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Abstract

This paper considers scheduling problems where a set of jobs (customer order) is shipped at the same time.
The objective function is associated with the completion time of the orders. While a machine can process
only one job at a time, multiple machines can process simultaneously jobs in an order. We ,rst introduce this
relatively new class of the customer order scheduling problems on parallel machines. Then, we establish the
complexity of several problems with di-erent types of objectives, job restrictions, and machine environments.
For some tractable cases, we propose optimal solution procedures.
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Keywords: Batch scheduling; Kitting; Customer order scheduling; Computational complexity

1. Introduction

This paper considers customer order scheduling problems where each order (batch) consists of a
prespecifed set of products (jobs). While batching of jobs does not occur during processing, each set
of jobs (customer order) is shipped as one batch. Orders and machines are available for scheduling
at the beginning of the time horizon. Several jobs in an order can be processed by di-erent machines
at the same time. Similar to many scheduling problems, there is no setup time between jobs. While
batch scheduling problems frequently have setup times between batches, for the applications we
describe below, ignoring setup time is reasonable. This is because jobs are only shipped in batches
but not processed in batches. If required, sequence-independent setup times can be included in the
processing times of the individual jobs. Further, the assembly and packaging time of the entire batch
can be included as part of shipping. Also, this problem is di-erent from most other batch scheduling
problems because the objective is associated with the completion time of the batches instead of the
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completion time of each job. The completion time of a batch is the completion time of the ,nal job
in the batch.

Motivation for these relatively new types of batch scheduling problems comes from several
real-world applications. For instance, consider scheduling customer orders at a manufacturing com-
pany that produces di-erent types of products. A customer can order a combination of the types of
products. The composition of the order is prespecifed by a purchase order. The company does not
ship the order until all the products in the order are completed. The major concern of the company
is to ship the order to each customer as soon as possible. Each order is a batch and a product is a
job. This is a common type of situation that exists in industry (Julien and Magazine [1]).

A second application of our problem can be found in automotive repair shops. Each car has at least
one broken part. A mechanic represents a machine. A car and each broken part can be considered
as a batch and a job, respectively. If a car has more than one broken part, then more than one
mechanic may work simultaneously on the car. A car stays in the repair shop until all problems are
,xed.

A third application of our problem is found in the production of components for subsequent as-
sembly. For instance, consider an electronics manufacturing facility where computer monitors are
produced. Generally, this is a multi-stage production process including several fabrication opera-
tions, and a ,nal assembly operation. The fabrication operations create various components including
printed circuit boards, front and back cover cabinets, and color display tubes. The components are
then “kitted” into a batch, where the batch is the set of parts required to produce one type of a
monitor. The ,nal assembly operation is not started until all required components are ,nished by the
fabrication operations. The performance of the fabrication operations is associated with completion
time of the set of components needed to produce a monitor and not with the completion time of
each component.

A ,nal example is crane scheduling at a port. Each ship has several holds and each hold requires
a processing time for loading or unloading. In this case, we can consider a crane as a machine,
a ship is a batch, and a hold is a job. Only one crane can load or unload one hold. More than
one crane can work simultaneously on the holds of a ship. The capacity of a port is ,xed, and is
expressed as the number of holds, not the number of ships. A ship remains at port until all work
on ship is completed.

We only examine literature which considers batch scheduling problems, where the composition of
batches is prespecifed. Jordan [2] gives a survey about other types of batch scheduling problems.
Potts and Wassenhove [3] and Webster and Baker [4] provide reviews of batching and lot-sizing
decision problems.

The paper by Julien and Magazine [1] is probably the ,rst one to consider the problem where the
objective is associated with batches instead of jobs. Each order (batch) contains several jobs, and
the jobs are processed on a single machine. They assume a job-dependent setup time between two
di-erent types of jobs. The objective is to minimize the total completion time of orders. Julien and
Magazine provide a Dynamic Programming (DP) algorithm for the problem when there exist only
two types of jobs and the batch processing order is ,xed. The computational complexity of the DP
algorithm is O(b2) where b is the number of batches. A similar problem, where the batch processing
order is not speci,ed, is studied by Co-man et al. [5]. Baker [6] examines a problem where one
job type has the property that those jobs processed during the same setup are not available until
the completion of the setup. Santos and Magazine [7] describe this restriction as batch availability.
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Gupta et al. [8] consider a single machine problem where an order must contain one job from each
of several classes. In addition, there is a setup time between two jobs of di-erent classes. Problems
where each batch has one common job and one distinct job are considered by Gerodimos et al. [9].

Scheduling cranes at a port is studied by Daganzo [10] and Peterkofsky and Daganzo [11]. Both
papers consider the scheduling problem as an open shop with identical machines, where jobs consist
of independent, single stage, preemptable tasks. The objective function is the minimization of the
weighted tardiness. Daganzo [10] applies the weighted shortest processing time 4rst rule to obtain
optimal solutions for some special cases. Three basic scheduling principles are developed and used
in a heuristic procedure. Six problems are used to evaluate performance of the heuristic. Peterkofsky
and Daganzo [11] develop a branch and bound solution procedure. However, they do not provide a
theoretical basis for their method.

Blocher and Chhajed [12] examine one of the problems studied in this work. They show that
minimizing the average batch completion time is NP-hard in a parallel machine environment, and
develop several heuristics and bounds. Blocher et al. [13] extend the problem to a job shop. Yang
[14] considers the same problem with a ,xed batch sequence and develops a DP which runs in
pseudo-polynomial time.

The remainder of this work is organized as follows. In Section 2, we introduce some notation. We
provide preliminary results in Section 3. In Section 4, we examine two identical parallel machine
problems. We show that the recognition version of the problem with the objective of minimizing
average completion time is binary NP-complete even if the number of jobs in each batch is ,xed.
Two variations of the two machine problem are studied. First, we consider the problem with a ,xed
batch sequence. Fixed batch sequences occur when a manufacturer employs a policy to determine
processing order of batches. Two such policies are when batches are processed in 4rst come 4rst
served (FCFS) order and when high-priority batches are processed ,rst.

Another variation is when there exists a ,xed job–machine assignment. Since each job is preas-
signed to a machine, we only need to determine the sequence of jobs on each machine. For example,
consider a manufacturing facility that produces air conditioners. A unique combination of an indoor
fan and a compressor is a batch. In the facility, the fan and compressor are produced separately on
di-erent machines, but they are shipped together as one ,nal product. This problem models those
situations where di-erent types of jobs require di-erent machines. Because di-erent job types may
require di-erent tasks, not all job types can be processed on all machines. Since a given machine
performs similar tasks, there is no setup time between two di-erent jobs or batches. Roemer and
Ahmadi [15] consider this problem and show that the recognition version of the problem is unary
(strongly) NP-complete. We suggest an easier and shorter complexity proof for the problem.

In Section 5, we study problems where the number of batches is arbitrary. As a special case, we
consider the problem where processing times of all jobs are equal. For this case, we show that there
exists an optimal schedule where jobs are assigned to the ,rst available machine for the objectives
of minimizing weighted average completion time of batches and minimizing the maximum lateness
of batches. Then, we develop optimal solution procedures for these problems where processing time
is arbitrary. We ,nally show that the recognition version of the problem with the objective of
minimizing weighted average batch completion time is binary NP-complete.

In Section 6, we examine problems where there are restrictions on the number of jobs simul-
taneously in the machine shop. A typical example of this problem comes from crane scheduling
problems at a port. The size of a ship is determined by the number of holds in each ship, and the
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size of a berth limits the total number of holds in the ships staying at the berth simultaneously.
Therefore, even though several small ships can stay at the berth simultaneously, only one or two big
ships can stay at the berth simultaneously. The ship is a batch and the hold is a job. We show that
two machine problems with the objectives of minimizing the makespan and minimizing the average
batch completion time are both unary NP-complete. Finally, we summarize our work and discuss
possible future research.

2. Notation

The decision variables for our batch completion time models are

�k = schedule of all jobs on machine k for k ∈M;
� = schedule of all jobs = (�1; �2; : : : ; �m):

Other notation used in this work include:

n=number of jobs
N =set of jobs ={1; 2; : : : ; n}
b=number of batches
B=set of batches ={1; 2; : : : ; b}
ni =number of jobs in batch i for i∈B
Bi =set of jobs in batch i for i∈B= {∑i−1

j=0 nj + 1;
∑i−1
j=0 nj + 2; : : : ;

∑i
j=0 nj}, where n0 = 0

m=number of machines
M =set of machines ={1; 2; : : : ; m}
wi =weight of batch i for i∈B
pj =processing time of job j for j∈N
Pi =

∑
j∈Bi pj= total processing time of batch i∈B for i∈B and k ∈M

K =maximum possible number of jobs simultaneously in the shop where K¿m, i.e. if at some
instant job set E is being processed and T = {i∈B|Bi ∩ E �= ∅}, then ∑i∈T ni6K

Ci(�k) = completion time of batch i on machine k for i∈B and k ∈M
Ci(�) = completion time of batch i in schedule � for i∈B=maxk∈M Ci(�k).

We classify our problem according to three factors: machine environment, job and batch charac-
teristics, and objective function (Graham et al. [16]). To simplify notation, we represent Ci(�) as
Ci when there is no ambiguity. Also, we use CBi to describe batch completion time problems in
the three ,eld notation to eliminate the confusion between our problems and classical scheduling
problems. A brief discussion of each of these factors and three-,eld notation is presented.

(1) Machine environment: There are both one machine and multiple machine models. In the multi-
ple machine model, the machines process jobs in parallel. Machine speeds are identical, proportional,
or unrelated. In the ,rst ,eld, P, Q, and R denote identical, proportional, and unrelated parallel ma-
chine speeds, respectively. A number after P, Q, or R indicates a ,xed number of machines rather
than an arbitrary number.
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(2) Batch and job characteristics: Each batch can contain multiple jobs, and each machine can
process at most one job at a time. The jobs in a batch can be processed simultaneously. Also, the
machine shop may have a ,xed capacity. If this is the case, then the number of jobs that can be in
the shop simultaneously is limited. To designate problems with restrictions on the number of jobs
in a machine shop at the same time, we place “K” in the second ,eld.

(3) Objective function: The third ,eld denotes the objective to be minimized. The objective criteria
that we study are minimizing the last batch to complete (CBmax ), the maximum batch lateness (LBmax ),
the sum of batch completion times (

∑
CBi), and the sum of weighted batch completion times

(
∑
wiCBi). Note that for these problems, the batch completion time and not the job completion

time is being considered. Without K , CBmax is equivalent to Cmax. Hence, we only consider the
minimization of CBmax with K . For instance, the problem of minimizing the sum of batch completion
times on two parallel identical machines and with a restriction on the number of jobs in the machine
shop at the same time is written as P2|K |∑ CBi .
The following rule is used in this work to select the job processing order.
SB (Shortest batch rule): When a machine becomes available, an unscheduled job in the batch

with a shortest total processing time is selected for processing.
An SB schedule is a schedule generated using the SB rule.

3. Preliminary results

In this section, we ,rst review some properties of an optimal schedule. A regular measure is any
nondecreasing function of job completion times (Rinnooy Kan [17]). Since there are no restrictions
that delay jobs, we have the following result.

Lemma 3.1. For scheduling problems with regular measures, and either no job restrictions or just
a restriction on the number of jobs simultaneously in the shop, there exists an optimal schedule
without inserted idle time.

Proof. Similar to the proof found in Yang and Posner [18] for the problem P‖∑ CBi .
We say that batch i∈B is separated if on some machine k ∈M , jobs in batch i are not processed

consecutively.

Lemma 3.2. For scheduling problems with regular measures, and no job restrictions or just a
restriction on the number of jobs simultaneously in the shop, there exists an optimal schedule
where no batch is separated.

Proof. Similar to the proof found in Blocher and Chhajed [12] for the problem P‖∑ CBi .
As a result of Lemma 3.2, we assume batches are not separated in an optimal schedule. We now

present another property of batch scheduling problems.
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Lemma 3.3 (Blocher and Chhajed [12]). For batch scheduling problems with a regular measure, in
an optimal schedule, each machine processes the batches which are processed on multiple machines
in the same order.

The following result describes the relationship between the complexity of a batch scheduling
problem and the corresponding classical scheduling problem.

Remark 3.1. A batch scheduling problem is at least as hard as the corresponding classical scheduling
problem.

Proof. Let ni = 1 for i = 1; 2; : : : ; b. Then, the batch scheduling problem is equivalent to the corre-
sponding classical scheduling problem.

4. Two machines

In this section, we present results for two machine batch scheduling problems where there is no
restriction on the number of jobs in the shop at the same time.

4.1. Problem P2‖∑ CBi
We show that problem P2‖∑ CBi remains binary NP-complete for some processing restictions.

For the case where b is ,xed, we have the following result.

Remark 4.1 (Blocher and Chhajed [12]): The recognition version of P2‖∑ CBi is binary NP-
complete even if b is a constant.

Blocher and Chhajed [12] let b=1, but let n1 increase to establish the complexity of the problem.
Now, we show that if we restrict the ni, but let b increase, then a similar result holds. We consider
the case when ni ∈ {1; 2} for all i∈B. First, a preliminary result is needed.

Remark 4.2. If each batch contains only one job, then the SB schedule is optimal for problem
P‖∑ CBi .
Proof. If each batch has only one job, then problem P‖∑ Cj is identical to problem P‖∑ CBi .
Also, for this case the SB rule is the same as the shortest processing time (SPT) rule. Since SPT
produces an optimal schedule for problem P‖∑ Cj (Smith [19]), SB produces an optimal schedule
for problem P‖∑ CBi .

Now, we establish the complexity of problem P2‖∑CBi with ni ∈ {1; 2} for all i∈B by reduction
from the following binary NP-complete problem.
Even--Odd Partition (Garey and Johnson [20]). Given a set of 2‘ positive integers A = {a1;

a2; : : : ; a2‘} such that a1¡a2¡ · · ·¡a2‘, does there exist a partition of A into two subsets A1 and
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A2 such that
∑
ai∈A1 ai =

∑
ai∈A2 ai, and such that for each 16 i6 ‘, A1 contains exactly one of

{a2i−1; a2i}?

Theorem 4.1. The recognition version of problem P2‖∑ CBi is binary NP-complete even if
ni ∈ {1; 2} for all i∈B.

Proof. Given an instance of Even–Odd Partition, we construct the following instance of problem
P2‖∑ CBi :

n = 2‘ + 2;

b = 2‘ + 1;

ni = 1; i = 1; 2; : : : ; 2‘;

n2‘+1 = 2;

pj = aj; j = 1; 2; : : : ; 2‘;

pj =
2‘∑
i=1

ai; j = 2‘ + 1; 2‘ + 2;

z =
‘∑
j=1

(‘ − j + 1)(a2j−1 + a2j) + 3
2‘∑
i=1

ai=2:

The recognition version of problem P2‖∑ CBi is in NP since given any schedule, we can calculate∑
Ci in polynomial time. We prove that there exists a solution to Even–Odd Partition if and only

if there exists a schedule for problem P2‖∑ CBi with ∑ Ci6 z.
(⇒) Suppose that there exists a solution, (A1; A2), to Even–Odd Partition. Assign batches (jobs)

in A1 and A2 to machines 1 and 2 in increasing index order, respectively. Then, assign one job in
batch 2‘ + 1 to each machine. Since even–odd partition has a solution, both jobs in batch 2‘ + 1
start at time (

∑2‘
i=1 pi)=2 =

∑2‘
i=1 ai=2. Hence, the completion time of batch 2‘ + 1 is 3

∑2‘
i=1 ai=2.

The total completion time is

2‘+1∑
i=1

Ci = ‘a1 + ‘a2 + (‘ − 1)a3 + (‘ − 1)a4 + · · · + a2‘−1 + a2‘ + 3
2‘∑
i=1

ai=2

=
‘∑
j=1

(‘ − j + 1)(a2j−1 + a2j) + 3
2‘∑
i=1

ai=2

= z:

See Fig. 1 for an example of an optimal schedule.
(⇐) Suppose that there exists a schedule for problem P2‖∑ CBi with

∑
Ci6 z. Since the

processing time of each job in batch 2‘ + 1 is as large as the summation of the processing times
of all jobs not in this batch, each machine processes exactly one job of batch 2‘+ 1 in an optimal
schedule. If either job 2‘ + 1 or 2‘ + 2 is not processed last on their respective machine, then we



1928 J. Yang /Computers & Operations Research 32 (2005) 1921–1939

Fig. 1. An example of an optimal schedule for Theorem 4.1.

can reduce the total batch completion time by at least
∑2‘
i=1 ai − a2‘ by moving the appropriate job

to the end of the schedule.
From Remark 4.2, the SB rule provides an optimal schedule for batches 1; 2; : : : ; 2‘. The total

completion time generated by the SB rule for batches 1; 2; : : : ; 2‘ is
∑2‘
i=1 Ci=

∑‘
j=1 (‘−j+1)(a2j−1+

a2j). Observe that in the schedule generated by SB, switching the processing machine of batch 2j−1
with batch 2j for 16 j6 ‘ does not change

∑2‘
i=1 Ci. Furthermore, to satisfy the condition that the

total completion time 6 z, batch 2‘ + 1 must start no later than time (
∑2‘
i=1 pi)=2 = (

∑2‘
i=1 ai)=2.

This is only possible if the jobs of 1; 2; : : : ; 2‘ form an even–odd partition.

4.2. Problem P2‖∑ CBi with a 4xed batch sequence

Consider the problem where batch sequence � is ,xed. In this problem, if batch i precedes batch j
in � for i; j∈B, then each job in batch i starts no later than start time of batch j. From Lemma 3.1,
there always exists an optimal schedule without inserted idle time. Hence, we only need to determine
an optimal machine–job assignment. Yang [14] shows that the recognition version of P2‖∑ CBi with
a ,xed batch sequence is binary NP-complete even if b is a constant or ni is given for all i∈B. He
also develops a DP algorithm which runs in O( Op2n

∑
i∈B Pi) where Op=maxj∈N {pj}.

Remark 4.3 (Yang [14]): The recognition version of P2‖∑ CBi with a ,xed batch sequence is
pseudopolynomial.

4.3. Problem P2‖∑ CBi with a 4xed machine–job assignment

Consider problem P2‖∑ CBi where the assignment of jobs to machines is speci,ed. Since each
job is preassigned to a machine, we only need to determine the sequence of jobs on each machine.
Recall that Lemma 3.3 implies that we only consider schedules where batches that re processed by
both machines are processed in the same order. Consequently, to obtain an optimal schedule, we
only need to determine an optimal batch sequence.

The following result is due to Roemer and Ahmadi [15].

Theorem 4.2. The recognition version of P2‖∑ CBi with a 4xed machine–job assignment is unary
NP-complete.

However, the proof is diPcult and long. An easier and more intuitive proof is given in the
appendix.
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Corollary 4.1. The recognition version of R2‖∑ CBi is unary NP-complete.

Proof. If each job has a large cost on one of the two machines, then P2‖∑ CBi with ,xed machine–
job assignment reduces to R2‖∑ CBi .
5. Arbitrary number of machines

In this section, we examine problems with arbitrary number of machines.

5.1. Problem P‖∑ CBi
Consider the problem where there exists an arbitrary number of machines. Blocher and Chhajed

[12] establish the following complexity result for problem P‖∑ CBi .
Remark 5.1 (Blocher and Chhajed [12]): The recognition version of P‖∑ CBi is unary NP-complete.

5.2. Problems with equal processing time

We consider the restriction that the processing times of all jobs are equal. For the problems
considered in this work, we assume without loss of generality that pj = 1 for all j.
From Lemma 3.2, there exists an optimal schedule without batch separation for P|pj = 1|LBmax

and P|pj = 1|∑ wiCBi . For problems in this section, jobs from a given batch that are processed
on a speci,ed machine can be processed in any order. Since the order of processing within a batch
does not change the cost, a schedule is completely de,ned by a batch sequence and a machine–
job assignment. We begin by presenting a property of an optimal schedule for problems with unit
processing times.

Theorem 5.1. For P|pj = 1|LBmax and P|pj = 1|∑wiCBi , suppose we are given an optimal batch
sequence. Then, there exists an associated optimal schedule where if batch i precedes batch ‘, then
no job in ‘ starts before a job in i.

Proof. We ,rst establish the result for P|pj=1|∑ wiCBi . Let �∗ be an optimal schedule, and let �∗
be an optimal completion time order of the batches. We reindex the batches so that �∗=(1; 2; : : : ; b).
Let � be a schedule where �∗ is the completion time order of the batches and where the jobs satisfy
the conditions of the theorem. Consequently, for i; i + 1∈B, batches i and i + 1 ,nish processing
consecutively in � and Ci(�)6Ci(�∗). Also, the total processing time of the jobs processed before
C‘(�∗) in �∗ is always greater than or equal to the total processing time of the jobs processed before
C‘(�) in �. Hence, C‘(�)6C‘(�∗). Therefore, wiCi(�0)+w‘C‘(�)6wiCi(�∗)+w‘C‘(�∗). We can
apply the same argument to the remaining batches. This establishes the result for P|pj=1|∑ wiCBi .

A similar proof applies for P|pj = 1|LBmax .

As a result of Theorem 5.1, we assume that jobs are always assigned to the ,rst available machine
for P|pj=1|LBmax and for P|pj=1|∑ wiCBi . Consequently, a batch sequence is suPcient to describe
a schedule for these problems.
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The next two results establish optimal solution procedures for P|pj=1|∑ CBi and P|pj=1|LBmax ,
respectively.

Theorem 5.2. For P|pj = 1|∑ CBi , an SB schedule is optimal.

Proof. We use an adjacent batch interchange argument. Suppose that �∗ is an optimal schedule but
is not an SB schedule. Then, there exist two batches i and ‘ in �∗ such that batches i and ‘ are
processed consecutively with i processed before ‘ but ni ¿n‘ for i; ‘∈B. Let t= time when batch i
starts in �∗. Let � be the same schedule as �∗ except at time t, batch ‘ is processed ,rst. Suppose
that at time t, m16m machines are available to start processing new batches.

In �∗, Ci(�∗) = t + 1 + 
(ni − m1)=m� and C‘(�∗) = t + 1 + 
(ni + n‘ − m1)=m�. In �, C‘(�) =
t + 1+ 
(n‘ −m1)=m� and Ci(�) = t + 1+ 
(ni + n‘ −m1)=m�. Notice also that Ci(�) = C‘(�∗) and
C‘(�)6Ci(�∗) since ni ¿n‘. Therefore, the total completion time of � is no larger than that of �∗.
We can repeat this argument for every other pair of batches that are not in SB order. Since there
are a ,nite number of batches, the process terminates after a ,nite number of interchanges with an
optimal SB schedule.

Theorem 5.3. For P|pj=1|LBmax , an EDD (a batch with earliest due date 4rst) schedule is optimal.

Proof. Follows from an adjacent batch interchange argument.

Now, we establish the complexity of P|pj = 1|∑wiCBi by reduction from the following binary
NP-complete problem.

Partition (Garey and Johnson [20]): Given a set of 2‘ positive integers A = {a1; a2; : : : ; a2‘} such
that a1¡a2¡ · · ·¡a2‘, does there exist a partition of A into two subsets A1 and A2 such that∑
ai∈A1 ai =

∑
ai∈A2 ai?

Theorem 5.4. The recognition version of P|pj = 1|∑ wiCBi is binary NP-complete.

Proof. Given an instance of Partition, we construct the following instance of P|pj = 1|∑ wiCBi :
n =

2‘∑
i=1

ai;

m =
2‘∑
i=1

ai=2;

b = 2‘;

ni = ai; i = 1; 2; : : : ; 2‘;

Bi = {ai−1 + 1; ai−1 + 2; : : : ; ai}; i = 1; 2; : : : ; 2‘;
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wi = ai; i = 1; 2; : : : ; 2‘;

z = 3
2‘∑
i=1

ai=2;

where a0 = 0.
The recognition version of P|pj = 1|∑ wiCBi is in NP since we can calculate

∑
wiCi in poly-

nomial time.
We prove that there exists a solution to Partition if and only if there exists a solution to P|pj =

1|∑ wiCBi with ∑ wiCi6 z.
(⇒) Suppose that there exists a solution, (A1; A2), to Partition. Assign all batches (jobs) in A1

to ,rst available machines. Then, assign all batches (jobs) in A2 to ,rst available machines. Since
Partition has a solution, all jobs in A1 ,nish at time 1 and all jobs in A2 ,nish at time 2. The total
weighted completion time is

2‘∑
i=1

wiCi =
∑
i∈A1
wi +

∑
i∈A2

2wi

=3
2‘∑
i=1

ai=2

= z:

(⇐) Suppose that there exists a schedule for problem P|pj=1|∑ wiCBi with ∑ wiCi6 z. From
Theorem 5.1, there exists at most one batch which starts at time 0 and completes at time 2. The
other batches either start at time 0 and ,nish at time 1 or start at time 1 and ,nish at time 2.
Suppose there exists a batch k ∈B that starts at time 0 and ,nishes at time 2. We reindex batches
such that batch k starts at time 0 and ,nishes at time 2, batches 1; 2; : : : ; k − 1 start at time 0 and
,nish at time 1, and batches k + 1; k + 2; : : : ; 2‘ start at time 1 and ,nish at time 2 for k ∈B.

Then, the total weighted completion time is
2‘∑
i=1

wiCi = w1 + w2 + · · · + wk−1 + 2wk + 2wk+1 + 2wk+2 + · · · + 2w2‘

=
k−1∑
q=1

wq + 2


 2‘∑
i=1

ai=2 −
k−1∑
q=1

wq


+ 2


 2‘∑
i=1

ai=2 −
2‘∑

q=k+1

wq


+

2‘∑
q=k+1

2wq

¿
k−1∑
q=1

wq +


 2‘∑
i=1

ai=2 −
k−1∑
q=1

wq


+ 2


 2‘∑
i=1

ai=2 −
2‘∑

q=k+1

wq


+

2‘∑
q=k+1

2wq

= z:

Contradiction. Hence, all batches are either start at time 0 and ,nish at time 1 or start at time 1 and
,nish at time 2. This is only possible if the jobs of 1; 2; : : : ; 2‘ form a partition.
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6. Two machine problems with restriction K

In this section, we establish the complexity of P2|K |CBmax and P2|K |∑ CBi . Recall that if K is
speci,ed, then the maximum number of jobs in those batches where processing is simultaneously
occurring is K .

6.1. Problem P2|K |CBmax

First, we establish the complexity of P2|K |CBmax .

Theorem 6.1. The recognition version of P2|K |CBmax is unary NP-complete.

Proof. Given an instance of 3-Partition, we construct the following instance of P2|K |CBmax :

n = 8‘;

b = 5‘;

ni = 2; i = 1; 2; : : : ; 3‘;

ni = 1; i = 3‘ + 1; 3‘ + 2; : : : 5‘;

Bi = {2i − 1; 2i}; i = 1; 2; : : : ; 3‘;

Bi = {i + 3‘}; i = 3‘ + 1; 3‘ + 2; : : : ; 5‘;

pj = 5L+ y=3 − a(j+1)=2; j = 1; 3; : : : ; 6‘ − 1;

pj = L− y=3 + aj=2; j = 2; 4; : : : ; 6‘;

pj = 6L; j = 6‘ + 1; 6‘ + 2; : : : ; 8‘;

K = 3;

z = 15‘L;

where L=
∑3‘
i=1 ai.

The recognition version of P2|K |CBmax is in NP since we can calculate CBmax in polynomial time.
We prove that there exists a solution to 3-Partition if and only if there exists a solution to
P2|K |CBmax with CBmax 6 z.

(⇒) Consider the schedule, � = (�1; �2) shown in Fig. 2, where

�1 = (1; 3; : : : ; 6‘ − 1);

�2 = (2; 6‘ + 1; 4; 6‘ + 2; 6; 8; 6‘ + 3; 10; 6‘ + 4; 12; : : : ; 6‘ − 4; 8‘ − 1; 6‘ − 2; 8‘; 6‘):

Fig. 2. An example of an optimal schedule.
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Let $i= ,rst job in Bi for i∈B. Since a3j−2 + a3j−1 + a3j = y for j = 1; 2; : : : ; ‘, the maximum
completion time is

CBmax =
3‘∑
i=1

p$i

=
3‘∑
i=1

(
5L+

y
3

− ai
)

=15‘L

= z:

(⇐) Since batches 3‘+1; 3‘+2; : : : ; 5‘ are identical, we assume that they are processed in index
order. Let I1 and I2 be sets of batches such that I1 = {1; 2; : : : ; 3‘} and I2 = {3‘+1; 3‘+2; : : : ; 5‘}.

Since
∑
j∈N pj =30‘L, to satisfy CBmax 6 z, the schedule must be optimal and have no idle time.

Because K = 3 and ni = 2 for i∈ I1, two batches in I1 cannot be processed simultaneously. Since∑3‘
j=1 p2j−1 = 15‘L, exactly one job of {1; 3; : : : ; 6‘ − 1} must be in process at each point in time.

Without loss of generality, we assume that these jobs are processed on machine 1. For each batch
i∈ I1, job 2i must start no earlier than start time of job 2i − 1 and ,nish processing no later than
the completion time of job 2i − 1 to prevent idle time.
In an optimal schedule, let the batches in I1 be processed in the order v1; v2; : : : ; v3‘. Further, for

notational convenience, we let v1 =1; v2 =2; : : : ; v3‘=3‘. We ,rst assign job 1 to machine 1 and job
2 to machine 2. Now, due to the capacity constraint, neither job 3 nor job 4 can start on machine
2 until job 1 completes on machine 1. Hence, it is optimal to schedule job 6‘ + 1 on machine 2.
Using a similar argument, job 6‘ + 2 must be processed between jobs 4 and 6.
If jobs 5 and 6 do not complete at the same time, then to avoid idle time, the only available job

that satis,es our assumptions and the capacity constraint is job 6‘ + 3. However, processing this
job would delay the processing of job 8 until after job 7 completes. This creates idle time because
batches 4 and 5 can not be processed simultaneously. Consequently, jobs 5 and 6 must complete at
the same time.

We can repeat this argument to establish that both jobs of batches 3; 6; : : : ; 3‘ must complete at
the same time. This is only possible if there exists a solution to 3-Partition.

6.2. Problem P2|K |∑ CBi
Following theorem establishes the complexity of P2|K |∑ CBi .

Theorem 6.2. The recognition version of P2|K |∑ CBi is unary NP-complete.

Proof. Given an instance of 3-Partition, we construct the following instance of P2|K |∑ CBi :
n = 8‘;

b = 5‘;
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ni = 2; i = 1; 2; : : : ; 3‘;

ni = 1; i = 3‘ + 1; 3‘ + 2; : : : 5‘;

Bi = {2i − 1; 2i}; i = 1; 2; : : : ; 3‘;

Bi = {i + 3‘}; i = 3‘ + 1; 3‘ + 2; : : : ; 5‘;

pj = 5L+ y=3 − a(j+1)=2; j = 1; 3; : : : ; 6‘ − 1;

pj = L− y=3 + aj=2; j = 2; 4; : : : ; 6‘;

pj = 6L; j = 6‘ + 1; 6‘ + 2; : : : ; 8‘;

K = 3;

z = (75‘2 + 27‘)L=2;

where L=
∑3‘
i=1 ai.

The recognition version of P2|K |∑ CBi is in NP since given any schedule, we can calculate∑
Ci in polynomial time.
We prove that there exists a solution to 3-Partition if and only if there exists a solution to
P2|K |∑ CBi with ∑ Ci6 z.

(⇒) We use the same schedule as in (⇒) part of the proof of Theorem 4.2. Thus,
∑5‘
i=1 Ci6 z:

(⇐) Let I1 = {1; 2; : : : ; 3‘} and I2 = {3‘ + 1; 3‘ + 2; : : : ; 5‘}. Two di-erent batches in I1 cannot
be processed simultaneously because ni = 2 for i∈ I1 and K = 3. Thus, we assume without loss of
generality that jobs in {1; 3; : : : ; 6‘− 1}, jobs with longer processing time from I1, are processed on
one machine, say machine 1.

By using a similar argument in (⇐) part of the proof of Theorem 6.1, we can show that in an
optimal schedule, jobs in {2; 4; : : : ; 6‘} and I2 are processed on machine 2. Then, from the proof of
Theorem 4.2, the schedule shown in Fig. 2 is optimal. The remainder of the proof is similar to (⇐)
part of the proof of Theorem 4.2.

7. Summary

We summarize our work in Table 1. The entries “�” and “JF” in the Variation column imply
that the batch sequence is ,xed and the machine–job assignment is ,xed, respectively. An “R” in
the Variation denotes unrelated parallel machine speed. A blank in the Number of machines column
implies that the number of machines is arbitrary. In the Complexity results column, Op=maxj∈N {pj}.
We also list the theorem, remark, or corollary where each complexity is found.

8. Discussion and further research

We have explored a relatively new class of scheduling problems. These problems are simpler
than many batch scheduling problems because the composition of the batches is prespecifed. Also,
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Table 1
The complexity of customer order scheduling problems

Objective Number of K Variation Complexity results
machines

CBmax 2 Yes Unary NP-complete Thm. 6.1∑
CBi 2 Binary NP-complete Rmrk. 4.1 or Thm. 4.1∑
CBi 2 � O( Op2n

∑
i∈B Pi) Rmrk. 4.3∑

CBi 2 JF Unary NP-complete Thm. 4.2∑
CBi 2 R Unary NP-complete Cor. 4.1∑
CBi 2 Yes Unary NP-complete Thm. 6.2∑
CBi Unary NP-complete Rmrk. 5.1∑
CBi pj = 1 O(b log b) Thm. 5.2

LBmax pj = 1 O(b log b) Thm. 5.3∑
wiCBi pj = 1 Binary NP-complete Thm. 5.4

the objective is concerned with batch completion times instead of job completion times. While the
structure is simple, the problem has various real-world applications such as scheduling customer
orders, scheduling the production of components for subsequent assembly into ,nal products, crane
scheduling at a port, and automotive repair shop scheduling. We hope that our results can be used
to develop solution procedures for more complex and realistic applications.

From Theorem 4.1, P2‖∑ CBi is at least binary NP-complete, but it is unknown whether it is
unary NP-complete. Hence, one future challenge is either to develop a pseudo-polynomial time DP
algorithm or to determine that the problem is unary NP-complete.

There are several extensions of our research that might be considered in the future. One is to
include capacity restrictions in the model. Another extension is to study our problem with di-erent
machine speeds such as proportional and unrelated parallel machines. Also our problem can be
studied with di-erent shop environments such as job shop, open shop, and Sow shop. These di-erent
shop environments have a variety of realistic applications. Further, our problem can be analyzed with
di-erent objectives such as

∑
wiCBi , LBmax ,

∑
wiUBi , and

∑
wiTBi . Di-erent real world applications

require di-erent objectives. For example, for the automotive repair shop problem,
∑
wiTBi is a

realistic objective.

Appendix

We establish Theorem 4.2 using a reduction from following unary NP-complete problem.
3-Partition (Garey and Johnson [20]). Given 3‘ elements with integer sizes a1; a2; : : : ; a3‘, where∑3‘
i=1 ai = ‘y and y=4¡ai ¡y=2 for i=1; 2; : : : ; 3‘, does there exist a partition T1; T2; : : : ; T‘ of the

index set {1; 2; : : : ; 3‘} such that |Tj| = 3 and
∑
i∈Tj ai = y for j = 1; 2; : : : ; ‘?

We assume without loss of generality that, if there exists a solution to 3-Partition, then the elements
are indexed such that a3j−2 + a3j−1 + a3j = y for j = 1; 2; : : : ; ‘.
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Proof of Theorem 4.2. Given an instance of 3-Partition, we construct the following instance of
P2‖∑ CBi with a ,xed machine–job assignment:

n = 8‘;

b = 5‘;

ni = 2; i = 1; 2; : : : ; 3‘;

ni = 1; i = 3‘ + 1; 3‘ + 2; : : : 5‘;

Bi = {2i − 1; 2i}; i = 1; 2; : : : ; 3‘;

Bi = {i + 3‘}; i = 3‘ + 1; 3‘ + 2; : : : ; 5‘;

pj = 5L+ y=3 − a(j+1)=2; j = 1; 3; : : : ; 6‘ − 1;

pj = L− y=3 + aj=2; j = 2; 4; : : : ; 6‘;

pj = 6L; j = 6‘ + 1; 6‘ + 2; : : : ; 8‘;

J1 = {1; 3; : : : ; 6‘ − 1};
J2 = {2; 4; : : : ; 6‘; 6‘ + 1; 6‘ + 2; : : : ; 8‘};
z = (75‘2 + 27‘)L=2;

where L= 2‘2y.
The recognition version of P2‖∑ CBi with a ,xed machine–job assignment is in NP since given

any schedule, we can calculate
∑
Ci in polynomial time.

We prove that there exists a solution to 3-Partition if and only if there exists a schedule for
P2‖∑ CBi with a ,xed machine–job assignment with

∑
Ci6 z.

(⇒) Consider schedule � = (�1; �2) shown in Fig. 2 where

�1 = (1; 3; : : : ; 6‘ − 1);

�2 = (2; 6‘ + 1; 4; 6‘ + 2; 6; 8; 6‘ + 3; 10; 6‘ + 4; 12; : : : ; 6‘ − 4; 8‘ − 1; 6‘ − 2; 8‘; 6‘):

Since a3j−2 + a3j−1 + a3j = y for j = 1; 2; : : : ; ‘ by assumption, the total completion time is

5‘∑
i=1

Ci =
‘∑
j=1

(C3j−2 + C3‘+2j−1 + C3j−1 + C3‘+2j + C3j)

=
‘∑
j=1

[
(j − 1) · 5 · 15L+

(
5L+

y
3

− a3j−2

)
+
(
7L− y

3
+ a3j−2

)

+
(
10L+

2y
3

− a3j−2 − a3j−1

)
+
(
14L− 2y

3
+ a3j−2 + a3j−1

)
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+ (15L+ y − a3j−2 − a3j−1 − a3j)
]

=
‘∑
j=1

[(j − 1)75L+ 51L]

=
(75‘2 + 27‘)L

2
= z:

Thus,
∑5‘
i=1 Ci6 z.

(⇐) Let I1 = {1; 2; : : : ; 3‘} and I2 = {3‘+ 1; 3‘+ 2; : : : ; 5‘}. Since all batches in I2 are identical,
we assume that in an optimal schedule, the batches are processed on machine 2 in index order.

Observe that only jobs 1; 3; : : : ; 6‘ − 1 are processed on machine 1. In an optimal schedule �∗,
let the batches in I1 be processed in the order v1; v2; : : : ; v3‘. For notational convenience, we let
v1 = 1; v2 = 2; : : : ; v3‘ = 3‘. Then, 1, 3, and 5 are the ,rst three jobs processed on machine 1 in
�∗. Also from Lemma 3.3, jobs 2, 4, and 6 are processed on machine 2 in the order 2, 4, and 6.
First, we describe an optimal schedule. Then, we show that a schedule does not have a total batch
completion time 6 z unless it is optimal.

It is optimal to assign job 2 to machine 2 ,rst because any schedule which starts with job 6‘+1
can be improved by at least L− y=3 + a1 if we switch the orders of jobs 2 and 6‘ + 1.
Since job 4 can start as late as time 9L + y − a1 − 2a2 without increasing its batch completion

time, it is optimal to schedule job 6‘+1 between jobs 2 and 4. Similarly, job 6 can start as late as
time 14L+ 4y=3 − a1 − a2 − 2a3 without increasing its batch completion time. Hence, it is optimal
to schedule job 6‘ + 2 between jobs 4 and 6. By using a similar argument, we can determine the
optimal schedule for the remaining jobs on machine 2.

Observe that Ci(�∗
1)¿Ci(�

∗
2) for batches i = 3j − 2; 3j − 1 where j = 1; 2; : : : ; ‘. Then, the total

completion time is

5‘∑
i=1

Ci(�∗) =
‘∑
j=1

(C3j−2(�∗) + C3‘+2j−1(�∗) + C3j−1(�∗) + C3‘+2j(�∗) + C3j(�∗))

=
‘∑
j=1

[
(j − 1) · 5 · 15L

+

(
5L+

j−1∑
k=1

(y − a3k−2 − a3k−1 − a3k) + y3 − a3j−2

)

+

(
7L+

j−1∑
k=1

(−y + a3k−2 + a3k−1 + a3k) − y
3
+ a3j−2

)
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+

(
10L+

j−1∑
k=1

(y − a3k−2 − a3k−1 − a3k) + 2y
3

− a3j−2 − a3j−1

)

+

(
14L+

j−1∑
k=1

(−y + a3k−2 + a3k−1 + a3k) − 2y
3

+ a3j−2 + a3j−1

)

+ max{C3j(�∗
1); C3j(�

∗
2)}
]

=12L+ 24L+ 15L+max{y − a1 − a2 − a3;−y + a1 + a2 + a3}

+
‘∑
j=2

[
(j − 1)75L+ 36L+ 15L

+ max

{
j∑
k=1

(y − a3k−2 − a3k−1 − a3k);
j∑
k=1

(−y + a3k−2 + a3k−1 + a3k)

}]

=
‘∑
j=1

[
(j − 1)75L+ 51L

+ max

{
j∑
k=1

(y − a3k−2 − a3k−1 − a3k);
j∑
k=1

(−y + a3k−2 + a3k−1 + a3k)

}]

= (75‘2 + 27‘)L=2

+
‘∑
j=1

max

{
j∑
k=1

(y − a3k−2 − a3k−1 − a3k);
j∑
k=1

(−y + a3k−2 + a3k−1 + a3k)

}
:

(A.1)

From (A.1), the total completion time only depends on |y − a3j−2 − a3j−1 − a3j| for j = 1; 2; : : : ; ‘.
Furthermore,

∑5‘
i=1 Ci(�)6 z only if �∗ is optimal schedule and if y − a3j−2 − a3j−1 − a3j = 0 for

j = 1; 2; : : : ; ‘. This is only possible if there exists a solution to 3-Partition.
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