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Abstract Nowadays, many manufacturing systems have to deliver customized
products, leading to an increased amount of parts moving around on the shop
floor. To cope with this tendency, the kitting process has been implemented.
This process gathers the necessary parts for assembly into a specific container
prior to arriving at an assembly unit. However, the consequences of its applica-
tion on the performance of the assembly process has merely been investigated.
We developed models of a kitting process with two parts in a Markovian en-
vironment. Due to the multidimensionality of the state space, we chose to
use sparse matrix techniques to solve our linear equations. This paper aims
to study the performance of kitting operations considering realistic stochastic
assumptions. In particular, the impact on kitting performance of interruptions
in the production of parts is investigated.

Results show that the loss probability of a kitting process decreases when
the capacity of the containers increases and the workload decreases. However,
the capacity must not be too high and the workload must be high enough to
ensure capacity efficiency. As a consequence, there is a need to make a trade-off
in terms of cost and efficiency.
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1 Introduction

Nowadays manufacturing systems are often composed of multiple in-house
fabrication units (Medbo 2003). The semi-finished products stemming from
these units are the input materials for other fabrication units or for assembly
lines. Hence, efficient transport of materials between the different stages of the
production process is key for overall production cost minimization. Kitting is
a particular strategy for supplying materials to an assembly line. Instead of
delivering parts in containers of equal parts, kitting collects the necessary
parts for a given end-product into a specific container, referred to as kit, prior
to arriving at an assembly unit (Bozer and McGinnis 1992; Som et al 1994;
Bryznér and Johansson 1995; Medbo 2003; Ramachandran and Delen 2005;
Ramakrishnan and Krishnamurthy 2008).

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the as-
sembly stations and increased quality of the product. Although kitting is a
non-value adding activity, its application can reduce the overall materials han-
dling time (Ramakrishnan and Krishnamurthy 2008). Indeed activities such as
selecting and gripping parts are performed more efficiently. Furthermore, the
whole operator walking time is drastically reduced or even eliminated since
kits of components are brought as a whole to the assembly station (Johansson
and Johansson 1990). The advantages mentioned above do not come for free
since the kitting operation itself incurs additional costs such as the time and
effort for planning the allocation of the parts into kits and the kit preparation
itself. Moreover, the introduction of a kitting operation in a production process
involves a major investment. Therefore it is important to analyse the perfor-
mance of kitting in a production environment prior to the actual introduction
of this operation. This is the subject of the present paper.

In literature, most authors consider a kitting process as a queuing system
with stochastic part arrivals and kit assembly. Hopp and Simon (1989) de-
velop a model for a kitting process with exponentially distributed processing
times for kits and Poisson arrivals. They find accurate bounds for the required
capacity of the buffer. Their model is limited to processes with two basic com-
ponents. Som et al (1994) refine the results of Hopp and Simon by explicitly
accounting for finite buffer capacities.

Of course buffers have always a finite capacity. However, if the capacity
is large enough, we can have a good approximation of a process with a finite
capacity on the basis of a model with unlimited capacity. This means that
there is always enough space for upcoming parts which simplifies the analysis.
Unfortunately, the assumption of an infinite buffer is not valid for kitting
processes. If the capacity is assumed to be infinite, then the model will degrade
to an unstable stochastic model. This was demonstrated by Latouche (1981)
that studied waiting lines with paired customers. We can consider his analysis
as an abstraction of a kitting process with two types of parts. Furthermore,
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in the article "Assembly-like queues", Harrison (1973) confirms that, to ensure
stability in the operations of a kitting process, it is necessary to impose a
restriction on the size of the buffer. Under this assumption, the probability to
have a certain long-term stock position is equal and independent of the current
stock position.

In this work, we focus on a kitting process modulated by a Markovian
environment. The introduction of this environment allows us to study kitting
under more realistic stochastic assumptions: kitting interruptions, bursty part
arrivals, phase-type distributed kitting times. Section 2 describes the kitting
process at hand. In section 3, Chapman-Kolmogorov equations are derived and
their numerical solution is discussed. In particular, the use of iterative methods
for solving sparse matrix equations is examined. To illustrate our approach,
section 4 considers a number of numerical examples. Finally, conclusions are
presented in section 5.

2 Model description

The studied kitting process is showed in figure 1. Parts arriving in the system
are stored in their buffer until they are processed to as kits. Each of the two
types of parts are necessary to compose one kit, such that kitting blocks when
one of the buffers is empty. We assume that the capacity of the two buffers
is respectively equivalent to C1 and C2. When a part entering the system
encounters a full buffer, this part is considered as "lost". This means that the
part has to leave the system, therefore it cannot be processed as a kit. The
arrival intensity λ∗ and processing intensity µ are depending on the modulated
state k of the Markov process. We define three parameters:
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Π =






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0 0 µK






,

where λ
∗,k
1

and λ
∗,k
2

are the arrival intensities for part 1 and 2 at queueing
state k = 1, ..., K and µk the kitting time at queueing state k. To model
the transitions between the different queueing states, we define the transition
matrix A:

A =







α1,1 · · · α1,L

...
. . .

...
αK,1 · · · αK,L






,

where αk,l is the intensity to go from the queueing state k = 1, ..., K to the
queueing state l = 1, ..., L. Because the sum of the elements in a row must be
zero, the diagonal values for the transition matrix are equal to the negative
sum of the intensities of the corresponding row.

Alternatively, the kitting process can be characterized by the parameters
σ and κ defined as follows. The first symbol is the fraction of the time that
the part arrives in the kitting process. We call this parameter the active rate.
When there are no production downtimes, then σ = 1. The symbol κ, which
we call the switch-over time is equal to the sum of the average length of the
active and the inactive period. Finally, we determine the workload λi on the
basis of the equation:

λi = σ.λ∗
i .

where i = 1 or 2 represents the two types of parts. The equation means that
the product of the arrival intensity in the active period λ∗

i with the active
rate σ is equal to the workload λi. The workload, i.e. the average arrival
intensity over the productive and unproductive period, must be the same for
both components. If this is not the case and the buffers are sufficiently large,
then the buffer with the highest workload is almost always full. The system
can then be considered as a queue with just one buffer: the one that is always
full.

In the next section, we derive the balance equations of the studied kitting
process. The aim is to define the steady state probability vector for every
queuing state:

πi,j =
[

π1

i,j π2

i,j · · · πK
i,j

]

where πi,j is the collection of all possible steady state probability vectors.
We analyse the model using the transition rate diagram. Then, we determine
a general form of the balance equation. Two examples applying the kitting
formula are given. Finally, we explain the methodology used in MATLAB to
develop the numerical results showed in section 4.
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3 Analysis

Figure 2 shows a fragment of the transition rate diagram of the studied kitting
model in state (i, j, k). The two first values placed in the circles represent the
number of parts in buffer 1 and 2 where 0 ≤ i ≤ C1 and 0 ≤ j ≤ C2.
As mentioned above, two independent input streams arrive at the buffers at
intensity λ∗

1,k and λ∗
2,k and wait there till they are collected into a kit. A kit

is composed of the two parts and is processed at intensity µk. The last value
k stands for the queuing state. Depending on the queueing state, the arrival
intensity λ∗

k will have a different value.
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Fig. 2 Fragment of the transition rate diagram for state (i, j, k)

Based on the transition rate diagram and considering different queueing
states, we derive a general formula for the balance equations of our kitting
model. We limit ourself to an irreducible Markov Chain. In every queueing
state, if one of the two part buffers is empty (i.e. , i or j = 0 ), no kits can be
processed. This gives the equation:

πk
i,j ∗ (λ∗,k

1
+ λ

∗,k
2

+
∑

k 6=l

αk,l) = πk
i−1,j ∗ λ

∗,k
1

+ πk
i,j−1

∗ λ
∗,k
2

+
∑

l 6=k

πl
i,j ∗ αl,k (1)
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where k = 1, ..., K. When both buffers stores one or more parts, then the
equation is:

πk
i,j∗(λ∗,k

1
+λ

∗,k
2

+µk+
∑

k 6=l

αk,l) = πk
i−1,j∗λ

∗,k
1

+πk
i,j−1

∗λ
∗,k
2

+πk
i−1,j−1

∗µk+
∑

l 6=k

πl
i,j∗αl,k

(2)
where k = 1, ..., K. We consider the last case. Next, we construct a zero matrix
β with the diagonal values βk = (λ∗,k

1
+ λ

∗,k
2

+ µk +
∑

k 6=l αk,l), k = 1, ..., K.
This lead to:

πi,j ∗ β = πi−1,j ∗ Λ∗
1 + πi,j−1 ∗ Λ∗

2 + πi−1,j−1 ∗ Π + πi,j ∗ A (3)

We bring the two matrices A and β together and redefine A as equal to:

A =







−β1 −
∑

l α1,l · · · α1,L

...
. . .

...
αK,1 · · · −βK −

∑

l αK,l






,

This gives us the balance equation:

πi−1,j ∗ Λ∗
1

+ πi,j−1 ∗ Λ∗
2

+ πi−1,j−1 ∗ Π + πi,j ∗ A = 0 (4)

Applications of the developed kitting model are described below.

Example 1 In a production environment, machine downtimes occur. To model
bursty part arrivals, the parts arrive in accordance with an Interrupted Poisson
Process (abbreviated as IPP). An IPP is a stochastic process in which two
states are possible and which one of the two has an intensity equal to zero.
As we have two type of parts in our model, the kitting process can be in four
different queueing states: a state where both parts arrive according to a Poisson
process in the system (k = 4), a state where one of the two arrives (k = 2
when part 1 arrives and k = 3 when part 2 arrives) and a state where no parts
arrive in the system (k = 1). The parameter αk,l describes the intensity to go
from phase k to phase l. In the numerical examples, we considered the arrival
processes as identical and independent of each other. Important to notice is
that it is impossible to switch immediately from a state where no parts arrive
to a state where both parts arrive. We consider the balance equations of the
kitting model where i, j > 1:
If k = 1 :

π1

i,j ∗ (µ1 +
∑

16=l

α1,l) = π1

i−1,j−1
∗ µ1 +

∑

l 6=1

πl
i,j ∗ αl,1 (5)

with l = 2 or 3.
If k = 2 :

π2

i,j ∗ (λ∗
1

+ µ2 +
∑

26=l

α2,l) = π2

i−1,j ∗ λ∗
1

+ π2

i−1,j−1
∗ µ2 +

∑

l 6=2

πl
i,j ∗ αl,2 (6)
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with l = 1 or 4.
If k = 4 :

π4

i,j∗(λ∗
1
+λ∗

2
+µ4+

∑

46=l

α4,l) = πk
i−1,j∗λ∗

1
+πk

i,j−1
∗λ∗

2
+π4

i−1,j−1
∗µ4+

∑

l 6=4

πl
i,j∗αl,4

(7)
with l = 2 or 3.

Example 2 Due to a high uncertainty of the length of the processing times, we
consider phase-type distributed kitting times. We define the vector containing
the probabilities of each phase to occur as:

ρ =
[

ρ1 ρ2 ρ3 ρ4

]

,

The balance equation is different according to the buffer content (i, j):
If i = 1 and j = 0 :

πk
1,0 ∗ (λ∗

1 +
∑

k 6=l

αk,l) = πk
0,0 ∗ λ∗

1 +
∑

l 6=k

πl
1,0 ∗ αl,k. (8)

If i > 1 and j > 1 :

πk
i,j∗(λ∗

1+λ∗
2+µ4∗ρl+

∑

k 6=l

αk,l) = πk
i−1,j∗λ∗

1+πk
i,j−1∗λ∗

2+πk
i−1,j−1∗µ4∗ρl+

∑

l 6=k

πl
i,j∗αl,k

(9)

If i = 1 and j > 1 :

πk
1,j∗(λ∗

1∗ρl+λ∗
2+µ4∗ρl+

∑

k 6=l

αk,l) = πk
0,j∗λ∗

1∗ρl+πk
1,j−1∗λ∗

2+πk
0,j−1∗µ4∗ρl+

∑

l 6=k

πl
i,j∗αl,k

(10)

In the numerical examples, we supposed four phases with an equal initial
probability. The only phase in which components are processed as kits is in the
fourth phase (k = 4). After being processed as a kit, the state goes to another
random phase (l 6= k). Therefore, the processing intensity is multiplied by the
probability to be in that new phase (µ4 ∗ ρl with l = 1, 2 or 3). When being in
the first phase, you can only go to the second phase and so on till the fourth
phase. Furthermore, the arrival intensity of the components is independent of
the phase in which you are. However, if due to an arrival, components can be
processed as kits, the state of the process goes to another random phase and
the arrival intensity is multiplied by the probability to be in that new phase
(λ1 ∗ ρl or λ2 ∗ ρl with l = 1, 2 or 3).
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Fig. 3 Transition rate diagram of the phases in a PH-distribution with Erlang kitting times.
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Fig. 4 Transition rate diagram of the arrival intensity when the content buffer of the first
part equals zero.

Methodology: the sparse matrix techniques

Queuing models for kitting processes are rather complicated. Since two queues
are involved (one for each part in the kit) and can whether be in a productive
or unproductive state of the parts, the state space of the associated Markov
chain is inherently multidimensional. Multidimensionality leads to huge state
spaces; this is the state space explosion problem. A second complication is
more intricate, as mentioned above, the infinite-buffer-capacity assumption is
not applicable for kitting processes. If the capacity is assumed infinite, the
model degrades to an unstable stochastic model in which some or all of the
queues have an unlimited number of parts available all the time with a positive
probability.

Consequently, the multidimensionality of the state space and the inappli-
cability of the infinite-buffer assumption yield Markov chains with a finite but
very large state space. However, the number of possible state transitions from
any specific state is limited. This means that most of the entries in the gen-
erator matrix are zero; the matrix is sparse. In contrast to matrix-analytic
methods, sparse matrix techniques have hardly been used in queuing theory.
Using sparse matrices and their associated specialized algorithms resulted in
less memory consumption and processing times, compared to standard algo-
rithms. The reason is that the complexity is smaller for sparse than for dense
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matrices. In the model where both parts are subject to production interrup-
tions, the number of elements of the generator matrix for C1 = C2 = 100 is
408042. By considering this matrix as sparse, only 3 ∗ 40804 elements need to
be stored. Indeed, the storage of the matrix requires less memory because only
the non-zero elements are kept.

The method used to solve linear equations of sparse matrices is the iterative
method GMRES (Generalized Minimum Residual). Direct methods are not
applied because they are too slow or even unusable for large sparse-matrices.
The GMRES method approximates the exact solution A.x = b by the vector
xnεKn in a Krylov subspace Kn that minimizes the norm of the residual A.xn−

b. Since every subspace is contained in the next subspace, the residual decreases
monotonically. However, the major drawback to GMRES is that the amount of
work and storage required per iteration rises linearly with the iteration count.
The cost of the iterations grow like O(n2), where n is the iteration number.
The usual way to overcome this limitation is by restarting the iteration. After
a chosen number of iterations m, the accumulated data are cleared and the
intermediate results are used as the initial data for the next m iterations.
This procedure is repeated until convergence is achieved. The difficulty is in
choosing an appropriate value for m. If m is too small, GMRES may be slow to
converge, or fail to converge entirely. A value of m that is larger than necessary
involves excessive work and uses more storage. Saad and Schultz (1986) have
proven several useful results. In particular, they show that if the coefficient
matrix A is real and nearly positive definite, then a "reasonable" value for
m may be selected. The method stagnates and convergence takes place at
the mth step. To generate the numerical examples below we used a value for
m equal to 140. Another important parameter to be defined is the initial
vector. It is standard programmed as a zero vector. A first improvement is to
consider the vector as equiproportional. Even if this assumption is incorrect, it
accelerates the calculations. This is because the sum of the state probabilities
equals one. When a plot is created where the capacity of the buffers vary,
then the previous calculated probability vector could be used. In case the
initial vector is adapted, it would be more accurate than an equiproportional
vector. The reason is that when the capacity of the buffers is subject to little
changes, there is a high chance that the state probabilities almost remain the
same. However, the determination of this vector is time consuming because
the increase in C1 has a different effect on the to be calculated vector than a
larger C2. Furthermore, the accuracy of the steady state probability vector was
not improved as expected. Further research needs to be done. On the other
side, when varying the workload, there is no need to adapt the calculated
vector because it is independent of the value given to the workload. As with
varying capacity, there is also a high chance that the state probabilities have
the same value when the workload is increasingly changing. In terms of speed,
the outcome was clearly better than when varying capacities. Indeed, the time
required for constructing numerical examples was reduced by a factor of 10.
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4 Numerical results

In this section, we present some numerical examples in order to evaluate the
effect of production interruptions on the performance of a kitting process.

In the first three numerical examples, three models are illustrated. We con-
sider a workload λ equal to 0, 8 for both parts in every model. This allows us to
compare these models. The first model considers both parts arriving accord-
ing to a Poisson process with an arrival intensity λ∗ equal to 0, 8. Indeed, the
first model doesn’t consider bursty part arrivals so that σ = 1. In the second
model part 1 is subject to production downtimes and its arrival is therefore
modelled as an Interrupted Poisson Process. In 40 percent of the time, part
1 arrives with intensity λ∗ equal to two. The third model represents a kitting
process where both components are subject to production interruptions. The
two Interrupted Poisson Processes are independent and equally distributed.
The numerical examples showed assume a time length κ equal to ten and as
mentioned before, a workload λ equal to 0, 8. We consider for all three models
that on average one kit per unit time can be made so that the processing
intensity µk equals one in every queuing state k.

Figure 5 represents the loss probability according to different levels of the
buffer capacities for each model. Important to mention is that because we
assume that the buffers have the same workload, the average loss probability
calculated for both buffers together equals that for the buffers separately. A
first observation is that the probability decreases as the capacities increase
and that for the three models. Less components are lost when the buffers are
sufficiently large so that more kits can be processed. Therefore, the difference
between the models diminishes as the capacity increases. Secondly, the values
for the third model are higher than that for the first model. As expected, the
performance of a process subject to production interruptions is worse than a
process without. When the arrival process is modelled as a Poisson Process,
such as the first model, the probability that the buffer is full and the loss
probability are equal. This equality is a consequence of the PASTA-property.
Thanks to the memoryless property of the Poisson process, the stochastic
properties of parts on the arrival times are the same than that on random
times. On the other hand, these two probabilities are not equal for an arrival
process modelled as an IPP. Indeed, the average loss probability has greater
values than the probability that the buffer is full.

Figure 6 shows the probability that buffer 1 and 2 are full for the three
models together. We can notice that downtimes in the production of part 1
have a greater impact on buffer 2 than on its own buffer. It also appears that
adding production interruptions at part 2 doesn’t have a significant impact on
its own buffer but does on the other buffer. The lines for the second and third
model are almost identical in the second subfigure, which is not the case in
the first one.

Now, instead of varying the capacity we assume different workload values
for both parts. In figure 7, the mean in buffer 1 for the model where both
parts are subject to production downtimes is represented. The mean starts
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to increase significantly as the workload is greater than 0, 8. Indeed, as the
processing intensity µ equals one, we are close to a situation of overload, i.e.
λ
µ

is equal or greater than one. This effect is amplified as C1 is increasing.
In a model that is not subject to production interruptions and the workload
approximately equals 1, 8, the mean in buffer 1 aims at being equal to its
buffer capacity. Here, this equality is not reached yet due to the production
downtimes of the parts. This means in general that when the load is sufficiently
high depending on the modelled arrival process, the buffer will be full.

Finally, figure 8 and 9 represent the probability that one of the buffers is
empty and the loss probability on a logarithmic scale. These two probabilities
are related as the probability loss rate P LR equals:

P LR =
λ1 + λ2 − 2 ∗ T P

λ1 + λ2

where T P = µ∗(1−K1) equals the throughput and K1 the probability that one
of the buffers is empty. In figure 8, when the workload is smaller than one, there
is no difference in value for different buffer capacity levels. However when the
workload is greater than one, the higher the workload and buffer capacity, the
lower the value of the probability that one of the buffers is empty. Concerning
the loss probability represented in figure 9, it has a higher value when the
workload is high and the buffer capacity is low. As the workload increases, the
value of the buffer capacities becomes irrelevant.

5 Conclusion

Queuing models for determining the performance of kitting processes are cur-
rently insufficiently studied. In this paper, we investigated the performance
of the kitting process with two queue lines, considering kitting interruptions,
bursty part arrivals and phase-type distributed kitting times. As most of the
entries in the generator matrix have a value equal to zero, we applied sparse
matrix techniques. To determine the unknowns of the system, we used the
method GMRES (Generalized Minimum Residual). The solution was not ex-
act but performed well in terms of solution speed and accuracy.

The buffer sizes need to be large enough to catch production inefficiencies.
Furthermore, the two part buffers are correlated. When part 1 is subject to
production inefficiencies, the buffer of part 2 will have a higher probability to
be full than buffer 1. Indeed, production downtimes of one component mainly
affects the behaviour of the buffer of the other component. There is still room
for further research. When companies start to implement kitting activities in
their production process, in addition to the performance, the cost of the kitting
process is also relevant.
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Fig. 6 Probability that the buffer is full
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