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ABSTRACT

This paper considers scheduling problems where jobs are dispatched in batches. The objective is to minimize
the sum of the completion times of the batches. While a machine can process only one job at a time, multiple
machines can simultaneously process jobs in a batch. This simple environment has a variety of real world
applications such as part kitting and customer order scheduling.

A heuristic is presented for the parallel machine version of the problem. Also, a tight worst case bound on
the relative error is found. For the case of two parallel machines, we examine two heuristics, which are based
on simple scheduling rules. We find tight worst case bounds of 6/5 and 9/7 on the relative error and show
that neither procedure is superior for all instances. Finally, we empirically evaluate these two heuristics. For
large problems, the methods find solutions that are close to optimal.
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1. INTRODUCTION

This work considers a scheduling problem where each job is part of some batch (customer order).
The composition of the jobs in the batch is prespecified. While a machine can process only one job
at a time, multiple machines can simultaneously process jobs in the batch. The completion time
of the batch is the latest completion time of any job in the batch. The objective is to minimize the
sum of the batch completion times. In a production shop where jobs are dispatched by batches,
this objective minimizes total Work in Process (WIP).

Various practical problems motivate our research. One example is scheduling customer orders.
Consider a manufacturing facility which produces different types of products. A customer can
request a variety of products in an order. After the entire order is produced, the products are
shipped to the customer. Each order is a batch and a product is a job. The composition of the
batch is specified by the order.

Another application of our research is in the production of components for subsequent assem-
bly (part kitting). Consider a production process with two stages, say fabrication and assembly.
Final products are assembled from the various components. The components are produced by
machines in the fabrication stage. The components required to produce one unit of a final product
form a batch. Assembly of a product can begin only when all required components complete the
fabrication stage.
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A final example is crane scheduling at a port. The importance of the problem is noted by
Peterkofsky and Daganzo (1990). They report that a typical cargo ship spends 60% of its time
in port, costing about $1000 per hour. Each ship has several holds, and each hold requires either
loading or unloading. A crane represents a machine, and a ship and a hold can be considered as
a batch and a job, respectively. At most one crane can load or unload one hold at a time. Since
there exist multiple holds on a ship, more than one crane can simultaneously work on a ship. A
ship stays at berth until all work on the ship completes. The objective is to minimize the total time
that the ships spend at port.

For a comprehensive survey of batch scheduling problems, see Jordan (1996). Also, reviews of
batching and lot-sizing decision problems are given by Potts and Van Wassenhove (1992) and
Webster and Baker (1995).

In our more restricted problem, the completion time is based on the latest completion time of a
jobin the batch. Julien and Magazine (1990) examine a single machine problem where the objective
is to minimize the total completion time of the batches. A job-dependent setup time is incurred
between two different types of jobs. They develop a polynomial time dynamic programming (DP)
algorithm for the problem when there are two types of jobs and when the batch processing order
is fixed. Coffman, Nozari, and Yannakakis (1989) examines a similar problem where the batch
processing order is not fixed. Baker (1988) considers a problem similar to Coffman, Nozari, and
Yannakakis (1989). However, for one type of job, those jobs processed during the same produc-
tion run (setup) are not available until the completion of the production run. This restriction is
called batch availability (see Santos and Magazine, 1985). Gupta, Ho, and van der Veen (1997)
consider the single machine problem where each order must have one job from each of several job
classes. Also, there is a setup time whenever the job class changes. Gerodimos, Glass, and Potts
(2000) study single machine problems where each batch has one common job and one distinct
job.

Daganzo (1989) and Peterkofsky and Daganzo (1990) consider a crane scheduling problem.
Both papers consider an open shop problem with identical machines, where jobs are preempt-
able. The objective function is to minimize the sum of weighted batch tardiness. Daganzo (1989)
develops a heuristic procedure and finds an optimal solution for some special cases. Peterkofsky
and Daganzo (1990) develop a branch and bound solution procedure.

The batch scheduling problems that we discuss are simpler than most types of batch problems
because no setup times exist between different jobs or different batches. Blocher and Chhajed
(1996) examine the problem considered in this work, minimizing the sum of batch completion
times in a parallel machine environment. They show that the problem is NP-hard, develop several
heuristic methods, and two lower bounds. Blocher, Chhajed, and Leung (1998) generalize this
work to consider dispatching rules in a job shop environment.

We first introduce some notation. Next, we study the problem P|| >  Cp, where Cp is the
completion time of batch B;. We develop a tight worst case bound for a heuristic procedure. Next,
for problem P2| Y Cp we present a new heuristic and find a tight worst case bound of 9/7. We
find a tight worse case bound of 6/5 for one of the heuristics of Blocher and Chhajed (1996). We
show that neither heuristic is always superior. Then, we empirically evaluate these two heuristics.
For problems with approximately 2500 jobs, the average relative error is less than 0.001. Also, we
find classes of problems where the 9/7 heuristic may be preferable. Finally, some open problems
and future research are discussed.
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2. NOTATION
The decision variables in our models are
oy = schedule of all jobs on machine k for k € M
o = schedule of all jobs = (o1, 02, ..., on).

Other notation that is used in this work include

n = number of jobs

N = setofjobs={1,2,...,n}

b = number of batches

B = set of batches = {1, 2, ..., b}

n; = number of jobs in batch i fori € B

B; = set of jobs in batch i fori € B = {Z;;ll n;+1, Z};ll nj+2,..., 23‘:1 n;}
Bi(o) = first job selected for processing in B; fori € B

m = number of machines

M = set of machines = {1,2,...,m}

Dj = processing time of job j for j € N

P, = Z/es,- p; = total processing time of batch i € B

Ci(or) = coinpletion time of batch i on machine k fori € Bandke M
Ci(o) = completion time of batch 7 in schedule o for i € B = maxe s Ci(ok)
z* = value of optimal schedule.

We represent B;(o) as B; and C;(o) as C; when there is no ambiguity.

The standard classification scheme for scheduling problems (Graham et al., 1979) is a1 |z |3,
where | describes the machine structure, o, gives the job characteristics or restrictive requirements,
and a3 defines the objective function to be minimized. We extend this scheme to provide for batch
completion times by using Cp, in the a3 field. This notation is used to eliminate the confusion
between our problem and the classical scheduling problem.

All of the heuristic procedures we develop use the following rule to determine the order in which
the batches are processed.

SB (Shortest Batch): When a machine becomes available, an unscheduled job in the batch with a
shortest total processing time is selected first for processing.

3. PROBLEM P||S.Cj,

In this section, we construct a heuristic that has a worst case bound on the relative error of 2—1/m.
First we establish some properties of an optimal schedule.
Since there are no restrictions that delay jobs, we have the following result.

Remark 1. For problem P| " Cp,, there exists an optimal schedule without inserted idle time.

We say that batch i € Bis separated if on some machine k € M, jobs in batch i are not processed
consecutively.

Lemma I (Blocher and Chhajed, 1996). For problem P| > Cg,, there exists an optimal schedule
where no batch is separated.



52 J. YANG AND M. E. POSNER

As a result of Remark 1 and Lemma 1, we only consider those schedules where there is no
inserted idle time and where batches are not separated.

Heuristic H1 uses the SB rule to determine the batch sequence. To determine the job-machine
assignment, an LS (List Scheduling) rule is used. For this rule, when a machine becomes available,
an unscheduled job with the smallest index is selected for processing. We assume that the order of
the jobs is arbitrary.

Heuristic H1

0. Reindex the batches so that P, < P,y fori=1,2,...,b— 1.
Seti=j=1and F,=0fork=1,2,...,m.
1. Select the first available machine u = argming—; 5., { Fx}. Assign job j in batch 7 to machine
u.Set Fy=F,+pjand j=j+1.
Repeat Step 1 until all jobs in batch i are scheduled.
2. Set C; = max—1,2,...m{ Fi}.
Ifi < b,thenseti =i+ 1 and go to Step 1.
Otherwise, output X?_, C; and stop.

In Step 0, reindexing the batches requires O(b log b) time. By storing Fy, F5, ..., F,, ina heap in
Step 1, selecting F, requires O(n; log m) time fori = 1, 2, ..., b. Since all other operations require
O(n) time, the time requirement of H1 is O(n log m + b log b).

Before we establish the worst case relative error of H1, we provide a lower bound for the optimal
cost based on linear programming. Assume that the batches are indexed so that P, < P, < --- <
P,

Lemma 2 (Blocher and Chhajed, 1996). For problem P| Y Cg,

bP b—-1P b
71+g+...+7b<2*.

m m m

Consider the Linear Programming (LP) relaxation of problem P| > Cp where ajob can be split
into pieces of any size and processed, simultaneously if desired, on multiple machines. Observe that
an optimal LP solution, z* divides each batch into m equal processing times and then processes
them in index order. Consequently,

bP b—1P P
ap bR G=DB B

m m m

The next theorem establishes a worst case bound for the solution value found by Heuristic H1,
Hl
z7

Theorem 1. For problem P|Y. Cp,, z/1'/z* <2 — 1/m and this bound is tight.

Proof. Let o* and o 7! be an optimal schedule and the schedule produced by H1, respectively.
Suppose that for batchv € B, job¢ € B, finishes last at time C, (o #/!). Then, C,(c ') < C,(a/!") +
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peforallk=1,2,..., m, because job £ is assigned to the first available machine. Thus,

iy > e B —max;cp (p;)
- m

_ i B (m - 1) max{p,}. (1)
m m JjE€B,

Cyo + rjr;@f{p/}

Then,

1 * * m—1 ’ *
(2—’7—/1)2 =z +<7);C,(O’)

P P+ P b p
>, n 2+...+21’

T m m
+ L_l (ma{ } +max{p;} + - - + max{ })
X . X . .o X :
m jeB Pj jeB Pj JE€By P
P m—1 P+ P m—1
- [—1 + (—) max{pj}} + [ — 2+ ( )max{pf}]
m m JEB m m JjEB

b . j—
ot [Z"—‘ By (m 1) maX{Pj}]
m m

JEBy

> Ci(o™)+ Co(ac™)+ -+ Cy(a™)

=ZH1.

The first inequality follows from Lemma 2, and the second inequality follows from (1).

We now show that this bound is tight by using an example from Graham (1966). Consider an
instance of the problem where n =2m — 1 and b=1. Also, p;=m —1for j=1,2,...,m —
l,p;=1for j=mm+1,...,2m — 2, and pru_1 = m. Now, o' = (1,2m — 1), o' = (k) for
k=2,3,...,m—1,ando ! = (m,m+1,...,2m—2). Thesolution value z/! = 2m — 1. However,
of =(m+k—-1,kfork=1,2,...,m—1and o, = (2m — 1). The optimal solution value is .

Thus, z#'/z* = 2m — 1)/m = 2 — 1/m, and the bound is tight. [ |

Remark 2 (Graham, 1966). The bound 2 — 1/m is also the worst case bound using the LS rule
for problem P| Cpax.

4. THE SET LPT HEURISTIC

In this section, we introduce a heuristic procedure to find a schedule for problem P2| " Cp that
has a worst case relative error of 9/7. The SB rule determines the batch sequence. Each batch
is partitioned into two sets using the LPT (Longest Processing Time) rule. For this rule, when a
machine becomes available, an unscheduled job with the longest processing time is selected for
processing. The partitioning process assumes that processing of a batch can start on both machines
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at time zero. The set which has larger total processing time is assigned to the machine that becomes
available first. The set which has smaller processing time is assigned to the other machine.

Heuristic H2

0. Reindex the batches so that P, < Py fori=1,2,...,b— 1.
Fori =1,2,..., b, reindex the jobs so that p; > p;1if j, j+1 € B.
Seti=j=1andF{=F2’=F1=F2=O.
1. Assign job j in batch i to the first available machine k = argmin {F, F;}. Set F}, = F|_ + p;
and j = j + 1. Repeat Step 1 until all jobs in batch i are scheduled.
2. Find ¢ and u such that £ = argmin {F;, F>} and u = argmin {F|, F;}. Set F; = F; + F}_, and
Fiy=F_(+F,
3. Set C,‘ = maX{Fl, Fz}.
Ifi < b,thenseti =i+ 1, F{ = F;, =0, and go to Step 1.
Otherwise, output Zle C; and stop.

In Step 0, reindexing the batches requires O(b log b) time and reindexing the jobs in each batch
i=1,2,...,b requires O(Zf’:l n; log n;) time. Since all other operations require O(n) time, the
time requirement of H2 is O(n log n).

We motivate the use of the LPT rule by observing that for the classical scheduling problem
P|| Cinax, this rule provides a good heuristic solution (Graham, 1969). Since minimizing the com-
pletion time of a given batch is a makespan problem, scheduling each batch by this rule is likely
to provide good schedules.

We assume that the jobs are indexed so that

P<P<---<Ph (2)
and
pj=piv1 ifj, j+1eB, 3)

i.e., the batches are in SB order, and the jobs within a batch are in LPT order, respectively.

Let o 2 be the schedule found by Heuristic H2, and let z/”> be sum of batch completion times
of this schedule. In the remainder of this section, we establish that z//z* < 9/7 and show that
this bound is tight.

For k,i € B, suppose k is the last batch to complete before i in schedule o. Let

5:(0) { Ci(o) — Ci(o) if only one machine processes batch i
o= |Ci(01) — Ci(on)| if both machines process batch i.

For each i € B, §;(0) is the absolute difference between completion time of batch i on machine
1 and machine 2 in o. If batch i is processed on only one machine, then §;(o) is the difference
between the completion time of batch i and the completion time of the last batch to complete
before i (see Figure 1). If batch i is the first batch to complete, then we assume Ci(o) = 0. We use
3;(0) to provide a description of the completion time of batch i. If G C B is the set of batches that
complete no later than batch 7, then

Y veq Pr+8i(0)

Cilo) = :

(4)
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— &

M,
M, J
Time _—
()
.
M, q
M, J I4
Time _—
(b)

Figure 1. Examples of §; where the last two jobs processed in batch i are j and £ : (a) batch i is processed by both machines;
(b) batch i is processed only by M, and ¢ is the last job to complete in batch k.

Notice that since P, is known for £=1,2,...,i,Ci(oc) only depends on the size of
(Sl' (0’)

For i € B, let C; be the minimal makespan of just the jobs in batch i and let ' be the corre-
sponding schedule. Similarly, let C} be the makespan of the schedule generated by the LPT rule
for batch 7, and let ¥’ be the corresponding schedule. Let §; = 2C; — P and 8- = 2CF — P, for
i € B. Fori € B, §; is the difference between completion time of batch i on the two machines in
7'. Similarly, 8} is the difference between completion time of batch i on the two machines in y'.

For notational convenience, let 8} = 8;(0*) and 87> = §;(c %) for i € B, and §{> = 0. From the

steps of H2,

8/ =18f -8, i=1,2,...,b. )
The next remark establishes a lower bound for §/%2.
Remark 3. Fori € B, 5{112 < P.
Proof. Follows from the fact that §& < P, for ¢ € B and from (5). |

We now present a preliminary result when job 8; 4+ 3 completes last in ' for i € B.

Lemma 3. If in vy, batch i completes when job j > B; + 3 finishes processing for i € B, then
st < P/s.

Proof. We first consider the case when job j = B; + 3. Suppose pg, > pg,+1 + pg+2. From (3),
Pp+3 < P;/5. The result now follows.
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Alternatively, suppose that pg < pg4+1 + pg+2. Then,

ni—1

8 = pp + Pprs — Ppr1 — Do — Z Ppiti:
j=4

Since pg,+3 < Ppit2,05 < pp.— pp+1- 16, ps, — ppv1 < Po/5, then the result follows. If pg, — pg, 11 >
P,/5, then 2pg 11 + pp2 + pg+3 < 4P /5and pg 3 < P/5.

When job j > B; + 4 is the last job to complete, the result follows from the definition of § and
from (3). |

Next, we present some results regarding the bound for §Z.
Lemma4. If CE > C; fori € B, then §F < P./5.

Proof. Since CF > C;,jobs f; and B; + 2 can not be the last jobs to complete in y'. Job B; + 1
can never be the last job to complete in y'. If job j > B; + 3 is the last job to complete in y/, then

the result follows from Lemma 3. |
Lemma 5. Suppose CiL = C; fori € B. Ino*, if batches vy, v, .. ., v, complete while batch i is
processing, then 8 + Z§'=1 83]_ > 8} for integer £ > 0.

Proof. Consider the partial schedule of o* from the start to the completion of batch i. Let
the start time of batch i in o* be Si(¢*). In o*, the amount of time that the jobs of batch v;

are processed in the interval [Si(c*), C;(c*)] is at most 8;‘/, for j € {1,2,...,¢}. Consequently,
Ci < Gi(0%) = S(0™) < (B + Y., 87, + 87)/2. Thus,

L * * <
P48, 46 - C = P45 P+

2 2 2

The last equality holds because C = C; by assumption. |

Without loss of generality, we assume that b > 4. If b < 4, then we add dummy batches which
have zero processing time. In o*, let the batches complete in the order of vy, vy, ..., vy. From (2)
and (4),

LH2 B Zile C,-(O'Hz)
= Y Glo)
bR+ + (- DP+ 8P+ 2P + 87 + P+ 8/
bP, +85 +(b—1)P, 48+ + Py, + 8
_bP+ (- NP+ 4 P+ S0 82
TP+ —DPt -+ B 8
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From Remark 3, since Sle < P, fori € B, we have, for£ =0,1,...,b—4,

bPi4+(b—1)Pr+ -+ (b— )Py + S 512

i=1"%i

bPL+(b—-1)P A+ 4+ (b—0) Py

1
— 1+ Zzz:l 81'112
bPA+(b—-1)P+---+(b—O)Py
87 +8 -+ 8/
bP+b—-1)P+---+4P

<1+ L2
- < =.
- 4 7
To establish that z#2/z* < 9/7, it is sufficient to show that there is an integer ¢ > 0 such that
g <b—3,and

b—q) P+ b—qg—DPpa+-+ P+ 8"
(b= P1+(b—q—DPa+-+ P+ >0, 5
. iy 87
(b—q)Pp1+(b—q—DPpa+-+ P+ 57, 8
9
-

=

(6)

This follows because

22 bR+ B —g+ DR L8P+ (B )P+ 4 P+ T 87
T [bPA A b= g+ DR AN 8]+ (b )P+ + P+ Y0 6]

The next theorem establishes the worst case bound for H2.

Theorem 2. For problem P2|Y" Cp,, z1?/z* < 9/7 and this bound is tight.

Proof. We consider five cases depending on the sign of § — 82 for¢ =b—2,b—1,b.

Case 1. 8% < 8F ,, 8% > sF |, and 8/ > s}
From (9),
857 + 8,0 + 8,7 = (855 — 8,%) + (85,75 — 85) + (5,5 — 85)
2 2 2
= (8!5—2 - 5;{3) + (5/;{2 - 5;{3 - 5}&1) + (‘Sﬁz - (Si{‘fl - 5bL)
=28y 5 = 28575 — 8y + (850 — 85y — 85y — 8y)

< 38F,.
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Suppose Cf , > Cy_». By Lemma 4, 8} ,/ P,_» < 1/5. Thus,

3P 2 +2P 1+ B+ 57 + 57 + 87 38k,
3Ph—2+2Pb—l+Pb+Zl‘:1 i - 3Pb72+2Pb71+Pb
L

<14 2o

3P
9
< —.
7

Hence, the result is established from (6).
Alternatively, suppose CE 2 = = CE,. From Lemma 5, §f, < Z, 167. By Remark 3,
28F /B3Py + 2Py + B+ El 1 8¥) < 2/7. Hence,

3Py 2 +2P 1 + B+ 8% + 882 + 5/ 14 (3Py2+ 2P, 1+Pb+<3bL2)+25bL2
3P+ 2P+ P+ Y, 8" B 3P+ 2P+ P+ 30, 8
285,
3Pb s+ 2P, 1+Pb+z, h

| o

IA

Hence, from (6), the result is established.
For the remaining cases, the proof is similar, except that

Case 2. 8} > 8F 5, 812, > 8F |, and 61 > s} implies /2 + 8{% + 812 < 38/ Also, the upper
bound is 14/11.

Case 3.6/ < 6L, and 81{{ > §f 1mphes8 +8 Eh +8H% < 28,, . Also, the upper bound is 5/4.

Case 4. 8/1% > 8} , and 6/, < 8} implies 8% + 8 2+ 8,{’2 < 8% + 8t Also, the upper bound
18 6/5.

Case 5. 8}, < 8L , and 8/ < s} implies 8% + 81 + 8/> < 8}, + 8} Also, the upper bound
is 6/5.

Now, we show that the bound is tight. Consider the instance where b = 3,n1 =1,n=

2,n3 =2, py =2and p» = p3 = ps = ps = 1(see Figure 2). An optimal scheduleis 6* = (o}, 03)
where o7 = (2, 3, 5) and 02 = (1 4), and z* = 2 + 2 + 3 = 7. However, 0 /2 = (o, 0/?) where

"2 — (1, 3, 5)and 0/”> = (2, 4). The corresponding solution value is z/? = 24+ 3 +4 = 9. Hence,
zH2 /z* = 9/7 for the given example. [ |

5. JOB LPT HEURISTIC

As mentioned in the prior section, the LPT rule finds a good schedule for problem P| Cp,x. To
find a schedule for problem P2| > Cp,, Heuristic H3 tries to obtain the maximum benefit of the
LPT rule. Based on the current partial schedule, this rule is used to decide both the job processing
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M 2 3 5
Optimal schedule
M, 1 4
Time 0 2 3
M, 2 4
Schedule generated by H2
M, 1 3 5
Time 0 2 3 4

Figure 2. A worst case example of H2.

order and the machine-job assignment. Similar to the other procedures, the SB rule determines
the batch sequence.

Heuristic H3 (Blocher and Chhajed, 1996)

0. Reindex the batches so that P, < Py fori=1,2,...,b— 1.
Fori=1,2,...,b, reindex the jobs so that p; > p; . if j, j+1 € B;.
Seti=j=1and F; = F, =0.
1. Select the first available machine k = argmin{Fj, F>}. Choose job j in batch i and assign it
to machine k. Set F = Fi+ p;and j = j + 1.
Repeat Step 1 until all jobs in batch i are scheduled.
2. Set C; = max{Fy, F»}.
If i = b, then output Zle C; and stop.
Otherwise, set i =i + 1 and go to Step 1.

In Step 0, reindexing the batches requires O(b log b) time and reindexing the jobs in each batch
i=1,2,...,b requires O(Zﬁ’:1 n; log n;) time. Since all other operations require O(n) time, the
time requirement of H3 is O(n log n).

As described, the job-machine assignment rule of H3 is the LPT rule. Also, from Lemma 1,
there exists an optimal schedule where no batch is separated.

We define some notation. Let o /3 be the schedule found by Heuristic H3 and z”® be total
completion time of this schedule. Also, let §/7* = §;(c#*) for i € B. To establish that the worst case
relative error bound for Heuristic H3 is 6/5, we present two preliminary results concerning §/73.

Lemma6. Fori=2,3,...,b, 8,-1131 + 6,-H3 < P.

Proof. Because jobs are assigned to the first available machine, §#3 < P_;. Since batches start
processing in SB order in H3, 673 < B. Now, by definition of §, 8 can be no larger than
P — 8. [

Lemma 7. If in o3, B; + j is the last job to complete in batch i € B, then §/3 < Db
G+

< h/
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Ml ,3,‘—1 ﬁi o..’@‘

+3
M, Bi Bi+1 Bi+2
Time = ——
(@)
— e
M gi—1 Bi+1 Bi+2
M, B; AR
Time
(b)

Figure 3. Examples for Lemma 8: (a) pg, < 6[1?1 and (b) pg; > 51.1?1.

Proof. The first inequality follows from the definition of § and from the fact that jobs are
assigned to the first available machine. The second inequality follows from (3). |

Much of our analysis is based on which job is last to complete in a given batch in o 3. We now
present some preliminary results for various possible final jobs.

Lemma 8. Suppose that in o3, batch i completes when job B; + 2 finishes processing for i =
2,3, ..., b If ps, < 813, then 818 < (P, + 8/8)/5. If pg, = 813, then §18 < (P, — §{7)/3.

i—1»

Proof. Suppose pg, < 81 3 (see Figure 3(a) for an example). Assign a dummy job of size 673 to
batch i. This dummy job is now the largest job in batch i. Since both the dummy job and g; start
at the same time, the schedule of this modified batch under H3 is the same as in /. By Lemma 3,
the result follows.

Alternatively, suppose pg, > 3. If jobs B; + 1 and f; + 2 are processed on the same machine
in o, then pg, — 83 > pp.+1 > pp42 > 81 (see Figure 3(b) for an example). If jobs p; + 1 and
Bi + 2 are not processed on the same machine in o 73, then

}’l,‘*l
5iH3 = pp+2 Tt (pﬁi - 811131) — P+l — Z PBi+j-
Jj=3

Since pg,+1 > pp+2s s < Pg — 815, From Lemma 7, §/* < Ppgi+2 < pp+1. Thus,

H3 H3
81‘ 8i

<
P, - 611331 B D+ P+l + Ppi2 — 511131

IA

G| =
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M, Bi—1 Bi+1
M, 6 Bi+2 oo/

Time
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Figure 4. Examples for Lemma 9: (a) pg, < 8,.}131 and (b) pg, > 8[1{31

Lemma 9. If batch i completes in o™3 when job B; + 1 finishes processing, then §/3 <
min{8/5, B/2} fori =2,3,...,b.

Proof. From Lemma 7, 8/ < pg.41 < P/2.

Suppose pg, < 83 (see Figure 4(a)). Then by Lemma 7, §#° < pg. 11, and the result follows.
Alternatively, suppose pg, > 8% . Assume without loss of generality that in o 73, job ; is processed
on machine 2. Then, job g; + 1 is processed on machine 1. Because job g; + 1 completes last
in batch i, jobs 8, +2,8; + 3,...,8; + n; — 1 are processed on machine 2 (see Figure 4(b)).
Hence,

ni—1

5 =8/ + ppat — po — > Do
j=2
Since pg, = pp+1. 6/ < 8117, u
We now present two results which provide lower bounds for Z?zl s;.

Lemma 10. If in o3, B; is the last job to complete in batch i, then 8{?1 + 6iH3 = pp—
b *
D jenip) Pi < 2= OF

Proof. If B; is the last job to complete in o 73, then the last job to complete in batch i — 1 and
the remaining jobs in batch i are processed on a different machine than g;. This establishes the
first equality.

Without loss of generality, suppose that g; is processed on machine 2 in o *. For integer r > 0,
let vy, va, ..., v, be the batches that complete in o* while job B; is processing. By assumption, the
last job from each of these batches are processed on machine 1. If there are other jobs from batch
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some jobs some jobs .
in v, in v, |" 4 ‘{
M, —H...H TR X H-.. ,Bi+1 oo o n'?’j_l
M2 ﬂi
Time

Figure 5. An example for Lemma 10

i that are processed on machine 1, then the optimality of o* requires that they are processed after
the jobs in vy, vy, ..., v, (see Figure 5). Thus,

pe— >, P 8 48
1

JEB\{Bi} Jj=

b
<> 4.

I=1 |

The next result considers the case when and y' and ' complete at the same time. Recall from
Section 4 that for i € B, C; is the minimal makespan of just the jobs in batch i, and CF is the
makespan of the schedule generated by the LPT rule for batch i.

Lemma 11. Suppose CL = C; fori € B. Then, §/* — 853 < Z?:l 5/

Proof. From Lemma 5, Y7 8 > 8% for i € B. We prove that 8/ — 553 < 5L fori € B. Sup-
pose that when batch i starts in o 3, both machines are free. Then, §/7° = §%.

If both machines are not free, then processing is delayed on one machine by §/73. Since the
starting time order does not change, the delay of a job is at most 83 larger than in the schedule
where both machines are free. This result holds for the last job processed in batch i. Thus, for
i€ B §H <8+t [ |

Next, we present a result when y’ completes after 3°.

Lemma 12. IfC,L > C;, then 8iH3 < max{(S[Iﬁ, P/SYfori =2,3,...,b.

Proof. From the proof of Lemma 4, the condition CL > C; implies that batch i has at least four
jobs.

Without loss of generality, assume that for i € B, job B; is processed on machine 2 in o 3.
Suppose that pg, < 8/7. Then by Lemma 7, §/* < ps, < 8/73 and the result is established. Hence,
we consider the case where pg, > 83 This implies that job 8; + 1 is processed on machine 1.

If pg, > 853 + pp,+1, then assign a dummy job of size pg; — 8773 to batch i and remove job g;
from batch i. This dummy job is now the largest job in batch i. Since both the dummy job and
B; + 1 start at the same time, the schedule of this modified batch under H3 is the same as in y'. By
Lemma 4, 8/ < (P, — 8/53)/5 < P/5.

1



SCHEDULING PARALLEL MACHINES FOR THE CUSTOMER ORDER PROBLEM 63

The only case left to consider is when 87 < pg, < 853 + pg.11. This condition implies that
Bi + 2 is processed on machine 2. Also, batch i does not complete when job g; finishes processing.

Suppose batch i completes when job f; + 1 finishes processing in o 3. Then, § /3 < § follows
from Lemma 9.

Suppose batch i completes when job 8; + 2 finishes processing. Then, Z’}‘:_; P+ 81 < ppio
Thus,

ni—1

H3
57 < ppaa— Y o
j=3

Because CF > C;, we have that ps 1 + pg42 < P + Y13 Pperj- Asa result,

ni—1
Ppi+2 — Z Pp+j < Pp — Ppi+1-
j=3
Since pg, — pp+1 < 8113, it follows that §/3 < 813

Suppose batch i completes when job 8; + 3 finishes processing. If job 8; + 3 is processed on

machine 2 in o3, then pg, 42 + pp, < 813 + pp+1. By Lemma 7, 82 < pg 13 < pp12 < pps2 <

YN -
If job B; 4+ 3 is processed on machine 1, then

ni—1

815 =85 + g1+ Pps— Pp — Prs2— Y Ppi-
j=4

Since pg, > pg.+1 and pg. 12 > pp13, we have that §7° < 673,
Suppose batch i completes when job B, finishes processing for j > B; + 4 in o#>. Then by
Lemma 7, 8/ < P,/5. [ |

Without loss of generality, we assume that there are at least four batches. If b < 4, then we
add dummy batches that have zero processing time. In o*, let the batches complete in the order
U1, V2, ..., Up. From (2),

LH3 _ Z?:l C,-(O'H3)

DY EYelCe
bR HB+(b— )P+ 8+ P+ 58
CObP 8+ (b —1D)P, 48+ + Py + 8

_bP (G —DP At Pt Y 8

i=1"i

T bR+ (b—-DPr -+ P+ 85

Since /3 < P; fori € B,

bP+b—-1D)P+---+5P_4 bP+(b—-1D)P+---+5P_4 —

bP 48P+ (b —1)P+ 8P ... 4 5P, 4 + /7, St g 6
5
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Hence, to prove that z/3/z* < 6/5, it is sufficient to show that

4P, 3+ 3P 2+2Pb1+Pb+Ebb38H3<§ W)
4Py 3+ 3P, 2+2Pbl+Pb+lel e

The proof of the bound for H3 is established by the following series of results based on the job
of batch b that completes last in o 3: Propositions 1, 3, 4, 5, and Theorem 3.

Proposition 1. If batch b completes in o3 when job By finishes processing, then z3 /z* < 6/5.

Proof. From Lemma 10, 87 + 8/ < Y27_ §*. Also, (2) and Lemma 7 imply that 58/7, <
2P, 2+ 2P, + P, and 55{1733 5 4Pz7 3+ P,_». Thus,

4P, 3 +3P 2 +2P 1+ P+ 88 + 88 818, + 8113 1+1
4Py 3+3P 2 +2P 1+ P+ >0, 8F 4P_3+ Pp_ 2)+(2Pb 2+2Pbl+Pb)_ 5
The proof now follows from (7). |

We present three lemmas and a proposition that establish the bound for H3 for the case when
81 < min{8/%,, P,/2}. Each result considers a different final job for batch b — 1. Several situations
satlsfy these conditions including the one established by Proposition 3.

Lemma 13. If §{® < min{8{%,, P,/2} and job By, finishes last in batch b — 1 for schedule o
then z13 )¢ < 6/5.

Proof. From Lemma 10, 8 Zl 1 6f. From Lemma 7 and (2), 8 < P_3< P_s.
Since 8/ < {8 < P,_ land(SbH3 < 8”3 <P 5,
4P, 3+ 3P,_ 2+2Ph1+P},+5 +5 8 +8
4P, 3+ 3P, 2+2Pb1+Pb+le ; 4P, 34+ 3P,_ 2+2P[,1+P[)+Z,1 i
8H3 +8H3 6

<1+ < =,
T A 38 4+ 28/ + 2818 + 8 T 5

The proof now follows from (7). |

Lemma 14. If 83 < min{6/7, P,/2} and job By_1 + 1 finishes last in batch b — 1 for shcedule
o3 then z/3/z* < 6/5.

Proof. From Lemma 9, §/, < min{8/%,, P,_/2}. We consider three cases based on which job
completes last in batch b — 2.

Case 1. In o3, batch b — 2 completes when job f;_» finishes processing.
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From Lemma 10, 8% + 8/, < Zl , 8. Since 8/ < 883, < P,_»,8{5, < Py_» and 8/ <
(SHS <Zz 1 1’

4Py_3+3Pyr+2P_1 + P+ 82 +5,,2 85 + 88
4Py 3 +3P s+ 2P+ P+ 3085 3P+ 2P i+ P> 8
2818, 6

<1+ = —-.
T 388 488 + 2818 + 88, 5
Case 2. In o3 batch b — 2 completes when job B,_» + 1 finishes processing.

From Lemma 9, §/, < min{s/";, P,_»/2}.
Suppose that in 0”3, batch b — 3 completes when job f,_; finishes processing. Then, /2, <
Zl , 8% from Lemma 10. Since §{2, < 8/, < P,_3, from (2),

4P, 34+ 3P,_ 2+2P/,1+Pb+5bl-133 5 +(S +8H3
4P, 34+3P 24+2P 4+ B+ 50, 4P, 3+3Pb 2+2Pb1+Pb
. 35,, 6

= H3<7‘
4515, + 68/, + 457, + 28/, 5

Alternatively, suppose that in o /3, batch b — 3 completes when job B,_3 + 1 or larger finishes
processing. Then, from Lemma 7, §/%, < P,_3/2. From (2),

4P, 3+3P 2+ P+ P 5 + 5 + 5 + 5bH3
4P, 3 +3P 2 +2P 1+ B 4Pb,3 + 3Pb,2 + 2Pb,1 + P
- 48H3 é
B 88 6885 + 485 + 288, 5

Hence, the result is established from (7).
Case 3. In o batch b — 2 completes when job Bp_s + 2 or larger finishes processing.
From Lemma 7, 8/, < P, /3. Also, 8/ /(4Pb 3+ P,_5) < 1/5. Hence, from (2),

4P, 3+3P 2 +2P_ 1+ B 5 +5 +5 +5,{13
4Py 3+3P 2 +2P 1+ P (4P 3+ Pb—2) + (2Pb—2 +2P 1+ B)
- 8y + 3845, 6

(4505, + 6/5%) + 158/, — 5
The proof now follows from (7). |

Lemma 15. If 83 < min{8/5, P,/2} and job By_1 + 2 finishes last in batch b — 1 for schedule
o3, then z13/z* < 6/5.

Proof. We consider two cases: 8/, > §/7% and §/7°, < 8/
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Case 1. 8{5, > §{53,.
From Lemma 7, 8§/ < P,_;/3. Since the proof of Lemma 14 uses the conditions §/73

min{8{%,, P,_/2}, the proof of this case follows in a similar manner.
Case 2. {53, < 8153

I A

Since 8/, < 813 » < p,g,, i 51; < 8B < (P,_1 —5{,)/3 follows from Lemma 8. Because P,
P,, we have that 38/, + 48153 + 56/ < 2P, + P,.

Suppose Cf | = Cb,l.Then, 8,)_1—8[’ < Z _, 87 from Lemma 11. Since 38/, +38{2, <3P,
from Lemma 6,

IA

4Py 3+3P > +2P_ 1+ B 5 +5 +5 +8H3
4P 3+3P2+2P 1+ P 4P 3+3P 5+ 2P 1+Pb+2, 167

(o)}

<14 8B, + 813, + 815, + /3 _6
- 4818, + (3815 + 38/ ) (35,,,2+45b,1+555’3)+(5,{i31—5,5§2)—5'

The result now follows from (7).

Alternatively, suppose CE, > Cp_y. From Lemma 12, §/5 < P,_;/5. Since §/* < §/5% and
Py < P, 5815"32 + 5883 + 58 < 2P,y + PB,. The proof is now similar to the prior analysis
where CF | = Cp_;. |

Proposition 2. If §{* < min{8{,, P,/2}, then z/3/z* < 6/5.

Proof. From Lemmas 13, 14, and 15, the only case left to consider is when job 8,_; + 3 or larger
finishes last in batch » — 1 for schedule o 3. From Lemma 7, 5,{{31 < PB,_1/4.In Case 2 of Lemma
15, we use the conditions that 8/ < min{§/%,, B,/2}, and §{%, < (P,_; — §{*3))/3. The proof of
the proposition follows in a similar manner. [ |

Proposition 3. If batch b completes in o ™3 when job By + 1 finishes processing, then z"3 /z* < 6/5.

Proof. Lemma 9 establishes that 8/ < min{§/",, P,/2}. The result now follows from Proposi-
tion 2. |

To establish (7) when in o #3, job B, + 2 finishes last in batch b, we separate the analysis into
two cases: 8/3, < P,/7 and 8{3, > P,/7. These cases are considered in Propositions 4 and 5.

Proposition 4. If batch b completes in o ™ when job By + 2 finishes processing and 8/, < Py/7,
then z13 )z* < 6/5.

Proof. From Lemma 7, 8/ < P,/3. If §/* < §/73, then both conditions of Proposition 2 are
satisfied and the result is establ1shed Consequently, we assume that §/3 > 8/ . Since pg, > §/°
by Lemma 7, 8/ < (P, — 8/))/3 follows from Lemma 8.

Suppose that Cb > Cp. Because st b 1, Lemma 12 establishes that §/° < P,/5. When the
last job in batch b — 1 to complete is ﬂb_1 Br—1+1, By—1 +2,and B,_1 + 3 or larger, we use proofs
similar to those in Lemmas 13, 14, 15, and Proposition 2, respectively.
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Alternatively, suppose that CF = Cj. Then, Lemma 11 implies that 873 — 8/ < S0 7. We
consider two cases based on which job completes last in batch b — 1.
Case 1. In 013, batch b — 1 completes when job B,_; finishes processing.

From Lemma 6, 8/, + 8/, < P,_; and §{2, + §/>, < P,_,. From Lemma 10, §{, + §/7° <
S0 87, Thus,

4P, 3+3P > +2P_1+ P, — 5,{{31 + 5;{13 5[{33 + 5/5{_32 + 231{?1
4Py 34+ 3P a4+ 2P 14 P+ 3085 4P 3 +3P 2+ 2P+ P+ >, 8;
8By + 8153, + 28183 6

<1+ <<
4841 + (3847 + 38/1,) + (2647, +28/1)) + 78/5, + (8% + /%) — 5

Hence, the result is established from (7).
Case 2. In o™, batch b — 1 completes when job B,_; + 1 or larger finishes processing.

From Lemma 7, 8/ < P,_1/2. Suppose that in o/, batch b — 2 completes when job B5_»
finishes processing. Lemma 10 implies that 8/, + 6/, < Zle 87, Thus,
4Py 3 +3P 2+ 2P 1 + P, — 55 +8)° 841 + 8/5, + 28/7,
4Py 34+ 3P 24+ 2P 1+ P+ Y0, 8 AP+ 3P 2B + P+ S8
- 85 4 88, + 2815
a 48775 + (3877 + 38/5%) + (847 + 857 + 2847 ) + 78,7y + (877 + 617))

6
< -
-5

Hence, the result is established from (7).
Alternatively, suppose that in o 73, batch b — 2 completes when job S,_» + 1 or larger finishes
processing. Lemma 6 implies that /7, < P,_/2. Thus,

4Py 3+3P2+2P 1 + B, — {8, + 81 818, + 8113, + 28113
4P, 3+3P 2 +2P 1+ P+ Zf’;l 8 4P, 3+3P 2 +2P_ 1+ B
<14 8475 + 847 + 2517,
B 45,75 4 (8575 + 857 + 48,7) + (857 + 857 + 2657 ) + 78,7

6
<-.
-5
Hence, the result is established from (7). |

Proposition 5. If batch b completes in o '3 when job ), + 2 finishes processing and 8% > P, /7,
then z13z* < 6/5.

Proof. As in the proof of Proposition 4, we assume that §/°° > §/7% . This implies that §/° <
(P, — 8{%))/3 < 2P,/7. We consider four cases, depending on which job completes last in batch
b—1.

Case 1. In o3 batch b — 1 completes when job f;_; finishes processing.
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From Lemma 10, 8/7, + §/7% < 327 §7. Lemma 7 implies that 8/ < 2P,/7 < 28} < 2P, ;.
Also, 85, + 511, < S°0_ 5* implies that §/73/2 < S20_, 87. From Lemma 7 and (2), 8%, < P,_3 <
Pb—2~ ThU.S,

4Py3 +3P2+2P1 + P + 57 + 87 845 + 84"
4P 3 +3P r+2B_ 1+ P+ Zle ) (4P3+3P2)+ 2P+ P + Z?:l 8F)
-1 347 + 547 6

+ =z
- 4818, + 3818, + 8/ + 75/ )2+ 88372 7 5

Hence, the result is established from (7).
Case 2. In o3 batch b — 1 completes when job B,_; + 1 finishes processing.

From Lemma 7,8/ < 2P,/7 < 28 < P,_,. Also, from Lemma9 and (2), 8/, < 8/, < P,_,.
Suppose that in o 73, batch b —2 completes when job f;_» finishes processing. Then from Lemma
10, 8/, + 88, < S0 87. Thus,

i=1"%i

4Py 3 +3P 2+ 2P1 + P+ 57 + 55 845 + 8/
4P, 3 +3P, >+ 2P,_1+ P, + Z?:l 8 3P, 35+2P_1+ P, + Zle 8
345, + 84" 6

<1+ <-.
368 + (855 +38/1/2) + 78/ /2 4 (8% +8/1) = 5

Hence, the result is established from (7).

Now, suppose that in o /3, batch b — 2 completes when job B,_» + 1 finishes processing. From
Lemma 7, 8%, < P,_3 and 28/, < P,_». Also, Lemma 9 implies that 8%, < §/%%,. If in o /3 batch
b — 3 completes when job B,_3 finishes processing, then Lemma 10 implies that §/7%, < Zf;l 5F.
Thus,

4Py 3+3Py2+2P 1 + P+ 8/7, 8B, + 8113 + 818
4P, 34+3P 2 4+2P 1+ P+ 5085 4P 3+3P2+2P 1+ B
841, + 68, + /7 6

<1+ <—.
4818, + (2[5, + 48/5)) + (8/5, + 38/ /2) + 78/ /2 ~ 5

Hence, the result is established from (7).
Alternatively, if in o 73, batch » — 3 completes when job B,_3 + 1 or larger finishes processing,
then Lemma 7 implies that §{7%; < P,_3/2. Thus,

AP, 3 +3P 2+ 2P+ P | 85+ 8/ +8/8 + /7
4P, 34+3P, > +2P, 1+ P, 4P, 3+3P, ,+2P_1+ P
. 547 + 841 + 8/ + 8/°
= T (50T, + 3075 + (207 + 4[T%) + (ofF + 307°/2) + 76°/2

6
<.
-5

Hence, the result is established from (7).
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Finally, suppose that in o 3, batch b — 2 completes when job B,_» + 2 or larger finishes process-
ing. Then, 8§/, < P,_,/3. Since {5, < 8/, < P,_»/3 < P,_1/3and §{® <2P,,/3,
4P 3+3P 2 +2B 1+ b 8y + 8555 + 8,5 + 85"
4P 3+3P 2 +2P 1+ P 4P 3+3P 2 +2P 1+ b
<14 8y + 857 + 87 + 8,7
T A+ (85 + 888, + 4515, 4 28[)) + (3848, + 3817 /2) + 78/ )2

6
<-.
-5
Hence, the result is established from (7).

Case 3. In o3, batch b — 1 completes when job B;_; + 2 finishes processing.

From Lemma 7, 8% < 2P,/7 < 263 < 2P,_1/3. Hence, 58/ < P,_1+ P,. 1f 817, > §/73, then
the proof is similar to Case 2. As a result, we assume that §/7%, < §{7,.

When C} > C,, the proof is similar to the corresponding situation in Proposition 4. When
CE = Cp, Lemma 11 implies that 873 — 8/ < S0 57

Since pg, , > 83 > 8152, 85 < (P—1 — 8{7,)/3 follows from Lemma 8. As previously noted,

81 < (P, — 8{%))/3. Also, from Lemma 6, 38/, + 36/>, < 3P,_, . Thus,
4P, 3 +3P 2+ 2P 1 + P, — 8 + 8/ S, + 81, + 2815,
4Py 3 +3P a4+ 2P+ P+ Y0 8 4R 3+3P2+2P  + B
. 841 + of + 28/7
- 4818, + (3875 + 38/5)) + (265, + 6815)) + (877, + 38/7)

6
<-.
-5
Hence, the result is established from (7).

Case 4. In o3, batch b — 1 completes when job B,_1 + 3 or larger finishes processing.

When job B,_; + 3 or larger completes last in batch b — 1, Lemma 7 implies that 8,{’_31 < B_,/4.
As a result, the proof is similar to Case 3. |

We now prove the main result of this section.
Theorem 3. For problem P2|Y" Cp, z3/2* < 6/5 and this bound is tight.

Proof. From Propositions 1, 3, 4, and 5, z/3/z* < 6/5 when the last job in batch b to complete
in o3 is By, Bry1, and Bpio, respectively. We now show that (7) is satisfied when the last job in
batch b to complete in o 3 is B3 or larger. From Lemma 7, 46/7* < P,. Since 8/, + 38/ < 45/
follows from Proposition 2, the proof is now similar to Propositions 4 and 5.

Now, we show that the bound is tight. Consider the instance where b =2, n; = 1,n, =3, p; =
1, p» =3, and p3 = ps = 2 (see Figure 6). The optimal schedule ¢* = (o, 05) where o* = (1, 2)
and o = (3,4), and z* = 1 + 4 = 5. However, 03 = (o7, o) where o/* = (1, 3) and o,* =
(2, 4). The solution value is z* = 1 + 5 = 6. Hence, z//3/z* = 6/5, and the bound is tight. W
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M, 3 4
Optimal schedule
M, 1 2
Time 0 1 4
M, 2 4
Schedule generated by H3
M, 1 3
Time 0 1 5

Figure 6. A worst case example of H3

6. COMPUTATIONAL STUDY OF HEURISTICS H2 AND H3

We empirically evaluate heuristics H2 and H3 by comparing solution values generated by the
heuristics to an optimal LP solution value z**. For notational convenience, we let H* be the
heuristic that selects the best schedule from those produced by H2 and H3. As performance
indicators of H2, H3, and H*, we use upper bounds on relative errors z/2/zLF zH3/zLP and
" )zLP respectively. Another performance indicator that we use is the number of test problems
for which z/2 < z#3 and 212 > 713,

In this computational study, we compare the performances of H2 and H3 under various condi-
tions. We also observe the impact of different factorssuch as b, n;, p;, and E(n) on the performances
of H3 and H2, where E(-) is the expectation operator.

For each problem instance, n;, ~ DU[1, ii], and p; ~ DU[p"®, pV®], where i1, p*5, and pUB
are parameters and where DU[¢, u] represents a discrete random variable uniformly distributed
between ¢ and u. For a given set of test problems, b is fixed. It follows that E(n;) = (1 + 71)/2 and
E(n) = bE(n;) = b(1 + n)/2.

We generate 750 test problems under 25 conditions. To test the effects of varying E(n), we consider
three different values of E(n): 16, 100, and 2500. To determine whether different combinations of b
and n;, have an impact on the performance of the heuristics, we consider five different combinations
of b and n;, for a given value of E(n). It is also possible that the standard deviation of the p;s
may affect the performance of the heuristics. Consequently, when E(n) = 100, we consider three
different distributions of p;: p; ~ DU[I, 99], p; ~ DU[25,75], and p; ~ DU[40, 60]. For each
combination of the different factors, we solve 30 problems. Table 1 presents a summary of the
design for the computational study.

The results for the cases where p; ~ DU[1, 99] are presented in Table 2. The average relative
error bound is the average ratio of the solution value of a heuristic to an optimal LP solution. Since
each design point has 30 replications, the average relative error is calculated over 30 test problems.
When n = 1, all average relative error bounds are equal to z*/z-F because the heuristics produce
an optimal schedule (Blocher and Chhajed, 1996). Also, when b = 1, both heuristics use the LPT
rule to determine machine-job assignment for each batch. Therefore, z/> = 213,

We now summarize the results of our study. For both heuristics, the average relative error bound
decreases as E(n) increases. While there may be errors due to the use of z-¥ instead of the optimal
value, the results indicate that both heuristics perform better as the number of jobs increases. For
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Table 1. Design for the computational study

pj~ DUJ1,99] pj ~ DUI[25,75] pj ~ DUI40, 60]
E@n) =16 E(n) =100 E(n) = 2500 E(n) =100 E(n) =100
b 7 b n b 7l b 7 b n
1 31 1 199 1 4999 1 199 1 199
2 15 4 49 10 499 4 49 4 49
4 7 10 19 50 99 10 19 10 19
8 25 7 250 19 25 7 25 7
16 1 100 1 2500 1 100 1 100 1
Table 2. Performance of the heuristics
pj ~ DUI1,99] Average relative error bound Number of problems
E(n) b il H2 H3 H* 12 < 13 H2 > 13
16 1 31 1.0352 1.0352 1.0352 30 30
2 15 1.0558 1.0393 1.0370 18 19
4 7 1.0690 1.0566 1.0541 15 17
8 3 1.0823 1.0772 1.0751 16 17
16 1 1.0910 1.0910 1.0910 30 30
100 1 199 1.0338 1.0338 1.0338 30 30
4 49 1.0098 1.0048 1.0046 12 23
10 19 1.0123 1.0079 1.0075 11 19
25 7 1.0111 1.0103 1.0100 9 21
100 1 1.0150 1.0150 1.0150 30 30
2500 1 4999 1.0000 1.0000 1.0000 30 30
10 499 1.0000 1.0000 1.0000 20 25
50 99 1.0001 1.0001 1.0001 8 23
250 19 1.0003 1.0003 1.0003 9 21
2500 1 1.0006 1.0006 1.0006 30 30

large problems, these methods routinely find solutions that are close to optimal. Also, for a given
E(n), the average relative error bound increases as b increases (as 7z decreases). Hence, for a given
number of jobs, the heuristics perform better when there are fewer batches.

For each design point, the average relative error bound for H3 is less than or equal to that for
H2. This suggests that H3 performs better than H2 when p; ~ DUJI, 99]. This result is supported
by the performance measure which gives the number of test problems for which z/> < 23,

We compare the average relative error bounds of the two heuristics when the standard deviation
(s.d.) of p; changes in Table 3. For each design point in Table 3, the average relative error bound for
H3 increases slightly as the standard deviation of p; decreases. Also for each design point in Table
3, the average relative error bound for H3 is about the same as that of H2 when p; ~ DUJ[25, 75]
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Table 3. Sensitivity of the error bounds to processing time variance

p; ~ DUII, 9] pj ~ DU[25,75] p; ~ DUJ40, 60]
E(n) = 100 (s.d. = 28.28) (s.d. = 14.43) (s.d. = 5.77)
b i H2 H3 H2 H3 H2 H3
1 199 1.0338 1.0338 1.0365 1.0365 1.0378 1.0378
4 49 1.0098 1.0048 1.0087 1.0075 1.0108 1.0104
10 19 1.0123 1.0079 1.0108 1.0104 1.0126 1.0129
25 7 1.0111 1.0103 1.0091 1.0104 1.0110 10112
100 1 1.0150 1.0150 1.0120 1.0120 1.0106 1.0106

Table 4. Sensitivity of the number of problems where H2 and H3 are best to processing time variance

pj ~ DU[I, 99] p; ~ DU[25,75] pj ~ DUJ[40, 60]
E(n) = 100 (s.d. = 28.28) (s.d. = 14.43) (s.d. =5.77)
b i SH2 o o H3 SH2 S o H3 SH2 o o H3 SH2 S o H3 SH2 o o H3 SH2 S o H3
1 199 30 30 30 30 30 30
4 49 12 23 19 11 23 11
10 19 11 19 18 14 21 10
25 7 9 21 27 3 18 13
100 1 30 30 30 30 30 30

and p; ~ DU[40, 60]. In Table 4, we compare the number of test problems where z/* < z#2 and
3 > zH2 Observe when p; ~ DU[25,75] and p; ~ DU[40, 60], the number of test problems
with z/2 < z#3 is greater than the number of test problems with z#? > z/3_ This suggests that H2
may be a better choice than H3 when the standard deviation of p; is small.

7. DISCUSSION AND FURTHER RESEARCH

We propose two conjectures regarding H2 and H3. The following conjecture suggests that a
tighter bound on the relative error can be found if we use H2 and H3 together.

Conjecture 1. Given instance of problem P2||Y" Cp, min{z"?/z* 213 /z*} < 7/6 and this bound
is tight.

In our experiments, each heuristic eliminates the other heuristic’s worst case. As a result, we are
not able to find a case where both heuristics simultaneously perform poorly. (It would be interesting
to prove this fact.) Also, note that 7/6 is the worst case bound of the LPT rule for problem P2|| Cyax
(Graham, 1969). As a result, this is a lower bound for our combined heuristic.

The next conjecture suggests an extension of H3 to problem P| > Cg.

Conjecture 2. For problem P|| " Cp, zM3/2* < (4m — 2)/(3m — 1) and this bound is tight.
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M, 1 | 2m — 2
M, 2 | 2m —3
. . Optimal schedule
Mpa |m-2| m+1
Mm—l :r?l m
M,, om —1 ‘ 2m
Time 0 m 2m
M, 1 | om — 1 2m
M, 2 | 2m — 2
. . Schedule generated by H3
Mp_y | m—2 | m+2
Mm-l Tl | m+1
M, m
Time 0 m—1 2m —1 3m—1

Figure 7. An example of H3 for problem P|| Z Cp,

The following example of H3, which we believe to be the worst case, suggests the conjecture.
Let By ={1,2,....m—1}, Bb={m,m+1,....2m},p;=m—j for j=1,2,....m—1,p; =
3m—j —1for j=mm+1,...,2m — 2, and pyu—1 = pomw = m. An optimal schedule is
o*=(of,05,...,0p,)Whereof = (j,2m—1—j)forj=1,2,...,m—land o, = 2m—1,2m),
and z* = (m—1)+2m = 3m—1 (see Figure 7). However, 0 3 = (o3, 053, ..., 6 1) where o * =
(1,2m—1,2m), 0 [ = (j,2m— j)for j =2,3,...,m—1,and 6,/° = (m). The corresponding so-
lution valueis z* = (m—1) + (3m—1) = 4m—2 (see Figure 7). Hence, z/* /z* = (4m—2)/(3m—1)
for the given example. Notice that this example is a direct extension of the worst case example of
H3 for problem P2||>" Cp.

Observe that (4m — 1)/(3m) is the worst case bound of the LPT rule for problem P2|| Cpax
(Graham, 1969).

In addition to establishing Conjectures 1 and 2, it still has to be determined whether the com-
plexity of problem P2|| > Cp, is unary NP-complete or pseudo-polynomial. We leave these issues
to future research.

We have explored three heuristics for the parallel machine customer order scheduling problem.
Tight worst case bounds on the relative error are established. These problems are simpler than
many batch scheduling problems because the composition of the batches is prespecified. Also, the
objective is concerned with batch completion times instead of job completion times. While the
structure is simple, the problem has various real world applications such as scheduling customer
orders, scheduling the production of components for subsequent assembly into final products,
crane scheduling at a port, and automotive repair shop scheduling. We hope that our results can
be used to develop solution procedures for more complex and realistic applications.
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