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Abstract Nowadays, many manufacturing systems have to deliver customized
products, leading to an increased amount of parts moving around on the shop
floor. To cope with this tendency, the kitting process has been implemented.
This process gathers the necessary parts for assembly into a specific container
prior to arriving at an assembly unit. However, the consequences of its applica-
tion on the performance of the assembly process has merely been investigated.
We developed models of a kitting process with two parts in a Markovian en-
vironment. Due to the multidimensionality of the state space, we chose to
use sparse matrix techniques to solve our linear equations. This paper aims
to study the performance of kitting operations considering realistic stochastic
assumptions. In particular, the impact on kitting performance of interruptions
in the production of parts is investigated.

Results show that the loss probability of a kitting process decreases when
the capacity of the containers increases and the workload decreases. However,
the capacity must not be too high and the workload must be high enough to
ensure capacity efficiency. As a consequence, there is a need to make a trade-off
in terms of cost and efficiency.
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1 Introduction

Nowadays manufacturing systems are often composed of multiple in-house
fabrication units (Medbo 2003). The semi-finished products stemming from
these units are the input materials for other fabrication units or for assembly
lines. Hence, efficient transport of materials between the different stages of the
production process is key for overall production cost minimization. Kitting is
a particular strategy for supplying materials to an assembly line. Instead of
delivering parts in containers of equal parts, kitting collects the necessary
parts for a given end-product into a specific container, referred to as kit, prior
to arriving at an assembly unit (Bozer and McGinnis 1992; Som et al 1994;
Bryznér and Johansson 1995; Medbo 2003; Ramachandran and Delen 2005;
Ramakrishnan and Krishnamurthy 2008).

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the as-
sembly stations and increased quality of the product. Although kitting is a
non-value adding activity, its application can reduce the overall materials han-
dling time (Ramakrishnan and Krishnamurthy 2008). Indeed activities such as
selecting and gripping parts are performed more efficiently. Furthermore, the
whole operator walking time is drastically reduced or even eliminated since
kits of components are brought as a whole to the assembly station (Johansson
and Johansson 1990). The advantages mentioned above do not come for free
since the kitting operation itself incurs additional costs such as the time and
effort for planning the allocation of the parts into kits and the kit preparation
itself. Moreover, the introduction of a kitting operation in a production process
involves a major investment. Therefore it is important to analyse the perfor-
mance of kitting in a production environment prior to the actual introduction
of this operation. This is the subject of the present paper.

In literature, most authors consider a kitting process as a queuing system
with stochastic part arrivals and kit assembly. Hopp and Simon (1989) de-
velop a model for a kitting process with exponentially distributed processing
times for kits and Poisson arrivals. They find accurate bounds for the required
capacity of the buffer. Their model is limited to processes with two basic com-
ponents. Som et al (1994) refine the results of Hopp and Simon by explicitly
accounting for finite buffer capacities.

Of course buffers have always a finite capacity. However, if the capacity
is large enough, we can have a good approximation of a process with a finite
capacity on the basis of a model with unlimited capacity. This means that
there is always enough space for upcoming parts which simplifies the analysis.
Unfortunately, the assumption of an infinite buffer is not valid for kitting
processes. If the capacity is assumed to be infinite, then the model will degrade
to an unstable stochastic model. This was demonstrated by Latouche (1981)
that studied waiting lines with paired customers. We can consider his analysis
as an abstraction of a kitting process with two types of parts. Furthermore,



The impact of production interruptions in kitting, an analytical study 3

λ
∗,k
1 C1

λ
∗,k
2 C2

µk
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in the article "Assembly-like queues", Harrison (1973) confirms that, to ensure
stability in the operations of a kitting process, it is necessary to impose a
restriction on the size of the buffer. Under this assumption, the probability to
have a certain long-term stock position is equal and independent of the current
stock position.

In this work, we focus on a kitting process modulated by a Markovian
environment. The introduction of this environment allows us to study kitting
under more realistic stochastic assumptions: kitting interruptions, bursty part
arrivals, phase-type distributed kitting times. Section 2 describes the kitting
process at hand. In section 3, Chapman-Kolmogorov equations are derived and
their numerical solution is discussed. In particular, the use of iterative methods
for solving sparse matrix equations is examined. To illustrate our approach,
section 4 considers a number of numerical examples. Finally, conclusions are
presented in section 5.

2 Model description

The studied kitting process is showed in figure 1. Parts arrive in the system
according to a Poisson proces with intensity λ∗ and are stored in their buffer
until they are processed as kits. The kitting times are exponentially distributed
with intensity µ. Each of the two types of parts are necessary to compose one
kit, such that kitting blocks when one of the buffers is empty. We assume that
the capacity of the two buffers is respectively equivalent to C1 and C2. When
a part entering the system encounters a full buffer, this part is considered as
"lost". This means that the part has to leave the system such that it cannot
be processed as a kit. The arrival intensity λ∗ and processing intensity µ are
depending on the modulated state k of the Markov process. We define three
parameters:

Λ1 =






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. . .
...
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1
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
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Π =






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


,

where λ
∗,k
1 and λ

∗,k
2 are the arrival intensities for part 1 and 2 at queueing

state k = 1, ..., K and µk the kitting time at queueing state k. To model
the transitions between the different queueing states, we define the transition
matrix A:

A =






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...
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




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where α
(i,j)
k,l is the intensity to go from the queueing state k = 1, ..., K

to the queueing state l = 1, ..., L with buffer content (i, j). Because the sum
of the elements in a row must be zero, the diagonal values for the transition
matrix are equal to the negative sum of the intensities of the corresponding
row.

Alternatively, the kitting process can be characterized by the parameters
σ and κ defined as follows. The first symbol is the fraction of the time that
the part arrives in the kitting process. We call this parameter the active rate.
When there are no production downtimes, then σ = 0. The symbol κ, which
we call the switch-over time is equal to the sum of the average length of the
active and the inactive period. Finally, we determine the workload λi on the
basis of the equation:

λi = σ.λ∗
i .

where i = 1 or 2 represents the two types of parts. The equation means that
the product of the arrival intensity in the active period λ∗

i with the active
rate σ is equal to the workload λi. The workload, i.e. the average arrival
intensity over the productive and unproductive period, must be the same for
both components. If this is not the case and the buffers are sufficiently large,
then the buffer with the highest workload is almost always full. The system
can then be considered as a queue with just one buffer: the one that is always
full.

In the next section, we derive a general equation for the balance equations
of the studied kitting process. The aim is to define the steady state probability
vector for every queuing state:

πi,j =
[

π1
i,j π2

i,j · · · πK
i,j

]

where πi,j is the collection of all possible steady state probability vectors.
In the next section, we analyse the model using the transition rate diagram.

Then, we determine a general form of the balance equation. Finally, we explain
the methodology used in MATLAB to develop the numerical results showed
in section 4.
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3 Analysis

Figure 2 shows a fragment of the transition rate diagram of our kitting model in
state (i, j, k). The two first values placed in the circles represent respectively
the number of parts in buffer 1 and 2 where 0 ≤ i ≤ C1 and 0 ≤ j ≤ C2.
As mentioned above, two independent input streams arrive at the buffers at
intensity λ∗

1,k and λ∗
2,k respectively and wait there till they are collected into

a kit. A kit is composed of the two parts and is processed at intensity µk. The
last value k stands for the queuing state. Depending on the queueing state,
the arrival intensity λ∗

k will have a different value.
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Fig. 2 Fragment of the transition rate diagram for state (i, j, k)

Based on the transition rate diagram and considering different queueing
states, we derive a general formula for the balance equations of our kitting
model. We limit ourself to an irreducible Markov Chain. In every queueing
state, if one of the two buffer parts is empty (i.e. , i or j = 0 ), no kits can be
processed. This gives the equation:

πk
i,j∗(λ∗,k

1 +λ
∗,k
2 +

∑

k 6=l

∑

i,j

α
(i,j)
k,l ) = πk

i−1,j∗λ
∗,k
1 +πk

i,j−1∗λ
∗,k
2 +

∑

l 6=k

∑

i,j

πl
i,j∗α

(i,j)
l,k

(1)
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where k = 1, ..., K. When both buffers stores one or more parts, then the
equation is:

πk
i,j∗(λ∗,k

1 +λ
∗,k
2 +µk+

∑

k 6=l

∑

i,j

α
(i,j)
k,l

∑

i,j

) = πk
i−1,j∗λ

∗,k
1 +πk

i,j−1∗λ
∗,k
2 +πk

i−1,j−1∗µk+
∑

l 6=k

∑

i,j

πl
i,j∗α

(i,j)
l,k

(2)
where k = 1, ..., K. We consider the last case. Next, we construct a zero matrix

β with the diagonal values βk = (λ∗,k
1 + λ

∗,k
2 + µk +

∑

k 6=l α
(i,j)
k,l ), k = 1, ..., K.

This lead to:

πi,j ∗ β = πi−1,j ∗ Λ∗
1 + πi,j−1 ∗ Λ∗

2 + πi−1,j−1 ∗ Π + πi,j ∗ A (3)

We bring the two matrices A and β together and redefine A as equal to:

A =









−β1 −
∑

l

∑

i,j α
(i,j)
1,l · · · α

(i,j)
1,L

...
. . .

...

αK,1 · · · −βK −
∑

l

∑

i,j α
(i,j)
K,l









,

This gives us the balance equation:

πi−1,j ∗ Λ∗
1 + πi,j−1 ∗ Λ∗

2 + πi−1,j−1 ∗ Π + πi,j ∗ A = 0 (4)

Applications of the developed kitting model are described below.

Example 1 In a production environment, machine downtimes occur. We as-
sume that parts necessary for assembly are subject to production interruptions.
They arrive in accordance with an Interrupted Poisson Process (abbreviated
as IPP). In the queuing analysis, an IPP is a stochastic process in which two
states are possible and which one of the two has an intensity equal to zero.
This process is divided into two periods, namely the active and inactive pe-
riod (Heyman and Sobel 1982). We start with an active period and during this
interval there are components arriving according to a Poisson process with in-
tensity λ∗

i . The length of this period is exponentially distributed with mean
α−1. At the end of an active period begins a period of inactivity in which
components do not arrive, the length is exponentially distributed with mean
β−1. At the end of this period begins another new active period and so on.
All active and inactive periods are i.i.d. The parameter α (β) describes the
intensity to go from an active (inactive) to an inactive (active) period in an
infinitesimal time interval. As we have two type of parts in our model, the
kitting process can be in four different queueing states: a state where both
parts arrive according to a Poisson process in the system, a state where one of
the two arrives and a state where no parts arrive in the system. We consider
the arrival processes as identical and independent of each other. Numerical
examples for this assumption are given in section 4.
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Example 2 Due to a high uncertainty of the length of the processing times,
we consider phase-type distributed kitting times. Independent and identical
exponential distributions with intensity µk are modelled. Figure x gives the
transition rate diagram of the phase-type distribution of kitting processing
times when i, j ≥ 1.

Methodology: the sparse matrix techniques

Queuing models for kitting processes are rather complicated. Since two queues
are involved (one for each part in the kit) and can whether be in a productive
or unproductive state of the parts, the state space of the associated Markov
chain is inherently multidimensional. Multidimensionality leads to huge state
spaces; this is the state space explosion problem. A second complication is
more intricate, as mentioned above, the infinite-buffer-capacity assumption is
not applicable for kitting processes. If the capacity is assumed infinite, the
model degrades to an unstable stochastic model in which some or all of the
queues have an unlimited number of parts available all the time with a positive
probability.

Consequently, the multidimensionality of the state space and the inappli-
cability of the infinite-buffer assumption yield Markov chains with a finite but
very large state space. However, the number of possible state transitions from
any specific state is limited. This means that most of the entries in the gen-
erator matrix are zero; the matrix is sparse. In contrast to matrix-analytic
methods, sparse matrix techniques have hardly been used in queuing theory.
Using sparse matrices and their associated specialized algorithms resulted in
less memory consumption and processing times, compared to standard algo-
rithms. The reason is that the complexity is smaller for sparse than for dense
matrices. In the model where both parts are subject to production interrup-
tions, the number of elements of the generator matrix for C1 = C2 = 100 is
408042. By considering this matrix as sparse, only 3 ∗ 40804 elements need to
be stored. Indeed, the storage of the matrix requires less memory because only
the non-zero elements are kept.

The method used to solve linear equations of sparse matrices is the iterative
method GMRES (Generalized Minimum Residual). Direct methods are not
applied because they are too slow or even unusable for large sparse-matrices.
The GMRES method approximates the exact solution A.x = b by the vector
xnεKn in a Krylov subspace Kn that minimizes the norm of the residual A.xn−

b. Since every subspace is contained in the next subspace, the residual decreases
monotonically. However, the major drawback to GMRES is that the amount of
work and storage required per iteration rises linearly with the iteration count.
The cost of the iterations grow like O(n2), where n is the iteration number.
The usual way to overcome this limitation is by restarting the iteration. After
a chosen number of iterations m, the accumulated data are cleared and the
intermediate results are used as the initial data for the next m iterations.
This procedure is repeated until convergence is achieved. The difficulty is in
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choosing an appropriate value for m. If m is too small, GMRES may be slow to
converge, or fail to converge entirely. A value of m that is larger than necessary
involves excessive work and uses more storage. Saad and Schultz (1986) have
proven several useful results. In particular, they show that if the coefficient
matrix A is real and nearly positive definite, then a "reasonable" value for
m may be selected. The method stagnates and convergence takes place at
the mth step. To generate the numerical examples below we used a value for
m equal to 140. Another important parameter to be defined is the initial
vector. It is standard programmed as a zero vector. A first improvement is to
consider the vector as equiproportional. Even if this assumption is incorrect, it
accelerates the calculations. This is because the sum of the state probabilities
equals one. When a plot is created where the capacity of the buffers vary,
then the previous calculated probability vector could be used. In case the
initial vector is adapted, it would be more accurate than an equiproportional
vector. The reason is that when the capacity of the buffers is subject to little
changes, there is a high chance that the state probabilities almost remain the
same. However, the determination of this vector is time consuming because
the increase in C1 has a different effect on the to be calculated vector than a
larger C2. Furthermore, the accuracy of the steady state probability vector was
not improved as expected. Further research needs to be done. On the other
side, when varying the workload, there is no need to adapt the calculated
vector because it is independent of the value given to the workload. As with
varying capacity, there is also a high chance that the state probabilities have
the same value when the workload is increasingly changing. In terms of speed,
the outcome was clearly better than when varying capacities. Indeed, the time
required for constructing numerical examples was reduced by a factor of 10.

4 Numerical results

In this section, we present some numerical examples in order to evaluate the
effect of production interruptions on the performance of a kitting process.

In the first three numerical examples, three models are illustrated. We
consider a workload λ equal to 0, 8 for both parts in every model. This allows
us to compare these models. The first model considers both parts arriving
according to a Poisson process with an arrival intensity λ∗ equal to 0, 8. Indeed,
the first model doesn’t consider bursty part arrivals so that σ = 1. In the
second model part 1 is subject to production downtimes and its arrival is
therefore modelled as an Interrupted Poisson Process. In 40 percent of the time,
part 1 arrive with intensity λ∗ equal to 2. The third model represents a kitting
process where both components are subject to production interruptions. The
two Interrupted Poisson Processes are independent and equally distributed.
The numerical examples showed assume a time length κ equal to ten and as
mentioned workload λ equal to 0, 8. We consider for all three models that on
average one kit per unit time can be made so that the processing intensity µk

equals one in every queuing state k.
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Figure 3 represents the loss probability according to different levels of the
buffer capacities for each model. Important to mention is that because we
assume that the buffers have the same workload, the average loss probability
calculated for both buffers together equals that for the buffers separately. A
first observation is that the probability decreases as the capacities increase
and that for the three models. Less components are lost when the buffers are
sufficiently large so that more kits can be processed. Therefore the difference
between the models diminishes as the capacity increases. Secondly, the values
for the third model are higher than that for the first model. As expected, the
performance of a process subject to production interruptions is worse than a
process without. When the arrival process is modelled as a Poisson Process,
such as the first model, the probability that the buffer is full and the loss
probability are equal. This equality is a consequence of the PASTA-property.
Thanks to the memoryless property of the Poisson process, the stochastic
properties of parts on the arrival times are the same than that on random
times. On the other hand, these two probabilities are not equal for an arrival
process modelled as an IPP. Indeed, the average loss probability has greater
values than the probability that the buffer is full.

Figure 4 shows the probability that buffer 1 and 2 are full for the three
models together. We can notice that downtimes in the production of part 1
have a greater impact on buffer 2 than on its own buffer. It also appears that
adding production interruptions at part 2 doesn’t have a significant impact on
its own buffer but does on the other buffer. The lines for the second and third
model are almost identical in the second subfigure, which is not the case in
the first one.

Now, instead of varying the capacity we assume different workload values
for both parts. In figure 6, the mean in buffer 1 for the model where both
parts are subject to production downtimes is represented. The mean starts
to increase significantly as the workload is greater than 0, 8. Indeed, as the
processing intensity µ equals one, we are close to a situation of overload, i.e.
λ
µ

is equal or greater than one. This effect is amplified as C1 is increasing.
In a model that is not subject to production interruptions and the workload
approximately equals 1, 8, the mean in buffer 1 aims at being equal to its
buffer capacity. Here, this equality is not reached yet due to the production
downtimes of the parts. This means in general that when the load is sufficiently
high depending on the modelled arrival process, the buffer will be full.

Finally, figure 5 and 6 represent the probability that one of the buffers is
empty and the loss probability on a logarithmic scale. These two probabilities
are related as the probability loss rate P LR equals:

P LR =
λ1 + λ2 − 2 ∗ T P

λ1 + λ2

where T P = µ∗(1−K1) equals the throughput and K1 the probability that one
of the buffers is empty. In figure 5, when the workload is smaller than one, there
is no difference in value for different buffer capacity levels. However when the
workload is greater than one, the higher the workload and buffer capacity, the
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lower the value of the probability that one of the buffers is empty. Concerning
the loss probability represented in figure 6, it has a higher value when the
workload is high and the buffer capacity is low. As the workload increases, the
value of the buffer capacities becomes irrelevant.
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5 Conclusion

In this paper, we investigate the impact of production inefficiencies of the parts
on a kitting process with two queue lines using performance measures. We show
that the buffer sizes need to be large enough to catch production inefficiencies.
Furthermore, the numerical examples we present lead us to believe that the
two part buffers are correlated. When part 1 suffers of inefficiencies, buffer
2 will have a higher probability to be full than buffer 1. Indeed, production
downtimes of one component mainly affects the behaviour of the buffer of
the other component. As most of the entries in the generator matrix have
a value equal to zero, we apply sparse matrix techniques. To determine the
unknowns of the system, we used the method GMRES (Generalized Minimum
Residual). The solution is not exact but performs well in terms of solution
speed and accuracy. We can establish that the sparse matrix techniques are
a valuable queuing theoretic numerical approach to estimate the performance
of the kitting process.

Queuing models for determining the performance of kitting processes are
currently insufficiently studied. Consequently, there is room for further re-
search. First, the assumptions made could be gradually alleviated or removed.
We restrict ourselves to two components, while the process could easily be ex-
panded to multiple components. The selected performance measures are also
rather limited and only focused on part buffers. Furthermore, to better ap-



The impact of production interruptions in kitting, an analytical study 13

proximate the reality, additional factors that affect the performance of the
process should be taken into account. When companies start to implement
kitting activities in their production process, in addition to the performance,
the cost of the kitting process is relevant.
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