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Abstract

In small-lot, multi-product, multi-level assembly systems, kitting (or accumulating) components required

for assembly plays a crucial role in determining system performance, especially when the system operates

in a stochastic environment.  This paper analyzes the kitting process of a stochastic assembly system,

treating it as an assembly-like queue.  If components arrive according to Poisson processes, we show that

the output stream departing the kitting operation is a Markov renewal process.  The distribution of time

between kit completions is also derived.  Under the special condition of identical component arrival streams

having the same Poisson parameter, we show that the output stream of kits approximates a Poisson process

with parameter equal to that of the input stream.  This approximately decouples assembly from kitting,

allowing the assembly operation to be analyzed separately.  We also show that, in the long run, all

inventory positions are equally likely and independent of the actual inventory position.
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1. Introduction

Traditionally, material flow analysis in assembly systems has been based on the assumption that

the system operates deterministically.  In recent years, attention has been directed to a more realistic 
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analysis of assembly systems, explicitly treating the  stochastic events that influence operations.  An

important aspect of assembly operations is kitting (or accumulating) required components  and releasing

the kit to initiate assembly.  Due to the stochastic nature of component availability, stock-outs often occur

in component inventories, thereby disrupting kitting and, consequently, assembly schedules.  The goal of

this paper is to better understand the kitting process in a stochastic assembly system, which we treat as an

assembly-like queue.

This paper models the kitting process of an assembly system as a Markov renewal process,

assuming that component arrival streams follow independent Poisson distributions. The assembly system is

assumed to have a structure similar to that described in Hopp and Simon [7] and is shown in Figure 1.

---------------------------------------------
Figure 1.

---------------------------------------------

P1 and P2 are machines that process components (to prepare them for assembly) and P3 is the

assembly machine.  I1 and I2 are the buffers for components, I0 is the buffer for kits, and I3 is the buffer for

the end-product.  P1 and P2 work independently, withdraw raw materials from their respective pools of

unlimited supply, and deliver processed components to buffers I1 and I2, respectively . A component

arriving at buffer I1 (I2) is immediately kitted with a part from buffer I2 (I1) if one is available, and a "kit" is

said to be composed.  If a kit cannot be composed, the processed part is held in buffer I1(I2) to await the

arrival of a "matching" part at buffer I2(I1) .  Once composed, a kit of matching components from I1 and I2

is sent immediately to I0 and the kit is considered to be one arrival at I0.  If the arriving kit finds I0 empty

and P3 idle, it is immediately placed in the assembly machine P3.  Otherwise, the kit is held in buffer I0. 

We assume that buffers of components have limited capacity and that each component is processed

according to an  exponential distribution (before kitting) to prepare it for assembly .  When P3 completes an

assembly, it withdraws a kit (i.e. two matched components) from I0, whenever available, then assembles
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another end product and delivers it to buffer I3.  If a kit is not available in I0 when P3 completes an

assembly, it remains idle until a completed kit arrives.  Demands for end products arrive at I3; each demand

is assumed to be for a lot of unit size and is satisfied immediately if stock is available.  Unsatisfied

demands are backordered, causing the inventory position at I3 to take on negative values.

Our primary result is to show that the output stream departing the kitting operation is a Markov

renewal process.  In the special case in which component arrival streams have the same Poisson parameter,

 we are able to show that the output stream approximates a Poisson process with parameter the same as

that of the arrival streams.

Regarding the modus operandi of the assembly system, Harrison [6] showed that a sufficient

condition for stability of operations of such systems is that component buffer sizes be finite.  For a system

with finite buffers, we show that, in the long run, probabilities of observing different inventory positions at

I1 (I2) are all equally likely and are independent of any particular inventory position.  Also, considering the

special case of component arrival streams with the same Poisson parameter, we show that the kit

completion process well approximates a Poisson process when the component buffers are large enough,

permitting the kitting and assembly operation to be decoupled so that downstream operations can be

analyzed separately.

Stochastic assembly systems are often studied as assembly-like queues.  Harrison [6] showed that

an assembly system with input streams that are independent renewal processes and with no inventory

capacity limitations for any stream are unstable.  He also showed that, under these conditions, the limiting

distribution of the time that parts wait for assembly converges to a defective distribution.

 Since we assume that two components are required to compose a kit, the queues of components

form a double-ended queue [5], [8].  A double-ended queue can be best described by the well known taxi-

cab problem where taxis and passengers form two different queues.  A customer waits in its queue and
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leaves it as soon as a taxi is available; taxis wait in queue for customers and leave when a customer is

available.  The two queues are interdependent and their combination is known as a double-ended queue

where it is known that the related queueing process is a random walk on {.., -2, -1, 0, 1, 2, ...} and is

transient or null unless the queues are bounded.  The kitting process under study can be considered as a

double-ended queue of the type examined by Kashyap and Chaudhury [9].  They showed that each queue

length distribution is independent of occupancy when arrival rates to the double-ended queue are equal. 

They also derived the distribution of waiting times in double-ended queues but made no attempt to analyze

its output process.

Bhat [2] incorporated limited buffer capacities in assembly like queues and derived expressions for

the stationary probability vector of the queue length.  Latouche [10] considered assembly systems with

Poisson procurement processes and exponential processing times and derived conditions required for stability. 

Assembly networks that represent one-time production (for example; space-shuttle, aircraft prototype, etc.) are

analyzed by Saboo and Wilhelm [11] and Wilhelm et al[13]. 

The output processes from queues operating according to various disciplines are reviewed by Disney and

Konig [4] in detail.  They describe the characteristics of the output processes resulting from GI/D/s, M/M/s,

M/GI/1/L, M/Ek/1/L, M/GI/∞ , GI/GI/1/L and  GI/M/1/L systems.  Apparently, the output process of a double-

ended queue has not been studied previously.  In this paper we analyze such a process as a part of our study of

the kitting process.

We have organized this paper in five sections.  The fundamentals and pertinent assumptions  are

presented in Section 2.  Section 3 relates the formulation of a Markov renewal process which describes the kitting

operation.  The model is evaluated in Section 4 by determining the state transition matrix P, the time-stationary

probability vector ?, and the distribution of time between kit completions, which is shown to be approximately

Poisson under certain conditions.  Practical implications of analytical results are described and conclusions are
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presented in Section 5.

2. Fundamentals

The structure of the assembly system under analysis is presented in Figure 1.  A little thought indicates

that it is not possible for both buffers I1 and I2 to have positive stock levels at the same time.  An arrival which

increases the stock level of one of the buffers to a positive value creates a "virtual backorder" at the other buffer. 

At any time t (t > 0), the inventory position `M'(defined as the number of parts on hand plus on order minus the

number on back order) in one buffer is associated with inventory position `-M' in the other, and equality holds

only when the inventory position is zero(0) for both buffers I1 and I2.  The inventory positions at I1 and I2 may

thus be viewed as "mirror images" of one another, a special structure which we exploit to analyze the kitting

process.  

Since the purpose of this paper is to characterize the kitting process, we study the stream of arrivals to I0

(i.e., the output of the kitting process) in the following sections and ignore the process downstream of I0.  We

present a thorough analysis of the downstream assembly system in a companion paper (Som and Wilhelm [12]).

Our model, which is based on the structure described in this section, relies upon three fundamental

assumptions:

(i) processing times at the part processing machines, P1 and P2, are independent, identically distributed, non-

negative exponential random variables with rates µ1 and µ2, respectively.

(ii) the capacities of buffers I1 and I2 are bounded from above by K1 and K2, respectively, representing

practical limitations on buffer space, and, according to Harrison [6], allowing the system to reach a steady state. 

No capacity restriction is imposed on I0.

(iii) P1 (P2) prepares parts exclusively for I1 (I2).  However, when I1 (I2) is filled to capacity K1 (K2), additional

arrivals are not processed in the system under analysis (e.g., they may be processed and assembled by a
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subcontractor).

In the following sections we formulate the model and analyze it as a Markov renewal process.

3. Formulation of a  Markov renewal process

The inventory positions at I1 and I2 change with the arrival and departure of components to and

from the respective buffers.  We define the mirror image process (X, T) as a marked point process, which

characterizes the inventory positions or states at the arrival and departure epochs.  The sample path diagram of

the mirror image process is presented in Figure 2.

-------------------------------------------------
Figure 2.

-------------------------------------------------

Thus, (X, T) = {Xm, Tm : m∈N} 

in which, Xm = {1Xm, 2Xm}

Tm = time of m-th state change epoch.

1Xm = inventory position at buffer I1 at time Tm.

 2Xm = inventory position at buffer I2 at time Tm.

Due to the mirror image property of the inventory positions at I1 and I2, at any random time Tm, 1Xm =

1xm implies 2Xm = - 1xm; or, equivalently, 2Xm = 2xm implies 1Xm = -2xm.  Hence, it is obvious that the Mirror

Image Process may be analyzed by viewing the inventory position just at I1 (or, equivalently, just at I2).

  Whenever matching components are available at buffers I1 and I2, a kit is composed

(instantaneously) and sent to I0.  These departure epochs (occurring simultaneously from both I1 and I2) and the

corresponding inventory position at I1 describe another marked point process which we define as the output

process.  By observing the inventory position at I1, it is apparent that a particular subset of the epochs {Tm :

m∈N}, marked by a decrease in the positive inventory position or an increase in the negative inventory position,
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constitutes kit completion as well as state change epochs in the output process. 

These output epochs are a sub-sequence of the sequence {Tm : m∈N}, defined as

t = {tn : n∈N} with 0 = t0 ≤ t1 ≤ t2 ≤ t3 ≤.... such that for ?∈O, t0(?) = T0(?) = 0,     tn(?) = Tk(?), n ≥ 1, in

which, k = min {m∈N: n ≤ 1 1
j-1 j

m
{ |> |}| |j=1 X X ( )1 ω∑ 1} and 1{X}(.) is an indicator function.  Define Dn+1 = tn+1 - tn

as the time between successive departures, n and n+1.  For n∈N, the random variable Dn : O →  R+ represents the

length of the n-th inter-departure interval. Then tn+1 = tn + Dn+1, n∈N, defines the time of the (n+1)-th departure.

 The set t = {tn : n∈N} defines the output time process.

For each n∈N, define the random variable Zn : O →  E as the inventory position at the buffer I1 or the

system state of the output process immediately after the n-th departure epoch tn.  The set Z = { Zn : n∈N }

defines the output state process, and the joint random variables { Z, t } = { Zn, tn : n∈N } define the output

process.  Here, Dn depends on the present state Zn and the next state Zn+1.  However, given these states, Dn is

independent of previous Dk and Zk for k=1,....n-1, indicating that the output process {Z,t} is a Markov renewal

process on the state space E.  Since a Markov renewal process is completely characterized by its semi-Markov

kernel Q(i, j, t), we study this kernel in the following sub-section.

DETERMINATION OF THE SEMI-MARKOV KERNEL Q(i,j,t)

The semi-Markov kernel of the output process {Z,t} may be expressed as

Q(i, j, t) = Pr{Zn+1 = j, tn+1 - tn ≤ t | Zn = i}.

For convenience, the semi-Markov kernel is expressed in the Laplace transform domain as L{Q(i, j, dt)}

= Q{i, j, ds}. 
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 The Laplace transform of 
d
dt

2Pr{Zn+1 = j, tn+1 - tn ≤ t | Zn = i}, expressed as L[dP{Zn+1 = j, tn+1 - tn ≤

t | Zn = i}], can be shown to have five different forms,

depending upon inventory positions at epochs tn and tn+1.  We describe the five cases below.

Case I. The starting (i.e., at tn) inventory position is non-negative and it does not reach the positive boundary K1

before the time of the next departure (i.e., at tn+1).

Certain combinations of i and j define Case I:

(i) 0 < i ≤ K1-1, i-1 ≤ j ≤ K1-2, and

(ii) i = 0, 0 <j ≤ K1-2.

Then,

dP{Zn+1 = j, tn+1 - tn ≤ t | Zn = i} = 
1

2

j-i+1- t
- t1

2

 ( t )e   dte
(j - i +1)!

µ
µµ µ 3. (1)

Since we are looking at two consecutive kit completion epochs, tn and tn+1, at which inventory positions

at I1 are i and j respectively, j-i+1 components must have arrived at I1 before any arrival at I2. 

In Laplace transform form,

L[dP{Zn+1 = j, tn+1 - tn ≤ t | Zn = i}] =

 j - i + 2

2 1

1 1 2

 
 + 

µ µ
µ µ µ

  
  
  

4
 j - i + 2

1 2

1 2

+
 +  + s
µ µ

µ µ
 
 
 

5  (2)

The other four cases follow similarly.

Case II.(i) -K2+1 ≤ i <0, -K2+2 ≤ j ≤i+1, and
(ii) i = 0, -K2+2 ≤ j <0.

L[dP{Zn+1 = j, tn+1 - tn ≤ t | Zn = i}] =
 |j| - |i| + 2

1 2

2 1 2

 
 + 

µ µ
µ µ µ

  
  
  

6
| j| - |i| + 2

1 2

1 2

 + 
 +  + s
µ µ

µ µ
 
 
 

7. (3)
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Case III. 0 ≤ i ≤ K1-1, j = K1-1

L[dP{Zn+1 = K1-1, tn+1 - tn ≤ t | Zn = i}] =

1 - iK

1

1 2+
µ

µ µ
 
 
 

8
1 - iK

2 1 2

2 1 2

 + 
 

 + s  +  + s
µ µ µ

µ µ µ
  
  
  

9. (4)

Case IV. -K2+1 ≤ i ≤0, j = -K2 + 1.

L[dP{Zn+1 = -K2+1, tn+1 - tn ≤ t | Zn = i}]=

2 + iK

2

1 2+
µ

µ µ
 
 
 

10
2 + iK

1 1 2

1 1 2

 + 
 

 + s  +  + s
µ µ µ

µ µ µ
  
  
  

11. (5)

Case V. i = 0, j = 0.

L[dP{Zn+1 = 0, tn+1 - tn ≤ t | Zn = 0}] =

( )
1 2

2

1 2

2  

 + 

µ µ
µ µ

12
2

1 2

1 2

 + 
 +  + s
µ µ

µ µ
 
 
 

13. (6)

The interval tn+1 - tn includes an initial period which has an exponential distribution with rate µ1 + µ2. 

Using Bernoulli probabilities µ1/(µ1 + µ2) and µ2/(µ1 + µ2) and convolving with the distribution of the remainder

of the interval, we get the above result.

 Combining equations (2) through (6), we obtain the semi-Markov kernel Q(i, j, t), which is expressed in

Laplace transform form and is presented as equation (7) in Table 1.  The state transition matrix P of the

underlying Markov chain Z embedded at time tn is obtained by setting s = 0 in equation (7) and is presented as

equation (8) in Table 2.  An analysis of the output process {Z,t} is presented in the following section.

--------------------------------------------------
Table 1.

--------------------------------------------------
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--------------------------------------------------
Table 2.

--------------------------------------------------

4. Analysis

In this section, we analyze the output process {Z,t}, deriving the following:

(i) the stationary probability vector ? of the underlying Markov chain Z, and

(ii) the distribution of time between kit completions.

The vector ? indicates the time-stationary probability distribution of the inventory position at I1,

observed at a randomly selected kit completion epoch.

 

DETERMINATION OF STATIONARY PROBABILITY VECTOR ?

Clearly, the output process {Z,t} = {Zn, tn : n∈N} is an irreducible, nonnull, recurrent, and persistent

Markov renewal process for K1, K2 < ∞ ; under these conditions, it possesses a stationary distribution defined as ?

[3].  Note that the process {Z,t} will be recurrent null, if K1 and K2 are infinite.  The stationary probability

vector ? of the underlying Markov chain Z is obtained from the set of equations expressed in the matrix form

? = ? P.

Using equation (14) for P, the balance equations can be expressed for specific states

-K2+1 ≤ j ≤ K1-1 as

?(0) = ?(-1)?(1-v) + ?(0)2v(1-v) + ?(1)(1/?)v (9)

?(K1-1) = ?(K1-2) (10)

?(-K2+1) = ?(-K2+2) (11)

?(j) = ?(0)(1/?)v(j+2) + ?(1)(1/?)v(j+1) + ?(2)(1/?)vj + .... + (1/?)?(j+1)

j = 1,2,.....,K1-2. (12)

?(j) = ?(0)?(1-v)(-j+2) + ?(1)?(1-v)(-j+1) + ?(2)?(1-v)(-j) + ....+ ?(1-v)?(-j+1)
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j = -1, -2,....., -K2+2. (13)

in which, ? = µ1/µ2, v = µ1/(µ1 + µ2).

In addition, we have the normalizing expression  

  j∑ 14 ?(j) = 1.          (14)
The solution to equations(9)-(14) can be expressed as

1 2

2 11 2

+
(0)=

+K K
µ µ

µ µ
Π 15 (15)

2

2 11 2

(j)=
+K K
µ

µ µ
Π 16 j = 1,2,...., K1-1 (16)

1

2 11 2

(j)=
+K K
µ

µ µ
Π 17 j = -1,-2,...., -K2+1. (17)

It may be observed that ?(j), the stationary probability of positive(negative) stock in buffer I1 observed at a kit

completion time, is a constant independent of j, the stock position.

DISTRIBUTION OF TIME BETWEEN KIT COMPLETIONS, Dn

To determine the distribution of time between kit completions, we concentrate on analyzing the output

time process t = {tn : n∈N}, which specifies the arrival stream (of kits) to buffer I0. 

Considering the stationary distribution ? of the underlying Markov chain Z and for t∈R+, the distribution

of time between two consecutive kit completions is given by

P{tn+1 - tn ≤ t} = ? Q(i, j, t) U (18)

in which U is a column vector with all elements equal to 1.

Expressing equation (18) in Laplace transform form we obtain:

L[dP(tn+1 - tn ≤ t)] = ? Q(i, j, ds) U. (19)

Substituting the values of ? and Q(i, j, ds) from equations(15) to (17) and (7) into equation (19),
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L[dP(tn+1 - tn ≤ t)] = 21 1 2

2 11 1 2

+K 
+ s +K K

µ µ µ
µ µ µ

  
  
  

18 + 12 2 1

2 12 1 2

+K 
+s +K K

µ µ µ
µ µ µ

  
  
  

19

- ?(0) 1 2

1 2

+
+ + s

µ µ
µ µ

 
 
 

20 (20)

It is apparent that if equation (20) is inverted (i.e., to the time domain), the distribution of the time between kit

completions, Dn+1, would be the weighted sum of three exponential distributions with rates µ1, µ2 and µ1+µ2.

A SPECIAL CASE WITH INFINITE BUFFER CAPACITY

We consider a special case in which the capacity of one buffer (either I1 or I2) approaches infinity while

the other buffer capacity is finite.

Without loss of generality, consider K1 →  ∞ , K2 < ∞  and 2

1

K
K

21 →  0; it can be easily seen from

equation (20) that

L[dP(tn+1 - tn ≤ t)] = 2

2 + s
µ

µ
22.

Similarly, with K2 →  ∞ , K1 < ∞  and 1

2

K
K

23 →  0,

L[dP(tn+1 - tn ≤ t)] = 1

1+ s
µ

µ
24.

In this case we observe that the distribution of the time between kit completions is asymptotically

exponential and is identically the same as the distribution of the time between component arrivals at the finite

buffer.

A SPECIAL CASE WITH µ1 = µ2 = µ

This section specializes the case in which component processing times at machines P1 and P2 are

independent exponential random variables with the same rates (i.e., µ1 = µ2 = µ).  In practice, this situation may

occur when components are obtained from independent suppliers with identical (and independent) lead time
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distributions.  Also, the same situation may occur during "in-house" production where the machines employed, P1

and P2, are identical (and independent).  In the following sub-sections we show that the distribution of time

between kit completions, Dn, can be approximated by independent and identically distributed exponential random

variables.

APPROXIMATION OF Dn BY THE EXPONENTIAL DISTRIBUTION

Making appropriate changes in equations (7) and (8) to accommodate the special case, the semi-Markov

kernel, Q(i, j, t), in Laplace transform form and the transition probability matrix P of the underlying Markov

chain Z may be expressed by equations (21) and (22) which are presented in Tables 3 and 4, respectively.

--------------------------------------------------
Table 3.

--------------------------------------------------
--------------------------------------------------

Table 4.
-------------------------------------------------- 

The stationary probabilities of this Markov chain are given by

?(0) = 
1 2

2
+K K

25 (23)

?(j) = 
1 2

1
+K K

26 ∀  j ≠ 0. (24)

These results have striking similarities - but at the same time, important differences - with those obtained

by Bhat[1] for the limiting distribution of the population in the finite buffer of a double-ended queue.

The distribution of time between kit completions, Dn, can be expressed in Laplace transform form as

L[dP(tn - tn-1 ≤ t)] = ? Q(i, j, ds) U (25)

in which U is a column vector with each element equal to 1.  Substituting equations (21), (22), (23) and (24),

equation (25) specializes to
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L[dP(tn - tn-1 ≤ t)] = 27 (26)

Clearly, for large values of K1 + K2, the distribution of time between kit completions, Dn, is

approximately exponential with rate µ.  The value of K1 + K2 necessary to allow this approximation can be

determined as a function of the degree of approximation desired.  The e-approximate distribution of Dn is

? Q(i, j, ds) U = L [dP(tn - tn-1 ≤ t)] = 
+ s
µ

µ
28, (27)

which is the Laplace transform of an exponential distribution with rate µ.

APPROXIMATE INDEPENDENCE OF Dn

In this section, we discuss the independence of m consecutive random variables Dn, n=1,2,.....m.  We

show that for sufficiently large K1 + K2, the m consecutive random variables Dn, n=1,2.....m, become independent

to within an error of e.

This independence holds if the joint distribution of the m consecutive random variables Dn equals the

product of the m marginal distributions of the random variables Dn.  Statistical independence should hold for m

→  ∞ , but this limiting case is not easily evaluated.

To establish the approximation, we must show (writing Q(i, j, ds) = Q(ds)),

?Q(ds1)Q(ds2)Q(ds3)....Q(dsm)U

 = {?Q(ds1)U}{?Q(ds2)U}{?Q(ds3)U}...{?Q(dsm)U}. (28)

The left hand side of equation (28) is

?Q(ds1)Q(ds2)Q(ds3)....Q(dsm)U  = 
m

1 2ii=1

2
 1-

+ +s K K
µ

µ
  
    

∏ 29 +  
m

1 2 ii=2

2
 

+ + sK K
µ

µ
 
 
 

∏

x 2 2 1 1

m
3 3K K K K

ii=2

1 1 1 1 1 1 1
b( a +( a +.....+( a +( )a +( a +.....+( a +b( a) ) ) ) ) )

2 2 2 2 + 2 2 2s
µ

µ
  
  

  
∏

30
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 =   
m

ii=1 +s
µ

µ
 
 
 

∏  - 
m m

1 2 1 2i ii=1 i=2

2 2
+ + + +s sK K K K

µ µ
µ µ

   
   
   

−∏ ∏

x 2 1 1

m
3 3K K K

ii=2

1 1 1 1 1 1
b( a +.....+( a +( )a +( a + .....+( a +b( a) ) ) ) )

2 2 2 + 2 2 2s
µ

µ
  
  

  
∏ 31

(29)

By making K1 + K2 sufficiently large, the right hand side of equation (29) can be

approximated by 
m

ii=1 +s
µ

µ
 
 
 

∏ 32, the product of the Laplace transform of the m marginal

distributions of the random variables Dn for n∈N.  Hence, equation (28) holds for sufficiently large K1 + K2,

indicating that the random variables Dn, n = 1,...,m, are independent.  The required value of K1 + K2 depends

upon the degree of approximation desired.

The implications of equations (27) and (29) lead to the following theorem.

THEOREM 1

The arrival process of kits at buffer I0 can be approximated by a Poisson process with rate µ, the degree

of approximation depending on the value of K1+K2.n

DEGREE OF APPROXIMATION: AN EXAMPLE

To illustrate the relationship between the degree of approximation of the arrival rate at I0 and the buffer

capacities K1 (K2), we consider the following example with equal buffer capacities K1 = K2 = K and equal

Poisson arrival rates µ1 = µ2 = µ at buffers I1 and I2, respectively.

Using equation (26), the density function of the time between kit completions, Dn, may be expressed in

Laplace transform form as:

f(s) = 
1 s

 -   
+s K +s 2 + s
µ µ

µ µ µ
    
    
    

33. (30)
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Inverting to the time domain, the density function of Dn is obtained as

f(t) = - t - t -2 t2 +  - e e e
K K

µ µ µµ µµ 34, t ≥ 0. (31)

We define an error term e(t), expressed as the absolute difference between the exponential

density and the actual density of Dn:

e(t) = -2 t - t | 2  -  |e e
K

µ µµ
35.  (32)

Using equation (31), graphs of f(t) are plotted for µ=1 and K=2, 5 and 10 against time t ≥ 0 in Figure 3.

 It is observed from Figure 3 that the density of Dn rapidly approaches an exponential density as K increases.  The

graph of e(t) against K, plotted for µ=1 and t=0.2, is presented in Figure 4, which also indicates that the error

term e(t) approaches zero(0) rapidly as K increases.   

--------------------------------------------------
Figure 3.

--------------------------------------------------
--------------------------------------------------

Figure 4.
--------------------------------------------------

Using equation (32), it is easily seen that for ∀ t, t>0,  -2 t - t| 2  -  |e eµ µ 36 ≤ 1.  Hence, for a given e>0

and for any arrival rate µ, we can find a K such that

K
µ

37 ≤ e.

Therefore, the inventory capacity required to effect the desired approximation can be easily determined

knowing the component arrival rate.

5. Discussion and conclusion
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We have proven conditions for which the inter-arrival times of kits arriving to assembly are

approximately independent and identically distributed exponential random variables.  If components arrive at I1

and I2 according to independent and identical Poisson arrival streams and if K1 + K2 is sufficiently large, the

output stream from kitting approximates a Poisson process.   The practical importance of this result is that the

assembly process downstream of the kitting operation can be decoupled from kitting for further analysis.  The

required conditions (for decoupling) are not restrictive and may, in fact, hold in actual applications.   

It is also interesting to note that the long-term probability distribution of inventory positions at I1 (I2),

observed at kit completion epochs, is independent of the actual inventory positions (positive or negative).  Our

result also indicates that all the positive (negative) inventory positions are equally likely with probability that is

proportional to the rate µ1 (µ2), of Poisson arrivals.  If arrival rates to I1 and I2 are equal (i.e., µ1 = µ2 =µ) , all the

inventory positions except zero become equally likely with probability that is inversely proportional to the total

inventory capacity (K1 + K2).  The incidence of observing both buffers empty is twice as likely as observing a

positive (negative) stock position at either of the buffers.

Harrison [6] showed that a sufficient condition for an assembly-like queue to reach steady state is that

buffer capacities must be bounded from above.  We have shown that the total buffer capacity, K1 + K2, must be

"sufficiently large" to obtain a Poisson approximation of the output stream of kits.  However, from the example in

section 4, we find that K1 + K2 need not be impractically large to achieve an approximate Poisson output stream;

the value of K1 + K2  being dependent upon the degree of approximation desired.  Since the arrival process at

assembly machine P3 may be approximated by a Poisson distribution, the downstream assembly system can be

approximated by the much studied M/G/1 queue.  
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