

The 5–tuple (T ,S, k, c, B) is called a queue (or queueing system) with arrival

point process T , sequence of service times S, number k of servers, system

capacity c, and service discipline B.

Define further the nth inter–arrival time by Z1 := T1TT and ZnZZ := TnTT − TnTT −1

for all n ≥ 2. The standard way to specify a queue is the Kendall nota-

tion. This merely denotes the 5–tuple (T ,S, k, c, B) in the above definition

by T /S/k/c/B and additionally sets some conventions for interpreting this
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notation: If the 4th or 5th parameter is left out, this is agreed to mean c = ∞
or B = FCFS, respectively. Further, for the first two parameters the letters

M (resp. G) stand for geometric (resp. general) inter–arrival and service times

for queues in discrete time and for exponential (resp. general) inter–arrival

and service times for queues in continuous time. There are additional conven-

tions: D stands for deterministic (Dirac) distributions, Geo is the same as M
for discrete time systems, etc.

The main goal of any queueing analysis will be to specify and analyze the

system process Q = (Qt : t ≥ 0), where Qt is the number of users in the

queueing system (usually including the number of users in service) at time t.
An important measure (in case of existence) will be the asymptotic distribu-

tion of Qt for t tending to infinity.

Our first result concerns a sample path property of general conservative sys-

tems with inputs and outputs. Conservative systems do not create or destroy

users. Let α(t) denote the number of arrivals into the system until time t. De-

fine λt := α(t)/t as the average arrival rate during the interval [0, t]. Further

define T as the average time a user spends in the system. Finally denote the

average number of users in the system during [0, t] by N̄tNN . Then we can state

Theorem 1.8 Little’s Result

If the limit λ = limt→∞ λt and T do exist, then the limit N̄ = limt→∞ N̄tNN does

exist, too, and the relation

N̄ = λT

holds.

Proof: We introduce the notation δ(t) for the number of departures from the

system during [0, t] and N(t) for the number of users in the system. If the

system starts empty, then these definitions imply the relation

N(t) = α(t) − δ(t)

for all times t (see the following figure).

Denote the total time that all users have spent in the system during [0, t] by

γ(t) :=

∫ t

0

∫∫
N(s) ds

If we define TtTT as the system time per user averaged over all users in the interval

[0, t], then the definitions of α(t) and γ(t) imply the relation

TtTT =
γ(t)

α(t)
(1.1)
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N(t)

time

δ

α

(t)

(t)

n
u
m

b
er

 o
f 

u
se

rs

Figure 1.3. Total system time

The average number of users in the system during [0, t] can be obtained as

N̄tNN =
γ(t)

t
=

γ(t)

α(t)
· α(t)

t
= λtTtTT

where the last equality comes from (1.1) and the definition of λt. If the limits

λ and T = limt→∞ TtTT exist, then the stated relation N̄ = λT follows for t
tending to infinity.

�

For ease of reference, we finally provide a table of some basic probability

distributions which will occur frequently throughout the book.

Distribution Density Range Parameters

Exponential λe−λt t > 0 λ > 0

Erlang
mµ(mµt)m−1

(m−1)! e−mµt t > 0 m ∈ N, µ > 0

Poisson λn

n! e
−λ n ∈ N0 λ > 0

Geometric (1 − p)pn n ∈ N0 p ∈]0, 1[

Binomial
(
N
n

)
pn(1 − p)N−n 0 ≤ n ≤ N N ∈ N, p ∈]0, 1[
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Notes

The first formal proof for Little’s result appeared in Little [53]. The proof

presented here is taken from Kleinrock [50].





PART I

MARKOVIAN METHODS



Chapter 2

MARKOV CHAINS AND QUEUES IN DISCRETE

TIME

1. Definition

Let XnX with n ∈ N0 denote random variables on a discrete space E. The

sequence X = (XnXX : n ∈ N0) is called a stochastic chain. If P is a probability

measure X such that

P (XnXX +1 = j|X0 = i0, . . . , XnXX = in) = P (XnXX +1 = j|XnXX = in) (2.1)

for all i0, . . . , in, j ∈ E and n ∈ N0, then the sequence X shall be called a

Markov chain on E. The probability measure P is called the distribution of

X , and E is called the state space of X .

If the conditional probabilities P (XnXX +1 = j|XnX = in) are independent of the

time index n ∈ N0, then we call the Markov chain X homogeneous and denote

pij := P (XnXX +1 = j|XnX = i)

for all i, j ∈ E. The probability pij is called transition probability from state

i to state j. The matrix P := (pij)i,j∈E shall be called transition matrix of

the chain X . Condition (2.1) is referred to as the Markov property.

Example 2.1 If (XnXX : n ∈ N0) are random variables on a discrete space E,

which are stochastically independent and identically distributed (shortly: iid),

then the chain X = (XnXX : n ∈ N0) is a homogeneous Markov chain.

Example 2.2 Discrete Random Walk

Set E := Z and let (SnSS : n ∈ N) be a sequence of iid random variables with

values in Z and distribution π. Define X0 := 0 and XnXX :=
∑n

k=1 Sk for all
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n ∈ N. Then the chain X = (XnXX : n ∈ N0) is a homogeneous Markov chain

with transition probabilities pij = πjπ −i. This chain is called discrete random

walk.

Example 2.3 Bernoulli process

Set E := N0 and choose any parameter 0 < p < 1. The definitions X0 := 0
as well as

pij :=

{
p, j = i + 1

1 − p, j = i

for i ∈ N0 determine a homogeneous Markov chain X = (XnXX : n ∈ N0). It is

called Bernoulli process with parameter p.

So far, al examples have been chosen as to be homogeneous. The following

theorem shows that there is a good reason for this:

Theorem 2.4 Be X = (XnXX : n ∈ N0) a Markov chain on a discrete state

space E. Then there is a homogeneous Markov chain X ′ = (X ′
nX : n ∈ N0)

on the state space E × N0 such that XnXX = pr1(X
′
nX ) for all n ∈ N0, with pr1

denoting the projection to the first dimension.

Proof: Let X be a Markov chain with transition probabilities

pn;ij := P(XnX +1 = j|XnXX = i)

which may depend on the time instant n. Define the two–dimensional random

variables X ′
nX := (XnXX , n) for all n ∈ N0 and denote the resulting distribution of

the chain X ′ = (X ′
nX : n ∈ N0) by P

′. By definition we obtain XnXX = pr1(X
′
nX )

for all n ∈ N0.

Further P
′(X ′

0 = (i, k)) = δk0 · P(X0 = i) holds for all i ∈ E, and all

transition probabilities

p′(i,k),(j,l) = P
′(X ′

k+1 = (j, l)|X ′
k = (i, k)) = δl,k+1 · pk;ij

can be expressed without a time index. Hence the Markov chain X ′ is homo-

geneous.

�

Because of this result, we will from now on treat only homogeneous Markov

chains and omit the adjective ”homogeneous”.

Let P denote the transition matrix of a Markov chain on E. Then as an im-

mediate consequence of its definition we obtain pij ∈ [0, 1] for all i, j ∈ E
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and
∑

j∈E pij = 1 for all i ∈ E. A matrix P with these properties is called

a stochastic matrix on E. In the following we shall demonstrate that, given

an initial distribution, a Markov chain is uniquely determined by its transition

matrix. Thus any stochastic matrix defines a family of Markov chains.

Theorem 2.5 Let X denote a homogeneous Markov chain on E with transi-

tion matrix P . Then the relation

P (XnXX +1 = j1, . . . , XnXX +m = jm|XnXX = i) = pi,j1 · . . . · pjm−1,jm

holds for all n ∈ N0, m ∈ N, and i, j1, . . . , jm ∈ E.

Proof: This is easily shown by induction on m. For m = 1 the statement holds

by definition of P . For m > 1 we can write

P(XnXX +1 =j1, . . . , XnXX +m = jm|XnX = i)

=
P (XnXX +1 = j1, . . . , XnXX +m = jm, XnXX = i)

P (XnXX = i)

=
P (XnX +1 = j1, . . . , XnXX +m = jm, XnXX = i)

P (XnXX +1 = j1, . . . , XnXX +m−1 = jm−1, XnXX = i)

× P (XnXX +1 = j1, . . . , XnXX +m−1 = jm−1, XnXX = i)

P (XnXX = i)

= P (XnXX +m = jm|XnXX = i, XnXX +1 = j1, . . . , XnXX +m−1 = jm−1)

× pi,j1 · . . . · pjm−2,jm−1

= pjm−1,jm · pi,j1 · . . . · pjm−2,jm−1

because of the induction hypothesis and the Markov property.

�

Let π be a probability distribution on E with P(X0 = i) = πi for all i ∈ E.

Then theorem 2.5 immediately yields

P (X0 = j0, X1 = j1, . . . , XmXX = jm) = πjπ
0
· pj0,j1 . . . pjm−1,jm (2.2)

for all m ∈ N and j0, . . . , jm ∈ E. The chain with this distribution P is

denoted by X π and called the π–version of X . The probability measure π is

called initial distribution for X .

Theorem 2.5 and the extension theorem by Tulcea (see appendix 2) show that

a Markov chain is uniquely determined by its transition matrix and its initial

distribution. Whenever the initial distribution π is not important or understood

from the context, we will simply write X instead of X π. However, in an exact

manner the notation X denotes the family of all the versions X π of X , indexed

by their initial distribution π.
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Theorem 2.6 Let X denote a homogeneous Markov chain with transition ma-

trix P . Then the relation

P(XnXX +m = j|XnXX = i) = Pm(i, j)

holds for all m, n ∈ N0 and i, j ∈ E, with Pm(i, j) denoting the (i, j)th entry

of the mth power of the matrix P . In particular, P 0 equals the identity matrix.

Proof: This follows by induction on m. For m = 1 the statement holds by

definition of P . For m > 1 we can write

P(XnXX +m = j|XnX = i) =
P (XnXX +m = j, XnXX = i)

P (XnXX = i)

=
∑

k∈E

P (XnXX +m = j, XnXX +m−1 = k, XnXX = i)

P (XnXX +m−1 = k, XnXX = i)

× P (XnXX +m−1 = k, XnXX = i)

P (XnXX = i)

=
∑

k∈E

P (XnXX +m = j|XnXX +m−1 = k, XnXX = i) · Pm−1(i, k)

=
∑

k∈E

pkj · Pm−1(i, k) = Pm(i, j)

because of the induction hypothesis and the Markov property.

�

Thus the probabilities for transitions in m steps are given by the mth power

of the transition matrix P . The rule Pm+n = PmPn for the multiplication of

matrices and theorem 2.6 lead to the decompositions

P(XmXX +n = j|X0 = i) =
∑

k∈E

P(XmX = k|X0 = i) · P(XnXX = j|X0 = k)

which are known as the Chapman–Kolmogorov equations.

For later purposes we will need a relation closely related to the Markov prop-

erty, which is called the strong Markov property. Let τ denote a random

variable with values in N0 ∪ {∞}, such that the condition

P(τ ≤ n|X ) = P(τ ≤ n|X0, . . . , XnXX ) (2.3)

holds for all n ∈ N0. Such a random variable is called a (discrete) stopping

time for X . The defining condition means that the probability for the event

{τ ≤ n} depends only on the evolution of the chain until time n. In other
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words, the determination of a stopping time does not require any knowledge of

the future. Now the strong Markov property is stated in

Theorem 2.7 Let X denote a Markov chain and τ a stopping time for X with

P(τ < ∞) = 1. Then the relation

P(XτXX +m = j|X0 = i0, . . . , XτXX = iτ ) = P(XmXX = j|X0 = iτ )

holds for all m ∈ N and i0, . . . , iτ , j ∈ E.

Proof: The fact that the stopping time τ is finite and may assume only count-

ably many values can be exploited in the transformation

P(XτXX +m = j|X0 = i0, . . . , XτXX = iτ )

=
∞∑

n=0

P(τ = n, XτXX +m = j|X0 = i0, . . . , XτXX = iτ )

=
∞∑

n=0

P(XτXX +m = j|τ = n,X0 = i0, . . . , XτXX = iτ )

× P(τ = n|X0 = i0, . . . , XτXX = iτ )

=
∞∑

n=0

P(XnXX +m = j|XnX = iτ ) · P(τ = n|X )

=
∞∑

n=0

P(τ = n|X ) · P(XmXX = j|X0 = iτ )

which yields the statement, as τ is finite with probability one.

�

2. Classification of States

Let X denote a Markov chain with state space E and transition matrix P . We

call a state j ∈ E accessible from a state i ∈ E if there is a number m ∈ N0

with P (XmXX = j|X0 = i) > 0. This relation shall be denoted by i → j. If for

two states i, j ∈ E, the relations i → j and j → i hold, then i and j are said

to communicate, in notation i ↔ j.

Theorem 2.8 The relation ↔ of communication between states is an equiva-

lence relation.

Proof: Because of P 0 = I , communication is reflexive. Symmetry holds

by definition. Thus it remains to show transitivity. For this, assume i ↔ j
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and j ↔ k for three states i, j, k ∈ E. This means that there are numbers

m, n ∈ N0 with Pm(i, j) > 0 and Pn(j, k) > 0. Hence, by the Chapman–

Kolmogorov equation, we obtain

P(XmXX +n = k|X0 = i) =
∑

h∈E

P(XmXX = h|X0 = i) · P(XnXX = k|X0 = h)

≥ P(XmXX = j|X0 = i) · P(XnX = k|X0 = j) > 0

which proves i → k. The remaining proof of k → i is completely analogous.

�

Because of this result and the countability, we can divide the state space E of

a Markov chain into a partition of countably many equivalence classes with

respect to the communication of states. Any such equivalence class shall be

called communication class. A communication class C ⊂ E that does not

allow access to states outside itself, i.e. for which the implication

i → j, i ∈ C ⇒ j ∈ C

holds, is called closed. If a closed equivalence class consists only of one state,

then this state shall be called absorbing. If a Markov chain has only one

communication class, i.e. if all states are communicating, then it is called irre-

ducible. Otherwise it is called reducible.

Example 2.9 Let X denote a discrete random walk (see example 2.2) with the

specification π1 = p and π−1 = 1− p for some parameter 0 < p < 1. Then X
is irreducible.

Example 2.10 The Bernoulli process (see example 2.3) with non–trivial pa-

rameter 0 < p < 1 is to the highest degree reducible. Every state x ∈ N0

forms an own communication class. None of these is closed, thus there are no

absorbing states.

Theorem 2.11 Be X a Markov chain with state space E and transition matrix

P . Let C = {cn : n ∈ I} ⊂ E with I ⊂ N be a closed communication class.

Define the matrix P ′ by its entries p′ij := pci,cj
for all i, j ∈ I . Then P ′ is

stochastic.

Proof: By definition, p′ij ∈ [0, 1] for all i, j ∈ I . Since C is closed, pci,k = 0
for all i ∈ I and k /∈// C. This implies

∑

j∈I

p′ij =
∑

j∈I

pci,cj
= 1 −

∑

k/∈//C

pci,k = 1
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for all i ∈ I , as P is stochastic.

�

Thus the restriction of a Markov chain X with state space E to the states of

one of its closed communication classes C defines a new Markov chain with

state space C. If the states are relabeled according to their affiliation to a

communication class, the transition matrix of X can be displayed in a block

matrix form as

P =

⎡
⎢
⎡⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

Q Q1 Q2 Q3 Q4 . . .
0 P1PP 0 0 0 . . .
0 0 P2PP 0 0 . . .
0 0 0 P3PP 0 . . .
...

...
. . .

. . .
. . .

⎤
⎥
⎤⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
(2.4)

with PnPP being stochastic matrices on the closed communication classes CnCC .

The first row contains the transition probabilities starting from communication

classes that are not closed.

Let X denote a Markov chain with state space E. In the rest of this section

we shall investigate distribution and expectation of the following random vari-

ables: Define τjτ as the stopping time of the first visit to the state j ∈ E, i.e.

τjτ := min{n ∈ N : XnXX = j}

Denote the distribution of τjτ by

FkFF (i, j) := P(τjτ = k|X0 = i)

for all i, j ∈ E and k ∈ N.

Lemma 2.12 The conditional distribution of the first visit to the state j ∈ E,

given an initial state X0 = i, can be determined iteratively by

FkFF (i, j) =

{
pij , k = 1∑

h �=�� j pihFkFF −1(h, j), k ≥ 2

for all i, j ∈ E.

Proof: For k = 1, the definition yields

F1FF (i, j) = P(τjτ = 1|X0 = i) = P(X1 = j|X0 = i) = pij

for all i, j ∈ E. For k ≥ 2, conditioning upon X1 yields

FkFF (i, j) = P(X1 
=

 j, . . . ,Xk−1 
=

 j, Xk = j|X0 = i)
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=
∑

h�=�� j

P(X1 = h|X0 = i)

× P(X2 
=

 j, . . . ,Xk−1 
=

 j,Xk = j|X0 = i, X1 = h)

=
∑

h�=�� j

pih · P(X1 
=

 j, . . . ,Xk−2 
=

 j,Xk−1 = j|X0 = h)

due to the Markov property.

�

Now define

fijff := P(τjτ < ∞|X0 = i) =

∞∑

k=1

FkFF (i, j) (2.5)

for all i, j ∈ E, which represents the probability of ever visiting state j after

beginning in state i. Summing up over all k ∈ N in the formula of Lemma

2.12 leads to

fijff = pij +
∑

h �=�� j

pihfhjff (2.6)

for all i, j ∈ E. The proof is left as an exercise.

Define NjNN as the random variable of the total number of visits to the state

j ∈ E. Expression (2.6) is useful for computing the distribution of NjNN :

Theorem 2.13 Let X denote a Markov chain with state space E. The total

number of visits to a state j ∈ E under the condition that the chain starts in

state i is given by

P(NjNN = m|X0 = j) = fm−1
jjf (1 − fjjf )

and for i 
=

 j

P(NjNN = m|X0 = i) =

{
1 − fijff , m = 0

fijff fm−1
jjf (1 − fjjf ), m ≥ 1

Thus the distribution of NjN is modified geometric.

Proof: Define τ
(1)
jτ := τjτ and τ

(k+1)
jτ := min{n > τ

(k)
jτ : XnXX = j} for all

k ∈ N, with the convention that min ∅ = ∞. Note that τ
(k)
jτ = ∞ implies

τ
(l)
jτ = ∞ for all l > k.

Then the sequence (τ
(k)
jτ : k ∈ N) is a sequence of stopping times. The event

{NjNN = m} is the same as the intersection of the events {τ (k)
jτ < ∞} for
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k = 1, . . . ,M and {τ (M+1)
jτ = ∞}, with M = m if i 
=

 j and M = m − 1 if

i = j. Now this event can be further described by the intersection of the events

{τ (k+1)
jτ − τ

(k)
jτ < ∞} for k = 0, . . . ,M − 1 and {τ (M+1)

jτ − τ
(M)
jτ = ∞}, with

M as above and the convention τ
(0)
jτ := 0.

The subevent {τ (k+1)
jτ − τ

(k)
jτ < ∞} has probability fijff for k = 0 and because

of the strong Markov property (see theorem 2.7) probability fjjf for k > 0. The

probability for {τ (M+1)
jτ − τ

(M)
jτ = ∞} is 1 − fijff for M = 0 and 1 − fjjf for

M > 0. Once more the strong Markov property is the reason for independence

of the subevents. Now multiplication of the probabilities leads to the formulae

in the statement.

�

Summing over all m in the above theorem leads to

Corollary 2.14 For all j ∈ E, the zero–one law

P(NjNN < ∞|X0 = j) =

{
1, fjjf < 1

0, fjjf = 1

holds, i.e. depending on fjjf there are almost certainly infinitely many visits to

a state j ∈ E.

This result gives rise to the following definitions: A state j ∈ E is called re-

current if fjjf = 1 and transient otherwise. Let us further define the potential

matrix R = (rij)i,j∈E of the Markov chain by its entries

rij := E(NjNN |X0 = i)

for all i, j ∈ E. Thus an entry rij gives the expected number of visits to the

state j ∈ E under the condition that the chain starts in state i ∈ E. As such,

rij can be computed by

rij =
∞∑

n=0

Pn(i, j) (2.7)

for all i, j ∈ E. The results in theorem 2.13 and corollary 2.14 yield

Corollary 2.15 For all i, j ∈ E the relations

rjj = (1 − fjjf )−1 and rij = fijff rjj

hold, with the conventions 0−1 := ∞ and 0 · ∞ := 0 included. In particular,

the expected number rjj of visits to the state j ∈ E is finite if j is transient and

infinite if j is recurrent.
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Theorem 2.16 Recurrence and transience of states are class properties with

respect to the relation ↔. Furthermore, a recurrent communication class is

always closed.

Proof: Assume that i ∈ E is transient and i ↔ j. Then there are numbers

m, n ∈ N with 0 < Pm(i, j) ≤ 1 and 0 < Pn(j, i) ≤ 1. The inequalities

∞∑

k=0

P k(i, i) ≥
∞∑

h=0

Pm+h+n(i, i) ≥ Pm(i, j)Pn(j, i)
∞∑

k=0

P k(j, j)

now imply rjj < ∞ because of representation (2.7). According to corollary

2.15 this means that j is transient, too.

If j is recurrent, then the same inequalities lead to

rii ≥ Pm(i, j)Pn(j, i)rjj = ∞

which signifies that i is recurrent, too. Since the above arguments are symmet-

ric in i and j, the proof of the first statement is complete.

For the second statement assume that i ∈ E belongs to a communication class

C ⊂ E and pij > 0 for some state j ∈ E \ C. Then

fiiff = pii +
∑

h �=�� i

pihfhiff ≤ 1 − pij < 1

according to formula (2.6), since fjif = 0 (otherwise i ↔ j). Thus i is transient,

which proves the second statement.

�

Theorem 2.17 If the state j ∈ E is transient, then limn→∞ Pn(i, j) = 0,

regardless of the initial state i ∈ E.

Proof: If the state j is transient, then the first equation in corollary 2.15 yields

rjj < ∞. The second equation in the same corollary now implies rij < ∞,

which by the representation (2.7) completes the proof.

�

3. Stationary Distributions

Let X denote a Markov chain with state space E and π a measure on E. If

P(XnXX = i) = P(X0 = i) = πi for all n ∈ N and i ∈ E, then X π is called

stationary, and π is called a stationary measure for X . If furthermore π is a

probability measure, then it is called stationary distribution for X .
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Theorem 2.18 Let X denote a Markov chain with state space E and transition

matrix P . Further, let π denote a probability distribution on E with πP = π,

i.e.

πi =
∑

j∈E

πjπ pji and
∑

j∈E

πjπ = 1

for all i ∈ E. Then π is a stationary distribution for X . If π is a stationary

distribution for X , then πP = π holds.

Proof: Let P(X0 = i) = πi for all i ∈ E. Then P(XnXX = i) = P(X0 = i)
for all n ∈ N and i ∈ E follows by induction on n. The case n = 1 holds

by assumption, and the induction step follows by induction hypothesis and the

Markov property. The last statement is obvious.

�

The following examples show some features of stationary distributions:

Example 2.19 Let the transition matrix of a Markov chain X be given by

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎝⎜⎜
0.8 0.2 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.6 0.4

⎞
⎟
⎞⎞

⎟⎟⎟⎠⎟⎟

Then π = (0.5, 0.5, 0, 0), π′ = (0, 0, 0.5, 0.5) as well as any linear combina-

tion of them are stationary distributions for X . This shows that a stationary

distribution does not need to be unique.

Example 2.20 Bernoulli process (see example 2.1)

The transition matrix of a Bernoulli process has the structure

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 − p p 0 0 . . .

0 1 − p p 0
. . .

0 0 1 − p p
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

Hence πP = π implies first

π0 · (1 − p) = π0 ⇒ π0 = 0

since 0 < p < 1. Assume that πn = 0 for any n ∈ N0. This and the condition

πP = π further imply for πn+1

πn · p + πn+1 · (1 − p) = πn+1 ⇒ πn+1 = 0
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which completes an induction argument proving πn = 0 for all n ∈ N0. Hence

the Bernoulli process does not have a stationary distribution.

Example 2.21 The solution of πP = π and
∑

j∈E πjπ = 1 is unique for

P =

(
1 − p p

p 1 − p

)

with 0 < p < 1. Thus there are transition matrices which have exactly one

stationary distribution.

The question of existence and uniqueness of a stationary distribution is one of

the most important problems in the theory of Markov chains. A simple answer

can be given in the transient case (cf. example 2.20):

Theorem 2.22 A transient Markov chain (i.e. a Markov chain with transient

states only) has no stationary distribution.

Proof: Assume that πP = π holds for some distribution π and take any enu-

meration E = (sn : n ∈ N) of the state space E. Choose any index m ∈ N

with πsm > 0. Since
∑∞

n=1 πsn = 1 is bounded, there is an index M > m
such that

∑∞
n=M πsn < πsm . Set ε := πsm −∑∞

n=M πsn . According to the-

orem 2.17, there is an index N ∈ N such that Pn(si, sm) < ε for all i ≤ M
and n ≥ N . Then the stationarity of π implies

πsm =
∞∑

i=1

πsi
PN (si, sm) =

M−1∑

i=1

πsi
PN (si, sm) +

∞∑

i=M

πsi
PN (si, sm)

< ε +
∞∑

i=M

πsi
= πsm

which is a contradiction.

�

For the recurrent case, a finer distinction will be necessary. While the expected

total number rjj of visits to a recurrent state j ∈ E is always infinite (see

corollary 2.15), there are differences in the rate of visits to a recurrent state.

In order to describe these, define NiNN (n) as the number of visits to state i until

time n. Further define for a recurrent state i ∈ E the mean time

mi := E(τiττ |X0 = i)

until the first visit to i (after time zero) under the condition that the chain starts

in i. By definition mi > 0 for all i ∈ E. The elementary renewal theorem
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(which will be proven later as theorem 6.12) states that

lim
n→∞

E(NiNN (n)|X0 = j)

n
=

1

mi
(2.8)

for all recurrent i ∈ E and independently of j ∈ E provided j ↔ i, with the

convention of 1/∞ := 0. Thus the asymptotic rate of visits to a recurrent state

is determined by the mean recurrence time of this state. This gives reason to the

following definition: A recurrent state i ∈ E with mi = E(τiττ |X0 = i) < ∞
will be called positive recurrent, otherwise i is called null recurrent. The

distinction between positive and null recurrence is supported by the equiva-

lence relation ↔, as shown in

Theorem 2.23 Positive recurrence and null recurrence are class properties

with respect to the relation of communication between states.

Proof: Assume that i ↔ j for two states i, j ∈ E and i is null recurrent. Thus

there are numbers m, n ∈ N with Pn(i, j) > 0 and Pm(j, i) > 0. Because of

the representation E(NiNN (k)|X0 = i) =
∑k

l=0 P l(i, i), we obtain

0 = lim
k→∞

∑k
l=0 P l(i, i)

k

≥ lim
k→∞

∑k−m−n
l=0 P l(j, j)

k
· Pn(i, j)Pm(j, i)

= lim
k→∞

k − m − n

k
·
∑k−m−n

l=0 P l(j, j)

k − m − n
· Pn(i, j)Pm(j, i)

= lim
k→∞

∑k
l=0 P l(j, j)

k
· Pn(i, j)Pm(j, i)

=
Pn(i, j)Pm(j, i)

mj

and thus mj = ∞, which signifies the null recurrence of j.

�

Thus we can call a communication class positive recurrent or null recurrent. In

the former case, a construction of a stationary distribution is given in

Theorem 2.24 Let i ∈ E be positive recurrent and define the mean first visit

time mi := E(τiττ |X0 = i). Then a stationary distribution π is given by

πjπ := m−1
i ·

∞∑

n=0

P(XnX = j, τiττ > n|X0 = i)
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for all j ∈ E. In particular, πi = m−1
i and πk = 0 for all states k outside of

the communication class belonging to i.

Proof: First of all, π is a probability measure since

∑

j∈E

∞∑

n=0

P(XnXX = j, τiττ > n|X0 = i) =

∞∑

n=0

∑

j∈E

P(XnXX = j, τiττ > n|X0 = i)

=
∞∑

n=0

P(τiττ > n|X0 = i) = mi

The particular statements in the theorem are obvious from theorem 2.16 and

the definition of π. The stationarity of π is shown as follows. First we obtain

πjπ = m−1
i ·

∞∑

n=0

P(XnX = j, τiττ > n|X0 = i)

= m−1
i ·

∞∑

n=1

P(XnX = j, τiττ ≥ n|X0 = i)

= m−1
i ·

∞∑

n=1

P(XnX = j, τiττ > n − 1|X0 = i)

since X0 = XτXX
iττ = i in the conditioning set {X0 = i}. Because of

P(XnXX = j, τiττ > n − 1|X0 = i)

=
P(XnX = j, τiττ > n − 1, X0 = i)

P(X0 = i)

=
∑

k∈E

P(XnXX = j, XnXX −1 = k, τiττ > n − 1, X0 = i)

P(X0 = i)

=
∑ P(XnXX = j, XnXX −1 = k, τiττ > n − 1, X0 = i)

P(XnXX −1 = k, τiττ > n − 1, X0 = i)

× P(XnX −1 = k, τiττ > n − 1, X0 = i)

P(X0 = i)

=
∑

k∈E

pkjP(XnXX −1 = k, τiττ > n − 1|X0 = i)

we can transform further

πjπ = m−1
i ·

∞∑

n=1

∑

k∈E

pkjP(XnXX −1 = k, τiττ > n − 1|X0 = i)

k∈E\{i}
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=
∑

k∈E

pkj · m−1
i

∞∑

n=0

P(XnXX = k, τiττ > n|X0 = i) =
∑

k∈E

πkpkj

which completes the proof.

�

Theorem 2.25 Let X denote an irreducible, positive recurrent Markov chain.

Then X has a unique stationary distribution.

Proof: Existence has been shown in theorem 2.24. Uniqueness of the station-

ary distribution can be seen as follows. Let π denote the stationary distribution

as constructed in theorem 2.24 and i the positive recurrent state that served

as recurrence point for π. Further, let ν denote any stationary distribution for

X . Then there is a state j ∈ E with νjν > 0 and a number m ∈ N with

Pm(j, i) > 0, since X is irreducible. Consequently we obtain

νiνν =
∑

k∈E

νkP
m(k, i) ≥ νjν Pm(j, i) > 0

Hence we can multiply ν by a skalar factor c such that c · νiνν = πi = 1/mi.

Denote ν̃ := c · ν.

Let P̃ denote the transition matrix P without the ith column, i.e. we define the

(j, k)th entry of P̃ by p̃jk = pjk if k 
=

 i and zero otherwise. Denote further

the Dirac measure on i by δi, i.e. δi
jδ = 1 if i = j and zero otherwise. Then the

stationary distribution π can be represented by π = m−1
i · δi

∑∞
n=0 P̃n.

We first claim that miν̃ = δi + miν̃P̃ . This is clear for the entry ν̃iνν and easily

seen for ν̃jν with j 
=

 i because in this case (ν̃P̃ )j = c · (νP )j = ν̃jν . Now we

can proceed with the same argument to see that

miν̃ = δi + (δi + miν̃P̃ )P̃ = δi + δiP̃ + miν̃P̃ 2 = . . .

= δi
∞∑

n=0

P̃n = miπ

Hence ν̃ already is a probability measure and the skalar factor must be c = 1.

This yields ν = ν̃ = π and thus the statement.

�

Remark 2.26 At a closer look the assumption of irreducibility may be relaxed

to some extend. For example, if there is exactly one closed positive recurrent

communication class and a set of transient and inaccessible states (i.e. states j
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for which there is no state i with i → j), then the above statement still holds

although X is not irreducible.

A first consequence of the uniqueness is the following simpler representation

of the stationary distribution:

Theorem 2.27 Let X denote an irreducible, positive recurrent Markov chain.

Then the stationary distribution π of X is given by

πjπ = m−1
j =

1

E(τjτ |X0 = j)

for all j ∈ E.

Proof: Since all states in E are positive recurrent, the construction in theorem

2.24 can be pursued for any inital state j. This yields πjπ = m−1
j for all j ∈ E.

The statement now follows from the uniqueness of the stationary distribution.

�

Corollary 2.28 For an irreducible, positive recurrent Markov chain, the sta-

tionary probability πjπ of a state j coincides with its asymptotic rate of recur-

rence, i.e.

lim
n→∞

E(NjNN (n)|X0 = i)

n
= πjπ

for all j ∈ E and independently of i ∈ E. Further, if an asymptotic distribu-

tion p = limn→∞ P(XnXX = .) does exist, then it coincides with the stationary

distribution. In particular, it is independent of the initial distribution of X .

Proof: The first statement immediately follows from equation (2.8). For the

second statement, it suffices to employ E(NjNN (n)|X0 = i) =
∑n

l=0 P l(i, j). If

an asymptotic distribution p does exist, then for any initial distribution ν we

obtain

pj = lim
n→∞

(νPn)j =
∑

i∈E

νiνν lim
n→∞

Pn(i, j)

=
∑

i∈E

νiνν lim
n→∞

∑n
l=0 P l(i, j)

n
=
∑

i∈E

νiνν πjπ

= πjπ

independently of ν.

�
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4. Restricted Markov Chains

Now let F ⊂ E denote any subset of the state space E. Define τFτ (k) to be the

stopping time of the kth visit of X to the set F , i.e.

τFτ (k + 1) := min{n > τFτ (k) : XnX ∈ F}

with τFτ (0) := 0. If X is recurrent, then the strong Markov property (theorem

2.7) ensures that the chain XF = (XF
nX : n ∈ N) with XF

nX := XτXX
Fτ (n) is a

recurrent Markov chain, too. It is called the Markov chain restricted to F . In

case of positive recurrence, we can obtain the stationary distribution of XF

from the stationary distribution of X in a simple manner:

Theorem 2.29 If the Markov chain X is positive recurrent, then the stationary

distribution of XF is given by

πF
jπ =

πjπ∑
k∈F πk

for all j ∈ F .

Proof: Choose any state i ∈ F and recall from theorem 2.24 the expression

πjπ := m−1
i ·

∞∑

n=0

P(XnX = j, τiττ > n|X0 = i)

which holds for all j ∈ F . For πF
jπ we can perform the same construction with

respect to the chain XF . By the definition of XF it is clear that the number

of visits to the state j between two consecutive visits to i is the same for the

chains X and XF . Hence the sum expression for πF
jπ , which is the expectation

of that number of visits, remains the same as for πjπ . The other factor m−1
i

in the formula above is independent of j and serves only as a normalization

constant, i.e. in order to secure that
∑

j∈E πjπ = 1. Hence for a construction of

πF
jπ with respect to XF this needs to be replaced by (mi ·

∑
k∈F πk)

−1, which

then yields the statement.

�

Theorem 2.30 Let X = (XnXX : n ∈ N0) denote an irreducible and positive

recurrent Markov chain with discrete state space E. Further let F ⊂ E denote

any subset of E, and XF the Markov chain restricted to F . Denote

τFτ := min{n ∈ N : XnXX ∈ F}
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Then a measure ν on E is stationary for X if and only if ν ′ = (νiνν : i ∈ F ) is

stationary for XF and

νjν =
∑

k∈F

νk

∞∑

n=0

P(XnXX = j, τFτ > n|X0 = k) (2.9)

for all j ∈ E \ F .

Proof: Due to theorem 2.29 it suffices to prove equation (2.9) for j ∈ E \ F .

Choose any state i ∈ F and define

τiττ := min{n ∈ N : XnXX = i}

According to theorem 2.24 the stationary measure v for X is given by

νjν = νiνν ·
∞∑

n=0

P(XnXX = j, τiττ > n|X0 = i) = νiνν · Ei

(
τiττ −1∑

n=0

1Xn=j

)

for j ∈ E \ F , where Ei denotes the conditional expectation given X0 = i.
Define further

τF
iττ := min{n ∈ N : XF

nX = i}
Because of the strong Markov property we can proceed as

νjν = νiνν · Ei

⎛
⎝
⎛⎛

τF
iτ −1∑

n=0

EXF
n

τFτ −1∑

m=0

1Xm=j

⎞
⎠
⎞⎞

= νiνν ·
∑

k∈F

Ei

⎛
⎝
⎛⎛

τF
iτ −1∑

n=0

1XF
n =k

⎞
⎠
⎞⎞

· Ek

(
τFτ −1∑

m=0

1Xm=j

)

Regarding the restricted Markov chain XF , theorem 2.24 states that

Ei

⎛
⎝
⎛⎛

τF
iτ −1∑

n=0

1XF
n =k

⎞
⎠
⎞⎞

=

∞∑

n=0

P(XF
nX = k, τF

iττ > n|XF
0 = i) =

νk

νiνν

for all k ∈ F . Hence we obtain

νjν =
∑

k∈F

νk

∞∑

n=0

P(XnXX = j, τFτ > n|X0 = k)

which was to be proven.

�



Markov Chains and Queues in Discrete Time 29

5. Conditions for Positive Recurrence

In the third part of this course we will need some results on the behaviour of a

Markov chain on a finite subset of its state space. As a first fundamental result

we state

Theorem 2.31 An irreducible Markov chain with finite state space F is posi-

tive recurrent.

Proof: For all n ∈ N and i ∈ F we have
∑

j∈E Pn(i, j) = 1. Hence it is

not possible that limn→∞ Pn(i, j) = 0 for all j ∈ F . Thus there is one state

h ∈ F such that rhh =
∑∞

n=0 Pn(h, h) = ∞, which means by corollary 2.15

that h is recurrent and by irreducibility that the chain is recurrent.

If the chain were null recurrent, then according to the relation in (2.8)

lim
n→∞

1

n

n∑

k=1

P k(i, j) = 0

would hold for all j ∈ F , independently of i because of irreducibility. But this

would imply that limn→∞ Pn(i, j) = 0 for all j ∈ F , which contradicts our

first observation in this proof. Hence the chain must be positive recurrent.

�

For irreducible Markov chains the condition E(τiττ |X0 = i) < ∞ implies pos-

itive recurrence of state i and hence positive recurrence of the whole chain.

Writing τFτ for the time of the first visit to the set F , we now can state the

following generalization of this condition:

Theorem 2.32 Let X denote an irreducible Markov chain with state space E
and be F ⊂ E a finite subset of E. The chain X is positive recurrent if and

only if E(τFτ |X0 = i) < ∞ for all i ∈ F .

Proof: If X is positive recurrent, then E(τFτ |X0 = i) ≤ E(τiττ |X0 = i) < ∞
for all i ∈ F , by the definition of positive recurrence.

Now assume that E(τFτ |X0 = i) < ∞ for all i ∈ F . Define the stopping times

σ(i) := min{k ∈ N : XF
k = i} and random variables YkYY := τFτ (k)−τFτ (k−1).

Since F is finite, m := maxj∈F E(τFτ |X0 = j) < ∞. We shall denote the
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conditional expectation given X0 = i by Ei. For i ∈ F we now obtain

E(τiττ |X0 = i) = Ei

⎛
⎝
⎛⎛

σ(i)∑

k=1

YkYY

⎞
⎠
⎞⎞

=
∞∑

k=1

Ei

(
E(YkYY |XτXX

Fτ (k−1)) · 1k≤σ(i)

)

≤ m ·
∞∑

k=1

P(σ(i) ≥ k|X0 = i) = m · E(σ(i)|X0 = i)

Since F is finite, XF is positive recurrent by theorem 2.31. Hence we know

that E(σ(i)|X0 = i) < ∞, and thus E(τiττ |X0 = i) < ∞ which shows that X
is positive recurrent.

�

An often difficult problem is to determine whether a given Markov chain is

positive recurrent or not. Concerning this, we now introduce one of the most

important criteria for the existence of stationary distributions of Markov chains

occuring in queueing theory. It is known as Foster’s criterion.

Theorem 2.33 Let X denote an irreducible Markov chain with countable state

space E and transition matrix P . Further let F denote a finite subset of E. If

there is a function h : E → R with inf{h(i) : i ∈ E} > −∞, such that the

conditions

∑

k∈E

pikh(k) < ∞ and
∑

k∈E

pjkh(k) ≤ h(j) − ε

hold for some ε > 0 and all i ∈ F and j ∈ E \F , then X is positive recurrent.

Proof: Without loss of generality we can assume h(i) ≥ 0 for all i ∈ E,

since otherwise we only need to increase h by a suitable constant. Define the

stopping time τFτ := min{n ∈ N0 : XnX ∈ F}. First we observe that

E(h(XnXX +1) · 1τFτ >n+1|X0, . . . , XnXX ) ≤ E(h(XnXX +1) · 1τFτ >n|X0, . . . , XnXX )

= 1τFτ >n ·
∑

k∈E

pXn,kh(k)

≤ 1τFτ >n · (h(XnXX ) − ε)

= h(XnXX ) · 1τFτ >n − ε · 1τFτ >n



Markov Chains and Queues in Discrete Time 31

holds for all n ∈ N0, where the first equality is due to (15.3). We now proceed

with

0 ≤ E(h(XnXX +1) · 1τFτ >n+1|X0 = i)

= E(E(h(XnXX +1) · 1τFτ >n+1|X0, . . . , XnXX )|X0 = i)

≤ E(h(XnXX ) · 1τFτ >n|X0 = i) − εP(τFτ > n|X0 = i)

≤ . . .

≤ E(h(X0) · 1τFτ >0|X0 = i) − ε
n∑

k=0

·P(τFτ > k|X0 = i)

which holds for all i ∈ E \ F and n ∈ N0. For n → ∞ this implies

E(τFτ |X0 = i) =

∞∑

k=0

P(τFτ > k|X0 = i) ≤ h(i)/ε < ∞

for i ∈ E \ F . Now the mean return time to the state set F is bounded by

E(τFτ |X0 = i) =
∑

j∈F

pij +
∑

j∈E\F

pijE(τFτ + 1|X0 = j)

≤ 1 + ε−1
∑

j∈E

pijh(j) < ∞

for all i ∈ F , which completes the proof.

�

6. The M/M/1 queue in discrete time

Choose any parameters 0 < p, q < 1. Let the arrival process be distributed as

a Bernoulli process with parameter p and the service times (SnSS : n ∈ N0) be

iid according to the geometric distribution with parameter q.

The geometric service time distribution and the Bernoulli arrival process have

been chosen because this simplifies the formulation of the system process in

terms of a Markov model due to the following memoryless property:

Theorem 2.34 Let S be distributed geometrically with parameter q, i.e. let

P(S = k) = (1 − q)k−1q for all k ∈ N. Then P(S = k|S > k − 1) = q holds

for the conditional distribution, independently of k. Likewise, if ZnZZ is the nth

inter–arrival time of a Bernoulli process with parameter p, then the relation

P(ZnZZ = k|ZnZZ > k − 1) = p holds, independently of k and n.
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Proof: First the proof for the geometric distribution: For all k ∈ N, the argu-

ment

P(S = k|S > k − 1) =
P(S = k, S > k − 1)

P(S > k − 1)
=

P(S = k)

P(S > k − 1)

=
(1 − q)k−1q

(1 − q)k−1
= q

holds, which shows the first statement. For a Bernoulli process, the nth inter–

arrival time ZnZZ = TnTT − TnTT −1 is distributed geometrically with parameter p,

due to the strong Markov property. This completes the proof for the second

statement.

�

Thus the memoryless property states that no matter how long a service time or

an inter–arrival time has already passed, the probability of a service completion

or an arrival at the next time instant is always the same. Hence the system

process Q = (Qn : n ∈ N0) of the M/M/1 queue in discrete time with arrival

process T and service times SnSS can be formulated easily as a homogeneous

Markov chain. It has state space E = N0 and transition probabilities p01 := p,

p00 := 1 − p, and

pij :=

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

p(1 − q), j = i + 1

pq + (1 − p)(1 − q), j = i

q(1 − p), j = i − 1

for i ≥ 1. Because of the simple state space, the transition matrix can be

displayed in the form of a triagonal matrix

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 − p p 0 . . .

q(1 − p) pq + (1 − p)(1 − q) p(1 − q)
. . .

0 q(1 − p) pq + (1 − p)(1 − q)
. . .

...
. . .

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

Since p, q > 0, the chain Q is irreducible. If p < q, then h(n) := n defines a

function which satisfies the conditions for Foster’s criterion, as

∞∑

k=0

pikh(k) = q(1 − p) · (i − 1) + (qp + (1 − q)(1 − p)) · i

+ p(1 − q) · (i + 1)

= i − q(1 − p) + p(1 − q) = i − q + p ≤ i − ε
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for all i ∈ N, with ε = q − p > 0, and
∑∞

k=0 p0k · h(k) = p < ∞ show. The

ratio p/q is called the load of the queue. Thus the system process Q is positive

recurrent if the queue load is less than one.

In order to derive a stationary distribution for Q, we first introduce notations

p′ := p(1 − q) and q′ := q(1 − p). Then we translate the condition πP = π
into the equations

π0 = π0(1 − p) + π1q
′ (2.10)

(2.11)

πn = πn−1p
′ + πn(1 − (p′ + q′)) + πn+1q

′ (2.12)

for all n ≥ 2. For the solution, we guess the geometric form

πn+1 = πn · r

for all n ≥ 1, with r > 0. Thus equation (2.12) becomes

0 = πnp′ − πnr(p′ + q′) + πnr2q′ = πn

(
p′ − r(p′ + q′) + r2q′

)

for all n ≥ 1, which leads for non–trivial π 
= 0

 to the roots r = 1 and

r = p′/q′ of the quadratic term.

In the first case r = 1, we obtain πn+1 = πn for all n ≥ 1. This implies∑
j∈E πjπ = ∞ and thus cannot lead to a stationary distribution. Hence in the

case r = 1 the geometric approach is not successful.

The second root r = p′/q′ allows solutions for the other equations (2.10) and

(2.11) too. This can be checked as follows: First, the relation

π1 = π0
p

q′
= π0

ρ

1 − p

is a requirement from equation (2.10). Then the second equation (2.11) yields

π2 =
1

q′
(
π1(p

′ + q′) − π0p
)

=
1

q′

(
p

q′
(p′ + q′) − p

)
π0

= π0
p

q′

(
p′ + q′

q′
− 1

)
= π1

p′

q′

in accordance with our geometric approach. Now normalization of π leads to

1 =
∞∑

n=0

πn = π0

(
1 +

p

q′

∞∑

n=1

(
p′

q′

)n−1
)

π1 = π0p + π1(1 − p′ − q′) + π2q
′
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from which we obtain

π0 =

(
1 +

p

q′

∞∑

n=1

(
p′

q′

)n−1
)−1

=

(
1 +

p

q′(1 − p′/q′)

)−1

=

(
1 +

p

q′ − p′

)−1

= (q′ − p′)(q′ − p′ + p)−1 =
q − p

q

= 1 − ρ

with ρ := p/q, because of q′ − p′ = q − p. Hence the approach πn+1 = πn · r
with r = p′/q′ leads to a solution of πP = π.

Note that r < 1 if and only if p < q. Further, the mean inter–arrival time is

E(T1TT ) = 1/p and the mean service time is E(S1) = 1/q. Thus the geometric

approach is successful if the so–called stability condition

ρ =
p

q
=

E(S1)

E(T1TT )
< 1

holds. This condition simply postulates that the mean service time be shorter

than the mean inter–arrival time. In this case, the stationary distribution π of

Q has the form

π0 = 1 − ρ and πn = (1 − ρ)
ρ

1 − p
rn−1

for all n ≥ 1. It thus is a modified geometric distribution with parameter

r = p′/q′ < 1.

Notes

Markov chains originate from a series of papers written by A. Markov at the

beginning of the 20th century. His first application is given here as exercise

2.3. However, methods and terminology at that time were very different from

today’s presentations.

The literature on Markov chains is perhaps the most extensive in the field of

stochastic processes. This is not surprising, as Markov chains form a simple

and useful starting point for the introduction of other processes.

Textbook presentations are given in Feller [34], Breiman [16], Karlin and Tay-

lor [46], or Çinlar [25], to name but a few. The treatment in Ross [75] containsCC

the useful concept of time–reversible Markov chains. An exhaustive introduc-

tion to Markov chains on general state spaces and conditions for their positive

recurrence is given in Meyn and Tweedie [59].
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Exercise 2.1 Let (XnXX : n ∈ N0) be a family of iid random variables with

discrete state space. Show that X = (XnXX : n ∈ N0) is a homogeneous Markov

chain.

Exercise 2.2 Let (XnXX : n ∈ N0) be iid random variables on N0 with probabil-

ities ai := P(XnXX = i) for all n, i ∈ N0. The event XnX > max(X0, . . . , XnXX −1)
for n ≥ 1 is called a record at time n. Define TiTT as the time of the ith record, i.e.

T0TT := 0 and TiTT +1 := min{n ∈ N : XnXX > XTXX
iTT } for all i ∈ N0. Denote the ith

record value by Ri := XTXX
iTT . Show that (Ri : i ∈ N0) and ((Ri, TiTT ) : i ∈ N0)

are Markov chains by determining their transition probabilities.

Exercise 2.3 Diffusion model by Bernoulli and Laplace

The following is a stochastic model for the flow of two incompressible fluids

between two containers: Two boxes contain m balls each. Of these 2m balls, b
are black and the others are white. The system is said to be in state i if the first

box contains i black balls. A state transition is performed by choosing one ball

out of each box at random (meaning here that each ball is chosen with equal

probability) and then interchanging the two. Derive a Markov chain model for

the system and determine the transition probabilities.

Exercise 2.4 Let X denote a Markov chain with m < ∞ states. Show that

if state j is accessible from state i, then it is accessible in at most m − 1
transitions.

Exercise 2.5 Let p = (pn : n ∈ N0) be a discrete probability distribution and

define

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

p0 p1 p2 . . .

p0 p1
. . .

p0
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

with all non–specified entries being zero. Let X denote a Markov chain with

state space N0 and transition matrix P . Derive an expression (in terms of

discrete convolutions) for the transition probabilities P(XnXX +m = j|XnXX = i)
with n,m ∈ N0 and i, j ∈ N0. Apply the result to the special case of a

Bernoulli process (see example 2.3).

Exercise 2.6 Prove equation (2.6).

Exercise 2.7 Prove the equation Pn(i, j) =
∑n

k=1 FkFF (i, j)Pn−k(j, j) for all

n ∈ N and i, j ∈ E.
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Exercise 2.8 Let X denote a Markov chain with state space E = {1, . . . , 10}
and transition matrix

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1/2 0 1/2 0 0 0 0 0 0 0
0 1/3 0 0 0 0 2/3 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1/3 1/3 0 0 0 1/3 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1/4 0 3/4 0
0 0 1/4 1/4 0 0 0 1/4 0 1/4
0 1 0 0 0 0 0 0 0 0
0 1/3 0 0 1/3 0 0 0 0 1/3

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

Reorder the states according to their communication classes and determine the

resulting form of the transition matrix as in representation (2.4). Determine

further a transition graph, in which

��
��
��������
����
��������

���
����������
����
���

means that fijff > 0.

Exercise 2.9 Prove equation (2.7).

Hint: Derive a representation of NjN in terms of the random variables

An :=

{
1, XnXX = j

0, XnXX 
=

 j

Exercise 2.10 Prove corollary 2.15.

Exercise 2.11 Prove remark 2.26.

Exercise 2.12 A server’s up time is k time units with probability pk = 2−k,

k ∈ N. After failure the server is immediately replaced by an identical new

one. The up time of the new server is of course independent of the behaviour

of all preceding servers.

Let XnXX denote the remaining up time of the server at time n ∈ N0. Determine

the transition probabilities for the Markov chain X = (XnXX : n ∈ N0) and

determine the stationary distribution of X .
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Exercise 2.13 Let P denote the transition matrix of an irreducible Markov

chain X with discrete state space E = F ∪ F c, where F c = E \ F . Write P
in block notation as

P =

(
PFFP PFFP c

PFP cF PFP cF c

)

Show that the Markov chain XF restricted to the state space F has transition

matrix

PF = PFFP + PFFP c(I − PFP cF c)−1PFP cF

with I denoting the identity matrix on F c.

Exercise 2.14 Let X denote a Markov chain with state space E = {0, . . . ,m}
and transition matrix

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

p00 p01

p10 p11 p12

p21 p22 p23

. . .
. . .

. . .

pm,m−1 pmm

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

where pij > 0 for |i − j| = 1. Show that the stationary distribution π of X is

uniquely determined by

πn = π0 ·
n∏

i=1

pi−1,i

pi,i−1
and π0 =

⎛
⎝
⎛⎛

m∑

j=0

j∏

i=1

pi−1,i

pi,i−1

⎞
⎠
⎞⎞−1

for all n = 1, . . . ,m.

Use this result to determine the stationary distribution of the Bernoulli–Laplace

diffusion model with b = m (see exercise 2.3).

Exercise 2.15 Show that the second condition in theorem 2.33 can be substi-

tuted by the condition
∑

j∈E

pijh(j) ≤ h(i) − 1 for all i ∈ E \ F .

Exercise 2.16 Show the following complement to theorem 2.33: Let P denote

the transition matrix of a positive recurrent Markov chain with discrete state

space E. Then there is a function h : E → R and a finite subset F ⊂ E such

that
∑

j∈E

pijh(j) < ∞ for all i ∈ F , and

∑

j∈E

pijh(j) ≤ h(i) − 1 for all i ∈ E \ F .
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Hint: Consider the conditional expectation of the remaining time until return-

ing to a fixed set F of states.

Exercise 2.17 For the discrete, non–negative random walk with transition ma-

trix

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

p00 p01

p10 0 p12

p10 0 p12

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

determine the criterion of positive recurrence according to theorem 2.33.





Chapter 3

HOMOGENEOUS MARKOV PROCESSES

ON DISCRETE STATE SPACES

In the present chapter we will transfer the discrete time results of the previous

chapter to Markov processes in continuous time.

1. Definition

Define T0TT := 0 and let (TnTT : n ∈ N) denote a sequence of positive real–valued

random variables with TnTT +1 > TnTT for all n ∈ N0 and TnTT → ∞ as n → ∞.

Further, let E denote a countable state space and (XnXX : n ∈ N0) a sequence of

E–valued random variables. A process Y = (YtYY : t ∈ R
+
0 ) in continuous time

with

YtYY := XnXX for TnTT ≤ t < TnTT +1

is called a pure jump process. The variable HnHH := TnTT +1 − TnTT (resp. XnX ) is

called the nth holding time (resp. the nth state) of the process Y . If further

X = (XnXX : n ∈ N0) is a Markov chain with transition matrix P = (pij)i,j∈E

and the variables HnHH are independent and distributed exponentially with pa-

rameter λXn only depending on the state XnXX , then Y is called homogeneous

Markov process with discrete state space E. The chain X is called the em-

bedded Markov chain of Y . As a technical assumption we always agree upon

the condition λ̂ := sup{λi : i ∈ E} < ∞, i.e. the parameters for the exponen-

tial holding times shall be bounded.

An immediate consequence of the definition is that the paths of a Markov

process are step functions. The lengths of the holding times are almost cer-

tainly strictly positive, since exponential distributions are zero with probability

zero.
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time

Yt

X = X

X

X
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Figure 3.1. Typical path of a Markov process with discrete state space

Example 3.1 Poisson process

Define XnXX := n deterministically. Then X = (XnXX : n ∈ N0) is a Markov

chain with state space E = N0 and transition probabilities pn,n+1 = 1 for all

n ∈ N0. Let the holding times HnHH be distributed exponentially with identical

parameter λ > 0. Then the resulting process Y as defined in the above defini-

tion is a Markov process with state space N0. It is called Poisson process with

intensity (also: rate or parameter) λ.

Next we want to prove a property similar to the Markov property for Markov

chains in discrete time. To this aim, we need to show the memoryless prop-

erty for the exponential distribution, which is the analogue to the memoryless

property for geometric distributions in discrete time.

Lemma 3.2 Let H denote a random variable having an exponential distribu-

tion with parameter λ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds for all time durations s, t > 0.

Proof: We immediately check

P(H > t + s|H > s) =
P(H > t + s, H > s)

P(H > s)
=

P(H > t + s)

P(H > s)

=
e−λ·(t+s)

e−λ·s
= e−λ·t = P(H > t)

which holds for all s, t > 0.

�
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Theorem 3.3 Let Y denote a Markov process with discrete state space E.

Then the Markov property

P(YtYY = j|YuYY : u ≤ s) = P(YtYY = j|YsYY )

holds for all times s < t and states j ∈ E.

Proof: Denote the state at time s by YsYY = i. Because of the memoryless prop-

erty of the exponential holding times, the remaining time in state i is distributed

exponentially with parameter λi, no matter how long the preceeding holding

time has been. After the holding time in the present state elapses, the process

changes to another state j according to the homogeneous Markov chain X .

Hence the probability for the next state being j is given by pij , independently

of any state of the process before time s. Now another exponential holding

time begins, and thus the past before time s will not have any influence on the

future of the process Y .

�

Analogous to the discrete time case, for any two time instances s < t the con-

ditional probabilities P(YtYY = j|YsYY = i) shall be called the transition proba-

bilities from time s to time t. We will now derive a recursion formula for the

transition probabilities of a Markov process by conditioning on the number of

jumps between time s and time t:

Theorem 3.4 The transition probabilities of a Markov process Y are given by

P(YtYY = j|YsYY = i) =
∞∑

n=0

P
(n)
ijPP (s, t)

for all times s < t and states i, j ∈ E, with

P
(0)
ijPP (s, t) = δij · e−λi·(t−s)

and recursively

P
(n+1)
ijPP (s, t) =

∫ t

s

∫∫
e−λi·uλi

∑

k∈E

pikP
(n)
kjPP (u, t) du

for all n ∈ N0.

Proof: The above representation follows immediately by conditioning on the

number of jumps in ]s, t]. The expressions P
(n)
ijPP (s, t) represent the condi-

tional probabilities that YtYY = j and there are n jumps in ]s, t] given that
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YsYY = i. In the recursion formula the integral comprises all times u of a pos-

sible first jump along with the Lebesgue density e−λi·uλi of this event, after

which the probability of n remaining jumps reaching state j at time t is given

by
∑

k∈E pikP
(n)
kjPP (u, t).

�

For every two time instances s < t, define the transition probability matrix

P (s, t) from time s to time t by its entries

PijPP (s, t) := P(YtYY = j|YsYY = i)

Using the recursion formula, it is shown by induction on n that the conditional

probabilities P
(n)
ijPP (s, t) are homogeneous in time, i.e. they satisfy

P
(n)
ijPP (s, t) = P

(n)
ijPP (0, t − s)

for all s < t. Thus we can from now on restrict the analysis to the transition

probability matrices

P (t) := P (0, t)

with t ≥ 0. With this notation the Markov property yields the Chapman–

Kolmogorov equations

P (s + t) = P (s)P (t)

for all time durations s, t ≥ 0. Thus the family {P (t) : t ≥ 0} of transition

probability matrices forms a semi–group under the composition of matrix mul-

tiplication. In particular, we obtain for the neutral element of this semi–group

P (0) = IEI := (δij)i,j∈E with δij = 1 for i = j and zero otherwise.

In order to derive a simpler expression for the transition probability matrices,

we need to introduce another concept, which will be called the generator ma-

trix. This is defined as the matrix G = (gij)i,j∈E on E with entries

gij :=

{
−λi · (1 − pii), i = j

λi · pij , i 
=

 j

for all states i, j ∈ E. In particular, the relation

gii = −
∑

j �=�� i

gij (3.1)

holds for all i ∈ E.

The (i, j)th entry of the generator G is called the infinitesimal transition rate

from state i to state j. Using these, we can illustrate the dynamics of a Markov

process in a directed graph where the nodes represent the states and an edge
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means that gij = r > 0. Such a graph is called a state transition graph of

the Markov process. With the convention pii = 0 the state transition graph

uniquely determines the Markov process.

Example 3.5 The state transition graph of the Poisson process with intensity

λ (see example 3.1) is given by

��
��
��������
����
������λ

��
���
����������
����
������λ

��
���
����������
����
����� . . .

Figure 3.2. Poisson process

Theorem 3.6 The transition probabilities PijPP (t) of a Markov process satisfy

the systems

dPijPP (t)

dt
=
∑

k∈E

PikPP (t)gkj =
∑

k∈E

gikPkjPP (t)

of differential equations. These are called the Kolmogorov forward and

backward equations.

Proof: From the representation in theorem 3.4, it follows by induction on the

number of jumps that all restricted probabilities P (n)(t) are Lebesgue inte-

grable with respect to t over finite intervals. Since the sum of all P
(n)
ijPP (t) is a

probability and thus bounded, we conclude by majorized convergence that also

P (t) is Lebesgue integrable with respect to t over finite intervals.

Now we can state the recursion

PijPP (t) = e−λi·t · δij +

∫ t

0

∫∫
e−λi·sλi

∑

k∈E

pikPkjPP (t − s) ds

which results from conditioning on the time s of the first jump from state i. We

obtain further

PijPP (t) = e−λi·t ·
(

δij +

∫ t

0

∫∫
e+λi·uλi

∑

k∈E

pikPkjPP (u) du

)
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by substituting u = t − s in the integral. Since
∑

k∈E pik = 1 is bounded,

we conclude that P (t) is continuous in t. Further, we can differentiate P (t) as

given in the recursion and obtain

dPijPP (t)

dt
= −λie

−λi·t ·
(

δij +

∫ t

0

∫∫
f(u) du

)
+ e−λi·t · f(t)

with f denoting the integrand function. This means nothing else than

dPijPP (t)

dt
= −λiPijPP (t) + λi

∑

k∈E

pikPkjPP (t)

= −λi(1 − pii) · P (t) +
∑

k �=�� i

gikPkjPP (t)

and thus proves the backward equations. For the forward equations, one only

needs to use the Chapman–Kolmogorov equations and apply the backward

equations in

dPijPP (t)

dt
= lim

h→0

PijPP (t + h) − PijPP (t)

h
= lim

h→0

∑

k∈E

PikPP (t)
PkjPP (h) − δkj

h

=
∑

k∈E

PikPP (t) lim
h→0

PkjPP (h) − PkjPP (0)

h
=
∑

k∈E

PikPP (t)gkj

which holds for all i, j ∈ E.

�

Theorem 3.7 The transition probability matrices can be expressed in terms of

the generator by

P (t) = eG·t :=
∞∑

n=0

tn

n!
Gn

for all t ≥ 0, with Gn denoting the nth power of the matrix G.

Proof: First we validate the solution by

d

dt
eG·t =

d

dt

∞∑

n=0

tn

n!
Gn =

∞∑

n=1

Gn d

dt

tn

n!
=

∞∑

n=1

Gn tn−1

(n − 1)!
= GeG·t

which holds for all t ≥ 0. Furthermore, it is obvious that

GeG·t = G
∞∑

n=0

tn

n!
Gn =

(
∞∑

n=0

tn

n!
Gn

)
G = eG·tG

ijPP
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and thus P (t) = eG·t is a solution of Kolmogorov’s forward and backward

equations.

Now we show uniqueness of the solution. Let P̃ (t) denote another solution of

the forward equations. The differential equations with initial condition trans-

late into the integral equations

P (t) = IEI +

∫ t

0

∫∫
P (u)G du and P̃ (t) = IEI +

∫ t

0

∫∫
P̃ (u)G du

Define a norm for matrices M = (mij)i,j∈E on E by

‖M‖ := sup

⎧
⎨
⎧⎧

⎩
⎨⎨∑

j∈E

|mij | : i ∈ E

⎫
⎬
⎫⎫

⎭
⎬⎬

Then ‖G‖ ≤ 2 · λ̂ and ‖AB‖ ≤ ‖A‖ · ‖B‖ for any two matrices A and B on

E. Further we obtain

∥∥∥∥∥∥∥P (t) − P̃ (t)
∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥
∫ t

0

∫∫
P (u) − P̃ (u) du G

∥∥∥∥∥∥∥∥∥∥

≤
∫ t

0

∫∫ ∥∥∥∥∥∥∥P (u) − P̃ (u)
∥∥∥∥∥∥∥ du · ‖G‖ (3.2)

≤ ∆t · t · ‖G‖ (3.3)

with ∆t := sup{‖P (u) − P̃ (u)‖ : u ≤ t}, which is finite, since for all u ≥ 0
we know that ‖P (u)‖ = ‖P̃ (u)‖ = 1. Plugging the result (3.3) into the right

hand of the bound (3.2) again (with time u instead of t), we obtain

∥∥∥∥∥∥∥P (t) − P̃ (t)
∥∥∥∥∥∥∥ ≤

∫ t

0

∫∫
∆t · u · ‖G‖ du · ‖G‖ = ∆t ·

t2

2
· ‖G‖2

Likewise, n–fold repetition of this step achieves the bound

∥∥∥∥∥∥∥P (t) − P̃ (t)
∥∥∥∥∥∥∥ ≤ ∆t ·

tn

n!
· ‖G‖n ≤ ∆t ·

(2λ̂ · t)n

n!

which in the limit n → ∞ yields 0 ≤
∥∥∥∥∥∥∥P (t) − P̃ (t)

∥∥∥∥∥∥∥ ≤ 0 and consequently

P (t) = P̃ (t). As t has been chosen arbitrarily, the statement is proven.

�

Hence the generator of a Markov process uniquely determines all its transition

matrices. This can also be seen from the definition, if we agree (without loss
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of generality) upon the convention pii = 0 for all ∈ E. Then the parameters

for the definition of the Markov process can be recovered by

λi = −gii and pij =
gij

−gii

for all i 
=

 j ∈ E.

However, as in the discrete time case of Markov chains, Markov processes

are not completely determined by their transition probability matrices only.

The missing link to a complete characterization again is given by the initial

distribution π with πi = P(Y0YY = X0 = i) for all i ∈ E. Then we can express

all finite–dimensional marginal distributions as in

Theorem 3.8 For a Markov process Y with initial distribution π and time

instances 0 < t1 < . . . < tn, n ∈ N, the equation

P(YtYY
1

= j1, . . . , YtYY n = jn)

=
∑

i∈E

πiPi,jPP
1
(t1)PjPP

1,j2(t2 − t1) . . . PjPP
n−1,jn(tn − tn−1)

holds for all j1, . . . , jn ∈ E.

The proof is left as an exercise. Thus a Markov process Y with transition

probability matrices (P (t) : t ≥ 0) admits a variety of versions depending on

the initial distribution π. Any such version shall be denoted by Yπ.

2. Stationary Distribution

From now on we shall convene on the technical assumption

λ̌ := inf{λi : i ∈ E} > 0

which holds for all queueing systems that we will examine. Then a Markov

process is called irreducible, transient, recurrent or positive recurrent if

the defining Markov chain is.

An initial distribution π is called stationary if the process Yπ is stationary, i.e.

if

P(Y π
tYY
1

= j1, . . . , Y
π
tYY
n

= jn) = P(Y π
tYY
1+s = j1, . . . , Y

π
tYY
n+s = jn)

for all n ∈ N, 0 ≤ t1 < . . . < tn, and states j1, . . . , jn ∈ E, and s ≥ 0.

Theorem 3.9 A distribution π on E is stationary if and only if πG = 0 holds.
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Proof: First we obtain

πP (t) = πeG·t =
∞∑

n=0

tn

n!
πGn = πIEI +

∞∑

n=1

tn

n!
πGn = π + 0 = π

for all t ≥ 0, with 0 denoting the zero measure on E. With this, theorem 3.8

yields

P(Y π
tYY
1

= j1, . . . , Y
π
tYY
n

= jn)

=
∑

i∈E

πiPi,jPP
1
(t1)PjPP

1,j2(t2 − t1) . . . PjPP
n−1,jn(tn − tn−1)

= πjπ
1
PjPP

1,j2(t2 − t1) . . . PjPP
n−1,jn(tn − tn−1)

=
∑

i∈E

πiPi,jPP
1
(t1 + s)PjPP

1,j2(t2 − t1) . . . PjPP
n−1,jn(tn − tn−1)

= P(Y π
tYY
1+s = j1, . . . , Y

π
tYY
n+s = jn)

for all times t1 < . . . < tn with n ∈ N, and states j1, . . . , jn ∈ E. Hence the

process Yπ is stationary.

On the other hand, if π is a stationary distribution, then we necessarily obtain

πP (t) = πeG·t = π for all t ≥ 0. As above, this means
∑∞

n=1
tn

n!πGn = 0 for

all t ≥ 0, which yields πG = 0 because of the uniqueness of the zero power

series.

�

By definition of the generator G and equation (3.1), the equation πG = 0 is

equivalent to an equation system

∑

i�=�� j

πigij = −πjπ gjjg ⇐⇒
∑

i�=�� j

πigij = πjπ
∑

i�=�� j

gjig (3.4)

for all j ∈ E. This system can be intepreted as follows. We call the value πigij

stochastic flow from state i to state j in equilibrium. Then the above equations

mean that the accrued stochastic flow into any state j equals the flow out of this

state. Equations (3.4) are called the (global) balance equations.

Example 3.10 The generator of the Poisson process with parameter λ (see

example 3.1) is given by

G =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ λ 0 0 . . .

0 −λ λ 0
. . .

0 0 −λ λ
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
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This process has no stationary distribution, which can be seen as follows. The

balance equations for the Poisson process are given by

π0λ = 0 and πiλ = πi−1λ

for all i ≥ 1. It is immediately evident that these are solvable only by πi = 0
for all i ∈ E, which means that there is no stationary distribution π.

The question of existence and uniqueness of a stationary distribution for Y
can be reduced to the same question for X , which we have examined in the

preceding chapter:

Theorem 3.11 Let the underlying Markov chain X in the definition of the

Markov process Y be irreducible and positive recurrent. Further assume that

λ̌ := inf{λi : i ∈ E} > 0. Then there is a unique stationary distribution for

Y .

Proof: According to theorems 2.25 and 2.18, the transition matrix P of X
admits a unique stationary distribution ν with νP = ν. The generator G is

defined by G = Λ(P − IEI ), with Λ = diag(λi : i ∈ E). Hence the measure

µ := νΛ−1 is stationary for Y . Since λ̌ > 0, the measure µ is finite, with total

mass bounded by λ̌−1 < ∞. Now the normalization

πjπ :=
µj∑
i∈E µi

=
νjν /λj∑
i∈E νiνν /λi

(3.5)

for all j ∈ E yields a stationary distribution for Y . This is unique because ν is

unique and the construction of π from ν is reversible.

�

Finally we give two important results for the asymptotic behaviour of a Markov

process. These shall be proven in chapter 7 (see example 7.13). We call a

Markov process regular if it satisfies the conditions given in the preceding

theorem. If Y is a regular Markov process, then the limit

lim
t→∞

P(YtYY = j) = πjπ (3.6)

of the marginal distribution at time t tends to the stationary distribution as t
tends to infinity. Further the limit

lim
t→∞

PijPP (t) = πjπ (3.7)

holds for all i, j ∈ E and is independent of i.
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Notes

An early text book on Markov processes with discrete state space is Chung

[27]. Other classical text book presentation are Karlin and Taylor [46], Breiman

[16], or Çinlar [25]. An exposition on non–homogeneous Markov processes onCC

discrete state spaces can be found under the name Markov jump processes in

Gikhman and Skorokhod [39, 38].

Exercise 3.1 Consider a population of male and female species. There is an

infinitesimal rate λ > 0 that any male and female produce a single offspring,

which will be female with probability p. Determine a Markov process which

models the numbers FtFF and MtMM of female and male species at any time t.

Exercise 3.2 Let X and Y denote two independent random variables which

are distributed exponentially with parameters λ and µ, respectively. Prove the

following properties:

(a) X 
=

 Y almost certainly.

(b) The random variable Z := min{X, Y } is distributed exponentially with

parameter λ + µ.

(c) P(X < Y ) = λ/(λ + µ)

Exercise 3.3 Let Y(1) and Y(2) denote independent Poisson processes with

intensities λ1 and λ2, respectively. Show that the process Y = (YtYY : t ∈ R
+
0 )

defined by YtYY = Y
(1)
tYY + Y

(2)
tYY for all t ≥ 0 is a Poisson process with intensity

λ = λ1 + λ2. The process Y is called the superposition of Y(1) and Y(2).

Exercise 3.4 Prove theorem 3.8.

Exercise 3.5 Determine the finite–dimensional marginal distributions for a

Poisson process with parameter λ.

Exercise 3.6 Let Y denote a Poisson process with parameter λ. Given that

there is exactly one arrival in the interval [0, t], show that the exact time of the

arrival within [0, t] is uniformly distributed.

Exercise 3.7 Verify the Chapman–Kolmogorov equations for a Poisson process.





Chapter 4

MARKOVIAN QUEUES IN CONTINUOUS TIME

The methods of analyzing Markov processes are already sufficient for the treat-

ment of quite a variety of queueing systems. These are commonly known as

elementary or Markovian queues. The most classical of them shall be exam-

ined in this chapter.

1. The M/M/1 Queue

The M/M/1 queue in continuous time is defined by the following character-

istics: The arrival process is a Poisson process with some rate λ > 0. The

service times are iid and distributed exponentially with service rate µ > 0.

There is one server and the service discipline is first come first served (FCFS,

see example 1.1).

Poisson(λ) Exp(µ)

Figure 4.1. M/M/1 queue

For the Poisson process, the inter–arrival times are distributed exponentially

with parameter λ. Since the exponential distribution is memoryless, the system

process Q = (Qt : t ∈ R
+
0 ) can be modelled by a Markov process with state
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space E = N0 and generator

G =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ λ 0 0 . . .

µ −λ − µ λ 0
. . .

0 µ −λ − µ λ
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

Here, the first line represents the possible transitions if the system is empty. In

this case there can only occur single arrivals according to the Poisson process

with rate λ. If the system is not empty, there are two possibilities: Either an

arrival occurs (with rate λ) or a service is completed (with rate µ). Contrary

to the M/M/1 queue in discrete time, arrivals and service completions cannot

occur at the same time. This follows from the memoryless property of the

exponential distribution and exercise 3.2. The parameter of the holding time

for the states of a non–empty system is explained by exercise 3.2.

Clearly, the structure of the matrix G shows that the process Q is irreducible

and hence there is at most one stationary distribution π for Q. According to

theorem 3.9, this must satisfy πG = 0, which translates into the system

π0λ = π1µ (4.1)

πn(λ + µ) = πn−1λ + πn+1µ for all n ≥ 1 (4.2)

∞∑

n=0

πn = 1 (4.3)

of equations, where the latter is simply the normalization of the distribution π.

The first two equations are the global balance equations and can be illustrated

by the following scheme:

λ

µ

λ

µ

... m

λ λ λ

µ µ µ

...

Figure 4.2. Transition rates for the M/M/1 queue

This gives the rates of jumps between the states of the system. If we encircle

any one state, then the sum of the rates belonging to the arcs reaching into this

state must equal the sum of the rates which belong to the arcs that go out of

this state. If this is the case, then we say that the system is in balance. The

conditions for this are given in equations (4.1) and (4.2).

0 1 21
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The solution of the above system of equations can be obtained by the following

considerations: The first equation yields

π1 = π0
λ

µ
=: π0ρ

with ρ := λ/µ. By induction on n we obtain from the second equation

πn+1 =
1

µ
(πn(λ + µ) − πn−1λ) = πn

λ

µ
+ πn − πn−1

λ

µ

= πnρ

for all n ∈ N, where the last equality holds by induction hypothesis. Thus the

geometric approach πn = π0ρ
n for all n ∈ N0 solves the first two equations.

The last equation now yields

1 =
∞∑

n=0

πn = π0

∞∑

n=0

ρn =
1

1 − ρ
π0

if and only if ρ < 1, which means λ < µ. Hence there is a stationary distribu-

tion of the system, given by

πn = (1 − ρ)ρn

for all n ∈ N0, if and only if the so–called queue load ρ = λ/µ remains

smaller than one.

In this case several performance measures of the queueing system can be de-

rived immediately. All of them are computed by means of the stationary dis-

tribution. Thus they hold only for the system being in equilibrium, which is

attained asymptotically.

For instance, the probability that the system is empty is given by π0 = 1 − ρ.

The mean and the variance of the number N of users in the system are given

as

E(N) =
∞∑

n=1

nπn = (1 − ρ)
∞∑

n=1

nρn =
ρ

1 − ρ

and Var(N) = ρ/(1− ρ)2. The probability RK that there are at least K users

in the system is

RK =
∞∑

n=K

πn = (1 − ρ)
∞∑

n=K

ρn = ρK

As expected, these equations show that with increasing load ρ → 1 the mean

number of users in the system grows and the probability of an idle system

decreases.
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2. Skip–Free Markov Processes

There are many variations of the M/M/1 queue which can be analyzed by the

same method. In order to show this we first put the analysis presented in the

preceding section in a more general context. This will be applicable to a large

variety of queueing models.

The Markov process which models the M/M/1 queue has the decisive property

that transitions are allowed to neighbouring states only, i.e. gij = 0 for states

i, j ∈ N0 with |i−j| > 1. The result is a very simple state transition graph of a

linear form and correspondingly a set of balance equations, given by (4.1) and

(4.2), which can be solved easily. We can retain the same method of analysis

if we relax the special assumption that gi,i+1 and gi,i−1 be independent of i.

Thus we define a skip–free Markov process by the property that its generator

G = (gij)i,j∈E satisfies gij = 0 for all states i, j ∈ E ⊂ N0 with |i −
j| > 1. For queueing systems this means that there are only single arrivals or

departures. Thus every Markovian queueing system with single arrivals and

departures can be modelled by a skip–free Markov process.

Denote the remaining infinitesimal transition rates by

λi := gi,i+1 and µi := gi,i−1

for all possible values of i. The rates λi and µi are called arrival rates and

departure rates, respectively. The state transition graph of such a process

assumes the form

0 1 2 . . .1 2

λ λ λ

µ µ µ

0 1 2

321

Figure 4.3. A skip–free Markov process

Its balance equations are given by λ0π0 = µ1π1 and

(λi + µi)πi = λi−1πi−1 + µi+1πi+1

for all i ∈ N. By induction on i it is easily shown that these are equivalent to

the equation system

λi−1πi−1 = µiπi (4.4)
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for all i ∈ N. This system is solved by successive elimination with a solution

of the form

πi = π0

i−1∏

j=0

λj

µj+1
= π0

λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
(4.5)

for all i ≥ 1. The solution π is a probability distribution if and only if it can be

normalized, i.e. if
∑

n∈E πn = 1. This condition implies

1 =
∑

n∈E

π0

n−1∏

j=0

λj

µj+1
= π0

∑

n∈E

n−1∏

j=0

λj

µj+1

with the empty product being defined as one. This means that

π0 =

⎛
⎝
⎛⎛
∑

n∈E

n−1∏

j=0

λj

µj+1

⎞
⎠
⎞⎞−1

(4.6)

and thus π is a probability distribution if and only if the series in the brack-

ets converges. In this case, the stationary distribution of a skip–free Markov

process is given by (4.6) and (4.5).

3. The M/M/∞ Queue

The first application of the analysis of the last section to a queueing system

shall be the M/M/∞ queue. This is a queue without queueing: There are in-

finitely many servers such that every incoming user finds an idle server im-

mediately. Arrivals are governed by a Poisson process with intensity λ > 0,

and the service times are exponentially distributed with rate µ > 0, equal for

each server. Due to lemma 3.2, the system process is Markovian. Furthermore,

there are only single arrivals and departures. Hence the M/M/∞ queue can be

modelled by a skip–free Markov process.

Since the arrival process is independent of the rest of the queue, the arrival

rates of the respective skip–free Markov process are constant. In the notation

of section 2 we can thus specify λn = λ for all n ∈ N0. Departures occur

upon service completions. According to lemma 3.2 and due to the memoryless

property of the exponential distribution (see lemma 3.2), the departure rates

are given by µn = n · µ for all n ∈ N.

Define ρ := λ/µ. Then the series in (4.6) assumes the value

∞∑

n=0

n−1∏

j=0

λj

µj+1
=

∞∑

n=0

ρn

n!
= eρ
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and thus converges regardless of the value of ρ. This means that the M/M/∞
queue always has a stationary distribution, which is not surprising as infinitely

many servers cannot be exhausted, whatever the arrival intensity amounts to.

Due to formulae (4.6) and (4.5), we obtain the stationary distribution π as given

by π0 = e−ρ and

πn = e−ρ · ρn

n!

for all n ∈ N, which is a Poisson distribution with parameter ρ. Hence the

mean and the variance of the number N of users in the stationary system are

given by E(N) = Var(N) = ρ.

Since there is no queueing in the M/M/∞ system, all waiting times are zero

and the mean sojourn time in the system equals 1/µ. This means that all users

passing through such a system are independently kept there for an exponen-

tially distributed time. In the context of queueing networks (see chapter 5), the

M/M/∞ queue is therefore often called an (independent) delay system.

4. The M/M/k Queue

The M/M/k queue is provided with k identical servers which can serve users

in parallel. Users arrive according to a Poisson process with intensity λ > 0,

and the service time distribution is exponential with parameter µ > 0 at all

servers. Whenever a user arrives and finds all servers busy (i.e. at least k users

in the system) he queues up in the waiting room. From there the next waiting

user is served in the order of a FIFO discipline as soon as one of the servers

becomes idle. An arriving user finding less than k users already in the system

(i.e. there are idle servers at the time of arrival) chooses any server and starts

service immediately.

For this type of queue the dynamics is a mixture between the M/M/∞ queue

and the M/M/1 queue. Up to the value of k users in the system, the service

(and thus the departure) rate increases like µn = n · µ for 1 ≤ n ≤ k. Starting

from k users in the system there are no servers anymore to keep up with newly

arriving users, and the departure rate remains µn = k ·µ for all n ≥ k+1. The

independence of the arrival process yields constant arrival rates λn = λ for all

n ∈ N0.

Again we define ρ := λ/µ. The series in (4.6) specifies to

∞∑

n=0

n−1∏

j=0

λj

µj+1
=

k−1∑

n=0

ρn

n!
+

ρk

k!

∞∑

n=0

(ρ

k

)n
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queuearrival process departure
 process

servers

λ

µ

µ

Figure 4.4. M/M/k queue

which is finite if and only if ρ < k. In this case the stationary distribution π is

given by formulae (4.6) and (4.5) as

π0 =

(
k−1∑

n=0

ρn

n!
+

ρk

(k − 1)! · (k − ρ)

)−1

and

πn = π0 ·
ρn

n!
, 1 ≤ n ≤ k

πn = πk ·
(ρ

k

)n−k
, n > k

Here we see the M/M/∞ form for n ≤ k and the M/M/1 form beginning with

n ≥ k, where πk substitutes the base value that is played by π0 for the pure

M/M/1 queue.

The fact that the M/M/k queue behaves for more than k users in the system like

an M/M/1 queue with load ρ/k is further illustrated by the following observa-

tion. Let N denote the number of users in the system that is in equilibrium.

Consider the conditional probability pn := P(N = n|N ≥ k) for n ≥ k. This

is computed as

pn =
πn∑∞
i=k πi

= πk

(ρ

k

)n−k
/

πk

∞∑

i=k

(ρ

k

)i−k
=
(ρ

k

)n−k (
1 − ρ

k

)

Since n−k is the number NqNN of users waiting in the queue, the conditional dis-

tribution of NqNN given that all servers are busy has exactly the same (geometric)

form as the stationary distribution for the M/M/1 system process.
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The probability P{N ≥ k} of the conditioning event that in equilibrium all

servers are busy is given by

∞∑

n=k

πn =

(
1 + (k − 1)! · (k − ρ) ·

k−1∑

n=0

ρn−k

n!

)−1

(4.7)

This is the probability that a newly arriving user must wait before he is served.

The above formula for it is called Erlang’s delay formula.

5. The M/M/k/k Queue

In stochastic modelling there always is a trade–off between the adaptation of

the model to reality and its simplicity, i.e. its analytic tractability. We have

seen that the nicest solutions could be derived for the M/M/1 queue (a geomet-

ric distribution) and the M/M/∞ queue (a Poisson distribution). The solution

for the M/M/k queue, which is more realistic for most practical applications, is

also more involved. For all these models we kept the often unrealistic assump-

tion of an infinite waiting room. The models in this and the following sections

stem from more realistic specifications. Historically, they belong to the first

applications which founded the field of queueing theory.

In the times of A.K. Erlang, at the beginning of the 20th century, telephone

calls had to be connected by an operator. The telephone companies installed

call centers where a number k of operators served call requests which arrived

from a large number of subscribers. Whenever all operators are busy with

serving call requests and a new subscriber calls to get a line, this subscriber

will be rejected.

If we model the arriving requests by a Poisson process and the duration of

the operators’ services by an exponential distribution, then we get an M/M/k/k

queue as a model for this application. The subscribers with their call requests

are the users and the operators are the servers. There are k servers and as many

places in the system, i.e. there is no additional waiting room.

Let the intensity of the Poisson arrival process and the rate of the exponential

service times be denoted by λ > 0 and µ > 0, respectively. Again we can use

a skip–free Markov process to analyze this system. In this notation, we obtain

λn = λ for all n = 0, . . . , k − 1 and µn = n · µ for n = 1, . . . , k. The values

of λn and µn are zero for all other indices n. Define ρ := λ/µ. The series in

(4.6) is in this case

∑

n∈E

n−1∏

j=0

λj

µj+1
=

k∑

n=0

ρn

n!
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which is finite, regardless of the value for ρ. Hence a stationary distribution π
always exists and is given by

π0 =

(
k∑

n=0

ρn

n!

)−1

and πn = π0 ·
ρn

n!

for all n = 1, . . . , k. The main performance measure for this application is the

probability that all operators are busy and the company is unable to accept new

call requests. This is given by

πk =
ρk

k!

(
k∑

n=0

ρn

n!

)−1

which of course is valid only under the stationary regime, i.e. in equilibrium.

This expression is known as Erlang’s loss formula.

Note that the expression of π0 for the M/M/∞ queue is the limit of the re-

spective expression for the M/M/k/k model as k tends to infinity. Even further,

the stationary distribution for the M/M/k/k queue converges to the stationary

distribution of the M/M/∞ for increasing k.

6. The M/M/k/k+c/N Queue

A simplifying assumption in the previous model has been the constant arrival

rates λn = λ. This implies that even for a high number of users in the queue

the intensity of new arrivals does not diminish. While this is a reasonable as-

sumption for an application to call centers, where the number of operators (and

thus the maximal number of users in the system) is only marginal compared to

the number of all subscribers, there are other applications for which such an

assumption would not be realistic.

Consider a closed computer network with k servers and N terminals. Every

terminal sends a job to one of the servers after some exponentially distributed

think time. If a server is available, i.e. idle, then this job is served, demanding

an exponential service time. A terminal that has a job in a server may not send

another job request during the service time. Whenever a terminal sends a job

request and all servers are busy at that time, then the job is put into a queue.

This queue has maximal capacity c, i.e. if a terminal sends a job request and

the queue is already filled with c jobs, then this new job request is rejected and

the terminal starts another think time.

This application can be modelled by an M/M/k/k+c/N queue if we interpret the

users in the system as the job requests that are in service or waiting. Denote
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λ

 servers

µ

µ

queue

λ

 terminals

Figure 4.5. A closed computer network

the parameters of the exponential think time and service time distributions by

λ > 0 and µ > 0, respectively. Without loss of generality we may assume that

k + c ≤ N . Then the queue in consideration is a skip–free Markov process

with arrival rates λn = (N − n) · λ for n = 0, . . . , k + c − 1 and departure

rates µn = min(n, k) · µ for n = 1, . . . , k + c. As always, define ρ := λ/µ.

The series in (4.6) amounts to

∑

n∈E

n−1∏

j=0

λj

µj+1
=

k∑

n=0

(
N

n

)
· ρn +

k+c∑

n=k+1

N ! · ρn

(N − n)! · k! · kn−k
(4.8)

and thus is finite for every value of ρ. The stationary distribution π is given by

π0 =

(
k∑

n=0

(
N

n

)
· ρn +

k+c∑

n=k+1

N ! · ρn

(N − n)! · k! · kn−k

)−1

and

πn = π0 ·
(

N

n

)
· ρn, 1 ≤ n ≤ k

πn = π0 ·
N ! · ρn

(N − n)! · k! · kn−k
, k + 1 ≤ n ≤ k + c

There are several interesting special cases. For c = 0 there is no room for a

queue of waiting jobs. Then the stationary distribution simplifies to a binomial
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distribution with parameters (N, p), where p = ρ/(1 + ρ), which is truncated

to the states n = 0, . . . , k. Such a distribution is called an Engset distribution.

For c = N−k the queue has an important application in reliability theory. This

is known as the machine repair problem. In a production site there are N ma-

chines which are prone to failure. Each of them breaks down after a working

time which is exponentially distributed with parameter λ. There are k repair-

men that take care of the broken machines sequentially. The repair times are

exponential with parameter µ. Then the system process of the M/M/k/N/N
queue yields the number of broken machines.

Notes

The models presented in this chapter are the oldest within queueing theory.

Applications to telephone networks date back to the beginning of the 20th cen-

tury, notably Erlang [33] and Engset [32].

Skip–free Markov processes have been extensively used for populations mod-

els. Therefore the name birth–and–death processes is very popular for them,

with λi and µi denoting the transition rates for a birth and a death, respectively,

if the population has i members. However, the authors think that such a name

is inappropriate for queueing models and thus prefer the more technical term

skip–free.

For more Markovian queueing models see Kleinrock [50]. An analysis of non–

homogeneous (namely periodic) Markovian queues is given in Breuer [17, 22].

Exercise 4.1 Verify the formula Var(N) = ρ/(1 − ρ)2 for the stationary

variance of the number of users in the M/M/1 queue.

Exercise 4.2 Show that the equation system (4.4) is equivalent to the balance

equations for a skip–free Markov process. Prove the form (4.5) of its solution.

Exercise 4.3 Prove Erlang’s delay formula (4.7).

Exercise 4.4 Compare the stationary mean number of users in the system for

the following three queueing systems: (a) an M/M/1 queue with arrival inten-

sity λ and service rate µ, (b) an M/M/2 system with arrival intensity λ and

service rate µ/2, and (c) two independent M/M/1 queues with arrival intensity

λ/2 to each of them and equal service rate µ. Explain the differences.

Exercise 4.5 Explain equation (4.8).
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Exercise 4.6 Show that the stationary distribution for an M/M/k/k/N queue

is an Engset distribution.

Exercise 4.7 Analyze the M/M/1/c queue with arrival intensity λ and service

rate µ. This always has a stationary distribution π. Show that in the limit

c → ∞, there are two possibilities: Either ρ < 1 and π converges to the

stationary distribution of the M/M/1 queue, or ρ ≥ 1 and π converges to the

zero measure.

Exercise 4.8 Examine the M/M/1 queue with users who are discouraged by

long queue lengths. This can be modelled by arrival rates λn = λ/(n + 1) for

all n ∈ N0. Show that the stationary distribution is Poisson.



Chapter 5

MARKOVIAN QUEUEING NETWORKS

A set of interconnected queueing stations in which any user, upon departing

from one station, can join another or must leave the total system is called a

queueing network. The paths along which a user may travel from station to

station are determined by routing probabilities qij . Travel times, in general,

are assumed to be zero.

A queueing network may be regarded as a directed graph whose nodes rep-

resent the stations, and whose edges represent links between nodes. Between

nodes i and j an edge exists if and only if the routing probability qij , i.e. the

probability to join station j after service completion at station i, is greater

than zero. There may be also links from and to the outside of the network,

representing the possibility for users to enter or leave the system. Let qjq 0 de-

note the probability for a user to depart from the network after being served

at node j. Then
∑M

k=0 qjkq = 1, with M the number of stations in the net-

work. The matrix Q = (qij)i,j≤M is called the routing matrix of the network.

Given Q, the probabilities for network departures are implicitly determined by

qjq 0 = 1 −∑M
k=1 qjkq .

Routing probabilities may be state dependent, where a network state usually is

defined by the vector n = (n1, . . . , nM ) of actual numbers ni of customers in

stations i = 1, . . . ,M . More complex state definitions arise when customers

of different classes require different amounts of service and follow different

routes through the network. It may be the case that a particular routing behav-

iour is associated with a certain group of classes, while other groups follow

different rules. This leads to the notion of chains in a network. A chain de-

fines a particular subset (called category) of customers who travel through the

network according to a particular routing mechanism. Class changes of cus-

tomers within a chain are possible, but no customer can pass over to some class
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of another chain. The pair of class and chain identifiers is called a category

index.
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Figure 5.1. Open Queueing Network

A network is called a closed network if there is no traffic entering the network

from outside, and all departure probabilities qi0 are zero. A network that allows

incoming and outgoing traffic is called an open network. Since we are only

interested in systems that eventually reach equilibrium, the cases with entering

but no outgoing traffic, or vice versa, are excluded from investigation. As

mentioned above, it is further possible to discriminate between different user

classes and different chains in a network. Each chain is associated with its own

routing matrix Qc. In this case the network may be open for some chains, and

closed for others. Such a network is called a mixed network. In this book we

concentrate on the case of state independent routing.

In the simplest case, when customers are non-distinguishable, the dynamic be-

haviour of a queueing network is best described by a vector-valued stochastic

process (NtNN : t ≥ 0) with state space N
M
0 . In case that we consider different

customer classes and/or special characteristics of service or even inter-arrival

times, a network state, clearly, may be described differently. As a construct for

stochastic modelling, queueing networks are subject to performance analysis,

the performance measures of interest being similar to those for isolated sta-

tions. In most cases one is interested in the average delay (or system time) T̄
that a user experiences when travelling through the network, and in the mean

throughput S̄ as well as the mean total number N̄ of customers that are resi-

dent. According to Little’s result (see theorem 1.9), these quantities are related

by

S̄ · T̄ = N̄ . (5.1)

They can easily be evaluated by means of the stationary state probabilities (that

hold in equilibrium), if those exist and are known. For instance, with pn denot-
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ing the stationary probability for the network to be in state n = (n1, . . . , nM ),

N̄ =
∑

n∈NM
0

pn ·
M∑

i=1

ni.

In general, the calculation of stationary probabilities, if they exist, represents

an unsolved or at least intricate problem. This is due to the fact that in most

cases no closed form expressions are known. Nevertheless, there are queueing

networks for which stationary state probabilities can be obtained by forming

the product of all those stationary state probabilities that are associated with

the network stations in isolation. Such queueing networks are called product

form (PF-) networks or separable networks. Among separable networks, the

best understood are Markovian queueing networks, i.e. networks for which the

stochastic process (NtNN : t ≥ 0) is Markov, and which allow a product form

solution. We shall be concerned mainly with the class of PF-networks in the

following sections, and shall concentrate on the most simple cases only. For

continuing information about queueing networks of more complex structure

the reader is referred to the abundant literature on this topic.

1. Balance Equations and Reversibility
Properties

Let N = (NtNN : t ≥ 0) be a vector-valued continuous time Markov process

with state space E that describes a queueing network with M stations. In the

simplest case, when there is only one class of customers travelling through the

network, and no phase structures need to be considered for service (and inter-

arrival) time distributions, the state space E forms a subset of N
M
0 .

N can be considered as a random walk process on the network graph. Let G =
(gmn)m,n∈E denote the generator matrix of N . Then, given that the process is

irreducible, it assumes equilibrium if and only if the system of equations

pG =
∑

m∈E

pm gmn = o (5.2)

possesses a finite positive solution p = (pn)n∈E (see theorem 3.9). Any such

solution p can be normed as to satisfy
∑

n∈E pn = 1 and to represent the

unique stationary distribution of N , i. e. the joint stationary queue length

distribution of the network. For indistinguishable customers, irreducibility

of N is equivalent to the possibility for a customer to be able, upon leav-

ing a station i and subsequently travelling through the network, to finally

reach any other station j or, in case of an open network, to reach the exte-

rior of the network. Mathematically spoken, this means that there are integers
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k1 = i, k2, . . . , kn, kn+1 = j such that
∏n

ℓ=1 qkℓ,kℓ+1
> 0, where in case that

the exterior is meant by the source or the destination, the respective index i or

j has value 0.

Equation (5.2) mirrors a situation that we call global balance. A term of the

form pm gmn, where gmn is the instantaneous transition rate from state m to

state n, is called probability flux or rate of flow from m to n. Since G, as a

generator matrix, satisfies
∑

n∈E gmn = 0, (5.2) is equivalent to

∑

m∈E
m�=�� n

pm gmn =
∑

m∈E
m�=�� n

pn gnm, (5.3)

stating that the probability flux into state n equals the probability flux out of

state n. As opposed to that, we speak of a detailed balance equation, if

pm gmn = pn gnm. (5.4)

There are several concepts of balance between rates of flow in Markov processes

and, correspondingly, in Markovian queueing networks. These concepts are

tightly connected with the property of reversibility in the theory of Markov

processes. In order to illustrate this relationship, let us first specify what

is meant by a reversed process N (r) = (N
(r)
tNN )t∈R

+
0

associated with some

Markov process N = (NtNN )t∈R
+
0

with state space E.

The reversal N (r) of the Markov process N is a process that is develop-

ing in time in forward direction just as the original process does in back-

ward direction, on the same state space E, i. e., for some τ ∈ R
+
0 , we have

N
(r)
tNN = NτNN −t ∀ t ∈ R

+
0 . If N is time-homogeneous and stationary, the value

of τ does not matter, and so

N
(r)
tNN = N−NN t for all t ∈ R

+
0 .

N is called the forward process corresponding to the reversed or backward

process N (r). If the forward process N is time-homogeneous, irreducible, and

stationary, then so is the reversed process N (r).

Let G = (gmn)m,n∈E and G(r) = (g
(r)
mn)m,n∈E denote the generator matrices

of N and N (r), respectively, with total transition rates

γm =
∑

n∈E
n�=�� m

gmn, γ
(r)
m =

∑

n∈E
n�=�� m

g
(r)
mn for any m ∈ E.

As can easily be seen, the instantaneous transition rates gmn and g
(r)
mn are,

in general, not the same for an arbitrary pair of states m,n. On the other
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side, given that p = (pn)n∈E and p(r) = (p
(r)
n )n∈E denote the stationary

distribution vectors of N and N (r), we have

p(r) = p. (5.5)

This follows directly from the fact that reversing time does not alter the average

fraction of time the process spends in a state. Setting −t−dt =: t0, the defining

equation

P(NtNN +dt = n, NtNN = m) = P(N
(r)
−t−dt = n, N

(r)
−t = m)

= P(N
(r)
tN
0+dt = m, N

(r)
tNN
0

= n)

leads to pm · P(NtNN +dt = n | NtNN = m) = p
(r)
n · P(N

(r)
tN
0+dt = m | N

(r)
tNN
0

= n),
such that, by dividing both sides by dt, letting dt → 0, and observing (5.5), we

obtain

pm · gmn = pn · g(r)
nm. (5.6)

An important statement that characterizes the transition rates of the reversed

process is the following.

Theorem 5.1 Let N = (NtNN )t∈R
+
0

be a stationary Markov process with state

space E and generator G = (gmn)m,n∈E . Assume that there are nonnegative

numbers g∗mn satisfying

∑

n∈E

gmn =
∑

n∈E

g∗mn = 0 for all m ∈ E,

and positive numbers pn, n ∈ E, summing to 1, such that the equations

pmgmn = png∗nm for all m ∈ E

are satisfied. Then (g∗mn)m,n∈E = G(r) is the generator of the reversed

process, and the pn, n ∈ E, form the stationary probability vector p for both,

the reversed and the forward process.

Proof: In order to show that p = (pn)n∈E is the stationary vector of N , ob-

serve that
∑

m∈E pm gmn = pn

∑
m∈E g∗nm

!
= pn

∑
m∈E gnm = o, saying

that p satisfies the global balance equation. Additionally, pmgmn = png∗nm

implies g∗nm = g
(r)
nm according to (5.6).

�

Joint distributions of the original and the reversed process are not identical in

general. With t1 < . . . < tk, a kth-order joint distribution of N reads

pm1...mk
(t1, . . . , tk) = P(NtNN

1
= m1, . . . , NtNN

k
= mk),
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whereas

P(N
(r)
tNN
1

= m1, . . . , N
(r)
tNN
k

= mk) = P(N−NN t1 = m1, . . . , N−NN tk = mk),

which need not be the same as pm1...mk
(t1, . . . , tk).

Definition 5.2 A stochastic process is called reversible, if the joint distribu-

tions of the forward and the reversed process are identical, i.e.

P(NtNN
1

= m1, . . . , NtNN
k

= mk) = P(N
(r)
tNN
1

= m1, . . . , N
(r)
tNN
k

= mk).

Reversibility is related to the notion of detailed balance equations (5.4). First

note that any reversible Markov process is stationary, as can immediately be

deduced from the equality

P(NtNN
1
, . . . , NtNN

k
) = P(NtNN

1+τ , . . . , NtNN
k+τ ) = P(N−NN t1 , . . . , N−NN tk)

for any τ ∈ R
+
0 . Secondly, the following more general statement holds.

Theorem 5.3 A stationary Markov process N = (NtNN )t∈R
+
0

is reversible if and

only if the detailed balance equations (5.4) are satisfied for all m,n ∈ E and

some positive vector p = (pn)n∈E with
∑

n∈E pn = 1.

Proof: 1. The properties of stationarity and reversibility imply that P(NtNN = n)
does not depend on t. The numbers P(NtNN = n) =: pn are positive and sum to

1. From reversibility and time-homogeneity we can conclude that

P(NtNN +dt = n, NtNN = m) = P(N
(r)
tN +dt = n, N

(r)
tNN = m)

= P(N−NN t−dt = n, N−NN t = m),

which (setting −t− dt =: t0) is equivalent to pm ·P(NtNN +dt = n | NtNN = m) =
pn · P(NtNN

0+dt = m | NtNN
0

= n).1 Forming the differential quotient on each

side, one obtains (5.4).

2. The detailed balance equations guarantee global balance, so p represents the

equilibrium distribution of the Markov process. Considering now an arbitrary

interval [−T, T ], we calculate the joint probability density for the event that

the process is in state m1 at time −T , jumps to state m2 at time −T + x1,

to state m3 at time −T + x1 + x2, and so forth, until it reaches state mk

at time −T +
∑k−1

ν=1 xν , staying there until T , i. e. for some time interval of

length xk that satisfies
∑k

ν=1 xν = 2T . The probability, that upon leaving a

1Remember, that it is even possible here to replace t0 by t due to time-homogeneity.
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state mν the process jumps to state mν+1, is gmνmν+1
/γmν . Further, since we

have a Markov process, the probability density of the sojourn time in state mν

equals γmν e−γmν ·xν , whereas we have P(sojourn time in state mk > xk) =
e−γmk

·xk . As a consequence, the probability density for the above mentioned

process behaviour in [−T, T ] reads

pm1
e−γm1

·x1gm1m2
e−γm2

·x2gm2m3
. . . e−γmk−1

·xk−1gmk−1mk
e−γmk

·xk .

Applying now the detailed balance property, we obtain for the same density

the expression

pmk
e−γm1

·x1gmkmk−1
e−γm2

·x2gmk−1mk−2
. . . e−γmk−1

·xk−1gm2m1
e−γmk

·xk

(since pm1
gm1m2

gm2m3
= pm2

gm2m1
gm2m3

!
= pm3

gm3m2
gm2m1

, etc.).

This density, but, describes a process behaviour, where the process starts at

time −T in state mk, stays there for some time xk, then jumps to state mk−1,

stays there for some time xk−1, and so forth, until it reaches state m1, where

it remains at least for a period of x1 time units. Consequently, the reversed

process (NtNN )t∈[−T,T ] proves to behave exactly in the same way as the reversed

process (N−NN t)t∈[−T,T ]. Since T has been arbitrarily chosen, N must be re-

versible.

�

For queueing network analyses the property of product form related to the state

probabilities of isolated stations is of paramount importance. The following

result relates reversibility with some other type of product form.

Theorem 5.4 The stationary distribution of any irreducible and reversible

Markov process can be calculated from a product of ratios of transition rates.

Proof: Let N be an irreducible and reversible stationary Markov process, such

that, according to theorem 5.3, the detailed balance equations (5.4) are satis-

fied. We select an arbitrary state, say s = (s1, . . . , sM ), as a fixed ”starting

state”, from which any other state n is reachable due to irreducibility, that is,

there is at least one sequence s = m1,m2, . . . ,mk = n such that

gm1m2
gm2m3

. . . gmk−1mk

= 0

 .

Using this fact, we further select for each state n ∈ E one and only one con-

necting sequence of this form with m1 = s and mk = n, and define positive

numbers πn by

πn =

{ gm1m2
gm2m3

...gmk−1mk

gmkmk−1
gmk−1mk−2

...gm2m1

for n 
=

 s

1 for n = s
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(clearly, the intermediate states mν as well as the value of the index k depend

on n). Next, setting
∑

n∈E πn = C, we show that the distribution vector

p̃ = ( ñ)n∈E with

p̃n

!
=

1

C
πn =

1

C

k(n)−1∏

ν=1

gmνmν+1

gmν+1mν

satisfies the global balance equation (5.2). For that purpose, observe that ac-

cording to detailed balance,

πn =

k(n)−1∏

ν=1

gmνmν+1

gmν+1mν

=

k(n)−1∏

ν=1

pmν+1

pmν

=
pn

ps

,

which is true also for n = s. Consequently,

∑

n∈E

p̃ngnm =
1

C

(
gsm +

∑

n∈E
n�=�� s

pn

ps

· gnm

)
=

1

ps C

∑

n∈E

pn gnm = 0,

implying that p̃ = p. This proves the assertion.

�

Let Ni,tNN denote the random number of customers in a single queueing station i
at time t. If (Ni,tNN )t∈R

+
0

is a stationary reversible Markov process then we call i

a reversible queueing station. An important consequence from reversibility is

the so-called input-output property: For any reversible queueing station the

departure process has the same joint distribution as the arrival process. This is

due to the fact that, whereas the points in time when Ni,tNN increases by 1 corre-

spond to arrivals, the points in time when Ni,tNN decreases by 1 correspond to de-

partures and, by definition, to the epochs when the reverse process (N
(r)
i,tNN )t∈R

+
0

increases by 1. Since joint distributions of the original and the reverse process

are the same, the arrival and the departure process exhibit the same joint sta-

tistics. As a consequence, we have the fact that a reversible queueing station,

when being fed by a Poisson (Markov) stream, causes a Poisson (Markov) out-

put stream. This property is called M ⇒ M property.

Before considering other balance concepts, let us point to a general property

of stationary Markov processes. Assume, as we do mostly in this chapter, that

a stationary Markov process N can be interpreted as a random walk in a finite

graph G; then the rates of flow in opposite directions across a cut in G are

identical. In other words, for some arbitrary subset A in the set E of nodes
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(the state space) we have2

∑

m∈A

∑

n∈E\A

pm gmn =
∑

m∈A

∑

n∈E\A

pn gnm.

This is a direct consequence from global balance, since by summing on both

sides of (5.3) over all n, and subtracting

∑

m∈A

∑

n∈E

pm gmn =
∑

m∈A

∑

n∈A

pn gnm

, we obtain the above equation.

Opposed to the notions of global and detailed balance, the term partial bal-

ance plays an important role. In fact, the property of partial balance is the most

general property, since global and detailed balance as well as other terms (such

as station or local balance) can be regarded as special cases of partial balance.

An irreducible stationary Markov process with equilibrium distribution p =
(pn)n∈E and transition rates gmn is said to be in partial balance with respect

to a subset A of its state space E, if

∑

m∈A

pm gmn =
∑

m∈A

pn gnm, n ∈ A. (5.7)

Notice, that the stationary distribution p satisfies the partial balance equations

(5.7) if and only if

∑

m∈E\A

pm gmn =
∑

m∈E\A

pn gnm, n ∈ A;

this follows from stationarity, i. e. the fact that the process is in global balance

and satisfies (5.3).

In many application oriented publications the property of partial balance is

described in somewhat vague terms, e. g. saying that partial balance for some

state m is present if the rate of flow out of m due to changes of a particular

nature equals the rate of flow into m due to changes of that very particular

nature.

It is here the point to pay attention to the fact that a network state, in general, is

determined by several actual values of system parameters, rather than just by

2The exterior of a queueing network is represented by a node ”0”, such that q0i is a routing probability into

node i from outside the network, and qj0 is the routing probability from node j to outside the network. The

node 0 is contained in the node set of G.
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the number of customers in each station (the latter definition leading to E =
N

M
0 ). For example, in a multi-class network with R classes a state description

may contain information about the number of class r customers, their actual

waiting (and/or server occupancy) positions, and the actual phases of service at

every station i ∈ {1, . . . ,M}. Accordingly, the term partial balance includes a

variety of specific definitions, among which the notions of station balance and

local balance deserve particular notice.

Probably the most important property is that of local balance. Introduced by

Chandy et alii [26], this term depicts a situation, where the rate of flow into

a network state m due to the arrival of a class r customer at a network queue

i is balanced against the rate of flow out of the same network state due to

the departure of a class r customer from that network queue i. If the state

description contains information about the actual phase of service in case of

non-exponentially distributed service times, state changes are caused also by

phase transitions or by an entry into the first phase of a service time distribu-

tion. Local balance, then, means that the probability flux into network state m
due to the arrival of a class r customer at a network queue i by entering a ser-

vice phase ℓ equals the probability flux out of the same network state due to the

departure of a class r customer from that service phase ℓ at queue i. Chandy

used the term ”stage of service” for the tripel (i, r, ℓ) of queue index i, class

index r, and phase index ℓ. Thus, a network is said to be in local balance, if

the rate of flow into a stage (i, r, ℓ) of service is equal to the rate of flow out of

the same stage (i, r, ℓ) of service for all admissible values of i, r, and ℓ.

Let us write g
depi(r)
mn for the rate out of state m due to a departure of a class r

customer from queue i (this rate is zero if there is no such customer at i in state

m), and g
arri(r)
nm for the rate into state m due to an arrival of a class r customer

at queue i. The local balance equations then read

pn g
arri(r)
nm = pm g

depi(r)
mn for all i ∈ {1, . . . ,M}, 1 ≤ r ≤ R. (5.8)

To illustrate the concept, consider a single class queueing network with M sta-

tions whose states are completely described by the vectors m = (m1, . . . ,mM )
of station specific customer numbers. Let λi(mi) and µi(mi), respectively, de-

note the arrival rate into, and the service completion rate at station i, when there

are mi customers present (i = 1, . . . ,M ). According to the above definition

of local balance, the rate of flow into some network state m due to an arrival

at queue i must be equal to the rate of flow out of state m due to a departure

from queue i. Let ei denote a vector of length M that has a 1 at position i and

zeros at all other positions (the ith canonical row base vector). An arrival at

queue i can transfer a state n into m only if n equals m − ei (notice that a

transition from m − ei + ej to m would be due to a departure from queue j,
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rather than due to an arrival at queue i). Similarly, a departure from queue i
can transfer the state m only to one of the two states m−ei or m−ei +ej . As

a consequence, the local balance equations for that simple single class network

with state space N
M
0 read

pm−ei
λi(mi − 1) = pm µi(mi) qi0 +

M∑

j=1

pm µi(mi) qij

for all i ∈ {1, . . . ,M}, where qi0 and qij , respectively, are the routing proba-

bilities from station i to the exterior of the network and to station j. Observing

qi0 +
∑M

i=1 qij = 1 and µi(0) = 0, we finally state that local balance means

pm−ei
λi(mi − 1) = pm µi(mi) if mi ≥ 1, i = 1, . . . ,M. (5.9)

The next theorem should be considered as the central result with respect to the

notion of local balance. We provide an exemplary proof only for the most sim-

ple situation of a single class network with state space E = N
M
0 , whose state

descriptions m = (m1, . . . ,mM ) reflect the station occupancies and whose

routing probabilities are state independent. The general case can be handled

similarly, although leading to more complex and intricate expressions. We

refer to the books of Kelly [48], Kant [45] and Nelson [61] for further details.

Theorem 5.5 Local balance implies global balance and product form.

Proof: (For the most simple case with only one class of customer and state

independent routing, where a state at some arbitrary point in time is determined

by the actual numbers of customers present in the network queues.)

1. Assume that a probability distribution (pn)n∈E satisfies the local balance

equations (5.8). We show that (pn)n∈E then satisfies global balance. Consider

all neighbouring states m ± ei and m ± ei ∓ ej that are reachable from state

m, such that the probability flux into state m is given by

∑

n∈E
n�=�� m

pngnm =
M∑

i=1

pm−ei
garri
m−ei m

+
M∑

i=1

pm+ei
gdepi

m+ei m +
M∑

i=1

M∑

j=1

pm+ei−ej
gdepi

m+ei−ej m.
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Applying (5.8), this yields

∑

n∈E
n�=�� m

pngnm =
M∑

i=1

pm gdepi

mm−ei
+

M∑

i=1

M∑

j=1

pm gdepi

mm−ei+ej
+

+
M∑

i=1

pm+ei
gdepi

m+ei m +
M∑

i=1

M∑

j=1

pm+ei−ej
gdepi

m+ei−ej m.

Now express m as m = n − ei in the first of the two sums in the second line,

and as m = n − ei + ej in the second one. Then these expressions can be

rewritten as

M∑

i=1

pn gdepi

nn−ei
+

M∑

i=1

M∑

j=1

pn gdepi

nn−ei+ej

!
=

M∑

i=1

pn−ei
garri
n−ei n

=
M∑

i=1

pm garri
mm+ei

,

such that the global flux into state m reads

∑

n∈E
n�=�� m

pngnm = pm

⎧
⎨
⎧⎧

⎩
⎨⎨ M∑

i=1

gdepi

mm−ei
+

M∑

i=1

M∑

j=1

gdepi

mm−ei+ej
+

M∑

i=1

garri
mm+ei

⎫
⎬
⎫⎫

⎭
⎬⎬

.

The right hand side, but, of this expression is nothing else than the total prob-

ability flux out of state m, which proves that (pn)n∈E satisfies global balance

and, therefore, is the equilibrium state distribution of the network process N .

Consequently, all probability distributions over E that satisfy the local balance

equations must coincide with the unique equilibrium state distribution of the

network process N .

2. We show that the distribution vector (pn)n∈E that satisfies local balance has

product form. Take any network station i in isolation, i.e. decoupled from the

network, and provide the same input flow to i that the station experiences when

communicationg with other stations in the network, such that the arrival and

departure rates are the same as before. Obviously, local balance implies that

i is in equilibrium. Let pi(mi) be the steady state probability for the isolated

station i to be in state mi, and let λi(mi) and µi(mi) denote the arrival rate

into i and the departure rate from i, respectively, when i is in state mi. Then,

equations (5.8) take the form

pi(mi − 1)λi(mi − 1) = pi(mi)µi(mi) ∀ mi ≥ 1.
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Define a probability vector p̃ = ( ñ)n∈E over E = N
M
0 by

p̃n =
1

CMC

M∏

i=1

pi(ni) for n = (n1, . . . , nM ),

where CMC =
∑

n∈E

∏M
i=1 pi(ni). In the network, the arrival rates into station

i and the departure rates from station i, respectively, are

garri
m−ei m = λi(mi − 1),

gdepi

mm−ei
= µi(mi) qi0, gdepi

mm−ei+ej
= µi(mi) qij

for i, j ∈ {1, . . . ,M}. The construction of p̃ leads to

p̃m−ei
garri
m−ei m =

pi(mi − 1)

pi(mi)
λi(mi − 1),

p̃m

(
gdepi

mm−ei
+

M∑

j=1

gdepi

mm−ei+ej

)
= p̃m

(
µi(mi) qi0 +

M∑

j=1

µi(mi) qij

)
,

which implies that p̃m−ei
garri
m−ei m = p̃m

(
gdepi

mm−ei
+
∑M

j=1 gdepi

mm−ei+ej

)
, i.e.

p̃ satisfies the local balance equations. Consequently, p̃ coincides with the

uniquely determined equilibrium distribution p = (pn)n∈E of N .

�

In general, it is necessary to be careful when reading statements on local bal-

ance in the literature since, unfortunately, there are no uniform standards for

the definition of this notion. The reader who is interested in physical meanings

and practice oriented versions is referred to the book of Van Dijk [30].

Another remark is in place addressing the property of station balance. Here the

term ”station” does not stand for ”network station” in the sense of ”a queue in

the network” rather, it marks a position in the waiting or server room of a single

queue that is occupied by one customer! A queue, in turn, is viewed as a set of

stations. To illustrate the situation, consider an isolated multiple server queue

that is visited by customers from different classes. Obviously, for a ”first-come

first-served” (FCFS) or ”last-come first-served” (LCFS) scheduling discipline,

the waiting positions at the top and the end of the queue, respectively, have

particular meanings. Additionally, in case that specific servers are associated

with specific classes, also the discrimination between servers (where service

completions are to be expected) may be of importance. In that case to each

server there is assigned a special subqueue containing customers at their wait-

ing positions.
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Bearing these peculiarities in mind, a ”station” is determined by a position

index j. A network queue i is viewed as a set of stations, and if there are in to-

tal ni customers resident at i, the occupied stations are indexed r1, . . . , rni
,

with rj indicating the class of the customer at station (position) j. Even

more complex descriptions are in use when routing chains are to be distin-

guished in the network, each containing users of different classes; we shall

mention that below. In the more simple case, when discriminating between

classes only, a possible single queue state definition is given by a 2ni - tupel

ni := (r1, . . . , rni
, x1, . . . , xni

), where i marks the queue in the network, ni

is the actual number of customers at this queue i, σi = (r1, . . . , rni
) forms the

sequence of customer classes at positions 1, . . . , ni, and x1, . . . , xni
is a vector

of remaining service requirements at these ni positions. So, we have

m = (n1, . . . ,nM )

when speaking of state m ∈ E. A queueing network is said to be in ”station”

balance if during state m for any position (”station”) j the actual fraction of

the service rate associated with that position is proportional to the probability

that a customer of the same category will arrive and be placed into this posi-

tion. ”Station” balance is tightly connected to the notion of symmetric service

disciplines that we shall deal with in section 3 below. There we shall give a

more precise definition. Clearly, ”station” balance implies local balance and,

consequently, global balance and product form. We have set the word ”sta-

tion” in quotation marks for two reasons: First, the term position in most cases

reflects more precisely what is meant when describing a specific network state

in a system with position depending dynamics and several chains and/or cus-

tomer classes. Second, we wish to reserve the term station in this introductory

book for a true queueing station in a network. There is a multitude of excellent

books on that topic, and for details we refer to the literature mentioned at the

end of this chapter.

Let us now turn back to the relationships between reversibility properties and

flow balance. Asking for a property that guarantees partial balance we are

led to the notion of quasi-reversibility. Let again N = (NtNN : t ≥ 0) be a

Markov process with state space E that describes the dynamics of a queueing

system serving customers from R different classes. As we saw already, a state

n ∈ E may be identified by a fairly complex description, rather than merely

by indicating the respective numbers of class specific customers in various

stations.

Definition 5.6 N is called quasi-reversible if for any time t0 the state NtNN
0

is

independent of arrival times of class r customers after t0 and departure times

of class r customers prior to t0 (1 ≤ r ≤ R).
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A quasi-reversible process, in general, is not reversible (see exercise 5.3), and

reversibility, in turn, does not imply quasi-reversibility. Accordingly, it should

be stressed that these two notions are completely unrelated. For queueing net-

works, but, the property of quasi-reversibility is of significant pertinence. This

is due to the fact that — as we shall see below — quasi-reversibility gives rise

to product form expressions for the equilibrium state probabilities. Queues

in ”station” balance form an important subclass in the set of quasi-reversible

queues. We first prove a result that is usually termed the input-output property

of quasi-reversible queues.

Lemma 5.7 (Input-Output Property) The arrival epochs as well as the de-

parture epochs of class r customers in a stationary quasi-reversible queue form

Poisson processes with class specific identical rates λr.

Proof: The set of all states n ∈ E that provide the same state information as a

given state m except that there is one class r customer more in the system, is

marked S(m + r). Let G = (gmn)m,n∈E be the generator matrix of N ; then

the rate of state changes due to class r arrivals when the state is mt at time t is

λr(mt) =
∑

n∈S(mt+r)

gmtn.

1. According to quasi-reversibility the probability of a class r arrival during

the interval (t, t + dt] is independent of the state mt, and so is λr(mt) =
λr. Further, according to the Markov property, the path realization prior to t
has no influence on the probability for an arrival in (t, t + dt], which means

that the arrival process is memoryless with rate λr, independent of all earlier

states prior to t. Consequently, the class r arrival epochs form an independent

Poisson process with rate λr.

2. Interchanging the meaning of arrivals and departures of class r customers,

the reverse process N (r) again is to be interpreted as the state process of a

queue with R customer classes, and since N is quasi-reversible, so is N (r).

Therefore, the same reasoning applies, stating that the class r arrival process

of N (r) forms a Poisson process with rate δr =
∑

n∈S(mt+r) g
(r)
mtn. This rate

is the class r departure rate of N , and so, due to stationarity, equals λr, which

proves the assertion.

�

We are now in the position to formulate the relationship between quasi-reversibil-

ity and partial balance.

Lemma 5.8 Any quasi-reversible Markov process N = (NtNN : t ≥ 0) over

some state space E that describes the dynamics of a queueing system with R
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customer classes satisfies partial balance with respect to the set S(m + r) for

any m ∈ E.

Proof: Remember, that S(m + r) describes the set of all states n ∈ E that

provide the same state information as a given state m except that there is one

class r customer more in the system. From equation (5.6) we obtain

pm

∑

n∈S(m+r)

g
(r)
mn =

∑

n∈S(m+r)

pn · gnm,

since the reversal of the reverse process is the original one. According to the

proof of lemma 5.7,

λr =
∑

n∈S(m+r)

gmn =
∑

n∈S(m+r)

g
(r)
mn,

and so

pm

∑

n∈S(m+r)

gmn =
∑

n∈S(m+r)

pn · gnm.

�

Let us now consider a vector-valued continuous time Markov process N =
(NtNN : t ≥ 0) with state space E that describes a multi-class queueing network

with M stations and R classes of customers. Upon completing service at one

station i, a class r customer not only may join another station j of the network

or depart from the network, but also may change its class before joining another

queue. In general, the probability to undergo such type of change may depend

on the history of the customer’s behaviour and on the state of the process.

The analysis of queueing networks of that generality has turned out to be very

complex, if not impossible. When speaking of Markovian queueing networks

in this chapter, we mean a subclass of networks that is characterized by the

property that the routing probabilities are memoryless and independent of the

network states, this way defining the transition matrix of a Markov chain.

Let qir;jr′ denote the probability that a class r customer, after leaving queue

i, joins queue j as a class r′ customer, and set qir;00 for the probability that a

class r customer leaves the network after service completion at station i. Then∑M
j=1

∑R
r′=1 qir;jr′ + qir;00 = 1, and the discrete time - discrete state Markov

chain defined by

Q = (qir;jr′)i,j∈{0,...,M},r,r′∈{0,...,R}
3

3Where, for j = 0 only r′ = 0 is possible, and vice versa.
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is called the routing chain. A queueing network of that type is said to perform

Markov routing.

Remark 5.9 If an asymptotic distribution p for a Markovian network process

N = (NtNN : t ≥ 0) does exist, then there is an asymptotic marginal distribution

pi = pi(k) for any queue i, too.

This can be seen from

pi(k) = lim
t→∞

P(pri(NtNN ) = k) = lim
t→∞

∑

n∈pr−1
i (k)

P(NtNN = n)

=
∑

n∈pr−1
i (k)

lim
t→∞

P(NtNN = n) =
∑

n∈pr−1
i (k)

pn,

with pri denoting the projection on the ith station specific state component,

and pr−1
i (k) = {n ∈ N

M
0 : ni = k}.

We close this section by formulating some sort of a quintessence from the

above treatment of quasi-reversibility.

Theorem 5.10 Let N = (NtNN : t ≥ 0) be a stationary vector-valued con-

tinuous time Markov process with state space E that describes a multi-class

queueing network with M stations and R classes of customers. If each queue-

ing station in isolation behaves as a quasi-reversible queue, and if the network

performs Markov routing, then N is again quasi-reversible, and its equilibrium

distribution p = (pn)n∈E assumes product form, i.e.

pn =
1

C

M∏

i=1

fiff (ni),

where fiff (ni) is a state depending function for an isolated station i in steady

state ni, and C is some normalization factor.

We give a sketch of the proof for the simple case of a network whose states

are defined by class specific customer occupancies only, and in which no class

changes occur. For the more general cases we refer to the excellent treatments

given by Kelly [61], and Nelson [48].

Proof: Stationarity of the whole network implies that of any single station.

Consider a station i in isolation with the same class specific input streams,

and let pi(ni) = pi(ki1, . . . , kiR) for kr ∈ N0 and r ∈ {1, . . . , R} be its



80 AN INTRODUCTION TO QUEUEING THEORY

steady state distribution. Quasi-reversibility means that the input and the out-

put stream for each customer class r at i are Poisson (with same rate λir), so we

have pi(ki1, . . . , kir − 1, . . . , kiR)λir = pi(ki1, . . . , kiR)µir(kir). Construct

a probability distribution by

pn =
1

C(M, R)

M∏

i=1

pi(ki1, . . . , kiR).

Then this distribution satisfies local balance (cf. proof of theorem 5.5) and,

therefore, also global balance.

�

Notice, that the essential property here for a product form to hold is the prop-

erty of each station to produce, when being fed by a Poisson input stream, an

output stream that again is Poisson. This is nothing else than the M ⇒ M
property.

2. Jackson and Gordon-Newell Networks

Let us consider now the simplest type of queueing network. This is an open or

closed single class network of, say, M queues, whose state space is determined

by the station specific numbers of customers only. Let N = (NtNN : t ≥ 0) de-

note the stochastic process that describes the dynamics of such a network with

respect to the varying numbers of customers in the stations.4 Its state space E
is a subset of N

M
0 .

As before, we denote with Q = (qij)i,j∈{1,...,M} the routing matrix, and with

G = (gmn)
m,n∈NM

0
the generator of N . An open network of that kind is called

a Jackson network if the following conditions are satisfied.

1 Any user entering N at some node i may reach any other node in finitely

many steps with positive probability. Similarly, starting from some node i
a user can leave the network in finitely many steps with positive probability

(i ∈ {1, . . . ,M}).

2 The network performs Markov routing, i.e. Q represents the transition ma-

trix of a Markov chain.

3 Each queueing station i is of type ∗/M/si with si ∈ N ∪ {∞}, i.e. the

service time distribution at station i is exponential with parameter µi for

each of the si servers.

4The letter N may also stand for the queueing network itself, as long as no ambiguities are to be expected.
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4 The total arrival stream from outside the network forms a Poisson stream

of intensity γ. The separate arrival streams to stations i = 1, . . . ,M are

determined by the routing probabilities q0i with
∑M

i=1 q0i = 1. They are

Poisson streams with intensities γ q0i =: γiγγ .

N is irreducible due to property 1, and is Markov due to the memoryless prop-

erty of the exponential service and inter-arrival time distributions. As such, the

network assumes equilibrium if and only if there exists a positive finite solution

p G =
∑

m∈E

pm gmn = o,

where G = (gmn)
m,n∈NM

0
is the generator of N .

Let λi and δi, respectively, denote the total mean arrival and departure rates

at stations i = 1, . . . ,M , each being independent of the actual occupancy at

the stations. Then, λi = γiγγ +
∑M

j=1 δjδ qjiq . In equilibrium, δi = λi for each

i ∈ {1, . . . ,M}, and so

λi = γiγγ +
M∑

j=1

λj qjiq , i = 1, . . . ,M. (5.10)

(5.10) is called the system of traffic equations for a Jackson network in equi-

librium. The next lemma shows that this system always possesses a unique

solution.

Lemma 5.11 For a Jackson network with routing matrix Q, the matrix I −Q
is invertible.

Proof: Consider a Markov chain X with transition matrix

P =

(
1 0
q0 Q

)
,

where q0 = (q10, . . . , qM0)
T is a column vector, and 0 = (0, . . . , 0) is the

zero row vector. Irreducibility of the Jackson network implies that the set of

states {1, . . . ,M} forms a transient communication class in the state space of

X , whereas the state zero is absorbing. Hence, according to corollary 2.15, the

submatrix R̃ of the potential matrix R of X (as defined in (2.7)) that contains

entries R(ij) with i, j ∈ {1, . . . ,M} only, is finite. Due to the structure of P ,

R̃ =
∑∞

n=1 Qn, and since R̃ is finite, the Neumann series

R̃ + I =
∞∑

n=0

Qn = (I − Q)−1

p = (pn)n∈E to the system of equations
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is finite, too. This proves the assertion.

�

We denote, as usual, by ρi = λi/µi the load factor of station i, 1 ≤ i ≤ M . In

general, the service completion rate at each station i is state dependent, given

by µi(ni) = µi min(si, ni) when there are ni customers present at i. Obvi-

ously, a necessary condition for the network process N to attain equilibrium is

that all individual station specific processes attain equilibrium, i.e. stationarity

of N implies

ρi < si for all i ∈ {1, . . . ,M}. (5.11)

The following statement has first been proven by Jackson as early as in 1963

[42]. It shows that (5.11) not only is a necessary, but also a sufficient condition

for stationarity of N , and that any Jackson network is a product form (PF)

network.

Theorem 5.12 (Jackson) Let N denote a Markov process describing a Jack-

son network with M stations, and assume ρi < si for all 1 ≤ i ≤ M . Then a

stationary distribution of N exists and is given by

pn =
M∏

i=1

pi(ni), (5.12)

for n = (n1, . . . , nM ), where pi = (pi(ni))ni∈N0
is the stationary distribution

of an isolated M/M/si queueing system with arrival rate λi and service rate

µi at each server.

Proof: (pn)
n∈NM

0
is a probability distribution since pi(ni) ≥ 0 for all i ∈

{1, . . . ,M}, and

∑

n∈NM
0

pn =
∞∑

n1=0

. . .
∞∑

nM=0

M∏

i=1

pi(ni) =
M∏

i=1

∞∑

ni=0

pi(ni) = 1.

From equations (5.11), (5.12), and (5.9) we know that

pm−ei
λi = pm µi(si) for all i ∈ {1, . . . ,M},

which means that the distribution (5.9) satisfies local balance. Thus, by theo-

rem 5.5, (pn)
n∈NM

0
is the equilibrium distribution of N .

�

Jackson has proved this theorem by directly establishing the global balance

relations. We repeat his rationale here for pedagogical reasons in order to
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illustrate the interplay of input and output flows in a Jackson network.

For a Jackson network, the transition rates gnm into a network state m =
(m1, . . . ,mM ) read

gnm =

⎧
⎨
⎧⎧

⎩
⎨⎨ γiγγ if n = m − ei

µj(nj + 1) · qjiq if n = m − ei + ej

µi(ni + 1) · qi0 if n = m + ei

,

whereas the rates out of a network state m = (n1. . . . , nM ) read

gmn =

⎧
⎨
⎧⎧

⎩
⎨⎨ γiγγ if n = m + ei

µi(ni) · qij if n = m − ei + ej

µi(ni) · qi0 if n = m − ei

.

Due to ρi < si for all i, each network station in isolation with same arrival rates

assumes equilibrium, satisfying the local balance equations pi(mi+1)µi(mi+
1) = pi(mi)λi for all mi ≥ 0, 1 ≤ i ≤ M . Consequently, an expression of

the form (5.12) leads to5

pm−ei
=

∏

k �=�� i

pk(mk) pi(mi − 1) = pm

µi(mi)

λi
,

pm−ei+ej
=

∏

k �=�� i,j

pk(mk) pi(mi − 1) pj(mj + 1) = pm

µi(mi)

λi

λj

µj(mj + 1)
,

pm+ei
=

∏

k �=�� i

pk(nk) pi(ni + 1) = pm

λi

µi(mi + 1)
,

and the probability flow into network state m is

∑

n∈NM
0

pn gnm = pm

⎧
⎨
⎧⎧

⎩
⎨⎨ M∑

i=1

µi(mi)

λi
+

M∑

i=1

M∑

j=1

µi(mi)

λi
λj qjiq +

M∑

i=1

λi qi0

⎫
⎬
⎫⎫

⎭
⎬⎬

,

which, according to
∑M

j=1 λj qjiq = λi − γiγγ (which follows from the traffic

equations) and
∑M

j=1 qij = 1 − qi0, reduces further to

∑

n∈NM
0

pn gnm = pm

M∑

i=1

(
µi(mi) + γiγγ

)
. (5.13)

5Note that pi(ν) = 0 for ν < 0, and µi(ν) = 0 for ν ≤ 0, 1 ≤ i ≤ M .
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On the other side, by the same reasoning, the probability flow out of network

state m can be rewritten as

∑

n∈NM
0

pm gmn = pm

⎧
⎨
⎧⎧

⎩
⎨⎨ M∑

i=1

γiγγ +
M∑

i=1

M∑

j=1

µi(mi) qij +
M∑

i=1

µi(mi) qi0

⎫
⎬
⎫⎫

⎭
⎬⎬

,

and this, as is easily seen, is the same as (5.13), proving theorem 5.12.

A closed network possessing all the properties 1 - 3 of a Jackson network

(with the exception of property 4) is called a Gordon-Newell network, or GN

network for short. As shown by W. J. Gordon and G. F. Newell in 1967 [40],

such a network assumes equilibrium with stationary distribution

pn =
1

C̃MC (K)

M∏

i=1

pi(ni) (5.14)

for n = (n1, . . . , nM ), where again pi = (pi(ni))ni∈N0
is the stationary distri-

bution of an isolated M/M/si queueing system with arrival rate λi and service

rate µi at each server, and where C̃MC (K) =
∑

n∈E

∏M
i=1 pi(ni) represents a

normalization factor that guarantees
∑

n∈E pn = 1 (K the constant number of

customers in the network).

This statement is usually called the Theorem of Gordon-Newell. Its proof is

given by the same reasoning as for the theorem of Jackson by setting γiγγ = 0
and qi0 = 0 for 1 ≤ i ≤ M . In both cases the participating network stations be-

have as if being completely independent, a result that is somewhat surprising,

since — at least for a Gordon-Newell network — the dependency of station

specific events is obvious: Given, that there are K customers in the network,

we always have
∑M

i=1 ni = K. The reason behind is the M ⇒ M property

that implies local balance.

The state space E = E(M, K) of a Gordon-Newell network with M stations

and K customers is given as the set of vectors

E(M, K) =

{
n = (n1, . . . , nM ) : ni ≥ 0 ∀ i,

M∑

i=1

ni = K

}

and has size

|E(M, K)| =

(
M + K − 1

M − 1

)
.

The latter is easily seen by induction: Obviously, |E(M, 0)| = |E(1, K)| = 1.

Further, we have |E(2, K)| = K + 1, since, according to n1 + n2 = K,

any state n = (n1, n2) is already determined by only one of its entries ni ∈
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{0, 1, . . . ,K}. Assume that |E(M − 1, K)| =
(
M+K−2

M−2

)
. Adding another

node to the network that is appropriately connected with the former nodes, the

new node may contain ν ∈ {0, 1, . . . ,K} users when there are K − ν users at

the remaining M − 1 nodes. Hence,

|E(M, K)| =
K∑

ν=0

(
M + (K − ν) − 2

M − 2

)
=

K∑

ν=0

(
M − 2 + ν

M − 2

)

=

(
M − 1

M − 1

)
+

K∑

ν=1

(
M − 2 + ν

M − 2

)
,

and the well known relation
(

n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
,

with k = M − 2 and n = M − 2 + ν, yields

|E(M, K)| =

(
M − 1

M − 1

)
+

K∑

ν=1

((
M − 1 + ν

M − 1

)
−
(

M − 2 + ν

M − 1

))

=

(
M − 1 + K

M − 1

)
.

2.1 The Performance of a Jackson Network

The performance measures of a Jackson network are easily obtained from those

of isolated M/M/si stations. As has previously been shown,

pi(0) =

(
si−1∑

k=0

ρk
i

k!
+

ρsi

i

si!

(
1 − ρi

si

)−1
)−1

,

pi(ni) =

⎧
⎨
⎧⎧

⎩
⎨⎨ pi(0)

ρ
ni
i

ni!
for 0 ≤ ni ≤ si

pi(0)
(

ρi

si

)ni s
si
i

si!
for ni ≥ si

,

where ρi = λi/µi.
6 So, for a Jackson network, any state probability is im-

mediately obtained from (5.12), whereas for a Gordon-Newell network it is

necessary to additionally compute the normalization constant. Notice, that the

steady state probabilities depend only on the mean values x̄i = 1/µi of the

6In some publications the quantity ρi is defined as ρi = λi/(si µi) and termed utilization factor; this is

the mean fraction of active servers (see [50]).
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service time distributions, and not on higher moments. This property is com-

mon to all product form networks, and is called the product form network

insensitivity property.

Let, for an M/M/si station, N̄iNN denote the mean number of customers in the

station, T̄iTT the mean sojourn time, W̄Q
iWW the mean waiting time in the queue,

N̄Q
iNN the mean queue length, and S̄iSS the mean throughput through the station.

Then,

N̄iNN = ρi + pi(0)
ρsi+1

i

(si − 1)!(si − ρi)2
,

T̄iTT =
1

µi

(
1 + pi(0)

ρsi

i

(si − 1)!(si − ρi)2

)
,

W̄Q
iWW =

1

µi
pi(0)

ρsi

i

(si − 1)!(si − ρi)2
,

N̄Q
iNN = N̄iNN − ρi,

S̄iSS = λi,

and the total average number N̄ of customers is

N̄ =
M∑

i=1

N̄iNN .

Applying Little’s result (see theorem 1.9), the total mean sojourn time or net-

work delay a customer experiences is obtained as

T̄ =
1

γ
N̄,

where γ =
∑M

i=1 γiγγ = S̄ is the total mean throughput through the network.

We denote by τiττ the mean time between a user’s arrival at node i and his fi-

nal departure from the network. For this quantity we immediately realize the

relation

τiττ = T̄iTT +
M∑

j=1

qijτjτ , 1 ≤ i ≤ M.

Let vi denote the mean number of visits a user makes at sation i. The total

number of customers that enter the network per unit time is γ, and each of

these customers visits node i in the average for vi times, so γ vi gives the

average ratio of arrivals per unit time at station i, implying that γ vi = λi. The

traffic equations (5.10), therefore, yield

vi =
γiγγ

γ
+

M∑

j=1

vj qij , 1 ≤ i ≤ M. (5.15)
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For any Jackson network the system (5.15) always possesses a unique non-

negative solution due to lemma 5.11.

2.2 Computational Methods for Gordon-Newell
Networks

The calculation of performance measures of a Gordon-Newell network is by

far not as easy as in the case of Jackson networks. The main problem consists

in computing the normalization constant

C̃MC (K) =
∑

n∈E(M,K)

M∏

i=1

pi(ni). (5.16)

What is the reason? It is simply the fact that the huge number of terms oc-

curring in (5.16) makes it very difficult, in general, to numerically evaluate the

product form solution. Special algorithmic methods are in place here, and we

shall demonstrate one below.

The Convolution Algorithm

Consider the traffic equations of a GN network,

λi =
M∑

j=1

λj qij , 1 ≤ i ≤ M. (5.17)

Obviously, the quantities λi are only determined up to some non-zero constant,

and in order not to identify them with the ”true” arrival rates, it is convenient

to replace the term λi by yi and just look at these yi as solutions of the above

system (5.17). For technical reasons we set

xi(ni) :=
pi(ni)

pi(0)
, and CMC (K) :=

C̃MC (K)
∏M

i=1 pi(0)
.

The product form equation (5.14) then takes the form

pn =
1

CMC (K)

M∏

i=1

xi(ni), (5.18)

and according to the local balance equations pi(ni +1)µi(ni +1) = pi(ni)λi

as well as the convention λi = yi we have

xi(0) = 1, xi(k) = xi(k − 1)
yi

µi(k)
for 1 ≤ k ≤ K. (5.19)
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Thus, given any solution y1, . . . , yM of the system of traffic equations (5.17),

we can compute all the xi(ni) simply by iteration.

Let us pause here for a moment in order to introduce the notion of discrete

convolution of vectors of equal length (or even sequences with infinitely many

components): Given a = (a1, . . . , aN ) and b = (b1, . . . , bN ), the convolution

of a and b is defined as the vector c = (c1, . . . , cN ) of same length that has

the components

ck =
k∑

ℓ=0

ak−ℓ bℓ =
k∑

ℓ=0

aℓ bk−ℓ, 0 ≤ k ≤ N

(N ≤ ∞). The common symbol for the convolution operation is the ”∗”, i.e.

we write c = a ∗ b. It is obvious that (a ∗ b) ∗ c = a ∗ (b ∗ c) for arbitrary

vectors a,b, c ∈ R
N . For a convolution of some vector a ∈ R

N with itself we

write

a∗n = a∗n−1 ∗ a for n ≥ 1,

where a∗0 is defined as a∗0 = (1, 0, . . . , 0), hence a∗0 ∗b = b for all b ∈ R
N .

We return now to the problem of computing the steady state probabilities

(5.18). Although the xi(ni) can easily be computed by iteration, the compu-

tation of the normalization constant CMC (K) =
∑

n∈EM (K)

∏M
i=1 xi(ni) still

turns out to be rather difficult if M and K attain large values. In this situation

J. Buzen [24] observed that (5.16) is nothing else than the Kth component of

the discrete convolution of the vectors

xi = (xi(0), xi(1), . . . , xi(K)).

Precisely, we have

CMC (K) =
∑

n∈E(M,K)

M∏

i=1

xi(ni)
!
= (
!

x1 ∗ . . . ∗ xM )(K). (5.20)

Formally, expression (5.20) is characterized by the two parameters M and K,

and so it is suggesting itself that we define, for 1 ≤ m ≤ M , 1 ≤ k ≤ K, the

components CmCC (k) of the convolution vector Cm = x1 ∗ . . . ∗ xm by

CmCC (k) =
∑

n∈E(m,k)

m∏

i=1

xi(ni) = (x1 ∗ . . . ∗ xm)(k),

where E(m, k) =
{
n = (n1, . . . , nm) : ni ≥ 0,

∑m
i=1 ni = k

}
. Similarly,

the constant CMC (K) can be written as the Kth component of the convolution

of CM−1 and xM :

CMC (K) = (CM−1 ∗ xM )(K).
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In general terms, we arrive at

CmCC (k) = (Cm−1 ∗ xm)(k), 1 ≤ m ≤ M, 1 ≤ k ≤ K. (5.21)

This, in fact, is the basis of Buzen’s convolution algorithm. It can roughly be

described as follows.

1 Set C0CC (0) = 1, and C0CC (ℓ) = 0 for 1 ≤ ℓ ≤ K.

2 For all m, 1 ≤ m ≤ M , set xm(0) = 1.

3 Compute successively, for any m ∈ {1, . . . ,M} and k = 0, . . . ,K, the

values xm(k) = xm−1 ym/µm(k) and CmCC (k) =
∑

n∈Em(k)

∏m
i=1 xi(ni).

Performance Measures

The computation of all the (normalization) constants CmCC (k) opens the way for

an easy and direct evaluation of station specific performance measures. Note

that, by adequate renumbering, we always can achieve that an arbitrary station

has index M . Let pM (n; K) denote the marginal steady state probability to

find n users at station M . Then, according to the product form (5.18),

pM (n; K) =
∑

n∈E(M−1,K−n)

p(n1,n2,...,nM−1,n)

=
∑

n∈E(M−1,K−n)

∏M−1
i=1 xi(ni)xM (n)

CMC (K)

=
CMC −1(K − n)

CMC (K)
· xM (n). (5.22)

The mean number N̄MN (K) of customers in station M is now immediately

obtained as7

N̄MN (K) =
K∑

n=0

pM (n; K) · n.

Hence,

N̄MN (K) =
1

CMC (K)

K∑

n=0

CMC −1(K − n)xM (n) · n. (5.23)

7We intentionally indicate here and in the following in each term the total number of customers present in

the network.
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It may be worthwile to note that this expression again takes the form of a

convolution: Set zM = (0, xM (1), 2xM (2), . . . ,KxM (K)); then

N̄MN (K) =
(CM−1 ∗ zM )(K)

CMC (K)
.

In equilibrium, the mean throughput rate S̄M (K) through station M in a GN

network with K customers equals the mean arrival rate λM (K) (as well as the

mean departure rate δM (K)). It is given as

S̄M (K) =
K∑

n=1

pM (n; K)µm(n).

From this expression, by inserting (5.21) and exploiting (5.19), we obtain

S̄M (K) =
CMC (K − 1)

CMC (K)
· yM . (5.24)

We proceed to calculate the mean time T̄MT (K) a user spends in a station i
(mean system time, or mean sojourn time). According to Little’s result we

have T̄MT (K) = 1
λM

N̄MN (K) = N̄MN (K)
S̄M (K)

, and so the above results yield

T̄MT (K) =

∑K
n=1 CMC −1(K − n)xM (n)n

CMC (K − 1) yM
. (5.25)

The mean number N̄Q
iNN (K, si) of customers waiting in the queue at some sta-

tion i that has si exponential servers is given as
∑K

ni=si
pi(ni; K) (ni − si).

Thus, by (5.21),

N̄Q
MN (K, si) =

∑K
n=sM

CMC −1(K − n)xM (n) (n − sM )

CMC (K)
. (5.26)

The Principle of Mean Value Analysis

In case that each network station either is a single server station or an infinite

server station, an even easier way can be pursued, avoiding the explicit com-

putation of the values (5.21). In fact, it is possible to obtain all mean values

by some simple iteration process. For stations with more than 1 and less than

K servers, but, one still has to rely on (5.21) and related expressions. The ap-

proach in question, in its general form, is called mean value analysis (MVA)

and has been suggested by Reiser and Lavenberg in 1980 [73].
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For a GN network the mean visiting numbers satisfy the equations

vi =
M∑

j=1

vj qjiq , 1 ≤ i ≤ M. (5.27)

These equations, clearly, do not possess a unique solution, as has been the

case for an open network. So, neither we can determine the exact values for

the visiting numbers vi and the mean arrival rates λi, nor we can compute

other mean values by imitating the previous approach. In order to achieve

yet similar results, we proceed by turning a closed network into an open one

without changing any of the performance criteria. The idea is the following:

Add another fictitious node 0 to the network graph between two nodes i0 and

j0 that are connected by an edge (possibly i0 = j0), where i0, j0 ∈ {1, . . . ,M}
(see figure 5.2).
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Figure 5.2. Modified Network

Any customer, who is routed to node j0 after service completion at node i0
is now assumed to depart from the network, and to be immediately replaced

by another new customer who enters the network at node j0. This way, the

number K of customers in the network is preserved all the time, and all net-

work parameters remain exactly the same. The construction allows to speak of

performance items like network delay T (i.e. the total time a customer spends

in the network), or throughput S through the network. In particular, we shall

be able to calculate the mean values T̄ , S̄ and N̄ =
∑M

i=1 N̄iNN ,8 and to de-

termine the mean number vi of visits that a customer makes at station i for

i ∈ {1, . . . ,M}.

8These values depend on the number K of customers in the network, and we shall indicate this dependency

in the following.
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First observe that any ”newly arriving” customer from ”outside the network”

(i.e. from node 0) visits node i0 exactly k times with probability given by

qi0j0(1 − qi0j0)
k−1, implying that the mean number vi0 of visits at node i0 for

any customer in this open network attains the value

vi0 =
∞∑

k=1

k qi0j0(1 − qi0j0)
k−1 =

1

qi0j0

.

This determines all other visiting numbers vi according to equation (5.27):

vi =
M∑

j=1

j �=�� i0

vj qjiq +
qi0i

qi0j0

.

Equations (5.17) and (5.27) show that the vectors λ = (λ1, . . . , λM ) and v =
(v1, . . . , vM ) are proportional, λ = γ v. The λi (and so the constant γ) depend

on the number K, whereas the vi are functions of the routing probabilities only.

Since in equilibrium the average departure rate from node i0 equals its average

arrival rate λi0 , the expression λi0 qi0j0 = λi0/vi0 represents the mean transfer

rate from node i0 to node j0 in the original GN network. Consequently, in our

artificial open network, the constant γ is nothing else than the total average

input rate from outside (or throughput rate S̄ through) the network:

λi0 qi0j0 = λi0/vi0 = γ = S̄(K).

The visit numbers λi/γ = vi are sometimes referred to as relative throughput

rates.

Let again, for any station i ∈ {1, . . . ,M} in a network with K customers,

denote by N̄iNN (K, si) the mean number of customers in i, and by T̄iTT (K, si) the

mean sojourn time in station i if there are si servers at that station. We obtain

the following relations:

N̄iNN (K, si) = λi T̄iTT (si) (Little’s rule),

K =
M∑

i=1

N̄iNN (K, si) = S̄(K)
M∑

i=1

vi T̄iTT (K, si),

T̄ (K) =
M∑

i=1

vi T̄iTT (K, si) =
M∑

i=1

λi

S̄(K)
T̄iTT (K, si).

The last equation confirms K = S̄(K)T̄ (K) (Little’s rule). Notice, that the

mean system times T̄iTT (K, si) cannot be calculated as sojourn times of isolated

independent M/M/si stations as in case of a Jackson network, since the num-

bers NiNN (K, si) are now dependent upon each other due to the second of the
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above equations. Accordingly, we have to find another way to compute the

T̄iTT (K, si) in order to solve the equations for all other unknowns.

Let us call a customer, who has completed service at some station j and is

about to enter station i (but not yet there), to be a customer in transit to i. As-

sume that such a customer ”sees” Ai(K, si) customers in total, and AQ
i (K, si)

customers waiting in the queue at station i immediately before his entrance

there. Clearly, Ai(K, si) and AQ
i (K, si) are random numbers. Let Āi(K, si)

and ĀQ
i (K, si) denote their respective expectations. With Āi(K, si) the mean

system times T̄iTT (K, si) for the cases si = 1 and si ≥ K are given as

T̄iTT (K, si) =

{
1
µi

+ 1
µi

Āi(K, si) if si = 1
1
µµ

µi
if si ≥ K

(5.28)

(remember, that service times are exponentially distributed, and that 1/µi is

the mean of the service time at station i). We shall show later that the corre-

sponding value for the case 1 < si < K reads

T̄iTT (K, si) =
1

µi

(
1 +

1

si

[
ĀQ

i (K, si) + bi(K − 1)
])

, 1 < si < K,

where bi(K − 1) is the probability for the event that, in a closed network of

same type with K − 1 customers, all of the si servers at station i are occupied.

The task here is to compute the mean values ĀQ
i (K, si) as well as the proba-

bilities bi(K − 1) for i ∈ {1, . . . ,M}.

In order to determine the Āi(K, si) in (5.28) we mention an important general

feature of product form networks that is called the arrival property in case of

open networks, and the random observer property in case of closed ones.9

Here we confine ourself to the case of a single class GN network, but it should

be clear from the proof below that this property also holds for multi-class (open

or closed) PF networks.

Theorem 5.13 (Random Observer Property) Let ai(n−ei) denote the prob-

ability for the event that a customer in transit to i ”sees” the state disposition

n− ei = (n1, . . . , ni − 1, . . . , nM ) immediately before his arrival at station i.
If N describes a closed GN network with, say, K customers, then this proba-

bility ai(n− ei) is the same as the steady state probability for state n− ei for

a network of same type with one customer less.

9For a single queueing station this is comparable with the PASTA property (Poisson arrivals see time aver-

ages).
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Proof: We denote by ηi(n) the mean number of customers in transit to i per

unit time who ”see” the state disposition n. Obviously, we have

ηi(n − ei) =
M∑

j=1

pn−ei+ej
gn−ei+ej n. (5.29)

The probability ai(n − ei) can be expressed as the relative portion of the rate

ηi(n − ei) compared with the sum over all rates ηi(m):

ai(n − ei) =
ηi(n − ei)∑

m∈E(M,K) ηi(m)
.

Observing gn−ei+ej n = µj(nj + 1)qjiq , as well as the local balance equations

pj(nj + 1)µj(nj + 1) = pj(nj)λj ,

and exploiting the product form (5.14), we obtain from (5.29), that

ηi(n − ei) = pn−ei

M∑

j=1

λj qjiq = pn−ei
λi,

and likewise ηi(m) = pm λi for any m ∈ E(M, K), i ∈ {1, . . . ,M}. This

proves an−ei
= pn−ei

.

�

The random observer property enables us to determine the values Āi(K, si)

and ĀQ
i (K, si) as

Āi(K, si) = N̄iNN (K − 1, si), ĀQ
i (K, si) = N̄Q

iNN (K − 1, si)

for i ∈ {1, . . . ,M}, where we indicate by si the number of servers, and by K
or K − 1 the number of customers in the network. According to these results

the station specific mean system times in a GN network with K customers are

given by10

T̄iTT (K, si) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

1
µi

+ 1
µi

N̄iNN (K − 1, si) if si = 1
1
µµ

µi
if si ≥ K

1
µi

(
1 + 1

si

[
N̄Q

iNN (K − 1, si) + bi(K − 1)
])

if 1 < si < K

.

(5.30)

10The third line expression for 1 < si < K will be derived later.
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For a network that is built up by only single server or infinite server sta-

tions we arrive at a system of recursion equations for the unknowns T̄iTT (K, si),
N̄iNN (K, si), and S̄(K), viz.

T̄iTT (K, si) =

{
1
µi

+ 1
µi

N̄iNN (K − 1, si) if si = 1
1
µµ

µi
if si ≥ K

,

S̄(K) =
K

∑M
i=1 viT̄iTT (K, si)

,

N̄iNN (K, si) = vi S̄(K) T̄iTT (K, si). (5.31)

In essence these expressions explain what is usually meant with ”mean value

analysis” for Gordon-Newell networks: It is a simple iteration process that

starts with N̄iNN (0, si) = 0 and T̄iTT (1, si) = 1/µi and requires to compute succes-

sively, for 1 ≤ k ≤ K, the values T̄iTT (k, si), S̄(K), and N̄iNN (K, si) according to

(5.31).

The computational overhead is fairly small, and can even be further reduced if

approximate results are tolerated. The quantities Āi(K, si) = N̄iNN (K − 1, si)
may roughly be estimated as

Āi(K, si) ≈
K − 1

K
N̄iNN (K, si),

a relation that is exact for K = 1, and tends, for increasing K, asymptotically

to an exact equation. It even provides, in many practical cases, good results for

intermediate values of K. Inserted in (5.31) we obtain

T̄iTT (K, si) =

{
1
µi

(
1 + vi(K−1)T̄iTT (K,si)∑M

ℓ=1 vℓT̄ℓTT (K,sℓ)
if si = 1

1
µi

if si ≥ K
.

So we see that, if one accepts approximate results, the overhead for the compu-

tation of the TiTT (K, si) can drastically be reduced, and limited to the solution of

some fixed-point equations. It may also be the case that the total mean through-

put rate S̄ = γ is given in a concrete situation, meaning that we can measure

somehow the average transfer rate between two connected network nodes i0
and j0. Then the relative throughput rates λi/vi = γ and, consequently, the

exact arrival rates λi are obtained immediately, providing the T̄iTT (K, si) from

direct recursion:

T̄iTT (K, si) =

{
1
µi

+ λi

µi
T̄iTT (K − 1, si) if si = 1

1
µµ

µi
if si ≥ K

.

We refer the reader to the literature for more detailed descriptions of the prin-

ciples of mean value analysis. A practice oriented treatment, for instance, is
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given in the book of Bolch et al. [15], where several examples and algorithms

are presented.

Example (Central Server Systems).

A closed network in which all customers are routed through some particular

station before they can visit other network nodes is called a central server sys-

tem. Examples for real configurations that may be modelled this way are com-

puter multiprogramming systems (with a fixed degree of multiprogramming),

multiprocessor systems connected with external memory modules, or a combi-

nation of independently working machines together with one single repair unit

that is visited whenever one of the machines fails. The latter configuration is

representative for many related ones and is known as the machine-repairman

model (already encountered in section 6). Common to all is the possibility to

model the system as a closed queueing network of the above mentioned type.

Consider, for instance, a multiprocessor system in which each processor or

CPU is connected with a bank of memory modules. As soon as a processor

needs some data (e.g. instructions) from a memory module it sends a request

to the bank and stops working until the request is satisfied. The memory mod-

ules have buffers into which requests are arranged according to the first-come

first-served (FCFS) order. A request is ”served” by sending back the data to the

requesting processor. Such a system can be modelled as a closed network in

which the multiprocessor system represents one single infinite server (IS) sta-

tion, and the, say, M − 1 memory modules are single server queueing stations

(see figure 5.3).
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Figure 5.3. Central Server Model

The number K of processors usually is much higher (e.g. 28 = 256) than

the number of memory modules. Since a processor is assumed to wait (re-

mains in idle state) when a request to the memory bank has been sent, these

requests are to be interpreted as the ”users” of the single server stations num-

bered 1, . . . ,M − 1, whereas intermediately executed job partitions represent
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the ”users” in the central IS station. In many cases it is well justified to as-

sume the time to satisfy a request being exponentially distributed. We shall

see below that — with respect to an expected product form solution — there

is no reason to restrict possible choices of service time distributions at the cen-

tral IS server to negative exponential distributions (section 3). Nevertheless,

in order to give a simple formulation, we confine ourselves to the case of an

IS station with identical exponential servers with rate µM . As a consequence,

the multiprocessor system can be modelled as a closed PF (Gordon-Newell)

network.

After partially executing a job a processor may execute another partition or

send a request to the memory bank. In practice, the memory bank is needed

only for, say, κ times in the average. Let κ be identical for all processors. We

summarize the assumptions as follows:

Service times at the memory modules i = 1, . . . ,M − 1 are exponentially

distributed with parameters µi.

Processor execution times are exponentially distributed with mean 1/µM .

Each processor references memory module i in the long run with probabil-

ity qMi, where
∑M−1

i=1 qMi = 1 (central server condition).

After κ execution times a job is finished, and starts anew (as another job)

immediately after at the same processor.

Turning the closed network into an open one by applying a similar construction

as mentioned in this section, the interpretation of restarts after job finishing

finds its adequate portrayal in the model.

Let a virtual node (the ”network exterior”) be inserted between the routing

edge from M to M , such that the mean number of visits to node M attains the

value vM = 1/qMM = κ (figure 5.4).

Then the routing probabilities satisfy the relations

qM0 +
M−1∑

i=1

qMi = 1,

qiM = 1 for all i ∈ {1, . . . ,M − 1},
qij = 0 for all i, j ∈ {1, . . . ,M − 1}

qM0 = qM0 = qMM =
1

vm
=

1

κ
.

What are the performance measures to be computed? It is likely that one is

interested, in the first line, in the mean time T̄ that is required to completely
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Figure 5.4. Modified Central Server Model

execute a job, the average delay T̄iTT at memory module i per request, the total

mean throughput S̄ of jobs through the multiprocessor system, and the average

number N̄iNN of requests waiting or being treated at some memory module i.

These quantities are easily obtained according to the mean value analysis prin-

ciple: Exploiting equations (5.30), merely the corresponding iteration process

has to be performed, using N̄iNN (0, si) = 0 as the starting value.

The General Case 1 < si < K

We close this section by turning back to the general case of GN networks that

contain multiple server stations with si < K. Relying on the results from con-

volution analysis, we can express the quantity T̄ (K; si) for a customer’s mean

sojourn time at some station i ∈ {1, . . . ,M} as a function of the quantities

N̄Q
iNN (K−1, si) and bi(K−1) as follows. Let a renumbering be performed such

that our station under consideration has index M . According to xM (0) = 1
and xM (n)/yM = xM (n − 1)/µM (n), the expression (5.25) can be rewritten

as

T̄MT (K) =
K∑

n=1

CMC −1(K − 1 − [n − 1])xM (n − 1)n

CMC (K − 1)µM (n)

=

sM∑

n=1

CMC −1(K − 1 − [n − 1])xM (n − 1)n

CMC (K − 1)nµM

+
K∑

n=sM+1

CMC −1(K − 1 − [n − 1])xM (n − 1)n

CMC (K − 1) sM µM
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=
K−1∑

n=0

CMC −1(K − 1 − n)xM (n)

CMC (K − 1)µM

+
1

sMµM

K∑

n=sM+1

CMC −1(K − 1 − n)xM (n − 1) (n − sM )

CMC (K − 1)
.

Exploiting
∑K−1

n=0 CMC −1(K − 1 − n)xM (n) = (CM−1 ∗ xM )(K − 1) =
CMC (K − 1) in the first term, and setting n − sM = (n − 1) − sM + 1 in the

second one, we obtain from (5.21) and (5.26)

T̄MT (K) =
1

µM
+

1

µM sM

(
K−1∑

n=sM

(n − sM )
CMC −1(K − 1 − n)xM (n)

CMC (K − 1)

+
K−1∑

n=sM

CMC −1(K − 1 − n)xM (n)

CMC (K − 1)

)

=
1

µM
+

1

µM sM

(
N̄Q

MN (K − 1, sM ) +
K−1∑

n=sM

pM (n; K − 1)

)
.

The sum
∑K−1

n=sM
pM (n; K − 1) represents the probability for the event that,

in a network with K − 1 customers, at least as many customers are present

at station M as there are servers, which is nothing else than the probability

bM (K − 1) for the event that all servers sM are occupied. Hence, replacing

the index M by an arbitrary station index i ∈ {1, . . . ,M}, we have

T̄iTT (K) =
1

µi

(
1 +

1

si

[
N̄Q

iNN (K − 1, si) + bi(K − 1)
])

. (5.32)

The remaining mean values are given by equations (5.23), (5.24), and (5.26).

In principle, all performance measures of a Gordon-Newell network with K
customers can be calculated from the corresponding expressions for a network

with one customer less, as is obvious from equations (5.30) and (5.32).

3. Symmetric Service Disciplines

Consider a queueing network with several chains and R customer classes, and

remember that the pair (r, c) of class and chain identifiers defines the category

of a customer. Let µ
(i)
jrc(ni) denote the mean service rate for a category (r, c)

customer at position j in station i, when the latter is in state ni, and denote by

π
(i)
jrcπ (ni) the probability for the event that a category (r, c) customer in transit

to i is going to enter this very position j when immediately before his entrance
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the state is ni. Further, let µ(i)(ni) be the total mean service rate at station i in

that state. Then

µ
(i)
jrc(ni)

µ(i)(ni)
=: ϕ

(i)
jrc(ni)

represents the fraction of the service rate that category (r, c) customers in po-

sition j produce at station i in state ni.

Definition 5.14 The service discipline at a station i is called a symmetric ser-

vice discipline, and the station is said to be in station balance, if

ϕ
(i)
jrc(ni + erc) = π

(i)
jrcπ (ni), (5.33)

that is, if the service rate µ
(i)
jrc(ni + erc) is proportional to the probability

π
(i)
jrcπ (ni).

11

The main difference between station balance and local balance lies in the fact

that station balance, in comparing rates, links together the position of a cus-

tomer who completes service and the position that an arriving customer is

about to occupy, whereas local balance just relates arrival and departure rates

for customers of same type. Two conclusions are immediately to be drawn

from this fact:

Station balance implies local balance, but not vice versa.

A non-exponential service discipline can only be symmetric if any arriving

customer receives service immediately, i.e. as soon as he enters the system.

We now give some examples for symmetric disciplines. Thereby, in order to

illustrate the relationships between the arrangement probability upon arrival

and the fraction of service rate at some position, we confine ourselves to the

case that only one class and only one chain exists, such that ϕ
(i)
jrc(ni + erc) =:

ϕ
(i)
j (ni + 1), and the condition for symmetry reads

ϕ
(i)
j (ni + 1) = π

(i)
jπ (ni).

The reader should realize that this simplification is unimportant for the exam-

ples given below, and that symmetry also holds in these cases when there are

several chains and several classes.

11Again, the vector erc is defined as to contain a 1 at the entry of ni that belongs to the category (r, c), and

zeros anywhere else.
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1. Processor sharing (PS) discipline. This is the limiting case for τ → 0 of

a Round Robin discipline that provides service to each customer in form of

time slices of duration τ . Positions in the queue remain undefined and can

be assumed to be equal. For the fraction of service in state ni +1 (i.e. when

there are ni+1 customers in station i) we have, for any j ∈ {1, . . . , ni+1},

ϕ
(i)
j (ni + 1) =

1

ni + 1
.

If the state is ni immediately before an arrival, then the newly arriving cus-

tomer can be arranged in any of ni +1 positions with same probability. So,

π
(i)
jπ (ni) = 1

ni+1 = ϕ
(i)
j (ni +1), and the discipline proves to be symmetric.

2. Infinite servers (IS) discipline. As in case of processor sharing the posi-

tion of a customer doesn’t play any role. The fraction ϕ
(i)
j (ni + 1) of the

service rate that an (ni + 1)th customer receives is always the (ni + 1)th

part of the total service rate in this state, viz. ϕ
(i)
j (ni+1) = 1/(ni+1). The

position where to be inserted is not important for an arriving customer, and

may be seen to be equal for each position among, or in front of, or behind,

the ni existing customers in the station. Thus, the probability π
(i)
jπ (ni) is

the same for all j, and π
(i)
jπ (ni) = 1/(ni + 1) = ϕ

(i)
j (ni + 1), showing the

symmetry also in this case.

3. Last-come first-served preemptive-resume (LCFS-PR) discipline. In this

discipline any newly arriving customer ousts the one in service from his

place. Let the position of the customer in service be 1. Then the fraction

ϕ
(i)
1 (ni + 1) of service that the arriving customer receives, is one since all

other customers are not served during state ni + 1, i.e. ϕ
(i)
1 (ni + 1) = 1.

On the other side, the probability π
(i)
1 (ni) for the event that an arriving cus-

tomer is arranged in position 1 at station i (when station i was in state ni im-

mediately before his arrival) is one, too. Therefore, ϕ
(i)
1 (ni+1) = π

(i)
1 (ni).

A special role plays the first-come first-served (FCFS) discipline. As is eas-

ily seen, this discipline is not symmetric, since an arriving customer is always

added to the queue at its end whereas service is provided only to the customer

at its front (first) position. If customers deserve service from different ser-

vice time distributions then (5.33) cannot be satisfied for all. There is, but,

one exception: If service times are chosen from the same exponential distri-

bution for all customers, then positions and customers are indistinguishable,

and the actual service completion rate at any time, also at an arrival instant,
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remains the same due to the memoryless property of the exponential distribu-

tion. That means that the rate / fraction equation (5.33) holds. Consequently,

an FCFS station providing exponential service with the same intensity to all its

customers attains station balance.

A network station that provides service according to one of the above disci-

plines is called a PS station, IS station, LCFS-PR station, or FCFS exponential

station, respectively.

We are now in the position to conclude, that a multiple chain/multiple class

queueing network that is fed by Poisson arrival streams (if open or mixed), and

is built up by stations of types PS, LCFS-PR, IS, or FCFS exponential, attains

station balance and, consequently, local balance and product form.

This result has first been proven by Baskett, Chandy, Muntz, and Palacios in

1977 [8], and is well known as the BCMP theorem. The authors introduced

a numbering for the four types of service disciplines that has been adopted by

most experts in the field. It runs as follows:

Type 1 service: The service discipline is FCFS, and all customers have the

same negative-exponential service time distribution. The service rate may

depend on the number of customers at the station (this is the case when

there are more than one servers available).

Type 2 service: The service discipline is PS, there is a single server at

the station, and each class of customer may have a distinct service time

distribution. The service time distributions have rational Laplace transform.

Type 3 service: The number of servers at the station is greater than or equal

to the maximum number of customers that may visit this station (IS disci-

pline). Each class of customer may have a distinct service time distribution.

The service time distributions have rational Laplace transform.

Type 4 service: There is a single server at the station, the service discipline

is LCFS-PR, and each class of customer may have a distinct service time

distribution. The service time distributions have rational Laplace transform.

The BCMP theorem explicitly describes the factors of the product form for

closed, open or mixed networks (with Poisson arrival streams). In order to

present these results adequately we have to explain some details. First, two

types of arrival process are distinguished: A single Poisson arrival stream

whose intensity γ may be a function of the state dependent total number K(n)
of customers in the network, or several chain specific Poisson streams with

intensities γc that in turn depend on the numbers KcKK (n) of customers in the
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respective chains (1 ≤ c ≤ V , V the total number of chains). Second, the state

descriptions are type specific as follows:

1 For type 1 service stations (exponential service, undistinguishable customers)

the queue specific states are represented by the vectors

ni = (ri1, . . . , rini
),

where ni is the total number of customers present at station i, and rij is

the class of the customer at position j in the queue. Positions are counted

beginning from the ”server position” 1 up to the end of the queue ni. The

need for discriminating between classes will become clear below when we

specify fiff (ni).
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ri2ri3. . .rini

Figure 5.5. FCFS Order

2 For types 2 and 3 the service time distributions have rational Laplace trans-

form, so they belong to the family of Cox-distributions. A Cox distribution

is characterized by a sequence of exponential stages that are visited by the

customer in service in compliance with routing probabilities αirℓ. These

probabilities (or their complementary values 1 − αirℓ) steer the customer

to the next stage or to exit from service (see figure 5.4). Here r is the class

index of the customer in service, and i the station index.
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Figure 5.6. Cox Distribution

The state vector ni of station i takes the form ni = (si1, . . . , siR), where

each sir = (sir1, . . . , siruir
) is a vector of labels sirℓ, and

sirℓ =

{
number of class r customers (if any) at

station i, who are in stage ℓ of service.
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sirℓ is set to zero if there are no class r customers in station i. uir is the

number of exponential stages for a class r service time distribution at i
(1 ≤ r ≤ R).

3 Type 4 centers are characterized by the LCFS-PR scheduling discipline,

offering service according to Cox distributed service times. Whereas in

case of PS or IS disciplines (types 2 and 3) the customer position has no

significance, here it is very important. The so-called LCFS order has the

opposite direction of FCFS order (see figure 5.5). The state vector ni re-

flects the classes as well as the stages of service of all the customers at their

respective positions,

ni =
(
(r1, ℓ1), (r2, ℓ2), . . . , (rni

, ℓni
)
)
.

ni is the total number of customers in station i in that state, rj is the class,

and ℓj the stage of service of the customer in position j. Position ni is that

of the customer who arrived last and who is actually in service.
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rini−1ri2 . . .ri1

Figure 5.7. LCFS Order

If there exist open chains in the network, then one may count the customer

visits to the stations. The mean visit number to station i of a class r customer

who belongs to chain c is defined as the ratio

virc =
λirc

γc(KcKK (n))
,

where λirc is the mean arrival rate of category (r, c) customers at station i,
and γc(KcKK (n)) is the total chain c arrival rate from outside the network, that

may be dependent upon the number KcKK (n) of class c customers in the network

during state n. Let McMM be the subset of stations visited by chain c, and Rc the

subset of classes occurring in chain c, and set Ec = McMM × Rc. Then the λirc

satisfy the traffic equations

λirc = γc(KcKK (n)) q0;irc +
∑

(j,s)∈Ec

λjsc qjscq ;irc.

Consequently, the mean visit numbers virc (also called the relative through-

puts) satisfy the equations

virc = q0;irc +
∑

(j,s)∈Ec

vjsc qjscq ;irc. (5.34)
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We are now in the position to formulate the result of Baskett, Chandy, Muntz,

and Palacios. Let R be the total number of customer classes, V the total num-

ber of chains, and Airℓ the product of steering probabilities in a Cox distribu-

tion (compare figure 5.6), i.e., for 1 ≤ i ≤ M , 1 ≤ r ≤ R, and 1 ≤ ℓ ≤ uir,

Airℓ =

ℓ∏

ν=1

αirν .

Theorem 5.15 (BCMP theorem) Let an open, closed, or mixed queueing net-

work with V chains and R customer classes contain service stations of types

1, 2, 3, or 4, only. Assume, that in case of an open or mixed network the exter-

nal arrival streams are Poisson of type 1 or 2, respectively. Then, the network

attains equilibrium with a product form steady state distribution

pn =
d(n)

C

M∏

i=1

fiff (ni), (5.35)

where the fiff (ni) are service type dependent state functions, and the value d(n)
is defined by

d(n) =

⎧
⎪
⎧⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪

⎪
⎨⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1 for a closed network (only 1 chain,

no external arrival process)∏K(n)−1
k=0 γ(k) for an open network (only 1 chain,

external arrival process of first type)∏V
c=1

∏Kc(n)−1
k=0 γc(k) for a mixed network (several chains,

external arrival processes of second type)

.

The state functions fiff (ni) are given by the following expressions.

Type 1 (FCFS exponential):

fiff (ni) =

ni∏

j=1

virij

µi(j)
.

Type 2 (PS, Cox distribution):

fiff (ni) = ni!

R∏

r=1

uir∏

ℓ=1

(
vir Airℓ

µirℓ

)sirℓ 1

sirℓ!
.
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Type 3 (IS, Cox distribution):

fiff (ni) =
R∏

r=1

uir∏

ℓ=1

(
vir Airℓ

µirℓ

)sirℓ 1

sirℓ!
.

Type 4 (LCFS-PR Cox distribution):

fiff (ni) =

ni∏

j=1

virij
Airijℓj

µirijℓj

.

Essentially, the BCMP theorem is a consequence from the fact that station

balance implies local balance and product form. The detailed elaboration of

the above mentioned concrete expressions for the factors in (5.35) can be per-

formed by applying the symmetry relations (5.33) and the resulting local bal-

ance equations to the product of state probabilities of isolated stations, just as

in case of Jackson or Gordon-Newell networks. This line of reasoning has been

pursued by Baskett, Chandy, Muntz, and Palacios. We do not repeat this here,

rather we refer to their original work in [8].

Notes

There is a multitude of additional results on queueing networks, including var-

ious algorithms for the exact and approximate treatment of product form (PF)

networks, refined approximation methods for non-PF networks, generaliza-

tions to networks with blocking, approximation techniques for networks with

priority handling, and even maximum entropy methods. To cover all these

results would go far beyond of the scope of this introductory book. The el-

ements of queueing network theory can already be found in Kleinrock’s fun-

damental book on queueing systems (Volume I: Theory) [50], and in an early

overview on exact and approximate methods for the evaluation of steady state

probabilities of Markovian networks (including Jackson, Gordon-Newell, and

BCMP networks) by Gelenbe and Pujolle in 1987 [36]. Also in 1987 appeared

the excellent little introduction to performance analysis methods for computer

communication systems by I. Mitrani [60]. The beginner is well advised to

read this book first. It presents a neatly formulated and easy to understand

explanation of the basic ideas behind various fundamental approaches.

A standard work on reversibility properties and their relationships to balance

behaviour is that of Kelly of the year 1979 [48]. The various techniques de-

veloped there are employed also by Nelson in his recommended treatise on

probability, stochastic processes, and queueing theory [61]. We further refer

to the more application oriented books of Van Dijk [30], who addresses the
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physical background of flow balance properties, and Harrison and Patel [41]

who — with respect to queueing networks — describe several applications to

computer networks and computer architectures. A more recently published

comprehensive treatment of queueing networks and Markov chains is that of

Bolch et alii [15]. This book covers all main aspects of modern queueing net-

work analysis, and presents up to date algorithmic methods. The reader may

also find an exhaustive list of references in [15]. Finally, we refer to the excel-

lent investigation of queueing networks with discrete time scale that has been

presented in 2001 by Daduna [29]. Due to the discrete structure of most of

todays communication systems this approach should attain particular attention

in the future.

Exercise 5.1 Show that a stationary Markov process whose undirected state

transition diagram forms a tree is reversible. Hint: Use the fact that the proba-

bility flux in one direction across a cut of the graph equals the flux in opposite

direction.

Exercise 5.2 Show that any stationary birth-death process is quasi-reversible,

and conclude from this fact the Theorem of Burke for M/M/s queues: The

departure process of an M/M/s queue is Poisson with same rate as the arrival

process.

Exercise 5.3 Prove that a quasi-reversible process need not be reversible. Hint:

Consider an M/M/1 queue with mean arrival rate λ, whose state 1 is separated

in two different states 1′ and 1′′, such that 1′ is reached from state 0 with rate

λ · p, and state 1′′ is reached from state 0 with rate λ · (1 − p) for 0 < p < 1,

the departure rates remaining unchanged.

Exercise 5.4 A data transmission unit works as follows. Data packages ar-

rive at the unit according to a Poisson process with intensity λ. For each data

package there is an exponential time (with parameter µ) from the beginning of

transmission to the receipt of an acknowledgement. Arriving packages which

find the transmission unit busy wait in a queue and are served in FCFS or-

der. The buffer for the queue is so large that it may be assumed to be infinite.

With probability p, a data package incurs a transmission error and needs to be

retransmitted. The stream of data packages to retransmitted is added to the

regular arrival stream.

a) Derive a model for this kind of data transmission in terms of a Jackson net-

work.

b) Show that the combined stream of regularly arriving packages and the pack-

ages to be retransmitted is not a Poisson process.

c) Determine the mean time needed for a successful transmission of a data

package in the stationary regime.
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Exercise 5.5 A server in a computer pool is modelled as a queueing network

with two stations. The first of these represents the CPU, the second one all

output devices. Service times in both stations are distributed exponentially,

with parameters µ1 and µ2. Jobs arrive from the pool as a Poisson process

with intensity λ. After service in the CPU, a job is done with probability p.

With probability 1− p it needs additional service by one of the output devices.

 CPU
p

 output

λ

Figure 5.8. Simple model of a computer pool

Determine the mean sojourn time of a job in the server under the stationary

regime. Networks consisting of some stations in series are called tandem

queues. However, in general tandem queues the service times do not need

to be exponential.

Exercise 5.6 For a cyclic closed network with M stations, the routing matrix

Q is given by

Q(i, j) :=

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

1, j = i + 1, 1 ≤ i < M

1, j = 1, i = M

0, else

Assume that there are K users in the network. Show that the stationary distri-

bution is given by

p(n) =
1

G(K)
· µK−n1

1∏M
i=2 µni

i

with µi denoting the service rate at station i.

Exercise 5.7 An internet based company seeks to ensure constant online ac-

cess, because it cannot operate without. To this aim, two servers instead of one

are employed concurrently. Each of them has a failure rate λ > 0, meaning

that their up time is exponentially distributed with parameter λ. After failure,

a server is repaired with probability p. The repair time is distributed expo-

nentially with parameter µ1 > 0. With probability 1 − p, the server must be

replaced by a new one, which requires an installation time that is distributed

exponentially with parameter µ2 > 0. After the server is repaired, there is still

a probability q that it must be replaced by a new one, requiring additionally the

same installation time.
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Derive a model for this situation in terms of a Gordon–Newell network. For the

values λ = 2, µ1 = 1, µ2 = 3, p = 3/4, and q = 1/3, determine the stationary

probability that both servers are down and the company cannot operate. Com-

pare this to the stationary probability that the company cannot operate for the

case that only one server is employed. Such questions are typical for reliability

theory.





Chapter 6

RENEWAL THEORY

1. Renewal Processes

Be (XnXX : n ∈ N0) a sequence of independent positive random variables, and

assume that (XnXX : n ∈ N) are identically distributed. Define the sequence

S = (SnSS : n ∈ N) by S1 := X0 and SnSS +1 := SnSS + XnXX for all n ∈ N.

The random variable SnSS , with n ∈ N, is called the nth renewal time, while

the time duration XnXX is called the nth renewal interval. Further define the

random variable of the number of renewals until time t by

NtNN := max{n ∈ N : SnSS ≤ t}
for all t ≥ 0 with the convention max ∅ = 0. Then the continuous time process

N = (NtNN : t ∈ R
+
0 ) is called a renewal process. The random variable X0

is called the delay of N . If X0 and X1 have the same distribution, then N is

called an ordinary renewal process.

time
0

S S S

N = 2

X ~ G X ~ F X ~ F

. . . 1 2 3
tS S

0 1
  G X  G X 2

  

t

Figure 6.1. Random variables of a renewal process

We will always assume that P(X1 = 0) = 0 and m := E(X1) < ∞ is finite.

The strong law of large numbers implies that SnSS /n → m with probability one
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as n → ∞. Hence SnSS < t cannot hold for infinitely many n and thus NtNN is

finite with probability one. By standard notation we will write

G(x) := P(X0 ≤ x) and F (x) := P(X1 ≤ x)

for all x ∈ R
+
0 .

Example 6.1 A light bulb has been installed at time zero. After a duration

X0, it will go out of order. We assume that it will be immediately replaced

by a new light bulb at time S1 = X0. Assume that the new light bulb is of a

type identical to the old one. Then the duration X1 until it goes out of order

is distributed identically to X0. Of course, the life times of the light bulbs

are independent from one another. Keeping up this rechangement policy over

time, the number NtNN of used light bulbs until time t forms an ordinary renewal

process.

Remark 6.2 A Poisson process with intensity λ (see example 3.1) is an ordi-

nary renewal process with F (x) = G(x) = 1−e−λx, i.e. the renewal intervals

have an exponential distribution. Thus a renewal process can be seen as a gen-

eralization of the Poisson process with respect to the distribution of the renewal

intervals.

In order to derive an expression for the distribution and the expectation of NtNN at

any time t, we need to introduce the concept of convolutions of a non–negative

function and a distribution function. Let F denote a distribution function on

R
+
0 and g : R

+
0 → R

+
0 a Lebesgue–measurable function which is bounded on

all finite intervals [0, t] with t ≥ 0. Then the function defined by

F ∗ g(t) :=

∫ t

0

∫∫
g(t − u) dF (u)

for all t ∈ R is called the convolution of F and g. In particular, the definition

of a convolution applies if g is a distribution function. As an exercise the reader

can prove

Theorem 6.3 For any distribution functions F and G as well as non–negative

Lebesgue–measurable functions (gn : n ∈ N) on R
+
0 , the following properties

hold:

(1) The convolution F ∗ G is a distribution function on R
+
0 .

(2) F ∗ G = G ∗ F
(3) F ∗∑∞

n=1 gn =
∑∞

n=1 F ∗ gn

(4) The Dirac measure δ0 on 0 with distribution function I0II , which is defined

by I0II (t) := 1 for all t ≥ 0 and I0II (t) := 0 otherwise, is neutral in regard to

convolutions, i.e. I0II ∗ G = G for all distribution functions G.
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(5) If the random variables X and Y are independent and distributed accord-

ing to F and G, respectively, then P(X + Y ≤ t) = F ∗ G(t) for all t ≥ 0.

(6) F ∗ (G ∗ g) = (F ∗ G) ∗ g

Let F denote any distribution function for a real–valued random variable. De-

fine the convolutional powers by F ∗1 := F and recursively F ∗n+1 := F ∗n∗F
for all n ∈ N. Because of property (4) in the above theorem, we define

F ∗0 := I0II for every distribution function F .

Now denote the distribution function of the random variable X1 (and hence

of all XnXX with n ≥ 1) and X0 by F and G, respectively. Since the random

variables (XnXX : n ∈ N) are iid, part (5) of the above theorem yields for all

n ∈ N0 the relation P(NtNN ≥ n) = P(SnSS ≤ t) = G ∗ F ∗n−1(t) and thus we

obtain P(NtNN = 0) = 1 − G(t) and

P(NtNN = n) = P(SnSS ≤ t) − P(SnSS +1 ≤ t) = G ∗ F ∗n−1(t) − G ∗ F ∗n(t)

for n ≥ 1. The expectation of NtNN is given by

E(NtNN ) =
∞∑

n=1

P(NtNN ≥ n) =
∞∑

n=1

P(SnSS ≤ t) = G ∗
∞∑

n=0

F ∗n(t) (6.1)

for all t ≥ 0 (for the first equality see Exercise 6.2). The rate of growth of a

renewal process is described by

Theorem 6.4 Let N = (NtNN : t ≥ 0) denote a renewal process with renewal

intervals having mean length m < ∞. Then

lim
t→∞

NtNN

t
=

1

m

holds with probability one.

Proof: By definition of NtNN (see picture below and figure 1), the inequalities

SNtNN ≤ t ≤ SNtNN +1 hold with probability one for all times t.

t timeS St
NN t t + 1

Dividing these by NtNN and using the strong law of large numbers, we obtain

m = lim
n→∞

SnSS

n
= lim

t→∞

SNtNN

NtNN

≤ lim
t→∞

t

NtNN

≤ lim
t→∞

(
SNtNN +1

NtNN + 1
· NtNN + 1

NtNN

)
= lim

n→∞

SnSS +1

n + 1
· lim

n→∞

n + 1

n
= m · 1
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which proves the statement.

�

Because of this theorem, the inverse 1/m of the mean length of a renewal

interval is called the rate of the renewal process. It describes the asymptotic

rate at which renewals occur.

Example 6.5 Regarding a Poisson process N = (NtNN : t ≥ 0) with intensity

λ > 0, it can be shown that

P(NtNN = n) =
(λt)n

n!
e−λt (6.2)

for all t ≥ 0 and n ∈ N0. The expectation of NtNN is given by E(NtNN ) = λ · t.
Thus a Poisson process with intensity λ has at time t a Poisson distribution

with parameter λ · t. Moreover, the intensity λ is also the rate of the Poisson

process, since a mean renewal interval has length 1/λ.

Given an observed stream of events (e.g. job requests at a server) over some

time interval of length t, we can count the number N(t) of events that have

occurred in this interval. If we want to model such event streams by a Poisson

process, then we need to find a statistical estimator for the intensity λ. Now

theorem 6.4 states that the fraction N(t)/t comes close to λ for large interval

lengths t. Thus a consistent statistical estimator for the intensity λ is given by

λ̂ = N(t)/t.

Example 6.6 There is a discrete–time analogue of the Poisson process, which

is called Bernoulli process. This is an ordinary renewal process with renewal

intervals that have a geometric distribution. Given a parameter p ∈]0, 1[, the

length of the renewal intervals is distributed as P(X1 = n) = p · (1 − p)n−1

for n ∈ N.

2. Renewal Function and Renewal Equations

The function defined by R(t) :=
∑∞

n=1 F ∗n(t) for all t ≥ 0 is called the

renewal function of the process N . The renewal function will play a central

role in renewal theory. First we need to show that it remains finite:

Theorem 6.7 If F (0) < 1, then R(t) =
∑∞

n=1 F ∗n(t) < ∞ for all t ≥ 0.

Proof: Since F (0) < 1 and F is continuous to the right, there is a number

α > 0 such that F (α) < 1. Fix any t ≥ 0 and choose k ∈ N such that

k · α > t. Then F ∗k(t) ≤ 1− (1−F (α))k =: 1− β with 0 < β < 1. Thence
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we obtain the bound F ∗mk(t) ≤ (1 − β)m for any m ∈ N. Since F (0−) = 0,

we can use F ∗n(t) ≥ F ∗h(t) for all n < h ∈ N. Putting these bounds together,

we obtain

R(t) =
∞∑

n=1

F ∗n(t) ≤ k ·
∞∑

m=0

F ∗mk(t) ≤ k ·
∞∑

m=0

(1 − β)m =
k

β
< ∞

since β > 0.

�

Theorem 6.8 An ordinary renewal process is uniquely determined by its re-

newal function.

Proof: First we take the Laplace–Stieltjes transform (LST, see appendix 3) on

both sides of the equation R(t) =
∑∞

n=1 F ∗n(t). This yields

R̃(s) =
∞∑

n=1

F̃ ∗n(s) = F̃ (s) ·
∞∑

n=0

(F̃ (s))n =
F̃ (s)

1 − F̃ (s)
(6.3)

for s > 0, or

F̃ (s) =
R̃(s)

1 + R̃(s)

and thus determines the LST F̃ (s) of F uniquely in terms of R̃(s). Now

uniqueness of the LST yields the statement.

�

For an ordinary renewal process we can derive an implicit integral equation for

the renewal function, which is known as a renewal equation. Note that for an

ordinary renewal process E(NtNN ) = R(t) for all times t (see (6.1) with G = F ).

Hence the function R is increasing. If we condition upon the length x of the

first renewal interval X0, we obtain

E(NtNN ) =

∫ ∞

0

∫∫
E(NtNN |X0 = x) dF (x)

Since E(NtNN |X0 = x) = 1 + R(t − x) for t ≥ x and E(NtNN |X0 = x) = 0 for

t < x, we can simplify this equation to

R(t) =

∫ t

0

∫∫
(1 + R(t − x)) dF (x) = F (t) +

∫ t

0

∫∫
R(t − x) dF (x)

for all t ≥ 0. A renewal equation is the generalized form

g(t) = h(t) +

∫ t

0

∫∫
g(t − x) dF (x), t ≥ 0 (6.4)
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where a function h on [0,∞[ and a distribution function F on [0,∞[ are given

and the function g on [0,∞[ is unknown. The solution is given in

Theorem 6.9 The unique solution g to equation (6.4) is given by

g(t) =

∫ t

0

∫∫

where R(t) =
∑∞

n=1 F ∗n(t) denotes the renewal function for F .

Proof: Equation (6.4) can be written as g = h+g∗F . Because of the definition

R =
∑∞

n=1 F ∗n we obtain

F ∗ (R ∗ h + h) = F ∗ h +
∞∑

n=1

F ∗n+1 ∗ h =
∞∑

n=1

F ∗n ∗ h = R ∗ h

which shows that g = R ∗ h + h is indeed a solution of (6.4).

Let g′ denote another solution and define the function

δ := g′ − R ∗ h − h

Then (6.4) implies δ = F ∗ δ and thus δ = F ∗n ∗ δ for all n ∈ N. Since

R(t) < ∞ for any fixed t ≥ 0, we infer that F ∗n → 0 as n → ∞. Hence

δ(t) = 0 for all t ≥ 0, which completes the proof.

�

3. Renewal Theorems

In order to present the most powerful results of renewal theory, it will be useful

to introduce stopping times and Wald’s lemma. Recall from (2.3) that a random

variable S with values in N0 ∪ {∞} is called a stopping time for the sequence

X = (X0 : n ∈ N0) if

P(S ≤ n|X ) = P(S ≤ n|X0, . . . , XnXX ) (6.5)

holds for all n ∈ N0.

Lemma 6.10 For a renewal process N with delay X0 and renewal intervals

(XnXX : n ∈ N), the random variable NtNN is a stopping time for the sequence

(XnXX : n ∈ N0).

Proof: This follows from the observation that NtNN = k is equivalent to

k−1∑

n=0

XnXX ≤ t <
k∑

n=0

XnXX

h(t − x) dR(x) + h(t)
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which implies that the event NtNN ≤ k depends only on X0, . . . ,Xk.

�

Lemma 6.11 Wald’s Lemma

Be X = (XnXX : n ∈ N0) a sequence of stochastically independent positive

random variables with the same expectation E(XnXX ) = m for all n ∈ N. The

expectations E(X0) and E(X1) shall be finite. Further be S a stopping time of

the sequence X with E(S) < ∞. Then

E

(
S∑

n=0

XnXX

)
= E(X0) + E(S) · m

Proof: For all n ∈ N0 define the random variables InII := 1 on the set {S ≥ n}
and InII := 0 else. Then

∑S
n=0 XnXX =

∑∞
n=0 InII XnXX and hence

E

(
S∑

n=0

XnXX

)
= E

(
∞∑

n=0

InII XnXX

)
=

∞∑

n=0

E(InII XnXX )

by monotone convergence, as InII and XnXX are non–negative. S being a stopping

time for X , we obtain by definition P(S ≥ 0) = 1, and further

P(S ≥ n|X ) = 1 − P(S ≤ n − 1|X ) = 1 − P(S ≤ n − 1|X0, . . . , XnXX −1)

for all n ∈ N. Since the XnXX are independent, InII and XnXX are independent, too,

which implies E(I0II X0) = E(X0) and

E(InII XnXX ) = E(InII ) · E(XnXX ) = P(S ≥ n) · m

for all n ∈ N. Now the relation
∑∞

n=1 P(S ≥ n) = E(S) yields

E

(
S∑

n=0

XnXX

)
=

∞∑

n=0

E(InII XnXX ) = E(X0) +
∞∑

n=1

P(S ≥ n) · m

= E(X0) + E(S) · m

�

Theorem 6.12 Elementary Renewal Theorem

Be N a renewal process with renewal intervals (XnXX : n ∈ N) and mean

renewal time E(X1) = m > 0. Assume further that the mean delay is finite,

i.e. E(X0) < ∞. Then for the counting function NtNN the limit

lim
t→∞

E(NtNN )

t
=

1

m
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holds, with the convention 1/∞ := 0.

Proof: For every t ≥ 0, the bound t <
∑NtNN

n=0 XnXX holds almost surely. By

Wald’s lemma, this implies

t < E

(
NtNN∑

n=0

XnXX

)
= E(X0) + E(NtNN ) · m

and thence for m < ∞
1

m
− E(X0)

m · t <
E(NtNN )

t

for all t ≥ 0. For E(X0) < ∞ and t → ∞, this yields the bound

lim inf
t→∞

E(NtNN )

t
≥ 1

m

which trivially holds for the case m = ∞.

Now it remains to show that lim supt→∞ E(NtNN )/t ≤ 1/m. To this aim we

consider the truncated renewal process, denoted by Ñ , with the same delay

X̃0 = X0 but renewal intervals X̃nXX = min(XnX , M) for all n ∈ N, with M
being a fixed constant. Denote further m̃ = E(X̃1).

Because of X̃nXX ≤ M the bound
∑ÑtNN

n=0 X̃nXX ≤ t + M holds almost certainly for

all t ≥ 0. Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(ÑtNN ) · m̃ = E

⎛
⎝
⎛⎛

ÑtNN∑

n=0

X̃nXX

⎞
⎠
⎞⎞

≤ t + M

For E(X0) < ∞ and t → ∞, this yields

lim sup
t→∞

E(ÑtNN )

t
≤ 1

m̃

Since X̃nXX ≤ XnXX for all n ∈ N, we know that ÑtNN ≥ NtNN for all t ≥ 0. Thus we

obtain further

lim sup
t→∞

E(NtNN )

t
≤ 1

m̃

for any constant M . Now the result follows for M → ∞.

�
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Remark 6.13 In view of theorem 6.4 one might be tempted to think that this

trivially implied the statement of the above theorem 6.12. However, the fol-

lowing example shows that a limit with probability one in general does not

imply a limit in expectation.

Let U denote a random variable which is uniformly distributed on the interval

]0, 1[. Further define the random variables (VnVV : n ∈ N) by

VnVV :=

{
0, U > 1/n

n, U ≤ 1/n

Since U > 0 with probability one, we obtain the limit

VnVV → 0, n → ∞

with probability one. On the other hand, the expectation for VnVV is given by

E(VnVV ) = n · P(U ≤ 1/n) = n · 1

n
= 1

for all n ∈ N and thus E(VnVV ) → 1 as n → ∞.

A non–negative random variable X (and also its distribution function F ) is

called lattice if there is a positive number d > 0 with
∑∞

n=0 P(X = nd) = 1.

If X is lattice, then the largest such number d is called the period of X (and

F ). The definition states that a lattice random variable X assumes only values

that are multiples of its period d.

The next result is proven in Feller [35]. The proof is lengthy and technical and

therefore not repeated.

Theorem 6.14 Blackwell’s Theorem

Be N a renewal process with renewal intervals (XnXX : n ∈ N) and mean

renewal time E(X1) = m. If X1 is not lattice, then for any s > 0 the counting

function NtNN behaves asymptotically as

lim
t→∞

(E(NtNN +s) − E(NtNN )) =
s

m

with the convention 1/∞ := 0.

Blackwell’s theorem suggests the following argument: Because of the identity

E(NtNN ) = R(t), it states that asymptotically

R(t + s) − R(t) → s · 1

m
as t → ∞
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This means that increments of the renewal function t → R(t) tend to be linear

(with coefficient 1/m) for large t. If we let s → 0, this would suggest

dR(t) → 1

m
dt as t → ∞

For functions g which behave nice enough and vanish at infinity (i.e. g(t) → 0
as t → ∞), we thus can hope to establish

lim
t→∞

∫ t

0

∫∫
g(t − x) dR(x) =

1

m

∫ ∞

0

∫∫
g(t) dt

In order to do this, we first need to define what we require as ”nice behaviour”

from g. Let g : R
+
0 → R denote a real–valued function on the time axis and

define for a > 0 and n ∈ N

MnMM (a) := sup{g(x) : (n − 1)a ≤ x ≤ na} (6.6)

mn(a) := inf{g(x) : (n − 1)a ≤ x ≤ na} (6.7)

The function g is called directly Riemann integrable if
∑∞

n=1 |MnMM (a)| and∑∞
n=1 |mn(a)| are finite for some a > 0 (and then for all 0 < a′ < a), and

lim
a→0

a
∞∑

n=1

MnMM (a) = lim
a→0

a
∞∑

n=1

mn(a) (6.8)

Remark 6.15 Direct Riemann integrability is somewhat stronger than usual

Riemann integrability. The similarity is that upper and lower sums converge to

the same limit as a → 0. The difference is that this must happen uniformly for

all intervals of the time axis.

In the rest of this book, we will deal with only two kinds of directly Riemann

integrable functions. For these we provide the following lemma, which the

reader may prove as an exercise.

Lemma 6.16 Assume that g(t) ≥ 0 for all t ≥ 0. If either

(1) g is non–increasing and Lebesgue integrable, or

(2) g is Riemann integrable and there is a function g∗ with g(t) ≤ g∗(t) for all

t ≥ 0, such that g∗ is directly Riemann integrable,

then g is directly Riemann integrable.

Now we can state the main result of renewal theory:
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Theorem 6.17 Key Renewal Theorem

Assume that m = E(X1) > 0, where X1 is not lattice, and let g denote a

directly Riemann integrable function. Then

lim
t→∞

(R ∗ g)(t) = lim
t→∞

∫ t

0

∫∫
g(t − x) dR(x) =

1

m

∫ ∞

0

∫∫
g(y) dy

holds with the convention 1/∞ = 0.

Proof: Let (xn : n ∈ N0) with x0 := 0 denote any countable partition of the

time axis R
+
0 into intervals of the form InII := [xn−1, xn[. Define the indicator

function of InII by in(t) := 1 if t ∈ InII and in(t) := 0 otherwise. Then

(R ∗ in)(t) =

∫ t

0

∫∫
in(t − u) dR(u) =

∫ t−xn−1

t

∫∫

−

∫∫

xn

dR(u)

= R(t − xn−1) − R(t − xn)

for all t > xn. Now Blackwell’s theorem 6.14 yields

lim
t→∞

(R ∗ in)(t) =
xn − xn−1

m

for every n ∈ N.

For any finite interval [t− l, t[ of length l, the interpretation that R(t) = E(NtNN )
for an ordinary renewal process N yields with Gt(x) := P(SNtNN +1 − t ≤ x)
the bound

R(t + l) − R(t) = E(NtNN +l − NtNN ) =

∫ l

0

∫∫
(R(l − x) + 1) dGt(x)

≤ R(l) + 1 =: B(l) < ∞

for every l > 0.

For a function h =
∑∞

n=1 cnin with maximal interval length M and coeffi-

cients bounded by
∑∞

n=1 cn < ∞, we obtain thus

k∑

n=1

cn · (R ∗ in)(t) ≤ (R ∗ h)(t) ≤
k∑

n=1

cn · (R ∗ in)(t) + B(M) ·
∞∑

n=k+1

cn

for every k ∈ N and t ≥ 0. Letting first t → ∞ and then k → ∞, the limit

lim
t→∞

(R ∗ h)(t) =
1

m

∞∑

n=1

cn · (xn − xn−1) =
1

m

∫ ∞

0

∫∫
h(y) dy
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is established for any such function h.

Since g is directly Riemann integrable, there is a family of functions

flff :=
∞∑

n=1

mn(l)in and hl :=
∞∑

n=1

MnMM (l)in

using the definitions (6.6) and (6.7). These functions satisfy flff ≤ g ≤ hl and

have the form of the function h above with interval length l. Then

R ∗ flff ≤ R ∗ g ≤ R ∗ hl

for all l > 0, and the result follows for l → 0 according to condition (6.8).

�

This proof shows that the key renewal theorem is a consequence of Blackwell’s

theorem. The simple case g := 1[0,s[, i.e. g(t) = 1 for 0 ≤ t < s and g(t) = 0
for t ≥ s yields

lim
t→∞

(E(NtNN +s) − E(NtNN )) = lim
t→∞

(E(NtNN − NtNN −s)) = lim
t→∞

(R ∗ g)(t) =
1

m
· s

as an application of the key renewal theorem. Hence the statements in Black-

well’s and the key renewal theorem are equivalent.

Besides its central role in renewal theory, the key renewal theorem will serve

mainly two purposes in the further presentation. First, it will give a foundation

for the proof of the main limit theorem in Markov renewal theory (see chapter

7). Second, it yields a limit theorem for regenerative processes (see section 1)

as an immediate corollary.

4. Residual Life Times and Stationary Renewal Processes

Choose any time t ≥ 0. Denote the duration from t until the next arrival by

Bt := SNtNN +1 − t and call it the residual life time (or the excess life) at t.
Further we define At := t − SNtNN and call At the age at t. The distribution of

Bt appeared already in the proof of theorem 6.17.

Theorem 6.18 Be N an ordinary renewal process with renewal intervals hav-

ing distribution function F . Then

P(Bt ≤ x) = F (t + x) −
∫ t

0

∫∫
(1 − F (t + x − y)) dR(y)

for all t ≥ 0. Further the limit

lim
t→∞

P(Bt ≤ x) =
1

m

∫ x

0

∫∫
(1 − F (y)) dy (6.9)
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holds if F is not lattice.

Proof: Fix any x ≥ 0. First abbreviate g(t) := P(Bt > x) for all t ≥ 0.

Conditioning on X0 yields

g(t) =

∫ ∞

0

∫∫
P(Bt > x|X0 = s) dF (s)

By definition the event {Bt > x} is equivalent to the event that there are no

renewals in the interval ]t, t+x]. This observation and the fact that the process

restarts at S1 = X0 yield

P(Bt > x|X0 = s) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

g(t − s), s ≤ t

0, t < s ≤ t + x

1, s > t + x

Hence we obtain the renewal equation

g(t) =

∫ t

0

∫∫
g(t − s) dF (s) + 1 − F (t + x) (6.10)

with solution

This yields the first statement. The second one is obtained by using the key

renewal theorem to equation (6.10). This is applicable by condition (1) of

lemma 6.16 and leads to

lim
t→∞

g(t) =
1

m

∫ ∞

0

∫∫
(1 − F (t + x)) dt =

1

m

∫ ∞

x

∫∫
(1 − F (y)) dy

and because of m =
∫∞
0

∫∫
(1 − F (y)) dy we obtain further

lim
t→∞

P(Bt ≤ x) = 1 − 1

m

∫ ∞

x

∫∫
(1 − F (y)) dy =

1

m

∫ x

0

∫∫
(1 − F (y)) dy

�

Remark 6.19 For m = ∞, equation (6.9) states that the residual life time

asymptotically tends to infinity with probability one.

Because of the equality {At > x} = {Bt−x > x}, an immediate application

of theorem 6.18 is

g(t) =

∫ t

0

∫∫
(1 − F (t + x − y)) dR(y) + 1 − F (t + x)
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Corollary 6.20 Be N an ordinary renewal process with renewal intervals

having distribution function F . Then

P(At ≤ x) =

{
F (t) −

∫ t−x
0

∫∫
(1 − F (t − y)) dR(y), x < t

1, x ≥ t

If F is not lattice, then the limit

lim
t→∞

P(At ≤ x) =
1

m

∫ x

0

∫∫
(1 − F (y)) dy

holds.

Remark 6.21 The above results show that the distributions of age and residual

life time asymptotically tend to be the same. For m = ∞ the same phenom-

enon as for the residual life time happens: The age asymptotically tends to

infinity with probability one.

Theorem 6.22 If F is not lattice and E(X2
1 ) < ∞, then the limit

lim
t→∞

E(Bt) =
E(X2

1 )

2m

holds.

Proof: Define the functions g(t) = E(Bt) and h(t) := E
(
Bt · 1{X0>t}

)
for

all t ≥ 0. Then the renewal equation

g(t) = h(t) +

∫ t

0

∫∫
g(t − x) dF (x)

holds. The function h is positive, not increasing, and integrable with

∫ ∞

0

∫∫
h(t) dt =

∫ ∞

t

∫∫

=0

∫∫ ∫ ∞

x

∫∫

=t
(x − t) dF (x) dt

=

∫ ∞

x

∫∫

=0

∫ x

t

∫∫

=0

∫∫
(x − t) dt dF (x) =

∫ ∞

x

∫∫

=0

x2

2
dF (x)

=
E(X2

1 )

2

Thus the key renewal theorem applies (due to condition (1) of lemma 6.16) and

yields

lim
t→∞

E(Bt) =
1

m

∫ ∞

0

∫∫
h(t) dt =

E(X2
1 )

2m
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which completes the proof.

�

For a stationary renewal process we would postulate that the distribution

of the counts in an interval [s, s + t] be independent of s and thus equal the

distribution of NtNN . If this holds for a process N , then we also say that N has

stationary increments. This implies in particular that the distribution of the

residual life time must be independent of t, i.e. it coincides with the distribution

of B0 and hence of X0. Regarding the limit given in (6.9), we first guess that

it satisfies

P(X0 ≤ x) =
1

m

∫ x

0

∫∫
(1 − F (y)) dy (6.11)

for all x ≥ 0, where F denotes the distribution function of X1 and further

m = E(X1) < ∞. Indeed we can show

Theorem 6.23 For a renewal process N defined by (6.11) the following prop-

erties hold:

(1) E(NtNN ) = t/m for all t ≥ 0
(2) P(Bt ≤ x) = m−1

∫ x
0

∫∫
(1 − F (y)) dy for all t ≥ 0

(3) N has stationary increments.

Proof: (1) The distribution G of X0 has a density g(t) = 1
m(1 − F (t)) Hence

the Laplace–Stieltjes transform (LST) of G is

G̃(s) =

∫ ∞

0

∫∫
e−st 1

m
(1 − F (t)) dt =

1

m

(∫ ∞

0

∫∫
e−st dt −

∫ ∞

0

∫∫
e−stF (t) dt

)

=
1

m

(
1

s
− 1

s

∫ ∞

0

∫∫
e−st dF (t)

)
=

1 − F̃ (s)

sm

with F̃ (s) denoting the LST of F . According to (6.1) we have the repre-

sentation E(NtNN ) = G ∗ ∑∞
n=0 F ∗n(t) for all t ≥ 0. Hence the LST of

M(t) := E(NtNN ) is given by

M̃(s) =
G̃(s)

1 − F̃ (s)
=

1

sm

for all s > 0, and thus coincides with the LST of the measure dx/m. Since the

LST uniquely determines a function on [0,∞[, this proves the first statement.
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(2) The joint distributions

P(Bt > x, NtNN = 0) = 1 − G(t + x)

P(Bt > x, NtNN = n) =

∫ ∞

0

∫∫
P(Bt > x, NtNN = n|SnSS = y) dG ∗ F ∗n−1(y)

=

∫ t

0

∫∫
(1 − F (t + x − y)) dG ∗ F ∗n−1(y)

for n ≥ 1 are immediate from the definition. Abbreviating F c(x) := 1−F (x),
Gc(x) := 1 − G(x), and denoting M(t) := E(NtNN ), we can write

P(Bt > x) =
∞∑

n=0

P(Bt > x, NtNN = n)

= Gc(t + x) +
∞∑

n=1

∫ t

0

∫∫
F c(t + x − y) dG ∗ F ∗n−1(y)

= Gc(t + x) +

∫ t

0

∫∫
F c(t + x − y) d

(
∞∑

n=1

G ∗ F ∗n−1

)
(y)

= Gc(t + x) +

∫ t

0

∫∫
F c(t + x − y) dM(y)

Using statement (1) and the definition of G, we obtain

P(Bt > x) = 1 − 1

m

∫ t+x

0

∫∫
(1 − F (y)) dy +

1

m

∫ t

0

∫∫
(1 − F (t + x − y)) dy

= 1 − 1

m

∫ x

0

∫∫
(1 − F (y)) dy

which proves the second statement.

(3) The difference NtNN +s − NsN simply counts the number N ′
tNN of events in time

t of the renewal process N ′ with the same distribution F of X1 but a delay

X ′
0 ∼ Bs. Now statement (2) shows that X0 ∼ Bs = B0. Hence we obtain

N ′
tNN = NtNN = NtNN +s − NsN in distribution, which was to be proven.

�

Because of the results above a renewal process which satisfies condition (6.11)

is called stationary renewal process. As one would expect, also the mean

residual life time E(Bt) of a stationary renewal process coincides with the

limit of the mean residual life time of an ordinary renewal process:

Lemma 6.24 For a non–negative random variable X the nth moment can be

expressed by

E(Xn) =

∫ ∞

0

∫∫
P(X > x) · nxn−1 dx
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Proof: This follows simply by writing

E(Xn) =

∫ ∞

0

∫∫
P(Xn > z) dz =

∫ ∞

0

∫∫
P(X >

√
n z) dz

and substituting x =
√
n z with nxn−1 dx = dz.

�

Theorem 6.25 For a stationary renewal process with E(X2
1 ) < ∞ the mean

residual life time is given by

E(Bt) =
E(X2

1 )

2m

independently of t ≥ 0.

Proof: Using part (2) of theorem 6.23, we obtain

E(Bt) =

∫ ∞

0

∫∫
P(Bt > y) dy =

1

m

∫ ∞

y

∫∫

=0

∫ ∞

x

∫∫

=y
(1 − F (x)) dx dy

=
1

m

∫ ∞

x

∫∫

=0

∫ x

y

∫∫

=0
(1 − F (x)) dy dx =

1

m

∫ ∞

x

∫∫

=0
P(X1 > x) · x dx

and the statement follows from lemma 6.24.

�

Example 6.26 Waiting time at a bus stop

Consider a bus stop where buses are scheduled to arrive in intervals of length

T . However, due to traffic variations the real inter–arrival times are uniformly

distributed within intervals [T −a, T +a] with some a > 0. Now suppose that

somebody arrives at the bus stop ”at random”, i.e. without knowing the bus

schedule. Then we can model the mean waiting time for the next bus by the

mean residual life time E(Bt) in a stationary renewal process with distribution

X1 ∼ U(T − a, T + a). We obtain

E(X2
1 ) =

1

2a

∫ T+a

T

∫∫

−a
x2 dx =

1

2a
· 1

3

(
6T 2a + 2a3

)
= T 2 +

a2

3

and by theorem 6.25

E(Bt) =
T 2 + a2

3

2 · T =
T

2
+

a2

6 · T
Thus the mean waiting time for random inter–arrival times (meaning a > 0) is

longer than it would be for deterministic ones (namely T/2). This phenomenon

is called the waiting time paradox.
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5. Renewal Reward Processes

Consider an ordinary renewal process where for every renewal interval XnXX
there is a real–valued random variable YnYY , called the nth reward, which may

depend on XnXX . If the pairs (XnXX , YnYY ), n ∈ N0 are iid, then the two–dimensional

stochastic chain ((XnXX , YnYY ) : n ∈ N0) is called an ordinary renewal reward

process. The random variable

Y (t) =

NtNN −1∑

n=0

YnYY

is called the total reward until time t.

Theorem 6.27 If E(|Y1YY |) and m = E(X1) are finite, then

lim
t→∞

Y (t)

t
=

E(Y1YY )

m

holds with probability one. If there is further a constant c ∈ R with Y1YY > c
almost certainly, then

lim
t→∞

E(Y (t))

t
=

E(Y1YY )

m

Proof: The first statement follows from

Y (t)

t
=

∑NtNN −1
n=0 YnYY

NtNN
· NtNN

t

as the first factor tends to E(Y1YY ) by the strong law of large numbers and the

second tends to 1/m according to theorem 6.4.

For the second statement, we can assume without loss of generality that Y1YY is

positive almost certainly, since otherwise we consider ZnZZ := YnYY +c instead. NtNN
is a stopping time for the sequence (YnYY : n ∈ N0), as {NtNN ≤ n} is independent

of (XnXX +k : k ∈ N) and thus independent of (YnYY +k : k ∈ N). Hence we can

apply Wald’s lemma, which yields

and thus
E(Y (t))

t
=

R(t)

t
· E(Y1YY ) − E (YNYY tNN )

t

E

(
NtNN −1∑

n=0

YnYY

)
= E

(
NtNN∑

n=0

YnYY

)
− E (YNYY tNN ) = R(t) · E(Y1YY ) − E (YNYY tNN )
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for all t > 0. Because of limt→∞ R(t)/t = 1/m it now remains to show that

limt→∞ E(YNYY tNN )/t = 0. To this aim we condition on X0 to obtain

g(t) := E (YNYY tNN ) =

∫ ∞

0

∫∫
E (YNYY tNN |X0 = u) dF (u)

=

∫ t

0

∫∫
E (YNYY tNN |X0 = u) dF (u) +

∫ ∞

t

∫∫
E (YNYY tNN |X0 = u) dF (u)

for all t > 0. Abbreviating the latter integral by h(t) and recognizing that

E (YNYY tNN |X0 = u) = g(t − u), we obtain the renewal equation

g(t) =

∫ t

0

∫∫
g(t − u) dF (u) + h(t)

Theorem 6.9 yields the unique solution

g(t) = h(t) +

∫ t

0

∫∫
h(t − u) dR(u)

for all t > 0. As X0 > t implies NtNN = 0, we know further that

h(t) =

∫ ∞

t

∫∫
E (Y0YY |X0 = u) dF (u) ≤ E(Y0YY ) < ∞

and h(t) → 0 as t → ∞. This means that for any given ε > 0 there is a T > 0
such that |h(t)| < ε for all t ≥ T . Using this we obtain

|g(t)|
t

≤ |h(t)|
t

+
1

t

∫ t−T

0

∫∫
|h(t − u)| dR(u) +

1

t

∫ t

t

∫∫

−

∫∫

T
|h(t − u)| dR(u)

≤ ε

t
+ ε · R(t − T )

t
+ E(Y0YY ) · R(t) − R(t − T )

t

for all t > T . For t → ∞ the right–hand side tends to ε/m by the elementary

renewal theorem, as R(t) − R(t − T ) is bounded by R(T ) + 1 (see the proof

of the key renewal theorem). This completes the proof, as ε can be chosen

arbitrarily small.

�

Example 6.28 Machine maintenance

Consider a machine that is prone to failure and may be either repaired or re-

placed by a new machine. Let XnXX denote the run time of the machine after the

n − 1st failure and assume λ := E(X1) < ∞. Since the state of the machine

after the nth repair is usually worse than after the n− 1st repair, we model this

by the assumption that (an−1XnX : n ∈ N) with a ≥ 1 forms a renewal process.

In particular, the XnXX , n ∈ N are independent random variables. The sequence
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(XnXX : n ∈ N) is called a non–increasing geometric process with parameter a.

The reward rate for the machine running is r = 1.

The duration of the nth repair is denoted by YnYY , n ∈ N, with the assumption

µ := E(Y1YY ) < ∞. As the machine becomes more and more difficult to repair,

we assume that (bn−1YnYY : n ∈ N) with b ≤ 1 forms a renewal process. The

sequence (YnYY : n ∈ N) is called a non–decreasing geometric process with

parameter b. Again this implies that the YnYY , n ∈ N are independent random

variables. Furthermore we assume that {XnXX , YnYY : n ∈ N} is an independent

set of random variables. The cost (i.e. the negative reward) rate for the repair

of the machine is denoted by c1 > 0.

Instead of repairing the machine after a failure, we can choose to replace it by

a new machine. This incurs a fixed cost c2 > c1. Given this information, we

want to determine the long–run expected reward per unit time for the machine.

This depends on the variable N ∈ N which indicates the policy that a machine

is replaced after the N th failure.

Clearly the replacement times (TnTT : n ∈ N0) with T0TT := 0 form an ordinary

renewal process and the reward of a machine (i.e. between replacement times)

is independent from the rewards and life times of other machines. Denote the

life time and the reward of the nth machine by Ln := TnTT − TnTT −1 and Rn,

respectively. Then ((Ln, Rn) : n ∈ N) is a renewal reward process and the

long–run expected reward per unit time is given by

R(N) =
E(R1)

E(L1)
=

λ
∑N

k=1 a−(k−1) − c1 · µ
∑N−1

k=1 b−(k−1) − c2

λ
∑N

k=1 a−(k−1) + µ
∑N−1

k=1 b−(k−1)

according to theorem 6.27. In order to find the optimal replacement policy,

this equation can now be used to determine the value N which maximizes the

expected reward rate R(N).

Notes

A classical presentation of renewal theory is chapter 11 in Feller [35]. The

presentation in this chapter is largely adapted to Ross [74, 75] as well as Karlin

and Taylor [46]. The concept of regenerative processes has been developed by

Feller and Smith [80, 81]. Example 6.28 is taken from Lam Yeh [51].

Exercise 6.1 Prove theorem 6.3.

Exercise 6.2 In the proof for Wald’s lemma 6.11 we have used the relation

E(S) =
∑∞

n=0 P(S > n), and in theorem 6.18 E(F ) =
∫∞
0

∫∫
(1 − F (y)) dy.

Give a proof for these equations.
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Exercise 6.3 Show for a Poisson process N with intensity λ > 0 that

P(NtNN = k) =
(λt)k

k!
e−λt

for all t ≥ 0 and k ∈ N0, and E(NtNN ) = λ · t.

Exercise 6.4 A plumber receives orders at time intervals which are distributed

exponentially with parameter λ. As soon as he has received an order he goes to

work, which takes an exponentially distributed time with parameter µ. During

work he cannot receive any orders. Assume that at time zero the plumber is

working. Give a model of the plumber receiving orders in terms of a renewal

process and determine the density of the renewal intervals’ distribution.

Exercise 6.5 An intelligence agency eavesdrops on telephone calls automati-

cally. If there occurs a suspicious sequence of words, a closer investigation is

initiated. The probabilitiy for such a sequence is one in a thousand for every

call. The length of a call is distributed exponentially with a mean of 20 sec-

onds. How long is the expected amount of time before a closer investigation

begins? Use Wald’s lemma.

Exercise 6.6 Let N = (NtNN : t ≥ 0) denote an ordinary renewal process with

X1 ∼ F . Show that the current life time XNtNN satisfies

P(XNtNN > x) ≥ 1 − F (x)

for all x ≥ 0.

Exercise 6.7 Give an example which shows why we need to assume in Black-

well’s theorem that the distribution of the renewal intervals is not lattice.

Exercise 6.8 Prove lemma 6.16.

Exercise 6.9 Show that the age At of a stationary renewal process is distrib-

uted as

P(At ≤ x) =
1

m

∫ x

0

∫∫
(1 − F (y)) dy

independently of t ≥ 0.

Exercise 6.10 Show that for an ordinary renewal process with E(X2
1 ) < ∞

and m := E(X1) the limit

lim
t→∞

E(At) =
E(X2

1 )

2m
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holds.

Exercise 6.11 Passengers arrive at a train station according to an ordinary re-

newal process with rate 1/m. As soon as there are N passengers waiting, the

train departs. The cost for the ticket per passenger is C. Assume that the rail-

way company reimburses every passenger for the waiting time by an amount of

W per time unit that the passenger had to wait. Determine the minimal value

for C such that this train connection will be profitable in the long run.

Exercise 6.12 A delayed renewal reward process is defined as a stochastic

chain ((XnXX , YnYY ) : n ∈ N0) for which ((XnXX , YnYY ) : n ∈ N) is an ordinary

renewal reward process and X0 ≥ 0. The pair (X0, Y0YY ) may have a different

distribution than (X1, Y1YY ). Prove the statement of theorem 6.27 for a delayed

renewal reward process that satisfies E(X0) < ∞ and E(|Y0YY |) < ∞.



Chapter 7

MARKOV RENEWAL THEORY

1. Regenerative Processes

Let Y = (YtYY : t ≥ 0) denote a stochastic process on a discrete state space

E with right–continuous paths. Further let T denote a random variable with

values in [0,∞] such that the condition

P(T ≤ t|Y) = P(T ≤ t|YsYY : s ≤ t) (7.1)

holds for all t ∈ R
+
0 . Such a random variable is called a (continuous) stopping

time for the process Y . As in the analogue for discrete time, the defining

condition means that the probability for the event {T ≤ t} depends only on

the evolution of the process until YtYY . In other words, the determination of a

stopping time does not require any knowledge of the future.

If there is a sequence T = (TnTT : n ∈ N0) of stopping times for Y with T0TT := 0
and TnTT +1 > TnTT for all n ∈ N0 such that T defines an ordinary renewal process,

and if further

P(YTYY nTT +t1 = j1, . . . , YTYY nTT +tk = jk|YuYY : u ≤ TnTT ) = P(YtYY
1

= j1, . . . , YtYY
k

= jk)

for all k ∈ N, t1, . . . , tk ≥ 0 and n ∈ N0 holds, then Y is called a regenerative

process. The TnTT are called regeneration times and the defining condition

above is called regeneration property. The interval [TnTT −1, TnTT [ is called the

nth regeneration cycle.

Example 7.1 M/G/k Queue

The M/G/k queue has a Poisson arrival process and k servers with general

service time distribution. Whenever the queue is empty, all servers are idle and
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only the arrival process has an effect on the future. Thus the system process

regenerates at the points TnTT of the system becoming idle for the nth time. The

durations TnTT +1 − TnTT between these points are iid. Hence the M/G/k system

process is a regenerative process.

Theorem 7.2 If T1TT is not lattice and E(T1TT ) = m < ∞ holds and if the func-

tion KjK (t) := P(T1TT > t, YtYY = j) is Riemann integrable, then

πjπ := lim
t→∞

P(YtYY = j) =
1

m

∫ ∞

0

∫∫
KjK (t) dt

for all j ∈ E.

Proof: Let F denote the distribution function of T1TT . By conditioning on the

first regeneration time T1TT , we obtain the equation

P(YtYY = j) = P(T1TT > t, YtYY = j) +

∫ t

0

∫∫
P(YtYY = j|T1TT = s) dF (s)

= P(T1TT > t, YtYY = j) +

∫ t

0

∫∫
P(YtYY −s = j) dF (s)

where the second equality is due to the regeneration property. The function

KjK (t) = P(T1TT > t, YtYY = j) is non–negative and bounded by P(T1TT > t), which

in turn is Lebesgue integrable and non–increasing. By assumption KjK (t) is

Riemann integrable. Hence lemma 6.16 yields that KjK (t) is directly Riemann

integrable. Thus the key renewal theorem 6.17 applies and yields the statement.

�

Introduce a real–valued function f : E → R on the state space of the process

Y . The value f(i) can be interpreted as a reward rate which is incurred in state

i ∈ E.

Theorem 7.3 If E(T1TT ) < ∞ and f is bounded, then

lim
t→∞

1

t

∫ t

0

∫∫
f(YsYY ) ds =

E
∫ T1TT
0

∫∫
f(YtYY ) dt

E(T1TT )

holds with probability one. If further E(T 2
1TT ) < ∞, then

lim
t→∞

E

(
1

t

∫ t

0

∫∫
f(YsYY ) ds

)
=

E
∫ T1TT
0

∫∫
f(YtYY ) dt

E(T1TT )

Proof: Define XnXX := TnTT +1 − TnTT and ZnZZ :=
∫ TnTT +1

T

∫∫
nTT f(YsYY ) ds for all n ∈ N0.

Since Y is regenerative, the chain ((XnXX , ZnZZ ) : n ∈ N0) is a renewal reward
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process, with NtNN := max{n ∈ N0 : TnTT ≤ t} and Z(t) :=
∑NtNN −1

n=0 ZnZZ defined

as usual. We can write

∫ t

0

∫∫
f(YsYY ) ds = Z(t) +

∫ t

T

∫∫

NT
t

f(YsYY ) ds (7.2)

for all t ≥ 0. Since Z(t)/t converges to the fraction on the right–hand side

of the statement (see theorem 6.27), it remains to show that t−1
∫ t
T

∫∫
NT

t

f(YsYY ) ds

tends to zero as t → ∞. We obtain

1

t

∫ t

T

∫∫

NT
t

f(YsYY ) ds =
1

NtNN

∫ t

T

∫∫

NT
t

f(YsYY ) ds · NtNN

t
≤ XNtNN

NtNN
· sup

i∈E
|f(i)| · NtNN

t

→ lim
n→∞

XnXX

n
· sup

i∈E
|f(i)| · lim

t→∞

NtNN

t

as t → ∞. According to the strong law of large numbers, we know that∑n
k=1 Xk/n → m < ∞ almost certainly and hence XnXX /n → 0 as n → ∞.

This and theorem 6.4 complete the proof for the first statement.

The same partition (7.2) and theorem 6.27 show that for the second statement

it remains to show that t−1
E

(∫ t
T

∫∫
NT

t

f(YsYY ) ds
)
→ 0 as t → ∞. However, this

follows from ∫ t

T

∫∫

NT
t

f(YsYY ) ds ≤ At · sup
i∈E

|f(i)|

and limt→∞ E(At) = E(X2
1 )/(2m) < ∞ by exercise 6.10 and the assumption

that E(T 2
1TT ) be finite.

�

Theorem 7.4 If T1TT is not lattice and E(T1TT ) as well as E

∣∣∣∣∣∣∣
∫ T1TT
0

∫∫
f(YtYY ) dt

∣∣∣∣∣∣∣ are

finite, then

E
∫ T1TT
0

∫∫
f(YtYY ) dt

E(T1TT )
=
∑

j∈E

πjπ · f(j)

with πjπ as defined in theorem 7.2. If T1TT is not lattice and E(T1TT ) < ∞, then

πjπ = lim
t→∞

1

t

∫ t

0

∫∫
1{YsYY =j} ds

holds with probability one for all j ∈ E. This means that the limiting proba-

bility πjπ of j equals the asymptotic proportion of time spent in state j for every

path.
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Proof: The Lebesgue construction of an integral yields

∫ T1TT

0

∫∫
f(YtYY ) dt =

∑

j∈E

f(j) ·
∫ T1TT

0

∫∫
1{YtYY =j} dt

and after taking expectations we obtain

E

∫ T1TT

0

∫∫
f(YtYY ) dt =

∑

j∈E

f(j) ·
∫ ∞

0

∫∫
KjK (t) dt

with KjK (t) = P(T1TT > t, YtYY = j). Now the first statement follows from

theorem 7.2. The second statement follows from the first one and theorem 7.3

for f(YtYY ) := 1{YtYY =j}.

�

2. Semi–Markov Processes

In this section we will introduce a special class of regenerative processes which

is very useful for the analysis of many queueing systems.

Let E denote a countable state space. For every n ∈ N0, let XnXX denote a

random variable on E and TnTT a random variable on R
+
0 such that T0TT := 0,

TnTT < TnTT +1 for all n ∈ N0, and supn→∞ TnTT = ∞ almost surely. Define the

process Y = (YtYY : t ∈ R
+
0 ) by

YtYY := XnXX for TnTT ≤ t < TnTT +1

for all t ≥ 0. If

P(XnXX +1 = j, TnTT +1 − TnTT ≤ u|X0, . . . , XnXX , T0TT , . . . , TnTT )

= P(XnX +1 = j, TnTT +1 − TnTT ≤ u|XnXX ) (7.3)

holds for all n ∈ N0, j ∈ E, and u ∈ R
+
0 , then Y is called a semi–Markov

process on E. The sequence (X , T ) = ((XnXX , TnTT ) : n ∈ N0) of random

variables is called the embedded Markov renewal chain. We will treat only

homogeneous semi–Markov processes, i.e. those for which

FijFF (t) := P(XnX +1 = j, TnTT +1 − TnTT ≤ t|XnX = i)

is independent of n. For all i, j ∈ E, the functions t → FijFF (t) are assumed

non–lattice.

By definition a semi–Markov process is a pure jump process. Thus the sample

paths are step functions:
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Figure 7.1. Typical path of a semi–Markov process

By construction, the semi–Markov process Y is determined by the embedded

Markov renewal chain (X , T ) and vice versa.

Remark 7.5 Let Y denote an homogeneous Markov process with discrete

state space E and parameters λi, i ∈ E, for the exponential holding times. The

embedded Markov chain X of Y shall have transition matrix P = (pij)i,j∈E .

Then Y is a semi–Markov process with

FijFF (t) = pij ·
(
1 − e−λi·t

)

for all i, j ∈ E. Thus for a Markov process the distribution of TnTT +1 − TnTT
is exponential and independent of the state entered at time TnTT +1. These are

the two features for which the semi–Markov process is a generalization of the

Markov process on a discrete state space.

Theorem 7.6 Let Y be a semi–Markov process with embedded Markov re-

newal chain (X , T ). Then X = (XnXX : n ∈ N0) is a Markov chain.

Proof: From the condition (7.3) we obtain for every n ∈ N0

P(XnXX +1 = j|X0, . . . , XnXX ) = P(XnX +1 = j, TnTT +1 − TnTT < ∞|X0, . . . , XnXX )

= P(XnX +1 = j, TnTT +1 − TnTT < ∞|XnX )

= P(XnX +1 = j|XnXX )

since all TnTT are finite by definition.

�

We denote the transition matrix of X by P = (pij)i,j∈E . Then the relation

pij := P(XnXX +1 = j|XnXX = i) = lim
t→∞

FijFF (t)
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obviously holds for all i, j ∈ E. This means in particular that the functions

FijFF (t) are distinct from distribution functions in the feature that the total mass

distributed by them may be less than one. Therefore they shall be called sub–

stochastic distribution functions.

According to its embedded Markov chain X , we call a semi–Markov process

irreducible, recurrent or transient. Clearly, an irreducible recurrent semi–

Markov process is regenerative, as one can fix any initial state i ∈ E and find

the times of visiting this state to be a renewal process.

Define Gij(t) := FijFF (t)/pij for all t ≥ 0 and i, j ∈ E if pij > 0, while

Gij(t) := 0 otherwise. The definitions of P and F yield the interpretation

Gij(t) = P(TnTT +1 − TnTT ≤ t|XnXX = i, XnXX +1 = j)

which in turn yields

Theorem 7.7 Let Y denote a semi–Markov process with state space E and

embedded Markov renewal chain (X , T ). Then

P(T1TT − T0TT ≤ u1, . . . , TnTT − TnTT −1 ≤ un|X0, . . . , XnXX )

= GX0,X1
(u1) . . . GXn−1,Xn(un)

for all n ∈ N, meaning that the increments T1TT − T0TT , . . . , TnTT − TnTT −1 are con-

ditionally independent, given the values X0, . . . , XnXX .

Remark 7.8 If the state space E is trivial, i.e. consisting of only one element,

then these increments are even iid. In this case, T = (TnTT : n ∈ N0) is

a renewal process. This property and theorem 7.6 justify the name Markov

renewal theory for the study of semi–Markov processes, as the latter generalize

Markov processes and renewal processes at the same time.

2.1 Transient distributions

For Markov chains and Markov processes we have been able to give formulae

for the transition matrices. Because of the Markov property, this in turn de-

termined all finite–dimensional marginal distributions and thus the complete

distribution of the process. In the case of a semi–Markov process, we can-

not give as much information. However, what we can derive are the transition

probabilities starting from a regeneration time. Since T0TT := 0 is a determin-

istic regeneration point, this yields together with a given initial distribution

the one–dimensional marginal distributions at any given time. These shall be

called transient distributions.

In order to determine the transient distributions of a semi–Markov process, we

will view the collection F = (FijFF )i,j∈E of sub–stochastic distribution func-



Markov Renewal Theory 141

tions as a matrix with entries being functions instead of numbers. This matrix

contains all stochastic laws for the construction of the semi–Markov process

Y . Therefore it shall be called the characterizing matrix of Y .

We define a matrix convolution of two such matrices F and G by the entries

(F ∗ G)ij(t) :=
∑

k∈E

∫ t

0

∫∫
Gkj(t − u) dFikFF (u)

for all i, j ∈ E and t ≥ 0. Based on this definition, we define the matrix

convolutional powers by F ∗0 := IEI , denoting the identity matrix on E, and by

recursion F ∗n+1 = F ∗n ∗ F . Now we can state the following formula for the

transient distributions of a semi–Markov process:

Theorem 7.9 Let Y denote a semi–Markov process with characterizing matrix

F , and π any initial distribution of Y . Then the transient distribution of Yπ at

any time t is given by P(Y π
tYY = j) =

∑
i∈E πiPijPP (t) with

PijPP (t) =
∞∑

n=0

∫ t

0

∫∫ (
1 −

∑

k∈E

FjkFF (t − u)

)
dF ∗n

ijFF (u)

Proof: This expression is obtained by conditioning on the number n of renewal

intervals that have passed until time t.
�

2.2 Asymptotic behaviour

Next we want to examine the asymptotic behaviour of the transient distribu-

tions, i.e. we want to determine the limits limt→∞ P(YtYY = j) for all j ∈ E.

This will be achieved by specifying the results which have already been ob-

tained for regenerative processes.

If we want to use theorem 7.2, then we need the information for the respective

regenerative process with embedded renewals being the visits to any fixed state

j ∈ E. Define

mij := E(T1TT · 1X1=j |X0 = i) =

∫ ∞

0

∫∫
t dFijFF (t)

mi := E(T1TT |X0 = i) =
∑

j∈E

mij =

∫ ∞

0

∫∫ (
1 −

∑

k∈E

FikFF (t)

)
dt

for all i, j ∈ E. Further define

τjτ := min{TnTT : XnX = j, n ∈ N} and µij := E(τjτ |X0 = i) (7.4)
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for all i, j ∈ E. The random variable τjτ is called first return time to state j.

Now consider any Markov renewal time TnTT . If the Markov chain X is irre-

ducible and positive recurrent with stationary distribution ν = (νiνν : i ∈ E),
then we would expect a proportion νjν of sample paths with transition into j
at time TnTT . Furthermore, mj represents the mean time spent in state j until

the next transition happens at time TnTT +1. Therefore, if there is an asymptotic

distribution πjπ = limt→∞ P(YtYY = j), we would expect it to be proportional to

νjν · mj , i.e.

πjπ =
νjν · mj∑
i∈E νiνν · mi

We will prove this by examining the above mentioned embedded regenerative

process of visits to state j.

Lemma 7.10 The relation

µij = mi +
∑

k �=�� j

pikµkj

holds for all i, j ∈ E.

Proof: Conditioning on the state X1 = k at time T1TT , we can write

µij =
∑

k∈E

E(τjτ · 1X1=k|X0 = i) =
∑

k �=�� j

(pikµkj + mik) + mij

=
∑

k∈E

mik +
∑

k �=�� j

pik · µkj = mi +
∑

k �=�� j

pikµkj

which is the statement.

�

Lemma 7.11 Let Y denote a semi–Markov process with embedded Markov

renewal chain (X , T ). Assume that X is positive recurrent and denote its

stationary distribution by ν = νP . Further assume that
∑

i∈E νiνν mi < ∞.

Then the mean recurrence time of a state j ∈ E can be expressed by

µjj = E(τjτ |X0 = j) =
1

νjν

∑

i∈E

νiνν mi

for all j ∈ E.
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Proof: We multiply both sides of lemma 7.10 by νiνν and sum up over all i ∈ E.

Then we obtain

∑

i∈E

νiνν µij =
∑

i∈E

νiνν mi +
∑

i∈E

νiνν
∑

k �=�� j

pikµkj =
∑

i∈E

νiνν mi +
∑

k �=�� j

µkj

∑

i∈E

νiνν pik

=
∑

i∈E

νiνν mi +
∑

k �=�� j

νkµkj

which implies

νjν µjj =
∑

i∈E

νiνν mi

and thus the statement.

�

Theorem 7.12 Let Y denote a semi–Markov process with embedded Markov

renewal chain (X , T ) and characterizing matrix F . Assume that X is irre-

ducible and positive recurrent and ν = νP is the stationary distribution of its

transition matrix P . Further assume that
∑

i∈E νiνν mi < ∞. Then the limits

πjπ := lim
t→∞

P(YtYY = j) =
νjν mj∑
i∈E νiνν mi

hold for all j ∈ E, independent of the initial distribution.

Proof: Since the times of successive visits to state j form a (possibly delayed)

renewal process, the process Y is regenerative. Since all functions FijFF are

assumed non–lattice, the regeneration cycles of Y are not lattice either. Thus

we can apply theorem 7.2 (in the form of exercise 7.1), which yields

lim
t→∞

P(YtYY = j) =
mj

µjj

Now lemma 7.11 leads to the statement.

�

Example 7.13 This limit theorem finally suffices for an application to Markov

processes. The two limit theorems (3.6) and (3.7) follow from the interpreta-

tion of a Markov process as a special semi–Markov process. For a Markov

process, the mean holding times in a state i are given by

mi =

∫ ∞

0

∫∫
P(T1TT > t|Y0YY = i) dt =

∫ ∞

0

∫∫
e−λi·t dt =

1

λi
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for all i ∈ E. Since λi ≥ λ̌ > 0 for all i ∈ E, we know that
∑

i∈E νiνν mi < ∞.

Hence we obtain

lim
t→∞

PijPP (t) = lim
t→∞

P(YtYY = j) =
νjν /λj∑
i∈E νiνν /λi

as given in equation (3.5).

3. Semi–regenerative Processes

Semi–Markov processes play a similar role for the analysis of a more general

class of processes that renewal processes have played for the analysis of regen-

erative processes. These more general processes are called semi–regenerative

and shall be defined as follows:

Let Z = (ZtZZ : t ∈ R
+
0 ) denote a stochastic process with countable state space

E. Then Z is called a semi–regenerative process if there is an embedded

Markov renewal chain (X , T ) such that all TnTT are stopping times for Z , all

XnXX are deterministic functions of (ZuZZ : u ≤ TnTT ), and

P(ZTZZ nTT +t1 = j1, . . . , ZTZZ nTT +tk = jk|ZuZZ : u ≤ TnTT , XnXX = i)

= P(ZtZZ
1

= j1, . . . , ZtZZ
k

= jk|X0 = i) (7.5)

holds for all n, k ∈ N, i, j1, . . . , jk ∈ E, and t1 < . . . < tk ∈ R
+
0 . This

condition postulates that for any prediction of the process (ZuZZ : u ≥ TnTT )
all information of the past (ZuZZ : u ≤ TnTT ) is contained in the state XnXX . We

abbreviate

KijKK (t) := P(T1TT > t, ZtZZ = j|X0 = i)

for all i, j ∈ E and t ∈ R
+
0 .

Theorem 7.14 The transient distributions of a semi–regenerative process Z
with embedded Markov renewal sequence (X , T ) and initial distribution π are

given by P(ZtZZ = j) =
∑

i∈E πiPijPP (t) with

PijPP (t) =

∞∑

n=0

∑

k∈E

∫ t

0

∫∫
Kkj(t − u) dF ∗n

ikFF (u)

for all t > 0 and i, j ∈ E.

Proof: This expression is obtained by conditioning upon the number n of

Markov renewal points until time t and the state k which is observed at the

last Markov renewal point before t.
�
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The following limit theorem is the main result of this chapter and will be ap-

plied to many classical queueing systems later on. We define the column vector

m = (mi : i ∈ E) with

mi := E(T1TT |X0 = i)

for all i ∈ E, and abbreviate νm :=
∑

i∈E νiνν mi.

Theorem 7.15 Let Z denote a semi–regenerative process with irreducible and

positive recurrent embedded Markov chain X . Denote the stationary distribu-

tion of X by ν and assume that νm < ∞. Then the limit

lim
t→∞

P(ZtZZ = j) =
1

νm

∑

k∈E

νk

∫ ∞

0

∫∫
K (t) dt

Proof: Since X is positive recurrent and νm < ∞, the process Z is regener-

ative with regeneration times being the transition times to some state i ∈ E.

Then theorem 7.2 and lemma 7.11 yield

lim
t→∞

P(ZtZZ = j) =
1

µii

∫ ∞

0

∫∫
P(ZtZZ = j, τiττ > t|X0 = i) dt

=
νiνν

νm
· Ei

(∫ τiττ

0

∫∫
1Zt=j dt

)

with τiττ defined as in (7.4) and Ei denoting the conditional expectation given

X0 = i. Defining the stopping time σi = min{n ∈ N : XnXX = i}, we can write

τiττ =
∑σi

n=1(TnTT − TnTT −1). The semi–regenerative property (7.5) yields

for all n ∈ N and k ∈ E. Hence we can write

lim
t→∞

P(ZtZZ = j) =
νiνν

νm
· Ei

(
σi∑

n=1

EXn−1

(∫ T1TT

0

∫∫
1Zt=j dt

))

=
νiνν

νm
· Ei

(
σi∑

n=1

∑

k∈E

1Xn−1=k · Ek

(∫ T1TT

0

∫∫
1Zt=j dt

))

=
νiνν

νm
·
∑

k∈E

Ei

(
σi∑

n=1

1Xn−1=k

)
· Ek

(∫ T1TT

0

∫∫
1Zt=j dt

)

kj

holds for all j ∈ E and is independent of the initial distribution.

Ei

(∫ TnTT

T

∫∫

nTT −1

1Zt=j dt

∣∣∣∣∣∣∣∣∣∣∣∣∣ZuZZ : u ≤ TnTT −1, XnXX −1 = k

)
= Ek

(∫ T1TT

0

∫∫
1Zt=j dt

)
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By theorems 2.24 and 2.27 we get

Ei

(
σi∑

n=1

1Xn−1=k

)
=

νk

νiνν

whence the statement follows.

�

Notes

Early papers on Markov renewal theory go back to Pyke [69, 70]. Classi-

cal textbooks on semi–Markov processes are Ross [74, 75] and Çinlar [25],CC

the latter containing further an extensive presentation on semi–regenerative

processes. The proof for theorem 7.15 is due to Asmussen [5]. For more ad-

vanced material on regenerative processes see Kalashnikov [44].

Exercise 7.1 A regenerative process is called a delayed regenerative process

if the respective sequence T = (TnTT : n ∈ N) of stopping times is a delayed

renewal process. Prove theorem 7.2 for delayed regenerative processes.

Exercise 7.2 Prove theorem 7.7.

Exercise 7.3 Consider a machine that switches states between ”on” and ”off”.

First it is switched on for an amount X1 of time, then it is off for an amount

Y1YY of time, followed by an amount X2 of time switched on, and so forth.

Assume that the sequences (XnXX : n ∈ N) and (YnYY : n ∈ N) are both iid

with distribution functions F and G for X1 and Y1YY , respectively. Give a model

for the state of the machine in terms of a semi–Markov process and show that

for F ∗G being not lattice and E(X1 + Y1YY ) < ∞ the long–run fraction πon of

time that the machine is switched on can be expressed as

πon =
E(X1)

E(X1) + E(Y1YY )

Such a process is called an alternating renewal process.

Exercise 7.4 For a positive recurrent Markov process with discrete state space

E, derive an expression for the mean recurrence time to a state i ∈ E.



Chapter 8

SEMI–MARKOVIAN QUEUES

The term semi–Markovian queues signifies the class of queues that can be

analyzed by means of an embedded semi–Markov process, i.e. by modelling

the system process of the queue as a semi–regenerative process.

1. The GI/M/1 Queue

The first queue that shall serve as an example for an application of the semi–

Markovian method is the GI/M/1 queue. This has an arrival stream which is

a renewal process, i.e. the inter–arrival times are iid with some common dis-

tribution function A. There is one single server with exponential service time

distribution. Its intensity, i.e. the parameter of the exponential distribution,

shall be denoted by µ > 0. The service displine is FCFS and the capacity of

the waiting room is unbounded.

The system process Q = (Qt : t ∈ R
+
0 ) has state space E = N0, with Qt

indicating the number of users in the system (i.e. in service or waiting) at time

t. It can be modelled by a Markov process only for the case of exponential

inter–arrival times, i.e. for A(t) = 1 − e−λt with some λ > 0, since only the

exponential distribution is memoryless (see section 4). For general distribution

functions A, we need to find another method of analysis.

One feature that clearly distinguishes this particular queueing system GI/M/1 is

the independence of the arrival process from the rest of the system, which leads

immediately to the construction of an embedded Markov renewal sequence at

times of arrivals. This is possible since at times of arrival we know that the

new inter–arrival time has just begun and because of the memoryless service

time distribution we do not need to remember anything else than the number
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of users in the system. Thus an analysis of the system as a semi–regenerative

process seems appropriate. That this is indeed successful will be shown in the

following.

Define TnTT as the time of the nth arrival and XnXX := QTnTT − 1 as the number

of users in the system immediately before the nth arrival. Clearly, the TnTT are

stopping times and XnXX is a deterministic function of QTnTT . Assume that A is

not lattice. Further we postulate A(0) = 0 and E(A) < ∞. This implies in

particular that TnTT → ∞ almost surely as n tends to infinity. The sequence

X = (XnX : n ∈ N0) is a Markov chain since at times of arrivals the future

of the system is determined only by the current number of users in the system,

due to the memoryless property of the service times. The same property of the

queue ensures the validity of equation (7.5) for the system process Q.

Thus the system process Q is semi–regenerative with embedded Markov re-

newal chain (X , T ), denoting T = (TnTT : n ∈ N0) with T0TT := 0. For the

characterizing matrix F of (X , T ) we obtain

FijFF (x) = P(TnTT +1 − TnTT ≤ x, XnXX +1 = j|XnXX = i)

=

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

∫ x
0

∫∫
e−µt (µt)i+1−j

(i+1−j)! dA(t), 1 ≤ j ≤ i + 1

1 −∑i
k=0 FikFF (x), j = 0

0, j > i + 1

for all i, j ∈ E = N0. The transition probability matrix P = (pij)i,j∈N0
of X

is given by its entries

pij =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

ai+1−j :=
∫∞
0

∫∫
e−µt (µt)i+1−j

(i+1−j)! dA(t), 1 ≤ j ≤ i + 1

bi := 1 −∑i
n=0 an, j = 0

0, j > i + 1

for all i, j ∈ N0. Here the first line describes the case that within an inter–

arrival time exactly i+1− j users are served such that immediately before the

next arrival there are j users in the system, given that i users have been in the

system immediately before the last arrival. The third line states that after one

inter–arrival period there can only be an increase by one user in the system.

The second line distributes the remaining probability mass to the only possible

case left.

Clearly, bn =
∑∞

k=n+1 ak holds for all n ∈ N0. With the abbreviations an and

bn, the matrix P is strucured as

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

b0 a0 0 0 0 . . .
b1 a1 a0 0 0 . . .
b2 a2 a1 a0 0 . . .
...

...
. . .

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ (8.1)
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Such a matrix is called upper Hessenberg matrix or skip–free to the right.

It is characterized by the feature that above the first diagonal on top of the main

diagonal the matrices contain only zeros.

The function K(t) describing the behaviour of the system process between

Mar-kov renewal points is given by KijKK (t) = P(T1TT > t, Qt = j|X0 = i)
for i, j ∈ N0. Exploiting the independence of arrival process and service we

obtain

KijKK (t) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

(1 − A(t)) · e−µt (µt)i+1−j

(i+1−j)! , 1 ≤ j ≤ i + 1

(1 − A(t)) · e−µt
∑∞

n=i+1
(µt)n

n! , j = 0

0, j > i + 1

(8.2)

for all t > 0, and i, j ∈ N0. The transient distributions of the system process

can now be determined according to theorem 7.14.

In order to employ theorem 7.15 for the calculation of the asymptotic distribu-

tion of the system process, we need to determine the stationary distribution ν
of X , and the vector m of the mean time between Markov renewal points. The

vector m is obtained in a straightforward manner as

mi = E(T1TT |X0 = i) = E(A) (8.3)

independently of i ∈ N0, since the arrival process does not depend on the

number of users in the system. Thus the vector m is constant.

The most difficult part is to determine the stationary distribution ν of the

Markov chain X . Since a0 > 0 and bn > 0 for all n ∈ N0, the transition

matrix P is clearly irreducible. Hence there is at most one stationary distribu-

tion of X . The stationary distribution ν of X can be determined by solving the

following system of equations:

ν0 =
∞∑

n=0

νnνν bn and νk =
∞∑

n=k−1

νnνν a (8.4)

With a geometric approach, i.e. assuming νnνν = (1− ξ) · ξn for all n ∈ N0 and

some 0 < ξ < 1, the equations for k ≥ 1 can be transformed to

(1 − ξ)ξk = (1 − ξ)
∞∑

n=k−1

ξnan−k+1 ⇔ ξ =
∞∑

n=0

ξnan (8.5)

n−k+1
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If some 0 < ξ < 1 satisfies this equation, then

ν0 =
∞∑

n=0

νnνν bn = (1 − ξ)
∞∑

n=0

ξn
∞∑

k=n+1

ak = (1 − ξ)
∞∑

k=1

k−1∑

n=0

akξ
n

=
∞∑

k=1

ak(1 − ξk) = 1 − a0 −
∞∑

k=1

akξ
k = 1 − a0 − (ξ − a0) = 1 − ξ

holds, too. This means that the approach

νnνν = (1 − ξ)ξn for all n ∈ N0 (8.6)

would yield a stationary distribution for X if the number 0 < ξ < 1 satisfying

ξ =
∑∞

n=0 ξnan can be determined.

To this aim, we consider the power series f(x) =
∑∞

n=0 anxn which is well–

defined on the interval [0, 1]. Clearly, f(1) = 1 and f(0) = a0 > 0. Since

an > 0 for all n ∈ N0, we obtain f ′′(x) > 0 for all x which means that the

function f is strictly convex on [0, 1]. A fix point ξ =
∑∞

n=0 ξnan geometri-

cally signifies the first coordinate of an intersection between f and the identity

function.

a

1ξ

f(x)

1

0

Figure 8.1. Fix point as intersection with diagonal

The above properties of f and the mean value theorem together imply that

such a fix point ξ does exist if and only if the condition f ′(1) > 1 is satisfied.
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Because of

f ′(1) =
∞∑

n=1

nan =

∫ ∞

0

∫∫
e−µt

∞∑

n=1

n
(µt)n

n!
dA(t)

=

∫ ∞

0

∫∫
e−µt

∞∑

n=1

(µt)n−1

(n − 1)!
(µt) dA(t) = µ ·

∫ ∞

0

∫∫
t dA(t)

this condition translates to

µ · E(A) > 1 ⇔ E(A) >
1

µ
(8.7)

which simply means that the mean inter–arrival time is strictly greater than the

mean service time.

Remark 8.1 One way to calculate the number ξ is the following: We start with

ξ0 := 0 and iterate by ξn+1 := f(ξn) for all n ∈ N0. Then ξ = limn→∞ ξn. In

order to prove this we first observe that the sequence (ξn : n ∈ N0) is strictly

increasing. This follows by induction, as ξ1 = a0 > 0 = ξ0 and

ξn+1 =
∞∑

k=0

akξ
k
n >

∞∑

k=0

akξ
k
n−1 = ξn

by induction hypothesis, since all an are strictly positive. Again by induction

we obtain ξn < 1 for all n ∈ N0, as ξ0 < 1 and

ξn =

∞∑

k=0

akξ
k
n−1 <

∞∑

k=0

ak = 1

for all n ∈ N. Hence the sequence (ξn : n ∈ N0) converges as it is increasing

and bounded. Now for the limit ξ∞ we obtain

ξ∞ = lim
n→∞

ξn = lim
n→∞

ξn+1 = lim
n→∞

∞∑

k=0

akξ
k
n =

∞∑

k=0

ak

(
lim

n→∞
ξn

)k

=
∞∑

k=0

akξ
k
∞

which means that ξ∞ is a fix point for the function f . This is strictly increasing,

as f ′(x) > 0 for all x > 0 due to the positivity of all an. Hence

f(x) < f(ξ) = ξ for all x < ξ

Since the sequence (ξn : n ∈ N0) starts with ξ0 = 0, this means that ξn < ξ
for all n ∈ N0. Hence ξ∞ = ξ, since ξ is the only fix point smaller than one.
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Now theorem 7.15 can be applied with the values for ν, m and K as determined

above. This yields for the asymptotic distribution of the GI/M/1 queue the

following results (see exercises):

πjπ := lim
t→∞

P(Qt = j) =
(1 − ξ)ξj−1

E(A)

∫ ∞

0

∫∫
(1 − A(t))e−µt(1−ξ) dt (8.8)

for all j ≥ 1 and

π0 := lim
t→∞

P(Qt = 0) = 1 − 1

E(A)

∫ ∞

0

∫∫
(1 − A(t))e−µt(1−ξ) dt (8.9)

Because of

ξ =
∞∑

n=0

anξn =

∫ ∞

0

∫∫
e−µt

∞∑

n=0

(µtξ)n

n!
dA(t) =

∫ ∞

0

∫∫
e−µt(1−ξ) dA(t)

and integration by parts

∫ ∞

0

∫∫
A(t)e−µt(1−ξ) dt =

−1

µ(1 − ξ)

[
A(t)e−µt(1−ξ)

]∞
0

− −1

µ(1 − ξ)

∫ ∞

0

∫∫
e−µt(1−ξ) dA(t)

=
ξ

µ(1 − ξ)

we obtain
∫ ∞

0

∫∫
(1 − A(t))e−µt(1−ξ) dt =

∫ ∞

0

∫∫
e−µt(1−ξ) dt −

∫ ∞

0

∫∫
A(t)e−µt(1−ξ) dt

=
1

µ(1 − ξ)
− ξ

µ(1 − ξ)
=

1

µ
(8.10)

Hence the asymptotic distributions are given by

π0 = 1 − ρ and πjπ = (1 − ξ)ξj−1ρ

for j ≥ 1, with ρ := (µ ·E(A))−1. The condition (8.7), which assures positive

recurrence of the chain X , is equivalent to the stability condition ρ < 1. This

guarantees the existence of an asymptotic distribution of the system process.

The value ρ is called the load of the queueing system.

If ρ ≥ 1, which means that the mean service time is not smaller than the mean

inter–arrrival time, we expect the queue to be unstable. For the system process

Q and already for its embedded Markov chain X we would in this case expect
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that no asymptotic resp. stationary distributions exist. This will be shown in

the remainder of this section.

To this aim we will use the concept of a subinvariant measure, which is defined

as follows: Let E denote a countable space and P an irreducible stochastic

matrix with state space E. A measure µ on E is called subinvariant for P if

µj ≥
∑

i∈E

µipij

holds for all j ∈ E. If there is an equality in the above relation, then µ is called

invariant for P .

Let X denote a Markov chain with transition matrix P . Define the so–called

taboo probabilities in n steps by

T Pn(i, j) := P(XnXX = j, Xk /∈// T ∀ 0 < k < n|X0 = i) (8.11)

for all i, j ∈ E and the taboo set T ⊂ E. If T = {α} has only one element,

we will write α instead of {α} as an index. Now we can show the following

important result for irreducible stochastic matrices:

Theorem 8.2 Let X denote an irreducible Markov chain with transition ma-

trix P and countable state space E. Choose any state α ∈ E. Then the

measure µα defined by

µα
j :=

∞∑

n=1

αPn(α, j)

is the minimal subinvariant measure for P in the sense that for any other

subinvariant measure µ with µα = 1 the relation µj ≥ µα
j holds for all j ∈ E.

Further µα is invariant for P if and only if P is recurrent. In this case, µα is

the only subinvariant measure for P with µα
α = 1.

Proof: By definition of µα, we obtain

∑

i∈E

µα
i pij = µα

αpα,j +
∑

i�=�� α

∞∑

n=1

αPn(α, i)pij

≤ αP 1(α, j) +
∞∑

n=2

αPn(α, j)

= µα
j

where the inequality comes from the bound µα
α = P(ταττ < ∞|X0 = α) ≤ 1,

with ταττ denoting the first return time to state α. Thus µα is subinvariant and

invariant if and only if P(ταττ < ∞|X0 = α) = 1, i.e. if X is recurrent.
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Let µ denote any other subinvariant measure for P with µα = 1. We will

show by induction on n that µj ≥ ∑n
k=1 αP k(α, j) holds for all n ≥ 1. First,

subinvariance of µ yields

µj ≥
∑

i∈E

µipij ≥ µαpα,j = pα,j = αP 1(α, j)

for all j ∈ E. The induction step follows from

µj ≥ µαpα,j +
∑

i�=�� α

µipij ≥ pα,j +
∑

i�=�� α

(
n∑

k=1

αP k(α, i)

)
pij

=
n+1∑

k=1

αP k(α, j)

where the first inequality is due to the subinvariance of µ and the second one

follows from the induction hypothesis. The minimality of µα follows in the

limit n → ∞.

Assume that X is recurrent which implies invariance of µα and µα
α = 1. Let

µ denote another subinvariant measure for P and assume µα = 1. If µ 
=

 µα,

then there is a state j ∈ E and a number n ∈ N such that µj > µα
j and

Pn(j, α) > 0, due to the minimality of µα and irreducibility of P . Then we

obtain

1 = µα ≥
∑

i∈E

µi · Pn(i, α) >
∑

i∈E

µα
i · Pn(i, α) = µα

α = 1

which is a contradiction. Hence there is no other subinvariant measure µ with

µα = 1.

�

Now we will apply this result to the embedded Markov chain X immediately

before arrival times of a GI/M/1 queue. Define the sets [k] := {0, . . . , k} for

all k ∈ N0. Because of the upper Hessenberg structure of the transition matrix

P , we obtain

0P
n(0, k + 1) =

n−1∑

l=1

0P
l(0, k) · [k]P

n−l(k, k + 1) (8.12)

for all k ∈ N by conditioning upon the time of the last visit to state k. The self–

similarity of P yields [k]P
l(k, k + 1) = 0P

l(0, 1). Summing the equations in
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(8.12) for all n ≥ 1 yields

∞∑

n=1

0P
n(0, k + 1) =

∞∑

n=1

n−1∑

l=1

0P
l(0, k) · [k]P

n−l(k, k + 1)

=
∞∑

l=1

0P
l(0, k)

∞∑

n=l+1

[k]P
n−l(k, k + 1)

=

(
∞∑

n=1

0P
n(0, k)

)
·
(

∞∑

n=1

0P
n(0, 1)

)

Setting α = 0, we obtain for the minimal subinvariant measure

µ0
k+1 = µ0

k · µ0
1 ⇔ µ0

k = µ0
0 · ξk

with ξ = µ0
1. Thus any invariant measure for P must have a geometric form.

Because of (8.5), the parameter of this geometric distribution is given by the

fix point ξ =
∑∞

n=1 anξn. If there is no solution 0 < ξ < 1 for this equa-

tion, then there cannot exist a finite invariant measure and hence no stationary

distribution.

2. The M/G/1 Queue

The classical counterpart of the GI/M/1 queue is the M/G/1 queue. It ad-

mits a similar method of analysis. The M/G/1 queue has a Poisson arrival

process and general iid service time distributions. One server works according

to the FCFS discipline. The waiting room is infinite such that there are no lost

users. Denote the arrival intensity, which is the parameter of the Poisson arrival

process, by λ > 0. Further denote the distribution function of the service time

by B.

In the GI/M/1 queue, the exponential service time appears to be a rather spe-

cial assumption, since telephone calls, demands on server capacity etc. are cer-

tainly not memoryless. This peculiarity translates to memoryless inter–arrival

times for the M/G/1 counterpart. However, the following theorem 8.3 shows

that this property follows from a few assumptions which can often be observed

in classical fields of application, such as the classical (voice only) telephone

network.

A pure jump process A = (At : t ∈ R
+
0 ) with state space N0 and the property

that At ≥ As for all t > s is called a counting process or an arrival process.

For an arrival process in a classical telephone network we may assume the

following properties. There is a large population of possible users which all

act independently from each others. Hence only a finite number of users can
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decide to use the system within a finite time interval. Their decision to enter

the system, i.e. to use the system capacity, is homogeneous in time.

Theorem 8.3 Let A denote an arrival process with the following properties:

(a) Only a finite number of arrivals occur within a finite time interval.

(b) The process A has indendent increments, i.e. the random variables At−As

and Av − Au are independent for all s < t ≤ u < v.

(c) The process A has stationary increments, i.e. the distribution of At − As

for any s < t depends only on the distance t − s.

(d) There are only single arrivals, i.e. limh→0(At+h−At) ≤ 1 almost certainly

for all t ≥ 0.

Then A is a homogeneous Poisson process.

Proof: Let Φ(t) denote the probability that no arrivals occur in the interval

[0, t[, i.e. define

Φ(t) := P(At − A0 = 0)

for all t ≥ 0. By definition, 0 ≤ Φ(t) ≤ 1 for all t ≥ 0. Because of assumption

(a), the function Φ does not vanish identically, i.e. Φ 
= 0

 . Assumptions (b)

and (c) imply

Φ(s + t) = Φ(s) · Φ(t) (8.13)

for all s, t > 0. If there were a time t0 > 0 with Φ(t0) = 0, then property

(8.13) would yield

0 = Φ(t0) = (Φ(t0/2))2 = (Φ(t0/4))4 = . . .

such that Φ would vanish arbitrarily near t = 0 and therefore Φ = 0 since Φ is

monotone non–increasing. Hence Φ(t) > 0 for all t ≥ 0. The only monotone

non–vanishing solution to (8.13) is given by

Φ(t) = e−λt

for some value λ ≥ 0. By assumptions (b) and (c), this means that the time

until the first arrival is distributed exponentially with parameter λ, where λ is

independent of the number of arrivals that have already occurred. By assump-

tion (d) there is only one arrival at a time. These two conditions are exactly the

defining properties of the Poisson process as given in example 6.5. The case

λ = 0 corresponds to the singular case where no arrivals occur ever.

�

Again, the system process Q = (Qt : t ∈ R
+
0 ) has state space E = N0

and Qt denotes the number of users in the system at time t. Similar to the

GI/M/1 queue we can construct an embedded Markov chain by considering

the number of users in the system immediately after service completions. At
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these time instances we know that the current service (if there is one) has just

begun and need only to remember the number of users in the system in order

to predict this number immediately after the next service completion.

Define T0TT := 0 and TnTT as the time of the nth service completion. Further

define T := (TnTT : n ∈ N0). Let XnXX := QTnTT for all n ∈ N0 and assume that

at the time origin there are no users in the system. The TnTT are stopping times

for Q and by definition XnXX is a deterministic function of QTnTT . Assume that

0 < E(B) < ∞. This implies TnTT → ∞ for n → ∞. As shown above, the

chain X = (XnXX : n ∈ N0) is a Markov chain due to the fact that at service

completion times there is either no new service (if the system is empty) or a

new service has just begun. The same property of the queue yields condition

(7.5). Hence Q is a semi–regenerative process with embedded Markov renewal

chain (X , T ).

The transition matrix P of X is given by its entries

pij =

{
ak :=

∫∞
0

∫∫
e−λt (λt)k

k! dB(t), j = i − 1 + k

0, j < i − 1

for i ≥ 1, and p0,j = aj for all j ∈ N0. The first line above describes the

fact that during one service time there need to be k = j − i + 1 arrivals in

order to observe j users in the system after the next service completion if there

were i users after the last service completion. The second line simply states

that within one service time not more than one user can leave the system. The

entries p0,j are explained by the fact that if the system is empty after a service

completion, then the next service starts only after an arrival has occurred and

hence p0,j = p1,j . The matrix P is structured as

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

a0 a1 a2 a3 . . .
a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
...

. . .
. . .

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

Such a matrix is called lower Hessenberg matrix or skip–free to the left. The

Markov renewal chain (X , T ) is characterized by FijFF (t) = pij · Gij(t), with

Gij(t) = P(TnTT +1 − TnTT ≤ t|XnX = i, XnXX +1 = j)

=

{
B(t), i > 0∫ t
0

∫∫
e−λuλB(t − u) du, i = 0
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independently of j ∈ N0. The values KijKK (t) = P(T1TT > t, Qt = j|X0 = i) are

given by

KijKK (t) =

⎧
⎪
⎧⎧
⎪⎪⎪⎨⎪⎪

⎪
⎨⎨

⎪⎪⎪⎩⎪⎪

e−λt, i = j = 0∫ t
0

∫∫
e−λuλe−λ(t−u) (λ(t−u))j−1

(j−1)! (1 − B(t − u)) du, i = 0, j > 0

(1 − B(t)) · e−λt (λt)j
(
−i

(j−i)! , 0 < i ≤ j

for all t > 0.

Since all an are strictly positive, the matrix P is clearly irreducible. Assume

that
∑∞

n=1 nan < 1 and set ε := 1 −∑∞
n=1 nan. Further define the function

f(n) := n for all n ∈ N0. Because of

∞∑

j=0

pijf(j) =

∞∑

j=i−1

aj−i+1j =

∞∑

j=i−1

aj−i+1(j − i + 1) + i − 1

=

∞∑

n=1

nan − 1 + f(i) ≤ f(i) − ε

for all i ≥ 1, the function f satisfies Foster’s criterion (see theorem 2.33) and

hence X is positive recurrent if the condition
∑∞

n=1 nan < 1 holds. Since

∞∑

n=1

nan =
∞∑

n=1

n

∫ ∞

0

∫∫
e−λt (λt)n

n!
dB(t) =

∫ ∞

0

∫∫ ∞∑

n=1

e−λt (λt)n−1

(n − 1)!
(λt) dB(t)

= λ · E(B)

the above condition is equivalent to the stability condition

ρ := λ · E(B) < 1 ⇔ E(B) <
1

λ
(8.14)

which simply states that the mean service time be strictly smaller than the mean

inter–arrival time.

In order to obtain the stationary distribution ν for X , we need to solve the

equation system

ν0 = ν0a0 + ν1a0

ν1 = ν0a1 + ν1a1 + ν2a0

ν2 = ν0a2 + ν1a2 + ν2a1 + ν3a0

. . .
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For each line k, adding the first k equations yields the recursive scheme

a0ν1 = ν0r0

a0ν2 = ν0r1 + ν1r1 (8.15)

a0ν3 = ν0r2 + ν1r2 + ν2r1

. . .

with the abbreviations rk := 1 − ∑k
n=0 an =

∑∞
n=k+1 an. Define further

r :=
∑∞

n=0 rn and note that r =
∑∞

n=1 nan = ρ < 1 and a0 = 1 − r0.

Adding all these equations yields

(1 − r0)
∞∑

n=1

νnνν = ν0r +
∞∑

n=1

νnνν (r − r0) (8.16)

which implies

∞∑

n=1

νnνν = ν0
r

1 − r
⇐⇒ 1 = ν0

r + (1 − r)

1 − r
=

ν0

1 − ρ

Hence the stationary distribution of X is given by ν0 = 1−ρ and the recursive

scheme above.

Theorem 8.4 If the stability condition (8.14) holds, then the asymptotic dis-

tribution of the M/G/1 queue is given by

πjπ := lim
t→∞

P(Qt = j) = νjν

for all j ∈ N0.

Proof: By theorem 7.15 and the fact that KijKK (t) = 0 for i > j we obtain

πjπ =
1

νm

j∑

i=0

νiνν

∫ ∞

0

∫∫
KijKK (t) dt

for all j ∈ E. For the mean renewal interval we get

νm = ν0

(
1

λ
+ E(B)

)
+

∞∑

n=1

νnνν E(B) =
1 − ρ

λ
+ E(B) =

1

λ

Thus it remains to prove that

πjπ = λ

j∑

i=0

νiνν

∫ ∞

0

∫∫
KijKK (t) dt = νjν
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holds for all j ∈ E. Abbreviate B̄(t) := 1 − B(t) for all t ≥ 0. First we

observe for j > 0
∫ ∞

0

∫∫
K0KK ,j(t) dt =

∫ ∞

0

∫∫ ∫ t

0

∫∫
e−λuλe−λ(t−u) (λ(t − u))j−1

(j − 1)!
B̄(t − u) du dt

=

∫ ∞

0

∫∫
e−λsλ ds ·

∫ ∞

0

∫∫
e−λt (λt)j−1

(j − 1)!
B̄(t) dt

=

∫ ∞

0

∫∫
K1,j(t) dt

For 1 ≤ i ≤ j it can be shown (see exercises) that
∫ ∞

0

∫∫
KijKK (t) dt =

∫ ∞

0

∫∫
e−λt (λt)j−i

(j − i)!
B̄(t) dt

=
1

λ

∫ ∞

0

∫∫ ∞∑

k=j−i+1

e−λt (λt)k

k!
dB(t) (8.17)

=
rj−i

λ

the last equality by definition of (an)n∈N0
and rj−i. Hence we obtain for j ≥ 1

πjπ = ν0rj−1 +

j∑

i=1

νiνν rj−i = νjν

according to (8.15). As π and ν are probability distributions and we have

shown that πjπ = νjν for all j ≥ 1, we can infer π0 = ν0 as well.

�

As we have done for the GI/M/1 queue, we want to show now that in case of

ρ ≥ 1 there is no stationary distribution of the embedded Markov chain X at

times of service completion. We will prove this by contradiction. Assume that

ρ ≥ 1 and ν be a stationary distribution. Then the recursion scheme and in

particular equation (8.16) holds, regardless of the value for ρ = r.

For the case r = 1 we obtain from this equation 0 = ν0ν , which implies further

νnνν = 0 for all n ≥ 1 because of P being irreducible. This is in contradiction to

the assumption that ν be a distribution. In the case r > 1, we get from equation

(8.16) that
∑∞

n=1 νnνν = r > 1, again a contradiction to the assumption that ν
be a distribution.

3. The GI/M/m Queue

The last example for semi–Markovian queues is a multi–server queue with

exponential servers. Denote all the parameters as for the GI/M/1 queue, i.e.
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the inter–arrival times are iid with distribution function A, and every server

has an exponential distribution with parameter µ > 0. Of course, instead of

one server as in section 1, we now have m servers. The service displine is

FCFS and the capacity of the waiting room is unbounded.

Regardless of the number of servers, all of them are memoryless. Hence the

times of arrivals lead to an embedded Markov renewal chain, just as in the case

m = 1. The system process Q = (Qt : t ∈ R
+
0 ) has state space E = N0, with

Qt indicating the number of users in the system (i.e. in service or waiting) at

time t. Define TnTT as the time of the nth arrival and XnXX := QTnTT − 1 as the

number of users in the system immediately before the nth arrival.

Clearly, the TnTT are stopping times and XnXX is a deterministic function of QTnTT .

Again we assume that A is not lattice, and 0 < E(A) < ∞. This implies in

particular that TnTT → ∞ almost surely as n tends to infinity. The sequence

X = (XnXX : n ∈ N0) is a Markov chain since at times of arrivals the future

of the system is determined only by the current number of users in the system,

due to the memoryless property of the service times. The same property of the

queue ensures the validity of equation (7.5) for the system process Q. Thus the

system process Q is semi–regenerative with embedded Markov renewal chain

(X , T ).

The transition probabilities pij of X are derived by the following considera-

tions. Clearly, there may be only one arrival in any interval ]TnTT , TnTT +1]. Hence

pij = 0 for j > i + 1.

Now consider the case j ≤ i + 1 ≤ m. This means that during one inter–

arrival period no user is waiting and all are served with exponential intensity

µ. Given that the inter–arrival period has length t > 0, the probability for any

user to complete service is 1− e−µt. A transition from state i to state j for the

Markov chain X means that i + 1 − j out of i + 1 users are served during one

inter–arrival period. There are
(

i+1
i+1−j

)
=
(
i+1
j

)
combinations to choose which

users complete their service and which do not. Hence for j ≤ i + 1 ≤ m we

obtain

pij =

∫ ∞

0

∫∫ (
i + 1

j

)
(1 − e−µt)i+1−j(e−µt)j dA(t) (8.18)

by conditioning on the length t of the inter–arrival period. Note that the inte-

grand is the binomial distribution with i+1 degrees of freedom and parameter

e−µt evaluated at 0 ≤ j ≤ i + 1.

The third case is m ≤ j ≤ i + 1. Here, all m servers are busy during the

complete inter–arrival period. Then the number of users served in time t is dis-

tributed like a Poisson process (see example 6.5) with intensity m ·µ evaluated
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at time t. Conditioning on the length of the inter–arrival period, we obtain

pij =

∫ ∞

0

∫∫
(mµ · t)i+1−j

(i + 1 − j)!
e−mµ·t dA(t) (8.19)

for m ≤ j ≤ i+1. Note that this expression coincides with formula (8.18) for

m = j = i + 1. Furthermore it depends only on the difference i + 1 − j, but

not on the values of i, j themselves.

The last case to consider is j < m < i+1. In this situation there are i+1−m
users waiting in the queue at the beginning of the inter–arrival period, while

m − j servers are idle at the end of it. This is a mixture between the second

and the third case. First the regime of the latter governs, until there are no

waiting users any more (i.e. the queue has emptied). Then the former case

applies. Thus we condition first on the length t of the inter–arrival period and

then on the time u < t to empty the queue. The time to empty the queue has

an Erlang distribution Emµ
iE +1−m with i + 1 − m stages and intensity mµ. After

that the number of served users has a binomial distribution Bp
m with m degrees

of freedom and parameter p := e−µ(t−u). This leads to an expression

pij =

∫ ∞

0

∫∫ ∫ t

0

∫∫
Bp

m(m − j) dEmµ
iE +1−m(u) dA(t)

=

∫ ∞

0

∫∫ (
m

j

)
e−jµt

∫ t

0

∫∫
(mµu)i−m

(i − m)!
(e−µu − e−µt)m−jmµ du dA(t)

(8.20)

which the reader may verify as an exercise.

Collecting these results, we can sketch the structure of the transition matrix as

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

p00 p01

p10 p11 p12
...

. . .

pm−2,0 . . . pm−2,m−1

pm−1,0 . . . pm−1,m−1 β0

pm,0 . . . pm,m−1 β1 β0
...

...
...

. . .

pm+n,0 . . . pm+n,m−1 βnββ +1 βnββ . . . β0
...

...
...

...
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

abbreviating βk := pi,i+1−k in case (8.19). The non–specified entries in P
correspond to the case j > i + 1 and hence are zero. The matrix P has an

upper Hessenberg form like the respective transition matrix for the GI/M/1
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queue. The most important part of it is the lower right–hand part containing

the entries βnββ . The other parts are boundary conditions.

In order to determine the stationary distribution of X , we first consider the

partition E = F ∪ F c with F = {0, . . . ,m − 2}. We then obtain for the

transition matrix P ′ of the Markov chain restricted to F c the form

P ′ =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

r0 β0

r1 β1 β0

r2 β2 β1 β0
...

...
. . .

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

with rn = 1 −∑n
k=0 βk. This has the same form as the transition matrix (8.1)

for the GI/M/1 queue. Define

ρ =
1

mµ · E(A)

The arguments in section 1 all apply to the matrix P ′ with ρ defined as above.

In the case ρ < 1 we obtain a stationary distribution ν ′ = ν ′P ′ given by

ν ′
nνν = (1 − ξ)ξn (8.21)

with ξ =
∑∞

n=0 ξnβnββ . For the case ρ ≥ 1 it follows that P ′ (and hence P ) is

not positive recurrent. In the following we assume ρ < 1.

By theorem 2.30 there is a unique extension of ν′ to a stationary measure for

P , denoted by ν ′′ = ν ′′P . For this we have ν ′′
nνν = ν ′

nν −m+1 for all n ≥ m − 1
and

ν ′′
nν +1 =

∞∑

k=0

ν ′′
kpk,n+1 =

∞∑

k=n

ν ′′
kpk,n+1

for all n = 0, . . . ,m − 2, which leads to

ν ′′
nν =

1

pn,n+1

(
ν ′′

nν +1 · (1 − pn+1,n+1) −
∞∑

k=n+2

ν ′′
kpk,n+1

)
(8.22)

Thus ν ′′
mν −2 and iteratively ν ′′

mν −3, . . . , ν
′′
0νν can be determined by formula (8.22).

The stationary distribution ν = νP for X is then given as ν = c · ν′′ for a

constant c > 0. This is determined by

c−1 =
∞∑

n=0

ν ′′
nνν =

m−2∑

n=0

ν ′′
nν + 1 (8.23)

Altogether, formulae (8.21), (8.22), and (8.23) yield the stationary distribution

ν = νP for X .
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The asymptotic distribution π of the queueing process Q can now be obtained

by theorem 7.15. For n ≥ m we obtain

πn =
c

E(A)

∞∑

k=n−1

(1 − ξ)ξk−(m−1)

∫ ∞

0

∫∫
(1 − A(t))e−mµt (mµt)k+1−n

(k + 1 − n)!
dt

=
c · (1 − ξ)

E(A)

∫ ∞

0

∫∫
(1 − A(t))e−mµtξn−m

∞∑

k=n−1

(mµt · ξ)k+1−n

(k + 1 − n)!
dt

=
c · (1 − ξ)

E(A)
ξn−m

∫ ∞

0

∫∫
(1 − A(t))e−mµt·(1−ξ) dt

Due to (8.10) the integral above equals (mµ)−1 and thus we get to

πn = ρ · c · (1 − ξ)ξn−m (8.24)

for n ≥ m. The asymptotic probability that all servers are busy is given by

∞∑

n=m

πn = ρ · c

Hence the conditional asymptotic probability that there are k users in the queue

(i.e. k + m users in the system) given that all servers are busy equals

πm+k∑∞
n=m πn

= (1 − ξ)ξk

which means that the conditional asymptotic queue length distribution given

that all servers are busy is geometric.

Concerning the asymptotic probabilities πn with n = 1, . . . ,m−1, we employ

the rate conservation law, for which we first give an intuitive explanation.

The arrival process of the GI/M/m queue is a renewal process with renewal

intervals distributed by A. Blackwell’s theorem 6.14 states that asymptotically

an arrival occurs with constant rate (E(A))−1. Given that an arrival occurs,

there is an asymptotic probability νnνν −1 of observing n users in the system. On

the other hand, out of state n ≤ m − 1 (which has asymptotic probability πn)

the exponential servers provide a constant rate n · µ to switch to state n − 1.

Now the rate conservation law states that asymptotically

νnνν −1 ·
1

E(A)
= πn · nµ

which means that the probability flow from state n − 1 to state n equals the

flow from n to n − 1. This yields

πn =
νnνν −1

nµ · E(A)
(8.25)
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for n = 1, . . . ,m − 1. Finally we obtain π0 by normalization, i.e.

π0 = 1 −
∞∑

n=1

πn = 1 − ρ · c − mρ
m−1∑

n=1

νnνν −1

n

This and formulae (8.25) and (8.24) collect all asymptotic probabilities.

Notes

The idea to analyze the M/G/1 queue via its embedded Markov chain has been

presented in Kendall [49]. Earlier text book presentations for the M/G/1 and

the GI/M/1 queue can be found in Cohen [28] or Çinlar [25]. The former con-

tains further many special queues which are analyzed via embedded Markov

chains as well. The GI/M/m queue has been examined in Kleinrock [50] and

Asmussen [5]. The latter contains further an exact presentation of the rate

conservation law.

For more examples of semi–Markovian queues see Cohen [28]. An application

of the semi–Markov method to tandem queues is given in Breuer et al. [23].

Exercise 8.1 Assume exponential service times and a Poisson arrival process

for the M/G/1 and GI/M/1 queue, respectively, and show that the results for

the asymptotic distribution coincide with the results obtained for the M/M/1

queue.

Exercise 8.2 Verify equalities (8.8) and (8.9).

Exercise 8.3 Compute mean and variance of the asymptotic number of users

in the system for the GI/M/1 queue. These may be expressed in terms of ξ.

Derive further the mean sojourn time in the system.

Exercise 8.4 Verify equality (8.17).

Exercise 8.5 For an M/G/1 queue, show that the z–transform of the number

of users which arrive during a service is given by

H(z) =

∞∑

n=0

anzn = B∗(λ − λz)

for all |z| < 1, where B∗ denotes the LST of the service time distribution.

Show that the mean and the variance of this number are ρ and λ2µ2(B), re-

spectively, where µ2(B) denotes the second moment of the service time distri-

bution.
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Exercise 8.6 Consider an M/G/1 queue with batch arrivals. Instead of sin-

gle arrivals as in the ordinary M/G/1 queue, at every arrival instant the arrival

consists of a batch of n ∈ N independent users with probability gn. Arrival

instants are distributed as a Poisson process with intensity λ > 0.

a) Define the z–transform G(z) :=
∑∞

n=1 gnzn of the batch size distribution.

Show that the z–transform of the number of users which arrive in an interval

of length t is N∗(t, z) = e−λt(1−G(z)).

b) Let B∗(s) denote the LST of the service time distribution. Show that the

z–transform of the number of users which arrive during a service is given by

B∗(λ − λG(z)).

Exercise 8.7 Let Qd
n denote the number of users in the system after the nth

departure and KnKK the number of arrivals between the nth and the n + 1st

departure. Justify the relation

Dn+1 = (Dn − 1)+ + KnKK

where a+ = max(0, a). As n tends to infinity, we obtain for D := limn→∞ Dn

and K := limn→∞ KnKK the equality

D = D − 1D>0 + K

in distribution. Take the expectation of D2 in order to derive

E(D) = ρ +
ρ2µ2(B)

2(1 − ρ)µ2
1(B)

(8.26)

where µ2
1(B) and µ2(B) denote the squared first and the second moment of the

service time distribution. Use the results from exercise 8.5. Why is this also

the mean asymptotic number of users in the system? Equation (8.26) is known

as the Pollaczek–Khinchin mean value formula.

Exercise 8.8 Show that the asymptotic mean number of users in an M/G/1

queue is minimal for deterministic service time distributions.

Exercise 8.9 Derive expression (8.20).



Chapter 9

PHASE–TYPE DISTRIBUTIONS

The memoryless property of the exponential distribution has been substantial

for arriving at embedded Markov chains in chapter 8 when analyzing GI/M/1

and M/G/1 queues. The stationary distributions of these chains served as a

foothold for a semi–regenerative analysis.

Our goal pursued in the next two chapters is to find generalizations beyond the

exponential distribution and/or the Poisson process that are more versatile in

their modelling capacity, but still allowing analyses of the respective queues

by means of embedded Markov chains.

1. Motivation

In the present chapter, an extremely versatile class of distributions, the so–

called phase–type or PH distributions, will be introduced. It is possible to

approximate any distribution on the non–negative real numbers by a PH dis-

tribution, and the resulting queueing models can be analyzed almost as if we

have dealt with the exponential distribution.

As a motivation, we begin with a practical example. Consider the M/M/c/c+K

queue, which is defined as follows. Arrivals are modelled by a Poisson process

with rate λ > 0. Service times are exponentially distributed with rate µ > 0.

There are c servers, and the capacity of the waiting room is K. That means that

in total there is room for c+K users in the system including the servers. If upon

an arrival the system is filled, i.e. with c + K users already in it, this arriving

user is not admitted into the system. In this case we say that the arriving user
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is lost. Queueing systems with the possibility of such an event are thus called

loss systems.

The queue described above is a simple Markov process with generator

Q =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ λ
µ −λ − µ λ

2µ −λ − 2µ λ
. . .

. . .
. . .

cµ −λ − cµ λ
. . .

. . .
. . .

cµ −λ − cµ λ
cµ −cµ

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

up to the first loss (all non–specified entries equal zero).

From a system administrator’s point of view, the loss of a user is regarded as

a bad event, and thus the question arises naturally how the distribution of the

time up to the first loss might be expressed. However, the above description

of the queueing process simply ignores loss events, as can be seen from the

missing λ entries in the last line of the generator.

In order to include a possible loss event into our model of the queue, we add a

new element to the state space and enlarge the generator as follows:

Q′ =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ λ
µ −λ − µ λ

. . .
. . .

. . .

cµ −λ − cµ λ
. . .

. . .
. . .

cµ −λ − cµ λ
cµ −λ − cµ λ

0 . . . . . . 0

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

again with all non–specified entries being zero. The first m = c+K +1 states

describe the number of users in the system, just as in the former generator Q.

But now there is the possibility to enter another state m + 1 with rate λ from

state m, obviously meaning exactly that a loss has occured. Since we want to

observe the system only until the first loss, we choose the loss state m + 1 as

an absorbing one. Thus all entries in the last line are zero.

Now the system administrator’s question can be formulated mathematically as

the distribution of the time until the Markov process with generator Q′ enters

the absorbing state m + 1. Exactly this problem is addressed (in a general

form) by the concept of a phase–type distribution.
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2. Definition and Examples

Definition 9.1 Let X = (XtXX : t ≥ 0) denote an homogeneous Markov process

with finite state space {1, . . . ,m + 1} and generator

Q =

(
T η
0 0

)

where T is a square matrix of dimension m, η a column vector and 0 the zero

row vector of the same dimension. The initial distribution of X shall be the

row vector α̃ = (α, αm+1), with α being a row vector of dimension m. The

first states {1, . . . ,m} shall be transient, while the state m + 1 is absorbing.

Let Z := inf{t ≥ 0 : XtXX = m + 1} be the random variable of the time until

absorption in state m + 1.

The distribution of Z is called phase–type distribution (or shortly PH distri-

bution) with parameters (α, T ). We write Z ∼ PH(α, T ). The dimension m
of T is called the order of the distribution PH(α, T ). The states {1, . . . ,m}
are also called phases, which gives rise to the name phase–type distribution.

Let 1 denote the column vector of dimension m with all entries equal to one.

The first observations to be derived from the above definition are

η = −T1 and αm+1 = 1 − α1

These follow immediately from the properties that the row sums of a generator

are zero and the sum of a probability vector is one. The vector η is called

the exit vector of the PH distribution. Now the distribution function and the

density of a PH distribution are derived in

Theorem 9.2 Let Z ∼ PH(α, T ). Then the distribution function of Z is given

by

F (t) := P(Z ≤ t) = 1 − αeT ·t1 (9.1)

for all t ≥ 0, and the density function is

f(t) = αeT ·tη (9.2)

for all t > 0. Here, the function eT ·t := exp(T · t) :=
∑∞

n=0
tn

n!T
n denotes a

matrix exponential function.

Proof: For the Markov process X with generator Q as given in definition 9.1

the equation

P (t) = exp(Q · t) =

(
eT ·t 1 − eT ·t1
0 1

)
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holds for the transition matrix P (t) at every time t ≥ 0. This implies

F (t) = α̃eQ·tem+1 = αm+1 + α · (1 − eT ·t1) = αm+1 + α1 − αeT ·t1

= 1 − αeT ·t1

with em+1 denoting the m+1st canonical base vector. For the density function

we obtain

f(t) = F ′(t) = −α
d

dt
eT ·t1 = −αTeT ·t1 = αeT ·t(−T1) = αeT ·tη

which was to be proven.

�

A first consequence is F (0) = αm+1, which is also clear from definition 9.1.

An important question to be examined is when a phase–type distribution is

non–defective, i.e. what the conditions for F (∞) = limt→∞ F (t) = 1 are.

This is answered in

Theorem 9.3 Let F denote a PH(α, T ) distribution function. F is non–

defective, i.e. F (∞) = 1 for all α, if and only if T is invertible. In this case,

(−T−1)ij is the expected total time spent in state j given that the process X
started in state i.

Proof: Let EijEE denote the expected total time spent in state j given that the

process X started in i. Define E = (EijEE )i,j≤m as the respective matrix of

expectations.

First we assume that F (∞) = 1 for all α, i.e. that F is non–defective. This

means that with probability one there is an absorption from any initial state i.
This implies for E to be finite, i.e.

EijEE < ∞ for all i, j ∈ {1, . . . ,m}

Conditioning on the first state visited after i yields the relations

EijEE =
∑

k �=�� i

TikTT

−TiiTT
Ekj for all i 
=

 j

EiiEE =
1

−TiiTT
+
∑

k �=�� i

TikTT

−TiiTT
Eki

In matrix notation, this is expressed as TE = −I , with I denoting the identity

matrix. Hence we obtain E = −T−1, which was to be proven.
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Now we assume that T is invertible. Define the vector Φ(x) = exp(Tx)1 for

all x ≥ 0. The numbers Φi(x) are the probabilities that the process X is in one

of the states {1, . . . ,m} after time x given that the initial state was i. Hence

Φi(x) ∈ [0, 1] for all i ∈ {1, . . . ,m}

Further the equation

eT ·t = I +

∫ t

0

∫∫
TeT ·x dx

holds as can be seen by differentiating both sides and acknowledging eT ·0 = I .

Multiplying by T−1 from the left side and by 1 from the right side yields

T−1Φ(t) = T−1eT ·t1 = T−11 +

∫ t

0

∫∫
eT ·x dx1

As all entries of Φ(t) are finite, we obtain for t tending to infinity

lim
t→∞

∫ t

0

∫∫
eT ·x dx < ∞

in an entry–wise meaning. But the values (eT ·x)ij are simply the probability

that the process X is in state j at time x given that it started in state i. Hence

we obtain

EijEE =

∫ ∞

0

∫∫
(eT ·x)ij dx < ∞ for all i, j ∈ {1, . . . ,m}

which means that all states j ∈ {1, . . . ,m} are transient. Thus an absorption

in state m + 1 is certain regardless of the initial distribution, which was to be

proven.

�

From now on T shall be assumed to be invertible. In order to show the versatil-

ity of the phase–type concept, we shall give a few examples below. Important

characteristics for distributions are their moments. Given a distribution func-

tion F , its nth moment (if existing) is given by

MnMM (F ) :=

∫ ∞

0

∫∫
tndF (t)

Clearly, the first moment is the mean of the distribution. The nth moment of

the exponential distribution with parameter λ is given by MnMM = n!/(λn) (see

exercises). Another important characteristic is the so–called squared coeffi-

cient of variation, defined by

CVCC (F ) := Var(F )/E(F )2
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with Var(F ) denoting the variance of F . For any exponential distribution this

equals one. The values of the squared coefficient of variation will explain the

names for the hypo- and hyper–exponential distributions introduced below.

Example 9.4 Erlang distribution

A well–known distribution within the family of Gamma distributions is the

so–called Erlang distribution. An Erlang distribution Eλ
nE with n degrees of

freedom (or stages) and parameter λ is the distribution of the sum of n expo-

nential random variables with parameter λ. It has the density function

f(t) =
λn

(n − 1)!
tn−1e−λt

for all t ≥ 0. Its interpretation as a succession of n exponential distributions

with rate λ each can be illustrated graphically as in

����
���
����������
����
������λ

��
���
����������
����
�����λ

. . . ��λ

��
���
����������
����
������

Figure 9.1. Erlang distribution

Here we see that an Erlang distribution can be represented as the holding time

in the transient state set {1, . . . , n} of a Markov chain with absorbing state

n + 1 where the only possible transitions occur from a state k to the next state

k + 1 (for k = 1, . . . , n), with rate λ each. In terms of our definition 9.1, we

have a PH representation

α = (1, 0, . . . , 0), T =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ λ
. . .

. . .

−λ λ
−λ

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ and η =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0
λ

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

with all non–specified entries in T being zero.

The mean of an Erlang distribution with n degrees of freedom and parameter

λ is n/λ, while its squared coefficient of variation is 1/n, i.e. less than one if

n > 1 (see exercises). This explains the name hypo–exponential distribution

appearing in the next example.

Example 9.5 Generalized Erlang distribution

A slight generalization of the Erlang distribution is obtained if one admits the

exponential stages to have different parameters. Then we talk about a general-

ized Erlang (or a hypo–exponential) distribution. The representation as a PH

distribution results in the figure
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Figure 9.2. Generalized Erlang distribution

and leads to a PH representation

α = (1, 0, . . . , 0), T =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ1 λ1

. . .
. . .

−λn−1 λn−1

−λn

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ and η =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0
λn

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

with all non–specified entries in T being zero. For this family of distributions,

a closed formula for the density function is already rather complex.

Example 9.6 Hyper–exponential distribution

A hyper–exponential distribution is a finite mixture of n ∈ N exponential

distributions with different parameters λk (k = 1, . . . , n). Its density function

is given as

f(t) =
n∑

k=1

qkλke
−λkt

with proportions qk > 0 satisfying
∑n

k=1 qk = 1. A graphical representation

of this distribution is

�
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�
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Figure 9.3. Hyper–exponential distribution

This leads to a PH representation by

α = (π1, . . . , πn), T =

⎛
⎜
⎛⎛

⎝⎜⎜
−λ1

. . .

−λn

⎞
⎟
⎞⎞

⎠⎟⎟ and η =

⎛
⎜
⎛⎛

⎝⎜⎜
λ1
...

λn

⎞
⎟
⎞⎞

⎠⎟⎟

������
���

��������������������
����
������λ1
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���

��������������
����
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with all non–specified entries in T being zero.

The mean of a hyper–exponential distribution is
∑n

i=1 πi/λi, while its squared

coefficient of variation is always larger than one if n > 1. This explains the

name hyper–exponential distribution.

Example 9.7 Cox distribution

A more complex example of the classical families of distributions are the Cox

distributions. These are generalized Erlang distributions with preemptive exit

options. A Coxian random variable measures the holding time within the box

depicted as

����
���
����������
���
�����

��
�� ��q1

���
�

��

��
��
1

��
− q1

��
���
����������
���
�����

��
�� ��q2

���
�

��

��
��
1

��
− q2

. . . ��
��
������
��
����������

��
�� ��qn−1

���
�

��

��
��
1

��
− qn−1

��
���
����������
���
�������

Figure 9.4. Cox distribution

A Cox distribution can be described as a special PH distribution with parame-

ters α = (1, 0, . . . , 0) and

T =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

−λ1 q1λ1

. . .
. . .

−λn−1 qn−1λn−1

−λn

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ , η =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

(1 − q1)λ1
...

(1 − qn−1)λn−1

λn

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

for which all non–specified entries in T are zero.

As we have seen in example 9.6, the set of transient states in a PH distribution

may fall apart into several communication classes. The definition of a phase–

type distribution leaves open the possibility of a transient communication class

which cannot be entered because the respective initial probabilities contained

in the row vector α are zero. Such states are called superfluous, since the

Markov process X defining the PH distribution will never be in such a state. As

we will obtain the same distribution of the time until absorption if we leave out

superfluous states, we shall from now on (unless stated otherwise) assume that

there are no superfluous states in the definition of a phase–type distribution.

3. Moments

A good means to determine the moments of a distribution is the Laplace–

Stieltjes transform (or shortly LST, see appendix). This is derived in
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Theorem 9.8 The LST of a phase–type distribution F = PH(α, T ) is given

by

Φ(s) :=

∫ ∞

0

∫∫
e−st dF (t) = αm+1 + α(s · I − T )−1η

for all s ∈ C with Re(s) ≥ 0.

Proof: For s = 0 the statement is obvious. Be s 
= 0

 and Re(s) ≥ 0. Integra-

tion by parts yields

∫ ∞

0

∫∫
e−steT ·t dt =

−1

s

([
e−steT ·t

]∞
0

−
∫ ∞

0

∫∫
e−steT ·tT dt

)

As T is assumed to be invertible, we know from the proof of theorem 9.3 that∫∞
0

∫∫
eT ·t dt < ∞ entry–wise, and hence limt→∞ eT ·t = 0, also entry–wise.

This yields
∫ ∞

0

∫∫
e−steT ·t dt =

1

s
· I +

1

s
·
∫ ∞

0

∫∫
e−steT ·t dtT

which implies ∫ ∞

0

∫∫
e−steT ·t dt (s · I − T ) = I

and hence
∫ ∞

0

∫∫
e−steT ·t dt = (s · I − T )−1 for all s 
= 0

 with Re(s) ≥ 0.

This leads to

Φ(s) =

∫ ∞

0

∫∫
e−st dF (t) = αm+1 +

∫ ∞

0

∫∫
e−stαeT ·tη dt

= αm+1 + α

∫ ∞

0

∫∫
e−steT ·t dt η = αm+1 + α(s · I − T )−1η

which is the statement.

�

Corollary 9.9 Let Z ∼ PH(α, T ). The moments of Z are given by

E(Zn) = (−1)n · n! · αT−n1

for all n ∈ N.

Proof: Because of

dn

dsn
(s · I − T )−1 = (−1)n · n! · (s · I − T )−(n+1)
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we obtain

E(Zn) = (−1)n · dn

dsn
Φ(s)|s=0

= n! · α(s · I − T )−(n+1)|s=0η = n! · α(−T )−n(−T )−1(−T )1

= n! · α(−T )−n1

�

In the next chapter it will be shown in corollary 10.12 that another expression

for the mean is given by E(Z) = (πη)−1 with π(T + ηα) = 0.

4. Closure Properties

A useful advantage of phase–type distributions is the fact that certain compo-

sitions of PH distributions result in PH distributions again. This means that

the class of PH distributions is closed under these compositions. For PH dis-

tributed random variables Z1 and Z2ZZ we will show closure properties for the

compositions Z1+Z2ZZ (convolution), pZ1+(1−p)Z2ZZ with p ∈ [0, 1] (mixture),

and min(Z1, Z2ZZ ).

Theorem 9.10 Let ZiZZ ∼ PH(α(i), T (i)) of order mi for i = 1, 2. Then Z =
Z1 + Z2ZZ ∼ PH(α, T ) of order m = m1 + m2 with representation

αk =

{
α

(1)
k , 1 ≤ k ≤ m

α
(1)
m1+1 · α

(2)
k−m1

, m1 + 1 ≤ k ≤ m

and

T =

(
T (1) η(1)α(2)

0 T (2)

)

where η(1) = −T (1)1m1
and 0 denotes a zero matrix of appropriate dimension.

Proof: By definition, ZiZZ is the random variable of the time until absorption in

a Markov process XiXX with transient states {1, . . . ,mi} and an absorbing state

which shall be denoted by ei in this proof. The transition rates of XiXX within

the set of transient states are given by the matrix T (i) and the absorption rates

from the transient states to the absorbing state are given by the vector η(i).

Then the random variable Z = Z1 +Z2ZZ is the total time duration of first enter-

ing e1 and then e2 in the Markov process which is structured as follows:
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Figure 9.5. Convolution of two PH distributions

Here the point e1 is not a state of the Markov process described above but only

an auxiliary construction aid for a better illustration. In particular there is no

holding time in e1. The only absorbing state in the Markov process constructed

above is e2.

With probability α
(1)
m1+1 we enter the first absorbing state e1 immediately, while

the vector α(1) contains the probabilities that we first enter the set of transient

states of X1. In the latter case, the matrix T (1) and then the vector η(1) deter-

mine the time until the first absorption in e1.

After having reached e1, the chain immediately (i.e. with no holding time in

e1) proceeds to the second stage, which is completely analogous to the first.

With probability α
(2)
m2+1 we enter the second absorbing state e2 immediately,

while the vector α(2) contains the probabilities that we first enter the set of

transient states of X2. In the latter case, the matrix T (2) and then the vector

η(2) determine the time until the first absorption in e2.

Thus we get to the second absorbing state e2 immediately with probability

α
(1)
m1+1 ·α

(2)
m2+1. There are transient states {1, . . . ,m1, m1 +1, . . . ,m1 +m2}.

The first m1 of these are reached with probabilities α1, . . . , αm1
, while the last

m2 of these states can only be reached via an immediate first absorption in e1

and thus with probabilities α
(1)
m1+1 · α

(2)
i for i = 1, . . . ,m2. This explains the

expression for α.

In order to explain the structure of T , we observe first that there is no path from

the second set of transient states to the first, whence the lower left entry of T
is zero. The diagonal entries of T describe the transition rates within the two

sets of transient states, respectively, and thus are given by T (1) and T (2). The

only way to get from the first to the second set of transient states is the path

via e1 for which we first need the rates given in η(1) and then the probabilities
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contained in α(2). Hence the upper right entry of T .

�

Theorem 9.11 Let ZiZZ ∼ PH(α(i), T (i)) of order mi for i = 1, 2, as well as

p ∈ [0, 1]. Then Z = pZ1 + (1 − p)Z2ZZ ∼ PH(α, T ) of order m = m1 + m2

with representation

α = (p · α(1), (1 − p) · α(2)) and T =

(
T (1) 0

0 T (2)

)

where 0 denote zero matrices of appropriate dimensions.

Proof: Going along the line of reasoning of the last proof, we observe that Z
is equal to Z1 with probability p and equal to Z2ZZ with probability 1−p. Hence

we obtain the following construction of a Markov process:

�
�

��

�
��

�
��

����pα(1)
��

�
��

�
��

�
��

�
��

����
(1 − p)α(2)��

��pα
(1)
m1+1 + (1 − p)α

(2)
m2+1 e

������

��
����������������

��
������
����
����

��
��

������������������
��
������
����
����

��
��
������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

η(1)

�
��
������� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

η(2)

Figure 9.6. Mixture of two PH distributions

Here, we enter the first set of transient states with probabilities p · α
(1)
i for

i = 1, . . . ,m1 and the second set with probabilities (1 − p) · α(2)
i for phases

i = m1 + 1, . . . ,m2. This explains the expression for α.

From either of these sets we proceed with transition matrices T (i) and exit

vectors η(i), i = 1, 2, in order to reach the absorbing state e. There is no path

from one set of transient states to the other, which explains the structure of T .

The absorbing state e can be reached immediately (i.e without entering any

transient state) with probability pα
(1)
m1+1 + (1 − p)α

(2)
m2+1.

�

In order to formulate the next theorem, we first need to define the so–called

Kronecker compositions of matrices. Let A = (aij) and B = (bij) denote
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n1 × m1 and n2 × m2 matrices, respectively. The Kronecker product of A
and B is defined as the (n1 · n2) × (m1 · m2) matrix A ⊗ B with entries

(A ⊗ B)(i1,i2),(j1,j2) := ai1,j1 · bi2,j2

for all 1 ≤ ik ≤ nk and 1 ≤ jk ≤ mk, k = 1, 2. As a block matrix we can

write

A ⊗ B =

⎛
⎜
⎛⎛

⎝⎜⎜
a11B . . . a1m1

B
...

...

an11B . . . an1m1
B

⎞
⎟
⎞⎞

⎠⎟⎟

If A and B are square matrices, i.e. nk = mk for k = 1, 2, then the Kronecker

sum A ⊕ B of the matrices A and B is defined as

A ⊕ B := A ⊗ I2II + I1 ⊗ B

with IkI denoting the nk × nk identity matrix for k = 1, 2.

Example 9.12 Let n1 = m1 = 1 and n2 = m2 = 2. If A = −λ and

B =

(
−µ µ
0 −µ

)
, then A ⊕ B =

(
−(λ + µ) µ

0 −(λ + µ)

)

is an explicit expression for the Kronecker sum of A and B.

Theorem 9.13 Let ZiZZ ∼ PH(α(i), T (i)) of order mi for i = 1, 2 and de-

fine Z = min(Z1, Z2ZZ ). Then Z ∼ PH(α, T ) of order m = m1 · m2 with

representation

α = α(1) ⊗ α(2) and T = T (1) ⊕ T (2)

in terms of the Kronecker compositions.

Proof: For i = 1, 2, the random variables ZiZZ are the times until absorption

in the Markov processes XiXX = (X
(i)
tXX : t ≥ 0) where the initial distributions

for the transient states are α(i) and the transition rates among the transient

states are given by T (i). Thus we can determine Z if we start running X1XX and

X2XX concurrently and stop whenever the first of the two processes enters the

absorbing state. We will show that the two–dimensional Markov process X
depicted as in the figure below has the same time until absorption as the first

absorption of the concurrent processes X1XX and X2XX .

The state space of X shall be

E = {(i, j) : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2} ∪ {e}
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Figure 9.7. Superposition of two PH distributions

where e is the absorbing state and all other states are transient. We will keep

in mind the interpretation that XtXX = (i, j) means X
(1)
tXX = i and X

(2)
tXX = j for

all transient states i, j. The exit vector η of dimension m1 · m2 has entries

ηij = η
(1)
i + η

(2)
jη for all i ≤ m1 and j ≤ m2.

Since we start the processes X1XX and X2XX independently, we clearly have an

initial distribution

P(X0 = (i, j)) = P(X
(1)
0 = i) · P(X

(2)
0 = j) = α

(1)
i · α(2)

j

which explains the expression for α. If the process X is in state (i, j), this

means that the exponential holding times in the states i (for X1XX ) and j (for

X2XX ) are running concurrently. According to lemma 3.2 they almost certainly

do not stop at the same time instant. Thus X has only state transitions from

(i, j) to either (i, h) or (k, j). These occur with transition rates T
(2)
jhT or T

(1)
ikTT ,

respectively, if h and k are transient states. According to lemma 3.2 the holding

time in state (i, j) is exponential with parameter −(T
(1)
iiTT +T

(2)
jjT ). This explains

the structure of T . The values of η are readily verified by

ηij = −(T1m1m2
)(i,j) = −

⎛
⎝
⎛⎛

T
(1)
iiTT + T

(2)
jjT +

∑

h�=�� j

T
(2)
jhT +

∑

k �=�� i

T
(1)
ikTT

⎞
⎠
⎞⎞

= −
m1∑

k=1

T
(1)
ikTT −

m2∑

h=1

T
(2)
jhT = η

(1)
i + η

(2)
jη

Thus we can see that Z = min(Z1, Z2ZZ ) is the time until absorption in the

Markov process X .

�

Example 9.4 and theorem 9.11 already suffice to prove the following powerful
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Theorem 9.14 The class of phase–type distributions is dense (in terms of

weak convergence) within the class of all distributions on R
+
0 .

Proof: Let F : R
+
0 → [0, 1] denote any non–negative distribution function.

Since it is bounded, monotone and right–continuous, we can approximate F
by a step function G with countably many jumps at (tn : n ∈ N0), where

tn < tn+1 for all n ∈ N. The error ε > 0 of approximation can be chosen

arbitrarily small such that |F (t) − G(t)| < ε holds for all t ≥ 0.

If t0 = 0, i.e. if there is a jump of G at zero, we can write

G = p0 · δ0 + (1 − p0) · G̃
with p0 = G(0) and G̃ = (G−G(0))/(1−p0). The Dirac distribution function

δ0 is a phase–type distribution with m = 0 and αm+1 = 1. In view of example

9.4 and theorem 9.11, it now suffices to show that we can approximate the

function G̃ by a finite mixture of Erlang distributions. First we find a truncation

point T of G̃ such that G(T ) > 1 − ε. Then there is a number N ∈ N such

that tn > T for all n > N . Thus G̃ can be approximated by

H =
N−1∑

n=1

(G̃(tn) − G̃(tn−1)) · δtn + (1 − G̃(tN )) · δtN

with an error bounded by ε.

For every n = 1, . . . , N we approximate the Dirac distribution δtn by a suit-

able Erlang distribution. This possible because of the following argument: The

variance of an Erlang distribution Ekλ
k of order k with parameter k · λ is given

by (k · λ2)−1 (see exercises) and thus tends to zero as k grows larger. Since

the mean of such an Erlang distribution is 1/λ (see exercises), Chebyshev’s in-

equality tells us that the sequence (Ekλ
k : k ∈ N) converges in probability (and

hence weakly) towards δtn if we chose λ = 1/tn. This means that there is a

number K ∈ N such that the distribution function HnHH of an E
K/tn
K distribution

satisfies |HnHH (t) − δtn(t)| < ε for all t ≥ 0.

If we pursue the above approximation method for every n = 1, . . . , N and

define

H̃ =

N−1∑

n=1

(G̃(tn) − G̃(tn−1)) · HnHH + (1 − G̃(tN )) · HNH

then we obtain an approximation bound |H − H̃| < ε. According to example

9.4 and theorem 9.11 the distribution H̃ is phase–type.

In summary, we have approximated F by p0 · δ0 + (1 − p0) · H̃ with an ap-

proximation bound of 3 · ε. This proves our statement.

�
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Notes

Phase–type distributions have been introduced in Neuts [62] as a generalization

of the Erlang and hyper–exponential distribution. A classical introduction to

phase–type distributions is given in Neuts [65]. Statistical methods for fitting

PH distributions are given in Asmussen et al. [7]. Phase–type distributions

with infinitely many phases are introduced in Shi et al. [78], and Shi and Liu

[79].

The name of a superfluous state as well as the motivating example at the be-

ginning of the section have been taken from Latouche and Ramaswami [52].

The proofs of the closure properties have been chosen to be as constructive and

illustrating as possible. More classical proofs via comparison of the Laplace

transforms can be found in Neuts [65].

Exercise 9.1 Show that the density f(t) of a phase–type distribution function

is strictly positive for all t > 0.

Exercise 9.2 Compute the Laplace–Stieltjes transform, all moments as well

as the squared coefficient of variation for the exponential, the Erlang, and the

hyper–exponential distribution.

Exercise 9.3 Use the results from exercise 9.2 in order to show that the Erlang

distribution with parameter nλ and n degrees of freedom is the n–fold convo-

lution of an exponential distribution with parameter nλ. Employ this result for

a simple proof of formula (6.2).

Exercise 9.4 Consider two machines running independently at the same time.

The one has a life time which is distributed as a generalized Erlang with two

stages and parameters λ1 and λ2. The other machine’s life time has a hyper–

exponential distribution with density f(t) = p · µ1e
−µ1t + (1 − p) · µ2e

−µ2t.

As soon as a machine fails, it is given to repair which takes an exponentially

distributed amount of time with parameter κ. After repair it starts working

immediately. Determine the distribution of the time until both machines are

broken down.

Exercise 9.5 Consider the M/PH/k queue with Poisson input and phase–type

service time distribution for all its k servers. Derive a description for this queue

in terms of a (k + 1)–dimensional Markov process.

Exercise 9.6 Find the stationary distribution for the M/PH/1 queue.



Chapter 10

MARKOVIAN ARRIVAL PROCESSES

In this chapter we are going to generalize the concept of a Poisson process in

three steps. We shall arrive thereby at the class of so–called Batch Markovian

Arrival Processes (shortly BMAPs) that comprises a great variety of processes

and so provides much more realistic modelling tools than the class of processes

considered so far can offer. The big advantage of the very procedure of gener-

alizing basic Markovian concepts is that it essentially keeps a lot of Markovian

behaviour.

1. The PH renewal process

The Poisson process is a renewal process with exponentially distributed re-

newal intervals (see example 6.5). In the last section we have introduced a

powerful generalization of the exponential distribution. As a first step to go

beyond the Poisson process, it seems natural to replace the exponential dis-

tribution of the renewal intervals by a phase–type distribution. This leads us

immediately to the class of PH renewal processes. To be precise, a renewal

process N = (NtNN : t ∈ R
+
0 ) with phase–type distributed renewal intervals is

called a PH renewal process.

While a concrete determination of the renewal function or the time–dependent

behaviour of an arbitrary renewal process is hard to derive, we have seen in ex-

ample 6.5 that in the case of exponential renewal intervals, i.e. for the Poisson

process, simple expressions can be derived. Since an exponential distribution

is a phase–type distribution of order m = 1, a PH renewal process clearly

generalizes the Poisson process. We want to show that the behaviour of PH

renewal processes can still be described by rather simple expressions.
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To this aim, we first will give a Markovian description of a PH renewal process.

For a phase–type distribution PH(α, T ), the remaining time Z until absorp-

tion, given that the current phase is i, can be expressed by

P(Z ≤ t|X0 = i) = 1 − eie
T ·t1

and thus has the same form as a PH(ei, T ) distribution, with ei denoting the

ith canonical row base vector. This is the conditional memoryless property

of the phase–type distribution.

If we keep track of the current phase of the PH distribution during renewal

intervals, then we obtain a Markovian description (N ,J ) of the PH renewal

process N . This is derived as follows (cf. notations in definition 1). Clearly,

the state space of Y = (N ,J ) is E = N0 ×{1, . . . ,m}, with NtNN denoting the

number of arrivals until time t and JtJJ being the current phase at time t.

The holding times depend only on the current phase of the PH distribution, i.e.

λn,i = λi for all n ∈ N0. Since N is a renewal process, the state transitions

of the embedded Markov chain X are restricted by pn,i;m,j = 0 for m < n or

m > n + 1.

Thus there are state transitions from (m, i) to (m + 1, j) or to (m, j), which

are called transitions with or without arrivals, respectively. For transitions

without arrivals, there is no renewal event and hence no absorption for the PH

distribution, which means that these transitions are described by the parameter

matrix T of the PH distribution of the renewal intervals. For transitions with

arrivals, we observe the following dynamics.

Being in phase i, there is an absorption (hence a renewal event) with rate ηi.

After that, a new PH–distributed renewal interval begins and a phase is chosen

according to the initial phase distribution α. Hence transitions with arrivals are

determined by the rate matrix A := ηα with η := −T1.

After ordering the state space E = N0 ×{1, . . . ,m} lexicographically, we can

write the infinitesimal generator matrix G of the Markov process Y = (N ,J )
as a block matrix

G =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

T A
T A

T A
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

with the non–specified blocks being zero matrices, and A := ηα.

Before analyzing the behaviour of this process, we shall generalize its struc-

ture two steps further. Then we will pursue an analysis from a more general

viewpoint.
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2. From PH renewal processes to MAPs

An essential feature of the PH renewal process is that immediately after an

arrival (i.e. a renewal event) the phase distribution always is α. This makes it

a real renewal process with iid renewal intervals. However, in modern com-

munication systems like the internet or other computer networks there may be

strong correlations between subsequent inter–arrival times. Thus it is a natural

idea to introduce a dependence between the subsequent renewal intervals. This

can be done without changing the block structure of the generator.

Writing down the row vectors of the matrix A, we observe

A =

⎛
⎜
⎛⎛

⎝⎜⎜
η1 · α

...

ηm · α

⎞
⎟
⎞⎞

⎠⎟⎟

meaning that the row entries differ only by a scalar ηi and thus the new phase

after an arrival is chosen independently of the phase immediately before that

arrival.

If we relax this restriction, we arrive at a new matrix

A′ =

⎛
⎜
⎛⎛

⎝⎜⎜
η1 · α1

...

ηm · αm

⎞
⎟
⎞⎞

⎠⎟⎟

with the only requirement that αi1 = 1 for all i = 1, . . . ,m. Here the phase

distribution after an arrival depends on the phase immediately before that ar-

rival. However, the requirement αi1 = 1 in connection with the fact that

η = −T1 simply restates the observation that the row entries of a generator

matrix sum up to zero.

Thus there is no real restriction in choosing A′. If we denote D0 := T and

D1 := A′ as usually done in the literature, we arrive at a generator

G =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

D0 D1

D0 D1

D0 D1

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟

with no restrictions on the matrices D0 and D1 except that G be a generator

matrix and D1 is non–negative. A Markov process with such a generator is

called Markovian Arrival Process (or shortly MAP). These arrival processes

play an important part in today’s queueing models.
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Differing from PH renewal processes as a special case, MAPs are not renewal

but semi–Markov processes (see section 2). The methods we will employ for

their analysis still allow a further generalization, which also is motivated by

observations of traffic in modern communication networks.

3. From MAPs to BMAPs

In a computer network it is not uncommon that a client sends various jobs

to the server at the same time. After being sent they are treated as separate

entities. For our modelling tools concerning the arrival process this means that

we observe several arrivals at the same time. These are called batch arrivals

or arrivals in batches.

It is a simple matter to include this into our concept of Markovian arrival

processes. We observe that for MAPs the matrix D0 on the main block di-

agonal contains the transition rates without arrivals. The matrix D1 on the first

upper block diagonal contains transition rates with single arrivals. The lexi-

cographic order of the state space implies that any (positive) entry in the kth

upper block diagonal of the generator matrix G would be a transition rate for

an arrival of k jobs at the same time.

Hence a natural extension of MAPs which include the possibility of batch ar-

rivals are Markov processes with a generator of the block structure

G =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

D0 D1 D2 D3 . . .

D0 D1 D2
. . .

D0 D1
. . .

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

again with the non–specified blocks (i.e. all entries in the lower block diago-

nals) being zero matrices. Such processes are called Batch Markovian Ar-

rival Processes (or shortly BMAPs). A matrix Dk contains the transition rates

for a batch arrival of size k, i.e. the event that k jobs arrive at the same time. The

sequence ∆ = (Dn : n ∈ N0) uniquely determines the generator G and thus

the BMAP. We call it the characterizing matrix sequence or the sequence of

characterizing matrices for the BMAP.

The entry Dk;ij with k ≤ 1 and i, j ≤ m indicates the transition rate for a

batch arrival of size k occuring in connection with a phase transition from i to

j. The entry D0;ij with i 
=

 j ≤ m indicates the transition rate for a phase

transition from i to j without an arrival. Finally, the entry D0;ii with i ≤ m
indicates the negative parameter of the exponential holding time in any state

(n, i) with n ≥ 0 and i ≤ m.
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Clearly, MAPs and thus PH renewal processes are special cases of BMAPs.

The following examples further show the great versatility of the BMAP con-

cept.

Example 10.1 Markov–modulated Poisson process

One of the most prominent examples of a MAP is the Markov–modulated

Poisson process (or shortly: MMPP). It is a doubly stochastic Poisson process

in the following sense: First we define an underlying (or governing) Markov

process X with a finite number m of states. This is sometimes referred to as

the environment process. Denote its generator by R. Depending on the state

of X , single arrivals occur with one of the rates λ1, . . . , λm. Define the diag-

onal matrix Λ = diag(λ1, . . . , λm). Then we obtain a BMAP specification of

the MMPP by setting D0 = R − Λ, D1 = Λ, and Dk = 0 for k ≥ 2. This

process is often used to model a semi–Poisson behaviour where the rates of the

Poisson arrivals depend on a changing environment.

Example 10.2 Interrupted PH renewal process

Consider a source that emits arrivals according to a PH renewal process. This

source may not be working during certain time intervals, due to failure or other

reasons of inactivity. Denote the parameters for the second PH distribution

(governing the durations of inactivity) (β, U) where U shall be of order n.

Denote the number of active states by m. If the source is in an active state

i, it may change to inactivity with rate γiγγ and to another active state k with

rate SikSS . Arrivals in state i occur with rate ηi, and the initial distribution of

active states is given by the row vector α. Define the off–diagonal entries of

the square matrix S to be the rates SikSS and set SiiSS := −γiγγ −∑
k �=�� i SikSS − ηi.

Then the interrupted PH renewal process has a BMAP specification

D0 =

(
S γβ
να U

)
and D1 =

(
ηα 0
0 0

)

with ν = −U1n, Dk = 0 for k ≥ 2. The name interrupted PH renewal

process comes from the fact that this process models the behaviour of a source

which normally emits arrivals according to a PH renewal process but may be

interrupted for PH–distributed periods of time. A classical special case of

the interrupted PH renewal process is the interrupted Poisson process (shortly:

IPP), where n = m = 1.

Example 10.3 As we have seen in the beginning of section 9 the time until

an overflow occurs in a Markovian queue can be modelled by a PH distribu-

tion. Likewise, the output process of Markovian queueing networks with finite

buffers can be described as a MAP.



190 AN INTRODUCTION TO QUEUEING THEORY

A useful feature of BMAPs is the closure property under superposition. Let

NiNN = (N
(i)
tNN : t ≥ 0) for i = 1, 2 denote two arrival processes. Then the

process N = (NtNN : t ≥ 0) defined by NtNN := N
(1)
tNN + N

(2)
tNN is called the

superposition of N1NN and N2NN . Analogously to the proof of theorem 9.13 one

can show

Theorem 10.4 If N1NN and N2NN are two BMAPs with characterizing matrices

(D
(i)
n : n ∈ N0) for i = 1, 2, then the superposition N = N1NN +N2NN is a BMAP

with characterizing matrices Dn = D
(1)
n ⊕ D

(2)
n for all n ∈ N0.

4. Distribution of the Number of Arrivals

The most important random variable of a BMAP is the number NtNN of arrivals

until some time t. Since BMAPs are Markov processes, we can express all

transition probabilities in terms of the generator matrix G and thus in terms

of the characterizing matrices Dn. According to theorem 3.7, the transition

probability matrix P (t) of a BMAP Y = (N ,J ) with generator G is given by

P (t) = eG·t :=
∞∑

n=0

tn

n!
Gn (10.1)

for all t ≥ 0, with Gn denoting the nth power of the matrix G. Here the entry

Pk,iPP ;n,j(t) = P(NtNN = n, JtJJ = j|N0NN = k, J0JJ = i) indicates the conditional

probability that until time t there have been n arrivals and the phase at time t
is j given that at time 0 there already have been k arrivals and the phase is i.

In order to find an expression of P (t) in terms of the matrices Dn, we need to

introduce convolutions of matrix sequences. Let M = (MnMM : n ∈ N0) and

K = (KnKK : n ∈ N0) denote two sequences of m×m matrices. The convolution

M ∗ K of these sequences is defined as the sequence L = (Ln : n ∈ N0) of

m × m matrices with Ln :=
∑n

k=0 MkM KnKK −k for all n ∈ N0.

Define the convolutional powers of a matrix sequence M by the initial se-

quence M∗0 := (I, 0, 0, . . .) and recursively M∗(n+1) := M∗n ∗ M for all

n ∈ N0. If we denote the kth matrix of a sequence M∗n by M∗n
k , then we can

write M∗0
k = δk0 · I for all k ∈ N0, with δk0 denoting the Kronecker func-

tion and I denoting the m × m identity matrix. Further we have by definition

M∗1
k = MkM for all k ∈ N0. With these definitions we can state

Lemma 10.5 For all n ∈ N0, the nth power of the generator matrix G of a

BMAP has block entries

Gn
kl = ∆∗n

l−k
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for all k ≤ l ∈ N0, and Gn
kl = 0 for all k > l ∈ N0.

Proof: Fix any k, l ∈ N0. Clearly, G0 is the identity matrix, which proves the

statement for n = 0. Now assume that the statement is true for some n ∈ N0.

Then

Gn+1
kl =

∞∑

h=0

Gn
khGhl =

l∑

h=k

Gn
khGhl

since Gn
kh = 0 for h < k by induction hypothesis and Ghl = 0 for h > l

as G is an upper triangular block matrix. In particular we obtain Gn+1
kl = 0

for k > l and we can assume k ≤ l. The induction hypothesis as well as the

structure of G yield Gn
kh = ∆∗n

h−k and Ghl = Dl−h. Hence we obtain

Gn+1
kl =

l∑

h=k

∆∗n
h−kDl−h =

l−k∑

h=0

∆∗n
h Dl−k−h = ∆

∗(n+1)
l−k

which completes the proof.

�

Define the convolutional exponential of a matrix sequence M by the se-

quence e∗M·t of matrices with the kth matrix being
∑∞

n=0
tn

n!M∗n
k for all

k ∈ N0. Further define the matrices PklPP (t) = (Pk,iPP ;l,j(t))i,j≤m. With these

definitions and the above lemma we arrive at

Corollary 10.6 The (k, l)th block entry of the transition probability matrix of

a BMAP with characterizing sequence ∆ is given by

PlPP −k(t) := PklPP (t) =
(
e∗∆·t

)
l−k

:=
∞∑

n=0

tn

n!
∆∗n

l−k

for all k ≤ l ∈ N0, and PklPP (t) = 0 for all k > l ∈ N0.

It is not surprising that we obtain PklPP (t) = 0 for k > l as a BMAP cannot count

more arrivals in any subset of a time interval than in the time interval itself.

Furthermore, it is not surprising to see that the block entry PklPP (t) depends only

on the difference l − k, since future arrivals depend only on the current phase

and not on the number of arrivals observed in the past. Thus we can abbreviate

notations by PkPP (t) := P0PP ,k(t). An immediate consequence is

Corollary 10.7 The matrix containing the probabilities that within a time in-

terval of length t there are no arrivals is given by

P0PP (t) = eD0·t
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for all t ≥ 0.

Define τ := min{t ≥ 0 : NtNN > 0) as the stopping time until the first arrival.

Then the expectation matrix E(τ) of τ , having dimension m × m and entries

E(τ · 1JτJJ =j |J0JJ = i), is given by

E(τ) =

∫ ∞

0

∫∫
eD0·t dt = −D−1

0 (10.2)

For a BMAP with characterizing matrices (Dn : n ∈ N0) define the matrix

D :=
∑∞

n=0 Dn. This describes the transition rates of the marginal process

J = (JtJJ : t ≥ 0), which is called the phase process of the BMAP. Define

the transition probability matrix of J by PΦ(t) = (PΦ
ijPP (t))i,j≤m with entries

PΦ
ijPP (t) := P(JtJJ = j|J0JJ = i). For this we obtain

Theorem 10.8 The transition probability matrix of the phase process J is

given by

PΦ(t) =
∞∑

k=0

PkPP (t) = eD·t

for all t ≥ 0 and i, j ≤ m.

Proof: The first equation holds by definition, since the phase process is the

marginal process of (N ,J ) in the second dimension. The second equation is

obtained via corollary 10.6 and Fubini’s theorem as

∞∑

k=0

PkPP (t) =

∞∑

n=0

tn

n!

∞∑

k=0

∆∗n
k =

∞∑

n=0

tn

n!

(
∞∑

k=0

Dk

)n

= eD·t

where the second equality is due to the relation

∞∑

k=0

∆∗n
k =

(
∞∑

k=0

Dk

)n

(10.3)

which the reader may prove as an exercise.

�

5. Expected Number of Arrivals

The expressions PkPP (t) will help us to derive a simple representation of the

expected number E(NtNN ) of arrivals until time t. To this aim we first derive an

expression for the z–transform which is defined as N∗
tNN (z) :=

∑∞
n=0 PnPP (t)zn
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for z ∈ C with |z| ≤ 1. The z–transform of the matrices (Dn : n ∈ N0) is

defined as D(z) :=
∑∞

n=0 Dnzn. Using this, we obtain

Theorem 10.9 The z–transform of a BMAP having characterizing matrices

(Dn : n ∈ N0) is given by

N∗
tNN (z) = eD(z)·t

for all z ∈ C with |z| ≤ 1.

Proof: The definition, together with corollary 10.6, yields

N∗
tNN (z) =

∞∑

n=0

∞∑

k=0

tk

k!
∆∗k

n zn =
∞∑

k=0

tk

k!

∞∑

n=0

∆∗k
n zn

Since the transform of a k–fold convolution of a sequence equals the kth power

of the transform of the sequence (see exercises), we obtain further

N∗
tNN (z) =

∞∑

k=0

tk

k!
(D(z))k = eD(z)·t

which is the statement.

�

Let π denote the stationary probability vector of the phase process, satisfying

πD = 0. If the initial phase distribution of a BMAP is π, then we say that the

BMAP starts in phase equilibrium. Now we can state

Theorem 10.10 The expected number Eπ(NtNN ) of arrivals until time t, given

that the BMAP starts with initial phase distribution π, is determined by

Eπ(NtNN ) = t · π
∞∑

k=1

k · Dk1

Proof: The first moment can be derived from the z–transform via

Eπ(NtNN ) = π
d

dz

∞∑

n=0

tn

n!
(D(z))n

∣∣∣∣∣∣∣∣∣∣∣∣∣
z=1

1

= π
∞∑

n=0

tn

n!

n∑

h=1

Dh−1
∞∑

k=1

k · Dk Dn−h 1

Now the statement follows from πD = 0 and D1 = 0 which implies that the

right–hand sum over h is zero except for n = h = 1.

�
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The term λ := π
∑∞

k=1 kDk 1 is called the mean arrival rate of the BMAP.

For the special case of a PH renewal process, this term equals π(ηα)1 = πη.

Furthermore the stationary phase distribution π is easily determined via corol-

lary 7.2. Thus we obtain

Corollary 10.11 For a PH renewal process with parameters (α, T ) starting

in phase equilibrium, the expected number Eπ(NtNN ) of arrivals until time t is

given by

Eπ(NtNN ) = t · πη

with η = −T1. The stationary phase distribution π is given by

π =
1

−αT−11

∫ ∞

0

∫∫
αeT ·t dt

Proof: The first statement is a specification of theorem 10.10. The expression

for π is verified by

πD =
1

−αT−11

∫ ∞

0

∫∫
αeT ·t dt (T + ηα)

=
1

−αT−11

(
α

∫ ∞

0

∫∫
eT ·tT dt +

∫ ∞

0

∫∫
αeT ·tη dt α

)

=
1

−αT−11
(α(−I) + α) = 0

with I denoting the identity matrix, and

∫ ∞

0

∫∫
αeT ·t dt 1 = α

∫ ∞

0

∫∫
eT ·t dt 1 = −αT−11

�

The above PH renewal process N is a delayed renewal process with initial

delay X0 ∼ PH(π, T ) and renewal intervals XnXX ∼ PH(α, T ) for n ∈ N.

The elementary renewal theorem 6.12 then states that limt→∞ E(NtNN )/t =
1/E(X1). Thus we obtain another expression for the mean of a phase–type

distributed random variable (cf. corollary 9.9).

Corollary 10.12 For a PH(α, T ) distributed random variable X the expec-

tation is given by E(X) = (πη)−1.
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Notes

The first presentation of the PH renewal process has been given in Neuts [63].

The MAP in the present formulation has been introduced first in Lucantoni

et al. [56] as a generalization of the PH renewal process and the Markov–

modulated Poisson process. Its further generalization to the BMAP with batch

arrivals has been introduced in Lucantoni [54]. An early algorithms for a com-

putation of the transition probabilities can be found in Neuts and Li [67]. The

calculus of matrix convolutions that leads to explicit expressions for the transi-

tion probabilities of BMAPs has been introduced in Baum [9] or Breuer [21].

The class of BMAPs is equivalent to the class of versatile Markovian point

processes (or N–processes) introduced in Neuts [64]. However, this formula-

tion is more complicated and does not yield as simple an anlysis of the respec-

tive queueing systems. For generalizations of BMAPs see Pacheco and Prabhu

[68], Baum and Kalashnikov [11, 13], or Breuer [19, 21]. A result which is

analogous to theorem 9.14 is that the class of all MAPs is dense within the

class of all marked point processes (see Asmussen and Koole [6]).

An extensive treatment on the history of the BMAP, along with many refer-

ences, can be found in Lucantoni [55]. Statistical methods for fitting MMPP

and BMAP models are given in Ryden [76] and Breuer [18].

Exercise 10.1 Prove theorem 10.4.

Exercise 10.2 Prove equation (10.3) as well as

∞∑

n=0

∆∗k
n zn = (D(z))k

for z ∈ C with |z| < 1.

Exercise 10.3 Give a model (in terms of a PH renewal process) for the number

of orders the plumber of exercise 6.4 receives.

Exercise 10.4 Show that an IPP is uniquely determined by the first three mo-

ments of the inter–arrival time distribution.

Exercise 10.5 In a telephone network data transmission via the package voice

system works as follows. The language source is digitalized and divided into

packages, which are to be transmitted. A language source switches between

”talk spurts” and ”silent periods”. Thus a model in terms of an IPP seems

reasonable.

Measurements yield a mean inter–arrival time of 3 ms for the packages. The
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squared coefficient of variation is 300. Further it is known that a silent period is

about two times as long as a talk spurt. Adjust the IPP to these measurements.

Exercise 10.6 Describe the BMAP/PH/k queue in terms of a Markov process

with (k + 2)–dimensional state space.



Chapter 11

THE GI/PH/1 QUEUE

In section 1, we have analyzed one of the classical semi–Markovian queue-

ing systems, the GI/M/1 queue. For practical applications, this model has the

disadvantage that the assumption of exponential service times is often inap-

propriate for the actual service time distribution governing the system. More

typical service times often are distributed like generalized Erlang or Cox distri-

butions, or special distributions like the lognormal or Weibull type. The former

are special cases of phase–type distributions, the latter can be approximated by

them. Thus the wish to extend the results for the GI/M/1 queue to GI/PH/1

queues is understandable.

It will turn out in the presentation of this chapter that the analysis of GI/PH/1

queues can be performed in a strikingly similar manner to the GI/M/1 analysis.

This is one of the main reasons for the success of the phase–type concept in

queueing theory.

The GI/PH/1 queue is characterized by the following features. Arrivals are

generated by a renewal process with inter–arrival times distributed by a distri-

bution function H with 0 < E(H) < ∞. The service times are iid according to

a PH(α, T ) distribution of order m ∈ N, with αm+1 = 0. There is one server,

and the service discipline is FCFS. The waiting room capacity is infinite such

that there are no users lost.

In order to keep a complete description of the system state, it is not sufficient

anymore to remember the number of users in the system only, but we need to

keep track of the current phase of the service time distribution, too. Thus we

examine the process Q = (Qt : t ≥ 0) with Qt = (NtNN , JtJJ ) for all t ≥ 0, where

NtNN and JtJJ denote the number of users in the system and the current phase of

service at time t, respectively. If the system is empty, i.e. NtNN = 0, there is no
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service and we do not need to keep track of a phase of service. In this case we

set JtJJ = 0. Thus the state space of Q is E = {0, 0} ∪ N × {1, . . . ,m}.

1. The Embedded Markov Chain

As for the GI/M/1 queue we observe that at times of arrivals the conditions for

a prognosis of the future of the system are less difficult, since we know that the

time until the next arrival is distributed by F . This is due to the iid inter–arrival

times and the independence of the arrival process from the rest of the system.

Hence we can construct a Markov chain embedded at arrival instants.

Define TnTT as the time of the nth arrival and XnXX := (NTNN nTT −1, JTJJ nTT ) for all n ∈ N.

Since at times TnTT there is always at least one user in the system (namely the one

that has just arrived), the state space of X = (XnXX : n ∈ N) is N0×{1, . . . ,m}.

If we know that the phase of service currently is j, then we also know that

the time until the next service completion will be distributed by a PH(ej , T )
distribution, with ej denoting the jth canonical row base vector. Since we

further know that the time until the next arrival after TnTT will be distributed by

F (the inter–arrival time has just begun), the chain X is Markovian.

Now we want to determine the transition matrix P̃ of X . Since the state space

of X is two–dimensional, the structure of P̃ must become more complicated

than for the analogue of the GI/M/1 queue. However, we can order the state

space of X lexicographically as

{(0, 1), . . . , (0, m), (1, 1), . . . , (1, m), (2, 1), . . .}
such that the transition matrix P̃ will have a block structure. The first dimen-

sion of the state space shall be called the level of the process, while the second

dimension is called the phase. The chain pr2(X ), with pr2 denoting the pro-

jection on the second dimension, will be called the (embedded) phase process.

The general structure of P̃ is determined by two considerations. First, between

two arrival instants the number of users in the system can increase by at most

one. Second, as long as the system is not empty, the change of the number of

users between two arrival instants TnTT and TnTT +1 does not depend on the number

of users in the system at time TnTT . Thus we obtain the structure

P̃ =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

B0 A0

B1 A1 A0

B2 A2 A1 A0
...

...
. . .

. . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ (11.1)

for the transition matrix P̃ , with the non–specified entries being zero matrices.

We see that the matrix P̃ has a block Toeplitz structure with one upper diag-

onal and special boundary entries in the first column. In terms of levels, the
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matrix is skip–free to the right as in the GI/M/1 case. Because of the similar-

ity to the GI/M/1 case, such a matrix is also called a GI/M/1 type matrix.

Here, the (i, j)th entry Ak;ij of the matrix Ak indicates the probability that

between two consecutive arrivals instants TnTT and TnTT +1, k users are served and

the phase of service changes from i at time TnTT to j at time TnTT +1. The entries

Bk;ij indicate the probabilities that between two consecutive arrivals instants

TnTT and TnTT +1, at least k + 1 users are served and the phase of service changes

from i at time TnTT to j at time TnTT +1.

In order to find expressions for the matrices Ak and Bk, we define the following

family of matrices. For every t ≥ 0, k ∈ N0, and i, j ∈ {1, . . . ,m} let

PkPP ;ij(t) denote the probability that during the interval [0, t] there are k service

completions and the phase of service at time t is j given that the phase of

service at time 0 has been i. Further define the respective m × m matrices

PkPP (t) = (PkPP ;ij(t))i,j≤m. Then we can write

Ak =

∫ ∞

0

∫∫
PkPP (t) dH(t) and Bk =

∞∑

i=k+1

Ai

for all k ∈ N0. The matrices PkPP (t) can be determined according to the ex-

pression given in corollary 10.6 by specifying ∆ = (T, ηα, 0, 0, . . .), with

η = −T1. Since A :=
∑∞

n=0 An is stochastic, we immediately obtain

Bk = 1α −
k∑

i=0

Ai1α

for all k ∈ N0.

2. Stationary Distribution at Arrival Instants

From now on we shall assume that the stability condition E(H) > −αT−11
for the embedded Markov chain X is satisfied. In the next section it is shown

that then a stationary distribution for X does exist. In this section we want to

show how this can be determined.

Denote the stationary distribution for X by x = xP̃ and write

x = (xn : n ∈ N0) = (xni : n ∈ N0, 1 ≤ i ≤ m)

with xni being the stationary probability that the chain X is in state (n, i). The

vectors xn contain the stationary probabilities of the chain X being in level n.

For the GI/M/1 queue we could derive a geometric structure νnνν +1 = νnνν ξ for

the stationary distribution ν of the embedded Markov chain. In the present
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case of a GI/PH/1 queue we will have a similar structure for the distribution

x, namely the relation xn+1 = xnR where now the factor R is a matrix.

To underline the analogy, such a distribution is called a matrix–geometric

distribution and R is called rate matrix.

We will first define the matrix R and then show that x indeed is matrix–

geometric with rate matrix R. For all phases i, j ≤ m and levels k ≥ 0,

define the taboo probabilities (cf. definition (8.11))

kP
(n)
k,i;k+1,j := P(XnX = (k+1, j), pr1(Xh) 
=

 k ∀ 1 ≤ h < n|X0 = (k, i))

that the chain X enters level k + 1 in phase j after n steps and does not enter

level k before, given that it starts in level k and phase i.

The structure of P̃ is self–similar in the sense that if we delete the first n
(block) rows and columns of P̃ for any n ∈ N, we obtain the same matrix as

if we deleted only the first row and column. This implies that the probabilities

kP
(n)
k,i;k+1,j are independent of k ∈ N0. Hence we can define

rij :=
∞∑

n=1

kP
(n)
k,i;k+1,j

for all i, j ∈ {1, . . . ,m}, independently of k ≥ 0. The value rij is the expected

number of visits of the chain X to the state (k + 1, j) before returning to level

k if X is started in state (k, i). Finally, we define the matrix R = (rij)i,j≤m

and call it the rate matrix.

Theorem 11.1 The stationary distribution x = (xk : k ∈ N0) of X satisfies

the relation

xk+1 = xkR

for all k ∈ N0.

Proof: Fix any level k ∈ N0. By conditioning on the last time and phase of

the last visit to level k we obtain the relation

P
(n)
kPP +1,j;k+1,j = kP

(n)
k+1,i;k+1,j +

m∑

i=1

n∑

r=1

P
(r)
kPP +1,j;k,i · kP

(n−r)
k,i;k+1,j

for all n ≥ 1.

If we add these equations for n = 1, . . . , N , divide both sides by N and then

let N tend to infinity, the left–hand side tends to xk+1,j according to corollary
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2.28. Since the sum
∑∞

n=1 kP
(n)
k+1,i;k+1,j is finite if X is positive recurrent, the

first term on the right–hand side tends to zero. The second term equals

lim
N→∞

m∑

i=1

1

N

N∑

n=1

n∑

r=1

P
(r)
kPP +1,j;k,i · kP

(n−r)
k,i;k+1,j

=
m∑

i=1

lim
N→∞

1

N

N∑

r=1

P
(r)
kPP +1,j;k,i · lim

N→∞

N−r∑

n=1

kP k,i;k+1,j =
m∑

i=1

xki · rij

by corollary 2.28 and the definition of R.

�

The matrix R contains the expected number of visits to any level l + 1 ∈ N

between two consecutive visits to level l. In case of positive recurrence this

matrix is entry–wise finite by theorem 2.24. For the powers of R we obtain the

following interpretation:

Theorem 11.2 For any k ∈ N, the (i, j)th entry of the matrix Rk indicates the

expected number of visits to the state (l + k, j) between two consecutive visits

to level l ∈ N0, given that the chain X starts in state (l, i).

Proof: The statement holds for k = 1 by definition of R. Now we assume that

it holds for some k ∈ N and want to show the induction step to k + 1. For

n ≥ k + 1 the relation

lP
(n)
l,i;l+k+1,j =

m∑

h=1

n∑

r=0

lP
(r)
l,i;l+k,h · l+kP

(n−r)
l+k,h;l+k+1,j

=
m∑

h=1

n∑

r=0

lP
(r)
l,i;l+k,h · lP

(n−r)
l,h;l+1,j

is obtained after conditioning on the time r and the phase h of the last visit to

level l + k before visiting level l + k + 1. For n ≤ k both sides of the equation

are zero, such that we can sum over all n ≥ 0. The left–hand side sums up to

the desired expectation for the level k + 1. On the right–hand side we obtain

m∑

h=1

∞∑

n=0

n∑

r=0

lP
(r)
l,i;l+k,h · lP

(n−r)
l,h;l+1,j =

m∑

h=1

∞∑

r=0

lP
(r)
l,i;l+k,h

∞∑

n=0

lP
(n)
l,h;l+1,j

=

m∑

h=1

Rk
ihrhj

= lim
N→∞

m∑

i=1

1

N

N∑

r=1

P
(r)
kPP +1,j;k,i ·

N−r∑

n=1

kP
(n)
k,i;k+1,j

(n)
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which completes the induction step.

�

There is an interesting relation between the matrix R and its powers, which at

the same time yields a method to compute R without needing to calculate the

n–step taboo probability matrices lP
(n) by which R is defined. This is given

in

Theorem 11.3 If X is positive recurrent, then the matrix R is the (entry–wise)

minimal non–negative solution to the matrix equation

M =
∞∑

n=0

MnAn

It can be obtained as the limit R = limk→∞ M(k) with M(0) := 0 and

M(k + 1) :=
∑∞

n=0 M(k)nAn for all k ∈ N0.

Proof: First we observe lP
(1)
l,i;l+1,j = A0;ij . For n ≥ 2 we obtain

lP
(n)
l,i;l+1,j =

m∑

h=1

∞∑

k=1

lP
(n−1)
l,i;l+k,h · Ak;hj

by conditioning on the state (l+k, h) from which the level l is entered for time

n. If we sum up these equations for all n, we obtain R =
∑∞

n=0 RnAn.

For the second statement, consider the sequence M = (M(k) : k ∈ N0).
Clearly, M(1) ≥ M(0) and R ≥ M(0) entry–wise. The fact that

M(k + 1) − M(k) =

∞∑

n=0

(M(k)n − M(k − 1)n)An ≥ 0

R − M(k) =

∞∑

n=0

(Rn − M(k − 1)n)An ≥ 0

yields by induction that the sequence M is entry–wise monotonically increas-

ing and M(k) ≤ R for all k ∈ N. Hence there is a matrix M∗ = limk→∞ M(k)
with M∗ ≤ R. Thus we can use the dominated convergence theorem to verify

M∗ = lim
k→∞

M(k) = lim
k→∞

∞∑

n=0

M(k − 1)nAn =
∞∑

n=0

lim
k→∞

M(k − 1)nAn

=
∞∑

n=0

(M∗)nAn
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such that M∗ is indeed a solution to the matrix equation.

Every other non–negative solution M ′ to the matrix equation must satisfy

M ′ ≥ A0 = M(1). But M ′ ≥ M(k) implies

M ′ =
∞∑

n=0

(M ′)nAn ≥ M(k)nAn = M(k + 1)

and thus by induction M ′ ≥ M(k) for all k ∈ N and in the limit M ′ ≥ M∗.

Hence M∗ is minimal.

It remains to show that R ≤ M∗. Define the matrices

lP
(n)
r :=

(
lP

(n)
l,i;l+r,j

)
i,j≤m

for all n, r ∈ N0 and remember that their definition is independent of the start

level l. The matrix lP
(n)
r contains the (phase–dependent) probabilities that the

level of the chain is raised by r after exactly n steps. Because of the structure

(11.1) it is clear that lP
(n)
r = 0 for r > n.

Further define the matrices Y
(r)
sYY :=

∑s
n=0 lP

(n)
r and set YsYY := Y

(1)
sYY . Then we

can write R = lims→∞ YsYY . The matrix Y
(r)
sYY contains the (phase–dependent)

expectations of the number of visits to the level l + r within the course of s

steps beginning from taboo level l. Again the structure (11.1) yields Y
(r)
sYY = 0

for r > s.

Because of lP
(n)
1 =

∑l−1
r=0 lP

(n−1)
r Ar we obtain

YsYY =
s∑

n=1

lP
(n)
1 =

s−1∑

k=0

k∑

r=0

lP
(k)
r Ar =

∞∑

r=0

(
s−1∑

k=0

lP
(k)
r

)
Ar =

∞∑

r=0

Y
(r)
sYY −1Ar

for all s ∈ N. Conditioning on the time k of the last visit to level l + r − 1
yields

lP
(n)
r =

n∑

k=0

lP
(k)
r−1 lP

(n−k)
1

which implies

Y
(r)
sYY −1 =

s−1∑

n=0

n∑

k=0

lP
(k)
r−1 lP

(n−k)
1 ≤

s−1∑

k=0

lP
(k)
r−1

s−1∑

n=0

lP
(n)
1 = Y

(r−1)
sYY −1 Y

(1)
sYY −1

whence Y
(r)
sYY −1 ≤ Y r

sYY −1 for all r ≥ 1. Thus YsYY satisfies the inequality

YsYY ≤
∞∑

n=0

Y n
sYY −1An
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Clearly, the sequence (YsYY : s ∈ N) is increasing and Y1YY = A0 = M(1), while

Y2YY ≤ M(2). Now the above inequality yields YsYY ≤ M(s) for all s ∈ N, which

implies the desired bound R ≤ M∗.

�

Theorem 11.4 The stationary probability vector x0 of X is determined by

x0 = x0B[R] and x0(I − R)−11 = 1

with B[R] =
∑∞

n=0 RnBn.

Proof: The stationarity of x = xP̃ yields according to the structure given in

(11.1) and theorem 11.1

x0 =
∞∑

n=0

xnBn = x0

∞∑

n=0

RnBn

which proves the first equation. In order that x = (xk : k ∈ N0) be a proba-

bility distribution, we further need

1 =
∞∑

k=0

xk1 = x0

∞∑

k=0

Rk1 = x0(I − R)−11

which is the second equation. Since P̃ is irreducible, there is at most one

stationary distribution of X . Since the two equations in the statement and the

relation in theorem 11.1 yield a solution to x = xP̃ , the vector x0 is uniquely

determined.

�

After verifying that B[R] = 1α (as an exercise), we immediately obtain

Corollary 11.5 The stationary probability vector x0 of X is explicitly given

as

x0 = (α(I − R)−11)−1α

3. Ergodicity of the Embedded Markov Chain

In the previous section we have derived the form of the stationary distribution

in case of positive recurrence of the embedded Markov chain X . Now we

want to derive the conditions for positive recurrence, also called the ergodicity

conditions for X .

First a remark is due regarding irreducibility of X . If αi = 0 for some phase

1 ≤ i ≤ m, then for all matrices Bk the ith column vanishes, and X is not
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irreducible. However, all statements concerning existence and uniqueness of a

stationary distribution hold as if the chain X were irreducible. This is due to

remark 2.26, which was to be proven as an exercise in chapter 2.

Since in case of positive recurrence the structure of the stationary distribution

x is largely determined by R, it seems natural to search for some property of

R to yield the ergodicity condition. This can be found in the second equation

in theorem 11.4.

Theorem 11.6 The embedded Markov chain X is positive recurrent if and

only if (I − R) is invertible.

Proof: Define the vector v =
∑∞

n=0 Rn1, which may have infinite entries.

According to theorem 11.2 the value vi indicates the expected return time to

level zero given that X0 = (0, i). By theorem 2.32 (with F being the states of

the level zero), the chain X is positive recurrent if and only if v is entry–wise

finite. This is equivalent to convergence of the series
∑∞

n=0 Rn = (I − R)−1.

�

Although the above stability condition is the first that comes into mind if we

regard the structure of the stationary distribution x, it may be difficult to check

this condition if there are eigenvalues of R with modulus close to one. Seen

from a more general perspective, we would expect the queue to be stable if and

only if the classical condition, namely that the mean service time be less than

the mean inter–arrival time, holds. That this is indeed the case can be shown

for the GI/PH/1 queue, too. However, to this aim we first need to trans-

late the classical condition to an equivalent condition in terms of the system

parameters.

We have denoted the distribution function of the inter–arrival times by H and

its mean by E(H). According to corollary 9.9, the mean service time is given

by E(S) = −αT−11. Then the classical stability condition may be stated as

ρ =
−αT−11

E(H)
< 1

Now define the matrix A :=
∑∞

n=0 An, which contains the transition proba-

bilities for the phase process at times of arrivals, given that the server is busy.

Clearly A is stochastic. Note further that A is irreducible, due to the phase–

type service process without superfluous phases. Let π denote the stationary

vector for A, satisfying πA = π. If we define further D := T + ηα, then we

can state

Lemma 11.7 The vector π satisfies πD = 0.
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Proof: By definition of A and theorem 10.8 we obtain

π = π
∞∑

n=0

An = π

∫ ∞

0

∫∫ ∞∑

n=0

PnPP (t) dH(t) = π

∫ ∞

0

∫∫
eD·t dH(t)

=

∫ ∞

0

∫∫
π

∞∑

n=0

tn

n!
Dn dH(t)

Clearly this equation holds if πD = 0. Since the matrix A is irreducible and

therefore the vector π uniquely determined, the statement follows.

�

Theorem 11.8 The classical stability condition ρ < 1 is equivalent to the

condition

π

∞∑

k=1

k · Ak 1 > 1

Proof: The definition of the Ak yields

π
∞∑

k=1

k · Ak 1 =

∫ ∞

0

∫∫
π

∞∑

k=1

k · PkPP (t) 1 dH(t)

Here the expression within the integral is the expected number of service com-

pletions in time t given that the service process is started in phase distribution

π. Since the sequence of service completions under the regime of a busy server

is a PH renewal process, corollary 10.11 yields

π

∞∑

k=1

k · Ak 1 =

∫ ∞

0

∫∫
Eπ(NtNN ) dH(t) = πη · E(H)

Now the expression for π in corollary 10.11 implies

πη = −
(
αT−11

)−1
∫ ∞

0

∫∫
αeT ·tη dt = −

(
αT−11

)−1

Thus we obtain

π
∞∑

k=1

k · Ak 1 =
1

ρ
(11.2)

which completes the proof.

�

The above condition postulates that under the stationary phase regime the mean

number of service completions between two arrivals is greater than one. It
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is as intuitive as the classical stability condition and can be verified almost

immediately once the system parameters are given. Now we will show that

this condition implies positive recurrence of the embedded Markov chain X .

We write A =
∑∞

n=0 An as usual, and denote by ā = (ā1, . . . , ām) the column

vector of components āi =
∑

j∈E

∑∞
n=0 nAn;ij for 1 ≤ i ≤ m. In order to

apply the criteria of theorem 2.33 to the chain X we first construct a non-

negative solution v of

(I − A)v = ā − (1/ρ)1 (11.3)

Lemma 11.9 The system (11.3) possesses solutions of the form v + r1 with

r ∈ R, where v is any finite separate solution and {r1 : r ∈ R} represents

the set of all solutions of the homogeneous system. In particular, it is always

possible to find a solution v that is non-negative.

Proof: Since A is non-negative and stochastic, A − I represents the generator

of some Markov process and, consequently, has rank m − 1. The stationary

vector of that process is π (since πA = π).

An inhomogeneous system M v = d of m linear equations with m unknowns,

whose characteristic matrix M is of rank k < m, possesses a solution if and

only if the vector of the right–hand side is orthogonal to all solution vectors

w = (w1, . . . , wm) of the adjoint homogeneous system wM = 0. In our case

the rank is m − 1, and any solution of the adjoint system is some multiple of

π. Checking the condition of orthogonality, we see that

π (ā − (1/ρ)1) = π

∞∑

n=0

nAn1 − 1

ρ
= 0

because of (11.2). Therefore, the system (11.3) possesses a finite solution

v = (v1, . . . , vm). The general solution is the sum of a separate solution and

a solution of the homogeneous system. Since, obviously, the homogeneous

system has as solutions all multiples of 1 = (1, 1, . . . , 1)T , the general non–

homogeneous solution is v + r · 1, for arbitrary r ∈ R.

�

Theorem 11.10 The embedded Markov chain X is positive recurrent if ρ < 1.

Proof: Applying Lemma 11.9, let v = (v1, . . . , vm) be some non-negative

bounded solution of equation (11.3). Using this solution, define the finite func-

tion

f(s, j) =

{
s + vj for s ∈ N, 1 ≤ j ≤ m
0 for s = 0, 1 ≤ j ≤ m

, (11.4)
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such that for r > 0,

∑

(s,j)

P̃r,iPP ;s,jf(s, j) − f(r, i) =
∑

(s,j)

P̃r,iPP ;s,j · (s − r) +
∑

s≥1; j≤m

P̃r,iPP ;s,j vj − vi

= −r
m∑

j=1

Br;ij +
m∑

j=1

r∑

n=0

An;ij · (1 − n) +
m∑

j=1

r∑

n=0

An;ijvj − vi

Since
∑m

j=1

∑∞
n=0 nAn;ij < ∞, the sums

∑m
j=1

∑∞
n=r nAn;ij tend to zero as

r tends to infinity. Hence

r
m∑

j=1

Br;ij =
m∑

j=1

∞∑

n=r+1

rAn;ij → 0 as r → ∞

If ρ < 1, then equation (11.3) yields

lim
r→∞

⎛
⎝
⎛⎛
∑

(s,j)

P̃r,iPP ;s,j f(s, j) − f(r, i)

⎞
⎠
⎞⎞

≤ 1 −
m∑

j=1

∞∑

n=0

nAn;ij + āi −
1

ρ

= 1 − 1

ρ
< 0 ,

implying that there exist an r0 ∈ N and an ε > 0, such that for ρ < 1

L(r, i) =
∑

(s,j)

P̃r,iPP ;s,j · f(s, j) − f(r, i) < −ε for all r ≥ r0, i ≤ m.

Define a finite subset F ⊂ N0 × E of states as

F = {(r, i) : r < r0, i ≤ m} . (11.5)

Since for r = 0 the expression
∑m

j=1 A0;ij(1 + xj) is positive (bearing in

mind that vj ≥ 0 for all j), this set F is not empty. Since L(r, i) ≤ −ε
for (r, i) /∈// F , and 0 ≤ f(s, j) < ∞ for all s ∈ N0 and 1 ≤ j ≤ m, the

prerequisites of theorem 2.33 are satisfied, i. e. the chain is positive recurrent.

�

4. Asymptotic Distribution of the System Process

If the stability condition ρ < 1 is satisfied, we have seen in the previous two

sections how to derive the stationary distribution x of the embedded Markov

chain at arrival instants. Now we want to use this in order to obtain an expres-

sion for the asymptotic distribution of the system process Q = (Qt : t ≥ 0).
Here Qt = (n, j) states that there are n users in the system (including the
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server) and the phase of the service is j at time t. If there are no users in the

system, there is no service either. This is denoted by Qt = (0, 0).

To obtain the asymptotic distribution of Q is a simple matter if we conceive the

system process as a semi-regenerative process in the same way as we already

did in the analysis of the GI/M/1 queue. If T = (TnTT : n ∈ N) denotes the

sequence of arrival instants and X = (XnXX : n ∈ N) is defined as in section 1,

then the independence of the arrival process from the rest of the system yields

G(k,i),(n,j)(t) = P(TnTT +1 − TnTT ≤ t|XnXX = (k, i), XnXX +1 = (n, j)) = H(t)

independently of k, n ∈ N0 and i, j ≤ m. The standard assumption E(H) > 0
on the distribution function H implies that TnTT → ∞ P–almost certainly as

n → ∞. Hence (X , T ) is a Markov renewal chain and Q is semi–regenerative.

In order to employ theorem 7.15 for the calculation of the asymptotic distri-

bution of the system process Q, we already have determined the stationary

distribution ν = x of X in section 2. It remains to derive the vector m of the

mean time between Markov renewal points as well as the function K(t) de-

scribing the behaviour of the system process between Markov renewal points.

The vector m is obtained in a straightforward manner as

mn,i = E(T1TT |X0 = (n, i)) = E(H) (11.6)

independently of n ∈ N0 and i ≤ m, since the arrival process does not depend

on the state of the system. Thus the vector m is constant. The function K(t)
is given by the values K(k,i),(n,j)(t) = P(T1TT > t, Qt = (n, j)|X0 = (k, i)).
Exploiting the independence of arrival process and service and abbreviating

Hc(t) := 1 − H(t), we obtain

K(k,i),(n,j)(t) =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

Hc(t) · PkPP +1−n;ij(t), 1 ≤ n ≤ k + 1

Hc(t) ·∑∞
h=k+1

∑m
j=1 PhPP ;ij(t), (n, j) = (0, 0)

0, n > k + 1

for all t > 0, k, n ∈ N0, and i, j ≤ m.

Denote the asymptotic distribution of the system process by the block vector

y = (yn : n ∈ N0). For n ∈ N the blocks yn = (yni : 1 ≤ i ≤ m) are defined

by yni = limt→∞ P(Qt = (n, i)). The asymptotic probability of the system

being idle is denoted by y0 = y00 = limt→∞ P(Qt = (0, 0)). Now theorem

7.15 yields

Corollary 11.11 If the stability condition ρ < 1 holds, then the asymptotic

distribution of the system process Q = (Qt : t ≥ 0) for the GI/PH/1 queue is
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given by

ynj =

{
λ ·∑∞

k=n−1 xk ψ(k + 1 − n) ej , n ≥ 1

λ ·∑∞
k=0 xk

∑∞
h=k+1 ψ(h) 1, n = 0

with the following notations. H denotes the inter–arrival time distribution,

and Hc(t) := 1−H(t) its complement. λ := 1/E(H) denotes the asymptotic

arrival rate. The vector x = xP̃ contains the stationary distribution of the

embedded Markov chain X at arrival instants, and the matrices PkPP (t) are

given as in corollary 10.6 with ∆ = (T, ηα, 0, 0, . . .). Finally we denoted

ψ(k) :=

∫ ∞

0

∫∫
Hc(t)PkPP (t) dt

for all k ∈ N0.

In the remainder of this section we shall find simpler expressions for y. Be-

cause of theorem 11.1, we first obtain

= λ · x0(I − R)−1

(∫ ∞

0

∫∫
Hc(t)(1 − P0PP (t)1) dt −

∞∑

h=1

Rhψ(h) 1

)

= λ · x0(I − R)−11 · E(H) − λ · x0(I − R)−1
∞∑

h=0

Rhψ(h) 1

Corollary 11.5 yields x0(I − R)−11 = 1. Denoting Ψ[R] :=
∑∞

h=0 Rhψ(h)
and using λ · E(H) = 1, we can write

y0 = 1 − λ · x0(I − R)−1Ψ[R]1 (11.7)

For n ∈ N the same arguments yield

yn = λ ·
∞∑

k=n−1

xk ψ(k + 1 − n) = λ · x0R
n−1Ψ[R] (11.8)

Lemma 11.12 The matrix Ψ[R] is given by

Ψ[R] = (R − R 1α − I) T−1

= λ · x0(I − R)−1
∞∑

h=1

(I − Rh)ψ(h) 1

y0 = λ ·
∞∑

k=0

xk

∞∑

h=k+1

ψ(h) 1 = λ · x0

∞∑

h=1

h−1∑

k=0

Rkψ(h) 1
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Proof: Differentiating equation (10.1) for the PH(α, T ) renewal process yields

P ′
0PP (t) = P0PP (t) T and P ′

nPP (t) = PnPP (t) T + PnPP −1(t) ηα (11.9)

for all n ∈ N. From theorem 11.3 we know the relation R =
∑∞

n=0 RnAn.

For every n ∈ N0 we obtain by partial integration

An =

∫ ∞

0

∫∫
PnPP (t) dH(t) = −

∫ ∞

0

∫∫
PnPP (t) dHc(t)

= − PnPP (t)Hc(t)|∞t=0 +

∫ ∞

0

∫∫
P ′

nPP (t)Hc(t) dt

= δn0I + ψ(n) T + (1 − δn0) · ψ(n − 1) ηα

where δn0 denotes the Kronecker function. Multiplying by Rn and summing

up over all n ∈ N0 yields

R = I + Ψ[R] T + R Ψ[R] ηα (11.10)

Multiplying by 1 we obtain

(I − R)1 = (I − R) Ψ[R]η

By theorem 11.4, the matrix (I−R) is invertible in case of positive recurrence.

Hence Ψ[R]η = 1, which yields after substitution in (11.10)

Ψ[R] T = R − R 1α − I

The statement follows now by invertibility of T .

�

Theorem 11.13 The asymptotic distribution y of Q is given by

y0 = 1 − ρ and yn = λ · x0(R
n (I − 1α) − Rn−1)T−1

for all n ∈ N.

Proof: Substituting the expression of lemma 11.12 in equation (11.7) yields

y0 = 1 − λ · x0

(
−(I − R)−1R 1α − I

)
T−11

= 1 − λ · (α(I − R)−11)−1
(
α(I − R)−1R 1 + 1

)
· (−αT−11)

because of corollary 11.5. Writing 1 = α(I − R)−1(I − R)1 we obtain

y0 = 1 − λ · (−αT−11) = 1 − ρ

Regarding yn with n ∈ N, the statement follows immediately after substitution

of the same expression for Ψ[R] into formula (11.8).

�
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Notes

A classical treatment of the GI/PH/1 queue is given in Neuts [65], who presents

a proof for the necessity of the stability condition, too. Different proofs for the

ergodicity conditions can be found in Asmussen [5] as well as in Meyn and

Tweedie [59].

Tweedie [83] has shown how to generalize the matrix–geometric solution for

GI/M/1 - type matrices towards operator–geometric solutions for GI/M/1 - type

matrices with a general phase space.

Exercise 11.1 Verify that for the PH service time distribution being an expo-

nential one, all results coincide with the results obtained for the GI/M/1 queue.

Exercise 11.2 For corollary 11.5, show that B[R] = 1α.

Exercise 11.3 Show that the mean number of arrivals during a busy period is

given by α(I − R)−11.

Exercise 11.4 Show that the stationary mean number of users in the system

prior to arrivals is given by

N̄aNN = x0(I − R)−21 − 1

Exercise 11.5 Verify equations (11.9).

Exercise 11.6 Show that the asymptotic mean number of users in the system

is given by

N̄ = ρN̄aNN − λx0(I − R)−1T−11

with N̄aNN as defined in exercise 11.4.



Chapter 12

THE BMAP/G/1 QUEUE

Let (N ,J ) denote a BMAP with characterizing matrices ∆ = (Dn : n ∈ N0),
each matrix Dn being of dimension m ∈ N. This shall model the arrival

stream into the queue. The distribution function of the service time shall be

denoted by H and satisfy 0 < E(H) < ∞. The service discipline is FCFS.

Let Q = (Qt : t ≥ 0) denote the system process comprising the phase of the

arrival process. Thus, Qt = (n, i) means that there are n users in the system

at time t and the arrival process has phase JtJJ = i. The state space of Q is

E = N0 × {1, . . . ,m}.

As the analysis of the GI/PH/1 queue was similar to that of the GI/M/1 queue,

we will find many similarities between the BMAP/G/1 and the M/G/1 queueing

systems. To begin with, we will first construct an embedded Markov chain at

the times of service completions. Define T0TT := 0 and TnTT as the time of the

nth service completion. Write T = (TnTT : n ∈ N0). Let XnXX := QTnTT for all

n ∈ N0 and assume that at time zero there are no users in the system. The TnTT
are stopping times for Q and by definition XnXX is a deterministic function of

QTnTT . The assumption 0 < E(H) implies TnTT → ∞ for n → ∞.

At the time instances immediately after service completions we know that the

current service (if there is one) has just begun, and we need only to remember

the current system state in order to predict the system state immediately after

the next service completion. This implies that X = (XnXX : n ∈ N0) is a Markov

chain. The same property of the queue yields condition (7.5). Hence Q is

a semi–regenerative process with embedded Markov renewal chain (X , T ).
Note that this time (as opposed to the embedded chain for the M/G/1 queue)

the Markov chain is two–dimensional with state space E = N0 × {1, . . . ,m}.
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1. The Embedded Markov Chain

Define the matrices

An =

∫ ∞

0

∫∫
PnPP (t) dH(t) (12.1)

and

Bn =
n+1∑

k=1

∫ ∞

0

∫∫
eD0·uDk du

∫ ∞

0

∫∫
PnPP +1−k(t) dH(t) (12.2)

for all n ∈ N0, with PnPP (t) denoting the transition probability matrices that the

BMAP counts n arrivals in time t (see corollary 10.6). The matrix An contains

the probabilities that within a service time n users have arrived. Hence we can

describe some of the transition probabilities for the Markov chain X by

P(X1 = (l + n, j)|X0 = (l, i)) = An+1;ij

independently of l ≥ 1 and for all n ≥ −1 and i, j ≤ m. The matrix Bn

contains the probabilities that first a batch of 1 ≤ k ≤ n + 1 users arrives and

then n+1−k additional users arrive within a service time. This situation occurs

whenever a service completion leaves the queueing system empty. Therefore

we can write

P(X1 = (n, j)|X0 = (0, i)) = Bn;ij

for all n ≥ 0 and i, j ≤ m. In summary we obtain for the transition probability

matrix of X the block structure

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

B0 B1 B2 · · ·
A0 A1 A2 · · ·
0 A0 A1 · · ·
0 0 A0

. . .
...

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

A matrix of this structure is said to be of M/G/1 type, which underlines the

similarity to the embedded Markov chain of the M/G/1 queue. Again we will

call the first dimension n of a state (n, i) the level, and the second dimension i
the phase. With respect to the levels, the Markov chain X is called skip–free

to the left, since in one transition the level can be reduced only by one.

Simplifying the expression (12.2) and using definition (12.1) yields the relation

Bn = −D−1
0

n∑

k=0

Dk+1An−k (12.3)

between the sequences (An) and (Bn), which reduces the computation of the

matrices Bn to a prior computation of the sequence (An).
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2. The Matrix G

Define τnττ as the number of steps until the chain X reaches level n for the first

time. Further define

Gk(i, j) := P(τnττ = k,Xk = (n, j)|X0 = (n + 1, i))

for all k ≥ 1 and i, j ≤ m. The spatial homogeneity of P implies that this

definition is independent of n ≥ 0. Define the matrices Gk of dimension

m × m by their entries Gk(i, j) for i, j ≤ m, and G :=
∑∞

k=1 Gk. Thus the

entry G(i, j) denotes the probability that under the condition that we start in a

level n + 1 ≥ 1 and in phase i, we reach the level n for the first time in state j.

Theorem 12.1 If the Markov chain X is recurrent, then G is stochastic.

Proof: If G is not stochastic, then there is a phase i such that

∞∑

k=1

m∑

j=1

P(τnττ = k,Xk = (n, j)|X0 = (n + 1, i)) < 1

Because the transition matrix P is skip–free to the left, this means that the

function fijff as defined by (2.5) satisfies f(n+1,i),(n,j) < 1 for all n ∈ N0 and

1 ≤ j ≤ m.

By definition of the matrices An and Bn, the Markov chain X is irreducible.

Then X is recurrent by definition if fx,xff = 1 for some state x ∈ E. According

to equation (2.6), fx,xff = 1 can only hold for a state x ∈ E if fx,yff = 1 holds for

all states x, y ∈ E. Hence it follows that X is transient if G is not stochastic.

�

Theorem 12.2 The matrix G satisfies the fixed point equation

G =
∞∑

n=0

AnGn

Proof: First we introduce the auxiliary matrices G
[r]
k with entries

G
[r]
k (i, j) = P(τnττ = k,Xk = (n, j)|X0 = (n + r, i)) (12.4)

for all k, r ≥ 1 and i, j ≤ m. Again, the spatial homogeneity of P implies that

this definition is independent of n ≥ 0. By definition G
[1]
k = Gk for all k ≥ 1.

Because P is skip–free to the left, we have G
[r]
k = 0 for k < r. Summing up
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over the number l of steps until the chain X reaches the next lower level for

the first time, we obtain

G
[r]
k =

k−1∑

l=1

GlG
[r−1]
k−l (12.5)

for all k, r ≥ 1. Further define G[r] =
∑∞

k=1 G
[r]
k for all r ≥ 1. Now we obtain

G[r] =
∞∑

k=1

k−1∑

l=1

GlG
[r−1]
k−l =

∞∑

l=1

Gl

∞∑

k=l+1

G
[r−1]
k−l = GG[r−1]

which implies G[r] = Gr because of G[1] = G. Summing up over the level

reached by X after the first step we finally obtain

G = A0 +
∞∑

n=1

AnG[n] =
∞∑

n=0

AnGn

which was to be proven.

�

Theorem 12.3 The matrix G can be computed by the recursion

G1 = A0 and Gk =
k−1∑

n=1

AnG∗n
k−1

with G = (0, G1, G2, . . .) and the convolutional powers of G as defined on

page 190.

Proof: The first equality follows from the definition of G1. For the second

one, a first passage argument yields

Gk =
k−1∑

n=1

AnG
[n]
k−1

with G
[n]
k as defined in (12.4). Thus it remains to show that G

[n]
k = G∗n

k for all

k ≥ n ∈ N. This relation holds by definition for n = 1 and all k ≥ 1. For

n + 1 the induction step follows from equation (12.5).

�

3. Stationary Distribution at Service Completions

Using the matrix G from the previous section, we are now ready to derive a

recursive scheme for the stationary probability vector x = xP of P . We write
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x = (xn : n ∈ N0), with xn = (xni : 1 ≤ i ≤ m) containing the stationary

probabilities for level n.

Theorem 12.4 If X is positive recurrent, then the vectors xn satisfy the recur-

sion

xn =

(
x0B̄n +

n−1∑

k=1

xkĀn+1−k

)
(
I − Ā1

)−1

for all n ≥ 1, with the definitions

B̄n :=
∞∑

k=n

BkG
k−n and Ān :=

∞∑

k=n

AkG
k−n

for n ≥ 0.

Proof: For n ≥ 1 we consider the Markov chain XF embedded in X at times

of visits to the set F = {(k, i) : 0 ≤ k ≤ n, i ≤ m} of states, which is

equal to levels zero through n. By the definition of G[r] and due to the relation

G[r] = Gr (see the proof of theorem 12.2), the transition probability matrix PnPP
of XF can be written as

PnPP =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

B0 B1 B2 · · · Bn−1 B̄n

A0 A1 A2 · · · An−1 Ān

0 A0 A1 · · · An−2 Ān−1
...

. . .
. . .

. . .
...

...

0 · · · 0 A0 A1 Ā2

0 · · · 0 0 A0 Ā1

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

By theorem 2.29 we know that the vectors x0, . . . ,xn are proportional to the

vectors y0, . . . ,yn with y = (y0, . . . ,yn) satisfying y = yPnPP . Hence we

obtain in particular for the nth column

xn = x0B̄n +
n∑

k=1

xkĀn+1−k (12.6)

According to theorem 12.1 we know that G is stochastic, and thus

Ā11 =
∞∑

k=1

AkG
k−11 =

∞∑

k=1

Ak1 = 1 − A01

Due to corollary 10.7 and definition (12.1), all row sums of the matrix A0 are

strictly positive. This implies that all row sums of Ā1 are strictly less than one,
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and thus I − Ā1 is invertible by Gershgorin’s circle theorem (see corollary

15.11). Therefore, we can transform the relation (12.6) to

xn =

(
x0B̄n +

n−1∑

k=1

xkĀn+1−k

)
(
I − Ā1

)−1

which is the statement.

�

With the above recursion it remains to determine the vector x0 in order to

obtain the stationary distribution at service completions. A simple expression

for this will be obtained as a by–product of the next section.

4. Asymptotic Distribution of the System Process

By means of the stationary distribution x of the embedded Markov chain X
at service completions we can determine the asymptotic distribution y of the

queue’s system process via theorem 7.15. In order to apply this, we need to

obtain the product xm, with m denoting the column vector with entries

mn,i = E(T1TT |X0 = (n, i))

Theorem 12.5 The asymptotic mean time between two service completions is

given by

xm = E(H) − x0D
−1
0 1

Proof: For n > 0 we have mn,i = E(H), since the service does not depend on

the phase of the arrival process. In order to determine the values m0,i, define

τ := min{t ≥ 0 : pr1(Qt) > 0) as the time until the first arrival. Since the

arrival process is independent of the rest of the queue, equation (10.2) can be

applied to yield E(τ |X0 = (0, i)) = −eiD
−1
0 1, with ei denoting the ith row

base vector. Hence we obtain

m0,i = E(τ |X0 = (0, i)) + E(H) = E(H) − eiD
−1
0 1

Now the product xm is given by

xm =

m∑

i=1

(
∞∑

n=1

xniE(H) + x0i(E(H) − eiD
−1
0 1)

)
= E(H) − x0D

−1
0 1

which was to be proven.

�
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In a stationary regime, we expect that the intensities of the flow into and out of

a queueing system equal each other. The asymptotic mean arrival rate is com-

pletely determined by the parameters of the BMAP and was derived in theorem

10.10 as λ = π
∑∞

k=1 kDk1, with π denoting the stationary phase distribution.

The latter is determined by πD = 0, with D =
∑∞

k=0 Dk denoting the gen-

erator of the phase process. The intensity of the flow out of the system can be

measured in terms of the mean time between two service completions, since

every user leaves the system immediately after its service is finished. Thus we

would expect that in under a stationary regime λ = 1/xm holds. This shall be

proven next in

Theorem 12.6 The asymptotic mean time between service completions equals

the inverse of the asymptotic mean arrival rate:

E(H) − x0D
−1
0 1 = λ−1

Proof: Since the arrival process is independent from the rest of the queue,

λ · (E(H) − x0D
−1
0 1) = λ · xm is the asymptotic mean number of arrivals

between two service completions, according to theorem 12.5. We need to show

λ ·xm = 1. Using the stationary distribution x of the embedded Markov chain

X at service completion times, we recognize the following representations:

The number

M1MM =
∞∑

n=1

xn

∞∑

k=1

kAk1

indicates the mean number of arrivals between two service completions for the

case that the prior service completion does not leave the queue empty. The

number

M2MM = −x0D
−1
0

∞∑

k=1

kDk1

signifies the mean batch size of the first arrival after the prior service comple-

tion leaves the system empty. Finally,

M3MM = −x0D
−1
0

∞∑

k=1

Dk

∞∑

k=1

kAk1

represents the mean number of arrivals during the following service time. Thus

we can write M1MM + M2MM + M3MM = λ · xm and it suffices to show that this sum

equals one. To this aim we take a look at the defining equation x = xP .

Analogously to the argument before equation (8.16) for the M/G/1 queue, this
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can be written as

x1A0 = x0(I − B0)

x2A0 = x0(I − B0 − B1) + x1(I − A0 − A1)

x3A0 = x0(I − B0 − B1 − B2) + x1(I − A0 − A1 − A2)

+ x2(I − A0 − A1)

...

Here the nth equation is equivalent to

xnA0 = x0

(
B −

n−1∑

k=0

Bk

)
+

n−1∑

l=1

xl

(
A −

n−l∑

k=0

Ak

)

+ x0(I − B) +
n−1∑

l=1

xl(I − A)

with A =
∑∞

n=0 An and B =
∑∞

n=0 Bn. We first multiply each equation

by 1 from the right, then we add up all equations. Employing the relations

B −∑n−1
k=0 Bk =

∑∞
k=n Bk and A −∑n−1

k=0 Ak =
∑∞

k=n Ak, we obtain

∞∑

n=1

xn

(
A −

∞∑

k=1

Ak

)
1 = x0

∞∑

n=1

nBn1 +
∞∑

n=1

xn

∞∑

k=1

kAk+11

Because of
∑∞

k=1 kAk+1 =
∑∞

k=1 kAk−
∑∞

k=1 Ak and A1 = 1 this simplifies

to

1 − x01 = x0

∞∑

n=1

nBn1 + M1MM (12.7)

x0

∞∑

n=1

nBn1 = −x0D
−1
0

∞∑

n=1

n

n+1∑

k=1

DkAn+1−k1

= −x0D
−1
0

∞∑

k=1

Dk

∞∑

n=k−1

((n + 1 − k) + (k − 1))An+1−k1

= M3MM − x0D
−1
0

∞∑

k=1

(k − 1)Dk

∞∑

n=0

An1

= M3MM + M2MM + x0D
−1
0

∞∑

k=1

Dk1

= M3MM + M2MM − x01

Using Bn = −D−1
0

∑n+1
k=1 DkAn+1−k (see equation (12.3)), the first term on

the right is evaluated as
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where the last equality holds because of
∑∞

k=1 Dk = (D − D0) and D1 = 0.

This and (12.7) yield the statement.

�

Let yni := limt→∞ P(Qt = (n, i)) for n ∈ N0 and 1 ≤ i ≤ m denote the

asymptotic probabilities of the system process Q. Further define the vectors

yn := (yn1, . . . , ynm) for all n ∈ N0 and the sequence y = (yn : n ∈ N0).
Define the m × m matrices K [kn](t) by their entries

K
[kn]
ijK (t) := P(T1TT > t, Qt = (n, j)|X0 = (k, i))

for all t ≥ 0 and k, n ∈ N0. Then the asymptotic distribution y of the sys-

tem process can be expressed in terms of the stationary distribution x of the

embedded Markov chain X via theorem 7.15. As a first result we obtain

Theorem 12.7 The asymptotic probability vector of an empty system is given

by

y0 = −λx0D
−1
0

and has total mass y01 = 1 − ρ, with ρ = λ · E(H).

Proof: For n = 0 the matrices K [kn](t) are zero if k > 0, since during the

time between service completions the number of users in the system cannot

decrease. The remaining matrices K [00](t) are given by

K [00](t) = P0PP (t) = eD0·t

for all t ≥ 0, according to corollary 10.7. Theorem 7.15 now yields

y0 =
1

xm
x0

∫ ∞

0

∫∫
eD0·t dt = λ · x0(−D−1

0 )

which is the first statement. The second one follows from this representation

of y0 and theorem 12.6.

�

Now we will derive a simple expression for the vector x0. To this aim we take

a look at the Markov chain X 0 embedded in X at visits to the level zero. The

state space of this chain is {(0, i) : 1 ≤ i ≤ m}, which is isomorphic to the

phase space {1, . . . ,m} of the BMAP. From theorem 2.29 we know that x0 is

proportional to, i.e. a scalar multiplicative of, the stationary probability vector

of X 0. First we determine the transition probability matrix K for X 0, which is

of dimension m × m. From the definition of G[r] and the relation G[r] = Gr
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we see by a first passage argument and then by equation (12.3) that

K =
∞∑

n=0

BnGn = −D−1
0

∞∑

n=0

n∑

k=0

Dk+1An−kG
n

= −D−1
0

∞∑

k=0

Dk+1

∞∑

n=k

An−kG
n−kGk = −D−1

0

∞∑

k=0

Dk+1G
k+1

= −D−1
0

(
∞∑

k=0

DkG
k − D0

)
= I − D−1

0 D[G]

with D[G] :=
∑∞

k=0 DkG
k. In order to find an expression for the vector

κ = κK, we first need the following representation of the matrix G:

Lemma 12.8 The matrix G can be expressed by

G =

∫ ∞

0

∫∫
eD[G]·tdH(t)

In particular, the invariant probability vector g = gG satisfies gD[G] = 0.

Proof: The matrix G contains the probabilities of phase transitions between a

service completion that does not leave the system empty and the first consecu-

tive service completion which leaves the system with one user less than at the

beginning. During the time between these two service completions the queue

is never empty, which means that this time interval is a finite sum of (randomly

many) service times.

Phase transitions depend on the arrival process only, since this is independent

of the rest of the queue. Thus it does not matter for G which is the service dis-

cipline, as long as the time between the above mentioned service completions

remains the same.

The stated expression for G results if we regard the phase process under the

following service discipline. Whenever a new user arrives, it is immediately

admitted to the server. The current service is interrupted and the user in service

goes to the head of the queue. As soon as a service is completed, the service

of the user at the head of the queue is resumed, i.e. none of the work is lost.

Thus the time that a user spends in the server still equals exactly its service

time. The server is not idle between the above mentioned service completions

and finally, since the arrival process is independent from the service, the num-

ber of arriving users does not change under the new service discipline.

Under the new service discipline, the user that is in service at the beginning of

the time interval concerning G will also be in service when this time interval
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ends, since all users arriving later will be served earlier. If there are no arrivals

during the service time of this user, then phase transitions are governed by the

rate matrix D0. If there is a first (batch) arrival, occuring with rate matrix Dn,

then the phase upon reentering the same level again (when the first user re-

sumes its service) will change according to the rate matrix DnG[n] = DnGn.

Thus the generator for the phase process, if we regard only the lowest level of

the first user in service, is given by D[G] =
∑∞

n=0 DnGn. Since the com-

plete time that the first user spends in the server is exactly its service time, the

expression for G follows.

The second statement gD[G] = 0 for the stationary probability vector g = gG
follows immediatlely from the obtained representation for G.

�

Remark 12.9 The service discipline that was involved in the above proof is

called LCFS (last come first served) discipline with preemptive resume regu-

lation.

Theorem 12.10 The stationary probabilities that the chain X is in level zero

can be expressed by

x0 = −1 − ρ

λ
gD0

and the asymptotic probability vector of an empty system is given by

y0 = (1 − ρ) · g

Proof: The expression K = I − D−1
0 D[G] along with lemma 12.8 yields

that κ = c′ · (−gD0) with some constant c′. Theorem 2.29 now states that a

representation x0 = c · (−gD0) holds with some constant c. By theorem 12.7

this implies

1 − ρ = y01 = λ · c · gD0D
−1
0 1 = λ · c

and thus c = (1 − ρ)/λ. This proves the first statement. The second statement

now is a consequence of theorem 12.7.

�

Theorem 12.11 The asymptotic probability vectors yn for n ≥ 1 are given by

the recursion

yn =

n∑

k=1

(y0Dk + λxk)

∫ ∞

0

∫∫
(1 − H(t))PnPP −k(t) dt
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Proof: An application of theorem 7.15, along with theorems 12.5 and 12.6,

yields

yn = λ
n∑

k=0

xk

∫ ∞

0

∫∫
K [kn](t) dt (12.8)

as between service completions the number of users in the system can only

increase. For k = 0 and n ≥ 1 we obtain

K [0n](t) =

∫ t

0

∫∫
eD0·u

n∑

l=1

Dl · (1 − H(t − u)) · PnPP −l(t − u) du

while for k, n > 0 we have

K [kn](t) = (1 − H(t)) · PnPP −k(t)

In both expressions the independence between arrival process and current ser-

vice is used. Employing them in (12.8) yields

yn = λ · x0

n∑

l=1

∫ ∞

t

∫∫

=0

∫∫ ∫ t

u

∫∫

=0
eD0·uDl · (1 − H(t − u)) · PnPP −l(t − u) du dt

+ λ ·
n∑

k=1

xk

∫ ∞

0

∫∫
(1 − H(t)) · PnPP −k(t) dt

The integral in the first line equals
∫ ∞

u

∫∫

=0
eD0·uDl

∫ ∞

t

∫∫

=

∫∫

u
(1 − H(t − u))PnPP −l(t − u) dt du

=

∫ ∞

u

∫∫

=0
eD0·u du Dl

∫ ∞

t

∫∫

=0

∫∫
(1 − H(t))PnPP −l(t) dt

= −D−1
0 Dl

∫ ∞

t

∫∫

=0

∫∫
(1 − H(t))PnPP −l(t) dt

If we plug this back into the above expression for yn and use y0 = −λx0D
−1
0 ,

we obtain the statement.

�

5. Stability Conditions

As in the previous chapter on the GI/PH/1 queue we will show various stability

conditions to be equivalent. Define A =
∑∞

n=0 An. Then A = (aij)i,j≤m is

the transition matrix for the phase component of the embedded Markov chain

X under the condition that the queue is not empty. More exactly, we have

P(pr2(X1) = j|X0 = (n, i)) = aij
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for all n ≥ 1. Denote the stationary probability vector of A by π = πA.

Further denote the generator of the phase process J by D =
∑∞

n=0 Dn. Com-

pletely analogously to the proof of lemma 11.7 one can show (as an exercise)

that the vector π satisfies πD = 0.

Theorem 12.12 Denote the mean service time by E(H) and the asymptotic

mean arrival rate of the BMAP by λ = π
∑∞

n=1 nDn1. Then

ρ = λ · E(H) = π
∞∑

n=1

nAn1

Proof: Simply using the definition of An yields

π
∞∑

n=1

nAn1 = π
∞∑

n=1

n

∫ ∞

0

∫∫
PnPP (t) dH(t)1 =

∫ ∞

0

∫∫
Eπ(NtNN ) dH(t)

where Eπ(NtNN ) is the expected number of arrivals during time t if the BMAP

starts with a phase distribution π. By theorem 10.10 we have Eπ(NtNN ) = λ · t
and hence

π

∞∑

n=1

nAn1 = λ ·
∫ ∞

0

∫∫
t dH(t) = λ · E(H)

which is the statement.

�

Theorem 12.13 If the stability condition ρ < 1 holds, then the embedded

Markov chain X is positive recurrent.

Proof: As in lemma 11.9 we can find a non–negative solution x to the equation

system

(I − A)x = ā − ρ1 (12.9)

with āi :=
∑

j∈E

∑∞
n=1 nAn;ij for i ∈ E. Define the function f(s, j) = s+xj

for s ∈ N0 and 1 ≤ j ≤ m. Then for r > 0 we obtain

∑

(s,j)

P̃(PP r,i),(s,j)f(s, j) − f(r, i) =
m∑

j=1

∞∑

n=0

An;ij · (r − 1 + n + xj) − r − xi

= r − 1 +
m∑

j=1

∞∑

n=1

nAn;ij +
m∑

j=1

∞∑

n=0

An;ijxj − r − xi

=
m∑

j=1

∞∑

n=1

nAn(i, j) + ρ − āi − 1 = ρ − 1 < 0
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For the exceptional set F = {(0, i) : 1 ≤ i ≤ m} we obtain

which is finite by assumption. Thus the conditions of theorem 2.33 are satis-

fied, which proves the statement.

�

Notes

The first complete analysis of the BMAP/G/1 queue has appeared in a paper by

Ramaswami [71]. In this paper the BMAP was used with its older, more com-

plicated notation under the name N–process. A special case of the BMAP/G/1

queue, namely the MAP/G/1 queue without batch arrivals, has been analyzed

in Lucantoni et al. [56] using the current notation. The recursion scheme for

the stationary probability vectors at service completion times has been intro-

duced by Ramaswami [72]. An outline of Ramaswami’s analysis using the

new notations, along with some new results (namely lemma 12.8 and theorem

12.10), are presented in Lucantoni [54]. The use of a matrix convolutional cal-

culus for the determination of the matrix G has been presented in Baum [9].

A general discussion of M/G/1 type matrices and their use in queueing theory

is presented in Neuts [66], including necessary conditions for the stability of

the queue. A variant of the MAP/G/1 queue with LCFS service discipline is

analyzed in Breuer [20]. For a historical overview of the developments that led

to the BMAP and matrix–analytical methods see Lucantoni [55].

A different proof of theorem 12.6 can be found in Ramaswami [71]. In Neuts

[66] a computation of the matrix G is proposed via the fixed point equation

of theorem 12.2. A more elaborate version of the proof for lemma 12.8 can

be found in Lucantoni and Neuts [57], while the idea for this proof has been

presented in an earlier form of notation by Machihara [58]. A more elementary

proof is given in Lucantoni [54]. Another recursion scheme for the asymptotic

distribution y is presented in Takine [82].

Exercise 12.1 Prove πD = 0 for the stationary distribution π = πA.

Exercise 12.2 Show the existence of a solution x to equation (12.9).

Exercise 12.3 Define the z–transforms X(z) :=
∑∞

n=0 xnzn of the stationary

probability vector at service completions, as well as A(z) :=
∑∞

n=0 Anzn, and

∑

(s,j)

P̃(0PP ,i),(s,j)f(s, j) =
m∑

j=1

∞∑

n=1

nBn;ij +
m∑

j=1

∞∑

n=0

Bn;ijxj
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B(z) :=
∑∞

n=0 Bnzn for |z| ≤ 1.

(a) Show that

B(z) = −z−1D−1
0 (D(z) − D0)A(z)

(b) Use the result above and x = xP to show that

X(z)(zI − A(z)) = −x0D
−1
0 D(z)A(z)

Exercise 12.4 Use exercise 10.2 to show that

∞∑

n=0

PnPP (t)zn = eD(z)·t

Exercise 12.5 Show that D(z) is invertible for 0 ≤ z < 1.

Exercise 12.6 Define ψ(n) :=
∫∞
0

∫∫
(1 − H(t))PnPP (t)dt for all n ∈ N0 and

Ψ(z) :=
∑∞

n=0 ψ(n)zn. Show that

Ψ(z) = (A(z) − I)D(z)−1

Exercise 12.7 Define the z–transform Y (z) :=
∑∞

n=0 ynzn of the asymptotic

probability vector. Show that

Y (z) =

{
λX(z) · (z − 1) · D(z)−1, 0 ≤ z < 1

π, z = 1

Hint: Start by transforming Y (z) − y0 and use exercise 12.6.





Chapter 13

DISCRETE TIME APPROACHES

1. Discrete Phase–Type Distributions

Analogous to the definition of PH distributions in continuous time, we will

define discrete PH distributions in terms of Markov chains with one absorbing

state. Let X denote a Markov chain with finite state space E = {0, . . . ,m}
and a transition matrix structured as

P =

(
1 0
η T

)

Denote the initial distribution of X by the row vector α̃ = (α0, α), where α is

of dimension m. The structure of P shows that state 0 is absorbing. All other

states shall be transient. Let

Z = min{n ∈ N0 : XnXX = 0}
denote the time until absorption in state 0. Define pn := P(Z = n) for all

n ∈ N0. The distribution p = (pn : n ∈ N0) of Z is called a discrete

phase–type distribution, or shortly discrete PH distribution. We also write

Z ∼ PHdHH (α, T ). The number m of transient states is called the order of p. A

transient state is called phase.

An immediate first observation is η = 1−T1, with 1 denoting a column vector

with all entries being one. Further the definition yields

p0 = P(Z = 0) = α0 = 1 − α1 (13.1)

This explains the notation PHdHH (α, T ). Knowledge of α and T is sufficient to

determine α̃ and η and hence completely specify the distribution of Z. There-

fore we call the pair (α, T ) the characterization of a discrete PH distribution.
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Theorem 13.1 Let Z denote a random variable which has a discrete phase–

type distribution with characterization (α, T ). Then

P(Z = n) = αTn−1η and P(Z ≤ n) = 1 − αTn1

for all n ∈ N.

Proof: The structure of P leads to the observation

Pn =

(
1 0

1 − Tn1 Tn

)

for n ∈ N0, which can be verified by induction on n. Together with (13.1) this

yields the second statement. The first one is now obtained as

P(Z = n) = P(Z ≤ n) − P(Z ≤ n − 1) = αTn−11 − αTn1

= αTn−1(1 − T1)

which completes the proof because of η = 1 − T1.

�

By corollary 2.15 we know that invertibility of I − T is equivalent to the pos-

tulate that the states 1, . . . , m be transient. The same arguments as in the con-

tinuous case (see theorem 9.3) serve to show that

Lemma 13.2 A PHdHH (α, T ) distribution is non–defective if and only if the ma-

trix I−T is invertible. Then the expected number EijEE of visits to state j before

absorption, given that the Markov chain X starts in state i, is EijEE = (I−T )−1
ij .

As already stated in the definition, we shall always assume that 1, . . . ,m are

transient states, i.e. that I − T is invertible. The following examples show the

high versatility of the introduced class of distributions.

Example 13.3 Let p = (pn : n ∈ N) denote a geometric distribution with

parameter q, i.e. pn = (1 − q)qn−1 for all n ∈ N. Then p has a discrete PH

representation with order m = 1, α = 1, and T = q. The exit vector is given

by η = 1 − q.

Example 13.4 A generalization of the geometric distribution is the negative

binomial distribution. For parameters N ∈ N, the number of successes sought,

and q ∈]0, 1[, the probability of success, a distribution p is negative binomial

if pn =
(
N+n−1

n

)
qN (1− q)n−N for all n ≥ N . The value pn is the probability

of observing n trials until the N th success. For the special case N = 1 we

obtain the geometric distribution.
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The distribution p has a discrete PH representation with order m = N , initial

phase distribution α = e1 = (1, 0, . . . , 0), and T given by the entries

TijTT =

⎧
⎪
⎧⎧
⎨⎪⎪

⎪
⎨⎨

⎩⎪⎪

1 − q, i = j

q, j = i + 1 ≤ N

0, else

The exit vector is η = (0, . . . , 0, q)T .

Example 13.5 Any discrete distribution p with finite support, i.e. pn = 0
for n > m with some m ∈ N, has a discrete PH representation. We write

p = (p0, . . . , pm). Then there are two possibilities for such a representation.

One is called the remaining time representation. Here we set α̃ = p,

Ti,iTT −1 = 1 for 1 ≤ i ≤ m, and TijTT = 0 otherwise. This implies an exit

vector η = (1, 0, . . . , 0).

The other is called the elapsed time representation. For this we set α0 = p0,

α = (1 − p0, 0, . . . , 0) and

TijTT =

{
1 − pi/(1 −∑i−1

k=0 pk), j = i + 1 ≤ m

0, else

This time we have an exit vector η = (η1, . . . , ηm−1, 1) with entries deter-

mined by ηi = pi/(1 −∑i−1
k=0 pk).

The z–transform of a discrete phase–type distribution p is given by

p∗(z) =
∞∑

n=0

pnzn = α0 +
∞∑

n=1

αTn−1ηzn = α0 + z · α
∞∑

n=1

(zT )n−1η

= α0 + zα(I − zT )−1η (13.2)

for |z| ≤ 1. This expression yields the factorial moments for a random variable

Z ∼ PHdHH (α, T ), namely

E(Z · (Z − 1) · . . . · (Z − k + 1)) = k!α(I − T )−kT k−11 (13.3)

for all k ∈ N. This formula is obtained by differentiating (13.2) k times with

respect to z and evaluating at z = 1. In particular, the mean time to absorption

is given by

E(Z) = α(I − T )−11 (13.4)

Another expression for this will be derived in corollary 13.6.
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2.

Like the discrete time version of phase–type distributions, we can define batch

Markovian arrival processes in discrete time, too. Let Y = (N ,J ) denote a

Markov chain with state space

E = N0 × {1, . . . ,m}

where m ∈ N is some finite number. For a state (n, i) we call the first dimen-

sion n the level and the second dimension i the phase. Let 0 denote the matrix

with all entries being zero. If the transition matrix of Y has a block structure

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

D0 D1 D2 D3 . . .

0 D0 D1 D2
. . .

0 0 D0 D1
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

and D :=
∑∞

n=0 Dn is irreducible, then Y is called a discrete batch Markov-

ian arrival process or shortly discrete BMAP. The Markov chain determined

by the transition matrix D is called the phase process of Y .

Like the continuous time analogue, we want to use discrete BMAPs as a model

for arrival streams. Thus we always assume that D0 is strictly substochastic,

i.e. there is an index n ∈ N with Dn 
= 0

 . Then Y is clearly transient and does

not have a stationary distribution.

The Toeplitz structure of P implies that the transition probabilities

P(Y1YY = (n + k, j)|Y0YY = (n, i)) = Dk(i, j) = P(Y1YY = (k, j)|Y0YY = (0, i))

are homogeneous in the first dimension of the state space. Hence the n–step

transition probabilities are determined by the values

PkPP ;i,j(n) := P(YnYY = (k, j)|Y0YY = (0, i))

Define the m × m matrices PkPP (n) := (PkPP ;i,j(n))i,j≤m and the sequences

P (n) := (PkPP (n) : k ∈ N0) of matrices. By definition

P (0) = (I, 0, 0, . . .)

with I denoting the m × m identity matrix. Define convolutions of matrix

sequences as in section 4. Further write ∆ = (Dn : n ∈ N0). Then clearly

P (1) = ∆, and we can show that

P (n) = ∆∗n

BMAPs in Discrete Time
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for all n ∈ N by the induction step

PkPP (n + 1) =
k∑

i=0

PiPP (n)Dk−i =
k∑

i=0

∆∗n
i Dk−i = ∆

∗(n+1)
k

which holds for all k ∈ N0. The z–transform of P (n) is given by

P ∗
nPP (z) =

∞∑

k=0

PkPP (n)zk =
∞∑

k=0

∆∗n
k zk =

(
∞∑

k=0

Dkz
k

)n

for all n ∈ N. Hence the expectation matrix of the number of arrivals within n
time slots is

E(P (n)) =
∂

∂z
P ∗

nPP (z)

∣∣∣∣∣∣∣∣∣∣
z=1

= n · D ·
∞∑

k=1

kDk

Let π = πD denote the stationary distribution of the phase process. Then the

expected number of arrivals within n time slots given that Y starts with phase

distribution π is obtained as

Eπ(NnNN ) = n · π
∞∑

k=1

kDk1 (13.5)

for all n ∈ N.

Consider now a discrete phase–type distribution with characterization (α, T ).
As usual, define the exit vector by η := 1 − T1. A special class of discrete

BMAPs arises if we set D0 := T , D1 := ηα and Dn := 0 for n ≥ 2. This is

called a discrete PH renewal process or shortly a PHdHH renewal process. For

the stationary phase distribution π = πD with D = Tηα, expression (13.5)

specifies to Eπ(NnNN ) = n · πη for all n ∈ N. Now the same argument as for

corollary 10.12 holds. The described BMAP is a renewal process (in contin-

uous time, denoted by Ñ ) with initial delay X0 ∼ PHdHH (π, T ) and renewal

intervals XnXX ∼ PHdHH (α, T ). The elementary renewal theorem 6.12 states that

lim
t→∞

E(ÑtNN )

t
= lim

t→∞

E(Ñ⌊t⌋)

⌊t⌋
⌊t⌋
t

= lim
n→∞

Eπ(NnNN )

n
=

1

E(X1)

Thus we obtain another expression for the mean of a discrete phase–type dis-

tributed random variable (cf. corollary 13.6).

Corollary 13.6 For a PHdHH (α, T ) distributed random variable X the expec-

tation is given by E(X) = (πη)−1, where π = π(T + ηα) is the stationary

phase distribution.
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3. Blockwise Skip–Free Markov Chains

In chapters 11 and 12 we have analyzed Markov chains of a blockwise Hessen-

berg structure, i.e. they were blockwise skip–free in one direction. For each of

them we have developed an own method of finding the stationary distribution.

Both methods employed matrices of central importance for the formulation of

the stationary distribution. In the former case it was an expectation matrix

called R, in the latter case a stochastic matrix called G.

For the special case that a Markov chain is blockwise skip–free in both direc-

tions, we can hope to combine both approaches and thus obtain more results.

This shall be pursued in this section. We further will see that this kind of

Markov chains can be used as the basic tool for analyzing queues in discrete

time.

An irreducible transition matrix structured as

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

B C
D A1 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

with matrices B, C, D, and Ai having dimensions n × n, n × m, m × n,

and m × m, respectively, is called blockwise skip–free. This matrix defines a

Markov chain X with state space

E = {(0, i) : 1 ≤ i ≤ n} ∪ {(n, j) : n ∈ N, 1 ≤ j ≤ m}

with n, m ∈ N. The first dimension of a state is called level, the second phase.

The special case n = m = 1 is called a skip–free Markov chain (cf. section

2 for the continuous time analogue).

The matrix P satisfies the conditions of blockwise Hessenberg structure in both

directions. Hence the approaches for analyzing the embedded Markov chains

in chapters 11 and 12 apply both. The only difference to be considered are the

matrices B, C, and D at the boundary.

As in section 2 we can define a rate matrix R which satisfies

R = A0 + RA1 + R2A2

according to theorem 11.3. Theorem 11.1 tells us that if there is a stationary

distribution x = (xn : n ∈ N0) for X , then it satisfies the relation

xn+1 = xnR or xn = x1R
n−1 (13.6)
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for all n ∈ N. On the other hand we can define a matrix G as in section 2 by

G = A2 + A1G + A0G
2

due to theorem 12.2. According to theorem 12.1 we know that G is stochastic

if X is recurrent.

Equation (13.6) reduces the problem of finding a stationary distribution x for

P to the determination of x0 and x1. To this aim, we consider the Markov

chain XF restricted to the subset

F = {(0, i) : 1 ≤ i ≤ n} ∪ {(1, j) : 1 ≤ j ≤ m}

of the state space E. Because P is blockwise skip–free, states in level 0 do not

communicate with states in F c = E \ F . Hence transitions from F to F c and

back must go via level 1. Thus we arrive at a transition matrix

PF =

(
B C
D U

)

for XF , where only the lower right–hand entry remains to be determined. The

matrix U contains all probabilities to go from level 1 back to level 1 in a finite

number of steps without entering level 0.

Clearly the probabilities for one step are contained in A1, whence we obtain

U = A1 + U ′. The respective probabilities for more than one step (which are

contained in U ′) must consider visits to the set F c in all but the last step. The

blockwise skip–free structure of P implies that the first step must go from level

1 to level 2, for which the transition probabilities are contained in A0. Then we

need the probabilities to go from level 2 back to level 1 in a finite number of

steps. By definition these are contained in the matrix G (see section 2). Hence

we obtain

U = A1 + A0G

and thus have determined PF completely.

Theorem 2.29 states that positive recurrence of X implies positive recurrence

of XF . Hence PF admits a stationary distribution xF = (xF
0 ,xF

1 ) as the

solution of the linear equation system

(xF
0 ,xF

1 ) = (xF
0 B + xF

1 D,xF
0 C + xF

1 U)

Define c := xF
0 1 + xF

1 (I − R)−11. Then theorem 2.29 yields that

x0 = c−1xF
0 , x1 = c−1xF

1 , xn+1 = x1R
n
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for all n ∈ N is the stationary distribution of X . In fact, we can verify

∞∑

n=0

xn1 = x01 + x1

∞∑

n=0

Rn1 = c−1(xF
0 1 + xF

1 (I − R)−11) = 1

and theorem 2.29 states that (x0,x1) and (xF
0 ,xF

1 ) differ by a constant multi-

ple only.

Define A := A0 +A1 +A2. Since P is irreducible and stochastic, so is A, and

thus there is a stationary distribution π = πA. By theorems 11.10 and 11.8 we

know that X is positive recurrent if the condition

πA11 + 2 · πA21 > 1

holds. Using the definition of A we obtain

1 = πA1 = πA01 + πA11 + πA21

which yields the equivalent condition

πA01 < πA21 (13.7)

for positive recurrence of X .

4. The PH/PH/1 Queue in Discrete Time

As an application we shall analyze the PH/PH/1 queue in discrete time. Inter–

arrival times as well as service times are iid and have a discrete phase–type

distribution, named A and B respectively. The former has characterization

(α, T ) of order n, the latter (β, S) of order m. We set α0 = β0 = 0 in order

to avoid batch arrivals and instantaneous services. Denote the exit vectors by

η = 1 − T1 and ζ = 1 − S1.

Note that by example 13.5, the discrete time GI/G/1 queue is a special case

of the PH/PH/1 queue if inter–arrival and service time distributions have finite

support. By example 13.3, the M/M/1 queue in discrete time as examined in

section 6 is a special case, too.

For any time index n ∈ N0, define the random variables NnNN as the number of

users in the system, KnKK as the phase for the inter–arrival time, and JnJJ as the

phase for the service time. Then the system process Q = ((NnNN , KnKK , JnJJ ) : n ∈
N0) is a Markov chain with state space

E = {(0, k) : 1 ≤ k ≤ n} ∪ {(n, k, j) : n ∈ N, 1 ≤ k ≤ n, 1 ≤ j ≤ m}



Discrete Time Approaches 237

and transition matrix

P =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

B C
D A1 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

where

B = T, C = (ηα) ⊗ β, D = T ⊗ ζ
A0 = (ηα) ⊗ S, A1 = T ⊗ S + (ηα) ⊗ (ζβ), A2 = T ⊗ (ζβ)

Here the composition ⊗ represents the Kronecker product, which is defined in

the pretext of theorem 9.13. The matrices B, C, D, and Ai are of dimensions

n×n, n×nm, nm×n, and nm×nm, respectively. We see that P is blockwise

skip–free which allows us to use results from the preceding section.

Define A := A0 + A1 + A2 and let π = πA denote the stationary distribution

for A. Using exercices 13.4 and 13.5, we obtain

A = (ηα) ⊗ S + T ⊗ S + (ηα) ⊗ (ζβ) + T ⊗ (ζβ)

= (ηα + T ) ⊗ S + (ηα + T ) ⊗ (ζβ) (13.8)

= (T + ηα) ⊗ (S + ζβ) (13.9)

This yields

π = α∗ ⊗ β∗ (13.10)

with α∗ = α∗(T + ηα) and β∗ = β∗(S + ζβ). Condition (13.7) for positive

recurrence of Q specifies to

(α∗ ⊗ β∗) (ηα ⊗ S)1 < (α∗ ⊗ β∗) (T ⊗ ζβ)1

⇐⇒ α∗ηα1 · β∗S1 < α∗T1 · β∗(ζβ)1 (13.11)

⇐⇒ α∗η · β∗(1 − ζ) < α∗(1 − η) · β∗ζ

⇐⇒ α∗η < β∗ζ

By corollary 13.6 this is equivalent to

E(B) < E(A)

which is our usual condition that the mean service time is strictly smaller than

the mean inter–arrival time.
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Notes

Discrete PH distributions have been introduced in Neuts [62, 65]. For an early

application and discrete time MAPs see Alfa and Neuts [4]. A text book pre-

sentation can be found in Latouche and Ramaswami [52]. Discrete phase–type

distributions with infinitely many phases are introduced in Shi and Liu [79].

The analysis of the GI/G/1 queue in discrete time is taken from Alfa and Li [3]

and Alfa [2]. An overview on further results is given in Alfa [1].

Exercise 13.1 Prove lemma 13.2.

Exercise 13.2 Verify the remaining and elapsed time representations intro-

duced in example 13.5.

Exercise 13.3 Prove formula (13.3) for the factorial moments of a discrete

phase–type distribution.

Exercise 13.4 For matrices A, B, and C of appropriate dimensions, prove the

distributive laws

A ⊗ C + B ⊗ C = (A + B) ⊗ C

A ⊗ B + A ⊗ C = A ⊗ (B + C)

for the Kronecker product, and verify equalities (13.8) and (13.9).

Exercise 13.5 For matrices A, B, C, and D of appropriate dimensions, prove

the associative law

(A ⊗ B)(C ⊗ D) = AC ⊗ BD

for the Kronecker product, and verify formula (13.10) and the equivalence

(13.11).

Exercise 13.6 Analogous to an interrupted Poisson process (IPP), we define

an interrupted Bernoulli process. There are two phases (numbered 1 for ”on”

and 0 for ”off”). In every time slot there is a probability p to switch from phase

0 to phase 1 and a probability q to switch back. In phase 1 there is a probability

r of observing one arrival in a time slot. Give an exact definition in terms of a

transition matrix for a discrete MAP. Note the difference to the IPP due to the

possibility of phase change and arrival occuring in the same time slot.



Chapter 14

SPATIAL MARKOVIAN ARRIVAL PROCESSES

With respect to queueing theory we have, for several times, pointed to the

application area of telecommunication networks. In fact, during the last two

decades the analysis of complex systems of that type has become the most

significant issue in applied queueing theory. Modern communication facilities

represent articles of daily use, and are outfit accessories of pedestrians, car

drivers, pilots, and nearly all people who need the contact to other people or

to data processing devices. Mobility and spatial distribution are characteristic

features of these systems. The installation of mobile communication networks

(that started in a technically useful form as early as in 19821) is accompanied in

many cases by a partition of a geographic region into cells covering the whole

area. Customers of such networks get active randomly in time, and are moving

around in and across the cells, eventually stopping their activities (vanishing

as network users) after having been serviced by the providing company.

Transferred into the language of queueing theory we are confronted thereby

with a new type of arrival process and a new species of customers, namely

processes that put their arriving elements (customers) onto certain locations,

and customers who start moving immediately after appearing at a location.

Arrival processes of that kind are characterized by a random behavior in time

and space.

In previous chapters we have stepped through various queueing models until

reaching types ”beyond the exponential”, and we saw that Markovian arrival

processes (MAPs) belong to the most versatile tools for describing the dy-

namics of modern computer networks (and related configurations). What we

1The Advanced Mobile Phone System (AMPS), developed by Bell Laboratories, USA.
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are now about to do is a generalization of these processes to spatial arrival

processes.

1. Arrivals in Space

The Markovian arrival processes (NtNN , JtJJ )t≥0 considered so far had state space

N0 × E, where E = {1, . . . ,m} represented the phase space, NtNN a counting

variable, and (JtJJ )t≥0 a time-homogeneous Markov process. Nothing was said

about ”where” an arrival occurs, or what kind of additional information we can

assign to the ”customers” or ”jobs” that arrive according to a MAP.

The properties of N0 that we needed for an adequate description of the counting

variable NtNN may be seen as to be the following:

(i) We can measure (count) the ”jobs” that arrivals bring into the system

(whatever the latter is),

(ii) we can add sets of ”jobs” that arrived, i.e. the number of ”jobs” that sev-

eral (possibly not subsequent) arrival events produce is the sum of all indi-

vidual arrival sets, and

(iii) (NtNN )t≥0 is an increment process with respect to the portions that arrivals

add to the system, i.e., for α ⊂ N0 with A =
∑

αi∈α αi, and K ⊂ J , we

have

P((NsN +t, JsJ +t) ∈ A × K | NsN = n, JsJ = i) =

P((NsN +t, JsJ +t) ∈ (A − n) × K | NsN = 0, JsJ = i).

This somewhat artificially looking description attains its meaning next when

we are going to generalize the concept of a MAP by adding information to the

arriving elements (e.g. jobs). In more general terms, namely, a MAP can be

regarded as a two-dimensional Markovian jump process (NtNN , JtJJ )t≥0 with state

space U × E, where E represents the phase process, and U has the following

properties:

1 There is a σ-algebra U such that (U,U) is a measurable space with {u} ∈ U
for any u ∈ U.

2 (U,+) forms a semi-group with neutral element o.

3 For A ⊂ U, K ⊂ J , and A − u = {v ∈ U : v + u ∈ A},

P((NsN +t, JsJ +t) ∈ A × K | NsN = u, JsJ = i) =

P((NsN +t, JsJ +t) ∈ (A − u) × K) | NsN = o, JsJ = i).
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In fact, any MAP can be regarded as a so-called Markov-additive jump process,

being defined in general terms as follows. Let U denote a set with properties 1

- 3, and E ⊂ N0.

Definition 14.1 A two-dimensional process (YtYY , JtJJ )t≥0 on a state space U ×
E is called a Markov-additive jump process if (i) (YtYY , JtJJ )t≥0 is a Markov

process, and (ii) for s, t ≥ 0, the conditional distribution of (YsYY +t − YsYY , JsJ +t),
given (YsYY , JsJ ), depends only on JsJ .

It is easy to see that, for any Markov-additive jump process (YtYY , JtJJ )t≥0, the

(phase) component (JtJJ )t≥0 forms a Markov jump process and (YtYY )t≥0 has

conditionally independent increments. That is, given the states of JtJJ ν for

0 ≤ ν ≤ n, the random variables

YtYY
1
− Y0YY , YtYY

2
− YtYY

1
, . . . , YtYY n − YtYY

n−1

are conditionally independent for known J0JJ , JtJJ
1
, . . . , JtJJ n .

Let us now consider Markovian arrival processes in which an arrival event

means the appearance of customers at specific locations, or simply the ap-

pearance of points in some space X. We may speak of localizable arrivals in

this case, and of a spatial arrival process. The term ”spatial” requires some

explanation. Being accustomed to think in terms of the Euclidian space, usu-

ally everybody takes for granted properties of the space X that have particular

mathematical significance. Such properties are (among others)

(i) X is a metric space with metric d : X × X → R0.

(ii) Any Cauchy sequence {xn} in X is convergent.2

(iii) X contains a countable dense subset.

A space with these properties is called a Polish space. Since (ii) means com-

pleteness, and (iii) separability, a Polish space can be defined more precisely as

a complete separable metric space (X, d). In such a space any compact subset

is closed, and any isolated point constitutes a closed subset. This is the type

of space we take as a basis, i.e. when speaking of localizable arrivals. Accord-

ingly, when using the notion of a spatial arrival process we shall constantly

refer to arrivals in a Polish space.

2A sequence satisfying d(xn, xm) → 0 as m, n → ∞.
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The appearance of (finitely many) points in X can mathematically be inter-

preted as the occurrence of some certain (finite) counting measure ν. This

is due to the fact that counting measures are the primary ingredients of point

fields. Let B(X) denote the Borel σ-algebra of (X, d), and µ a locally finite

measure on B(X), i.e. a measure with the property that for each x ∈ X there

is some open vicinity U(x) such that µ(U) < ∞. Assume that µ has the

following regularity property:

µ(A) = sup{µ(K) : K ⊂ A, K compact} for any A ∈ B(X).

Then µ is called a Radon measure, and if the range of µ is N0, it is called a

(Radon) counting measure. Any counting measure defines what we may call

a point field in X. We know that arrival events in a Markovian arrival process

(MAP) occur randomly in time. In a similar way, when assuming that each

arrival specifies a set of points (or, in case, a single point) in space, we should

naturally propose that these points are located randomly in the space. A spatial

MAP, hence, produces random point fields in a space X over time.

What is the precise mathematical description of a random point field? Let V

denote the family of all counting measures, and let, for each subset S ∈ B(X),
Vn(S) be the set of all measures µ with µ(S) = n. The σ-algebra V that is

generated by the family

M =
{

Vn(S) : n ∈ N0, S ∈ B(X)
}

(of sets of measures) defines V as a measurable space (V,V) of counting mea-

sures over the Polish space (X, d). The σ-algebra V is rich enough to allow the

distinction of single measures, i.e. every singleton {µ} in V is measurable.3

The answer to our above question is easy now: Given some probability space

(Ω,A, P), a random point field is nothing else than a measurable mapping

F : Ω → V.

Obviously, the family V of counting measures over (X, d) forms a semi-group

with respect to addition, where the sum µ + ν of measures is defined as the

measure (µ + ν)(S) = µ(S) + ν(S) for all S ∈ B(X). The neutral element o
is the measure that assigns zero points to any subset S ∈ B(X). We introduce

the following notation: Let A, B ∈ V; then

A − ν = {µ ∈ V : µ + ν ∈ A},
µ + B = {µ + ν ∈ V : ν ∈ B},
A − B = {µ ∈ V : µ + B ⊂ A}.

3This is due to the fact that a locally finite measure µ on (X, d) is determined already by its values µ({x})
on the singletons x in X.
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From these properties it is easy to deduce that V can well be used as the state

space of the counting variable of some Markov-additive jump process. As that

it is an arrival process for measures. More precisely, we introduce what we call

an SMAP for short.

Definition 14.2 A homogeneous Markov-additive jump process (YtYY , JtJJ )t≥0

with state space V × E, where (V,V) is a measurable space of counting mea-

sures over a Polish space (X, d), is called a spatial Markovian arrival process

or SMAP.

Each jump in an SMAP (YtYY , JtJJ )t≥0 is to be interpreted as the arrival of some

point field in X (corresponding to a finite measure ν over X) together with some

certain phase transition i → j (i, j ∈ E). YtYY is the random variable describing

the very point field that is created by superposition of all those locally finite

counting measures that arrived under the SMAP up to time t.

For A ⊂ V and K ⊂ J , the probabilities

P(YtYY ∈ A, JtJJ ∈ K | Y0YY = o, J0JJ = i) =: pt(0, i; A × K)

define what is usually called the transition kernel of the process. Accordingly,

we call

d

dt
P(YtYY ∈ A, JtJJ ∈ K | Y0YY = o, J0JJ = i) =: q(0, i; A × K)

the transition rate kernel of the SMAP (here we propose A×K 
=

 {(o, i)}).

Using this notation we define, for each subset S ∈ B(X), the subset specific

transition kernels

PtPP (n; S) = (PtPP (n, ij; S))i,j∈E = (pt(0, i; Vn(S) × {j}))i,j∈E (14.1)

as well as the subset specific transition rate kernels

Dn(S) = (Dn;ij(S))i,j∈E = (q(0, i; Vn(S) × {j}))i,j∈E . (14.2)

Now we are in the position to define a correlated family of subset specific spa-

tial BMAPs by counting, in any fixed subset S ∈ B(X), the points that occur

within S according to the arrivals under the SMAP (YtYY , JtJJ )t≥0. Since a batch

Markovian arrival process, as a Markov process, is completely determined by

its generator, it suffices to specify a generator G(S) for any measurable subset

S of X. This is done by setting

G(S) =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

D0(S) D1(S) D2(S) . . .
O D0(S) D1(S) . . .
O O D0(S) . . .
...

... . . .
. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ . (14.3)
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The assertion that G(S) is a generator matrix with

∞∑

n=0

∑

j∈E

Dn;ij(S) = 0 ∀ i ∈ E

is justified by the following lemma.

Lemma 14.3 For every S ∈ B(X), the sum
∑∞

n=0 Dn(S) = D forms the

generator matrix of the phase process (JtJJ )t≥0 of the SMAP (YtYY , JtJJ )t≥0, inde-

pendently of S.

Proof: Excluding transitions of the form (o, i) → (o, i) we have, for j 
=

 i,

∞∑

n=0

Dn;ij(S) =
∞∑

n=0

q((o, i), Vn(S) × {j})

= q((o, i),
⋃

n∈N0

Vn(S) × {j})

=
d

dt
p
(
t; (o, i),

⋃

n∈N0

Vn(S) × {j}
)

=
d

dt
P

(
JtJJ = j | J0JJ = i

)
= Dij .

On the other hand, for j = i,

∞∑

n=0

Dn;ii(S) = Dii(S) = −
∑

j �=�� i

Dij(S)

= −
∑

j �=�� i

∞∑

n=0

Dn;ij(S) = −
∑

j �=�� i

Dij = Dii ,

and hence,
∑∞

n=0 Dn(S) = D, independently from the choice of S ∈ X .

�

The BMAP (NtNN (S), JtJJ )t≥0 with generator matrix G(S) is called a spatial

BMAP over the subset S ∈ B(X), or SBMAP over S for short.

Notice, that a common BMAP as introduced in chapter 10 can be seen as an

SMAP over a single point X = {x} with time-homogeneous phase process.

If E = {1}, then (YtYY )t≥0 is a space-time Poisson process with general spatial

distribution. Such Poisson processes have been considered by Serfozo [77] and

Breuer [21].
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2. Properties of Spatial MAPs

We call an SMAP regular, if
∑

(n,j)=(0�� ,i) Dn;ij(S) = −D0;ii(S) > 0, and

stable if −D0;ii(S) < ∞ for any S ∈ B(X), i.e. an SMAP is stable if the

total arrival rate connected with any phase transition is finite. We assume reg-

ularity and stability throughout. Let us ask for the phase depending probabil-

ities PtPP (k; S) that k customers have arrived until time epoch t in some subset

S ∈ B(X). Since, for fixed S, we can proceed as in case of a common BMAP,

we immediately obtain

PtPP (k; S) =
(
e∗∆(S)·t

)
k

=
∞∑

n=0

tn

n!
∆(S)∗nk ,

where

∆(S)∗nk = G(S)n
0 k for k ≥ 0.

As a consequence, the counting variables NtNN (S) satisfy

P(NtNN (S) = n, JtJJ = j | N0NN (S) = 0, J0JJ = i) = PtPP (n, ij; S). (14.4)

We also have PtPP (0; S) = eD0(S)·t as before, and PtPP (n; S) =
(
e∗∆(S)·t

)
n

.

Written in block matrix form, PtPP (S) reads

PtPP (S) =

⎛
⎜
⎛⎛

⎜⎜⎜⎜⎜⎜⎝⎜⎜

eD0(S)·t
(
e∗∆(S)·t

)
1

(
e∗∆(S)·t

)
2

. . .

O eD0(S)·t
(
e∗∆(S)·t

)
1

. . .

O O eD0(S)·t . . .
...

...
...

. . .

⎞
⎟
⎞⎞

⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Justified by our result
∑∞

n=0 Dn(S) = D, the phase process (JtJJ : t ≥ 0) is the

same for any SBMAP over S ∈ B(X) and plays the same role as in case of a

common BMAP. Hence, the form of the transition matrix PΦ
tPP of (JtJJ : t ≥ 0)

remains unchanged as PΦ
tPP = eD·t.

Facing this and the above statements it is obvious that nearly all properties of

a common BMAP reappear as those of an SMAP when considering only one

fixed subset S ∈ B(X).

There are two points, but, that have to be emphasized when dealing with an

SMAP:

1 We have to determine also joint distributions of points in different subsets

Sν , ν = 1, . . . ,K, for any given family {S1, . . . , SK} ⊂ B(X) in order to

fully define a spatial arrival process (and to allow realistic applications of

the theory).
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2 There is a need for recipies for defining the random point fields that occur

according to arrivals under the SMAP.

Addressing the first point, consider a family of measurable subsets S1, . . . , SK

in the Polish space X. The joint distribution of points in such a family that

accumulated due to arrivals under the SMAP can be determined as follows.

Let the sets S1, . . . , SK ∈ B(X) be disjoint4, and set S = (S1, . . . , SK),
n = (n1, . . . , nK). We use the notation

Vn(S) = {ν ∈ V : ν(Sk) = nk, 1 ≤ k ≤ K},
PtPP (n, i, j;S) = p(t; i, Vn(S) × {j}),
D(n, i, j;S) = q(i, Vn(S) × {j}),

PtPP (n;S) = (PtPP (n, i, j;S))i,j∈E ,

D(n;S) = (D(n, i, j;S))i,j∈E ,

PtPP (S) = {PtPP (n;S)}
n∈NK

0
,

∆(S) = {D(n;S)}
n∈NK

0
.

Then, due to conditional independence of increments, the Chapman-Komogorov

equations hold exactly as in the case of a common BMAP, i.e. written in con-

volutional form,

PtPP +τ (S) = PtPP (S) ∗ PτPP (S).

By subtracting PtPP (S) on both sides and forming the differential quotient, we

obtain the Chapman-Kolmogorov differential equations:

d

dt
PtPP (S) = ∆(S) ∗ PtPP (S) .

Similar to the case of one-dimensional Markov processes as seen in chapter

10, the solution of these equations takes the (convolutional) exponential form:

PtPP (S) = e∗∆(S) t, PtPP (n;S) =
∞∑

k=0

tk

k!
(∆∗k(S))n .

Thus, the expressions for joint distributions of customer populations in disjoint

subsets formally resemble those of a one-dimensional BMAP. The correspond-

ing expressions for the SMAP with respect to one single subset S ∈ B(X) are

obtained from the results for K = 1.

Addressing now the second point, one possible method to specify the types of

the random point fields occurring as arrivals under an SMAP is the following.

4It should be obvious that there is no loss of generality by that assumption, since intersections may be

treated as separate subsets.
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Start with some common BMAP that is given in form of its phase process

(JtJJ : t ≥ 0) and its rate matrices Dn = (Dn;ij)i,j∈E . Then define a family

Φ = {φij : i, j ∈ E}

of probability measures over the Polish space (X, d), such that, for any S ∈
B(X), φij(S) represents the probability that an arriving batch in coincidence

with a phase transition from i to j is located in S. To be more concrete, let

pi(n, j) denote the probability that the BMAP, upon changing its phase from i
to j, creates a batch of size n ≥ 0. Then we define

pi(n, j; S) = pi(n, j)φij(S) for all i, j ∈ E, n ≥ 1,

pi(0, j; S) = pi(0, j) +

∞∑

n=1

pi(n, j; X \ S) for all j 
=

 i.

In this notation pi(n, j; S) is the probability that a batch of size n is located

in S in coincidence with a phase transfer from i to j. Let, as usual, NtNN be the

random number of jobs arrived until t according to the BMAP, and γiγγ be the

total instantaneous transition rate when the phase is i, i.e.

γiγγ =

∞∑

n=0

∑

j∈E
j �=�� i

Dn;ij +

∞∑

n=1

Dn;ii, i ∈ E.

The BMAP (NtNN , JtJJ )t≥0 is completely described by its rate matrices, and so

would be our spatial MAP if its rate matrices were given in turn. The latter,

now, can be easily realized for each S ∈ B(X) by setting

D0;ii(S) = −γiγγ

(
1 −

∞∑

n=1

pi(n, i; X \ S)

)
,

D0;ij(S) = γiγγ pi(0, j; S) for j 
=

 i,

Dn;ij(S) = γiγγ pi(n, j; S) for n ≥ 1.

These matrices define the generator of the SBMAP over S and thereby the

process itself. The family Φ of probability measures φij over X determines

where to locate a batch, and the size of any batch arriving under the BMAP

specifies the number of points at that very location. This is for sure a somewhat

restrictive specification of the random point fields (each by intuition may be

seen as to be a superposition of points at one location), but since the locations

themselves vary according to the measures φij the method works in practice.

Another method may consist in assigning, to each pair (i, j) ∈ E × E some

positive integrable fuction ξij : X → R
+, such that each S ∈ B(X) contains a
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random number N(S) of points with probability

ϕij(S)n

n!
e−ϕij(S),

where

ϕij(S) =

∫

S

∫∫
ξij(x)dx.

This leads us to some simple type of a random Poisson field with mean ϕij(S)
for any S ∈ B(X). The connection to SMAP arrivals is given by setting

pi(n, j; S) =
ϕij(S)n

n!
e−ϕij(S) for n ≥ 1,

pi(0, j; S) = e−ϕij(S) for j 
=

 i,

pi(0, i; S) = 0.

Let the total transition rate γiγγ out of some state (v, i) for an SMAP be given.

Then, assuming E = {1, . . . ,m},

Dn;ij(S) = γiγγ pi(n, j; S) for (n, j) = (0

 , i)

D0;ii(S) = −γiγγ (m − e−ϕii(S)),

where γiγγ is some finite positive constant for every i ∈ E.

Comments on the modelling of customer motion.

It is easy to see that we can describe the movement of customers by time de-

pendent mappings of the Polish space (X, d) into itself. A customer in a mobile

communication system, for example, who is located at time t0 at a point x(t0)
when requesting a call, may move from x(t0) to y = x(t1) during a time in-

terval (t0, t1]. That way, if he is active for, say, T time units, he follows some

curve {x(s) : s ∈ [t0, t0 + T ]} through the landscape and then vanishes from

the system — from the point of view of the telecommunication provider — due

to call completion. In our models the ”landscape” is part of the Polish space

(X, d), and the curve relates the points x(t) to the user’s starting point x(t0)
according to some rule Υt : x(t0) �→ x(t0 + t) = x(t) for 0 ≤ t ≤ T . If we

know the parameters x(t0) (the arrival location), T (the service time duration),

and Υt (the rule for the displacement after t time units) for each user, we can

decide at any time whether or not there is an active user in the system at some

arbitrary location y. The system would be a queueing system in space and

time. For its analytical description a pecularity has to be taken into account:

In reality, the point mappings Υt : x(t0) �→ x(t0 + t) are resembling random

walks in most cases since human customers normally behave individually and

the curves they follow are random in general, and completely different. One
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way to cope with this problem is to prescribe probabilities for the displace-

ment of customers with respect to their arrival locations and arrival times. A

much more simple approach is based on the assumption of deterministic mo-

tion where the (Υt : t ≥ 0) form a given topological group of mappings. In

fact, this restriction is not that serious as it may seem at a first glance. On

the one side, in many practical situations one is faced with the task to model

the impact of movements that take place along streets or railway lines, such

that there are streams of uniformly moving individuals or cars or trains subject

to the same deterministic law. On the other side, the superposition of sev-

eral (finitely many) streams of that type may well mirror an average behaviour

of customers in more complex configurations. Such superpositions, although

causing additional analytical complexity, can be handled in principle without

problems. Let us shortly indicate how to determine time dependent probabili-

ties for the spatial distribution of customers (users of some facility, jobs, etc.)

in a space-time queueing system.

We assume that there is a service process defined that reflects the treatment of

the customers up to their disappearance out of the system. Let R = (Υt : X →
X, t ≥ 0) be an abelian topological group with the topology O = {Υs : s ∈
O, O open in (X, d)}. Then the following holds.

1 Given any neighbourhood W of Υt ◦ Υs, there are neighbourhoods U and

V such that U ◦ V ⊂ W .

2 For any neighbourhood V of Υ−1
t there is some neighbourhood U with

U−1 = {Υ−1
r : Υr ∈ U} ⊂ V.

We write Υt+s for Υt ◦ Υs, and assume that any customer starts moving im-

mediately after arriving at location x according to the law

Υs(x) = x(s), s ∈ (0, T ], (14.5)

where T is the time he spends in the system. The set

Υs[S] = {y = Υs(x) : x ∈ S}, s ≥ 0

is called the displacement set of S for any S ∈ B(X). Similarly, the set

Υ−s[S] = {x : Υs(x) ∈ S}, s ≥ 0

is called the source set of S with respect to Υs[S]. Note that Υ−s[S] =
(Υs)

−1[S] due to proposed group property. Given a spatial Markovian arrival

process as mentioned above, we are able to compute the probability matrices

PtPP (S) describing the phase depending numbers of arrivals up to time t for any
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subset S ∈ B(X). A customer is called (S, t)-resident if, after his arrival

somewhere in X at a time u ≤ t, his service (that started at u) continues to go

on beyond t, and his location at time t is in S ∈ B(X). The random number

of (S, t)-resident customers observed at time u ≤ t is denoted by Nu,tNN (S),
such that NtNN (S) = Nt,tNN (S) represents the number of all those customers who

are located in S at time t. Assume that there is a possibility to determine the

probabilities

Qr;ij(u, t; S) = P(Nu,tNN (S) = r, JuJJ = j | N0NN ,t(S) = 0, J0JJ = i)

that define the distribution of the random variables NtNN (S) in case that cus-

tomers do not move.5 Then, if movements are allowed and happen according to

the law (14.5), the corresponding distribution for NtNN (S) is obtained by merely

replacing S in Qr;ij(u, t; S) by its source set Υ−(t−u)[S] and performing the

same computation.

Notes

A first definition of a spatial batch Markovian arrival processes based on the

construction of probability mass functions in the Euclidean space traces back

to Baum [10]. Subsequent treatments and generalizations are due to Baum and

Kalashnikov [11], and Breuer [21]. In [21] a type of spatial process has been

investigated (among others) that is classified as a space-time Poisson process

with general spatial distribution. This type has been considered also by Ser-

fozo in [77]. An important application area of spatial BMAPs and correspond-

ing queueing models is the performance analysis of todays telecommunication

systems. The handling of customer motion during service in such systems has

been treated by Baum and Kalashnikov [12, 13], and Baum and Sztrik [14].

Exercise 14.1 Let the subset specific rate matrices of an SMAP be given by

Dn;ij(S) = γiγγ pi(n, j; S) for (n, j) = (0

 , i)

D0;ii(S) = −γiγγ

(
1 −

∞∑

n=1

pi(n, i; X \ S)

)
,

where pi(n, j; S) is determined as the probability for the event that an arrival

under a common BMAP occurs in S together with a phase transition i → j,

pi(n, j; S) being defined with means of a family

Φ = {φij : i, j ∈ E}

5Techniques for the computation of the Qr;ij(u, t; S) are presented, for example, in [13].
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of probability measures over the Polish space (X, d) as mentioned in the text

above.

The particular arrival rates λi(S) into S must be dependent upon the choice of

subset S ∈ B(X). The spatial BMAP that is generated with respect to the fixed

chosen subset S can be expressed, for (n, j) = (0

 , i), by its rates λi(S) and

routing probabilities πi(n, j; S) according to Dn;ij(S) = λi(S) · πi(n, j; S),
where πi(n, j; S) is the probability that n customers arrive in S together with

a phase transition from i to j. Show, that

λi(S) = γiγγ

(
1 −

∞∑

n=1

pi(n, i; X \ S

)
,

πi(n, j; S) =
pi(n, j; S)

1 −∑∞
n=1 pi(n, i; X \ S)

for (n, j) = (0

 , i).

Exercise 14.2 Consider the second version of an SMAP realization given in

the text above, where each point field that occurs together with a phase transi-

tion i → j is a Poisson point field with mean ϕij . Show that, for any S ∈ B(X),
ϕij(S) = E[N(S)], where N(S) is the random variable describing the number

of points in S.





Chapter 15

APPENDIX

1. Conditional Expectations and Probabilities

Let (Ω,A, P ) denote a probability space and (S,B) a measurable space. A

random variable is a measurable mapping X : Ω → S, which means that

X−1(B) ∈ A for all B ∈ B. In other words, X is a random variable if and

only if X−1(B) ⊂ A. In stochastic models, a random variable usually gives

information on a certain phenomenon, e.g. the number of users in a queue at

some specific time.

Consider any real–valued random variable X : (Ω,A) → (R,B), B denoting

the Borel σ–algebra on R, which is integrable or non–negative. While the

random variable X itself yields the full information, a rather small piece of

information on X is given by its expectation

E(X) :=

∫

Ω

∫∫
X dP

The conditional expectation is a concept that yields a degree of information

which lies between the full information X and its expectation E(X).

To motivate the definition, we first observe that the distribution PX = P ◦X−1

of X is a measure on the sub–σ–algebra X−1(B) of A, i.e. in order to compute

P (X ∈ B) = PX(B) =

∫

X

∫∫

−1(B)
dP

we need to evaluate the measure P on sets

A := X−1(B) ∈ X−1(B) ⊂ A
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On the other hand, the expectation E(X) is an evaluation of P on the set Ω =
X−1(S) only. Thus we can say that the expectation employs P only on the

trivial σ–algebra {∅, Ω}, while X itself employs P on the σ–algebra X−1(B)
generated by X .

Now we take any sub–σ–algebra C ⊂ A. According to the Radon–Nikodym

theorem there is a random variable X0 : Ω → S with X−1(B) = C and

∫

C

∫∫
X0dP =

∫

C

∫∫
XdP (15.1)

for all C ∈ C. This we call the conditional expectation of X under C and

write

E(X|C) := X0

A conditional expectation is P–almost certainly uniquely determined by (15.1).

Typical special cases and examples are

Example 15.1 For C = {∅, Ω}, the conditional expectation equals the expec-

tation, i.e. E(X|C) = E(X). For any σ–algebra C with X−1(B) ⊂ C we obtain

E(X|C) = X .

Example 15.2 Let I denote any index set and (YiYY : i ∈ I) a family of random

variables. For the σ–algebra C = σ(
⋃

i∈I Y −1
iYY (B)) generated by (YiYY : i ∈ I),

we write

E(X|YiYY : i ∈ I) := E(X|C)

By definition we obtain for a σ–algebra C ⊂ A, random variables X and Y ,

and real numbers α and β

E(αX + βY |C) = αE(X|C) + βE(Y |C)

For σ–algebras C1 ⊂ C2 ⊂ A we obtain

E(E(X|C2)|C1) = E(E(X|C1)|C2) = E(X|C1) (15.2)

Let C1 and C2 denote sub–σ–algebras of A, C := σ(C1 ∪ C2), and X an inte-

grable random variable. If σ(X−1(B) ∪ C1) and C2 are independent, then

E(X|C) = E(X|C1)

If X and Y are integrable random variables and X−1(B) ⊂ C, then

E(XY |C) = X · E(Y |C) (15.3)
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Conditional probabilities are special cases of conditional expectations. Define

the indicator function of a measurable set A ∈ A by

1A(x) :=

{
1, x ∈ A

0, x /∈// A

Such a function is a random variable, since

1−1
A (B) = {∅, A, Ac, Ω} ⊂ A

with Ac := Ω \ A denoting the complement of the set A. Let C denote a

sub–σ–algebra of A. The conditional expectation of 1A is called conditional

probability of A. We write

P (A|C) := E(1A|C)

Immediate properties of conditional probabilities are

0 ≤ P (A|C) ≤ 1, P (∅|C) = 0, P (Ω|C) = 1

A1 ⊂ A2 =⇒== P (A1|C) ≤ P (A2|C)

all of which hold P–almost certainly. For a sequence (An : n ∈ N) of disjoint

measurable sets, i.e. An ∈ A for all n ∈ N and Ai ∩ Aj = ∅ for i 
=

 j, we

obtain

P

(
∞⋃

n=1

An

∣∣∣∣∣∣∣∣∣∣∣∣∣ C
)

=

∞∑

n=1

P (An|C)

P–almost certainly. Let X : (Ω,A) → (R,B) denote a non–negative or inte-

grable random variable and Y : (Ω,A) → (Ω′,A′) a random variable. Then

there is a measurable function g : (Ω′,A′) → (R,B) with

E(X|Y ) = g ◦ Y

This is P Y –almost certainly determined by

∫

A

∫∫

′

g dP Y =

∫

Y

∫∫

−1(A′)
X dP

for all A′ ∈ A′. Then we can define the conditional probability of X given

Y = y as g(y). We write

E(X|Y = y) := g(y)

for all y ∈ Ω′.
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2. Extension Theorems

Throughout this book, our basic stochastic tools are either sequences of ran-

dom variables (such as Markov chains or Markov renewal chains) or even un-

countable families of random variables (such as Markov processes, renewal

processes, or semi–regenerative processes). It is essential for our models that

these random variables are dependent, and in fact we define them in terms of

conditional probabilities, i.e. via their dependence structure.

It is then an immediate question whether a probability measure P exists that

satisfies all the postulates in the definition of a stochastic sequence or process.

This question is vital as it concerns the very existence of the tools we are using.

2.1 Stochastic chains

Let (S,B) denote a measurable space, µ a probability measure on (S,B), and

PnPP , n ∈ N, stochastic kernels on (S,B). The latter means that for every

n ∈ N, PnPP : S × B → [0, 1] is a function that satisfies

(K1) For every x ∈ S, PnPP (x, .) is a probability measure on (S,B).
(K2) For every A ∈ B, the function PnPP (., A) is B–measurable.

Define S∞ as the set of all sequences x = (xn : n ∈ N0) with xn ∈ S for all

n ∈ N0. A subset of S∞ having the form

CnCC
1,...,nk

(A) = {x ∈ S∞ : (xn1
, . . . , xnk

) ∈ A}
with k ∈ N, n1 < . . . < nk ∈ N0, and A ∈ Bk, is called cylinder (with

coordinates n1, . . . , nk and base A). The set C of all cylinders in S∞ forms an

algebra of sets. Define B∞ := σ(C) as the minimal σ–algebra containing C.

Now we can state the extension theorem for sequences of random variables,

which is proven in Gikhman and Skorokhod [37], section II.4.

Theorem 15.3 There is a probability measure P on (S∞,B∞) satisfying

P(C0CC ,...,k(A0 × . . . × Ak)) =

∫

A

∫∫

0

dµ(x0)

∫

A

∫∫

1

P1PP (x0, dx1) . . .

. . .

∫

A

∫∫

k−1

PkPP −1(xk−2, dxk−1) PkPP (xk−1, Ak) (15.4)

for all k ∈ N0, A0, . . . , Ak ∈ B. The measure P is uniquely determined by the

system (15.4) of equations.

The first part of the theorem above justifies our definitions of Markov chains

and Markov renewal chains. The second part states in particular that a Markov

chain is uniquely determined by its initial distribution and its transition matrix.
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Based on this result, we may define a stochastic chain with state space S as a

sequence (XnXX : n ∈ N0) of S–valued random variables which are distributed

according to a probability measure P on (S∞,B∞).

2.2 Stochastic processes

Let S denote a Polish (i.e. a complete separable metric) space, and B the Borel

σ–algebra on S. Define Ω as the set of all functions f : R
+
0 → S. In order to

construct an appropriate σ–algebra on Ω, we again start from the cylinder sets

CtCC
1,...,tk(A) = {f ∈ Ω : (f(t1), . . . , f(tk)) ∈ A}

for k ∈ N, t1 < . . . < tk ∈ R
+
0 , and A ∈ Bk. Denote the set of all cylinders in

Ω by C. Again, C forms an algebra of sets and we can define A := σ(C) as the

minimal σ–algebra containing C.

Let M = {µt1,...,tk : k ∈ N, t1, . . . , tk ∈ R
+
0 } denote a family of probability

distributions with

(C1) For all k ∈ N, t1, . . . , tk ∈ R
+
0 , and A ∈ Bk

µt1,...,tk,tk+1
(A × S) = µt1,...,tk(A)

(C2) For all k ∈ N and permutations π : {1, . . . , k} → {1, . . . , k}
µπ(t1,...,tk)(π(A)) = µt1,...,tk(A)

Then the family M is called compatible.

Remark 15.4 Condition (C1) ensures that the distributions are consistent with

each other, while condition (C2) is merely notational.

The following extension theorem by Kolmogorov is proven in Gikhman and

Skorokhod [39], section 3.2.

Theorem 15.5 Let {µt1,...,tk : k ∈ N, t1, . . . , tk ∈ R
+
0 } denote a compati-

ble family of probability measures. Then there is a probability measure P on

(Ω,A) with

P({f ∈ Ω : (f(t1), . . . , f(tk)) ∈ A}) = µt1,...,tk(A) (15.5)

for all k ∈ N, t1, . . . , tk ∈ R
+
0 , and A ∈ Bk. The measure P is uniquely

determined by the system (15.5) of equations.

Based on this, we define a stochastic process with Polish state space S as a

family X = (XtXX : t ∈ R
+
0 ) of S–valued random variables which are dis-

tributed according to a probability measure P on (Ω,A). An element ω ∈ Ω
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is an arbitrary function ω : R
+
0 → S. It is also called a path of X . If we

want to state that the support of P consists of a special class of functions (say

right–continuous ones), then we say that X is a stochastic process with right–

continuous paths. The above family M of probability measures is called the

set of finite–dimensional marginal distributions for X .

Due to theorem 15.5 a Markov process is uniquely defined by its initial dis-

tribution and the family of transition probabilities, since they determine all

finite–dimensional marginal distributions. Further our constructions of Markov

processes, renewal processes, and semi–Markov processes yield compatible

sets of finite–dimensional marginal distributions, hence by theorem 15.5 a

probability measure P for the respective process.

3. Transforms

In several parts of the present book, it is essential to argue via transforms of

distributions. The necessary background for these shall be presented shortly in

this section. For discrete distributions on N0 we will introduce z–transforms,

while for distributions on R
+
0 the Laplace–Stieltjes transform will be useful.

3.1 z–transforms

Let X denote a N0–valued random variable with distribution A = (an : n ∈
N0), i.e. P(X = n) = an for all n ∈ N0. Then the power series

A∗(z) :=
∞∑

n=0

anzn (15.6)

converges absolutely for z ∈ C with |z| ≤ 1 and is analytic in this region. We

note that A∗(z) = E(zX). If A(z) is a given power series for a distribution

(an : n ∈ N0), then the probabilities an can be derived as

an =
1

n!

dn

dzn
A(z)

∣∣∣∣∣∣∣∣∣∣
z=0

for all n ∈ N0. Thus the mapping between discrete distributions on N0 and

the power series in (15.6) is bijective, and we may call A∗(z) the (uniquely

determined) z–transform of X (also: of the distribution A).

Example 15.6 For a Dirac distribution on k ∈ N0 with

an =

{
1, n = k

0, n 
=

 k
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we obtain A∗(z) = zk.

Example 15.7 Let A denote the geometric distribution with some parameter

p ∈]0, 1[, i.e.

an = (1 − p)pn

for all n ∈ N0. The z–transform of A is given by

A∗(z) = (1 − p)
∞∑

n=0

pnzn =
1 − p

1 − pz

for all |z| ≤ 1.

A very useful feature is the behaviour of the z–transform with respect to the

convolution of two distributions. Let A = (an : n ∈ N0) and B = (bn : n ∈
N0) denote two distributions on N0. The convolution C = A ∗ B of A and B
is defined as the distribution C = (cn : n ∈ N0) with

cn =
n∑

k=0

akbn−k

for all n ∈ N0. For the z–transform of C we obtain

C∗(z) =
∞∑

n=0

cnzn =
∞∑

n=0

n∑

k=0

akbn−kz
n =

∞∑

n=0

akz
k

∞∑

n=k

bn−kz
n−k

= A∗(z) · B∗(z)

for all |z| ≤ 1.

This means that the z–transform of a convolution A ∗ B equals the product

A∗(z) · B∗(z) of the z–transform of A and B. In terms of random variables

we have the following representation: Let X and Y denote two independent

N0–valued random variables. Then the z–transform of the sum X + Y equals

the product of the z–transforms of X and Y , i.e.

E
(
zX+Y

)
= E

(
zX

)
· E

(
zY
)

for all |z| ≤ 1.

3.2 Laplace–Stieltjes transforms

Let X denote an R
+
0 –valued random variable with distribution function F . The

Laplace–Stieltjes transform (LST) of X (or: of F ) is defined by

F ∗(s) :=

∫ ∞

0

∫∫
e−stdF (t) = E

(
e−sX

)
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for all s ∈ C with Re(s) ≥ 0. The LST uniquely determines its underlying

distribution.

Example 15.8 Let X be exponentially distributed with parameter λ, i.e. X has

the distribution function F (t) = 1−e−λt with Lebesgue density f(t) = λe−λt.

Then

F ∗(s) =

∫ ∞

0

∫∫
e−stλe−λt dt =

λ

s + λ

for Re(s) ≥ 0.

Example 15.9 For the Dirac distribution δx on x ∈ R
+
0 we obtain

δ∗x(s) =

∫ ∞

0

∫∫
e−stdF (t) with F (t) =

{
0, t < x

1, t ≥ x

and hence

δ∗x(s) = e−sx

for Re(s) ≥ 0.

Like the z–transform, the LST is very useful for dealing with convolutions.

Let X and Y denote two independent R
+
0 –valued random variables. Then the

LST of the sum X + Y equals the product of the LSTs of X and Y , i.e.

E

(
e−s(X+Y )

)
= E

(
e−sX

)
· E

(
e−sY

)

for all s ∈ C with Re(s) ≥ 0.

Notes

For more on z–transforms see e.g. Juri [43], or the collection of results in

Kleinrock [50], appendix I. For Laplace–Stieltjes transforms see chapter XIII

in Feller [35] or again Kleinrock [50], appendix I.

4.

An important theorem to find bounds for the eigenvalues of a matrix has been

developed by Gershgorin in 1938. For ease of reference it shall be presented

in this section. Let A = (aij)i,j≤m denote a square matrix of dimension m
with entries aij ∈ C. The following theorem is called Gershgorin’s circle

theorem.

Gershgorin’s Circle Theorem
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Theorem 15.10 All eigenvalues of the matrix A lie in the union C :=
⋃m

i=1 CiCC
of the circles

CiCC =

⎧
⎨
⎧⎧

⎩
⎨⎨

z ∈ C : |z − aii| ≤
∑

k �=�� i

|aik|

⎫
⎬
⎫⎫

⎭
⎬⎬

Proof: Let x(ν) denote an eigenvector to the eigenvalue λν of A, i.e. Ax(ν) =
λνx

(ν). This implies
m∑

k=1

aikx
(ν)
k = λνx

(ν)
i (15.7)

for all i ≤ m. Since an eigenvector is determined only up to a scalar multi-

plicative, we can assume without loss of generality that there is a component

x
(ν)
i0

= max
1≤j≤m

∣∣∣∣∣∣∣x(ν)
j

∣∣∣∣∣∣∣ = 1

of the vector x(ν). Now (15.7) yields for i = i0 the relation
∑

k �=�� i0

ai0,kx
(ν)
k = (λν − ai0,i0)x

(ν)
i0

= λν − ai0,i0

which implies by the triangle inequality

|λν − ai0,i0 | ≤
∑

k �=�� i0

|ai0,k| ·
∣∣∣∣∣∣∣x(ν)

k

∣∣∣∣∣∣∣ ≤
∑

k �=�� i0

|ai0,k|

Since every eigenvalue satisfies at least one such inequality, the proof is com-

plete.

�

Corollary 15.11 If A is diagonally dominated, i.e. if

|aii| >
∑

k �=�� i

|aik|

holds for all 1 ≤ i ≤ m, then the matrix A is invertible.

Proof: The strict inequality of the assumption implies that aii 
= 0

 for all

i ≤ m. Applying theorem 15.10 yields a restriction

|λ| ≥ |aii| − |aii − λ| ≥ |aii| −
∑

k �=�� i

|aik| > 0

for every eigenvalue λ of A. Therefore the matrix A has no eigenvalue zero

and thus is invertible.

�
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Stochastic flow, 45
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