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ABSTRACT

This paper considers scheduling problems where jobs are dispatched in batches. The objective is to minimize
the sum of the completion times of the batches. While a machine can process only one job at a time, multiple
machines can simultaneously process jobs in a batch. This simple environment has a variety of real world
applications such as part kitting and customer order scheduling.

A heuristic is presented for the parallel machine version of the problem. Also, a tight worst case bound on
the relative error is found. For the case of two parallel machines, we examine two heuristics, which are based
on simple scheduling rules. We find tight worst case bounds of 6/5 and 9/7 on the relative error and show
that neither procedure is superior for all instances. Finally, we empirically evaluate these two heuristics. For
large problems, the methods find solutions that are close to optimal.
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1. INTRODUCTION

This work considers a scheduling problem where each job is part of some batch (customer order).
The composition of the jobs in the batch is prespecified. While a machine can process only one job
at a time, multiple machines can simultaneously process jobs in the batch. The completion time
of the batch is the latest completion time of any job in the batch. The objective is to minimize the
sum of the batch completion times. In a production shop where jobs are dispatched by batches,
this objective minimizes total Work in Process (WIP).

Various practical problems motivate our research. One example is scheduling customer orders.
Consider a manufacturing facility which produces different types of products. A customer can
request a variety of products in an order. After the entire order is produced, the products are
shipped to the customer. Each order is a batch and a product is a job. The composition of the
batch is specified by the order.

Another application of our research is in the production of components for subsequent assem-
bly (part kitting). Consider a production process with two stages, say fabrication and assembly.
Final products are assembled from the various components. The components are produced by
machines in the fabrication stage. The components required to produce one unit of a final product
form a batch. Assembly of a product can begin only when all required components complete the
fabrication stage.
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A final example is crane scheduling at a port. The importance of the problem is noted by
Peterkofsky and Daganzo (1990). They report that a typical cargo ship spends 60% of its time
in port, costing about $1000 per hour. Each ship has several holds, and each hold requires either
loading or unloading. A crane represents a machine, and a ship and a hold can be considered as
a batch and a job, respectively. At most one crane can load or unload one hold at a time. Since
there exist multiple holds on a ship, more than one crane can simultaneously work on a ship. A
ship stays at berth until all work on the ship completes. The objective is to minimize the total time
that the ships spend at port.

For a comprehensive survey of batch scheduling problems, see Jordan (1996). Also, reviews of
batching and lot-sizing decision problems are given by Potts and Van Wassenhove (1992) and
Webster and Baker (1995).

In our more restricted problem, the completion time is based on the latest completion time of a
job in the batch. Julien and Magazine (1990) examine a single machine problem where the objective
is to minimize the total completion time of the batches. A job-dependent setup time is incurred
between two different types of jobs. They develop a polynomial time dynamic programming (DP)
algorithm for the problem when there are two types of jobs and when the batch processing order
is fixed. Coffman, Nozari, and Yannakakis (1989) examines a similar problem where the batch
processing order is not fixed. Baker (1988) considers a problem similar to Coffman, Nozari, and
Yannakakis (1989). However, for one type of job, those jobs processed during the same produc-
tion run (setup) are not available until the completion of the production run. This restriction is
called batch availability (see Santos and Magazine, 1985). Gupta, Ho, and van der Veen (1997)
consider the single machine problem where each order must have one job from each of several job
classes. Also, there is a setup time whenever the job class changes. Gerodimos, Glass, and Potts
(2000) study single machine problems where each batch has one common job and one distinct
job.

Daganzo (1989) and Peterkofsky and Daganzo (1990) consider a crane scheduling problem.
Both papers consider an open shop problem with identical machines, where jobs are preempt-
able. The objective function is to minimize the sum of weighted batch tardiness. Daganzo (1989)
develops a heuristic procedure and finds an optimal solution for some special cases. Peterkofsky
and Daganzo (1990) develop a branch and bound solution procedure.

The batch scheduling problems that we discuss are simpler than most types of batch problems
because no setup times exist between different jobs or different batches. Blocher and Chhajed
(1996) examine the problem considered in this work, minimizing the sum of batch completion
times in a parallel machine environment. They show that the problem is NP-hard, develop several
heuristic methods, and two lower bounds. Blocher, Chhajed, and Leung (1998) generalize this
work to consider dispatching rules in a job shop environment.

We first introduce some notation. Next, we study the problem P‖ ∑
CBi , where CBi is the

completion time of batch Bi . We develop a tight worst case bound for a heuristic procedure. Next,
for problem P2‖ ∑

CBi we present a new heuristic and find a tight worst case bound of 9/7. We
find a tight worse case bound of 6/5 for one of the heuristics of Blocher and Chhajed (1996). We
show that neither heuristic is always superior. Then, we empirically evaluate these two heuristics.
For problems with approximately 2500 jobs, the average relative error is less than 0.001. Also, we
find classes of problems where the 9/7 heuristic may be preferable. Finally, some open problems
and future research are discussed.
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2. NOTATION

The decision variables in our models are

σk = schedule of all jobs on machine k for k ∈ M
σ = schedule of all jobs = (σ1, σ2, . . . , σm).

Other notation that is used in this work include

n = number of jobs
N = set of jobs = {1, 2, . . . , n}
b = number of batches
B = set of batches = {1, 2, . . . , b}
ni = number of jobs in batch i for i ∈ B
Bi = set of jobs in batch i for i ∈ B = {∑i−1

j=1 n j + 1,
∑i−1

j=1 n j + 2, . . . ,
∑i

j=1 n j }
βi (σ ) = first job selected for processing in Bi for i ∈ B
m = number of machines
M = set of machines = {1, 2, . . . , m}
p j = processing time of job j for j ∈ N
Pi = ∑

j∈Bi
p j = total processing time of batch i ∈ B

Ci (σk) = completion time of batch i on machine k for i ∈ B and k ∈ M
Ci (σ ) = completion time of batch i in schedule σ for i ∈ B = maxk∈M Ci (σk)
z∗ = value of optimal schedule.

We represent βi (σ ) as βi and Ci (σ ) as Ci when there is no ambiguity.
The standard classification scheme for scheduling problems (Graham et al., 1979) is α1|α2|α3,

where α1 describes the machine structure, α2 gives the job characteristics or restrictive requirements,
and α3 defines the objective function to be minimized. We extend this scheme to provide for batch
completion times by using CBi in the α3 field. This notation is used to eliminate the confusion
between our problem and the classical scheduling problem.

All of the heuristic procedures we develop use the following rule to determine the order in which
the batches are processed.

SB (Shortest Batch): When a machine becomes available, an unscheduled job in the batch with a
shortest total processing time is selected first for processing.

3. PROBLEM P‖∑CBi

In this section, we construct a heuristic that has a worst case bound on the relative error of 2−1/m.
First we establish some properties of an optimal schedule.

Since there are no restrictions that delay jobs, we have the following result.

Remark 1. For problem P‖ ∑
CBi , there exists an optimal schedule without inserted idle time.

We say that batch i ∈ B is separated if on some machine k ∈ M, jobs in batch i are not processed
consecutively.

Lemma 1 (Blocher and Chhajed, 1996). For problem P‖ ∑
CBi , there exists an optimal schedule

where no batch is separated.
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As a result of Remark 1 and Lemma 1, we only consider those schedules where there is no
inserted idle time and where batches are not separated.

Heuristic H1 uses the SB rule to determine the batch sequence. To determine the job-machine
assignment, an LS (List Scheduling) rule is used. For this rule, when a machine becomes available,
an unscheduled job with the smallest index is selected for processing. We assume that the order of
the jobs is arbitrary.

Heuristic H1

0. Reindex the batches so that Pi ≤ Pi+1 for i = 1, 2, . . . , b − 1.

Set i = j = 1 and Fk = 0 for k = 1, 2, . . . , m.

1. Select the first available machine u = argmink=1,2,...,m{Fk}. Assign job j in batch i to machine
u. Set Fu = Fu + p j and j = j + 1.

Repeat Step 1 until all jobs in batch i are scheduled.
2. Set Ci = maxk=1,2,...,m{Fk}.

If i < b, then set i = i + 1 and go to Step 1.
Otherwise, output �b

i=1Ci and stop.

In Step 0, reindexing the batches requires O(b log b) time. By storing F1, F2, . . . , Fm in a heap in
Step 1, selecting Fu requires O(ni log m) time for i = 1, 2, . . . , b. Since all other operations require
O(n) time, the time requirement of H1 is O(n log m + b log b).

Before we establish the worst case relative error of H1, we provide a lower bound for the optimal
cost based on linear programming. Assume that the batches are indexed so that P1 ≤ P2 ≤ · · · ≤
Pb.

Lemma 2 (Blocher and Chhajed, 1996). For problem P‖ ∑
CBi ,

bP1

m
+ (b − 1)P2

m
+ · · · + Pb

m
≤ z∗.

Consider the Linear Programming (LP) relaxation of problem P‖ ∑
CBi where a job can be split

into pieces of any size and processed, simultaneously if desired, on multiple machines. Observe that
an optimal LP solution, zLP, divides each batch into m equal processing times and then processes
them in index order. Consequently,

zLP = bP1

m
+ (b − 1)P2

m
+ · · · + Pb

m
.

The next theorem establishes a worst case bound for the solution value found by Heuristic H1,
zH1.

Theorem 1. For problem P‖ ∑
CBi , zH1/z∗ ≤ 2 − 1/m and this bound is tight.

Proof. Let σ ∗ and σ H1 be an optimal schedule and the schedule produced by H1, respectively.
Suppose that for batch v ∈ B, job � ∈ Bv finishes last at time Cv(σ H1). Then, Cv(σ H1) ≤ Cv(σ H1

k ) +
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p� for all k = 1, 2, . . . , m, because job � is assigned to the first available machine. Thus,

Cv(σ H1) ≤
∑v

i=1 Pi − max j∈Bv
{p j }

m
+ max

j∈Bv

{p j }

=
∑v

i=1 Pi

m
+

(
m − 1

m

)
max
j∈Bv

{p j }. (1)

Then,

(
2 − 1

m

)
z∗ = z∗ +

(
m − 1

m

) b∑
i=1

Ci (σ ∗)

≥ P1

m
+ P1 + P2

m
+ · · · +

∑b
i=1 Pi

m

+
(

m − 1
m

)(
max
j∈B1

{p j } + max
j∈B2

{p j } + · · · + max
j∈Bb

{p j }
)

=
[

P1

m
+

(
m − 1

m

)
max
j∈B1

{p j }
]

+
[

P1 + P2

m
+

(
m − 1

m

)
max
j∈B2

{p j }
]

+ · · · +
[∑b

i=1 Pi

m
+

(
m − 1

m

)
max
j∈Bb

{p j }
]

≥ C1(σ H1) + C2(σ H1) + · · · + Cb(σ H1)

= zH1.

The first inequality follows from Lemma 2, and the second inequality follows from (1).
We now show that this bound is tight by using an example from Graham (1966). Consider an

instance of the problem where n = 2m − 1 and b = 1. Also, p j = m − 1 for j = 1, 2, . . . , m −
1, p j = 1 for j = m, m + 1, . . . , 2m − 2, and p2m−1 = m. Now, σ H1

1 = (1, 2m − 1), σ H1
k = (k) for

k = 2, 3, . . . , m−1, andσ H1
m = (m, m + 1, . . . , 2m − 2). The solution value zH1 = 2m − 1. However,

σ ∗
k = (m + k − 1, k) for k = 1, 2, . . . , m − 1 and σ ∗

m = (2m − 1). The optimal solution value is m.
Thus, zH1/z∗ = (2m − 1)/m = 2 − 1/m, and the bound is tight. �

Remark 2 (Graham, 1966). The bound 2 − 1/m is also the worst case bound using the LS rule
for problem P‖Cmax.

4. THE SET LPT HEURISTIC

In this section, we introduce a heuristic procedure to find a schedule for problem P2‖ ∑
CBi that

has a worst case relative error of 9/7. The SB rule determines the batch sequence. Each batch
is partitioned into two sets using the LPT (Longest Processing Time) rule. For this rule, when a
machine becomes available, an unscheduled job with the longest processing time is selected for
processing. The partitioning process assumes that processing of a batch can start on both machines
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at time zero. The set which has larger total processing time is assigned to the machine that becomes
available first. The set which has smaller processing time is assigned to the other machine.

Heuristic H2

0. Reindex the batches so that Pi ≤ Pi+1 for i = 1, 2, . . . , b − 1.
For i = 1, 2, . . . , b, reindex the jobs so that p j ≥ p j+1 if j, j + 1 ∈ Bi .
Set i = j = 1 and F ′

1 = F ′
2 = F1 = F2 = 0.

1. Assign job j in batch i to the first available machine k = argmin {F ′
1, F ′

2}. Set F ′
k = F ′

k + p j

and j = j + 1. Repeat Step 1 until all jobs in batch i are scheduled.
2. Find � and u such that � = argmin {F1, F2} and u = argmin {F ′

1, F ′
2}. Set F� = F� + F ′

3−u and
F3−� = F3−� + F ′

u .
3. Set Ci = max{F1, F2}.

If i < b, then set i = i + 1, F ′
1 = F ′

2 = 0, and go to Step 1.
Otherwise, output

∑b
i=1 Ci and stop.

In Step 0, reindexing the batches requires O(b log b) time and reindexing the jobs in each batch
i = 1, 2, . . . , b requires O(

∑b
i=1 ni log ni ) time. Since all other operations require O(n) time, the

time requirement of H2 is O(n log n).
We motivate the use of the LPT rule by observing that for the classical scheduling problem

P‖Cmax, this rule provides a good heuristic solution (Graham, 1969). Since minimizing the com-
pletion time of a given batch is a makespan problem, scheduling each batch by this rule is likely
to provide good schedules.

We assume that the jobs are indexed so that

P1 ≤ P2 ≤ · · · ≤ Pb (2)

and

p j ≥ p j+1 if j, j + 1 ∈ Bi , (3)

i.e., the batches are in SB order, and the jobs within a batch are in LPT order, respectively.
Let σ H2 be the schedule found by Heuristic H2, and let zH2 be sum of batch completion times

of this schedule. In the remainder of this section, we establish that zH2/z∗ ≤ 9/7 and show that
this bound is tight.

For k, i ∈ B, suppose k is the last batch to complete before i in schedule σ . Let

δi (σ ) =
{

Ci (σ ) − Ck(σ ) if only one machine processes batch i

|Ci (σ1) − Ci (σ2)| if both machines process batch i.

For each i ∈ B, δi (σ ) is the absolute difference between completion time of batch i on machine
1 and machine 2 in σ . If batch i is processed on only one machine, then δi (σ ) is the difference
between the completion time of batch i and the completion time of the last batch to complete
before i (see Figure 1). If batch i is the first batch to complete, then we assume Ck(σ ) = 0. We use
δi (σ ) to provide a description of the completion time of batch i . If G ⊆ B is the set of batches that
complete no later than batch i , then

Ci (σ ) =
∑

�∈G P� + δi (σ )
2

. (4)
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Figure 1. Examples of δi where the last two jobs processed in batch i are j and � : (a) batch i is processed by both machines;
(b) batch i is processed only by M2 and q is the last job to complete in batch k.

Notice that since P� is known for � = 1, 2, . . . , i, Ci (σ ) only depends on the size of
δi (σ ).

For i ∈ B, let C̄i be the minimal makespan of just the jobs in batch i and let γ̄ i be the corre-
sponding schedule. Similarly, let CL

i be the makespan of the schedule generated by the LPT rule
for batch i , and let γ i be the corresponding schedule. Let δ̄i = 2C̄i − Pi and δL

i = 2CL
i − Pi for

i ∈ B. For i ∈ B, δ̄i is the difference between completion time of batch i on the two machines in
γ̄ i . Similarly, δL

i is the difference between completion time of batch i on the two machines in γ i .
For notational convenience, let δ∗

i = δi (σ ∗) and δH2
i = δi (σ H2) for i ∈ B, and δH2

0 = 0. From the
steps of H2,

δH2
i = ∣∣δL

i − δH2
i−1

∣∣, i = 1, 2, . . . , b. (5)

The next remark establishes a lower bound for δH2
i .

Remark 3. For i ∈ B, δH2
i ≤ Pi .

Proof. Follows from the fact that δL
� ≤ P� for � ∈ B and from (5). �

We now present a preliminary result when job βi + 3 completes last in γ i for i ∈ B.

Lemma 3. If in γ i , batch i completes when job j ≥ βi + 3 finishes processing for i ∈ B, then
δL

i ≤ Pi/5.

Proof. We first consider the case when job j = βi + 3. Suppose pβi ≥ pβi +1 + pβi +2. From (3),
pβi +3 ≤ Pi/5. The result now follows.
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Alternatively, suppose that pβi < pβi +1 + pβi +2. Then,

δL
i = pβi + pβi +3 − pβi +1 − pβi +2 −

ni −1∑
j=4

pβi + j .

Since pβi +3 ≤ pβi +2, δL
i ≤ pβi − pβi +1. If, pβi − pβi +1 < Pi/5, then the result follows. If pβi − pβi +1 ≥

Pi/5, then 2pβi +1 + pβi +2 + pβi +3 ≤ 4Pi/5 and pβi +3 ≤ Pi/5.
When job j ≥ βi + 4 is the last job to complete, the result follows from the definition of δ and

from (3). �

Next, we present some results regarding the bound for δL
i .

Lemma 4. If CL
i > C̄i for i ∈ B, then δL

i ≤ Pi/5.

Proof. Since CL
i > C̄i , jobs βi and βi + 2 can not be the last jobs to complete in γ i . Job βi + 1

can never be the last job to complete in γ i . If job j ≥ βi + 3 is the last job to complete in γ i , then
the result follows from Lemma 3. �

Lemma 5. Suppose CL
i = C̄i for i ∈ B. In σ ∗, if batches v1, v2, . . . , v� complete while batch i is

processing, then δ∗
i + ∑�

j=1 δ∗
v j

≥ δL
i for integer � ≥ 0.

Proof. Consider the partial schedule of σ ∗ from the start to the completion of batch i . Let
the start time of batch i in σ ∗ be Si (σ ∗). In σ ∗, the amount of time that the jobs of batch v j

are processed in the interval [Si (σ ∗), Ci (σ ∗)] is at most δ∗
v j

, for j ∈ {1, 2, . . . , �}. Consequently,
C̄i ≤ Ci (σ ∗) − Si (σ ∗) ≤ (Pi + ∑�

j=1 δ∗
v j

+ δ∗
i )/2. Thus,

Pi + ∑�
j=1 δ∗

v j
+ δ∗

i

2
≥ C̄i = Pi + δ̄i

2
= Pi + δL

i

2
.

The last equality holds because CL
i = C̄i by assumption. �

Without loss of generality, we assume that b ≥ 4. If b < 4, then we add dummy batches which
have zero processing time. In σ ∗, let the batches complete in the order of v1, v2, . . . , vb. From (2)
and (4),

zH2

z∗ =
∑k

i=1 Ci (σ H2)∑k
i=1 Ci (σ ∗)

= bP1 + δH2
1 + (b − 1)P2 + δH2

2 + · · · + 2Pb−1 + δH2
b−1 + Pb + δH2

b

bPv1 + δ∗
v1

+ (b − 1)Pv2 + δ∗
v2

+ · · · + Pvb + δ∗
vb

≤ bP1 + (b − 1)P2 + · · · + Pb + ∑b
i=1 δH2

i

bP1 + (b − 1)P2 + · · · + Pb + ∑b
i=1 δ∗

i

.
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From Remark 3, since δH2
i ≤ Pi , for i ∈ B, we have, for � = 0, 1, . . . , b − 4,

bP1 + (b − 1)P2 + · · · + (b − �)P�+1 + ∑�+1
i=1 δH2

i

bP1 + (b − 1)P2 + · · · + (b − �)P�+1

= 1 +
∑�+1

i=1 δH2
i

bP1 + (b − 1)P2 + · · · + (b − �)P�+1

= 1 + δH2
1 + δH2

2 + · · · + δH2
�+1

bP1 + (b − 1)P2 + · · · + 4P�+1

≤ 1 + 1
4

<
9
7
.

To establish that zH2/z∗ ≤ 9/7, it is sufficient to show that there is an integer q ≥ 0 such that
q ≤ b − 3, and

(b − q)Pq+1 + (b − q − 1)Pq+2 + · · · + Pb + ∑b
i=q+1 δH2

i

(b − q)Pq+1 + (b − q − 1)Pq+2 + · · · + Pb + ∑b
i=1 δ∗

i

≤ 1 +
∑b

i=q+1 δH2
i

(b − q)Pq+1 + (b − q − 1)Pq+2 + · · · + Pb + ∑b
i=1 δ∗

i

≤ 9
7
. (6)

This follows because

zH2

z∗ ≤
[
bP1 + · · · + (b − q + 1)Pq + ∑q

i=1 δH2
i

] + [
(b − q)Pq+1 + · · · + Pb + ∑b

i=q+1 δH2
i

]
[
bP1 + · · · + (b − q + 1)Pq + ∑q

i=1 δ∗
i

] + [
(b − q)Pq+1 + · · · + Pb + ∑b

i=q+1 δ∗
i

] .

The next theorem establishes the worst case bound for H2.

Theorem 2. For problem P2‖ ∑
CBi , zH2/z∗ ≤ 9/7 and this bound is tight.

Proof. We consider five cases depending on the sign of δL
� − δH2

�−1 for � = b − 2, b − 1, b.

Case 1. δH2
b−3 ≤ δL

b−2, δ
H2
b−2 > δL

b−1, and δH2
b−1 > δL

b .

From (5),

δH2
b−2 + δH2

b−1 + δH2
b = (

δL
b−2 − δH2

b−3

) + (
δH2

b−2 − δL
b−1

) + (
δH2

b−1 − δL
b

)
= (

δL
b−2 − δH2

b−3

) + (
δL

b−2 − δH2
b−3 − δL

b−1

) + (
δH2

b−2 − δL
b−1 − δL

b

)
= 2δL

b−2 − 2δH2
b−3 − δL

b−1 + (
δL

b−2 − δH2
b−3 − δL

b−1 − δL
b

)
≤ 3δL

b−2.
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Suppose CL
b−2 > C̄b−2. By Lemma 4, δL

b−2/Pb−2 ≤ 1/5. Thus,

3Pb−2 + 2Pb−1 + Pb + δH2
b−2 + δH2

b−1 + δH2
b

3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + 3δL
b−2

3Pb−2 + 2Pb−1 + Pb

≤ 1 + 3δL
b−2

3Pb−2

<
9
7
.

Hence, the result is established from (6).
Alternatively, suppose CL

b−2 = C̄L
b−2. From Lemma 5, δL

b−2 ≤ ∑b
i=1 δ∗

i . By Remark 3,
2δL

b−2/(3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i ) ≤ 2/7. Hence,

3Pb−2 + 2Pb−1 + Pb + δH2
b−2 + δH2

b−1 + δH2
b

3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 +
(
3Pb−2 + 2Pb−1 + Pb + δL

b−2

) + 2δL
b−2

3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + 2δL
b−2

3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 9
7
.

Hence, from (6), the result is established.
For the remaining cases, the proof is similar, except that

Case 2. δH2
b−3 > δL

b−2, δ
H2
b−2 > δL

b−1, and δH2
b−1 > δL

b implies δH2
b−2 + δH2

b−1 + δH2
b ≤ 3δH2

b−3. Also, the upper
bound is 14/11.

Case 3. δH2
b−2 ≤ δL

b−1 and δH2
b−1 > δL

b implies δH2
b−2 + δH2

b−1 + δH2
b ≤ 2δL

b−1. Also, the upper bound is 5/4.
Case 4. δH2

b−3 > δL
b−2 and δH2

b−1 ≤ δL
b implies δH2

b−2 + δH2
b−1 + δH2

b ≤ δH2
b−3 + δL

b . Also, the upper bound
is 6/5.

Case 5. δH2
b−3 ≤ δL

b−2 and δH2
b−1 ≤ δL

b implies δH2
b−2 + δH2

b−1 + δH2
b ≤ δL

b−2 + δL
b . Also, the upper bound

is 6/5.

Now, we show that the bound is tight. Consider the instance where b = 3, n1 = 1, n2 =
2, n3 = 2, p1 = 2 and p2 = p3 = p4 = p5 = 1 (see Figure 2). An optimal schedule is σ ∗ = (σ ∗

1 , σ ∗
2 )

where σ ∗
1 = (2, 3, 5) and σ ∗

2 = (1, 4), and z∗ = 2 + 2 + 3 = 7. However, σ H2 = (σ H2
1 , σ H2

2 ) where
σ H2

1 = (1, 3, 5) and σ H2
2 = (2, 4). The corresponding solution value is zH2 = 2 + 3 + 4 = 9. Hence,

zH2/z∗ = 9/7 for the given example. �

5. JOB LPT HEURISTIC

As mentioned in the prior section, the LPT rule finds a good schedule for problem P‖Cmax. To
find a schedule for problem P2‖ ∑

CBi , Heuristic H3 tries to obtain the maximum benefit of the
LPT rule. Based on the current partial schedule, this rule is used to decide both the job processing
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Figure 2. A worst case example of H2.

order and the machine-job assignment. Similar to the other procedures, the SB rule determines
the batch sequence.

Heuristic H3 (Blocher and Chhajed, 1996)

0. Reindex the batches so that Pi ≤ Pi+1 for i = 1, 2, . . . , b − 1.
For i = 1, 2, . . . , b, reindex the jobs so that p j ≥ p j+1 if j, j + 1 ∈ Bi .
Set i = j = 1 and F1 = F2 = 0.

1. Select the first available machine k = arg min{F1, F2}. Choose job j in batch i and assign it
to machine k. Set Fk = Fk + p j and j = j + 1.

Repeat Step 1 until all jobs in batch i are scheduled.
2. Set Ci = max{F1, F2}.

If i = b, then output
∑b

i=1 Ci and stop.
Otherwise, set i = i + 1 and go to Step 1.

In Step 0, reindexing the batches requires O(b log b) time and reindexing the jobs in each batch
i = 1, 2, . . . , b requires O(

∑b
i=1 ni log ni ) time. Since all other operations require O(n) time, the

time requirement of H3 is O(n log n).
As described, the job-machine assignment rule of H3 is the LPT rule. Also, from Lemma 1,

there exists an optimal schedule where no batch is separated.
We define some notation. Let σ H3 be the schedule found by Heuristic H3 and zH3 be total

completion time of this schedule. Also, let δH3
i = δi (σ H3) for i ∈ B. To establish that the worst case

relative error bound for Heuristic H3 is 6/5, we present two preliminary results concerning δH3
i .

Lemma 6. For i = 2, 3, . . . , b, δH3
i−1 + δH3

i ≤ Pi .

Proof. Because jobs are assigned to the first available machine, δH3
i−1 ≤ Pi−1. Since batches start

processing in SB order in H3, δH3
i−1 ≤ Pi . Now, by definition of δ, δH3

i can be no larger than
Pi − δH3

i−1. �

Lemma 7. If in σ H3, βi + j is the last job to complete in batch i ∈ B, then δH3
i ≤ pβi+ j ≤ Pi/

( j + 1).
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Figure 3. Examples for Lemma 8: (a) pβi ≤ δH3
i−1 and (b) pβi > δH3

i−1.

Proof. The first inequality follows from the definition of δ and from the fact that jobs are
assigned to the first available machine. The second inequality follows from (3). �

Much of our analysis is based on which job is last to complete in a given batch in σ H3. We now
present some preliminary results for various possible final jobs.

Lemma 8. Suppose that in σ H3, batch i completes when job βi + 2 finishes processing for i =
2, 3, . . . , b. If pβi ≤ δH3

i−1, then δH3
i ≤ (Pi + δH3

i−1)/5. If pβi ≥ δH3
i−1, then δH3

i ≤ (Pi − δH3
i−1)/3.

Proof. Suppose pβi ≤ δH3
i−1 (see Figure 3(a) for an example). Assign a dummy job of size δH3

i−1 to
batch i . This dummy job is now the largest job in batch i . Since both the dummy job and βi start
at the same time, the schedule of this modified batch under H3 is the same as in γ i . By Lemma 3,
the result follows.

Alternatively, suppose pβi ≥ δH3
i−1. If jobs βi + 1 and βi + 2 are processed on the same machine

in σ H3, then pβi − δH3
i−1 ≥ pβi +1 ≥ pβi +2 ≥ δH3

i (see Figure 3(b) for an example). If jobs βi + 1 and
βi + 2 are not processed on the same machine in σ H3, then

δH3
i = pβi +2 + (

pβi − δH3
i−1

) − pβi +1 −
ni −1∑
j=3

pβi + j .

Since pβi +1 ≥ pβi +2, δ
H3
i ≤ pβi − δH3

i−1. From Lemma 7, δH3
i ≤ pβi +2 ≤ pβi +1. Thus,

δH3
i

Pi − δH3
i−1

≤ δH3
i

pβi + pβi +1 + pβi +2 − δH3
i−1

≤ 1
3
.

�
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Figure 4. Examples for Lemma 9: (a) pβi ≤ δH3
i−1 and (b) pβi > δH3

i−1

Lemma 9. If batch i completes in σ H3 when job βi + 1 finishes processing, then δH3
i ≤

min{δH3
i−1, Pi/2} for i = 2, 3, . . . , b.

Proof. From Lemma 7, δH3
i ≤ pβi +1 ≤ Pi/2.

Suppose pβi ≤ δH3
i−1 (see Figure 4(a)). Then by Lemma 7, δH3

i ≤ pβi +1, and the result follows.
Alternatively, suppose pβi ≥ δH3

i−1. Assume without loss of generality that in σ H3, job βi is processed
on machine 2. Then, job βi + 1 is processed on machine 1. Because job βi + 1 completes last
in batch i , jobs βi + 2, βi + 3, . . . , βi + ni − 1 are processed on machine 2 (see Figure 4(b)).
Hence,

δH3
i = δH3

i−1 + pβi +1 − pβi −
ni −1∑
j=2

pβi + j .

Since pβi ≥ pβi +1, δ
H3
i ≤ δH3

i−1. �

We now present two results which provide lower bounds for
∑b

l=1 δ∗
l .

Lemma 10. If in σ H3, βi is the last job to complete in batch i, then δH3
i−1 + δH3

i = pβi −∑
j∈Bi \{βi } p j ≤ ∑b

l=1 δ∗
l .

Proof. If βi is the last job to complete in σ H3, then the last job to complete in batch i − 1 and
the remaining jobs in batch i are processed on a different machine than βi . This establishes the
first equality.

Without loss of generality, suppose that βi is processed on machine 2 in σ ∗. For integer r ≥ 0,
let v1, v2, . . . , vr be the batches that complete in σ ∗ while job βi is processing. By assumption, the
last job from each of these batches are processed on machine 1. If there are other jobs from batch
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Figure 5. An example for Lemma 10

i that are processed on machine 1, then the optimality of σ ∗ requires that they are processed after
the jobs in v1, v2, . . . , vr (see Figure 5). Thus,

pβi −
∑

j∈Bi \{βi }
p j ≤

r∑
j=1

δ∗
v j

+ δ∗
i

≤
b∑

l=1

δ∗
l .

�

The next result considers the case when and γ i and γ̄ i complete at the same time. Recall from
Section 4 that for i ∈ B, C̄i is the minimal makespan of just the jobs in batch i , and CL

i is the
makespan of the schedule generated by the LPT rule for batch i .

Lemma 11. Suppose CL
i = C̄i for i ∈ B. Then, δH3

i − δH3
i−1 ≤ ∑b

l=1 δ∗
l .

Proof. From Lemma 5,
∑b

l=1 δ∗
l ≥ δL

i for i ∈ B. We prove that δH3
i − δH3

i−1 ≤ δL
i for i ∈ B. Sup-

pose that when batch i starts in σ H3, both machines are free. Then, δH3
i = δL

i .
If both machines are not free, then processing is delayed on one machine by δH3

i−1. Since the
starting time order does not change, the delay of a job is at most δH3

i−1 larger than in the schedule
where both machines are free. This result holds for the last job processed in batch i . Thus, for
i ∈ B, δH3

i ≤ δH3
i−1 + δL

i . �

Next, we present a result when γ i completes after γ̄ i .

Lemma 12. If CL
i > C̄i , then δH3

i ≤ max{δH3
i−1, Pi/5} for i = 2, 3, . . . , b.

Proof. From the proof of Lemma 4, the condition CL
i > C̄i implies that batch i has at least four

jobs.
Without loss of generality, assume that for i ∈ B, job βi is processed on machine 2 in σ H3.

Suppose that pβi ≤ δH3
i−1. Then by Lemma 7, δH3

i ≤ pβi ≤ δH3
i−1 and the result is established. Hence,

we consider the case where pβi > δH3
i−1. This implies that job βi + 1 is processed on machine 1.

If pβi ≥ δH3
i−1 + pβi +1, then assign a dummy job of size pβi − δH3

i−1 to batch i and remove job βi

from batch i . This dummy job is now the largest job in batch i . Since both the dummy job and
βi + 1 start at the same time, the schedule of this modified batch under H3 is the same as in γ i . By
Lemma 4, δH3

i ≤ (Pi − δH3
i−1)/5 ≤ Pi/5.
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The only case left to consider is when δH3
i−1 < pβi < δH3

i−1 + pβi +1. This condition implies that
βi + 2 is processed on machine 2. Also, batch i does not complete when job βi finishes processing.

Suppose batch i completes when job βi + 1 finishes processing in σ H3. Then, δH3
i ≤ δH3

i−1 follows
from Lemma 9.

Suppose batch i completes when job βi +2 finishes processing. Then,
∑ni −1

j=3 pβ+ j + δH3
i ≤ pβi +2

Thus,

δH3
i ≤ pβi +2 −

ni −1∑
j=3

pβ+ j .

Because CL
i > C̄i , we have that pβi +1 + pβi +2 < pβi + ∑ni −1

j=3 pβ+ j . As a result,

pβi +2 −
ni −1∑
j=3

pβ+ j < pβi − pβi +1.

Since pβi − pβi +1 < δH3
i−1, it follows that δH3

i ≤ δH3
i−1.

Suppose batch i completes when job βi + 3 finishes processing. If job βi + 3 is processed on
machine 2 in σ H3, then pβi +2 + pβi ≤ δH3

i−1 + pβi +1. By Lemma 7, δH3
i ≤ pβi +3 ≤ pβi +2 ≤ pβi +2 ≤

δH3
i−1.

If job βi + 3 is processed on machine 1, then

δH3
i = δH3

i−1 + pβi +1 + pβi +3 − pβi − pβi +2 −
ni −1∑
j=4

pβ+ j .

Since pβi ≥ pβi +1 and pβi +2 ≥ pβi +3, we have that δH3
i ≤ δH3

i−1.
Suppose batch i completes when job β j finishes processing for j ≥ βi + 4 in σ H3. Then by

Lemma 7, δH3
i ≤ Pi/5. �

Without loss of generality, we assume that there are at least four batches. If b < 4, then we
add dummy batches that have zero processing time. In σ ∗, let the batches complete in the order
v1, v2, . . . , vb. From (2),

zH3

z∗ =
∑b

i=1 Ci (σ H3)∑b
i=1 Ci (σ ∗)

= bP1 + δH3
1 + (b − 1)P2 + δH3

2 + · · · + Pb + δH3
b

bPv1 + δ∗
v1

+ (b − 1)Pv2 + δ∗
v2

+ · · · + Pvb + δ∗
vb

≤ bP1 + (b − 1)P2 + · · · + Pb + ∑b
i=1 δH3

i

bP1 + (b − 1)P2 + · · · + Pb + ∑b
i=1 δ∗

i

.

Since δH3
i ≤ Pi for i ∈ B,

bP1 + δH3
1 + (b − 1)P2 + δH3

2 + · · · + 5Pb−4 + δH3
b−4

bP1 + (b − 1)P2 + · · · + 5Pb−4
= 1 +

∑b−4
i=1 δH3

i

bP1 + (b − 1)P2 + · · · + 5Pb−4
≤ 6

5
.
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Hence, to prove that zH3/z∗ < 6/5, it is sufficient to show that

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=b−3 δH3

i

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 6
5
. (7)

The proof of the bound for H3 is established by the following series of results based on the job
of batch b that completes last in σ H3: Propositions 1, 3, 4, 5, and Theorem 3.

Proposition 1. If batch b completes in σ H3 when job βb finishes processing, then zH3/z∗ ≤ 6/5.

Proof. From Lemma 10, δH3
b−1 + δH3

b ≤ ∑b
i=1 δ∗

i . Also, (2) and Lemma 7 imply that 5δH3
b−2 ≤

2Pb−2 + 2Pb−1 + Pb and 5δH3
b−3 ≤ 4Pb−3 + Pb−2. Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−1 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−2

(4Pb−3 + Pb−2) + (2Pb−2 + 2Pb−1 + Pb)
≤ 1 + 1

5
.

The proof now follows from (7). �

We present three lemmas and a proposition that establish the bound for H3 for the case when
δH3

b ≤ min{δH3
b−1, Pb/2}. Each result considers a different final job for batch b−1. Several situations

satisfy these conditions including the one established by Proposition 3.

Lemma 13. If δH3
b ≤ min{δH3

b−1, Pb/2} and job βb−1 finishes last in batch b − 1 for schedule σ H3,

then zH3/z∗ < 6/5.

Proof. From Lemma 10, δH3
b−2 + δH3

b−1 ≤ ∑b
i=1 δ∗

i . From Lemma 7 and (2), δH3
b−3 ≤ Pb−3 ≤ Pb−2.

Since δH3
b ≤ δH3

b−1 ≤ Pb−1 and δH3
b ≤ δH3

b−1 ≤ ∑b
i=1 δ∗

i ,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−2 + δH3

b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + δH3
b−3 + δH3

b

4δH3
b−3 + 3δH3

b−3 + 2δH3
b + 2δH3

b + δH3
b

≤ 6
5
.

The proof now follows from (7). �

Lemma 14. If δH3
b ≤ min{δH3

b−1, Pb/2} and job βb−1 + 1 finishes last in batch b − 1 for shcedule
σ H3, then zH3/z∗ ≤ 6/5.

Proof. From Lemma 9, δH3
b−1 ≤ min{δH3

b−2, Pb−1/2}. We consider three cases based on which job
completes last in batch b − 2.

Case 1. In σ H3, batch b − 2 completes when job βb−2 finishes processing.
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From Lemma 10, δH3
b−3 + δH3

b−2 ≤ ∑b
i=1 δ∗

i . Since δH3
b−1 ≤ δH3

b−2 ≤ Pb−2, δ
H3
b−1 ≤ Pb−2 and δH3

b−1 ≤
δH3

b−2 ≤ ∑b
i=1 δ∗

i ,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−3 + δH3

b−2

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−1 + δH3

b

3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + 2δH3
b−1

3δH3
b−1 + 4δH3

b−1 + 2δH3
b−1 + δH3

b−1

= 6
5
.

Case 2. In σ H3, batch b − 2 completes when job βb−2 + 1 finishes processing.

From Lemma 9, δH3
b−2 ≤ min{δH3

b−3, Pb−2/2}.
Suppose that in σ H3, batch b − 3 completes when job βb−3 finishes processing. Then, δH3

b−3 ≤∑b
i=1 δ∗

i from Lemma 10. Since δH3
b−2 ≤ δH3

b−3 ≤ Pb−3, from (2),

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−3

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + 3δH3
b−2

4δH3
b−2 + 6δH3

b−2 + 4δH3
b−2 + 2δH3

b−2

<
6
5
.

Alternatively, suppose that in σ H3, batch b − 3 completes when job βb−3 + 1 or larger finishes
processing. Then, from Lemma 7, δH3

b−3 ≤ Pb−3/2. From (2),

4Pb−3 + 3Pb−2 + Pb−1 + Pb

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb
+ δH3

b−3 + δH3
b−2 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + 4δH3
b−3

8δH3
b−3 + 6δH3

b−3 + 4δH3
b−3 + 2δH3

b−3

= 6
5
.

Hence, the result is established from (7).
Case 3. In σ H3, batch b − 2 completes when job βb−2 + 2 or larger finishes processing.
From Lemma 7, δH3

b−2 ≤ Pb−2/3. Also, δH3
b−3/(4Pb−3 + Pb−2) ≤ 1/5. Hence, from (2),

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb
+ δH3

b−3 + δH3
b−2 + δH3

b−1 + δH3
b

(4Pb−3 + Pb−2) + (2Pb−2 + 2Pb−1 + Pb)

≤ 1 + δH3
b−3 + 3δH3

b−2(
4δH3

b−3 + δH3
b−3

) + 15δH3
b−2

= 6
5
.

The proof now follows from (7). �

Lemma 15. If δH3
b ≤ min{δH3

b−1, Pb/2} and job βb−1 + 2 finishes last in batch b − 1 for schedule
σ H3, then zH3/z∗ ≤ 6/5.

Proof. We consider two cases: δH3
b−2 ≥ δH3

b−1 and δH3
b−2 < δH3

b−1.
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Case 1. δH3
b−2 ≥ δH3

b−1.

From Lemma 7, δH3
b−1 ≤ Pb−1/3. Since the proof of Lemma 14 uses the conditions δH3

b−1 ≤
min{δH3

b−2, Pb−1/2}, the proof of this case follows in a similar manner.
Case 2. δH3

b−2 < δH3
b−1.

Since δH3
b−2 < δH3

b−1 ≤ pβb−1 , δ
H3
b ≤ δH3

b−1 ≤ (Pb−1 −δH3
b−2)/3 follows from Lemma 8. Because Pb−1 ≤

Pb, we have that 3δH3
b−2 + 4δH3

b−1 + 5δH3
b ≤ 2Pb−1 + Pb.

Suppose CL
b−1 = C̄b−1. Then, δH3

b−1−δH3
b−2 ≤ ∑b

i=1 δ∗
i from Lemma 11. Since 3δH3

b−3+3δH3
b−2 ≤ 3Pb−2

from Lemma 6,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb
+ δH3

b−3 + δH3
b−2 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + δH3
b−3 + δH3

b−2 + δH3
b−1 + δH3

b

4δH3
b−3 + (

3δH3
b−3 + 3δH3

b−2

) + (
3δH3

b−2 + 4δH3
b−1 + 5δH3

b

) + (
δH3

b−1 − δH3
b−2

) ≤ 6
5
.

The result now follows from (7).
Alternatively, suppose CL

b−1 > C̄b−1. From Lemma 12, δH3
b−1 ≤ Pb−1/5. Since δH3

b ≤ δH3
b−1 and

Pb−2 ≤ Pb, 5δH3
b−2 + 5δH3

b−1 + 5δH3
b ≤ 2Pb−1 + Pb. The proof is now similar to the prior analysis

where CL
b−1 = C̄b−1. �

Proposition 2. If δH3
b ≤ min{δH3

b−1, Pb/2}, then zH3/z∗ ≤ 6/5.

Proof. From Lemmas 13, 14, and 15, the only case left to consider is when job βb−1 +3 or larger
finishes last in batch b − 1 for schedule σ H3. From Lemma 7, δH3

b−1 ≤ Pb−1/4. In Case 2 of Lemma
15, we use the conditions that δH3

b ≤ min{δH3
b−1, Pb/2}, and δH3

b−1 ≤ (Pb−1 − δH3
b−2)/3. The proof of

the proposition follows in a similar manner. �

Proposition 3. If batch b completes in σ H3 when job βb +1 finishes processing, then zH3/z∗ ≤ 6/5.

Proof. Lemma 9 establishes that δH3
b ≤ min{δH3

b−1, Pb/2}. The result now follows from Proposi-
tion 2. �

To establish (7) when in σ H3, job βb + 2 finishes last in batch b, we separate the analysis into
two cases: δH3

b−1 ≤ Pb/7 and δH3
b−1 > Pb/7. These cases are considered in Propositions 4 and 5.

Proposition 4. If batch b completes in σ H3 when job βb + 2 finishes processing and δH3
b−1 ≤ Pb/7,

then zH3/z∗ ≤ 6/5.

Proof. From Lemma 7, δH3
b ≤ Pb/3. If δH3

b ≤ δH3
b−1, then both conditions of Proposition 2 are

satisfied and the result is established. Consequently, we assume that δH3
b > δH3

b−1. Since pβb ≥ δH3
b

by Lemma 7, δH3
b ≤ (Pb − δH3

b−1)/3 follows from Lemma 8.
Suppose that CL

b > C̄b. Because δH3
b > δH3

b−1, Lemma 12 establishes that δH3
b ≤ Pb/5. When the

last job in batch b − 1 to complete is βb−1, βb−1 + 1, βb−1 + 2, and βb−1 + 3 or larger, we use proofs
similar to those in Lemmas 13, 14, 15, and Proposition 2, respectively.
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Alternatively, suppose that CL
b = C̄b. Then, Lemma 11 implies that δH3

b − δH3
b−1 ≤ ∑b

i=1 δ∗
i . We

consider two cases based on which job completes last in batch b − 1.

Case 1. In σ H3, batch b − 1 completes when job βb−1 finishes processing.

From Lemma 6, δH3
b−2 + δH3

b−1 ≤ Pb−1 and δH3
b−3 + δH3

b−2 ≤ Pb−2. From Lemma 10, δH3
b−2 + δH3

b−1 ≤∑b
i=1 δ∗

i . Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb − δH3
b−1 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−2 + 2δH3
b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + δH3
b−3 + δH3

b−2 + 2δH3
b−1

4δH3
b−3 + (

3δH3
b−3 + 3δH3

b−2

) + (
2δH3

b−2 + 2δH3
b−1

) + 7δH3
b−1 + (

δH3
b−2 + δH3

b−1

) ≤ 6
5
.

Hence, the result is established from (7).

Case 2. In σ H3, batch b − 1 completes when job βb−1 + 1 or larger finishes processing.

From Lemma 7, δH3
b−1 ≤ Pb−1/2. Suppose that in σ H3, batch b − 2 completes when job βb−2

finishes processing. Lemma 10 implies that δH3
b−3 + δH3

b−2 ≤ ∑b
i=1 δ∗

i , Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb − δH3
b−1 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−2 + 2δH3
b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + δH3
b−3 + δH3

b−2 + 2δH3
b−1

4δH3
b−3 + (

3δH3
b−3 + 3δH3

b−2

) + (
δH3

b−2 + δH3
b−1 + 2δH3

b−1

) + 7δH3
b−1 + (

δH3
b−2 + δH3

b−1

) ≤ 6
5
.

Hence, the result is established from (7).
Alternatively, suppose that in σ H3, batch b − 2 completes when job βb−2 + 1 or larger finishes

processing. Lemma 6 implies that δH3
b−2 ≤ Pb−2/2. Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb − δH3
b−1 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−2 + 2δH3
b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + δH3
b−3 + δH3

b−2 + 2δH3
b−1

4δH3
b−3 + (

δH3
b−3 + δH3

b−2 + 4δH3
b−2

) + (
δH3

b−2 + δH3
b−1 + 2δH3

b−1

) + 7δH3
b−1

≤ 6
5
.

Hence, the result is established from (7). �

Proposition 5. If batch b completes in σ H3 when job βb + 2 finishes processing and δH3
b−1 > Pb/7,

then zH3/z∗ ≤ 6/5.

Proof. As in the proof of Proposition 4, we assume that δH3
b > δH3

b−1. This implies that δH3
b ≤

(Pb − δH3
b−1)/3 < 2Pb/7. We consider four cases, depending on which job completes last in batch

b − 1.

Case 1. In σ H3, batch b − 1 completes when job βb−1 finishes processing.
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From Lemma 10, δH3
b−2 + δH3

b−1 ≤ ∑b
i=1 δ∗

i . Lemma 7 implies that δH3
b < 2Pb/7 < 2δH3

b−1 ≤ 2Pb−1.
Also, δH3

b−2 + δH3
b−1 ≤ ∑b

i=1 δ∗
i implies that δH3

b /2 ≤ ∑b
i=1 δ∗

i . From Lemma 7 and (2), δH3
b−3 ≤ Pb−3 ≤

Pb−2. Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−2 + δH3

b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b

(4Pb−3 + 3Pb−2) + (
2Pb−1 + Pb + ∑b

i=1 δ∗
i

)

≤ 1 + δH3
b−3 + δH3

b

4δH3
b−3 + 3δH3

b−3 + δH3
b + 7δH3

b /2 + δH3
b /2

≤ 6
5
.

Hence, the result is established from (7).

Case 2. In σ H3, batch b − 1 completes when job βb−1 + 1 finishes processing.

From Lemma 7, δH3
b < 2Pb/7 < 2δH3

b−1 ≤ Pb−1. Also, from Lemma 9 and (2), δH3
b−1 ≤ δH3

b−2 ≤ Pb−2.
Suppose that in σ H3, batch b−2 completes when job βb−2 finishes processing. Then from Lemma

10, δH3
b−3 + δH3

b−2 ≤ ∑b
i=1 δ∗

i . Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−3 + δH3

b−2

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−1 + δH3

b

3Pb−3 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

≤ 1 + δH3
b−1 + δH3

b

3δH3
b−1 + (

δH3
b−1 + 3δH3

b /2
) + 7δH3

b /2 + (
δH3

b−3 + δH3
b−1

) ≤ 6
5
.

Hence, the result is established from (7).
Now, suppose that in σ H3, batch b − 2 completes when job βb−2 + 1 finishes processing. From

Lemma 7, δH3
b−3 ≤ Pb−3 and 2δH3

b−2 ≤ Pb−2. Also, Lemma 9 implies that δH3
b−2 ≤ δH3

b−3. If in σ H3,batch
b − 3 completes when job βb−3 finishes processing, then Lemma 10 implies that δH3

b−3 ≤ ∑b
i=1 δ∗

i .
Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + δH3
b−3

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−2 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + δH3
b−2 + δH3

b−1 + δH3
b

4δH3
b−2 + (

2δH3
b−2 + 4δH3

b−1

) + (
δH3

b−1 + 3δH3
b /2

) + 7δH3
b /2

≤ 6
5
.

Hence, the result is established from (7).
Alternatively, if in σ H3, batch b − 3 completes when job βb−3 + 1 or larger finishes processing,

then Lemma 7 implies that δH3
b−3 ≤ Pb−3/2. Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb
+ δH3

b−3 + δH3
b−2 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + δH3
b−3 + δH3

b−2 + δH3
b−1 + δH3

b(
5δH3

b−3 + 3δH3
b−2

) + (
2δH3

b−2 + 4δH3
b−1

) + (
δH3

b−1 + 3δH3
b /2

) + 7δH3
b /2

≤ 6
5
.

Hence, the result is established from (7).
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Finally, suppose that in σ H3, batch b − 2 completes when job βb−2 + 2 or larger finishes process-
ing. Then, δH3

b−2 ≤ Pb−2/3. Since δH3
b−1 ≤ δH3

b−2 ≤ Pb−2/3 ≤ Pb−1/3 and δH3
b ≤ 2Pb−1/3,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb
+ δH3

b−3 + δH3
b−2 + δH3

b−1 + δH3
b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + δH3
b−3 + δH3

b−2 + δH3
b−1 + δH3

b

4δH3
b−3 + (

δH3
b−3 + δH3

b−2 + 4δH3
b−2 + 2δH3

b−1

) + (
3δH3

b−1 + 3δH3
b /2

) + 7δH3
b /2

≤ 6
5
.

Hence, the result is established from (7).

Case 3. In σ H3, batch b − 1 completes when job βb−1 + 2 finishes processing.

From Lemma 7, δH3
b < 2Pb/7 < 2δH3

b−1 ≤ 2Pb−1/3. Hence, 5δH3
b < Pb−1+ Pb. If δH3

b−2 ≥ δH3
b−1, then

the proof is similar to Case 2. As a result, we assume that δH3
b−2 < δH3

b−1.
When CL

b > C̄b, the proof is similar to the corresponding situation in Proposition 4. When
CL

b = C̄b, Lemma 11 implies that δH3
b − δH3

b−1 ≤ ∑b
i=1 δ∗

i .
Since pβb−1 ≥ δH3

b−1 > δH3
b−2, δ

H3
b−1 ≤ (Pb−1 − δH3

b−2)/3 follows from Lemma 8. As previously noted,
δH3

b ≤ (Pb − δH3
b−1)/3. Also, from Lemma 6, 3δH3

b−3 + 3δH3
b−2 ≤ 3Pb−2 . Thus,

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb − δH3
b−1 + δH3

b

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb + ∑b
i=1 δ∗

i

+ δH3
b−3 + δH3

b−2 + 2δH3
b−1

4Pb−3 + 3Pb−2 + 2Pb−1 + Pb

≤ 1 + δH3
b−3 + δH3

b−2 + 2δH3
b−1

4δH3
b−3 + (

3δH3
b−3 + 3δH3

b−2

) + (
2δH3

b−2 + 6δH3
b−1

) + (
δH3

b−1 + 3δH3
b

) ≤ 6
5
.

Hence, the result is established from (7).

Case 4. In σ H3, batch b − 1 completes when job βb−1 + 3 or larger finishes processing.

When job βb−1 + 3 or larger completes last in batch b − 1, Lemma 7 implies that δH3
b−1 ≤ Pb−1/4.

As a result, the proof is similar to Case 3. �

We now prove the main result of this section.

Theorem 3. For problem P 2‖ ∑
CBi , zH3/z∗ ≤ 6/5 and this bound is tight.

Proof. From Propositions 1, 3, 4, and 5, zH3/z∗ ≤ 6/5 when the last job in batch b to complete
in σ H3 is βb, βb+1, and βb+2, respectively. We now show that (7) is satisfied when the last job in
batch b to complete in σ H3 is βb+3 or larger. From Lemma 7, 4δH3

b ≤ Pb. Since δH3
b−1 +3δH3

b ≤ 4δH3
b

follows from Proposition 2, the proof is now similar to Propositions 4 and 5.
Now, we show that the bound is tight. Consider the instance where b = 2, n1 = 1, n2 = 3, p1 =

1, p2 = 3, and p3 = p4 = 2 (see Figure 6). The optimal schedule σ ∗ = (σ ∗
1 , σ ∗

2 ) where σ ∗ = (1, 2)
and σ ∗

2 = (3, 4), and z∗ = 1 + 4 = 5. However, σ H3 = (σ H3
1 , σ H3

2 ) where σ H3
1 = (1, 3) and σ H3

2 =
(2, 4). The solution value is zH3 = 1 + 5 = 6. Hence, zH3/z∗ = 6/5, and the bound is tight. �
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Figure 6. A worst case example of H3

6. COMPUTATIONAL STUDY OF HEURISTICS H2 AND H3

We empirically evaluate heuristics H2 and H3 by comparing solution values generated by the
heuristics to an optimal LP solution value zLP. For notational convenience, we let H∗ be the
heuristic that selects the best schedule from those produced by H2 and H3. As performance
indicators of H2, H3, and H∗, we use upper bounds on relative errors zH2/zLP, zH3/zLP, and
zH∗

/zLP, respectively. Another performance indicator that we use is the number of test problems
for which zH2 ≤ zH3 and zH2 ≥ zH3.

In this computational study, we compare the performances of H2 and H3 under various condi-
tions. We also observe the impact of different factors such as b, ni , p j , and E(n) on the performances
of H3 and H2, where E(·) is the expectation operator.

For each problem instance, ni , ∼ DU[1, n̄], and p j ∼ DU[pLB, pUB], where n̄, pLB, and pUB

are parameters and where DU[�, u] represents a discrete random variable uniformly distributed
between � and u. For a given set of test problems, b is fixed. It follows that E(ni ) = (1 + n̄)/2 and
E(n) = bE(ni ) = b(1 + n̄)/2.

We generate 750 test problems under 25 conditions. To test the effects of varying E(n), we consider
three different values of E(n): 16, 100, and 2500. To determine whether different combinations of b
and ni , have an impact on the performance of the heuristics, we consider five different combinations
of b and ni , for a given value of E(n). It is also possible that the standard deviation of the p j s
may affect the performance of the heuristics. Consequently, when E(n) = 100, we consider three
different distributions of p j : p j ∼ DU[l, 99], p j ∼ DU[25, 75], and p j ∼ DU[40, 60]. For each
combination of the different factors, we solve 30 problems. Table 1 presents a summary of the
design for the computational study.

The results for the cases where p j ∼ DU[1, 99] are presented in Table 2. The average relative
error bound is the average ratio of the solution value of a heuristic to an optimal LP solution. Since
each design point has 30 replications, the average relative error is calculated over 30 test problems.
When n = 1, all average relative error bounds are equal to z∗/zLP because the heuristics produce
an optimal schedule (Blocher and Chhajed, 1996). Also, when b = 1, both heuristics use the LPT
rule to determine machine-job assignment for each batch. Therefore, zH2 = zH3.

We now summarize the results of our study. For both heuristics, the average relative error bound
decreases as E(n) increases. While there may be errors due to the use of zLP instead of the optimal
value, the results indicate that both heuristics perform better as the number of jobs increases. For
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Table 1. Design for the computational study

p j ∼ DU [1, 99] p j ∼ DU[25, 75] p j ∼ DU[40, 60]

E(n) = 16 E(n) = 100 E(n) = 2500 E(n) = 100 E(n) = 100

b n̄ b n̄ b n̄ b n̄ b n̄

1 31 1 199 1 4999 1 199 1 199

2 15 4 49 10 499 4 49 4 49

4 7 10 19 50 99 10 19 10 19

8 3 25 7 250 19 25 7 25 7

16 1 100 1 2500 1 100 1 100 1

Table 2. Performance of the heuristics

p j ∼ DU[1, 99] Average relative error bound Number of problems

E(n) b n̄ H2 H3 H∗ zH2 ≤ zH3 zH2 ≥ zH3

16 1 31 1.0352 1.0352 1.0352 30 30

2 15 1.0558 1.0393 1.0370 18 19

4 7 1.0690 1.0566 1.0541 15 17

8 3 1.0823 1.0772 1.0751 16 17

16 1 1.0910 1.0910 1.0910 30 30

100 1 199 1.0338 1.0338 1.0338 30 30

4 49 1.0098 1.0048 1.0046 12 23

10 19 1.0123 1.0079 1.0075 11 19

25 7 1.0111 1.0103 1.0100 9 21

100 1 1.0150 1.0150 1.0150 30 30

2500 1 4999 1.0000 1.0000 1.0000 30 30

10 499 1.0000 1.0000 1.0000 20 25

50 99 1.0001 1.0001 1.0001 8 23

250 19 1.0003 1.0003 1.0003 9 21

2500 1 1.0006 1.0006 1.0006 30 30

large problems, these methods routinely find solutions that are close to optimal. Also, for a given
E(n), the average relative error bound increases as b increases (as n̄ decreases). Hence, for a given
number of jobs, the heuristics perform better when there are fewer batches.

For each design point, the average relative error bound for H3 is less than or equal to that for
H2. This suggests that H3 performs better than H2 when p j ∼ DU[1, 99]. This result is supported
by the performance measure which gives the number of test problems for which zH2 ≤ zH3.

We compare the average relative error bounds of the two heuristics when the standard deviation
(s.d.) of p j changes in Table 3. For each design point in Table 3, the average relative error bound for
H3 increases slightly as the standard deviation of p j decreases. Also for each design point in Table
3, the average relative error bound for H3 is about the same as that of H2 when p j ∼ DU[25, 75]



72 J. YANG AND M. E. POSNER

Table 3. Sensitivity of the error bounds to processing time variance

p j ∼ DU[I, 99] p j ∼ DU[25, 75] p j ∼ DU[40, 60]
E(n) = 100 (s.d. = 28.28) (s.d. = 14.43) (s.d. = 5.77)

b n̄ H2 H3 H2 H3 H2 H3

1 199 1.0338 1.0338 1.0365 1.0365 1.0378 1.0378

4 49 1.0098 1.0048 1.0087 1.0075 1.0108 1.0104

10 19 1.0123 1.0079 1.0108 1.0104 1.0126 1.0129

25 7 1.0111 1.0103 1.0091 1.0104 1.0110 1.0112

100 1 1.0150 1.0150 1.0120 1.0120 1.0106 1.0106

Table 4. Sensitivity of the number of problems where H2 and H3 are best to processing time variance

p j ∼ DU[I, 99] p j ∼ DU[25, 75] p j ∼ DU/[40, 60]
E(n) = 100 (s.d. = 28.28) (s.d. = 14.43) (s.d. = 5.77)

b n̄ zH2 ≤ zH3 zH2 ≥ zH3 zH2 ≤ zH3 zH2 ≥ zH3 zH2 ≤ zH3 zH2 ≥ zH3

1 199 30 30 30 30 30 30

4 49 12 23 19 11 23 11

10 19 11 19 18 14 21 10

25 7 9 21 27 3 18 13

100 1 30 30 30 30 30 30

and p j ∼ DU[40, 60]. In Table 4, we compare the number of test problems where zH3 ≤ zH2 and
zH3 ≥ zH2. Observe when p j ∼ DU[25, 75] and p j ∼ DU[40, 60], the number of test problems
with zH2 ≤ zH3 is greater than the number of test problems with zH2 ≥ zH3. This suggests that H2
may be a better choice than H3 when the standard deviation of p j is small.

7. DISCUSSION AND FURTHER RESEARCH

We propose two conjectures regarding H2 and H3. The following conjecture suggests that a
tighter bound on the relative error can be found if we use H2 and H3 together.

Conjecture 1. Given instance of problem P2‖ ∑
CBi , min{zH2/z∗, zH3/z∗} ≤ 7/6 and this bound

is tight.

In our experiments, each heuristic eliminates the other heuristic’s worst case. As a result, we are
not able to find a case where both heuristics simultaneously perform poorly. (It would be interesting
to prove this fact.) Also, note that 7/6 is the worst case bound of the LPT rule for problem P2‖Cmax

(Graham, 1969). As a result, this is a lower bound for our combined heuristic.
The next conjecture suggests an extension of H3 to problem P‖ ∑

CBi .

Conjecture 2. For problem P‖ ∑
CBi , zH3/z∗ ≤ (4m − 2)/(3m − 1) and this bound is tight.
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Figure 7. An example of H3 for problem P‖
∑

CBi

The following example of H3, which we believe to be the worst case, suggests the conjecture.
Let B1 = {1, 2, . . . , m − 1}, B2 = {m, m + 1, . . . , 2m}, p j = m − j for j = 1, 2, . . . , m − 1, p j =
3m − j − 1 for j = m, m + 1, . . . , 2m − 2, and p2m−1 = p2m = m. An optimal schedule is
σ ∗ = (σ ∗

1 , σ ∗
2 , . . . , σ ∗

m) where σ ∗
j = ( j, 2m − 1 − j ) for j = 1, 2, . . . , m − 1 and σ ∗

m = (2m − 1, 2m),
and z∗ = (m−1) + 2m = 3m−1 (see Figure 7). However, σ H3 = (σ H3

1 , σ H3
2 , . . . , σ H3

m ) where σ H3
1 =

(1, 2m − 1, 2m), σ H3
j = ( j, 2m − j ) for j = 2, 3, . . . , m − 1, and σ H3

m = (m). The corresponding so-
lution value is zH3 = (m−1) + (3m−1) = 4m−2 (see Figure 7). Hence, zH3/z∗ = (4m−2)/(3m−1)
for the given example. Notice that this example is a direct extension of the worst case example of
H3 for problem P2‖ ∑

CBi .
Observe that (4m − 1)/(3m) is the worst case bound of the LPT rule for problem P2‖Cmax

(Graham, 1969).
In addition to establishing Conjectures 1 and 2, it still has to be determined whether the com-

plexity of problem P2‖ ∑
CBi is unary NP-complete or pseudo-polynomial. We leave these issues

to future research.
We have explored three heuristics for the parallel machine customer order scheduling problem.

Tight worst case bounds on the relative error are established. These problems are simpler than
many batch scheduling problems because the composition of the batches is prespecified. Also, the
objective is concerned with batch completion times instead of job completion times. While the
structure is simple, the problem has various real world applications such as scheduling customer
orders, scheduling the production of components for subsequent assembly into final products,
crane scheduling at a port, and automotive repair shop scheduling. We hope that our results can
be used to develop solution procedures for more complex and realistic applications.
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