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The double-ended queue involving taxis and customers at a taxi-stand has
been considered under the assumption that there is limited waiting space both
for taxis and for customers, the arrivals of taxis and customers being general
and Poisson respectively. Using the supplementary variable technique
(Syski 1960), an expression for the Laplace transform of the generating
funetion of the state probabilities is obtained and specialized for the cases of
k-Erlang and Poisson arrivals of taxis. In the last-mentioned case the p.g.f.
corresponds to an earlier result of the author (Kashyap 1965).

1. INTRODUCTION

Kendall (1951) discussed the double-ended queueing problem in which
customers and taxis arrive at a taxi-stand in Poisson streams with constant
mean rates A and p. No limit was placed on the number of customers or taxis
that can form a queue at the stand. Dobbie (1961) studied the problem
taking A and u as functions of time, again with no limitation on the number of
customers or taxis. Jain (1962) has studied the problem with limited waiting
space for taxis so that not more than N taxis can wait at the stand, the arrivals
of taxis and customers being general and Poisson respectively. Recently
the author (Kashyap 1965) has considered the double-ended queue with
limited waiting space for both customers and taxis and with Poisson arrivals
for both. In the present paper the problem is studied with finite waiting
space for both customers and taxis, the arrivals being Poisson and general
respectively. The integrals involved are evaluated completely in terms of
known functions for the case where the arrivals of taxis are according to a
k-Erlang distribution, from which the case of Poisson arrivals follows as a
particular case.

2. STATEMENT OF THE PROBLEM

Customers arrive at a taxi-stand in a Poisson fashion with mean rate A
and form a queue if no taxis are available. Taxis arrive at the stand, the
inter-arrival time dfftribution being general with probability density S(z),
and pick up one customer each from the queue, if any, or else form a queue.
Thus at any time there is either a queue of customers or one of taxis or of
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neither. Customers arriving in a group may be taken as one unit, assuming
that a group does not consist of more persons than a taxi can accommodate.
Let there be limited waiting spaces for M customers and N taxis. If a
customer arrives to find M customers already waiting, he has to leave. Simi-
larly, a taxi arriving when N taxis are already in the queue has to go away.
Let pa(z, t) dz be the probability that at time #, » taxis are waiting, the
time elapsed since the arrival of the last taxi lying in the interval (z, z-dx).
n can take integral values between, and including, —M and N.
(i) If » > 0, it denotes the number of taxis waiting.
(i) If » = 0, neither taxis nor customers are waiting.
(iii) If » < 0, its numerical value gives the number of customers
waiting.

3. ForMurATION OF EQUATIONS

Following Keilson and Kooharian (1960), we have the following transi-
tion equations: '

p_y@t A, t+A)=p_y@ O1—n@)Al+P_p (=024 .. (D
P2+ A, t+ A) = p(z, )1—-QA+9() Al+D, (=, ). XA,

(—M+1<n<N-1) .. (2)

py(z+ A, t+ A) = py(x, Y[1—A+n(x) AL, .. e (8)

where 7(z) A is the first order probability that a taxi arrives in time (z, 2+ A)
conditioned that it had not arrived up to z, and is related to the probability
density 8(z) of inter-arrival times by the relation

() = 7(z) exp (—fxn(u) du). L@
[
Equations (1) through (3) yield

0 ,8) @ L1
p_lggx )+ p_lga(:v )+1’(£L‘)p_M (x, t) = Ap-—M—Q-l (x, t) .. .. (5)

ap,(z, 1) Op,(x,¢
Pz, 1) +%:) +A+7(2)]p, (%, 1) = AP, ,1(%: 1)

ot

- ) (~M+1<n<N=1) .. (8

opn(x, t) Opy(x, !
Nat + Nax +Aq@) oy, ) =0. .. .. .. (7)

These equations are to be solved subject to the boundary conditions:
Pp_y0,8)=0.. .. .. . . . . .. (8
?,(0,1) = f P, _,(x, thy(z)dz, (-M+1<n<N=-1) .. (9
0 -

py(0, 1) = Io [pN_l(x, t)+ (e, )] n(x) dz, .. . .. (10)
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which follow as in Keilson and Kooharian (1960) by the considerations of
limited waiting space given in para. 2 of section 2 above.

4. SOLUTION OF THE PROBLEM

Let us define the following generating functions:

N
fla, at) = Z oap (z, 1) A ¢ § )
=M
N
and w(x, 1) = arp (1), .. e . .. {11a)
n:Z-M

where p,(?) is the probability that » taxis are waiting at time ¢, irrespective of
the value of z, so that

w(x, 1) = f [z, o, t)de.
0
Multiplying the equations (5) through (7) by appropriate powers of « and
adding, we have

f(x, «, t) , Of(x, a,
ot ox

The boundary conditions (8) through (10) similarly yield

+ t)+[,\+77(x)—)\/a]f(x, a,t) = e M(1=1ja)p_,(x,8). (12)
£0,a,0) =a f " fa, @, ) di+ o (1~ f pyl, (@) dz. .. (13)
0 0

Let the system start from the arrival of a taxi which makes the number of
units in the system equal to ¢, where —M << ¢ < NV ; then
&

p,(@, 0) = 8;8(x), .. .. .. .. (14)
where 3, is the Kronecker delta and 8(z) is the Dirac delta function.
Therefore,
flz, @, 0) = a®d(z). .. .. .. .. (15)

Let J(=, «, s) denote the Laplace transform (L.T.) of f(x, «, t), defined by

[ ]

f(x, o, §) = j exp (—st)f(z, «, t)dt.

0

Sigu'la.rly, let Ba(x, s) denote the L.T. of palx, t), (n = —M, —M+1,
.., N
On taking L.T.s and using (15), equation (12) gives

g%+[)&+s+’7(‘”)“/\/°‘]} = aid(z)Fr M (1=1/a)p_,(x, 5). .. {(16)



562 B. R. K. KASHYA?P

Equations (5) through (7) yield

0P _yl2,
Dot ) NPl ) = Myale8) o - (D)
09, (x, s) _ _
s (@)@ 6) = AP, ) HBuda), .. (18)
(~M+1<n<N=-1)
a p 2
pNa(z 8)+[)\+s+17(a:)]ﬁN(x, s)=0. .. .. .o (19)
And (8) through (10), and (13) give
P_py(0,8)=0 . .. . .. .. .. . .o (20)
P,(0, ) = fw Py (€ Sy(x)de, (—M+1<n<N-1) .. (21
0
ﬁN(O, §) = f 15‘\,_1(1:, s)n(x) d:v-}-f ﬁN(a:, syn(x) dx .. oo (22)
0 0

©0

f(0,a,8)=a fw flx, «, s)n(x) de—a" («—1) f Py, shylx) dx. .. (23)
0 0

Solution of (19) is

Py, 8) = P,(0, s) exp [—(A+8)x] exp [-—— f n(u) du]. .o (24)
0
Taking n = N—1 in (18) and using (24), we have
0Py (%, 8) - , ¥ L
gy HA+stn(@)]py_, (%, 8) = exp [~(A+s)x]exp | — 0n(u) du | P, (0, 6). A,
whence

x

Dy -1(T; 8) = [AxP,(0, )+ Py _,(0, 5)] exp [—(A+s)x] exp [— f 7(w) du]- (25)
0

Similarly, taking n = N—2 in (18) and using (25), and solving the re-
sulting differential equation, we have

2 x
Py .ol 8) = [%:— Dp(0, s)+)\xﬁN_1(O, 8)+1‘)N_2(0, 3)] exp [—(/\+s)x— f n(u) du],
0
(26)
and so on.

The differential equation for %;(x, s) will be
af’i(x: 8)
s+ Dt s+1(@)}F (2, 8)

[ 3
MN—i—l _ A N=i~-2 _
= )‘[(z(v‘”-)‘{‘:f)“v PO, )+ B0, O 5,40, s)]

x

X exp [—(A+s)z] exp [— f () du] +5(2),
, :

4B
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whence

_ TV ()Y ! _
P(x, 8) = N_—i)TpN(O’ S)+m Py_1(0, )+ ... +5,0, s)+1

(

X exp [—(A+s)x] exp [—f n(w) du]. .. .. .o (27)

0

Proceeding similarly, the differential equation for p_,, (x, s) will be

d
LS NI

MAN .
_ ()~ ()"
= 2, 0w

x

X exp [ —(A+s)x] exp [-—-f n(u) du],

0
which gives

x M+N %
P_y(2, 8) = 2 exp (—s2) exp(— [ du)[ > [ a0, 95 “oxp (=) dy
0 r=1
/\y)M+¢—1 Y 28
+J- T(HE0) exp (—xy)dy |- .. .. - .. .. (28)

Therefore, eqn. (16) becomes

At s = Nof

M4+N

= o'd(x) + A2 ~M -1 —1) exp (—sz) exp (—J. n(u) du)[ z f P, _ (0, 8)
. 0 r=1 0
(’\y)f—l (Ay M+l .
X Fw exp (—Ay) y+f P(M+) exp (—ay)dy|. .. .o (29)

Solution of (29) is

fle,a,8) = exp [—(A+s—rfx)x] exp (— f n(w) du)

z M4+N 5 r—1
X [a‘+f(0, o, 8)+/\2u‘M(1-—1/a)f exp [M1—1/a)2] Z B, (0, 9) (/\13{()7')
0 r=1 0

X exp (—Ay) dy dz+fx exp [AM1—1/x)z] f (Agprei-2 exp (—Ay)dydz]. (30)
o I'(M 41 )
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Now, changing the order of integration, we have

[ ()~
fo fo exp [A(1—1/a)z] T¢) exp (—\y) dy dz

x , x r-—1
- f 0 f exp 1= 1/a)] ("I-er) exp (—Ay) dz dy

(" exp M1 —=1/a)z] —exp [N(1—1/m)y] (g) "
~f0 Al—1/a) L(r) exp (—Ay) dy

= m {GXP (x1 —l/a)w]f (y) "exp (—Xy) dy
1]

x r—1
e (0]
0 % je\x

= F=TAT0 [‘”‘P L =1/lr(r, “’““’V(’> A)]

where ¥ is the Incomplete Gamma function defined by

(o, ) = f exp [—z]2*-1ldz = a~ 1% Fi{a; a+1; —2).
0

Therefore, (30) gives

f(z, o, 8) = exp [—(A+s—)a)x] exp [— f %) du} [q‘+7(0, o, 8)

0

MAN e
+a-M { ,Zl e P,_ 0, 8) (exp A1 =1/a)x]¥(r, Ax)—aly (r, ?))

+ F_(l%l-—ﬁ (exp AL = 1/)e V(L 43, Az)— o +iy (M+i, ’%)) } ] (31)
Substituting this value of f(z, «, ) in (23), we get
§(0, o, 5) = [af*1+af(0, o, §)]8(A+s=2/a)—a¥(x—1)B (0, 5)§(A+s)
M+N «©
oM+l Z ——l——i) ' s)f S(z) exp [—(A4s—Afa)r]
= 1 P(r) 1_M , 0 P N
x (exp A1 —1/a)x]y(r, Az)—ary (r, f\g)) dx}
+Fw(ﬂ}+i) fo 8(x) exp [—(A+8—z\/oc)x](exp M1 =1/a)z]y(M 41, Az)

—aM+‘Y(M+i,¥))dx]. .o (32)
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Now, substituting for g (z, 8), (—M < n < N) from equations (24) through
(28) in (21), (22), we get M--N equations in the M -+N unknowns $,(0, 8),
(—M+1 < n < N), which are sufficient to determine them.

Substituting for £(0, «, s) from (32) in (31), we get f(x, a, s).

Hence #(a, s), the L.T. of the probability generating function =(a, t), is
given by

w(x, 8) = Jm flz, a, s) da. .. .. .. (33)
0

5. PARTICULAR CASES
1. k-Erlang arrivals of taxis

Let us assume that the arrivals of taxis are according to a k-Erlang
distribution, so that

Ropk — —
S(x) = -5 1;’(‘,16’)[ U 71
k

Jrs) = {

S(s)—(M+S) .. . . .. .. (35)
_ pkak~1 exp [—pa]
n(x) = T, ) ee e L (36)
’ I(k, pz) g
— ) du| = , R

exp[ fon(u) u] ) 7)

where I'(k, px) is the Incomplete Gamma function defined by
I'e, x) = J‘ exp [—z] 2*-1dz = I'a)—Y(a, z).

Relations (34), (35) are well known. Proofs for (36), (37) are given in
the Appendix.
On using (34), (35) and Erdélyi ef al. (19545, p. 308, eqn. 15), viz.

’

zFx(l, ptv; v+1; J——) ,

zH-1 exp ['—Bx] Y(V,' u) de = a-l-ﬁ

0 (e+p)

Re(a+pB) >0, Re B> 0. Re(u+v) >0, ’. . (38)

f ® «*I'(p+v)
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equation (32) yields
1
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u

f(O, o, S) = ll'

%
l_a(ﬂ-+4\+8-—/\/a) [

S L
-M+
x(u+A+J'+“

' X{SZFI(]-, r+k;r+1;

a"M+l

wt XM DM i F)

K
°J+1(M+/\+s—/\/at) —a(a—1)p(0, 5)

M+N

1 _ 0 k
r; F(T-l-l)p”M( ’ 3)

#E AI(r+k)
Ty A pts)**

Me

; )}
ptA+s

p+A+s

) —2F1(1, rtk;r4l;

+T'(M+i+l) T(k) (Atpts)Mrith

{2F1(1, MAtitk;, M4i41;

A —.F [ C Ly A
x#+/\+8) 2 1(1, Myitk; M+z+1,M+A+S)}]. (39)
Substituting for f(0, «, s) from (39) in (31), we get f(z, a, ).
Then (33) yields
" k
(i)
— - S—A/%
a(a, 8) = {al+f(0, «, s)} £ 3 +4¢, (40
Ads— -
| &
where
M+N 1 [ A0 z
Hla, 8) =a=H 'Zl 1_1(7);’;'_1”(0, 8) -fo exp [—sx] y(r, Ar) exp l:—-fo-q(u) du] dx
, w0 A A‘z x
— fo exp [— (/\+s— &) x] y (r, ;) exp [— foq(u) du] dx]
a-M ® , *
+Im.~) [ fo exp [ —sx]y(M 41, Ax) exp [— fon(u) du] dz
_aM+¢j exp [— (A+s—- g)x] Y (M+i, %ﬂf) exp [— f 7(u) (lu] dx] .
0 0

(41)
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Using (37), we have

I% fo exp [—sz]y(r, Ax) exp [— JO n(u) du] dx

1 [+ 2]
=TI f  exp [l y(r, M)k, )

1 (® e
T J | EPimely(r, Ae) do— T T f | X [—sal(r, Moy, ) de

Y I T . R ]
B 8(/\+s) Frr DIt ) | ©5P [kl rds =)
X (Filk; k41, —px)dx,

using Erdeélyi et al. (1954a, p. 179, eqn. 34) for evaluation of the first integral.
Also, from Erdeélyi ef al. (1954, p. 216, eqn. 14), we have

J. exp [—szle™E Fy(r; r41; =) Fy(k; k+1; —px) de
0

_ I(r+k+1) ( . A " )

= GFAfa) Folr+k+1;1,1;r41, k+1 oy wropilrn wapd B
where Re(r-+k-+1) > 0, Re(s) >0, Re(s+A+4p)>0 and F; is Appell’s
function defined (Erdélyi et al. 1954a, p. 384) by:

@ KO

Fola; B, B 57, v 52, y) = Z %ﬁ%xmyn_

m=0 n=20
Thus (41) simplifies to
M+N r
o _ 11 ) A ) (k) aE
$la, 8) = o ,Zl B,_ (0, 9) [(s As—aa) \sFA Uk (st atp)rtetl
x {F (r+lc+l' L1; rdl, kbl —2 £ )
2 T ’ T sAtp s+Aa+p
e )]
~Fz(r+k+]., 1,1, 7’+1,k+1, S+A+M’S+A+P
- 1 1 )( A )M+i—- (M+l+k)‘ I\M-{»i#k
+a (; —_——__—_A-*-S-—/\/d S—‘T‘—X (M+l)' A (8+/\+#)M+i+k+l
. . . : LA B )
% {Fz(M‘“""""l’ L1 Mtitl b+ o s T
) . . . b )”
-Fs(M+t+k+l’ L1 Mtitl b+l o sl 11

.. (42)
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II. Poisson arrivals of taxis

Setting £ = 1 in (39), we get

; __pFats=Ala pettt s ©
Jo, “’8)‘u+A+s—A/u—pa[u+A+s—,\/u «Ha=1py0, 8) s
M+N .
1 1 A 2\
—M+1 - — ST I
+po (Hs s+,\+p.-—,\/a){’; (HHS) B, u0; s)+(A+#+s) 5]

- 1 o N (e 1\ p _
_p.+/\+s-—z\/oc-—pa[”°d 1—a¥(e—1)p,(0, S)Aw+p+s('\+“+8 Aa)

Apo~M(x—1) s P A \MH
+~_;‘T's—-{ fZl (A+#+S) pf—M(O’ 8)+(m) . (43)

And from (40), (42), setting & = 1, in which case F, simplifies in terms of
Binomial expansions, we get

B . 1
1r(oc, 8) = {m‘+f(0: “18)} p.+/\+8—'l\/a
M+N
wf 11 } A )’-
to ;8+# s+A+p—Aa Zl At pts Pr- 0 9)
XM 44
+(A+”+8) } ot

Now, the numerator of (43) must vanish at the two zeros of the deno-
minator, i.e. the roots, «,, «,, of the equation

po2—(s4A+platA = 0.
Thus we get two equations, which are sufficient to determine

M+N A r
Py(0, s) and ,Zl (m) B,_ (0, 8).

On solving these equations, we get

R O T i s N .
B0, 8) = PURE HiNT1 MINTI y v - (45)
%y -

M4+N A 4 ‘ A M+s
Zl (A+u+e) Prn 0 8)+(A+/4+s)

) (@) a) THag—1) +a) “(1—ay)]
=B oz .. (48)
2 1
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Substituting these values in (43) and using (44), we obtain

a1 ma) 40} ap— 1)

$1 N1 —e) 2
alta¥(l—a)=. MFN+1___MINF1
%y —%

1
s+ A4 p—Aja—pn

w(x, §) =

“N-i(az—l)'l'“;v'i(l"“l)], (47)

Fa-M(1- 1/“) ()M HiH1, 2 MIN+1 _MANEI
d.2 —al
which agrees with equation (31) of Kashyap (1965).

Remark: A comparison of (45), (46) with corresponding results of
Kashyap (1965) shows that

Pyls) = " +SpN(0 s) .. .. .. .. .. .. (48)
and
M4+N r Mii
5 ()= L _A )5 A
P -M(s)—u+s[,; (A+#+8) Broul® 0+ (A+#+S) ] S

which are easy to verify from (24) and (28).

APPENDIX

That equations (36), (37) follow from (34) is shown below.
M(x) A = Prob {inter-arrival time lies in (¢, - A)/ inter-arrival time > x}

2+ A
f S(u) du

B f:o S(u) du

3

where the right-hand side is simplified to the first power of A.

*+ A
Now, f S(u) du
= D(z+4 A)—D(z),

where D(x) = f S(u) du is the distribution function of inter-arrival times

= (d% D(x)) A, up to the first order terms in A

piat-lexp [—pa]
T'(k)

kogk—1 —
f phut-1exp [—pu] o
x

Therefore, M(z) =

- I'(k)

__ plat-lexp [—pa]
I'(k, px)
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Now from the definition of I'(a, ), we have

(—Z;I’(a, x) == — exp [—x]z*-1,
* ® kgk-1
Therefore, f w) du :j prut—texp [—pu) ,
0’7( ) 0 F(k: [.I.’Ll,) *
_ f“ka‘l exp [—v]dv _ fwdl"(k, v)
N 0 I'(k, ») o (k)
— g Lk, pa)
=T
from which (37) follows.
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