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Abstract. We consider the stationary distribution of the M/GI/1 type queue when background states
are countable. We are interested in its tail behavior. To this end, we derive a Markov renewal equation
for characterizing the stationary distribution using a Markov additive process that describes the number
of customers in system when the system is not empty. Variants of this Markov renewal equation are also
derived. It is shown that the transition kernels of these renewal equations can be expressed by the ladder
height and the associated background state of a dual Markov additive process. Usually, matrix analysis
is extensively used for studying the M/G/1 type queue. However, this may not be convenient when the
background states are countable. We here rely on stochastic arguments, which not only make computations
possible but also reveal new features. Those results are applied to study the tail decay rates of the stationary
distributions. This includes refinements of the existence results with extensions.

Keywords: M/G/1 type queue, stationary distribution, Markov additive process, duality, ladder height,
Markov renewal theorem, hitting probability, decay rate

AMS subject classification: 90B22, 60K25, 60K20, 60J75

1. Introduction

The M/GI/1 type queue, which was termed by Neuts [12], has been extensively studied
in theory as well as in applications. It is a discrete-time single server queue with a
finite number of background states, and a pair of the number of customers in system
and the background state constitutes a discrete-time Markov chain. It is assumed that
background state transitions do not depend on the number of customers in system as long
as the system is not empty, but this is not the case when the system is empty. The latter
is called boundary transitions. Thus, the M/GI/1 type queue has a relatively simple
structure. Nevertheless, it copes with various kinds of queueing models, e.g., vacation
models, batch arrival queues and some others.

The finite number of the background states enables us to algorithmically compute
characteristics such as the stationary joint distribution of the system and background
states. This led to a great success of the M/GI/1 type queue, particularly, in applica-
tions. However, it also limits a class of applicable models. In general, if there are more
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than one unlimited queue, e.g., like in tandem queues, then we can not use the frame-
work of finite background states. In other words, its applicability is much widened if
this finiteness assumption is removed. So, there have been some attempts in this line.
For instance, Takahashi et al. [17] recently studied a quasi-birth-and-death process with
countable background states for considering a two-queue system with joining shorter
queue discipline.

In this paper, we study the M/GI/1 type queue allowing the background state
space to be countable. This model includes the quasi-birth-and-death process of [17] as
a special case. Similar to the finite background case, we are mainly concerned with the
stationary joint distribution of the number of customers in system and background state.
The conventional M/GI/1 type queue is usually studied by matrix analysis. This is also
the case in [17]. Unlike those matrix approach, we here mainly use stochastic analysis.
This simplifies our computations, and enables us to get finer results. For instance, the
recent results of [17] can be obtained under weaker conditions. Furthermore, it simulta-
neously reveals nice stochastic structures even for the conventional M/GI/1 type queue
itself, i.e., the case of the finite background states.

We first observe that, when the system is not empty, the number of customers in
system is described by a Markov additive process. Using this fact, we show that the
stationary distribution is obtained as the solution of a Markov renewal equation, i.e., as
a Markov renewal function. This leads to the following interesting facts. First, the
stationary distribution can be obtained in terms of the ladder height and the associated
background state of a dual Markov additive process and the boundary transitions, where
the dual process is defined by changing the sign of the time reversed Markov additive
process. This observation may go back to Feller [8] for the M/G/1 queue, but its ex-
tension is not obvious because of the different transitions at the boundary in addition to
the background process. Secondly, the tail behavior of the stationary distribution can be
studied through an asymptotic behavior of the dual Markov renewal process. Thirdly,
the stationary distribution is also obtained through the background state distributions at
the upward hitting times of the dual Markov additive process.

Technically, this paper is stimulated by recent work of Takine [18] on the stationary
distribution in the M/G/1 type queue as well as the author’s works [9,11] on the hit-
ting probabilities in a continuous-time Markov additive process with finite background
states. In those papers, Markov renewal functions are derived for studying asymptotic
tail behaviors of the stationary distribution, but all of them assume the finite number of
the background states and matrix analysis is extensively used. Some related discussions
can be also found in [10].

This paper is composed by five sections. In section 2, we first introduce theM/G/1
type queue, and discuss an identity obtained by Ramaswami [14] with a simple proof.
The Markov renewal equation is derived, and its variants are considered in section 3. We
then discuss how the stationary distribution is obtained through the hitting probability in
section 4. We finally apply the results to get the decay rate of the stationary distribution
in section 5.
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2. Ramaswami’s identity

In this section, we introduce notation for the M/G/1 type queue with countable back-
ground states and for the corresponding Markov additive process. We shall use the
standard notation in the literature, but sometimes slightly change them for convenience.
We then give a simple proof for the identity derived by Ramaswami [14]. This identity
plays a key role in our arguments. Some stability issues are also discussed.

Let S be a countable set, which serves as a state space for the background state.
Let A(n) and B(n), n = 0, 1, . . . , be S × S nonnegative matrices such that

∞∑
n=0

A(n)e = e and
∞∑
n=0

B(n)e = e,

where e is S-column vector all of whose entries are unit. Thus, these matrix sums are
stochastic. Let Z+ = {0, 1, . . .} and S1 = Z+ × S. Define the S1 × S1 transition
probability matrix P as

P =


B(0) B(1) B(2) B(3) . . .

A(0) A(1) A(2) A(3) . . .

0 A(0) A(1) A(2) . . .
...

...
...

...
...

 .

If S is finite, the Markov chain with this transition matrix P is referred to as the M/G/1
type in the queueing literature. Since we removed the finiteness of S, we refer it as a
M/G/1 type with countable background states. As we shall see, A(n) might be better
to denoted by A(n−1), which directly corresponds with up and down movements of the
additive component, but we keep it as it is since this notation has been widely used as
well as it is convenient for queueing applications.

Usually, matrices B(n)with n � 0 are allowed to have different row entries from S.
Furthermore, the first matrix A(0) in the second row blocks can be replaced by any non-
negative matrix C(0) of the same column size as A(0) such that (C(0)+∑∞

n=1 A(n))×
e = e. However, these modifications are not essential in our arguments. So we always
assume that A(n) and B(n) are matrices of the same sizes, and will not use C(0) in
the second row blocks. Let x(n), n = 0, 1, . . . , be nonnegative S-row vectors. Then,
x ≡ {x(n); n � 0} is said to the stationary measure (or vector) of P if xP = x, which
is equivalent to

x(n) = x(0)B(n)+
n+1∑
�=1

x(�)A(n+ 1 − �), (2.1)

and, in particular, said to the stationary distribution if
∑∞

n=0 x(n)e = 1. To exclude a
trivial case, we assume that B(0) is not stochastic, i.e., there is a row of B(0) such that
its sum is less than unit.

We next consider the Markov chain obtained from P removing boundary states
{0}×S and extending the state space from S1 to Z×S, where Z = {0,±1,±2, . . .}. That
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is, the transition probability from (i,m) to (j, n) of the Markov chain is [A(n−m+1)]ij
if n � m − 1, otherwise it is null. Let (Xn, Yn) be the state of this Markov chain at
time n, where Y0 = 0. The process {(Xn, Yn)} is a discrete valued and discrete time
Markov additive process with background process {Xn} (see, e.g., [6]). We refer to Yn
as an additive component. From the structure of P , Yn is skip free in the downward.

Let Q(n) = A(n+1) for n � −1. This {Q(n); n � −1} is the transition kernel of
the Markov additive process (Xn, Yn), and referred to as a Markov additive kernel. For
mathematical description, Q(n) is more convenient than A(n), but much of the queueing
literature has usedA(n), so we follow them except a few, and refer to {A(n)} as a Markov
additive kernel as well. Denote the generating matrix function of {A(n)} by A∗, i.e.,

A∗(z) =
∞∑
n=0

znA(n), z > 0.

Similarly we let B∗(z) = ∑∞
n=0 z

nB(n). Note that the background process {Xn} is a
Markov chain with transition rate matrix A ≡ A∗(1). We assume that

(i) A is irreducible and aperiodic.

Remark 2.1. If the background state space S is finite, then (i) implies that A is positive
recurrent. However, if not, the situation is greatly changed. In fact, A may be tran-
sient even if P is positive recurrent. For example, consider a Markov additive process
(Xn, Yn) with background state space Z+ such that infi E(Xn+1 | Xn = i) > 0. Then,
A is obviously transient. However, if we put the boundary at level 0 where Xn is changed
to only decrease and if supiE(Yn+1 − Yn | Xn = i) < 0, then P can be positive recur-
rent. This is actually the situation of a single server priority queue with two types of
customers. Thus, it may be too restrictive to assume that A is positive recurrent.

For n � 1, let τn = inf{� � 1; Y� = −n}, i.e., the first time when Yn hits −n
from above. Since {Yn} is skip free and has homogenous background state transitions, it
is easy to see that the embedded process {Xτn}, where τ0 = 0, is also a Markov chain,
which may terminate in a finite steps. Denote the S× S transition matrix of this Markov
chain by G. Conditioning by the first step, it is obvious to see that G must satisfy

G =
∞∑
n=0

A(n)Gn. (2.2)

It is also not hard to see that G is the unique minimal nonnegative and nonzero solution
of (2.2). This G is called the fundamental matrix in the queueing literature. Note that
G may not be irreducible. For example, if [eA(0)]j = 0, then Gij = 0 for all i ∈ S.
Since any state can reach any other state under the transitions of A, so G has a single
irreducible class.

Although it is too restrictive to assume for A to be positive recurrent, it will be use-
ful to consider the positive recurrent case since we may apply this case under a suitable
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change of the probability measure. We now tentatively suppose that Xn has the unique
stationary distribution, denoted by S-row vector π . Furthermore, if the mean drift of Yn
is not positive, i.e.,

βA ≡
∑
n=1

nπA(n)e � 1,

then τn is proper since Y� hits −n with probability one. Hence, G is stochastic. We can
say a little more about its recurrence by theorem 1 of Alsmeyer [2].

Lemma 2.1. Suppose that A is positive recurrent. Then, G is stochastic only if βA � 1,
and it is Harris ergodic if βA < 1.

Here, a stochastic matrix is said to be Harris recurrent (ergodic) if the correspond-
ing Markov chain is Harris recurrent (ergodic, respectively) (see, e.g., [4] for these Har-
ris definitions). Since the state space is discrete, Harris recurrent (ergodic) is equivalent
to that there is a single irreducible and recurrent (positive recurrent) class that can be
reached from all other states.

We now back to the case that A may not be positive recurrent. Define �A(n) and
�B(n) as

�A(n) =
∞∑
�=n

A(�)G�−n and �B(n) =
∞∑
�=n

B(�)G�−n.

Then, using a censored process, Ramaswami [14] shows that, if x ≡ {x(n)} is the
stationary distribution, then it satisfies

x(n) = x(0)�B(n)+
n∑
�=1

x(�)�A(n+ 1 − �), n � 0, (2.3)

where an empty sum is null. In [14], the background state space S is assumed to be
finite, but this is clearly not essential. Equation (2.3) is rearranged for n � 1 to

x(n) =
[
x(0)�B(n)+

n−1∑
�=1

x(�)�A(n+ 1 − �)

](
I −�A(1)

)−1
, n � 1, (2.4)

where (I−�A(1))−1 = ∑∞
n=0 �A(1)n is well defined since �A(1) is strictly substochas-

tic. Thus, x(n) is computed inductively if x(0) is given. This computation algorithm is
known to be stable because subtractions are not needed. It should be noted that we cannot
numerically compute x(n) because S may be infinite. This is a drawback of removing
the finiteness assumption on S.

Assume that the stationary distribution exists and is unique and that x(0) is prop-
erly given. Then, it is easy to see that (2.3) also implies (2.1). We here prove this im-
plication without those assumptions. This is because we shall work on (2.3) to get the
stationary distribution. Furthermore, the proof is very short, so may be of independent
interest.
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Lemma 2.2. If (2.3) holds, then {x(n)} is the stationary vector of P .

Proof. Since

�A(n) = A(n)+�A(n+ 1)G and �B(n) = B(n)+�B(n+ 1)G,

we have, from (2.3), for n � 0,

x(n)= x(0)(B(n)+�B(n+ 1)G)+
n∑

�=1

x(�)
(
A(n+ 1 − �)+�A(n+ 2 − �)G

)
= x(0)B(n)+

n+1∑
�=1

x(�)A(n+ 1 − �)− x(n+ 1)A(0)

+ x(0)�B(n+ 1)G+
n+1∑
�=1

x(�)�A(n+ 2 − �)G− x(n+ 1)�A(1)G

= x(0)B(n)+
n+1∑
�=1

x(�)A(n+ 1 − �)+ x(n+ 1)
(
G− A(0)−�A(1)G

)
= x(0)B(n)+

n+1∑
�=1

x(�)A(n+ 1 − �),

where we have used (2.3) for n+ 1 to get the third equation. Thus, we get the stationary
equation (2.1). �

By (2.4), x(n) is uniquely determined for a given x(0). The existence of the non-
negative and nonzero vector x(0) is assured either if there is no background sate, i.e.,
|S| = 1, or if |S| � 2 and the following equation has the nonnegative and nonzero
solution x(0).

x(0) = x(0)�B(0). (2.5)

Obviously, this vector uniquely exists up to a multiplicative constant if and only if�B(0)
is Harris recurrent. Furthermore, x(0) is a finite measure if and only if

(ii) �B(0) is Harris ergodic.

Throughout the paper, we assume (ii). Let us consider the case that A is positive
recurrent again. In this case, by lemma 2.1, �B(0) is stochastic only if βA � 1. So,
(ii) always holds for finite S if B∗(1) is aperiodic and irreducible. This may not be true
for countable S. In many applications, {B(n)} is stochastically not greater than {A(n)},
i.e.,

∑∞
�=n B(�) �

∑∞
�=n A(�) in componentwise for all n � 1. In this case, we can show

that (ii) holds if βA < 1, since the stationary distribution exists for {B(n)} = {A(n)}.
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3. Markov renewal equations

In this section, we first derive a Markov renewal equation for the stationary measure
{x(n)}, assuming its existence. Then, we derive its variants. Throughout this and next
sections, we assume that A is positive recurrent in addition to (i), i.e., we replace (i) by
the stronger assumption:

(i′) A is irreducible, aperiodic, and positive recurrent with the stationary distribution π .

3.1. The first formulation

Let �A(n) = �A(n+ 1) for n � 0. Then, (2.3) can be written as

x(n) = x(0)
(
�B(n)−�A(n)

)+ x ∗�A(n), n � 0, (3.1)

or, taking its transpose,

xT(n) = (
�T
B(n)−�T

A(n)
)
xT(0)+�T

A ∗ xT(n), n � 0, (3.2)

where ∗ denotes the convolution, i.e.,

x ∗�A(n) =
n∑

�=0

x(�)�A(n− �), �T
A ∗ xT(n) =

n∑
�=0

�T
A(n− �)xT(�).

(3.2) is a Markov renewal equation if
∑∞

n=0 �
T
A(n)e � e, i.e,

∑∞
n=0 �

T
A(n) is substochas-

tic. Unfortunately, this may not be true. To convert this equation to the Markov renewal
equation, we use a dual process, defined below.

Assume that X0 is subject to the stationary distribution π . Then, {Xn; n � 0} is a
stationary process, so we can extend this process on the time axis of the whole integers.
Since {Yn} is defined for the {Xn}, we can extend it also on the time axis of the whole
integers, where Y0 = 0 is retained. For instance, Y−1 = −(n − 1) if the transition from
X−1 to X0 occurs due to A(n). We then define the dual process {(X̃n, Ỹn)} by

X̃n = X−n and Ỹn = −Y−n, n ∈ Z.

As above, we put the tilde for a characteristic of the dual process unless otherwise stated.
It is easy to see that {Ỹn} is a Markov additive process with background process {X̃n}
whose Markov renewal kernel is given by

Ã(n+ 1) = �−1
π AT(n+ 1)�π , n = −1, 1, 2, . . . ,

where �π is the diagonal matrix whose ith entry is the corresponding one of vector π .
This convention will be used for other vectors as well. Similarly to the forward case, we
put Ã = ∑∞

n=0 Ã(n), which is the transition matrix for {X̃n}. Clearly, (i′) implies that Ã
is irreducible and aperiodic.

Define τ̃ as

τ̃ = inf
{
n � 1 | Ỹn � 0

}
.
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That is, τ̃ is the weak ladder epoch of {Ỹn}. Define S × S substochastic matrix L̃(�) by[
L̃(�)

]
ij

= P
(
Ỹτ̃ = �, X̃τ̃ = j | X̃0 = i

)
, � � 0, i, j ∈ S.

Namely, {[L̃(�)]ij ; � � 0} is the probability mass function of the weak ladder height for
the dual process. The following result is a key for our arguments.

Lemma 3.1. Under any drift condition, we have[
L̃(�)

]
ij

= πj

πi

[
�A(�)

]
ji
, � � 0, i, j ∈ S. (3.3)

Proof. For convenience, we write the probability P(D | X̃0 = i) as P̃i(D) and
P(D | X0 = j) as Pj(D) for event D. We evaluate πiP̃i(τ̃ = n, Ỹτ̃ = �, X̃τ̃ = j). For
n = 1, we have

πiP̃i
(
τ̃ = 1, Ỹτ̃ = �, X̃τ̃ = j

)=P(Y−1 = −�, X−1 = j, Y0 = 0, X0 = i)

=πjPj (Y0 = 0, Y1 = �, X1 = i)

=πj
[
A(�+ 1)

]
ji
.

For n � 2,

πiP̃i(τ̃ = n, Ỹτ̃ = �, X̃τ̃ = j)

= P
(
Ỹ0 = 0, X̃0 = i, Ỹs < 0, s = 1, 2, . . . , n− 1, Ỹn = �, X̃n = j

)
= P

(
Ỹ−n = 0, X̃−n = i, Ỹs < 0, s = −1,−2, . . . ,−(n− 1), Ỹ0 = �, X̃0 = j

)
= P

(
Yn = 0, Xn = i, Ys > 0, s = 1, 2, . . . , (n− 1), Y0 = −�, X0 = j

)
= P

(
Yn = �, Xn = i, Ys > �, s = 1, 2, . . . , (n− 1), Y0 = 0, X0 = j

)
= πjPj

(
Y0 = 0, Ys > �, s = 1, 2, . . . , (n− 1), Yn = �, Xn = i

)
= πj

∞∑
m=�+1

Pj
(
Y0 = 0, Y1 = m, Ys > �, s = 2, . . . , (n− 1), Yn = �, Xn = i

)
= πj

∞∑
m=�+1

∑
k∈S

[
A(m+ 1)

]
jk
Pk
(
Ys > m− �, s = 2, . . . , (n− 1),

Yn = m− �, Xn = i
)
.

Summing this equation over n � 2 yields

πiP̃i
(
τ̃ � 2, Ỹτ̃ = �, X̃τ̃ = j

)= πj

∞∑
m=�+1

∑
k∈S

[
A(m+ 1)

]
jk
G
m+1−(�+1)
ki

= πj

∞∑
m=�+2

[
A(m)Gm−(�+1)

]
ji
.

Combining this with the case of n = 1, we get (3.3). �
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Remark 3.1. From this lemma, we have

∞∑
�=1

∑
j∈S

πj

πi

[
�A(�)

]
ji

� 1, i ∈ S,

where the equality holds only if βA � 1.

We now convert (3.2) to a Markov renewal equation. To this end, we use the
following notation.

x̃(n)=�−1
π x(n)T,

�̃V (n)=�−1
π �V (n+ 1)T�π for V = A,B,

�̃A(n)= �̃A(n+ 1).

The generating functions of these vector and matrix functions are denoted by x̃∗
(s),

�̃∗
V (s) and �̃∗

A(s), respectively.

Theorem 3.1. Suppose that (i′) and (ii) hold. Then, the following Markov renewal equa-
tion has the solution {x̃(n)}, and {x̃(n)T�π } is the stationary measure.

x̃(n) = (
�̃B(n)− �̃A(n)

)
x̃(0)+ L̃ ∗ x̃(n), n � 0. (3.4)

The Markov renewal kernel {L̃(n); n � 0} is defective only if βA < 1. In this case,
{x(n)} is a finite measure if and only if

βB ≡
∞∑
n=1

nx(0)B(n)e < ∞. (3.5)

Proof. Since (3.3) can be written as L̃(n) = �̃A(n), (3.4) is immediate from (3.2).
We already know the defectiveness of {L̃(n); n � 0}, so it remains to prove the last
statement. For this, we take the generating functions of (3.4). Then, for 0 � s < 1, we
have

x̃∗
(s) = (

I − �̃∗
A(s)

)−1(
�̃∗
B(s)− �̃∗

A(s)
)
x̃(0),

since �̃∗
A(s) is strictly substochastic. Note that �̃A is still strictly substochastic. Hence,

the total measure x∗(1)e = πx̃∗
(1) is finite if and only if π�̃∗

B(1)x̃(0) is finite. This
is equivalent to x(0)�∗

B(1)e < ∞, where �∗
B(s) is the generating function of {�B(n)}.

We now check that (3.5) is equivalent to

x(0)�∗
B(1)e =

∞∑
n=0

x(0)
∞∑
�=n

B(�)G�−ne =
∞∑
�=0

(�+ 1)x(0)B(�)e < ∞.

This concludes the last statement. �
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Remark 3.2. If S is finite and x(0) is positive, then (3.5) is equivalent to

∞∑
n=1

nB(n) < ∞.

This is exactly the necessary and sufficient condition for the finiteness of {x(n)} ob-
tained in [13, theorem 3.2.1]. Note that complicated matrix computations are performed
to prove this fact in [13], while our arguments are straightforward and valid also for
countable S.

Let the overline stand for the tail of a summation like x̃(n) = ∑∞
�=n x̃(�). Sum-

ming (3.4) over n yields

x̃(n) = (
�̃B(n)− �̃A(n)

)
x̃(0)+ L̃(n+ 1)x̃(0)+ L̃ ∗ x̃(n), n � 0. (3.6)

This is a Markov renewal equation for {x̃(n)}.

Remark 3.3. Suppose that A(n) = B(n) for n � 0. In this case, we have

�̃B(n)− �̃A(n) = �̃A(n). (3.7)

This is the standard setting in the M/G/1 type queue.

Let Ũ be the mass function of the Markov renewal measure for the kernel
{L̃(n); n � 0}, i.e.,

Ũ(n) =
∞∑
�=0

L̃(∗�)(n)

(
=

∞∑
�=0

�̃
(∗�)
A (n)

)
, n � 0, (3.8)

where L̃(∗�)(n) = L̃(∗�−1) ∗ L̃(n) by matrix convolution A ∗ B(n) defined as

A ∗ B(n) =
n∑

�=0

A(�)B(n− �),

and L̃(0)(n) = 1(n = 0)I . Then theorem 3.1 implies:

Corollary 3.1. Under the same assumption of theorem 3.1,

x̃(n) = (
Ũ ∗ (�̃B − �̃A

))
(n)x̃(0), n � 0. (3.9)

Here, if βA < 1, the stationary distribution {x(n)} is obtained as

x(n) = x(0)
(
(�B −�A) ∗ U)(n), n � 0, (3.10)



A MARKOV RENEWAL APPROACH TO M/G/1 TYPE QUEUES 187

where U(n) = �π Ũ (n)
T�−1

π , so U(n) is given by

U(n) =
∞∑
�=0

�
(∗�)
A (n), n � 0.

Note that U(0) = I + �A(0)U(0), so (3.10) with n = 0 reduces to (2.5). It should be
noticed that all entries of U(n)’s are finite for all n � 0 if βA � 1, and U(∞) is finite
only if βA < 1. In section 4, (3.9) will be used to consider an asymptotic behavior of
x(n) as n goes to infinity.

3.2. Alternative formulations

There are some variants of the renewal equation (3.4) and the corresponding renewal
function (3.8). Takine’s [18] formulation is one of them. Generally speaking, those
variants come from different choices of the Markov renewal kernel and the initial term
of the sequence {x̃(n)}.

(a) Modifying the starting term. In the Markov renewal equation (3.2), the sequence
starts with n = 0. Instead of this, let it start with n = 1, then we have

x̃(n) = �̃B(n− 1)x̃(0)+
n∑

�=1

L̃(n− �)x̃(�), n � 1. (3.11)

Since x(0) is determined by (2.5), this is reasonable, and makes the solution simplify.
Namely, we have

x(n) = x(0)(�B ∗ U)(n− 1), n � 1, (3.12)

where �B(n) = �B(n + 1). Let us check whether (3.12) is identical with (3.10). The
right-hand side of (3.12) becomes

x(0)(�B ∗ U)(n− 1)= x(0)
n−1∑
�=0

�B(n− �)U(�)

= x(0)

(
n∑

�=0

�B(n− �)U(�)−�B(0)U(n)

)
= x(0)(�B ∗ U)(n)− x(0)U(n),

where (2.5) is used to get the last equality. Since U(n) = �A ∗U(n) for n � 1, (3.12) is
indeed identical with (3.10).
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(b) Modifying the Markov renewal kernel. We next consider to change the Markov
renewal kernel corresponding with the alternative equation (2.4) as well as starting with
n = 1. Since �̃A(1) = �̃A(0) = L̃(0), we have

x̃(n) = (
I − L̃(0)

)−1
�̃B(n)x̃(0)+

n−1∑
�=1

(
I − L̃(0)

)−1
L̃(n− �)x̃(�), n � 1. (3.13)

In this case, the Markov renewal kernel {&̃(n); n � 1} is given by

&̃(n) = (
I − L̃(0)

)−1
L̃(n), n � 1. (3.14)

This {&̃(n)} is a right kernel since

∞∑
n=1

&̃(n)e = (
I − L̃(0)

)−1
∞∑
n=1

L̃(n)e � e,

due to
∑∞

n=0 L̃(n)e � e. Note that this inequality is obtained by lengthy matrix com-
putations in [18] for finite S, while our verification is probabilistic and does not require
for S to be finite. Furthermore, (3.14) is interpreted as a certain conditional probability
mass function.

Summing (3.13) over n, we have, similar to (3.6),

x̃(n) = (
I − L̃(0)

)−1
�̃B(n)x̃(0)+ &̃ ∗ x̃(n), n � 1. (3.15)

This is the Markov renewal equation that is obtained by Takine [18]. This equation is
convenient to directly see the effect of the boundary transition {B(n)}, while the renewal
kernel is more complicated.

4. Hitting probabilities

In this section, we assume that {x(n)} is the stationary distribution in addition to the
assumptions of section 3. For each n � 1, let

T̃n = inf
{
� � 1 | Ỹ� � n

}
.

That is, T̃n is the hitting time of the dual process {Ỹ�} at upward level n � 1. It is well
known that, if A(n) = B(n) for all n � 0, then the stationary distribution {x(n)} is
obtained as [

x(n)
]
i
=
{
πiP̃i(τ̃ < ∞), n = 1,

πiP̃i
(
T̃n−1 < ∞)

, n � 2,
(4.1)

where x(0) = e. In this section, we show that this can be generalized using S×S matrix
H̃ (n) for n � 0, defined as[

H̃ (n)
]
ij

= P̃i
(
T̃n < ∞, X̃T̃n

= j
)
, i, j ∈ S,
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where T̃0 = 0, so H̃ (0) = I . We refer these probabilities as hitting probabilities at upper
level n.

We aim to see how the hitting probabilities are involved in the stationary distribu-
tion {x(n)}. We first note relationship between the hitting probabilities and the renewal
function {Ũ(n)}.

Lemma 4.1. Let �H̃(n) = H̃ (n+ 1)− H̃ (n) for n � 0, then

Ũ (n) = −�H̃(n)
(
I − L̃(0)

)−1
, n � 0. (4.2)

Proof. We derive a renewal equation for this H(n). For n � 1,[
H(n)

]
ij

= P̃i
(
Ỹτ̃ � n, X̃τ̃ = j

)+ P̃i
(
Ỹτ̃ � n− 1, X̃T̃n

= j
)

= [
L̃(n)

]
ij

+
n−1∑
�=0

[
L̃(s)H(n− s)

]
ij

= [
L̃(n+ 1)+ L̃ ∗H(n)

]
ij
.

Since H(0) = L̃(1)+ L̃ ∗H(0)+ I − L̃(0), we have

H(n) = Ũ (n)
(
I − L̃(0)

)+
n∑

�=0

Ũ(�)L̃(n+ 1 − �), n � 0. (4.3)

Hence, we have, for n � 0,

H(n)−H(n+ 1)= (
Ũ(n)− Ũ (n+ 1)

)(
I − L̃(0)

)
+

n∑
�=0

Ũ (�)L̃(n+ 1 − �)− Ũ (n+ 1)L̃(0)

= Ũ (n)
(
I − L̃(0)

)+
n+1∑
�=0

Ũ(�)L̃(n+ 1 − �)− Ũ (n+ 1)

= Ũ (n)
(
I − L̃(0)

)
.

Thus we get (4.2). �

From (4.3) and (4.2), we have, for n � 1,

H̃ (n)= H̃ (n− 1)− Ũ (n− 1)
(
I − L̃(0)

)
=

n∑
�=0

Ũ (�)L̃(n− �). (4.4)

Using this equation together with lemma 4.1, we prove the following result.
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Theorem 4.1. Suppose that (i′), (ii), the stability conditions βA < 1 and (3.5) hold.
Then, we have

xT(1) = �π

[(
�̃B(1)− �̃A(1)

)
x̃(0)+ H̃ (0)x̃(0)

]
. (4.5)

and, for n � 2,

xT(n) = �π

[
−

n−2∑
�=0

�H̃(�)
(
�̃B − �̃A

)
(n− �)x̃(0)+ H̃ (n− 1)x̃(0)

]
. (4.6)

In particular, if A(n) = B(n), then (4.1) is certainly obtained.

Proof. From (3.6) and (4.4), we have, for n � 1

x̃(n)= Ũ ∗ (�̃B − �̃A

)
(n)x̃(0)+

n∑
�=0

Ũ (�)L̃(n+ 1 − �)x̃(0)

= Ũ ∗ (�̃B − �̃A

)
(n)x̃(0)+ Ũ ∗ �̃A(n)x̃(0)+ H̃ (n+ 1)x̃(0).

We compute the second term in the following way.

Ũ ∗ �̃A(n)x̃(0)

=
(
n−1∑
�=0

Ũ (�)L̃(n− 1 − �)+ Ũ (n)
(
�̃A(0)− �̃B(0)

)+ Ũ (n)�̃B(0)

)
x̃(0)

= (
Ũ(n− 1)+ Ũ(n)

)
x̃(0)− 1(n = 1)x̃(0)+ Ũ(n)

(
�̃A(0)− �̃B(0)

)
x̃(0)

From (3.6) with n = 0, we have

x̃(0) = (
�̃B(0)− �̃A(0)

)
x̃(0)+ L̃(1)x̃(0)+ L̃(0)x̃(0).

This yields (
I − L̃(0)

)
x̃(0)= (

�̃B(0)− �̃A(0)
)
x̃(0)

= (
�̃B(0)− �̃A(0)

)
x̃(0)+ �̃B(0)x̃(0).

Hence,

x̃(0) = �̃B(0)x̃(0) = (
I − L̃(0)

)
x̃(0)− (

�̃B(0)− �̃A(0)
)
x̃(0). (4.7)

Substituting this into the above computed term, we have

Ũ ∗ �̃A(n)x̃(0)=
(
Ũ (n− 1)+ Ũ (n)

)(
I − L̃(0)

)
x̃(0)

− Ũ (n− 1)
(
�̃B(1)− �̃A(1)

)
x̃(0)

− Ũ (n)
(
�̃B(0)− �̃A(0)

)
x̃(0)− 1(n = 1)x̃(0).
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Thus, using lemma 4.1, we get (4.6) for n � 2. For n = 1, we note the following
equation obtained from (4.7).

x̃(0)− x̃(0) = L̃(0)x̃(0)− (
�̃B(1)− �̃A(1)

)
x̃(0).

Then, we can get (4.5). �

5. Application to the tail decay rate

We finally consider asymptotic tail behaviors of the stationary measure or distribution.
In this section, we assume (i) and (ii), from which P has the unique stationary measure
{x(n): n � 0}. However, neither A nor P is assumed to be positive recurrent. Similar
to [9,18], we apply the Markov renewal theorem (e.g., see [4,7]) to the renewal equation
of theorem 3.1. To this end, we first require to change the Markov renewal kernel {Q(n)}
so that it has a stationary distribution, then we need an aperiodicity for a stochastic kernel
corresponding to {L̃∗(n)}. Following Alsmeyer [1] and Shurenkov [16], we introduce
the period of Markov renewal kernel {Q(n)}, where Q(n) = A(n + 1), as follows: a
positive integer d is said to be the period of {Q(n)} if it is the greatest positive integer
such that, if [Q(n)]ij > 0, then, n = γ (i)− γ (j)+ d� for some integer �, where γ is a
function from S to {0, 1, . . . , d − 1}. This γ is called a shift function. We will use the
following condition.

(iii) Markov additive kernel {Q(n); n � −1} is aperiodic, i.e., has unit period. In this
case γ ≡ 0.

Remark 5.1. A sufficient condition for (iii) is that {Q(n); n � 0}, i.e., {A(n); n � 1},
is irreducible and aperiodic. This is little stronger, but enough for many applications.

We now closely look at the arguments in section 3.1. Then, we can see that
xT(n), �T

B(n) and �T
A(n) can be replaced by znxT(n), zn�T

B(n) and zn�T
A(n), re-

spectively, in the Markov renewal equation (3.2). Hence, if we can find z such that
�∗
A(z) ≡ ∑∞

n=0 z
n�(n) has the left and right invariant positive vectors, we can obtain

a stochastic kernel for the modified Markov renewal equation. Then, we can apply the
Markov renewal theorem, which concludes under appropriate conditions that znxT(n)

converges as n goes to infinity.
We next observe that, for z > 1,

�∗
A(z)=

∞∑
n=0

zn�A(n+ 1) =
∞∑
n=0

∞∑
�=n+1

znA(�)G�−(n+1)

=
∞∑
�=1

�−1∑
n=0

znA(�)G�−(n+1)

= (
A∗(z)− zI

)
(zI −G)−1 + I. (5.1)
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This equation can read as the Wiener–Hopf factorization of the Markov additive process
(see, e.g., [3]). In the view of (3.2), it suggests the following conditions for the geometric
decay of x(n). For some α > 1, there exist positive vectors h and µ such that

A∗(α)h = αh and µA∗(α) = αµ. (5.2)

In addition to this condition, let us assume

µh < ∞. (5.3)

By (5.1), µ is also a left invariant positive vector of �∗
A(α), and � ≡ (αI − G)h is its

right invariant vector. In the following arguments, this � is shown to be nonnegative.
We first introduce the Markov additive process {(X̂n, Ŷn)} that has the following

Markov additive kernel {Q̂(n)}. Define Q̂(n) and Â(n) as

Q̂(n− 1) = Â(n) = αn−1�−1
h A(n)�h, n � 0.

Let Â = ∑∞
n=0 Â(n). Clearly, Â is irreducible and stochastic by (i) and (5.2), and {Q̂(n)}

is aperiodic by (iii). Furthermore, Â has a finite and positive left invariant vector ν ≡
µ�h by (5.3). Hence, Â, i.e., {X̂n}, is positive recurrent, and we can apply lemma 3.1
for {Â(n)} and ν instead of {A(n)} and π . Thus, the ladder height distribution of the
dual process for {(X̂n, Ŷn)} is given by

L̃Â(n) ≡ �−1
ν �T

Â
(n)�ν, n � 0. (5.4)

Let L̃∗̂
A
(z) = ∑∞

�=0 z
�L̃Â(�). We can also see that Ĝ for {(X̂n, Ŷn)} corresponding with

G is given by

Ĝ = α−1�−1
h G�h. (5.5)

This implies that Ĝ is strictly substochastic. Indeed, if Ĝ is stochastic, then (5.5) leads
to the contradiction that G has eingenvalue α > 1 with eigenvector h. Hence, applying
lemma 2.1 for {(X̂n, Ŷn)}, we must have

βÂ ≡
∞∑
n=1

nνÂ(n)e > 1. (5.6)

Since {Â(n)} is aperiodic, irreducible and positive recurrent, this implies that {L̃Â(n)} is
aperiodic and Harris ergodic by [2, theorem 1]. Thus, L̃∗

Â
(1) has the unique left invariant

nonnegative vector. From (5.5), we also have

�Â(n) = αn
∞∑

�=n+1

�−1
h A(�)G�−n−1�h = αn�−1

h �A(n)�h.

Hence, (5.4) leads to

L̃∗
Â
(z) = �−1

µ

(
�∗
A(αz)

)T
�µ, (5.7)

and L̃∗̂
A
(1) has the left invariant vector η ≡ �T�µ, so � must be nonnegative.
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Remark 5.2. We have used [2, theorem 1] to prove that {L̃Â(�)} is Harris ergodic. We
can also directly proved it using the following facts. First, note that

L̃∗
Â
(1)e = �−1

µ

(
�∗
A(α)

)T
µT = e,

which implies that L̃∗̂
A
(1) is stochastic. Since Ĝ is substochastic and � �= 0, we have

0 < |η|e � αµh + µG�he � 2αµh < ∞,

where |η| stands for the vector whose ith entry is the absolute value of the i-entry of η,
so |η| represents a finite measure. Then, using the dominated convergence theorem,

|η| � |η|L̃∗̂
A
(1) � · · · � |η|(L̃∗̂

A
(1)
)n
, n � 1,

implies that L̃∗̂
A
(1) must have a stationary distribution. Since Â is irreducible, it is not

hard to see that L̃∗
Â
(1) has a single positive recurrent class, so it is Harris ergodic.

Let �∗
B(z) = ∑∞

n=0 �B(n)z
n for z > 1, then, similar to (5.1), we have

�∗
B(z) = z

(
B∗(z)− I

)
(zI −G)−1 + I. (5.8)

We arrive at a main result of this section.

Theorem 5.1. Suppose conditions (i), (ii) and (iii) and that there exist α > 1 and pos-
itive vectors h and µ satisfying (5.2) and (5.3). Let {x(n)} be the stationary measure
of P . If

x(0)B∗(α)h < ∞, (5.9)

then we have

lim
n→∞ αnx(n) = x(0)(B∗(α)− I )h

µ(A∗)′(α)h
µ, (5.10)

so {x(n)} can be normalized as a probability measure, where (A∗)′(α) = d/dzA∗(z)|z=α,
and µ(A∗)′(α)h is positive but may be infinite. In the latter case, the right-hand side
of (5.10) is considered as zero. Otherwise, if x(0)B∗(α) = ∞, then

x(n) = x(0)�B ∗ U(n)+ o
(
x(0)�B ∗ U(n)), n → ∞, (5.11)

where o(f (n)) is the componentwise small order for vector f (n).

Proof. Let x̂µ(n) = αn�−1
µ x(n)T. Then, premultiplying (3.2) by αn�−1

µ yields

x̂µ(n) = αn�−1
µ

(
�B(n)−�A(n)

)T
x(0)T + L̃Â ∗ x̂µ(n), n � 0.

Since the Markov renewal kernel {L̃Â(n)} is aperiodic and Harris recurrent, we can apply
the Markov renewal theorem (e.g., see [7, theorem 4.17]), and we get

lim
n→∞ x̂µ(n) = 1

η(L̃∗̂
A
)′(1)e

e�T(�∗
B(α)−�∗

A(α)
)T

x(0)T,
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if x(0)(�∗
B(α)−�∗

A(α))� is finite. We show that (5.9) implies this. From (5.1) and (5.8),
we have (

�∗
B(α)−�∗

A(α)
)
� = (

αB∗(α)− A∗(α)
)
(αI −G)−1�

= (
αB∗(α)− A∗(α)

)
h

= α
(
B∗(α)− I

)
h,

where the second equality is obtained by � = (αI −G)h. Since x(0)(�∗
B(α)−�∗

A(α))�
must be nonnegative, we get its finiteness by (5.9). From (5.1), we have(

�∗
A(z)− I

)
(zI −G) = A∗(z)− zI.

Differentiate this by z < α, then premultiply the resulted formula by µ and postmulti-
plying it by h. Letting z ↑ α in this formula yields

µ
(
�∗
A

)′
(α)� = µ

(
A∗)′(α)h.

Since (5.7) implies

η
(
L̃∗
Â
)′(1)e = αµ

(
�∗
A

)′
(α)�,

we arrive at (5.10). Finally, (5.11) is immediate from (3.10). �

Remark 5.3. Theorem 5.1 generalizes [17, theorem 1], which considers the case that
A(n) = 0 for n � 3 and B(n) = 0 for n � 2. Theorem 5.1 also weakens the conditions
of theorem 1 in such a way that the first part of condition (9) and condition (10) there
can be removed.

Remark 5.4. If S is finite, the first part of theorem 5.1 is obtained for the tail probabilities
in [18], in which kernel {&̃(n)} is used. In [18], the aperiodic conditions are given for
{&̃(n)}, and the periodic case is also considered (see [18, theorem 2]). It is not hard to see
that theorem 5.1 can be similarly extended for the periodic case using [1, theorem 2.1].

For the completeness of our discussions, we consider other possibilities that con-
dition (5.2) and (5.3) may not be satisfied. In what follows, we assume (5.9), and refer
to the surprimum of z > 1 such that lim supn→∞ znf (n) < ∞ as the weak geometric
decay rate of a function f � 0.

We first closely look at (3.2) and our arguments before theorem 5.1. Then, we can
see that the convergence radii of

gij (s, z) =
∞∑
n=0

sn
[(
�∗
A(z)

)n]
ij

with respect to s play a key role. For simplicity, suppose that �∗
A(1) is irreducible. Then,

gij (s, z) have a common convergence radius for each fixed z > 0 (see [15, chapter 6]).
Let α = sup{z; gij (1, z) < ∞}, and consider the following three cases. Note that
g(1, α) = +∞ implies α > 1.
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Case 1. g(1, α) = ∞ and [�∗
A(α)]ij < ∞ for all i, j ∈ S. This case is

called 1-recurrence, and �∗
A(α) always have positive left and right invariant vectors (see,

e.g., [15]). Hence, (5.10) is obtained. Note that this case is implied by (5.2) and (5.3).
On the other hand, these conditions hold in this case if αnx(n) converges to a positive
constant as n goes infinity, since the convergence implies αµ(A∗)′(α)h < ∞.

Case 2. g(1, α) = ∞ and [�∗
A(α)]ij = ∞ for some i, j ∈ S. In this case,

(�∗
A(α))

k = ∞ for sufficiently large k by the irreducibility. Note that (3.14) and (3.15)
hold if L̃(n) and x̃(n) are replaced by �A(n)

T and xT(n), respectively, where &̃(n) is
replaced by (I −�A(0)T)−1�A(n)

T. Hence, from (3.15), it can be seen that

∞∑
n=1

αnx(n)T = ∞.

On the other hand, for any positive β < α, g(1, β) < ∞. So, (I − �̃∗
A(β))

−1 exists.
From this and the corresponding formula to (3.15), we can see

∞∑
n=1

βnx(n)T < ∞.

Hence, the α is the weak geometric decay rate.
Case 3. g(1, α) < ∞. In this case, the similar arguments as above show that

αnx(n) converges to zero vector as n goes to infinity. On the other hand, for any
β > α, [�∗

A(β)]ij = ∞ for some i, j ∈ S. Hence, the arguments in case 2 shows
that

∑∞
n=1 β

nx(n)T = ∞. Thus, if α > 1, then the α is again the weak geometric decay
rate. However, if α = 1, we do not have any geometric decay rate.

As we noted, conditions (5.2) and (5.3) characterize the geometric decay of x(n) in
the strict sense, i.e., in the sense that αnx(n) converges to a positive constant for some α.
However, we have assumed that A is irreducible and aperiodic. This may not be true in
general even if P is positive recurrent. So, conditions (5.2) and (5.3) may not be required
for the strictly geometric decay if A is not irreducible or periodic.

It may be also interesting to consider the cases when the background process has
a more general state space and when the additive component is continuous. Similar
results can be expected, but there would be many technical issues to overcome to get
them. Another important issue is how to find the α and the corresponding eigenvectors
of A∗(α) in each application. At present, we only have a few examples (e.g., see [17]).
Those issues would be challenging problems.
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