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Continuous Time Markov Chains

Continuous time Markov chains have steady state probability solutions if and only
if they are ergodic, just like discrete time Markov chains.  Finding the steady state
probability vector for a continuous time Markov chain is no more difficult than it is
in the discrete time case, but the matrix equation that we use is, at least on the
surface, significantly different from that used for discrete time chains.  Ultimately,
however, the methods come down to the same basic idea – for a Markov chain,
discrete or continuous time, to have a steady state solution, the rate at which the
chain makes transitions into any given state must equal the rate at which the
chain makes transitions out of that same state.  This notion, as we will see, is
explicit in the matrix equation for continuous time chains.

Think of it in terms of pouring water into a bucket with a hole in the bottom.  If we
pour water into the bucket more slowly than it can drain through the hole, the
bucket never has any water in it.  If we pour faster than the water can drain, the
level of the water in the bucket keeps getting higher and higher (until it finally
starts flowing over the sides, but we'll assume we have an infinitely deep bucket).
For a Markov chain, the "level of water in the bucket" is analogous to the
probability of being in a state.  A stable water level is analogous to the probability
for that state having a steady state value.

One important distinction between discrete time and continuous time Markov
chains is that the latter are, by definition, aperiodic.  This is because the time
between state changes is exponentially distributed, making it impossible to
restrict state changes to occur only at regularly spaced intervals.  However, the
more important distinction has to do with how we deal with the state transition
probabilities.  The idea of a "single step transition probability" no longer makes
sense, since we don't have the notion of a step.

Define

h t t S t k S t jjk 1 2 2 1, Pr( ) ≡ ( ) = ( ) =[ ], t t2 1≥ .

H t t h t tjk1 2 1 2, ,( ) ≡ ( )[ ]

For a homogeneous Markov chain, the transition probabilities are functions only
of the difference t t2 1− :

H t t H t t1 2 2 10, ,( ) = −( ) ∀ ≥ ≥t t s t t t1 2 2 1 0, . . .

All of the Markov chains we consider will be homogeneous, unless stated
otherwise.

Assume that t t t2 1− = ∆  is small.
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Recall that in a continuous time Markov chain, the time between state transitions
is memoryless and hence is exponentially distributed.  This implies that the
transition times are generated by a Poisson process.

A Poisson process can be defined in several ways.  We will use the following set
of axioms:

1. Pr 1 event in an interval of length ∆ ∆t t→[ ] =0 λ .

2. Pr 0 events in an interval of length ∆ ∆ ∆t t o t→[ ] = − − ( )( )0 1 2λ .

3. Events are independent.

The first axiom says that the probability of one event occurring in a very short
interval is proportional to the length of the interval.  The second axiom states that
the probability of no Poisson events occurring during a very short interval is one
minus the probability of one event minus a term which is o t∆( )( )2

.  The "little o"

notation means that lim
∆

∆ ∆
t

o t t
→

( )( ) =
0

2 0 .  Note that λ  has units of probability

divided by time, or rate of change of probability.

Define P t i ti ( ) ≡ [ ]Pr . events in an interval of length   Here t  may be arbitrarily
large.  We can determine these probabilities for all values of i  by starting at i = 0
and working up.

P t t P t P t

P t t o t

0 0 0

0
21

+( ) = ( ) ⋅ ( )

= ( ) − − ( )( )[ ]
∆ ∆

∆ ∆λ

The last substitution relies on ∆t  being very small.  Manipulating this equation
and dividing both sides by ∆t ,

P t t P t
t

P t
o t

t
P t0 0

0

2

0

+( ) − ( )
= − ( ) −

( )( )
( )∆

∆

∆

∆
λ

Taking the limit of both sides of the equation as ∆t → 0 , we get

d
dt

P t P t0 0( ){ } = − ( )λ

The solution to this linear, first-order, time-invariant differential equation is

P t ke t
0( ) = −λ
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for some constant k .  To determine k , note that the probability of 0 events in 0
time is 1:

P ke k0
00 1( ) = = =− ⋅λ

Now consider i = 1.

P t t P t P t P t P t

P t t e tt

1 1 0 0 1

1 1

+( ) = ( ) ⋅ ( ) + ( ) ⋅ ( )
= ( ) −[ ] + ⋅−

∆ ∆ ∆

∆ ∆λ λλ

Note that we have dropped the o t∆( )( )2
 from the expression for P t0 ∆( ).  We are

going to be playing the same game as before (dividing by ∆t  and taking the limit
as ∆t → 0 ), and the o t∆( )( )2

 will disappear anyway.

P t t P t
t

e P t

P t t P t
t

e P t

d
dt

P t e P t

t

t

t

t

1 1
1

0

1 1
1

1 1

+( ) − ( )
= − ( )

+( ) − ( )
= − ( )

( ){ } = − ( )

−

→

−

−

∆

∆
∆

∆∆

λ λ

λ λ

λ λ

λ

λ

λ

lim

which has the solution

P t te t
1( ) = −λ λ

In general, for i ≥ 1,

P t t P t P t P t P t

P t t P t t
i i i

i i

+( ) = ( ) ⋅ ( ) + ( ) ⋅ ( )
= ( ) −[ ] + ( ) ⋅

−

−

∆ ∆ ∆

∆ ∆

0 1 1

11 λ λ
d
dt

P t P t P ti i i( ){ } = ( ) − ( )−λ λ1

P t
t e

ii

i t

( ) = ( ) −λ λ

!

You can verify this solution by substituting in the differential equation.

This shows that the probability of i  events in an interval of length t  has a
Poisson distribution, with λ  the rate or parameter of the distribution.  Accordingly,
the probability of n  events in ∆t  is proportional to ∆t n( )  for small ∆t  (just use a
power series expansion for e t−λ∆ ).
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To show the connection between the Poisson process and the exponential
distribution, we need to prove that the time between Poisson events is
exponentially distributed.  Let X  be the random variable for the time between two
consecutive events of a Poisson process.

Pr Pr

Pr

X t X t

t P t e

F t

t

X

≤[ ] = − >[ ]
= − [ ] = − ( ) = −

= ( )

−

1

1 1 100 events in λ

F tX ( ) is the cumulative distribution function for an exponentially distributed
random variable X .

Returning to the discussion of homogeneous Markov chains, let p t( ) be the state

probability vector at time t .  Because the probability of n  events in ∆t  is
proportional to ∆t n( )  for small ∆t , the probability of 1 as opposed to more than 1
event dominates as ∆t  gets close to 0 (not surprising - it is a Poisson process,
after all).  Hence, as ∆t → 0 , lim , lim ,

∆ ∆
∆ ∆

t t
H t t t H t

→ →
+( ) = ( )

0 0
0  can be thought of as

the single-step transition matrix for the continuous time Markov chain.  Then

lim , lim

lim
,

lim

lim
,

∆ ∆

∆ ∆

∆

∆ ∆

∆

∆

∆

∆
∆

∆

t t

t t

t

p t H t p t t

p t H t p t

t

p t t p t

t

p t
H t I

t
d
dt

p t

p t Q
d
dt

p t

→ →

→ →

→

( ) ⋅ ( ) = +( )

( ) ⋅ ( ) − ( )
=

+( ) − ( )

( ) ⋅ ( ) −
= ( ){ }

( ) ⋅ = (

0 0

0 0

0

0

0

0

)){ }

where Q
H t I

tt
=

( ) −
→

lim
,

∆

∆

∆0

0
 is the transition rate matrix or rate generator matrix or

simply the generator matrix of the homogeneous continuous time Markov chain.
The off-diagonal elements of Q  are

q
h t

t
j kjk t

jk=
( )

≠
→

lim
,

,
∆

∆

∆0

0

As noted above, these are not probabilities; they are instantaneous rates of
change in probability.  Because the chain is homogeneous and must be
memoryless,

lim ,
∆

∆ ∆
t jk jkh t t
→

( ) =
0

0 λ
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and hence

q jk jk= λ

λ jk  is the rate of the Poisson process governing transitions from state j  to state

k .  What are the q jj s, the diagonal elements of the generator matrix?

q
h t

tjj t

jj=
( ) −

→
lim

,
∆

∆

∆0

0 1

h tjj 0,∆( ) is the probability that the Markov chain is in state j  at time ∆t , given

that it was in state j  at time 0 (or, since this is a homogeneous chain, it is the
probability that the Markov chain is in state j  at time t t+ ∆ , given that it was in
state j  at time t ).  Since the chain must be in some state at time ∆t , given that it
was in state j  at time 0,

h t h tjj jk
j
j k

n

0 1 0
1

, ,∆ ∆( ) = − ( )
=
≠

∑

and

lim , lim ,
∆ ∆

∆ ∆

∆ ∆

t jj t jk
j
j k

n

jk
j
j k

n

j

h t h t

t t

→ →
=
≠

=
≠

( ) = − ( )

= − = −

∑

∑

0 0
1

1

0 1 0

1 1λ λ

where λ λj jk
j
j k

n

=
=
≠

∑
1

 is the sum of the rates of the Poisson processes governing the

transitions out of state j .  Substituting this into the expression for q jj  and again

using the homogeneity of the Markov chain, we get

q
t

tjj t

j
j=

− −
= −

→
lim
∆

∆

∆0

1 1λ
λ

Take a moment to consider λ j .  Let X Xn1, ,K{ } be a set of independent,

exponentially distributed random variables with rates λ λ1, ,K n , and let
X X Xn≡ { }min , ,1 K .
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Pr Pr & & &

Pr Pr Pr

X t X t X t X t

X t X t X t

e e e e

n

n

t t t tn

>[ ] = > > >[ ]
= >[ ] ⋅ >[ ] ⋅ ⋅ >[ ]
= ⋅ ⋅ ⋅ =− − − −

1 2

1 2

1 2

K

K

Kλ λ λ λ

where λ λ λ λ= + + +1 2 K n .  Hence X  is also exponentially distributed, with
parameter (rate) λ .  This says that λ j  is the rate of an exponentially distributed

random variable that is the minimum of the random variables representing the
times until transitions from state j  to all other states.  That is, λ j  is the rate of an

exponentially distributed random variable that represents the time spent in state
j .  One way to look at it is that λ j  is the rate at which probability mass "leaves"

state j .

We're almost there.  So far, we have

p t Q
d
dt

p t( ) ⋅ = ( ){ }

We are interested in the steady-state probability vector π = ( )
→∞
lim
t

p t .

π π⋅ = ( ){ } = ( ){ } = { } =
→∞ →∞

Q
d
dt

p t
d
dt

p t
d
dtt t

lim lim 0

since the derivative of the steady-state probability vector is by definition the 0
vector.

The matrix equation π ⋅ =Q 0 for continuous time Markov chains is the analog of

π π⋅ =P  for discrete time Markov chains.  The two matrices are quite different.
The elements of P  are probabilities; the elements of Q  are rates of change in

probability.  However, both matrices are singular, since each row of P  sums to 1
and each row of Q  sums to 0.

In the discrete case, π π⋅ =P  can be interpreted as meaning that the rate at
which the chain makes transitions "into" each state i  is equal to the rate at which
the chain makes transitions "out of" state i .  The quotes are because we are
including transitions from state i  to state i  in both cases.  That is, another way of
looking at the Chapman-Kolmogorov equation for state i  is to rewrite it as:

p p p p p pi i i i i i i1 1 2 2 3 3 1 2 3⋅ + ⋅ + ⋅ + = + + +( )π π π πK K

where the expression in parentheses on the right hand side includes pii  and the
sum on the left hand side includes the term pii i⋅π .  The expression in
parentheses on the right hand side sums to 1, giving us the standard form of the



Elec 428 Continuous Time Markov Chains

Page 7 of 7

Chapman-Kolmogorov equation for this state.  Since in the discrete case, the
chain makes a transition on every step, even if it is a transition back to the same
state, π π⋅ =P  can also be interpreted as a rate balance equation.  It equates the
rate at which transitions are made into state i  with the rate at which transitions
are made out of state i .


