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In small-lot, multi-product and multi-level assembly systems, kitting
(accumulating components required for assembly) plays a crucial role in
determining system performance, especially when the system operates un-
der a stochastic environment. This paper analyzes the kitting process of a
stochastic assembly system, treating it as an assembly-like queue.

Two types of components which are required to complete a kit, inde-
pendently arrive at the buffers according to Poisson processes. F urthermore,
the arrival flow is shut down when the queue size attains to the buffer size
until it decreases to a specified level, namely resume level. Using a Markov
renewal approach, we derive the exact distribution of the kit completion time
interval. The distribution of the sojourn time in the buffer of each compo-
nent and the loss probability of components are also obtained. Finally, we
show the merit of resume levels via numerical examples.

Keywords. Kitting process, assembly-like queue, resume level, kit comple-
tion time interval, sojourn time, loss probability.

1. Introduction

The preparation of the set of components to be assembled in the next
stage is indispensable in most manufacturing systems. At an assembly point
on a production line, components coming from various sources are assembled
to make a product. Such queueing system in which service can be rendered
only to groups of customers — one from each source — has been studied by
several authors as assembly-like queues, for example, Bhat ( 1986), Harrison
(1973), Hopp and Simon (1989), Latouche (1981), and Lipper and Sengupta
(1986).

Received October 1996, revised version received July 1997.

127

Copvright © 2001. All Rights Reseved.



A Stochastic Assembly System with Resume Levels

In contrast with the conventional deterministic component flow, the
realistic flexible manufacturing system under the stochastic environment has
been studied in various aspects recently. In most cases, an object analyzed
was the whole assembly system. That is, with terminology by standard
queueing theoretic usage, the authors considered component to be assembled
as a customer, and assembling group made up of each type of components
as a service. In this traditional model, before the server can inaugurate the
assembly, he has to wait until the arrivals of all requisite components occur.
Thus. the time required to complete the assembly of a set of components
involves not only the actual assembling time, but also the time that the
server awaits the group of components.

We, therefore, may consider that the conventional stochastic assembly
system consists of two processes: “kitting process” and “assembly process”.
In the kitting process, arriving component 1s deferred at the buffer until there
arrive the necessary components of other types. Then, they are put together
to complete a set of components, which we will refer to as a “kit”. As soon as
a kit is accomplished, it is transmitted to the next stage, assembly process, to
be fitted together. Note that the first stage of the assembly system, namely
the kitting process, is provided for accumulating the essential components,
while the actual assembly is carried out at the assembly process.

Our engrossment concerns with the stochastic behaviour of the kitting
process here. We define the kitting process as the process for accumulating
components required for assembly system. Actually, this kind of process
is formerly treated as a double-ended queue problem or taxi-cab problem,
which has been analyzed by several authors, see Srivastava and Kashyap

(1982).

We consider the kitting process which requires two types of components
to complete a kit. The arrival of each type of component independently
follows Poisson process. Som et al. (1994) gave the distribution of kit
completion time interval. In that model, however, they did not assume any
buffer management scheme. This paper presents a modified kitting process
which adopts resume levels on both of the buffers in order to improve the
system performance. The arrival flow is shut down once the number of
components hits the maximum buffer size until it decreases to a certain
value, called the resume level, after which the arrival flow is restored. This
kind of arrival flow control can significantly reduce the waiting time in buffer
while keeping unchanged or slightly increasing the loss probability.

The models with a resume level have been studied in several papers. For
example, Takagi (1985, 1993) analyzed the finite capacity M/G/1 queueing
system with resume level. Rosenberg ef al. (1990) discussed the queueing
systems with randomly changing arrival rates. To further improve the sys-
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tem performance, a resume level was introduced in the case of finite buffer.
Moreover, as a congestion control scheme in communication network, a re-
sume level was added to reduce the time delay as well as multiplexer memory
requirements in the packet voice system in the work of Yin et al. (1990). 1t
was shown that the packet delay time can be remarkably improved without
incurring additional packet loss.

In this paper, we obtain some performance measures of the modified
kitting process: the exact distribution of the kit completion time interval,
the distribution of the sojourn time in the buffer of each component, and the
loss probability of component. Eventually, we show some numerical results.

2. The Model Description

We consider the kitting process which appears in the assembly system.
Figure 1 shows the feature of our system. I, and I, are the buffers for
components required to complete a kit, I is the buffer for kits and My is
the assembly machine. Two types of components independently arrive at
buffers I; and I, according to Poisson processes with parameters A; and A,
respectively. A component arriving at buffer I (Io) is immediately kitted
with one of parts at buffer I, (I) if it is available. We then refer that a
“kit” is composed. If a kit cannot be composed, the processed component is
held in buffer I; (I3) and waits for the arrival of “matching” part at buffer
I, (I,). Therefore, at any instant, the inventory position is zero for either
buffer I or Iy. Once it is composed, a kit is immediately sent to buffer I
and waits for receiving the service of M. In addition, the followings are
assumed.

loss K R,
line 1 ! |
N [ [T
! kit flow
buffer [; o
component flow T T =)
buffer I
line 2 HHer | buffer Io machine
|
l 2 K;

Figure 1. Stochastic assembly system
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(A1) The size of buffer I is Ky (< 00), k =1,2. Components arriving at
buffer I, are certainly lost if the buffer is full. On the other hand, buffer
I, has an infinite waiting station.

(A2) If the queue size attains to the buffer size at buffer I, the arrival flow
on that line will be shut-down until it decreases to Ri,0 < Ry < Ki—1.
Arrivals to buffer I during this shut-down period will be lost. We call
R, as the resume level at buffer I.

Som et al. (1994) studied the similar kitting process as above, but their
model has no resume level. In the case that resume levels Ry are equal to
K, — 1, our model coincides with their model. The main purpose of this
paper is to show the influence of the resume level upon system performance.
We, therefore, consider the stream of arrivals to 1o, i.e. the output of the
kitting process, and the sojourn time in the buffer of each components.

To analyze our process, we introduce the following notations. Let J(t)
be the state of the buffer management at time #, that is,

0 if both lines are active (not shut-down),
J(t) =14 1 if the line 1 is shut-down,
2 if the line 2 is shut-down.

In addition, we let Z(t) be the difference between inventory positions of
buffers I; and Iy at time t. Since either buffer I; or I is empty at any
instant. then we can describe the inventory positions of buffers I and I
by one-dimensional random variable Z (t). If Z(t) > (<)0, there are no
components at buffer I (I,), and therefore components at buffer 1; (I,)
wait for arrivals of paired components to the buffer I, (I). If Z(t) = 0,

both buffers are empty. Therefore, we can describe the state of the system
9

as the process (J,2Z) = {(J(t),Z(t))} with the state space K = U K
k=0
where

’Co = {0} X {#[(2 -+ 1, *’l.’(),l.‘uw[ﬁrl — l},
Klz{l}X{R1+l ..... }\/71—1,]{1},
Ko = {2} X {*K’Q,*K;g + 1. =Ry — ].}

Furthermore, for this process, we consider an imbedded process by
choosing imbedded epoch 7, which denotes the composed time of the n-
th kit. Let us define J, = J(r) and Z, = Z(r;]) where 7t means
the time just after 7,,. We should note that (J,, Z,) cannot take values
(0. —K» + 1), (0,K; — 1), (1,K) and (2. —K,). Moreover, let 7}, be the
time interval between consecutive kit completion epochs 7, and 741, 1€,
T, = The1 — Tn. We call it the kit completion time interval. This In-
terval is considered the interarrival time to the next step in the assem-
bly line system. To obtain the distribution of T;, we are interested in
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the behaviour of the output process (J,2,T) = {(J.,Z,,T,) : n € N}
with the state space K’ x R where N is the set of all nonnegative integers,
K'=K- {(O, -Ks + 1), (O,Kl - 1), (I,Kl), (2,—K2)} and R = (0,00)

For the rest of the paper, we concentrate on the output process (J, Z, T')
and derive the distribution of the kit completion interval. Furthermore, we
consider the process (J, Z) and obtain the sojourn time in the buffer of
each component and the loss probability of components.

3. The Output Process

In this section, we consider the steady state distribution of the output
process (J,Z,T) by using a Markov renewal approach. Further, we derive
the distribution of the kit completion interval.

3.1 The steady state distribution

The semi-Markov kernel Q(4, j,#) for the output process (J, Z,T) is
defined by

Q(iajv t) = PI'{(']n+1> Zn+1) = ja Tn <t l (Jn7 Zn) = i}’ (l)

for i = (4y,49), 7 = (j; ,J2) € K'and t € R. Considering all possible cases
and noticing that in case of Z, > 0 (< 0) the I (I,) is empty, these kernels
are obtained as follows:

C.1 forilzl,R1+1<i2_<_K1—1, jlzlandjgzi2-1,
or for iy =1,ip = Ry + 1, J1 =0and j, = Ry,
t
Qg = [ e,
J0
C.2 forﬁ:O,lSig < Ky -1, j1:Oandi2—1§j2<K1—1,
orforilzigzzjl=Oand1§j2<K1—1,
(J2 =iz + 1)!
C.3 fOI’?:l 20,0372 <K1—1, jlzlandj2=K1—1,

t =] by k
Q(iaj7t) = / Z (lk—lll))‘2e—(’\l+/\2)ud’u,,
0 h=Ki—iy

)\26—()\1 +)\2)udu,

t
Q(1,3,t) = /
J0

C.4 fori; =iy =0and j; = J2 =0,

t

Q(i’j) t) - /‘2)\1A2'U; e—()\1+/\2)udu’
J0
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C.5 foriy =2, —Ko+1<ig<-Ry—1. 71 =2and jo =iy + 1,
or for il = 2,7.,2 = —RQ - 1, ].1 =0 and jg = —Rg,
t

Q("H]vf): / (3_/\1”/\1(1?1,,

JO

C.6 for 7, =0,-Ko+ 1<ty <1, jl:()and —Ko+1<jp <ig+1,
or foriy =iy =7j; =0and —K» +1 < j2 < —1,

(N ) "2t
Q(iaj'f) ke / ‘uqi)—‘_— Ci()‘1+>\2)udﬂl,,
Jo (—]2+ZQ+1)!

C.7 fori, =0,—-Ky+1< 10 <0, j1 =2 and jo = —Ko+ 1.

- - ! - ()‘2“>k —(A1+A2)u
Q(i,3,1) = Z T)\lc du,

C.8 for all other (2,3,7).
Q(i,j.t) = 0.

Using expressions given above, we study the steady state probabilities
of the process (J, Z) = {(Jn, Zn)} and have the following theorem.

Theorem 1. Let us denote the steady distributions as {7 (2);% € K'} for
the process (J, Z), then it is given as follows.

Case A. For p # 1, the steady state probabilities are given by

' 1_‘[)1-%’17—1\'1 )
W(U»”/):Ca;_—l{-l—_—;:}j, Ri+1<i< K —2,
7(0,7) = Cap' . 1<i<Ry,

7(0,0) = Co(l +p)
7(0,3) = Cop’ Ry <i< -1,

) /)}(’2+7, —",0 ]
ﬂ'(U,T) = Cﬂm , —(K-_‘g - 2) <1< —(RQ + 1),

71'(1,”])—— ﬁ’(1/)~R] —/)_I{l R1+1_<_7<K1‘1a
: ) —1 .
W(2a7’):C(¥p[([2 [)RQ _(AZ“D SlS—(R2+1),
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where p = X\; /), and

c - (p~T1 — p=K1)(pK2 — pha)
5 (K= R)(pFeH = pRatT) (K, — Ry)(p-Fa = p~HKa)

Case B. For p =1, the steady state probabilities are given by

m@:%%ﬁ%ﬁz&HggKPZ
7(0,7) = C. | —Ry<i< -1, 1<i<R,
(0,7) = c,;i%;—_l}g L (K2~ 2) <i< —(By+1),
7(0,0) = 2C". |

W“J):RT?Rl’ Ri+1<i<K, -1,
") = E (K- ) <i< (B4 1),

where
; 2

C = .
* Ki+Ky+Ri+Ry+2

Proof. The direct argument goes as follows. The Markov chain (J, Z) has
the transition probabilities defined by

Q(iaj) = Pr{(JﬂA+17Zn+1) =j , (Jn’Zn) = 1'}
= lim Q(%, 5,1), i,j €K

After some calculations for Q(%,3,1), these are given by

1, C.1 and C.5,
(1- V)l{j2_i2+1, C.2,
2SN C.3,
Q(i,7) = ¢ 2v(l1 - v), Cd4,
V(1 — p)—Jatiztl C.6,
(1 —v)Katia, C.7,
\ 0, otherwise,
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A Stochastic Assembly System with Resume Levels
where the domains correspond to cases C.1 - 8 for Q(2,3,t) and v = A/ (M +

X2). Using these transition probabilities, the steady state distribution {m(2);
i € K'} satisfies the balance equation and normalizing condition:

() =Y 7(1)QG,5), Y mH=1

ick! ieK’

Therefore, we derive the following set of equations:

g+l
7(0,5) =Y w0, )1 -/ T 1< j < K =3 and j # R1,
i=0
it
(0, —j) = Zw(o, —i(l—v) T 1< j < Kp—3and j# Ry,
1=0
Ri+1 ‘
0, R) =m(L, R+ 1)+ »_ m(0.4) (1~ pypfati=i
=0
Ro+1
(0, —Ry) = m(2,—(Ra + 1)) + 7(0, —i)p(l - p)Reti=r,
1=0
7(0,0) = vm(0,—1) + 2v(1 - V)m(0,0) + (1 — v)m(0, 1),
Kl_—‘z
0K ~2) = Y @(0.)(1— v
=0
Ko—2 '
(0, —(Ky — 2)) = w0, —i)w(l —v)f
=0
Ky—2 .
(LK —1) = Y w0
=0
K2
ﬂ-(2: _(KQ - l)) = N(Ov _'7")(1 - U)Kgﬁie
1=0
7!'(1,}{1 — 1) :’ﬂ'(l,Kl —2) = :W(I,Rl +1),
w2 —(Ky — 1)) =7(2.—(Ka = 2)) = - =7(2, ~ (I + 1)).

To solve equations above, we have to consider two cases, i.e., p # 1 and
p = 1, and get steady state probabilities 7 () in the theorem. O
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Let Iy be the probability that both buffers I, and I are empty, and
I, the probability that buffer I, is not empty for k = 1,2, at just after kit
completion, then these are given by

Ho = ’/T(O, 0),
Ki—2 Ki—1

II; = Z m(0,7) + Z 7(1,1),
=1 i=Ri1+1
Ky—2 Kz—1

I, = w0, =i+ Y w(2,-i).
i=1 i=Rp+1

Thus, from Theorem 1, the following is immediately.

Corollary 2. I, k=0,1,2, are given as follows.

Case A. For p # 1, these are written as

HO = Ca(l +p)a

_ 14 K,-R;
Hl '—Ca/)<1_p p_Rl__p_Kl)’

B 1 Ky—Ry
2 '_Ca<ﬂ~1 _pK2—pR2>'

Case B. For p = 1, these are written as

I, = 2C",
!

C
I = _ég(Kl + Ry — 1),

!

C
I, = TQ(KQ + Ry — 1).

3.2 The kit completion time interval

Let D(t) be the distribution function of the kit completion time interval,
that is, D(t) = Pr{T,, < t}. Then, from the property of Markov renewal

process, we have
D)= ¥ m()QG,35,1). 2

jexk’iex

From Theorem 1 in the previous subsection, we get the Laplace-Stieltjes
transform D*(s) of D(t) as follows.
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Theorem 3. The Laplace-Stieltjes transform D*(s) of D(t) is given by

D*(s) =11 1 I _ :
() = s ey O</\1+s+>\2+s e verrd RIC)

where [y, II; and Il are given in Corollary 2.

Proof. From (2), we have

D=3 Y [ e niae g

jekriexs’

Using Theorem 1 and expressions of Q(4,7.t), we can get the theorem via
a direct calculation. [O

In case of p = 1, the equation (3) is also written as

A 2 2\
D*(s) = (1 — 2C" ) e ,
(s) =1 Ca))\+8+26a()\+8 2)\+s>

where A = A| = Ag.

Remark. Theorem 3 means that the distribution of the kit completion
interval is rewritten as
D(t) = I, (1 — ') + Mp(l — e ') + (1 — e M) (1 — e M2,
Note that this is a distribution of phase type
D(t) =1 — a exp(Tt)e,
with a representation (a,T'), where

a = (HOaHhHQ)v

—(A1+A) AL A
T = 0 — A9 0
0 0 -\

From these facts, the distribution of the kit completion interval is asymptot-
ically exponential as A; — 00 or Ay — 0. This property has been pointed

out for the model without resume levels by Som et al. (1994). Further,
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we should also note that if Ry equal to K, — 1, for k = 1,2, the results as
mentioned above agree with the equation (20) in Som et al. (1994).

4. The Sojourn Time and the Loss Probability

In this section, we deal with the sojourn time in the buffer of each
component and the loss probability of components. For convenience, we call
the sojourn time in the buffer of each component as the buffer sojourn time.
The main purpose that we provide resume levels in the buffers is to reduce
the buffer sojourn time. In order to evaluate the system performance, we
need to derive the distribution of the buffer sojourn time.

4.1 The steady state distribution at arbitrary time

To obtain the buffer sojourn time and the loss probability of compo-
nents, we have to study the steady state probability for the process (J,2),
which can be written as

p(3) = tgngoP'r{(J(t), Z(t)) =i}, fori= (i,iy) € K.

This process (J, Z) denotes the state of the buffers at any instant and has
the state space K as mentioned in Section 2. Then we have the following.

Theorem 4. The steady state distribution of the process (J, Z) is obtained
as follows.

Case A. For p # 1, the steady state probabilities are given by

. 1—pi=ia .
P(O,Z)=Cﬂ;m, Ri+1<i<K, -1,

p(0,7) =Cps - p* | —Ry <i< R,
. p1+K2 -1 )
p(0,1) :Cﬁp—lm , —(K2—1) <i< —(Ry + 1),

-1
p(Li)=Co—l—— | R +1<i<K,

p—'R — ,{)—Kl
p—1

p(2,7) = Cgﬁm , Ky <i<—(Ry+1),

where

O = (p~ ™1 — p= K1) (p= — pR2y
T (B = R) (0K = gt — (K, = Ry)(p~Fu=1 — p—Ki=1y -
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Case B. For p = 1, the steady state probabilities are given by

77(0,«z):cg—f{—ff]f-}%. Ri+1<i<K -1
p(0,i) = Cj . —Ry <1< Ry,
p0,0) = Chop i (o~ 1) S 15 ~(Ra 1)
. Ch o
p(l,7) = m, Ry +1<i<Kj,
c

D) = =P Ky << - .
W= g 2 <1< —(Ry + 1),

where

L = 2
BT K +R +Ky+Ra+4

Proof. The set of balance equations for the process (J,Z) in the steady
state is given by

(A1 + A2) p(0,3) = X2 p(0,7 + 1) + A1 p(0,7 — 1),
(Ky—2) <i<Ki—2 i#R, 1# -1z,
(M + X)) p(0, Ky — 1) =X p(0, Ky — 2),
(A1 + Ag) p(0, — (K2 — 1)) = A2 p(0, = (K2 = 2)),
(A1 + Ag) p(0, Ry) = A2 p(0, By + 1)+ A1 p(0, By — 1)
+ X p(1, Ry + 1),
(A1 + Ag) p(0, —=Ra) = Ao p(0, —(R2 — 1)) + A1 (0, —(Ra + 1))
+ AL p(2.—(Re + 1)),

p(li)=plyi+1), I+l<i< K —1,
p(2,8) = p(2.i +1), —(Ka—1)<i<—(Ra+1),
Ao p(1, K1) = A p(0, Ky — 1),
A p(2, —Ka) = A p(0.— (K2 — ).

Using the normalizing condition Zp(i) — 1, we obtain the steady state
€K
probabilities in the theorem. [J
We consider the state distribution encountered by the arriving com-
ponents. Denote the steady state probability at the arriving epoch of the
component of line k provided that it actually enters the system without be-
ing lost by pi(i) for i € K — K, and k = 1,2. Due to the Poisson arrivals
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assumption, we can find the steady state probability observed by the arriv-
ing component is identical to one at any instant. Therefore, (%) is given
by

p(i)
1- Y p(5)

Jex,

Pe(i) = . k=1,2. (4)

Using Theorem 4, we get the following by the direct calculations.

Corollary 5. py (i) is given by
Cappp(i), i€K-K, k=1,

Pr(i) = for p#1,
Capp(i), i€K—-Ky, k=2,

= Cupp(i), teK-Ky, k=12, for p=1,
where Cop = C, /Cp and Cip = Co/Cy.
4.2 Buffer sojourn times

Let us denote the distribution of the buffer sojourn time at buffer I,
as Si(t) (k=1,2). In order to derive Sk(t), we need to use Corollary 5.

Theorem 6. The Laplace-Stieltjes transform 57 (s) of Sk(t) is given as
follows.

Case A. Forp#1,

* _ /\1 /\1 1 1 /\2 -
i —Ca[/\z—Al ¥ pHL— p=ka (5— /\2—/\1+8>{<)\2+5>

A \F _ K)-R, N A\
Ao+ s PR —pRe TN TN |

o Ao Ao 1 1 A\
5’2(5)—004/)[)\1_/\2_*_5 +pK2_pR2 </\1—)\2+S_:S->{</\1+8>

A\ L KRy
AL +s p~f—pmEKe N g |
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Case B. For p=1,1e, A=\ = Ag,

Ko+ Ro+1 A 22 A\ A\
GHe) = |22 L 2 (2 _
1(9) C“[ 2 +s+(K1—R1)32{<)\+3> <A+s> } ’

m+Rﬁ4+A+ A2 A “_ A\
2 s (Ky—Ry)s? [\ A+s A+ s )

Proof. An arriving component to line 1, say C,, that finds i waiting com-
ponents in line 1 has to wait for i + 1 arrivals of components to line 2. On
the other hand, C; finding any waiting components in line 2 has no sojourn
time. In addition, C; finding no waiting components has to wait for new
arrival of component to line 2. In the same way, we can consider the so-
journ time of the component in line 2. Noting the facts above, we obtain
the distribution of buffer sojourn time as follows:

S3(s) = .,

, R aem) S -
Si(t) = Z 7)1(077')/ — ¢ *Tdr + Z p1(2, —1)
i=1 40 - i=Ro+1
Kol
+ 37 510, —1) + pr{0,0)(1 = ), (5)
=1
Ko—1 + , K,
Sy(t) = Z p2(0, —"3)/ ﬁg/\jli)-e‘“’dx—i— Z p2(1,1)
i=1 70 & i=Ri+]
Ki—1
+ > 72(0,) + P2(0,0)(1 — e~ M), (6)

i=1
From Corollary 5 and the equations (5) and (6), we get the theorem. [1

Using Theorem 6, we readily obtain the following.

Corollary 7. The expected buffer sojourn times E[S1] and E[S] are given
as follows.

Case A. For p# 1,

s Ao K, - R, 1 Ki+ R +1

s At Ko — Ry 1 m+&+w
E[SQ] - C/(Y{ (Al __ )\2>2 pK? — pRz <Al — Az + 2)\1 .
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Case B. For p =1, Le, A= A1 = Ay,

Cl
E[S] = E/%{KIQ + K Ry + R% +3(K1 + R;) + 2},

C’
E[S;] = 6—;:—{K22 + KsRy + R% +3(Ks + Ry) + 2}.

4.3 Loss probability of component

In this subsection, we evaluate the loss probability of component P,
of line k, k£ =1,2. It is clear that the loss probability of line & equals to the
probability that line & is shut-down just prior to the arrivals of component
to line k. Since the component arrival streams of both lines independently
follow Poisson distribution, the steady state probability at any instant equals
to one just prior to the arrival of component. Therefore, we can evaluate
the loss probability as follows:

]Dloss k= Z p(i), k= 1,2
ie’ck

Thus we obtain the following theorem.

Theorem 8. The loss probability P, i is given by

K, - Ry
Cﬁ(p-l)m s k‘:l,

Pf,oss k= K R for p ?é 1,
2 — 112
Ca(p - 1)m, 2,
Pross 1 = Pross 2 = C,lg, for p=1

5. Numerical Examples

In this section, we present some numerical examples in order to eval-
uate the effect of resume level on the kitting process. We illustrate the
performance of the kitting process at different resume levels and the value
of p(= A1/A2) which is the ratio of the arrival rate of line 1 to the arrival
rate of line 2. We consider the case K, =12, K, = 10. In addition, the
resume level of line 2 is fixed at 9, while that of line 1 is varied to different
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values to show the influence of resume level upon the system performance.
It is worth noticing that we make no buffer management control in line 2,
because the resume level Ry is assumed to be Kp — L. Furthermore, the
arrival rate of line 2 (\;) is assumed to be unity.

We plot various performance measures of the system, i.e., the expected
buffer sojourn time, loss probabilities of both types of components, and
the expected kit completion interval, versus the parameter p in cases of
R, = 1.6 and 11. Figure 2 and Figure 3 illustrate the expected buffer
sojourn time of line 1 and line 2, respectively. The curves in Figure 2 show
that resume level Ry, significantly reduces the expected sojourn time of line
1, particularly when p is greater than 1. On the other hand, compared with
no resume model, one might expect that the sojourn time of line 2 increases.
Because. after the restoration of the arrival flow of line 1, there may occur
burst arrival of the components of line 2 which will rapidly diminish the
components of line 1. Then, the components of line 2 arriving afterwards
have to wait for the arrival of the matching component from line 1. However,
Figure 3 indicates that the increase of mean buffer sojourn time of line 2 is
so small that we cannot ignore it.

Next, Figure 4 illustrates the loss probabilities of both lines. Although
some components are lost while there are unoccupied buffers during the
shut-down period, it is shown that the difference of the loss probabilities
between the cases with and without resume levels is very small.

Finally, Figure 5 shows the expected kit completion interval. It is
obvious that system performs almost identically regardless of the value of
resume level Ry, in view of the expected kit completion interval. Therefore,
we know that the expected kit completion interval is just slightly influenced
by the resume level Ry

These examples show introducing resume levels to the kitting process
enables the sojourn time of line 1 to decrease remarkably without making
the other system performance change greatly. These results indicate the
superiority of this trade-off to achieve the desired system performance.
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6. Conclusion

We presented a modified kitting process by providing a buffer man-
agement scheme on both of the buffers. Using Markov renewal process, we
derived the distribution of kit completion intervals. Moreover, to show the
improvement of the system performance, we computed the buffer sojourn
time and loss probability. Resume levels affect the system by reducing the
buffer sojourn time, and increasing loss probability of the component. How-
ever, it is shown in the numerical example that, in our system, the loss
probability increases slightly while the buffer sojourn time signficantly de-
creases. That is, resume levels cause a good trade-off between the buffer
sojourn time and the loss probability.

Acknowledgement

The authors acknowledge with gratitude the suggestions of the referees
which helped in revising the paper.

References

Bhat, U. N. (1986), Finite capacity assembly-like queues, Queueing Systems
1, 85-101.

Harrison, J. M. (1973), Assembly-like queues, Journal of Applied Probability
10, 354-367.

Hopp, W. J. and J. T. Simon (1989), Bounds and heuristics for assembly-like
queues, Queueing Systems 4, 137-156.

Latouche, G. (1981), Queues with paired customers, Journal of Applied
Probability 18, 684-696.

Lipper, E. H. and B. Sengupta (1986), Assembly-like queues with finite
capacity: bounds, asymptotic and approximations, Queueing Systems
1, 67-83.

Rosenberg, C., R. Mazumdar and L. Kleinrock (1990), On the analysis of
exponential queueing systems with randomly changing arrival rates:
stability conditions and finite buffer scheme with a resume level, Per-
formance Evaluation 11, 283-292.

Som, P., W. E. Withelm and R. L. Disney (1994), Kitting process in a
stochastic assembly system, Queueing Systems 17, 471-490.

Srivastava, H. M. and B. R. K. Kashyap (1982), Special Functions in Queue-
ing Theory and Related Stochastic Process, Academic Press.

145

Copvright © 2001. All Rights Reseved.



A Stochastic Assembly System with Resume Levels

Takagi, H. (1985), Analysis of a finite-capacity M/G/1 queue with a resume
level, Performance Evaluation 5, 197-203.

Takagi, H. (1993), Queueing Analysis, Vol. 2: Finite Systems, Elsevier,
Amsterdam.

Yin, N., S. Li and T. E. Stern (1990), Congestion control for packet voice
by selective packet discarding, IEEE Transactions on Communications
38, 674-683.

M. TAKAHASHI is a graduate student at the Department of Communi-
cations and Systems, University of Electro-Communications. She received
B.Sc. from Tokyo Woman’s Christchan University in 1993 and M.E. from
the University of Electro-Communications in 1995. Her area of research is
queueing theory and its applications.

H. OSAWA is Professor at the College of Business Administration, Aichi
Gakusen University. He received B.E. and M.E. from the University of
Electro-Communications in 1974 and 1976, respectively. He also received
Doctor of Science from Tokyo Institute of Technology in 1989. His research
areas are applied stochastic processes and queueing theory. He is currently
interested in queueing networks. His papers have appeared in Journal of
the Operations Research Society of Japan and a number of international
journals.

T. FUJISAWA is Professor at the Department of Communications and Sys-
tems, University of Electro-Communications. He received B.Sc. and M.E.
from Waseda University in 1957 and 1959, and Doctor of Science from Tokyo
Institute of Technology in 1976. His research interests include queueing mod-
ols and reliability theory and their applications. His papers have appeared
in Journal of the Operations Research Society of Japan and a number of
other journals.

146




