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Abstract

In assembly lines, service involves assembling units coming from more than one
source. In queue terminology, we may consider this situation as one in which
service is rendered only to groups of customers — one from each class. In this paper
we give procedures to determine response time characteristics of such a system
under Markovian assumptions when a finite capacity restriction is imposed. This
restriction is imposed to reflect reality as well as to make analysis tractable. In the
course of this study, we also give a recursive technique to determine the distribu-
tion of the time taken for a specific number of departures in a Poisson queue from
an arbitrary initial state. We demonstrate that this distribution is related to the
response time distribution of the assembly-like queue. Webelieve that this procedure
will also be of independent interest.
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1. Introduction

At an assembly point on a production line, units coming from various sources
are assembled to make a product. In this process, typically one unit from each source
is needed. Such queueing systems in which service can be rendered only to groups of
customers — one from each source — have come to be known as assembly-like queues.
Harrison [4] investigated the equilibrium properties of the underlying waiting time
processes and came to the conclusion that, when there is no restriction on system
capacity, the vector waiting time process (with waiting time of the nth arriving
customer in each class as elements) does not converge in distribution to a nondefective
random vector as n —> °°. This result is only to be expected, since the slowest traffic
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dominates the waiting time process. Harrison also showed that a modified waiting
time process which is the minimum of waiting times of the nth customers in the
various classes did converge in distribution as n = °o. Although useful in understanding
the properties of the underlying processes, this result is not useful in practice if one is
interested in the waiting times of the various classes of customers.

In its generality, the structure of an assembly-like queue may be described as
follows:

(i) Customers from m sources arrive for service at a single facility.

(i) Service is given only to groups of customers with groups made up of one
customer from each source.

(iii) The waiting room for customers from each source has a specified capacity.

(iv) For the study of waiting times, one assumes that the customer groups are
served in the order they are formed.

(v) The service facility might also be equipped with the capability to serve
more than one type of customer group, each having its own set of sources.

The system analyzed here is a simplified version with assumptions for arrival
and service processes that make the system Markovian. We consider the case m =2 in
detail and outline the procedure by which it can be extended to m > 2, using the case
m = 3. We assume exponential interarrival and service times and consider only one set
of sources, thus resulting in service for only one type of customer groups. We also
assume that the waiting rooms of customers are finite, not necessarily being the same
for each source. This assumption of finiteness overcomes the problems identified
in the Harrison study. However, it should be noted that the capacity of the waiting
room is limited only by our computational capabilities.

In order to avoid the problems posed by the unlimited waiting room, Latouche
[5] bounded the excess of one class of customers over the other in an assembly-like
queue with two customer classes. He used the algorithmic technique introduced by
Neuts [7] to determine the equilibrium distribution of the number of customers in
the system. However, in many situations bounding the number of customers in each
class rather then bounding the excess seems more practical. This is the approach we
take in our study.

Our study of assembly-like queues was motivated by the dataflow model of
a computer system. In the dataflow architecture of computer systems (Dennis {2]),
execution of programs is data driven in the sense that each instruction is enabled for
execution just when each required operand has been supplied by the completion of the
predecessor instruction. Thus, operands are processed only when one operand from
each of the required classes is available, exactly in an assembly-like manner. Thus, in
its generality a processor node of a dataflow model may exhibit all properties of
assembly-like queues described above, and the system we consider is a simplified
model for such a node. Even though the primary justification for assumptions in our
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model is the ease of analysis, the finite waiting room assumption can be justified also
by the architéctural restrictions imposed by the initial attempts in system design (see
Dennis and Misunas [3]). As can be seen later, only approximate solution techniques
seem feasible if some of the major model assumptions are relaxed.

The objective of our study is the determination of the distribution and the
moments of the response time (= waiting time + service time) using known results
for the steady state distribution of the number of customers in the system from each
source. If one is interested only in the unconditional mean response time, Little’s law
can be used to derive it if the queue length distribution is known. The value of our
study is in providing expressions for response time characteristics conditional on the
state of the system on the arrival of the customer and the ability to determine the un-
conditional distribution when the state space is relatively small.

In an assembly-like queue, when an arriving customer finds more customers
of its class than the others, the waiting time has the characteristics of the time taken
for a specified number of departures in a regular queue. Therefore, in the next section
we give a procedure to determine the distribution characteristics of a specified de-
parture time in an M/M/1 (Poisson arrival, exponential service, single server) queue.
This result may also be of independent interest since we are not aware of the avail-
ability of a similar result in the literature for the finite waiting room case.

Section 3 describes the procedure for the analysis of assembly-like queues
with two customer classes. An outline of the extension to three customer classes is
given in sect. 4. The paper concludes with some remarks on the feasibility of similar
analysis in the general case in the last section.

2. Preliminary results: A specified departure time in an M/M/1 queue

Consider a single-server queue with Poisson arrivals and exponential service. Let
A be the arrival rate and u the service rate. Let 4 (¢) and D(¢) be the number of arrivals
and the number of departures during (0, ¢), and Q(¢) the number of customers in the
system at time ¢. Let

T = inf {ID() = d, Q(O) = i} .

The random variable Ty) is the first passage time for the counting process D(¢) and
is the time taken for d departures, having started initially with i/ customers in the
system.

For i = 0 and an infinite system capacity, the distribution Téo) can be deter-
mined from the joint distribution of 4 (z) and D(¢) given by Pegden and Rosenshine
[8]. For an arbitrary i, the distribution of Téi) can be obtained from similar results
derived by Boxma [1]. To use Boxma’s results, let
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FD() = P(A(1) = n, D) = r|Q(0) = ).

Now one may write

TP <n= 2 2 EP0. 2.1)

r=d n=90

Besides the fact that these results are for the infinite capacity queue, the explicit
expressions are quite cumbersome for getting E (Ty)). The method we propose here
is quite simple and is based on the Kolmogorov equations for the process. We consider
the queue with a finite capacity K. Even though the expressions for the distribution
become cumbersome for larger values of K, one should be able to obtain the mean of
the departure time directly for specific parameter values even for large K.

Define

POy =P (1) = PQ() = n, D@) = rlQ() = i), 2.2)

n=2012,...,K

~
i

0,1,2,...,d—-1.

Also

PD©) =1 ifn=1ir=0

otherwise.

Note that in order to consider the first passage time of the process {Q(¢), D (1)} to state
D(r) = d, we make the state (n,d), n =0, 1, 2, , K absorbing. Defining gd )(t) as
the density function of T we have

00 =1 3 20,0, 3)
n=1

which remains true even when K — oo. The transition probabilities P, ,(7) satisfy the
following forward Kolmogorov equations.
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P () = = AP (1), i=0
P(r) == (A+ WP, (), >0
P @ =-(\+wP (O+ YN () n=i+1...,K
P, =-+twP_, O+twp_ @O 1 =12
P, (1) = =M, (Ot WP, (), r=i+l1,...,d-1
P () =~ ‘(>\+ WP O+N _ (O+wpP . @),
{(n,r) = (i+j—r+ 1,r) forr =1,2,...,i
= (1+j7r forr=1+1,...,d-1,
j=0,1,2,..., K-i-1}
P (1) = —uB () + AP (D), r=12,...,d-1 (24)

Define the Laplace transform

co

¢,,(6) = / e"”P (1)dz Re(8) > 0.
0

With the initial conditions defined in (2.2), we get

“Z 0¢i0(9)—1 if n=i r=0
-6t p! -

/ e”'P (1)dt =

o 9¢m(0) otherwise .

Taking transforms, corresponding to the sets of equations (2.4), we have, respectively,
- -1
$o0(@) = (6 + 1)

$io®) = (@ + X+ w7
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B,06) = N6 + X+ W) g (0)

b, O = O N WG (O

06,(0) = H@® + N7 6, (©®)

6,.0)= (0 +N+w Ao, O +us ., O

0, (0) = MO + W B, (). 25)

When K and d are small, these equations can be solved explicitly. For larger values of
K and d, an algorithmic procedure which can be implemented using a computer may
be suggested. A diagrammatic representation (fig. 1) of the transition structure helps
in describing this procedure.

----------------------

-------------------------------------

Figure 1.

The following observations may be noted.

(1) When the process is in any one of the states (0,7), ¥ =i,...,d~1,only
arrivals affect transition. The residence time in such a state is exponential with rate A
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and the probability is 1 that the next state will be (0, r + 1). The corresponding Laplace
transform for the transition time is A/(A + ).

(2) When the process is any one of the states (K, 7),»=0,1,...,d—1,only
departures affect transition. The residence time in such a state is exponential with
rate u and the probability is 1 that the next state is (K —1, »+ 1). The corresponding
transform for the transition time is given by u/(u + ).

(3) From all other states, both arrivals and departures affect transition and the
probability of arrival is A/(\ + ) and the probability of departure is u/(\ + ). Resi-
dence times in these states are exponential with mean (A + u)™' and therefore corres-
ponding to an (n,r) = (n + 1,r) transition we have a Laplace transform (A /(A + w))
(X + p)/ (A + p+ 6)) and corresponding to an (n,r) > (n — 1, r + 1) transition we
have a Laplace transform (u/(X + w)) (A + w)/(A + p + 0)). Thus, because of the
Markovian properties of the system, obtaining the Laplace transform ¢, , _,(8) is
simply a problem of tracing the various paths from (i, 0) to (n, d — 1), counting the
number of transitions of the four types mentioned above, attaching the appropriate
Laplace transform with each transition and getting their product. Thus, suppose a
path from (i, 0) to (n, d — 1) includes N, of type 1, N, of type 2, and N§ of type 3
with an arrival and Ng of type 3 with a departure, then the corresponding transform
is simply

N N Nu Nd
)\ 1 2 3 3
N, N, N N?) = ( ) ( K ) AH . (26)

where we have written N¥ + Ng = Nj. If there are H(N;, N,, N¥, N$) paths of this
type, we get

0, g0 = @+ A+ > H(N, N, N NT) (v, N, N NY)

=ZF(N1,N2,N;‘,N§)< A )Nl( £ )N2< Aty >N3+1,
@.7)

0+ w+ 0 A+ pu+o

where the term (6 + A + u)™! of the first expression indicates that the process is still
in state (n, d — 1), and that the summation is over possible sets of values of Ny, N,, N¥
and Ng. The number of paths H(N,, N,, N}, Ng) can be determined by using a com-
puter algorithm.

Now the Laplace transform of the distribution of 7' éi) is obtained from (2.3) as
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/ “0tgD@)dr = p Z S, a_10)- (2.8)
0

n=1

The inversion of this transform can be accomplished by noting from (2.7) that it con-
sists of three factors which are transforms of Erlangian (Gamma) distributions. Let
fn(t/\) denote an Erlangian density such that

oo

f e U (1) dr = (TZR)N

0
Using this notation, after inverting (2.8) one gets

K

g0 =u 3 Y. TN, N, Ny NT)

n=1
Fy (X fy @l *fy L I+ w), 29)

where the second summation is over different values of N;, N,, N% and N§ resulting
from different paths from (i, 0) to (n, d —1). Also, we have used * to denote convolu-
tion. The transform (2.8) can also be mverted using partial fraction expansions. In
this case, one would be able to express gd (t) as

Ny N,y N3+1

g0 = 1| T ey fEIN X Gl + T ey I+ )] 2.10)

i=1 i=1 i=1

where ¢; (j = 1, 2, 3) are appropriate coefficients appearing in the partial fraction
expansxon

It may be noted here that Boxma’s [1] procedure is basically similar to this
solution technique. Without the finite upper limit on Q(¢), he is able to use random
walk methods to give the number of each type of path. Also, for the same reason,
there are only two types of transitions [(1) and (3)], thus simplifying the inversion.

If we are interested only in the mean first passage time to state D(f) =d, the
procedure given above can be used to determine this quantity in a recursive manner.
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Using a well-known property of non-negative random variables, we have

e[r¥] =/ P(TH > nydr. (2.11)
0

Combining this result with (2.3) we get

£[r]

I}
O\\‘g

||M>§

d-1 o

il
2. Pr(nde
r=0

n=0

K d-1
lim 2¢m(e)

00 n=0 r=0

1]
M

d-1
2. P (2.12)
r=0

0

n

where we have written lim, _, ,9,,(8) = ¢,,,. These quantities ¢, can be determined
from the set of equations (2.5) recursively as follows. Let 8 = 0 in (2.5). We now have
the set of equations

B = N1, i=0

$o = A+, i>0

¢n0 = )\()\+u)'1 ¢n_1,0, n=1i+1, , K
Sy MW O ='l,2,...,z'
Bop = HNO L, r=i+l,...,d-1
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¢nr = ()\+u)—1 [7\¢'n—l,r + “¢n+1,r—1] ’

(n,r)y =(@+j—-r+l,r) forr

i}
—
0

=(1+jr) for r =

I
+
-
Q

|
—

—_ -1 = —
bg, = AN O r=1,2,...,d-1 (2.13)

For specific values of \ and u, these can be recursively solved. When K and d are
small, explicit expressions can be easily obtained, but when K and d are large, a com-
puter can eliminate the drudgery of algebraic simplifications. The type of results one
obtains from this is illustrated in the following example.

EXAMPLE: i=3,K=6,d=5

The recursion is illustrated in fig. 2.

©
]

e@\
@<—
D@D« D«0<®

Q@O

N

\
Q<D0

@
<@<0-0<Q

Q@B
®

Columns: 0 1 2 3 4
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The first four equations of the set (2.13) give the ¢ values for (3, 0) to (6, 0),
(2, 1) to (0, 3), and (0, 4), which are all on the upper part of the boundary. The fifth
and sixth equations are used to determine the remaining ¢ values. After some algebraic
simplification, we get

)\r
¢ = —_— r=20,1,2,3
3+r,0 (>\+/J,)r+1
r+2
< | )}\r+1”
byory = ——— . r=-10123
()\+u)r+3
<r +24) )\r+2“2
I r=-2,-1,01,23
(M) *
<r‘;6)>\r+3u3
¢3+r3 = 4 r=—35—2’—1,07152,3
(>\+”)r+7
Nyt 4\ A+ 5 6 r+7
¢3+r,4= ’J'+9 3 -—-—-—-}\’J + 3 + 3 +...+< 3 3
A+ w’
r=-3-2,~1,01,23. (2.14)

It should be noted that the expressions are easy to obtain for columns
0, 1,2,...,i For columns beyond i, because of the contribution of the numerous
paths, the expressions become quite cumbersome, as evidenced by the last result in
(2.14). In view of this, computer implementation of the recursion is recommended.

The recursive scheme can also be used as K — oo, Clearly, the terms decrease
as one moves down along the columns and appropriate cutoff values can be prescribed
to terminate calculations in each column.

3. Assembly-like queues with two customer classes

We assume the following queue characteristics:
(i) Two classes of customers arrive in Poisson streams with rates A; and A,.

(if) Service requires pairs of customers — one of each class.
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(iii) Service times are independent and identically distributed exponential
random variables with rate u.

(iv) Waiting space is provided for only a maximum of K customers in the
system for each class including the one in service, if any. It should be noted
that the analysis remains unchanged even when queue capacities are different
for different classes of customers. We make the assumption of equal capacity
for notational ease.

(v) Service is rendered in the order the pairs are formed.

Let p,, n, be the steady state probability that there are n; of class 1 and n,
of class 2 customers in the system. With these assumptions we can easily write down
the state balance equations and solve them in the usual manner. When the capacity
constraint is K, there are (K + 1) probabilities to be determined. For the remainder
of this discussion we shall assume that K is relatively small and our computational
capabilities are such that these probabilities can be determined without significant
error.

Let f,ff)nz (x) be the probability density of the response time (= waiting time
+ service time) of a class i (i = 1, 2) customer when it finds n, of class 1 and n, of
class 2 customers on its arrival ("1» n, =0,1,2,...,K). Also, let R(’) be the
corresponding mean response time. In the determinatlon of ,,(1’),12(x) and Rr(ill)nz
have to delineate different cases.

Case (i): n,=n, =nz=0.

When a customer arrives, if there are only pairs (and no excess in any class) in
the system, then the response time will include the amount of time needed to serve
the pairs and its own service time if a customer of the other class has already arrived
by that time, or the amount of time for a customer of the other class to arrive plus
its service time. We have

n.n-1

X
. _ H)’ g e

0
y -1

e IJ —Af ;
0

K=2n=20, ij=12 i%#j, 3.1
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giving

n

R(l) _ nt1 + M

ihj=1,2, i#j, 0<n<K. (3.2)

Case (it): n, < n, (1,j=1,2; i#])).

When a customer of class 7 arrives if the excess of customers (after forming
pairs) is in class j (j # i), then its response time is the total service time of the pairs
ahead of it plus one service time. We have

un1+1xn1
f,fi)nz(x) = g Hx PR n, <n, n,n, =012,... K, (33)
giving
W nt1
Rn1n2 = T n < Ry, ny,n, = 0,1,2,...,K. (34

Similar expressions follow when n, < n;.
Case (iii): n, > n, (G,j=1,2510 #j).

When a customer of class i arrives if the excess of customers is in its own class,
then the response time is the service times of pairs in the system plus the amount of
time needed to deplete the (n; — n; + 1) customers to zero. Since no more arrival of
class i is needed, this time is simply the time taken for n; + 1 departures in an M/M/1
queue with arrival rate ?\j and an initial number of n; customers. As defined in sect. 2,
this is the distribution of the random variable ];1(1'23 for that system. For convenience,
we shall denote its probability density as gfl':l)l (tl 7\]-). Thus we have

D @) =g (xin), on >,

nyn, ng+1 2

LK (3.5)
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giving

a = (n3)
RY, =E[TI 0], n >, (3.6)

Similar expressions follow when n, > n,.

Combining the distributions of the number of customers in the system and
their response time we have, for f()(x) the response time density of an arriving
customer of class i (i =1,2)

K~-1 K
O =t Y X Payny S, (), (3.7)
0 2=0

— hyny
nl =

giving R (i), the corresponding mean response time, as

K -1 K

S . 1

R(t) = qll z z pn1n2 ngi)nz = )\ z nl z pnlnz ’ (38)
ny=0 ny=0 9% ny ny

where we have used g; (i = 1, 2) to denote the probability that a class i customer will
not be blocked from entering the system. For instance, we have

K=-1

K
4= 2 2 Pon,-

n1=0 n2=0

The last expression in (3.8) is obtained using Little’s law.

In order to extend these results for an assembly-like queue with three classes
of customers, we need the distribution and the mean of the time taken to serve a
specified number of pairs in a two-class system starting with some initial state (i, 7).
This can be obtained exactly the same way as for a specified departure time in a one-
class (M/M/1) system, described in sect. 2.

4. Assembly-like queues with three customer classes

We make the following modifications to the system characteristics assumed at
the beginning of sect. 3.

(i) Three classes of customers arrive in Poisson streams with rates A, A, and
A
3 .
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(if) Service requires triplets of customers — one coming from each class.

(iii) Service is rendered in the order of formation of triplets. In order to
simplify the discussion, we denote the above system by (ALQ),,5. In a similar
manner, if we are considering an assembly-like queue with two Poisson arrival
streams with rates A, and A, , we denote it by (ALQ),,, etc.

Let py;nyny be the steady state probability that there are n,; of class 1, n, of
class 2, and ny of class 3 customers in the system. With a finite capacity constraint of
K for the number of customers in each class, the steady state probability p,, n,n, can
be determined by solving the (K + 1)3 state balance equations in the usual manner.

Let f,ﬁ)nz n3(x) be the probability density of the response time (= waiting
time + service time) of a class i customer when it finds n,; of class 1, n, of class 2,
and ny of class 3 customers on its arrival (i = 1, 2,3, ny, n,, n3 =0,1,2,...,K).
This conditional density can be determined in different cases as indicated below.

Case(i):  (n, = n, =ny = 0).
If an arriving customer finds no customers in any of the classes, the waiting
time is the maximum of the arrival times of customers from the other two classes.

Case (ii): (Customer of one class arrives; only one of the other two classes has
customers in the system.)

Suppose a class 2 customer arrives when n; > 0, n, =n5 =0. Then the waiting
time for service is the time until a customer of class 3 arrives.

Case (iii): (After the arrival, the arriving customer class has the least or one of the
least number of customers.)

Suppose a customer of class 1 arrives to find n; customers. Let n, = 0,
n,, n3 > 0,and n; < n,, n;. Now the response time is equivalent to the service time
of n; + 1 customers.

Case (iv): (After the arrival, the number of customers in that class is larger than the
number in one class, but smaller than the other.)

Suppose a customer of class 1 arrives. Let n; + 1> n, and n; +1 < n;. Now
the class 3 process does not influence the response time. The response time is the time
needed to serve n; + 1 customers in an M/M/1 queue with arrival rate A, and starting
with an initial number n, .
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Case (v): (After the arrival, the arriving class has the largest number of customers
in the system.)

Suppose a customer of class 1 arrives. Let ny + 1> n,, ny. Now the response
time is the time needed for n; + 1 departures in an (ALQ),; system starting with
n, and ny customers in the two classes, respectively. The distribution characteristics
of this quantity can be obtained as indicated at the end of sect. 3.

The conditional response time distributions from these different cases can be
combined to give the unconditional distribution as described in sect. 3 for the two-
class system.

5. Remarks

As demonstrated in the case of the assembly-like queue with three classes, for
the determination of the response time characteristics of an n-class system we need
specified departure time characteristics of r-tuplets (r = 1, 2, ... ,n — 1) from the
corresponding ALQ systems. Clearly, as n gets larger, this becomes quite cumbersome
and untractable. It should also be noted that the determination of the steady state
distribution of the number of customers in different classes is not a simple problem
either in the general case. Furthermore, in the dataflow computer system model de-
scribed in the introduction, the processor is likely to be required to handle more
than one type of customer sets. For instance, the same processor might be used to
add/subtract as well as multiply/divide different sets of numbers. One conclusion that
can be drawn from the analysis given in sects. 3 and 4 is that, in extensions such as
these, exact analyses are likely to be untractable. Then approximation techniques
seem to be the only answer to determine general properties of underlying models.
An example of such an attempt is the article by Lipper and Sengupta [6] appearing
elsewhere in this issue.
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