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ABSTRACT
Markov renewal processes with semi-Markov kernel matrices
that have matrix-exponential representations form a super-
set of the well-known phase-type renewal process, Marko-
vian arrival process, and the recently introduced rational
arrival process. In this paper, we study the steady-state
waiting time distribution in an infinite capacity single server
queue with the auto-correlation in interarrival and service
times modeled with this general Markov renewal process.
Our method relies on the algebraic equivalence between this
waiting time distribution and the output of a feedback con-
trol system certain parameters of which are to be deter-
mined through the solution of a well known numerical lin-
ear algebra problem, namely the SDC (Spectral-Divide-and-
Conquer) problem. We provide an algorithmic solution to
the SDC problem and in turn obtain a simple matrix expo-
nential representation for the waiting time distribution us-
ing the ordered Schur decomposition that is known to have
numerically stable and efficient implementations in various
computing platforms.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov processes, Queueing theory ; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Modeling
Techniques,Performance attributes

General Terms
Algorithms, Performance

Keywords
Lindley equation, Markov renewal processes, matrix expo-
nential distribution, ordered Schur decomposition
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1. INTRODUCTION
In this paper, we study the steady-state waiting time

in a single server queue in which there is auto-correlation
both in interarrival and service times. We model such auto-
correlations by using a Markov renewal process (MRP) with
finite state-space for both interarrivals and services. This
queue is known to be the semi-Markov queue or SM/SM/1
queue in short [10]. The reference [33] studies the semi-
Markov queue and introduces a non-linear matrix equation
for calculating the waiting time distribution; however iter-
ative techniques to solve the nonlinear equation have lin-
ear convergence rates. Recently, a spectral decomposition
approach is described in [18] to solve the same non-linear
equation via the calculation of eigenvalues and eigenvectors
of a so-called coupling matrix. However, calculating eigen-
vectors is known to be error-prone especially for closely lo-
cated eigenvalues and eigenvalues with multiplicity. More-
over, complex aritmetic is needed for the case of complex
eigenvalues. On the other hand, in the matrix analytical
approach pioneered by Neuts, the system occupancy is ob-
served at certain embedded epochs and a structured Markov
chain is constructed for the queue length for certain sub-
cases of the semi-Markov queue like the (B)MAP/G/1 sys-
tem [29],[23]. The key to the matrix analytical approach of
Neuts is the solution to a nonlinear matrix equation which
can be solved by quadratical convergence rate algorithms
like the logarithmic reduction algorithm for [19] and the it-
erative scheme of [27] for QBD type Markov chains, and the
cyclic reduction algorithm of [7], the invariant subspace ap-
proach of [1], and the technique proposed in [32] for M/G/1
type Markov chains. Given the steady state queue length
probabilities, one can then calculate the waiting time dis-
tribution although not in a direct and explicit manner. For
models like MAP/MAP/1, it has recently been shown that
it is not necessary to compute the queue length distribution
to compute waiting times. One can turn the waiting time
problem to a fluid flow problem [3] using an idea originally
due to Asmussen. In this case, the waiting time is phase type
and its parameters can be determined by a QBD algorithm
as shown in [31].

The goal of the current paper is to provide a numerically
efficient and stable solution to the actual (not virtual) wait-
ing times for the semi-Markov queue. The main assumption
we make in this paper is that the semi-Markov kernels we
deal with, say F (t), are in matrix exponential (ME) form:

F (t) = V et T S + F, (1)

where F (t) is square of size n and T is of size m; in other



words, n is the number of states and m is the number of
modes of the underlying MRP. We call such processes MRP-
ME. An MRP-ME is a generalization of some well-known
processes like phase-type (PH-type) [28] and ME-type re-
newal processes [21], Markovian arrival process (MAP) [25],
rational arrival process (RAP) [24], and a subcase of MAPs
with batch arrivals (BMAP) with a certain structure on the
batch size distribution [22]. Assuming that nA (nB) and mA

(mB) denote the number of states and the number of modes
of the underlying MRP-ME for interarrivals (services), our
main result is that the density of the steady state waiting
time is also in matrix exponential form with nAmB modes
and finding the coefficient matrices of this ME form amounts
to a particular spectral divide and conquer (SDC) problem
applied on a matrix of size nAmB + nBmA. Given a matrix
A, the SDC problem of interest in this paper is finding an
orthogonal matrix Q such that

QT AQ =
A++ A+−

0 A−−
,

where the eigenvalues of A++ are exactly the same as the
eigenvalues of A with positive or zero real parts. The ad-
vantages of the proposed approach are

• The approach benefits from being purely matrix ana-
lytical as explained in [28] and [29] and the generality
of the model allows one to use a single unifying algo-
rithm for different well-known queueing models.

• In case the interarrival and service MRP-MEs are PH-
type or ME-type renewal processes, i.e., nA = nB =
1, then the SDC problem is to apply on a matrix of
additive size mA + mB as opposed to multiplicative
size, which is a significant advantage for this special
case.

• We propose the ordered Schur decomposition as a means
of solving the SDC. The ordered Schur decomposition
is known to be the standard serial algorithm for SDC
in the numerical linear algebra literature [5] due to its
numerical stability and computational efficiency.

The remainder of the paper is organized as follows. Sec-
tion 2 provides preliminaries and notation used throughout
the paper. Section 3 describes Markov renewal processes
with matrix exponential kernel matrices and how they relate
to well-known stochastic models used in queueing literature.
We provide our results on the SM/SM/1 queue in Section 4.
In Section 5, we present our matrix-analytical algorithm for
the SM/SM/1 queue. Section 6 provides numerical exam-
ples to validate the effectiveness of the proposed approach.
We conclude in the final section.

2. PRELIMINARIES AND NOTATION
We use uppercase (lowercase) letters to denote matrices

(vectors or scalars). I and e denote the identity matrix and
a column matrix of ones of appropriates sizes, respectively.
Let A = {Aij} be an n×m matrix then the vectorized form
of A is denoted by vec(A):

vec(A) = (A11, A12, . . . , A1m, A21, A22, . . . , Anm)

Given also a p × q matrix B, the Kronecker product of the

matrices A and B is defined as

A ⊗ B =

A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

,

and the size of A⊗B is np×mq. AT denotes A transposed
and the matrix A is orthogonal if AT A = I . For a given
real, non-symmetric matrix A and a region D of the complex
plane, we want to find an orthogonal matrix Q such that

QT AQ =
ADD ADD̄

0 AD̄D̄
, (2)

where the eigenvalues of ADD are exactly the same as the
eigenvalues of A in D. This problem is called the ordi-
nary spectral divide and conquer (SDC) problem [4]. A
real square matrix A of size n can be transformed via an or-
thogonal transformation U into the so-called real Schur form
by writing UT AU = R where R is quasi-upper triangular,
which means that the matrix R has either 1-by-1 or 2-by-2
diagonal blocks on the diagonal corresponding to the real
and complex eigenvalues, respectively, of the matrix A [12].
By reordering the blocks by orthogonal transformations, the
eigenvalues are made to appear in any order and one can ob-
tain a matrix Q such that the identity (1) is satisfied and
the matrices ADD and AD̄D̄ are quasi-upper triangular and
the eigenvalues of ADD are the same as those of A in D
[6],[8]. This form is called the ordered Schur form and the
operation to obtain this form is called the ordered Schur de-
composition. We note that obtaining the real Schur form is
known to be backward stable and has a complexity of an3,
where a accounts for the iteration in the algorithm and may
vary between 10 and 25 [11]. On the other hand, for the
computation of the Jordan form that requires calculation of
all eigenvectors, there are no results of guaranteed backward
stability and the complexity of this decomposition is much
higher than that of the Schur decomposition [11]. For this
reason, the authors [11] strongly recommend not to use the
Jordan decomposition whenever it is possible to use instead
the more reliable Schur form which we do in the current pa-
per. We note that this view is also shared by [5] in which
the standard serial algorithm for the SDC problem is pro-
posed to be the ordered Schur decomposition due to its well-
established numerical stability. The ordered Schur form im-
plementations are available in various platforms in LAPACK
[34], MATLAB 7.0 [26], and as a public add-on to MATLAB
[8]. We note two highly parallel algorithms, namely the ma-
trix sign function algorithm and the inverse free algorithm
that can also be used to solve the same SDC problem [5],
but we will not use them in the current paper. Of particular
interest to the current paper is when D is taken as the closed
right half plane C

+ = {c ∈ C : Re(c) ≥ 0}. We also define
the complementary set C

− = {c ∈ C : Re(c) < 0}.
Let x(t) be a vector function of the indeterminate variable

t ∈ (−∞, +∞). The two sided Laplace transform of x(t) is
given by

x∗(s) =
+∞

−∞
e−tsx(t)dt

We use the ∗ notation for Laplace transforms throughout
this paper. The dirac delta function δ(t) is a commonly



used tool in engineering and it satisfies

+ε

−ε

δ(t) = 1, ∀ ε > 0

Sometimes, we use
0+

0− δ(t) = 1 to refer to the same identity.
We note that existence of dirac delta functions in probabil-
ity density functions is indicative of a probability mass at
the origin. The degree of a polynomial n∗(s) in the indeter-
minate s is denoted by deg(n∗). A transform is said to be
rational if

x∗(s) =
n∗(s)
d∗(s)

for some polynomials n∗(s) and d∗(s). The rational trans-
form x∗(s) is strictly proper if deg(n∗) < deg(d∗) and is
proper if deg(n∗) = deg(d∗). The latter case implies a
constant term in the transform and is indicative of a dirac
delta function in the time domain. The poles of the rational
function x∗(s) are the roots of the denominator polynomial
d∗(s). Any strictly proper rational function x∗(s) can addi-
tively be decomposed as

x∗(s) = x∗
−(s) + x∗

+(s)

where the poles of x∗
−(s) and x∗

−(s) reside in C
− and C

+,
respectively. Moreover, this decomposition is unique. If
x∗

+(s) = 0, then x∗(s) is called stable. If x∗
−(s) = 0, then

x∗(s) is called anti-stable.
A linear time-invariant dynamical system with p inputs

and q outputs is represented by the following set of ordinary
differential equations (ODE) [15]:

d

dt
x(t) = x(t)T + u(t)V, (3)

y(t) = x(t)H + u(t)D, (4)

where u(t) = (u1(t), . . . , up(t)) and y(t) = (y1(t), . . . , yq(t))
denote the input and output vectors, respectively, x(t) =
(x1(t), . . . , xm(t)) is called the state vector and its compo-
nents are called the state variables, or simply the states.
The matrices V , T , H , and D in the equations (3) and (4)
are real matrices of suitable sizes. Considering zero initial
state, the transfer matrix G∗(s) between the input and out-
put vectors is written as [15]:

y∗(s) = u∗(s)G∗(s) = u∗(s) V (sI − T )−1H + D (5)

where u∗(s) and y∗(s) are the Laplace transforms of the in-
put and output vectors, respectively. The equations of the
form (3) and (4) are said to constitute a state-space rep-
resentation or realization of the given linear time-invariant
system with transfer matrix G∗(s) if (5) holds [15]. The
number of states (i.e., m) is referred to as the order of of
the state-space representation. This representation is said
to be minimal if one cannot satisfy the identity (5) with
a smaller order. Using similarity transformations, one can
obtain infinitely many representations whereas realization
theory deals with finding state-space descriptions of linear
systems and the properties of these descriptions [15].

3. MARKOV RENEWAL PROCESSES WITH
MATRIX EXPONENTIAL SEMI-MARKOV
KERNELS

The following is based on [9]: We define, for each k ∈
N, a random variable Xk taking values in a finite set E =

{1, 2, . . . , n} and a random variable Tk taking values in R+ =
[0,∞) such that 0 = T0 ≤ T1 ≤ T2 ≤ · · · . The stochastic
process (X, T ) = {Xk, Tk; k ∈ N} is said to be a Markov
Renewal Process (MRP) with state space E provided that

P{Xk+1 = j, Tk+1 − Tk ≤ t | X0, · · · , Xk; T0, . . . , Tk}

= P{Xk+1 = j, Tk+1 − Tk ≤ t | Xk}
for all k ∈ N, 1 ≤ j ≤ n, and t ∈ R+. The marginal process
Xk of the MRP is called the modulating chain and i ∈ E
is called a state. On the other hand, the other marginal
process ∆k, k ∈ N defined by ∆k = Tk+1 − Tk is called the
modulated process. In this study, we focus our attention to
the time-homogeneous case for which the probability

P{Xk+1 = j, ∆k ≤ t | Xk = i} =: Fij(t) (6)

is independent of the customer number k. The matrix F (t) =
{Fij(t)} is then called the semi-Markov kernel matrix (or
simply the kernel) of the MRP. For each pair 1 ≤ i, j ≤ n,
the function Fij(t) has all the properties of a distribution
function except that the quantities defined by

Fij = lim
t→∞

Fij(t)

are not necessarily one but instead satisfy

Fij ≥ 0,
n

j=1

Fij = 1

We note that Fij = P{Xn+1 = j | Xn = i) is the state
transition probability from state i to j and we assume F =
{Fij} is irreducible. Let π be the stationary solution of this
Discrete Time Markov Chain (DTMC) such that

πF = π, πe = 1.

We also note that the quantity

Fij(t)/Fij = P{∆k ≤ t | Xk+1 = j, Xk = i}
is the sojourn time distributions in state i when the next
state is j. A rich subcase of the MRP is when the kernel
matrix F (t) takes a matrix exponential form, i.e.,

F (t) = V et T S + F, t ≥ 0 (7)

and equals zero elsewhere. Here, T is square and of size
m and V and S are n × m and m × n, respectively. We
call an MRP with a Matrix Exponential kernel matrix an
MRP-ME. We also define a kernel density matrix G(t) by
differentiating F (t) with respect to t:

G(t) =
d

dt
F (t) = V et T TS + (F + V S)δ(t), t ≥ 0 (8)

= V eTtH + Dδ(t), t ≥ 0 (9)

where δ(t) is the dirac delta function and H = TS and
D = F + V S. We also define the Laplace transform G∗(s)
of the kernel density matrix:

G∗(s) =
∞

0−
e−tsG(t)dt = V (sI − T )−1H + D. (10)

An MRP-ME is then characterized by the quadruple

(V, T, H, D)

Let us assume that the sojourn times of the MRP, i.e.,
∆k, k ∈ N, are used to model interarrival or service times.



All the well-known probabilistic models described below and
used in the analysis of queueing systems fall under the class
of MRPs with ME kernels.

3.1 Phase-type Renewal Process
To describe a Phase-type (PH-type) distribution, we de-

fine a Markov process on the states {1, 2, . . . , m, m+1} with
initial probability vector (v, α) and an infinitesimal genera-
tor

T t
0 0

where α is a scalar, v is a row vector of size m, the subgener-
ator T is an m×m matrix, and t is a column vector of size m
such that t = −Te. The distribution of the time till absorp-
tion into the absorbing state m+1 is called a PH distribution
with representation (v, T ) [28]. The PH-type renewal pro-
cess defined by allowing inter-renewal times modeled with a
PH-type distribution is a single-state MRP-ME character-
ized with the quadruple (v, T, t, α).

3.2 Matrix Exponential-type Renewal Process
A renewal process with inter-renewal times having a ma-

trix exponential distribution described in [21],[2] is a single-
state MRP-ME similar to the PH-type renewal process and
is again characterized by the quadruple (v, T, t, α) but the
characterizing matrices do not necessarily possess the proba-
bilistic interpretation for that of PH-type distributions. The
case of α �= 0 can also be visualized by allowing batch
arrivals at arrival epochs with a batch size distribution of
pi = αi−1(1 − α), i ≥ 1 and interarrival times thus modeled
as an MRP-ME (v/(1 − α), T, t, 0).

3.3 Markovian Arrival Process
The Markovian Arrival Process (MAP) generalizes the

Poisson process by allowing non-exponential interarrival times
but still maintaining its Markovian structure. The MAP is
described by two processes, namely the the count process
N(t) and the phase process X(t), assuming values in N and
{1, . . . , n}, respectively. The two-dimensional Markov pro-
cess {N(t), X(t)} is then modeled as a Markov process on
the state-space {(i, j) : i ∈ N, 1 ≤ j ≤ n} whose infinitesimal
generator matrix is in block form as

D0 D1 · · ·
D0 D1 · · ·

D0 D1 · · ·
. . .

. (11)

In the above generator, D0 and D1 are n×n matrices, D0 has
negative diagonal elements and non-negative off-diagonal el-
ements, D1 is non-negative, and D = D0 + D1 is an irre-
ducible infinitesimal generator. When the generator is of
the form (11) then the underlying process is called a MAP
which is characterized by the matrix pair (D0, D1). Note
that the MAP has the kernel

F (t) = (eD0t − I)D−1
0 D1

and is characterized by the quadruple (I, D0, D1, 0) [14].

3.4 Rational Arrival Process
The Rational Arrival Process (RAP) introduced in [24]

can again be modeled as an MRP-ME characterized by the

Customers 
Arriving

Customers 
Leaving

k k+1

k-1 k

Ak

W k Bk

W k+1

Time

Figure 1: Successive queue waiting times in a single
server queue.

quadruple (I,D0, D1, 0) similar to a MAP but the matri-
ces D0 and D1 do not necessarily possess the probabilistic
interpretation available for MAPs.

4. THE SINGLE-SERVER SEMI-MARKOV
QUEUE

The successive waiting times in a single server queue with
infinite capacity using a First Come First Serve (FCFS) ser-
vice discipline are related through the so-called Lindley re-
currence relation [16]:

Wk+1 = (Wk + Bk −Ak)+ = max(0,Wk + Bk −Ak), k ≥ 0,
(12)

where Bk and Ak denote the service time of customer k and
the interarrival times between customers k and k+1, respec-
tively, and Wk denotes the kth customer’s waiting time in
the queue. This situation is also depicted in Fig. 1 for clar-
ity. We assume in this study that the individual processes
Ak and Bk are auto-correlated but not cross-correlated and
we use the MRP-ME process to model auto-correlation in in-
terarrival and service times. We use the sojourn times of an
MRP-ME to model the processes Ak and Bk, i.e., (XA

k , T A
k )

and (XB
k , T B

k ) are the two two-dimensional Markov renewal
processes with state spaces EA = {1, 2, . . . , nA} and EB =
{1, 2, . . . , nB}, respectively, describing the interarrival and
service times. Let GA and G∗

A denote the kernel density
matrix and its Laplace transform for the MRP-ME under-
lying the arrival process:

GA(t) = VAet TAHA + DAδ(t), (13)

G∗
A(s) = VA(sI − TA)−1HA + DA. (14)

We note that the MRP-ME process has nA states but the
matrix TA is square of size mA. Let πA be the steady-state
vector of the modulating process XA

k so that πA satisfies

πA(−VAT−1
A HA + DA) = πA, πAe = 1. (15)

Similarly, let GB and G∗
B denote the kernel density matrix

and its Laplace transform for the MRP-ME that models the
service times:

GB(t) = VBet TB HB + DBδ(t), (16)

G∗
B(s) = VB(sI − TB)−1HB + DB . (17)

We assume the service MRP-ME process has nB states but
the matrix TB is square of size mB. Also let πB be the
steady-state vector of the modulating process XB

k so that
πB satisfies

πB(−VBT−1
B HB + DB) = πB , πBe = 1. (18)



We also assume that these two state-space representations
are irreducible. The queue described by the evolution equa-
tion (12) with the MRP-ME interarrival and service times
described above is referred to as the semi-Markov queue. It
can be shown that the mean interarrival time E[Ak] and the
mean service time E[Bk] satisfy

E[Ak] = E[A] = πAVAT−2
A HAe

and

E[Bk] = E[B] = πBVBT−2
B HBe,

respectively. We assume throughout this paper that the load
ρ defined

ρ = E[B]/E[A]

is strictly less than one. Therefore Wk → W as k → ∞
in distribution, where W is called the steady-state waiting
time, FW (t) and GW (t) denote its distribution and density,
respectively. The Laplace transform of GW (t) is denoted by
G∗

W (s). In this paper, our goal is to calculate GW (t), t ∈ R+.
We first need the following theorem.

Theorem 1. Let X and Y be two independent non-negative
random variables with ME-type densities or equivalently den-
sities with rational Laplace transforms

G∗
X(s) = DX +

N∗
X(s)

D∗
X(s)

, deg(N∗
X) < deg(D∗

X)

and

G∗
Y (s) = DY +

N∗
Y (s)

D∗
Y (s)

, deg(N∗
Y ) < deg(D∗

Y )

respectively. Then there exists a polynomial U∗(s) of degree
deg(D∗

Y ) with U∗(0) = 0 so that the random variable defined
by Z = (X − Y )+ has an ME-type density with Laplace
transform G∗

Z(s) of the form

G∗
Z(s) = G∗

X(s)G∗
Y (−s) − U∗(s)

D∗
Y (−s)

(19)

Conversely, if one can find a polynomial U∗(s) with degree
deg(D∗

Y ) satisfying U∗(0) = 0 and the right hand side of (19)
having all its poles in the open left half plane then identity
(19) holds and gives the expression for the Laplace transform
of the density of the random variable Z.

Proof. Consider double-sided Laplace transforms [30]
and recall that right-sided densities G(t), i.e., G(t) = 0, t < 0
possess stable Laplace transforms, i.e., their poles are in the
open left half plane. On the other hand, left-sided densities
G(t), i.e., G(t) = 0, t > 0, have anti-stable Laplace trans-
forms, i.e., their poles are in the open right half plane. Note
that the density of the random variable Z1 = X−Y denoted
by GZ1(t) is double-sided and it has the two-sided Laplace
transform

G∗
Z1(s) = G∗

X(s)G∗
Y (−s) (20)

but the strictly proper part of GZ1 can be decomposed into
its stable and anti-stable components in the following unique
way:

G∗
Z1(s) = DXDY +

U∗
1 (s)

D∗
X(s)

+
U∗

2 (s)

D∗
Y (−s)

, (21)

where deg(U∗
1 ) < deg(D∗

X) and deg(U∗
2 ) < deg(D∗

Y ). Note
that the + operator removes the left side of a double-sided

density and places all the corresponding probability mass at
t = 0. Therefore in the transform domain

G∗
Z(s) = DXDY +

U∗
1 (s)

D∗
X(s)

+
U∗

2 (0)

D∗
Y (0)

= G∗
X(s)G∗

Y (−s) − U∗
2 (s)

D∗
Y (−s)

+
U∗

2 (0)

D∗
Y (0)

= G∗
X(s)G∗

Y (−s) − U∗(s)
D∗

Y (−s)
(22)

where

U∗(s) = U∗
2 (s) − U∗

2 (0)D∗
Y (−s)

D∗
Y (0)

Evaluating the identity (22) at s = 0 and noting that D∗
Y (0)

cannot be zero, we show that U∗(0) = 0 and this concludes
the if part of the proof. The only if part can be proved by
observing the unique spectral decomposition of a rational
function into its stable and anti-stable parts and tracing
back the proof of the if part.

We’re now ready to study the steady-solution of the Lind-
ley’s equation (12). For this purpose, we define for i =
1, . . . , nA and j = 1, . . . , nB

FW,ij(t) = lim
k→∞

P{Wk ≤ t, XA
k = i, XB

k = j}
= P{W ≤ t, XA = i, XB = j}, (23)

and

F̃W (t) = vec({FW,ij(t)})
Similarly, we define

GW,ij(t) =
d

dt
FW,ij(t) (24)

and

G̃W (t) = vec({GW,ij(t)})
In our analysis, the following Laplace transforms are crucial:

G∗
W,ij(s) =

∞

0−
e−stGW,ij(t)dt, G̃∗

W (s) = vec({G∗
W,ij(s)})

(25)
From Lindley’s equation (12) and Theorem 1, we note the
existence of polynomials U∗

klij(s), k, i = 1, . . . , nA, l, j =
1, . . . , nB with U∗

klij(0) = 0 such that the following hold:

G∗
W,ij(s) =

nA

k=1

nB

l=1

G∗
W,kl(s)G

∗
A,ki(−s)G∗

B,lj(s)

−
nA

k=1

nB

l=1

U∗
klij(s)

D∗
A,ki(−s)

, (26)

where D∗
A,ki(−s) is the denominator of G∗

A,ki(−s) and its
degree is the same as that of U∗

klij(s). This identity can be
shown to reduce to the existence of polynomials U∗

ij(s) with
degree mA and U∗

ij(0) = 0 such that the second term on the
right hand side of (26) can be simplified as in

G∗
W,ij(s) =

nA

k=1

nB

l=1

G∗
W,kl(s)G

∗
A,ki(−s)G∗

B,lj(s)

− U∗
ij(s)

det(sI + TA)
(27)



Conversely, if one can find polynomials U∗
ij(s) with degree

mA and U∗
ij(0) = 0 such that (27) holds with the right

hand side of (27) is free of closed right half plane poles,
i.e., all poles in the open left half plane, then the identity
(27) completely describes G∗

W,ij(s) which is what we want
to find. The identity (27) can also be put into the following
vector form:

G̃∗
W (s) = G̃∗

W (s) (InA ⊗ G∗
B(s)) (G∗

A(−s) ⊗ InB )

− Ũ∗(s)
det(sI + TA)

, Ũ∗(s) = vec {U∗
ij(s)} (28)

Our goal is then to find Ũ∗(s) with Ũ∗(0) = 0 such that

identity (28) holds for a stable transform vector G̃∗
W (s).

However, the identity (28) does not directly lend itself to
a computational procedure for finding the unknown polyno-
mials and even so, doing the calculations in the transform
domain is cumbersome and ill-conditioned and additionally
one needs to perform transform inversion in the end to cal-
culate G̃W (t). In order to avoid transform domain calcula-

tions for finding Ũ∗(s), we first introduce the following linear
system of differential equations defined for t ≥ 0 (denoted
by SA) associated with the interarrival times in state-space
form but with non-zero initial states:

d

dt
xA(t) = −xA(t)T̃A + uA(t)ṼA, xA(0−) = x0, (29)

yA(t) = −xA(t)H̃A + uA(t)D̃A + d0 δ(t), (30)

where

ṼA = VA ⊗ InB ,

T̃A = TA ⊗ InB ,

H̃A = HA ⊗ InB

D̃A = DA ⊗ InB , (31)

and ⊗ denotes the Kronecker product. In the linear system
above, xA(t) is the system state with a non-zero initial value
x0. Moreover, the system SA has two input vectors, one
being the control input uA(t), the other being the dirac delta
function δ(t) feeding in through d0, and one output vector
yA(t). The system parameters d0 and y0 are not known yet
but they are to be determined. Next consider another linear
system of differential equations (denoted by SB) associated
with the service times in state-space form:

d

dt
xB(t) = xB(t)T̃B + uB(t)ṼB, xB(0−) = 0, (32)

yB(t) = xB(t)H̃B + uB(t)D̃B, (33)

where

ṼB = InA ⊗ VB,

T̃B = InA ⊗ TB,

H̃B = InA ⊗ HB

D̃B = InA ⊗ DB (34)

In the linear system above, xB(t) is the system state with
a zero initial value. On the other hand, the system SB has
one vector input uB(t) and one vector output yB(t). We
interconnect these two systems, for reasons to be made clear
later, through the following feedback configuration, say SF,
also depicted in Figure 2:

uA(t) = yB(t) =: uF (t), uB(t) = yA(t) =: yF (t) (35)

SA

SB

yF(t)

impulse 
input

initial condition xo

uF(t)

d0

+

Figure 2: Feedback interconnection diagram of the
two linear systems of differential equations SA and
SB

where the subscript F is used to refer to the feedback con-
figuration.

We now obtain an expression for the the Laplace trans-
form y∗

F (s) of the output vector yF (t). Note from (30) and
(35) that

y∗
F (s) = −x∗

A(s)H̃A + u∗
F (s)D̃A + d0.

Also note from (29) and the derivative rule for Laplace trans-
forms that

x∗
A(s) = u∗

F (s)ṼA + x0 (sI + T̃A)−1.

Consequently,

y∗
F (s) = − u∗

F (s)ṼA + x0 (sI + T̃A)−1H̃A

+ u∗
F (s)D̃A + d0

= u∗
F (s) −ṼA(sI + T̃A)−1H̃A + D̃A

− x0(sI + T̃A)−1H̃A − d0 (36)

From (32) and (33), we know that

u∗
F (s) = y∗

F (s) ṼB(sI − T̃B)−1H̃B + D̃B

from which (36) simplifies to

y∗
F (s) = y∗

F (s) (InA ⊗ G∗
B(s)) (G∗

A(−s) ⊗ InB )

− x0(sI + T̃A)−1H̃A − d0 (37)

Note the similarity in the identities (37) and (28). Let us
assume that we determine x0 and d0 such that the following
two conditions are satisfied:

C1) y∗
F (s) is analytic in the closed right half plane

C2) y∗
F (0) = π̃ = πA ⊗ πB

then (37) provides an equivalent expression to (27) and (28)

with an appropriate choice of Ũ∗(s). Therefore, in case one
has x0 and d0 such that the output of the feedback system



yF (t) satisfies the conditions C1) and C2) then it is true
that

y∗
F (s) = G̃∗

W (s)

The next section describes a matrix analytical method to
find G̃W (t) without using any transform domain calculations
but instead uses the transform identities (27) or (37) only
for proving the proposed algorithmic method.

5. MATRIX ANALYTICAL METHOD FOR
THE SEMI-MARKOV QUEUE

In this section, we present a matrix analytical method
for solving for the steady-state waiting time distribution
through the calculation of the vector G̃W (t). For this pur-
pose, we obtain a state-space representation for the feedback
configuration SF given through (35). We first try to write
the vector input uF (t) in terms of the individual states xA(t)
and xB(t) of the systems SA and SB, respectively:

uF (t) = xB(t)H̃B + uB(t)D̃B (38)

= xB(t)H̃B

+ −xA(t)H̃A + uA(t)D̃A + d0 δ(t) D̃B

= −xA(t)H̃AD̃B + xB(t)H̃B + d0D̃B δ(t) D̃AB

where

D̃AB = (I − D̃AD̃B)−1 (39)

Similarly, the output vector yF (t) is written in terms of the
individual states xA and xB as follows:

yF (t) = −xA(t)H̃A + uA(t)D̃A + d0 δ(t) (40)

= −xA(t)H̃A

+ xB(t)H̃B + uB(t)D̃B D̃A + d0 δ(t)

= −xA(t)H̃A + xB(t)H̃BD̃A + d0 δ(t) D̃BA

where

D̃BA = (I − D̃BD̃A)−1 (41)

By substituting (38) in the state equations (29), one can
easily show that

d

dt
xA(t) = xA(t)(−T̃A − H̃AD̃BD̃AB ṼA)

+ xB(t)H̃BD̃AB ṼA

+ d0D̃BD̃AB ṼA δ(t) (42)

On the other hand, insertion of (40) in the state equa-
tions (32) leads to the following modified state equations
for xB(t):

d

dt
xB(t) = −xA(t)H̃AD̃BAṼB

+ xB(t)(T̃B + H̃BD̃AD̃BAṼB)

+ d0D̃BAṼB δ(t) (43)

Combining the differential equations (42) and (43) we obtain

d

dt
xF (t) = (

d

dt
xA(t),

d

dt
xB(t)) = xF (t)TF +d0VF δ(t), (44)

with the initial value

xF (0−) = (x0, 0),

and the matrices TF and VF are defined as

TF =
−T̃A − H̃AD̃BD̃AB ṼA −H̃AD̃BAṼB

H̃BD̃AB ṼA T̃B + H̃BD̃AD̃BAṼB
,

(45)
and

VF = D̃BD̃AB ṼA D̃BAṼB (46)

Integrating the state equations (44) from 0− to 0+ (or simply
0), we obtain the following state equation

d

dt
xF (t) = xF (t)TF , xF (0) = (x0, 0) + d0VF (47)

and the output equation

yF (t) = xF (t)HF + d0D̃BAδ(t) (48)

where

HF =
−H̃AD̃BA

H̃BD̃AD̃BA
. (49)

We note that the matrix TF has nBmA −1 eigenvalues with
positive real parts, one eigenvalue at the origin, and nAmB

eigenvalues with negative real parts [17]. Let QF be an
orthogonal matrix, i.e., QT

F QF = I , such that

QT
F TF QF =

TF,++ TF,+−
0 TF,−−

, (50)

where the eigenvalues of the matrix TF,++ and TF,−− have
nonnegative and negative real parts, and they are of size
nBmA and nAmB, respectively. We then define the follow-
ing transformation

x̃F (t) = xF (t)QF (51)

and partition

x̃F (t) = (x̃F,+(t), x̃F,−(t))

appropriately so that the row vectors x̃F,+(t) and x̃F,−(t)
are of size nBmA and nAmB, respectively. From (47) and
(50) we first obtain

d

dt
x̃F,+(t) = x̃F,+(t)TF,++

but since all the eigenvalues of TF,++ have nonnegative real
parts the only condition for the analyticity of y∗

F (s) in the
closed right half plane is

x̃F,+(0) = 0. (52)

Partitioning QF as in (50)

QF =
QF,++ QF,+−
QF,−+ QF,−−

, (53)

and defining

QF,+ =
QF,++

QF,−+
, QF,− =

QF,+−
QF,−−

, (54)

the condition (52) can be reduced to a linear matrix equation
in the unknowns x0 and d0:

x̃F,+(0) = xF (0)QF,+

= ((x0, 0) + d0VF )QF,+

= x0QF,++ + d0VF QF,+ = 0 (55)



The equation (55) ensures that the condition C1) is satis-
fied. In order to express the condition C2) as a linear matrix
equation we first write x̃F (t) as

x̃F,−(t) = x̃F,−(0)et TF,−−

= (x0QF,+− + d0VF QF,−) et TF,−−

Finally, the expression for the output vector yF (t) in (48)
can further be simplified to

yF (t) = (x0 QF,+− + d0 VF QF,−) et TF,−−QT
F,− HF

+ d0 D̃BA δ(t) (56)

Noting that
∞
0− yF (t) = π̃ for condition C2), we obtain

another linear matrix equation in x0 and d0 so that C2) is
satisfied:

π̃ = −x0 QF,+− T−1
F,−− QT

F,− HF

+ d0 −VF QF,− T−1
F,−− QT

F,− HF + D̃BA (57)

Combination of (55) and (57) give (mA + nA)nB equations
with (mA + nA)nB unknowns; x0 is of size nBmA and d0

is of size nAnB . Solving for x0 and d0 from (55) and (57)
leads us to a matrix exponential waiting time distribution:

y∗
F (t) = G̃W (t) = vet T H + dδ(t) (58)

where

v := x0 QF,+− + d0 VF QF,− (59)

T := TF,−− (60)

H := QT
F,− HF (61)

d := d0 D̃BA (62)

Note that the density of the steady-state waiting time is
written as

GW (t) = G̃W (t)e = vet T He + de δ(t)

from which one can find the ith moment of the waiting time
as follows:

E[W i] = (−1)i+1 i! vT−(i+1)He.

Although the development of the overall algorithm might
be elaborate, the algorithm itself is relatively simple and is
given in Table 1 for the sake of reference.

6. NUMERICAL EXAMPLE
As a simple example, we use a simple PH/PH/1 queue

studied in [13]. In this example, we study an IPP/Ek/1
queue where the IPP (Interrupted Poisson Process) is a PH-
type process with two phases, namely the OFF and ON
phases, and Ek denotes the Erlangian distribution with k
stages [13]. The mean service rate is set to 100 in this nu-
merical example. In an IPP, the arrivals are Poisson with
rate λ in the ON phase and there are no arrivals in the
OFF phase; the IPP has the following ME representation
(vA, TA, hA, 0) given in [13]

v = 0 1 , TA =
−γ01 γ01

γ10 −(γ10 + λ)
, hA =

0
λ

.

Ek distributions have natural ME representations given in
[28]. The burstiness b of an IPP is defined as the ratio
between the arrival rate in a burst and the overall average

Table 1: Algorithm to find GW (t) given the pair
of quadruples (VA, TA, HA, DA) and (VB , TB, HB , DB)
characterizing the MRP-MEs for interarrival and
service times, respectively.

1. Find the steady-state vectors πA and πB using
(15) and (18), respectively.

2. Let π̃ = πA ⊗ πB .

3. Obtain ṼA, T̃A, H̃A, and D̃A by (31).

4. Obtain ṼB , T̃B, H̃B, and D̃B by (34).

5. Construct D̃AB and D̃BA by (39) and (41).
6. Construct the matrices TF , VF , and HF by using

(45), (46), and (49), respectively.
7. Find an orthogonal matrix QF so as to obtain the

ordered Schur form of TF where ordering is done
as in (50).

8. Partition the matrix QF as in (53) and (54).
9. Solve for x0 and d0 using the linear equations (55)

and (57).
10. Define v, T , H , and d by (59), (60), (61), and

(62).
11. Write GW (t) = vet T He + de δ(t).

arrival rate. In this numerical example, we fix γ01 = 10
and choose γ10 so as to fix the burstiness b = 4. The rate
parameter λ is then chosen so as to attain a desired load ρ
on the queueing system.

The algorithm of Ref. [20] uses the logarithmic reduction
(LR) iterative procedure for the PH/PH/1 queue. The LR
procedure was first introduced in [19]. The advantage of
the algorithm [20] stems from the reduced size of the ma-
trices that are used within the LR procedure; the order of
the matrices are the sum of the phases (i.e., m = mA +mB)
in the arrival and service time distributions in [20]. This is
in contrast with matrices of size being their product (i.e.,
m = mAmB) in the original matrix-geometric algorithm
given in [28]. This order reduction brings a considerable
computational advantage. However, we note that calcula-
tion of the input matrices to the LR procedure in [20] still
requires the construction of a matrix with the order of the
product of the number of phases in the arrival and service
time distributions and further matrix multiplications involv-
ing this product-sized matrix. On the other hand, the Schur
decomposition-based algorithm proposed in this paper does
not use matrices of multiplicative size in any step of the algo-
rithm and the Schur form of a matrix of additive size is used.
In Table 2, we report the probability mass at zero, i.e., the
probability that an arriving customer finds the queue empty
and hence will not wait in the queue, as well as the mean
waiting time in the queue for the IPP/Ek/1 queue. These
results are obtained using MATLAB 7.0 and the LR pro-
cedure of [20] with a stopping criterion ε = 10−9 and the
Schur-based algorithm proposed in this paper as a function
of ρ and the number of stages, i.e., k, of the Erlangian service
time distribution. For the latter, we use the Matlab func-
tions schur.m for Schur decomposition and ordschur.m for
ordering the eigenvalues. We observe that the results agree
upto a significant number of digits validating the accuracy
of the Schur-based algorithm.

We also consider correlated arrivals in the currentexam-
ple. We study the statistical multiplexing of N voice sources
with silence detection so that each voice source is modeled



as a two-state IPP with mean off time and the mean on time
set to 650 ms and 353 ms, respectively. The mean number
of packets generated by each voice source in an on period
is set to 22 and the packet sizes are such that voice peak
rate in the on state is 32 Kbps. Although packet size are
fixed we model them by the E20 distribution with the same
mean. On the other hand, the multiplexer’s service rate is 10
times each voice source’s peak rate. In Table 3, we report
the probability that an arriving customer finds the queue
empty, the mean waiting time in the queue, and the CPU
time needed for the voice multiplexing example as a function
of the number of voice sources N using the Schur approach
proposed in this paper and the matrix geometric (MG) ap-
proach outlined in [14] that also derives explicit waiting time
expressions for the underlying MAP/PH/1 queue. We also
note that we employ the quadratically convergent iterations
proposed in [27] for finding the associated rate matrix in the
MAP/PH/1 queue. All the values we calculate are identi-
cal up to six significant digits so we report them once. We
also provide the CPU times needed in the Schur approach
and the MG approach. The results are indicative of similar
computational complexities that the two approaches pos-
sess although we are led to believe that the MG approach
is slightly better for low loads and this situation is reversed
for increased loads. The real advantage in using the pro-
posed approach is that the expression for the waiting time
distribution is matrix exponential and all related moments
can be derived algorithmically. In the MG approach, it is
the steady state queue length probabilities that have a rel-
atively simple expression (i.e., matrix geometric). On the
other hand, in the MG approach it is generally difficult to
calculate the waiting times and their moments. As an ex-
ample, Heindl was able to derive the first two moments for a
MAP/PH/1 queue in [14] which were already cumbersome.

7. CONCLUSIONS
In this paper, we introduce a stochastic model, namely the

MRP-ME, which is a Markov renewal process with a matrix
exponential kernel matrix. We then study the steady-state
waiting time in a semi-Markov queue with infinite capacity
in which the interarrivals and services are both modeled with
MRP-MEs. Without having to solve for the steady-state
queue lengths by matrix-geometric techniques, we introduce
an algorithm that directly finds the waiting time distribu-
tion which is in matrix exponential form. The algorithm
to obtain the parameters of the matrix exponential form is
relatively easy to implement and its numerical engine is the
ordered Schur decomposition whose various stable imple-
mentations exist in the literature. The numerical examples
we present lead us to believe that the proposed algorithm is
a promising candidate for a wide range of Markov renewal
queueing problems. As future work, we list the possibility
of allowing inter-dependence between arrivals and services
and the finite capacity case.
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