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Abstract Efficient transport of materials between the stages of the produc-
tion process is key in the minimization of production costs. The kitting process
is an attempt at achieving efficient transport and thus reducing costs. In this
paper we discuss the performance of kitting operations in a stochastic assem-
bly system, treating it as an assembly-like queue model. Specially, the impact
of production interruptions in the subparts is investigated. To model down-
times, the subparts arrive according to an Interrupted Poisson Process instead
of a Poisson Process. The queuing analysis focuses on the calculation of per-
formance measures to compare the impact of production inefficiency on the
kitting process.

Unlike previous studies in this domain, we use sparse matrix techniques to
define matrices and solve linear equations. Results show that this technique is a
valuable queuing theoretic numerical approach for estimating the performance
of a kitting process in terms of solution speed and accuracy.

Keywords Kitting process · Assembly-like queue · Continuous Time Markov
Chain · Sparse method · Production interruptions · Performance measures

1 Introduction

Nowadays customers put a lot of pressure on the market to afford customized
products. This result in the handling of a large number of components in the
production systems. The problem of keeping many and varied components is
met by applying kitting.
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Nowadays manufacturing systems are often composed of multiple in-house
fabrication units [Medbo(2003)]. The semi-finished products stemming from
these units are the input materials for other fabrication units or for assembly
lines. Hence, efficient transport of materials between the different stages of
the production process is a key issue for overall production cost minimization.
Therefore the kitting method was introduced. Kitting is a particular strat-
egy for supplying materials to an assembly line. Instead of delivering parts
at the assembly line in containers of equal parts, in kitting the necessary
parts are collected into a specific container, referred to as kit, prior to arriving
at an assembly unit [Bozer and McGinnis(1992),Bryznr and Johansson(1995),
Medbo(2003),Ramakrishnan and Krishnamurthy(2008),Ramachandran and Delen(2005),
Som et al(1994)Som, Wilhelm, and Disney].

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the assem-
bly stations and increased quality of the product [Ramakrishnan and Krishnamurthy(2008)].
The advantages above do not come for free since the kitting operation itself
also incurs additional costs such as the time and effort for planning the allo-
cation of the parts into kits and the kit preparation itself. Furthermore the
introduction of a kitting operation in a production process involves a major
investment. Therefore it is important to analyse the performance of kitting in
a production environment prior to the actual introduction of this operation.

The concept of uncertainty being central in queuing theory, a queuing the-
oretic approach is used in order to assess the performance of a kitting process
under uncertainty of inventory replenishments and/or product demand. Of-
ten, neither the product demand nor the inventory replenishment can be fully
controlled such that kitting processes are preferably modelled as stochastic
processes. To gain a more realistic insight on the performance of a kitting pro-
cess in a production environment, temporary interruptions in the production
of subparts are taken into account. In this article, special attention will be
given to the used queuing analysis technique.

2 Model description

Most authors consider a kitting process as a queuing system in a stochastic
environment.

Hopp and Simon (1989) have developed a model that is often used to an-
alyze the performance of an assembly line[Hopp and Simon(1989)]. In their
article ”Bounds and Heuristics for Assembly-like queues” a model with expo-
nentially distributed processing times and between arrival times distributed
according to a Poisson process is described. Out of their model, they deduce
boundaries for the capacity of the buffers. This model is mainly based on
the model of Lipper and Sengupta (1986)[Lipper and Sengupta(1986)]. The
method of Hopp and Simon is easier to implement and the definition of an
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optimal upper limit of capacity is more accurate, but it is limited to processes
with two basic components. The method of Lipper and Sengupta on the other
hand, can be applied to more general systems.

Som, Wilhelm, and Disney (1994) consider a kitting process as a delivery
system for assembly that is mainly based on the model of Hopp and Simon.
An important similarity with our models is the assumption of a finite-buffer-
capacity. Of course a buffer has always a finite capacity. However, if the ca-
pacity is large enough, we can have a good approximation of a process with
a finite capacity on the basis of a model with unlimited capacity. This means
that there is always enough room for upcoming parts which simplifies the anal-
ysis. Unfortunately, the assumption of an infinite buffer is not valid for kitting
processes. If the capacity is assumed to be infinite, then the model will degrade
to an unstable stochastic model. This was demonstrated by Latouche (1981)
that studied waiting lines with paired customers. We can consider his analysis
as an abstraction of a kitting process with two types of parts[Latouche(1981)].
Furthermore, in the article ”Assembly-like queues”, Harrison (1973) confirms
that, to ensure stability in the operations of a kitting process, it is necessary
to impose a restriction on the size of the buffer. Under this assumption, the
probability to have a certain long-term stock position is equal and independent
of the current stock position. We assume that the buffer capacity of the two
components is respectively equivalent to C1 and C2.

In this article, three mathematical queuing models are defined and analyzed
to assess the impact of production interruptions on the performance of kitting.
In the first model displayed in figure 1, both components arrive according
to a Poisson Process with for both parts a same arrival intensity λ. Two
independent input streams arrive at part inventories and wait there till they are
collected into a kit. Each component is processed according to an exponential
distribution (before kitting) to prepare it for assembly and as mentioned above,
we assume a finite buffer capacity for the components. When the buffers are
full, the components are denied in the process, we speak of loss.

In the first extensive model, parts of type 1 are subject to interruptions in
the production. To model these production breaks, the components arrive ac-
cording to an Interrupted Poisson Process, abbreviated as IPP. In the queuing
analysis, an IPP is a stochastic process in which two states are possible and
which one of the two has an intensity equal to zero. This process is divided into
two periods, namely the active and inactive period (Heyman and Sobel, 1982).
We start with an active period and during this interval there are components
arriving according to a Poisson process with intensity ?*. The length of this
period is exponentially distributed with mean α−1. At the end of an active
period begins a period of inactivity in which components do not arrive, the
length is exponentially distributed with mean β−1. At the end of this period
begins another new active period and so on. All active and inactive periods
are i.i.d. The parameter α (β) describes the intensity to go from an active
(inactive) to an inactive (active) period in an infinitesimal time interval.
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Finally, in the second extensive model, both part 1 and part 2 suffer from
production cuts. The arrival processes are identical and independent of each
other. The two Interrupted Poisson processes have the same intensity a and .

In the following section, the kitting process is defined as a (Continuous
Time) Markov Chain.

3 Formulation of a Continuous Time Markov Chain

The kitting process modelled as a Markov Chain allows us to determine the
probability that a certain state e.g. the number of components in the two part
inventories, occurs. Thereafter, this gives us the ability to calculate perfor-
mance measures such as the average buffer occupancy. Under the Markovian
assumptions, we discuss the steps to calculate the performance measures of
the process.

3.1 Generator Matrix

We define a stochastic process X(t) as a Markov chain with continuous time
parameter where s, t, u ≥ 0 and all non-negative integer values i, j and r belong
to the discrete state space X . It is true that:

P[X(t) = j|X(s) = 1,X(u) = r, u ≤ s < t] = P[X(t) = j|X(s) = 1].

This definition is based on the Markov property. Suppose now that:

pij ≡ P[X(t) = j|X(s) = i],

where t ≥ s.

We assume that our Markov chain is homogeneous. A chain is homogeneous
if all transition functions pij(s, t) depend solely on the difference (t−s) and are
independent of the absolute epochs s and t. Transition functions give the prob-
ability that a situation will occur given a current state. Among others in the
book ”Discrete Event Systems” written by Cassandras and Lafortune (2008)
[Cassandras and Lafortune(2008)] transition functions satisfy the Chapman-

Kolmogorov equation.
We prove this by first applying the law of total probability: P[A] = ΣiP[A|P[Bi].P[Bi].
We consider [X(u) = r] for s ≤ u ≤ t when the conditional probability of the
event [X(t) = j|X(s) = i] :

3.2 Steady state probability vector

The symbol π is similar to the stationary probability vector. This collects
vector all stationary state probabilities, i.e. the probabilities that a certain
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condition occurs when the chain has reached equilibrium. If the time param-
eter goes to infinity, then its derivative equals zero. The vector is no longer
dependent on its elements and converge to a fixed value.

The multiplication of the stationary probability vector with its generator
matrix is equal to zero. We use this formula to calculate the performance
measures. Note that this equation, the vector only a factor after states. The
normalization condition listed as a dot product and explained in section [sub:
Stationary probability vector], allows this factor.

In the next chapter we apply the various steps to identify performance
measures to monitor the basic kitting model.

4 Methodology: the sparse method

Queuing models for kitting processes are rather complicated. Since two queues
are involved (one for each part in the kit), the state space of the associated
Markov chain is inherently multidimensional. The state of the Markov chain
roughly corresponding to the number of distinct parts in the different invento-
ries, the state space includes all possible part inventory levels. Multidimension-
ality leads to huge state spaces; this is the state space explosion problem. A
second complication is more intricate, as mentioned above, the infinite-buffer-
capacity assumption is not applicable for kitting processes. If the capacity is
assumed infinite, the model degrades to an unstable stochastic model in which
some or all of the queues have an unlimited number of parts available all the
time with a positive probability.

Consequently, the multidimensionality of the state space and the inappli-
cability of the infinite-buffer assumption yield Markov chains with a finite but
very large state space. However, the number of possible state transitions from
any specific state is limited. This means that most of the entries in the gen-
erator matrix are zero; the matrix is sparse. In contrast to matrix-analytic
methods, sparse matrix techniques have hardly been used in queuing theory.
Using sparse matrices and their associated specialized algorithms resulted in
less memory consumption and processing times, compared to standard algo-
rithms. The reason is that the complexity is smaller for sparse than for dense
matrices. The method used to solve linear equations of sparse matrices is the
iterative method GMRES (Generalized Minimum Residual). This method ap-
proximates the exact solution A.x = n by the vector xnεKn (in the nth Krylov
subspace) that minimizes the norm of the residual A.xn = b.

In the next section, the parameters and outcomes of numerical examples
are explained.



6 Eline De Cuypere, Dieter Fiems

5 Numerical examples

5.1 Definition of the input parameters

First, as the production period is always active in the basic model, the arrival
intensity of the parts λ∗ equals the workload λ. Indeed the basic model repre-
sents a kitting process wherein the subparts are ”efficiently” produced. This
is not the case for the two extensive models, as respectively part 1 and part 1
and 2 are subject to temporal production interruptions.

For all numerical examples we assume a 80 percent workload and a time
length κ equal to ten. The workload, i.e. the average arrival intensity over the
productive and unproductive period, must be the same for both components.
If this is not the case and the buffers are sufficiently large, then the buffer with
the highest workload is almost always full. The system can then be considered
as a queue with just one buffer, the one that is always full. We also assume
that on average one kit per unit can be made so that the processing intensity
µ equals one. In the extensive models, the parameters α and β determine
the interruption process completely. Alternatively, this process can also be
characterized by the parameters σ and κ defined as follows:

σ =
β

α+ β
.

The symbol σ is the fraction of the time that the process is in an active
state. We call this parameter the active rate. The symbol κ, which we call
the switch-over time is equal to the sum of the average length of active and
the inactive period. Finally, we determine the workload λ on the basis of the
equation:

λ = σ.λ∗

This means that the product of the arrival intensity in the active period
λ∗ with the active rate σ is equal to the workload λ of the component i. For
the extensive model, we assume a 40 percent effective production state so that
λ∗ = 0.4. To ensure a total 80 percent production time for all models, the
production ”interrupted” parts arrive at an intensity equal to two.

5.2 Main results

5.2.1 Numerical examples with varying capacity

1. Probability that buffer 1 is full for the Basic model and Model 1
The probability decreases for both models as the capacity of the buffer is

increasing. Furthermore, the difference between the two models diminishes as
the capacity increases. However, this probability is always greater for Model
1. Even if the workload over the whole production time is the same for both
models, the buffer will be more often full in the active production period as
his arrival intensity is equal to two.
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2. Probability that buffer 1 and 2 are full for Model 1

If we compare the probability that buffer 1 and 2 are full for Model 1, we
notice that buffer 2 has the highest chance. Although part 1 suffers of produc-
tion downtime, the impact is especially noticeable on the behaviour of buffer
2. Therefore we can conclude that the impact of production downtime of one
component mainly affects the behaviour of the buffer of the other component
in a two queue line.

3. Probability that buffer 1 and 2 are full for the three models together

The previous observation is here once more confirmed. Here each line rep-
resents a model and the capacities are varying together. We can notice that
interruptions in the production of part 1 has a greater negative impact on
buffer 2 than on its own buffer. It also appears that adding production in-
terruptions for part 2 doesn’t have a significant impact on the probability for
buffer 2 but does for buffer 1. The two lines for the second model are almost
identical, which is not the case for the first model.

5.2.2 Numerical examples with varying workload

1. Average numbers of parts in buffer 1 for the Basic model and Model 1

However, if we vary the workload instead of the capacity, the impact of
inefficiency is especially visible in the buffer of the interrupted component.
The figures show that for an active period equal to 40 percent of the total
time, the average buffer capacity is reached much slower than in the basic
model. This is not the case for the buffer of the other part.

6 Conclusion

In this paper, we investigate the impact of production inefficiencies of the sub-
parts on a kitting process with two queue lines using performance measures.
We show that the buffer sizes need to be large enough to catch production in-
efficiencies. Furthermore, the numerical examples we present lead us to believe
that the two part buffers are correlated. When part 1 suffers of inefficiencies,
buffer 2 will have a higher probability to be full than buffer 1. However, when
the workload increases, the average number of parts in the buffer of the inter-
rupted part reaches slower its maximum capacity than the other buffer. The
impact of production downtimes on the performance of the kitting process thus
varies depending on the performance measure (the y-axis) and the dependent
variable (the x-axis). As most of the entries in the generator matrix have a
value equal to zero, we apply sparse matrix techniques. To determine the un-
knowns of the system, we used the method GMRES (Generalized Minimum
Residual). The solution is not exact but performs well in terms of solution
speed and accuracy. We can establish that the sparse matrix techniques are a
valuable queuing theoretic numerical approach in terms of solution speed and
accuracy to estimate the performance of the kitting process.
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7 Further research

Queuing models for determining the performance of kitting processes are cur-
rently insufficiently studied. Consequently, there is certainly room for further
research. First, the assumptions made could be gradually alleviated or re-
moved. We restrict ourselves to two components, while the process could eas-
ily be expanded to multiple components. In addition, we assumed that the
buffers are supplemented part by part and that kits are departing one by one.
In fact, several components can arrive at once and be composed into kits.
Finally, we limited our analytical study to an eighty percent workload and a
switch-over time equal to ten while other values are also possible. After having
determine the models, the impact of production interruptions is determined
on the basis of differences in performance outcomes. The selected performance
measures are rather limited and only focused on part buffers. We could also
define similar measures for kit buffers. To better approximate the reality, we
can integrate this process into a production process. Additional factors that
affect the performance of the process can be taken into account. If companies
start to implement kitting activities in their production process in addition
to the performance the cost of this process is also relevant. An interest study
is to match the capacity of the buffers and/or the throughput of the parts to
obtain an overall cost minimization.
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