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Abstract

In this paper, we consider a discrete-time finite-buffer queue with correlated arrivals and service interruptions
and the corresponding infinite-buffer queue. Under some assumptions, we derive an exact relation holding between
the loss probability in the finite-buffer queue and the queue length distribution in the corresponding infinite-buffer
queue. The exact relation is considered as an integration/generalization of the exact relations which have been
derived in previous papers. By applying the exact relation, we also develop formulas to estimate the loss probability.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider a discrete-time finite-buffer queue with correlated arrivals and service inter-
ruptions and the corresponding infinite-buffer queue. Under some assumptions, we derive an exact relation
holding between the loss probability in the finite-buffer queue and the queue length distribution in the
corresponding infinite-buffer queue. By applying the exact relation, we also develop two formulas to esti-
mate the loss probability. The first formula, which uses Ramaswami’s recursion [ 14] in the exact relation,

* This research was supported by University IT Research Center Project.
* Tel.: +82 2 3290 4297.
E-mail address: fumio@ieee.org.

0166-5316/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2005.06.006



F. Ishizaki / Performance Evaluation 63 (2006) 682—699 683

computes the exact loss probability. The second formula, which uses the geometric asymptotic expression
[3] of the queue length distribution in the exact relation, calculates the asymptotic loss probability.

Similar exact relations between the loss probability in the finite-buffer queue and the queue length
distribution in the corresponding infinite-buffer queue have been studied by several researchers. Kang et
al. [10] have considered discrete-time queueing systems where the arrival process is a superposition of
Bernoulli sources (i.e., the arrival process is i.i.d.) and the service is available every R slots where R is a
positive integer. For such queueing systems, they have established an exact relation holding between the
loss probability in a finite-buffer queue and the queue length distribution in the corresponding infinite-
buffer queue. Ishizaki and Takine [8] have considered discrete-time queueing systems where the arrival
process is similar to (but a little restrictive compared to) the arrival process considered in this paper and
the service is always available. For such queueing systems, they have established a proportional relation
between the stationary queue length distribution in the finite-buffer queue and that in the corresponding
infinite-buffer queue. Using this proportional relation, they have obtained an exact relation holding be-
tween the loss probability in a finite-buffer queue and the queue length distribution in the corresponding
infinite-buffer queue. Ishizaki [6] has considered discrete-time queueing systems where the arrival pro-
cess is similar to the arrival process considered in this paper and the service is available every R slots.
A similar exact relation has been obtained for such queueing systems. The exact relation derived in this
paper is considered as an integration/generalization of those exact relations in the following sense: the
service process considered in this paper is governed by a special Markov chain and it includes the ones
considered in [6,8,10] as special cases. Also, the arrival process considered in this paper can have some
correlations and it generalizes the one considered in [10].

Queueing systems with correlated arrivals and service interruptions have a wide range of applications
to manufacturing, computer and telecommunication systems where the server is subject to breakdown or
some scheduling mechanism such as round-robin (see, e.g. [9,2,18] and references therein). In packet/cell
networks, the arrival process at statistical multiplexer is usually a superposition of sources which typically
generate time-correlated and bursty traffic due to their origin (e.g., periodic sampling of voice traffic or
MPEG encoded real-time video traffic) or traffic shaping. The service process at statistical multiplexer
may be subject to a scheduling mechanism (e.g., round-robin scheduling). For instance, the service for
packet/cell transmission may be available every R slots, where R is a positive integer. The dynamics
of such a multiplexer is modeled as a discrete-time single-server finite-buffer queue with correlated
arrivals and service interruptions, and the dynamics of such a queue may be described as a finite-state
Markov chain. The loss probability is then obtained from the stationary distribution of the Markov chain.
Although we can directly apply the standard algorithm (e.g., as shown in [4,11,16]) to compute the
stationary distribution of the Markov chain, the following difficulties arise in the computation. Usually,
the number of states to describe the dynamics of multiplexer becomes prohibitively large. This makes
the computation with enough accuracy very difficult. In addition, the standard algorithms such as block
Gaussian elimination include subtractions and this often makes the algorithms unstable, especially, when
the size of the matrices is large. Thus numerical algorithms to estimate the loss probability efficiently
and stably should be developed. The first formula derived in this paper stably computes the exact loss
probability. The second formula derived in this paper can estimate the loss probability more easily than
the standard algorithm when the size of the matrices is large.

The remainder of this paper is organized as follows. In Section 2, we consider an M/G/1-type Markov
chain with some regenerative structure and a corresponding truncated Markov chain which is obtained
from the M/G/1-type Markov chain by limiting its maximum level to K where K is a nonnegative integer.
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Under some assumptions, we derive a preliminary result (Theorem 1) for a proportional relation holding
between the stationary distribution of the M/G/1-type Markov chain and that of the corresponding trun-
cated Markov chain. The result is interpreted as a generalization of the proportional relation [8] between
the stationary queue length distribution in the finite-buffer queue and that in the corresponding infinite-
buffer queue. Section 3 shows a discrete-time single-server infinite-buffer queue with correlated arrivals
and service interruptions whose dynamics is described as the M/G/1-type Markov chain considered in
Section 2 and its corresponding finite-buffer queue whose dynamics is described as the corresponding
truncated Markov chain. In Section 4, using the preliminary result derived in Section 2, we establish an
exact relation (Theorem 2) holding between the loss probability in a finite-buffer queue and the stationary
queue length distribution in the corresponding infinite-buffer queue. Using Theorem 2 in the geometric
expression of the asymptotic tail distribution in the infinite-buffer queue, Section 5 derives a formula
(Theorem 3) to compute the asymptotic loss probability in the finite-buffer queue.

2. Preliminary result

In this section, we consider an M/G/1-type Markov chain with some regenerative structure and a
corresponding truncated Markov chain which is obtained from the M/G/1-type Markov chain by limiting
its maximum level to K where K is a nonnegative integer. We then provide a preliminary result for a
proportional relation holding between the stationary distribution of the M/G/1-type Markov chain and
that of the corresponding truncated Markov chain.

Throughout this paper, we use the following notation. For any matrix C, [C]; ; denotes the (i, j)th
element of the matrix C, and the row and column index numbers of any matrix are labeled from O.
Similarly, for any vector ¢, [c]; denotes the ith element of the vector ¢, and the row or column index
numbers of any vector are labeled from 0.

We consider a discrete-time Markov chain {(X,, V,)} 2, whose state space is S = {(k,[) |k =
0,1,...;1=0,..., L}, where Lis anonnegative integer. We assume that the Markov chain {(X,,, V,,)} 2,
is an M/G/1-type Markov chain and its down-shift matrices have some special structures shown in the
assumption below. Given that sequences of (L + 1) x (L + 1) matrices {A;} (i =0, 1,...) and {B;}
(i =0,1,...), we consider the Markov chain whose transition probability matrix Q> has the following
block structure:

By, B, B, B; |
Ay A, A, As
Q(OO) — o0 Ao A1 A2 s (1)

0 Ay A

where O denotes the (L 4+ 1) x (L 4+ 1) zero matrix. We also consider a discrete-time Markov chain
{(Yn, Vi), which is obtained from the Markov chain {(X,,, V,)};2, by limiting its maximum level to
K where K is a nonnegative integer. In other words, its state space is S = {(k,m) | k=0, ..., K;m =
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0, ..., L} and its transition probability matrix Q® has the following block structure:
‘B, B, B, By --- Byx., B%]
Ay A, Ay As - Ax. AL
Ay Ay Ay -+ Ax o, Ay,
PP _ |0 0 A A A i o
0 - . . 0 A A

where A =Y A, Bf = >, By, and O denotes the (L + 1) x (L + 1) zero matrix.
For the structure of the down-shift matrix A, the following assumption is made.

Assumption 1. There exists a 1 x (L + 1) probability vector a such that Ay = Agea, where e is an
(L 4+ 1) x 1 column vector with unit elements.

Note that Assumption 1 is equivalent to the following statement: Fori =0, ..., L,[ =0, ..., L and
k=0,1,..,wehave P(V, =1 | X, 1 =k+ 1,X,=k) =PV, =1 | X,.1=k+ 1, X, =k, V,_| =
i).Fori=0,...,L,[=0,...,Landk=0,1,...,wethenhave[a],=P(V, =1 | X,.1=k+ 1, X, =
k, V,—1 = i). In other words, Assumption 1 means that when the down-ward shift of the level {X,} (or
{Y,}) occurs, {V,} regenerates.

We also made the following assumption.

Assumption 2. The Markov chains {(X,,, V,)} and {(Y,,, V;,)} are irreducible and positive recurrent.

Under Assumption 2, the stationary distribution of the Markov chain {(X,, V;,)} and the stationary
distribution of the Markov chain {(Y,,, V,)} exist, and they are uniquely determined [1].

Let x and y denote the stationary distribution of the Markov chain {(X,,, V,,)} and that of the Markov
chain {(Y,, V;,)}, respectively. We then have

x=x0%,  y=y0", 3)
where
x:(xo’xl"")9 y:(y()?yl""vyK)v

x;isal x (L + 1) vector whose /th element [x,]; is given by [x;]; =P(X, = j, V, =), and y; is a
1 x (L + 1) vector whose /th element [y;]; is given by [y;l; = P(Y,, = j, V, = ).

The following lemma for the stationary distribution x is readily obtained by using the results shown in
[13,14].
Lemma 1. Under Assumptions 1 and 2, the stationary distribution x satisfies the equations

xo = x0By, 4
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i1
X = <xOBi + ZxkAi—k+1> I-A)"', i=12,..., (5)
k=1

where forv =20, ..., K — 1, we define A, and B, as
A, =A,+ Al ea, B, =B, + B}_,ea,

and e is a column vector with unit elements.

Proof. Since {(X,, V,,)} is a Markov chain of M/G/1-type, we have [14]

k—1 _
X = (xoi}k + ijAk+1—j) (I — Al) : , k= 1, 2, ey (6)

j=1

where Ag (k = 1,2,...)and By (k = 1,2, ...) are substochastic matrices, which are given by
A=) _A;G"*, Bi=> B;,G',
=k j=k

and G is an (L + 1) x (L 4+ 1) stochastic matrix whose (i, j)th element denotes the conditional
probability that the Markov chain {(X,, V,,)} starting in state (/ + 1,7) (for any level /) will reach
level [ eventually and end up in phase j when it reaches level /. On the other hand, we see
that for any i =0,...,L and j=0,...,L, we have [a]; = [G];; from Assumption 1. We thus
obtain

G = ea. (7

From (6) and (7), we see that (5) holds.

Let H denote an (L + 1) x (L + 1) stochastic matrix whose (i, j)th element denotes the conditional
probability that the Markov chain {(X,,, V,,)} starting in state (0, i) will reach level 0 eventually and end
up in phase j when it reaches level 0. From (7), we then have [13]

o0
H =) B.G"= By+ Bjea = B,. (8)
k=0

Since xg is an invariant vector for H [13], we obtain
X0 = X0 H. (9)
From (8) and (9), we see that (4) holds. [

The following lemma for the stationary distribution y is readily obtained as a special case of the result
shown in [5].

Lemma 2. Under Assumptions 1 and 2, the stationary distribution y is determined by the equations

Yo = yoBo, (10)
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i—1
yi = <yOBi +Zyk21,~_k+1> I-A)", i=1,...,K-1, (11
k=1
K—-1
Yk = (yOBK +> ykA}_kH) I—Ap~", (12)
k=1
K
Zyne - 1’
n=0

where forv =20, ..., K — 1, we define A, and B, as

A,=A,+ A} ea, B, = B, + B}_ea,

and e is a column vector with unit elements.

The following theorem, which establishes a proportional relation holding between the stationary dis-
tribution of the M/G/1-type Markov chain and that of the corresponding truncated Markov chain, is a
conclusion of Lemmas 1 and 2.

Theorem 1. Under Assumptions 1 and 2, there exists a constant ¢ such that

Yy = cXx;, iIO,l,...,K—l. (13)
In addition, the proportional constant c in (13) can be expressed as
mApe
c= (14)
Zi=o x;Agpe

where mw is a 1 x (L + 1) vector whose jth element is given by [r]; = P(V,, = j).

Proof. First we recursively show that (13) holds. Recall that from (4), (8) and (10), both xy and y, are

invariant vectors for the stochastic matrix H = By. Since the Markov chains {(X,, V,)} and {(Y,, V,,)} are

irreducible and positive recurrent from Assumption 2, there exists some constant satisfying yo = cxy. We

thus see that (13) holds for i = 0. Suppose that (13) holds fori =0, ..., k — 1, where k is some integer

satisfying k € {1, ..., K — 1}. Then, since (5) and (11) are identical recursions, we see that y; = cxy is

satisfied. We therefore show that there exists a constant ¢ such that y; = cx; fori =0,1,..., K — 1.
Next we show (14) along with similar lines of the proof shown in [8]. From (3), we have

K

Yk = YoBi + D yidi_ iy (15)
i=1

Using (13) and noting 3%, y; = m, we rewrite (15) to

K—1 K—1 K—-1
<n —c Z x,-) e=cxoBye+c Z XAy e+ (n —c Z xi> Ale, (16)

i=0 i=1 i=0
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where c is a constant appearing in (13). From (16), it follows that

K-1 K-1
n(l —ADe=c [xoByx + Y _ xiAx_i .+ > xi(I—A)|e. (17)
i=1 i=0
Note that we have
(I — AY)e = Age. (18)

Also note that the following equilibrium equation holds:
K—1
xoBy + > xiA%_. = xkAo, (19)
i=1

where the left-hand side of (19) denotes the total flow from a macro-state which composes of the states
that the level is less than K into a macro-state which composes of the states that the level is greater than
or equal to K, and the right-hand side of (19) denotes the total flow from the latter macro-state into the
former macro-state. Using (18) and (19) in (17), we obtain

K
mAge =c Y x;Age. (20)
i=0

Note here that ZiK: o XiAoe > 0 under Assumption 2. We therefore derive (14) from (20). [

3. Queueing model

In this section, we consider two queueing models, i.e., a discrete-time finite-buffer queue with correlated
arrivals and service interruptions and an infinite-buffer queue that is obtained from the finite-buffer queue
by eliminating the queue length constraint. Both queueing systems are identical except for the buffer
capacity. The queueing models are considered as an extension of ones considered in [8,6]. The dynamics
of the infinite-buffer queue and that of the finite-buffer queue will be described by the Markov chains
{(Xn, Vu)} and {(Y,,, V,,)} which are defined in the previous section, respectively.

We first sketch the queueing systems below. Time is slotted and the slot length is equal to a unit time.
The arrivals of batches occur at the beginnings of slots immediately after departures (i.e., early arrival
model [17]). The service times of customers are i.i.d. (independent and identically distributed) and they
follow a geometric distribution with mean 1/y (y > 0). As described later, the service is interrupted
in the nth slot if the Markov chain for the service process is in a particular state. The service of a
customer starts at the beginning of a slot and ends at the end of the slot (i.e., on slot boundaries). The
finite-buffer queue accommodates at most K customers including the one in service. Thus, if m (m >
K — k 4 1) customers arrive to find k customers (including the one in service) in the system, only K — k
customers are accommodated in the system, and the remaining m — (K — k) customers are discarded.
On the other hand, the infinite-buffer queue accommodates all arriving customers and no customers are
discarded.

We now describe the queueing systems in more detail. We begin with the description of the service
process. To describe the service process, we introduce a Markov chain. Let {S, },cz, denote a Markov chain
on R = {0, ..., R} where R is a nonnegative integer. The service is available in the nth slot if and only if
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S, = 0. We call the Markov chain {5, } the underlying Markov chain for the service process. We assume
that the underlying Markov chain for the service process is stationary and ergodic. We next describe the
arrival process. Let {A,},cz denote a stochastic sequence where A, represents the number of arrivals
in the nth slot. We assume that {A,},cz is governed by a Markov chain {P,},cz, on M = {0, ..., M}
where M denotes a nonnegative integer. More precisely, we assume that given P,, A, is conditionally
independent of all other random variables. We call the Markov chain { P,} the underlying Markov chain
for the arrival process. We assume that the underlying Markov chain for the arrival process is stationary
and ergodic. We now consider the queueing processes. Let {X,},cz, and {Y,},cz, denote a stochastic
sequence representing the queue length (including a customer in service) in the infinite-buffer queue and
that in the finite-buffer queue, respectively. Let {D, },cz, denote a Bernoulli sequence on {0, 1} where
P(D, =1)=yandP(D, =0)=1— yforn € Z,. We assume that {S,}, { P,} and { D,,} are independent
with each other. The queueing processes { X, } and {Y,,} evolve according to the following recursions with
initial queue length X and Yj:

Xn—H = (Xn - l{S,l:O}Dn)+ + An+19 Yn+l = mln[(Yn - l{S,l:O}Dn)+ + An+19 K],

where ()™ = min(-, 0) and 1 denotes the indicator function. Let Z,(n € Z) denote a random variable
representing the number of lost customers in the nth slot in the finite-buffer queue. Z,(n € Z) is given by

Zy =Yy — s, =) D)™ + Ay — K)T.

Now we describe a stochastic setting for the arrival and service processes. First, we describe the
stochastic setting for the arrival process. Let U denote the transition matrix of the underlying Markov
chain for the arrival process, i.e. (U lij =P(Poy1 = j| P, =10)fori, j € M.Let @ denote the stationary
vector of the underlying Markov chain for the arrival process, i.e. [#]; = P(P, = i). & then satisfies
# = #U and #e = 1. We denote by a j(k) the conditional probability that k customers arrive given that
the underlying Markov chain is in state j:

ajk)=P(A, =k | P,=j), jeM, k=0,1,2,....

Let 2\,-, j(k) denote the conditional joint probability of the following events: k customers arrive in the
(n + 1)st slot and the underlying Markov chain is in state j in the (n 4 1)st slot, given that the underlying
Markov chain was in state i in the nth slot. Namely,

Ai i) =P(Aps1 =k, Po1 = j | P, =i)=a,(0[0);, i, jeM.

Let Ak and Ai (k=0,1,...)denote (M + 1) x (M + 1) matrices whose (i, j)th elements are given by
Ai, j(k)yand >°° Ai, j(m), respectively. Note that Ak (resp. AZ) represents the transition matrix of the
underlying Markov chain when k customers (resp. more than or equal to k customers) arrive at the system.

Next, we describe the stochastic setting for the service process. Let U denote the one-step state transition
matrix of the underlying Markov chain for the service process, i.e. [f]]i, i=PSup1 =718, =i for
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i, j € 'R. Further, we define Uy and U, as

- [0 G=0), - WL G#0),
[UO]”"{O (#0). [U‘”‘{o (=0

Note here that we have U = U, + U, . Let & denote the stationary vector of the underlying Markov chain
for the service process, i.e. [T]; = P(S, = i). i then satisfies T = #U and 7te = 1.

Finally we will give a series of definitions and assumptions in order that the dynamics of the queues
are described by the Markov chains presented in Section 2. For this purpose, we begin with the definition
of random variables V,(n = 0, 1, ...). We first consider a mapping f : S x M — V defined as

fG,y) =M+ Dx+y,
where V = {0, ..., (M + 1)(R + 1) — 1}. We then define random variables V,,(n =0, 1,...) on V by
‘/rzzf(Snan):(M+1)Sn+Pn-

We next define an (M + 1)(R+ 1) x (M + 1)(R+ 1) matrix A;(i =0, 1,...) by
Ai=yU,® A+ (1 — U+ U ® A, Q1)

where ® denotes the Kronecker product and for notational convenience, we define 21_1 as 21_1 = 0.
Similarly, we define an (M + 1)(R+ 1) x (M + 1)(R + 1) matrix B; i =0, 1,...) by

B,=UQA,. (22)

Note that obviously {(X,, V,,)} and {(Y,,, V,,)} defined in this section become Markov chains whose
transition matrices are given by (1) and (2), respectively, with L = (M + 1)(R 4+ 1) — 1. Let & denote
the stationary vector of the Markov chain {V,,}, i.e. [r]; = P(V,, = i). Since the underlying Markov chain
{ P, } for the arrival process and the underlying Markov chain {S, } for the service process are independent,
7 is given by

T="AQI. (23)
We assume that the Markov chains {(X,, V,,)} and {(Y,, V,)} defined in this section satisfy Assumptions 1
and 2.

As shown below, we can also replace Assumption 1 with the following two assumptions, which are
more directly associated with the queueing models.

Assumption 3. There exists a 1 x (M + 1) probability vector a such that Ao = Aoe&.
Assumption 4. There exists a 1 x (R + 1) probability vector & such that Uy = Ujea.

Assumption 3 means that an active period of the arrival process is subject to a geometric distribution
and an inactive period to a phase-type distribution. Similarly, Assumption 4 means that an active period
of the server is subject to a geometric distribution and an inactive period to a phase-type distribution.
We here define a 1 x (M + 1)(R + 1) probability vector a by @ = @ ® a. We can readily confirm that if
Assumptions 3 and 4 are satisfied, Assumptions 1 is satisfied.

Proposition 1. Under Assumptions 3 and 4, we have Ay = Agea.
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Proof. From the definition (21) of Ay and Assumptions 3 and 4, we have
Agea = y(Uy ® Ag)e@® &) = y(Uoed) @ (Aged) = YUy ® Ag = Ay, [

In the setting made in this section and under Assumptions 2—4 (or Assumptions 1 and 2), Theorem 1
holds for the Markov chains {(X,,, V,,)} and {(Y,, V,,)} defined in this section, and it establishes a propor-
tional relation between the stationary queue length distribution in the finite-buffer queue and that in the
corresponding infinite-buffer queue.

4. Exact relation between loss probability and queue length

In this section, we will establish an exact relation holding between the loss probability in the finite-
buffer queue and the queue length distribution in the infinite-buffer queue. The exact relation is directly
derived from the proportional relation (Theorem 1).

We define the loss probability Py in the finite-buffer queue as

4 B[Z,]
loss — E[An] .

(24)

Let p denote the traffic intensity which is given by

) kA (25)
k=1

We assume that p < [if]y. This assumption guarantees that the infinite-buffer queue is stable and the
Markov chain {(X,, V,,)} is positive recurrent.
The following formula for the loss probability immediately follows.

1 1
V oy

IIl>

Proposition 2. Under Assumption 2, Py is given by

1 -
Ploss = 1 — ;[[ﬂ]o — Yo[(Upe) ® e]]. (26)
Proof. From Rate Conservation Law (see, e.g. [12]) or Little’s formula, it immediately follows that

K
E[A,] —E[Z,] =y > _ U ® D)e, 27)
k=1

where the left-hand side is the expected upward drift of the queue length and the right-hand side is the
expected downward drift of the queue length. From (24), (25) and (27), we have

S
P =1~ > 3o ® D)e. (28)
k=1
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Noting Zif:o yr = 7 and (23), we rewrite Zf:l y(Uy ® U)e as

K K

K
S @@ 0)e=>" yil(Uoe) ® Ue)] = yil(Uoe) ® el
k=1 k=1 k=1

K
=Y wl(Uoe) ® €] — yol(Uoe) ® €] = n[(Uoe) ® ] — yol(Uoe) ® e]
0

k=
=@ @ »)[(Uoe) ® e] — yol(Uope) ® e] = #Uge — yo[(Uoe) @ e]
= [#]o — yol(Uoe) ® e]. (29)
Substituting (29) into (28), we obtain (26). [
The following theorem establishes an exact relation holding between the loss probability in the finite-
buffer queue and the stationary queue length distribution in the infinite-buffer queue, and the exact

relation expresses the loss probability in the finite-buffer queue as a function of the stationary queue
length distribution in the infinite-buffer queue.

Theorem 2. Under Assumptions 2—4, the loss probability Py is given in terms of the stationary
distribution x as follows:

([7lo — p) 2k 41 XiAoe

P, =
loss ,OZIK:O x,-Aoe

Proof. By similar argument when we derived (27), we obtain

1 ad . N
—E[A,] =) x (U ® De. (30)
Y k=1
By similar argument when we derived (29), the right-hand side of (30) can be rewritten as
0
> xi (U ® Ue = [7ly — xo [(TUoe) @ e] . (31)
k=1
Using (25) and (31) in (30), we derive
xol(Uoe) ® ] = [7]o — p. (32)
From Theorem 1 and Proposition 2, using (32) and noting > 2, x; = &, we have
1] wApexo[(Upe) ® el 1 . wApe([7]y — p)
P =1—= = [l — —— g =1—— [l — —g
o > im0 XiAoe P > im0 XiAoe
14 [7]o >-i2 k41 XiAoe — prAope _ 7o Yoisky1 XiAoe — p Yk XiAge
P xiAge pYKoxiAge

_ ([0 — p) D= k41 XiAoge

= O
P imoXiAoe
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Remark 1. The exact relation (Theorem 2) is considered as a generalization/integration of the exact
relations shown in [6,8,10], and Theorem 2 includes those exact relations as special cases.

Remark 2. From Theorem 2, we immediately obtain

([lo — p) (JTAoe -5 xiAOe)
Y ZiKzo x;Ape '

Using this equation with the recursion given in Lemma 1, we can efficiently compute the exact loss
probability Py for any positive integer K.

Ploss = (33)

5. Asymptotic loss probability

When we use Theorem 2 or Remark 2 to calculate the loss probability in the finite-buffer queue, we
need to compute x. The computation of the x is not an easy task when M or R are large. In this section,
we develop a formula which can estimate the loss probability more easily even when M or R are large.
For this purpose, we exploit the property that the tail distribution of the queue length in infinite-buffer
queues has a rather simple asymptotic form in many cases. In particular, since {(X,, V,)} is an M/G/1
type Markov chain, the tail distribution }_72 \ . | X« has a simple geometric asymptotic form under some
conditions. Exploiting this property, the formula derived in this section computes the asymptotic loss
probability [6,8].

We begin with the definition of notations which will appear in the formula. We define an (M + 1)(R +
1) X (M + 1)(R + 1) matrix generating function A(z), an (M + 1) x (M + 1) matrix generating function
A(z) and an (R + 1) x (R 4 1) matrix generating function U »(2) as

AR =Y A, A=) A, T,0=@+0-p»2l+z0,. (34)
k=0
Note here that from (21), we have
A() =U,(2) ® A(2). (35)

Let 6(z) denote the Perron—Frobenius eigenvalue of A(z), and u(z) and v(z) denote its left and right
eigenvectors which satisfy the normalizing conditions: u(z)v(z) = 1 and u(z)e = 1. Also, let 3(z) de-
note the Perron—Frobenius eigenvalue of A(z), and #(z) and 9(z) denote its left and right eigenvectors
which satisfy the normalizing conditions: @i(z)d(z) = 1 and #(z)e = 1. Similarly, let 8(z) denote the
Perron—Frobenius eigenvalue of U »(2), and @(z) and ¥(z) denote its left and right eigenvectors which
satisfy the normalizing conditions: #(z)v(z) = 1 and #@(z)e = 1. Note here that from (35), we have
[13]

8(z) = 8(2)4(2), u(z) = u(z) ® a(z), v(z) = 9(2) ® (z). (36)

Now we make several assumptions [3,7] to ensure that the queue length has a simple asymptotic
expression.
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Assumption 5.

e There exists at least one zero of det[z] — A(z)] outside the unit disk, where I denotes the (M + 1)(R +
1) x (M + 1)(R + 1) identity matrix.

¢ Among those, there exists a real and positive zero z*, and the absolute value of z* is strictly smaller
than those of other zeros.

o 0 < A(7) € 00,1 <z < z* 7z € R, where R denotes the set of all real numbers.

The following formula enables us to compute the asymptotic loss probability.

Theorem 3. Under Assumptions 2-5, the loss probability Py is asymptotically expressed as

1 1\ xo[(To¥(z*) ® D(z)] u(z*)Age . _
Po > (7= o ) T 2208 (K, (37)
p Il 8(z*)(&'(z*) — 1) Aoe
Remark 3. The formula (37) to compute the asymptotic loss probability is a generalization of the formula
(Corollary 5) derived in [8]. When R = 0, Uy = 1 and U; = 0, the formula (37) is reduced to the formula

in [8].

To prove Theorem 3, we need a proposition and a corollary. The following proposition shows that the
tail distribution of the queue length in the infinite-buffer queue has a simple geometric expression. The
proof is provided in Appendix A.

Proposition 3. Under Assumptions 2 and 5, Y7 \ . | X, is expressed as

S o yxol(Uob(z") ® D(z")]

X, = =
n=N+1 8z (z*) — 1)

where e™ denotesal x (M + 1)(R + 1) row vector with unit elements, and z* is the minimum real solution
of z = 8(z) for z € (1, 00).

The following corollary is directly obtained from Theorem 2.

@) Mu@) + o) ™M, N =0, (38)

Corollary 1. Under Assumptions 24, the loss probability Pl is expressed as
([7lo — p) 2 k41 XiAoe
p (vIEloitAge — -2, xiAoe)

Proof. First, note that from the definition (21) of A;, Ay is expressed as

Ploss =

(39)

Ao =yl ® A.

Aype is thus expressed as
Ape = y(Uy ® Ap)e = y(Use) ® (Age). (40)
From (23) and (40), we have

wAoe = y(E @ 7) [(Uoe) ® (Age)| = y(@Use)TAce) = yiTloit Age. (41)
Using »_°) x; = m and (41) in Theorem 2, we obtain (39). O
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Now we are ready to prove Theorem 3.

Proof. Using (38) in (39), we obtain

~ l -
[]o — P = (Zi’iml xiAoe> 7o — p 252k, XiAoe
Pioss = Z . A ~ —1 A
P o\ vIElotAge p Y[l Aoe

p [&lo

7K. O

~ (1 : )xo [(To9(z*) ® b(z*)] u(z*)Age
5z (z*) — 1) FApe

6. Numerical example

In this section, to demonstrate the numerical feasibility of the formulas (33) and (37), we study a
special case of the queueing model considered in Section 3 and we provide a numerical example. The
special case studied in this section is reduced to the queueing model considered in [6] when y =1 (i.e.,
the service time of a customer is deterministic and equal to one slot). Further, if R = 0, the special case
is reduced to the queueing model considered in [8].

First we will specify the service process. In the special case, the underlying Markov chain {S,,} for the
service process is described as follows:

1
—— (=0,...,R),

PSy=0)=¢ R+1
0 (otherwise),
andforn=1,2,..., S, is given by
S, = (So +n) mod(R + 1).

Then, in the queues, the service is periodically available every (R + 1) slots. In this case, Uy and U, are
given by

0 0 0 1 0 0
i]()z : : s f]]z 0
1 0 o i 0 0 oo i 0

Note that this setting of the service process satisfies Assumption 4.

Next we will specify the arrival process. We consider a superposition of W independent homogeneous
on-off sources as the arrival process. We assume here that the lengths of on-periods in each source are
ii.d. and geometrically distributed, and each on-off source generates exactly one customer in each slot
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during on-periods. Further, we assume that the lengths of off-periods in each source are also i.i.d. and
geometrically distributed and each source does not generate customers during off-periods. We denote
the mean length of on-periods (resp. off-periods) by (1 — a)~! (resp. (1 — B)~1). For the queues with
homogeneous sources, with a sophisticated labeling of states [15], we can set M = W and

i "o i k i—k W—i j—k gW—i—j+k
0L,= > P U WP (O Dl :

k=max(0,i+j—W)

1, k=
a(k) =
0, k#j

We then have
. 2,00, (eM;j=0),
oli,j =
"o (ie M;j+#0).

We see that the setting of the arrival process satisfies Assumption 3.

We now apply the numerical formula (33) to compute the exact loss probability. We immediately obtain
p=W(A—-B)/(2—a—p) and [7]y = 1/(R + 1). Substituting these into (33), we can readily calculate
the exact loss probability.

Next we apply the numerical formula (37) to compute the asymptotic loss probability. In the special
case, the formula (37) is reduced to

N % (1 = p(R+ 1))? [9(z")]o @(z")Age -
Ty + 0=y p(R+1)? @) -1 #Age

; (42)

SOk _ * w _ = w
83(z*)— (@ + B 1)z> ’ a(z*)Aoe=< (1 — a)3(z*) ) ’

PGl = ( 28(z%) —az* — B 8(z¥)—(a+B—1)

3’(2*) = iS(Z)(S(Z))W |Z:Z*: & <W8 (z%) " 8'(z )) ’

8(z*)  8(z*)

2
s ="1F \/ (5F) —@rp-na 3@ =@+ -y e,

Now we show the exact loss probability computed by (33) and the asymptotic loss probability computed
by (42) as a function of the buffer capacity K. In the numerical example, we set R =2, W =30, y =
0.8000, o = 0.6900 and g = 0.9975 (p = 0.3). For comparison, we also plot the exact tail distribution
Tk+1 = Y% k41 Xre-

In Fig. 1, we observe that the asymptotic loss probability quickly approaches the exact loss probability
with the increase of the buffer capacity K. For example, for K > 79, they are almost identical and the
relative error is within 5% if we regard the asymptotic loss probability as the approximation of the exact
loss probability. On the other hand, the exact tail distribution is considerably greater than the exact loss
probability irrespective of K. For example, at K = 79, the relative error is 760% if we regard the tail
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1e+00 y , | . |
Exact loss PR
Asymptotic loss ~ --------
Exact tail ~ ----------
1e-01
1e-02 |-
2
3
S 1e-03|
<
o
1e-04 |
1e-05 -
1e-06 I | ) | |
0 50 100 150 200 250 300

Buffer capacity

Fig. 1. Loss probability.

distribution as the approximation of the exact loss probability. We thus conclude that the asymptotic loss
probability becomes a more accurate and efficient estimation of the exact loss probability than the tail
distribution of the queue length in the corresponding infinite-buffer, though many studies regard the tail
distribution as the approximation of the loss probability.

Appendix A. Proof of Proposition 3

In this section, we provide the proof of Proposition 3.

Proof. We define the (M + 1)(R 4+ 1) x (M + 1)(R + 1) probability matrix generating function B(z) as
o0
B(2) = Z B 7~
k=0

Applying Theorem 3.5 in [3] and noting xo = xoBy + x1 A from (3), it immediately follows that
o = Xo(BE) — Du@")
T u(@HA (2 — 1

where I denotes the (M + 1)(R + 1) x (M + 1)(R + 1) identity matrix and e' denotes a 1 x (M +
1)(R + 1) row vector with unit elements.

@) "u@) +o ()" e, n=1, (43)
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First, we focus on the term (B(z*) — Iv(z*). Since 9(z*) is the right eigenvector of A(z*) and the
associated eigenvalue is 6(z*), we have

AN = 8(2)b("). (44)
Using (22), (36) and (44), we can rewrite B(z*)v(z*) as
B(zH(z") = (U ® A(Z") (2" ® ¥(z*) = (UB(z") ® (A(Z")d(z")) = 8z Tv(z") ® d(z").

(45)
We will further rewrite (45) below. From (34), for z > 0, we have
. U, ()—y(l—2U
Z
Since z* is a solution of z = §(z), from (36), it follow that
Z* =828z, (47)

Note that since ¥(z*) is the right eigenvector of U »(2¥) and its associated eigenvalue is 5(z*), we have
U, (2")(z*) = 8(z)(z"). (48)
Using (46)—(48) in (45), we further rewrite (45) as

B = (") [UV(Z - Z(l — fz(z*)] ® 0(z")
_ 5z [(xz i) — yil — )Uo¥z >1 ® 9(z")
1 —z8(z%) - 1—z% .
— o) = YEZEPE) ) @ i) = 0 — YA @ga) @ ().
z* S(Z*)
(49)
Thus, from (49), we finally obtain
*—1) .
(B - Do) = YE D0y © 36, (50)
(z*)
Next we focus on the term u(z)A’'(z)v(z). Since u(z) satisfies u(z)[8(z)I — A(z)] = 0, we have
u' (DI — AR + u@)[8' () — A'(2)] = 0. (51)

On the other hand, since v(z) satisfies [8(z)I — A(z)]v(z) = 0, post-multiplying the both sides of (51) by
v(z) and noting u(z)v(z) = 1, we obtain

u(z)A'(DHv(z) = §'(2). (52)
Using (50) and (52) in (43), we derive (38). [
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