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Abstract 

Assembly-like queues model assembly operations where separate input processes 
deliver different types of component (customer) and the service station assembles 
(serves) these input requests only when the correct mix of components (customers) 
is present at the input. In this work, we develop an effective approximate analytical 
solution for an assembly4ike queueing system with N (N/> 2) classes of customers 
forming N independent Poisson arrival streams with rates { X i}i = 1,..., N' The arrival 
of a class of customers is "turned off" whenever the number ofcustomers of that 
class in the system exceeds the number for any of the other classes by a certain 
amount. The approximation is based on the decomposition of the original N input 
stream stage into a cascade of N - - 1  two-input stream stages. This allows one to 
refer to the theory of paired customer systems as a foundation of the analysis, 
and makes the problem computationally tractable. Performance measures such as 
server utilization, throughput, average delays, etc., can then be easily computed. 
For illustrative purposes, the theory and techniques presented are applied to the 
approximate analysis of a system with N = 3. Numerical examples show that the 
approximation is very accurate over a wide range of parameters of interest. 

Keywords 
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mation. 

1. Introduct ion  

Assembly-like queues model assembly operations often found in manufacturing 
systems, and can be pictorially represented as shown in fig. 1. Such operations consist 
of N different input processes and a service station. Each input process delivers a 
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different type of component (customer) and the service station assembles (serves) 
these input requests only when the correct mix of components (customers) is present 
at the input. 

Arrival Processes 

1 2 ... N 

/ 
Server ] 

4 
Assembled Products 

Fig. I. Representation of an assembly operation. 

A similar type of mechanism, involving synchronization between different 
arrival processes, can be encountered in a variety of contexts, not exclusively relating 
to manufacturing systems. Relevant examples can be found among the numerous 
synchronization mechanisms typical of a computing, communication, or manufactur- 
ing system environment. 

Despite the importance of  such situations, there is a limited literature on the 
subject of  mathematical modeling of assembly-like operations, because of the difficulty 
in analyzing such systems. Harrison [1 ] studies assembly-like queues with the assump- 
tion that N (N ~> 2) classes of customers arrive according to N mutually independent 
renewal processes. He proves that such queueing systems, where no arrival control 
strategy is present, are inherently unstable. Latouche [2] analyzes particular assembly- 
like queues with N - 2 and shows that imposing a control mechanism, which is a 
function of the excess (i.e. the difference) between the queue lengths for the two 
classes of customers, can make the system stable. The analytical solution for the 
equilibrium probability distribution of the system is shown to be matrix-geometric. 
Neuts [3] and Ramaswami [4] treat some generalizations of Latouche's work to the 
case of input streams that are phase-type processes and to the general service time case, 
respectively. 

It is worth noting that a special case of the problem solved by Latouche, 
obtained by assuming deterministically zero service times, is known as the "taxi 
problem", and is treated by Srivastava and Kashyap [6]. The case of finite buffers 
was first considered by Bhat [7], who considers the N = 2 case with a small buffer 
size, and by Lipper and Sengupta [8], who give approximations for systems with 
N classes of customers and Poisson arrivals with the same rate, and an arriva! is blocked 
and lost if the buffer is full. Baccelli and Massey [9] treat networks of queues ob- 
tained by combining series and fork-join networks, obtaining bounds on the moments 
of the total delay to traverse such networks. 
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In this work, we develop an effective approximate analytical solution for an 
assembly-like queueing system with N (N ~> 2) classes of customers forming N inde- 
pendent Poisson arrival streams with r a t e s  {)ki}  i= 1 . . . . .  N" The arrival control mechan- 
ism adopted is a generalization of the one introduced by Latouche to the case of 
N classes. The approximation is based on the decomposition of the original N input 
stream stage into a cascade of N - 1 two-input stream stages. This allows reference to 
the theory of paired customer systems as a foundation of the analysis, and makes the 
problem computationally tractable. 

Sections 2 and 3 are devoted to the problem statement and to the general 
description of the approximate approach. In sect. 4, we briefly review Latouche's 
treatment of the N = 2 case. An extension of this theory to the case of a system with 
a Poisson and a Markov Modulated Poisson input stream is presented in sect. 5. The 
output processes for the systems considered in sects. 4 and 5 are shown in sect. 6 to 
be generalized N-processes [5]. Section 7 discusses the approximation of a generalized 
N-process by a Markov Modulated Process. Finally, for illustrative purposes, the 
theory and techniques presented in sects. 3 - 7  are applied to the approximate analysis 
of a system with N = 3. The description and results of such analysis are considered 
in sect. 8, while the last section discusses feasible extensions and conclusions of this 
work. 

2. Problem statement 

Let nk ( t ) ,  k = I ,  2 . . . . .  N ,  be the number of customers of class k in the system 
at time t. The state of the system can be represented by the vector (nK(t), e j ( t ) ,  
j = 1,2 . . . . .  N -  1), with 

n x (t) = min nj ( t )  
j = l  . . . .  , N  

e / ( t )  = n j ( t )  - n N ( t  ) j = 1 . . . . .  N.  

Also, let 

e. x = e j k ( t )  = n j ( t )  - nk ( t  ) = e . ( t )  - e k ( t  ) j , k  = 1 , 2  . . . . .  N .  

The function e i k ( t  ) is called the excess between class j and class k customers. 
For each class j, the arrival stream is assumed to form an independent Poisson 

process with parameters depending on the excess between class j and each of the 
remaining classes. Such a dependency is formulated as follows: 

: ~ j ( ~  e j N  . . ,  X/ ~ . . . . .  ) j = 1, .  N 

Xj = 0 if maxi eji = Jj' J'l > O, j = 1 , . . . , N .  
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In our treatment we will consider the case Xi(eil . . . . .  ejN ) = cons t ( j )  = X] if 

max. eji < J], j = 1,2 . . . . .  IV. 
t 

This is the simplest possibte control law of  this kind that can be considered. Although 
more sophisticated strategies could be analyzed, we will restrict ourselves to this case 
for the sake of  clarity of  exposition. 

The time taken to serve an N-plet of  customers, one for each class, has exponen- 
tial distribution with parameter g. Service can begin only when at least one customer 
per class is requesting service. The cases where different numbers of customers per 
class are required may be handled by appropriate scaling. 

3. An approximation 

The assembly system described above can be conceptually viewed as shown in 
fig. 2. Here we explicitly decompose the assembly process into a synchronization 

Fig. 2. A conceptual view of an assembly-like system. 

phase and a service phase. An output  is offered to the server as soon as a customer in 
each class is present at the input, and the server operates on such a group of  customers 
as in a regular single-class queue. The synchronization phase can, in turn, be considered 
as the result of  a cascade of  N - 1 stages, each of which operates an elementary syn- 
chronization, as shown in fig. 3. An elementary synchronizer produces an output  as 
soon as the second component of  a pair arrives at the input. 

Fig. 3. Decomposition of the synchronization phase. 
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We will approach the problem using the decomposition suggested in fig. 3. The 
output for each stage, discussed in sect. 6, is naturally approximated by a two-state 
Markov Modulated Process (MMP). This process is characterized by two Poisson 
arrival rates X 1 and X 2 corresponding to the two possible system states. The system 
moves between the states as a Markov process with rates r I and r2, as shown in fig. 4. 

x/ .  : arrival rate when in state j; r] : rate out of state j. 

Fig. 4. The two-state Markov Modulated Process. 

The MMP has already been successfully used as an approximation [10] because of its 
simplicity and sufficient flexibility. As we will discuss in sect. 4, the matrix-geometric 
solution for the paired customer system with Poisson arrival streams [2] can be readily 
extended to provide a solution for the case when one of the arrival streams is an MMP. 
Thus, after the output streams of  every paired synchronizer is approximated by an 
MMP, we can treat analytically every stage in our decomposition. Whenever only 
global parameters such as throughput and utilization are of interest, we just need to 
compute the equilibrium distribution for the excess at each stage, determining the 
complete matrix-geometric solution only at the final stage. The former computation 
can be performed very quickly by using a recursive procedure proposed by Chandy 
et al. [11]. 

The major challenge to be faced taking this approach relates to the fact that 
the control mechanism we are considering implies the presence of feedback loops 
from successive stages. Taking this feedback into account explicitly and exactly is 
equivalent to solving the problem in its full dimensionality, which is a prohibitive 
task. To avoid such a "curse of dimensionality", we first open the feedback loop by 
neglecting the influence of  the later stages on the previous ones. We approximately 
compensate by (a) relabeling, without loss of generality, the input streams so that 
k 1 <~ X 2 ~< . . .  <~ XN, and (b)using an iterative procedure of the fixed point type. 

Since the feedback loop is active only when the excess for a certain stage is 
positive in the direction of  the arrival stream from previous stages and large, with 
respect to the imposed bounds, we expect (a) to drastically decrease the probability of 
active feedback whenever the arrival rates are not approximately equal. The residual 
feedback influence is then compensated by using an iterative procedure which suitably 
adjusts the bounds to a point of  equilibrium. A more detailed treatment of this tech- 
nique is given in sect. 8, where we illustrate the case N = 3. 
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4. A queue with paired customers and Poisson arrivals 

In this section, we briefly review the analysis presented by Latouche [2], 
which plays a fundamental role in our discussion. We consider here the assembly-like 
system introduced in sect. 2 in the case N = 2. 

The state of the system is represented by (n(t) ,  e(t)), where n(t)  
= min(n l ( t  ), n 2 (t)) is the number of pairs and e(t) = n l( t  ) -n~  (t)is the excess. The 
model can be described as a continuous-time Markov chain on the state space q, ]), 
i~> 0, -3"2 ~ ] ~< J1 with infinitesimal generator Q given by 

Q = 

-Alo A o 

As A1 Ao 

0 

0 
(1) 

where all entries are square matrices of order (J1 + J2 + 1). Each row in the block- 
partitioned matrix Q corresponds to a different value of i/> O. The matrices Alo, Ao, 
At ,  A 2 are given by: 

Al o  

- X  a 0 

•2 (--~'1 --~'2) 

X2 

A 1 = Alo - / I L  A 2 = /lI 

column ] = 0 

1 

(- Xi - X2) 

0 (-Xl -X2) 

(-X: 

Xl 

-x~) 
0 

(~) 

(3) 
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A o  

0 

0 

X l  

column ] = 0 

1 

XI 

0 0 0 

X2 

0 

X 2 0 

(4) 

I is the identity matrix of order (J1 -I- J2 + 1). The structure of Q suggests that the 
steady-state probability vector x associated with Q has a matrix-geometric structure 
[3], i.e. x - (Xo ,  x l  , . . . ),  with x i a (J1 + J2 + 1)-dimensional row vector and 

x i = x o R i, i = 1 , 2 , . . .  , (5) 

where R is the maximal non-negative solution of the matrix equation 

A o + R A  1 + R 2 A 2  = 0 (6) 

such that its spectral radius is smaller than one (sp(R) < 1). R can be computed by 
the recursion 

R n + l  = Co + R 2 C 2  for n ~> O, (7) 
n 

where C o = - A o A ;  1, C 2 = - A  2 A ~  1 . Note that A 1 is proved to be nonsingular [2]. 
An interesting and powerful accuracy check on the computation of  the matrix R is 
given by the relation 

R e  = l a - l A o  e ,  (8) 

where e is the unit column vector. 
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5. A m o r e  general  q u e u e  w i th  pa i red  c u s t o m e r s  

In this section, we consider a queue with paired customers characterized by 
a Poisson arrival stream and an MMP arrival stream. This extension is important since 
we will later see that the output processes of  the cascaded synchronizers can be 
effectively approximated by MMP processes. This case is slightly more general than 
the one studied by Latouche and has not been treated in the literature. We show that, 
even in this case, the system still has a matrix-geometric equilibrium distribution. 

The presence of two states in the MMP doubles the number of states neces- 
sary to describe the system we are considering. For each value of the excess and of 
min(n l ( t  ), n2(t)) we have two possible values for the state of  the MMP. We can 
thus consider the state of  our system to be the triplet (e(t), n(t), s(t)), with 
e (t) = n 1 (t) - n 2 (t), n (t) = min (rt I (t), n2 (t)), and s (t) = state of the MMP at time t. 
We decide to order the states as follows: 

(-J2,0,  O).. .  (J ,  , 0, 0), ( - J 2  , 0, 1 ) . . .  (art,0, 1), 

( - J 2 , 1 , 0 ) . . .  (Jx, 1 , 0 ) , ( - J 2 , 1 ,  1 ) . . .  ( J , ,  1, 1), 

With this particular ordering, the infinitesimal generator Q* for the continuous- 
parameter Markov chain describing the system is, again, given as 

A;o Ao 
0 

A; A;' Ao 
Q ~ = (9) 

with all the entries being matrices of order 2 ( J  1 + J2 + 1). Again, each row in the 
block-partitioned matrix Q* corresponds to a different value of  n (t). 

The matrices Alo , Ao, A~, A~ are given by eq. (10). 
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A'~ = A'~o - # I * ,  A;  = . I * ,  

where I* is now the identity matrix of order 2(J 1 + arE + 1). 

(11) 

A o  = 

0 X 1 

hi 

0 0 0 

Xa 

X 3 0 

0 

0 

0 X z 

0 

)k 3 

(12) 

X2 
0 0 

~,3 0 -  

The solution for the equilibrium distribution for the system under consideration is 
thus matrix-geometric and the treatment presented in sect. 3 easily extends to this case 
with respect to the matrices Ao, Alo , A1, A 2 . 

6. T h e  s y n c h r o n i z e r  o u t p u t  process 

In this section, we investigate the output process for the class of paired 
customer systems discussed above, when the service time is deterministically equal to 
zero. We call a system of this kind a synchronizer. First, we introduce the basic ideas 
by discussing the case of Poisson arrival streams with rates X 1, X2. The case of Poisson 
and MMP input streams will follow as an immediate consequence. 

For the Poisson paired customer system, the output will be a stream of pairs. 
In the case of a synchronizer, at each instant at least one of the queues must be empty. 
A pair is produced whenever there is an arrival in the class whose queue is empty, 
except for the case when both queues are empty. We can describe this phenomenon by 
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Fig. 5. State ~transition diagram for P-P synchronizer output process. 

using a state transition diagram as shown in fig. 5. We distinguish a set of  regular states 
R = { - J2, �9 . - ,  0, . . .  Yl}, and a set of  instantaneous states I = {B& . . . .  B 1 , A 1 . . .  A , h } .  

The regular states describe the value of  the excess at the input of  the system, while the 
instantaneous states are states that are visited with zero sojourn time upon arrival of  
customers that can form a pair. This implies that for every transition through an 
instantaneous state, a pair is produced at the output.  

Let (~ be the infinitesimal generator for the continuous-time Markov chain 
describing the transitions with respect to the regular states (i.e. the presence of  the 
instantaneous states is disregarded). The matrix Q is given by 

~k I )k 1 

X2 ( - X l - X 2 )  " Xl 

k 2 - - k  2 

(13) 
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"? I i y 

( 

, 

Fig. 6. State transition diagram for P-MMP synchronizer output process. 

where we have ordered the states from - J z  to Yl. 
At every (i, ]) transition involving the visit to an instantaneous state there 

is an arrival (i.e. an output from the synchronizer) with probability one. The point 
process obtained in this way is a particular case of a Generalized N-process (GNP). A 
thorough treatment for this versatile class of processes can be found in [4] and [5]. 

Let us now consider the case of a synchronizer with a Poisson process of 
rate X3 and an independent MMP with parameters Xl, X2, ra, r2 as input processes. 
The control bounds are Js and Ja2, respectively. It is immediately seen from the state 
transition description in fig. 6 that, again, the output process from the synchronizer is 

�9 ^ ~  . 

a GNP described by the matrix Q gwen by eq. (14), where the ordenng for the states 
is obvious and Q* is a square matrix with dimension 2(J!2 + J3 + 1). 
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7. The  MMP approx imat ion  

The output process for the synchronizer with Poisson arrivals displays basically 
two phases, or stages, corresponding to positive and negative values for the excess, 
respectively, and a special state in between, corresponding to zero excess. It seems 
thus natural to approximate such a generalized N-process (GNP) by the MMP de- 
scribed in fig, 4. The generalization to the case where the arrival streams are Poisson 
and MMP is straightforward. As a consequence, every paired synchronizer of the 
decomposition we consider will have either Poisson input streams or a Poisson and 
an MMP input stream. 

The MMP model has four parameters that will be chosen to match the expected 
value m, the variance v, the third moment Pa, and the time constant 7- c of the GNP. 
From [10] w e  can express the above quantities for the MMP in terms of the four 
parameters X 1 , X2, r 1 and r 2 as follows: 

m 
MMP _ ~1 r2 + ~k2 r l  

r I + r 2 

r,  2(x, - p M M P  = 

(n + r2) 

/d M M P  r2 + rl 

?'1 + ?'2 

T M M P  _ 1 f rMMP(t) d t  - 1 (15) 
c p M M P  r I + r 2 ' 

0 

where rMMe(t) is the covariance function of  the arrival rate for the MMP. We use 
superscripts to distinguish between quantities relating to the different processes. 

We need to express similar quantities for the GNP, in terms of the parameters 
Xl, X2, J1, J~- Let lr = [ lr(-  J2), - �9 �9 ,It(o), . .. ,Tr(Yl) ] be the row vector of equili- 
brium probabilities for the state of the GNP. Let (~ be its infinitesimal generator. 

Let A be the (J1 + J2 + 1)-dimensional diagonal matrix of Poisson intensities 

A = 

X1 

X 1 0 
0 

X2 

X2 

(16) 
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Then the kth moment  (k = 1 , 2 , 3 )  for the arrival rate is given by 

-1  J~ 

k 
J=-J2 /= 1 

(17) 

which allows us to determine m GNP, 
be expressed as 

rGNP(t) = 7rA [e Q t -  l~r] A1,  

p G N P  and �9 GNP #3 . The covariance function can 

(18) 

with 1 = [1, . . . , 1 ]T , the  unit vector of dimension (J1 + "]2 + 1). 
To d e t e r m i n e  77 NP we need to integrate rGNP(t). This problem is non-trivial 

since (~ is singular as well as lrr. We follow here a procedure suggested in [12] and 
[13]. Let 

A = I ( e ~ t -  1~)dt ,  

0 

then 

i ( e ~ t -  1~) d t  = 

0 

(19) 

i (~ e ~}t dt  = (~A 

0 

(20) 

since Q lrr = 0. Integrating, we have 

eQt]o  = {)A, ( 1 7 r - I )  = (~A. (21) 

Also, 

lrr j (e 0 t -  

0 

lrr) d t  = lrrA 

i ^ 
(17r e Q t  - lrr) dt  = 17rA 

0 

I 
0 

( l r r -  lrr) d t  = lrrA, 

^ 
since by definition ofTr, 17r e Q t  = lrr. Thus, 
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lrrA = 0. (22) 

Now adding (21) and (22), we obtain 

( D r - I )  = 0 A  + lrrA, and A = (Q + lrr) -1 ( l r r - I ) ,  

since (Q + lrr) can be shown to be non-singular [13].  The matrix (Q + lrr) plays the 
role of  a pseudo-inverse for the singular matrix Q. We can now determine rc oNe as 

7GNP = c  ( u - ~ N p )  r r A ( 0 +  lrr)-I ( l r r - I )  A1. (23) 

We can obtain the MMP parameters as follows, where are right-hand side 
quantities refer to the GNP: 

1 7? 
r, = rct-q +r/)  ' r2 - r q t  + 77) 

X 1 = m + Vv-/B , ~-2 = m - Vv--/B, (24) 

where 

8 
r/ = 1 + "~[8 - , v /~+821  , and 8 = 

l ~3  - 3 mu - m a 

va/2 

8. N u m e r i c a l  r e su l t s  f o r  N = 3 

In this section, we discuss in detail the case N = 3. Following the procedure 
outlined in sect. 3, we look at the assembly-like system with N = 3 as a cascade of  
two synchronizers followed by a simple exponential server station (fig. 7). The 
customers queueing for such a station are triplets of  customers, one for each of  the 
three input classes. 

"\3 

Fig. 7. Decomposition for N = 3. 



F. Bonomi, Assembly-like queues 305 

The original Poisson arrival streams are labeled, without loss of generality, such 
that X~ ~< X 2 ~< X 3. At the elementary synchronizers inputs, one or the other queue 
will always be empty. We are interested in determining the following parameters: 

(a) Expected excess at the second synchronizer, i.e. E(eiz ) = E(n 3 - min(n 1, n2)). 
(b) System utilization 03. 

According to the procedure outlined in sect. 3, we proceed as follows: 

StepO." Set , l i=J i ,  i = 1 , 2 .  

Step 1: Determine the invariant distribution for the excess at the first syn- 
chronizer. This computation is equivalent to the computation of the 
invariant distribution for a birth and death process between the states 
- ) 2  and ) , .  

Step 2: Determine Xl, X2, q ,  r2, the parameters of the MMP approximation 
for the output of the first synchronizer. (See sect. 7.) 

Step 3: Determine the limiting distribution of the excess at the second 
synchronizer ~(eg). The control parameters are, in this 'case, 
J = rain (a;1, J2) and Ja- This computation can be efficiently per- 
formed by a recursive technique described by Chandy [11 ]. 

Step 4." If 4 ~< ark- [--E(eIIO,, 372)+) "-], i = 1,2,  proceed with step 5. Other- 
wise let.J/ = Ji - 1, i = 1, 2, and go to step 1. Here, the notation 
ezr(J1, J2) is used to stress the fact that ej7 is determined when J1 
and J2 are the bounds for the first synchronizer. Also, the procedure 
will always terminate since [-E(eli(Jl, a;2)+)7 is a non-increasing 
function of both O; 1 and J2. 

Step 5: Determine the matrix-geometric solution for the paired customer 
system with MMP and Poisson arrival streams corresponding to the 
second synchronizer and the service process. Compute interesting 
performance measures. 

Note that the iteration through steps 1 - 4  implements the basic compensation 
for the decoupling between the two synchronizers. 

To validate the performance of the approximation procedure we used 
a SIMSCRIPT II simulation of the original model. In figs. 8 - 9  and table 1 we show 
some of the results in a graphic and tabulated form. 

We expect that whenever the original system is weakly coupled, the approxi- 
mation should work well, even without the compensation in step 4. This is the case 
when the arrival rates are not balanced. When the system is strongly coupled, the 
approximation relies on the compensation mechanism. 

In fact, from our experience, we feel that compensation is only necessary 
in a narrow range of values for the arrival rates. In particular, such a range R is 
approximately characterized by 
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Fig.  9. Analy t ica l  a p p r o x i m a t i o n  and  s imula t ion  resul ts  versus 

X~/X~ for  sys tem ut i l iza t ion ,  P3. ( l l  = J2 =13 = 10, X 2 = X 1 , 
# =  X3). 
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Tab le  1 

N u m e r i c a l  r esu l t s .  (J1 = J2 = J3 = 10, X 2 = Xl ,  u = 7, 3 ) 

X3/X 1 S imul .  A p p r o x .  E r r o r  % Simul .  A p p r o x .  E r r o r  % 

E(eli ) E(eg) E(e17) P3 P3 P3 

1.0 - 2 . 1 7 5 0  - 2 . 0 7 5 9  4.8 0 .9333  0 . 9 1 2 3 3  2.3 

1.05 - 3 . 8 5 6 0  - 3 . 5 3 2 8  9.0 0 .8963  0 . 8 8 9 8 3  0.7 

1.1 - 5 . 0416  - 4 . 5 5 3 8  10.6 0 .8581  0 . 8 5 6 3 6  0.2 

1.2 - 6 . 4 7 9 6  - 6 .13  5.7 0 . 7 9 5 7  0 . 7 9 0 7 7  0.6 

1.3 - 7 . 4 6 2 4  - 7 . 1 3 6 4  4.5 0 . 7 3 7 0  0 . 7 3 1 8 6  0.8 

1.5 - 8 .3201  - 8 .1696  1.9 0 . 6 3 9 0  0 . 6 3 4 8 1  0.6 

2 .0  - 9 .1221  - 9 . 0 5 6 0  0.7 0 . 4 7 7 6  0 . 4 7 6 1 3  0.3 

Tab le  2 

N u m e r i c a l  r e su l t s  for  a r r iva l  r a t e s  in r eg ion  R .  (:1 = or2 = J3 = 10,  X 2 = hi  = ~ = 0 .1 )  

~.3/Xl S imul .  A p p r o x .  E r r o r  % Simul .  A p p r o x .  E r ro r  % 

E (e/ /)  E ( e g )  E (e/ i )  P3 P3 P3 

1.0 - 2 . 1 7 5 0  - 2 .07  4.8 0 .9333  0 . 9 1 2 3 3  2.3 

1.01 - 2 . 6 2 4 4  - 2 . 3 8 9 9  10.0 0 . 9 3 2 5  0 . 9 1 4 9 0  1.9 

1 .02  - 3 . 0 5 2 4  - 2 . 6 9 2 9  13.3 0 . 9 3 2 4  0 . 9 1 5 0 9  1.8 

1.03 - 3 . 2 3 5 5  - 2 . 9 8 4 5  8.3 0 . 9 3 8 4  0 . 9 1 7 4 3  2.2 

1.05 - 3 . 8 5 6 0  - 3 . 5 3 2 8  9.0 0 . 9 4 5 9  0 . 9 2 3 8 9  2.3 

1.07 - 4 . 3 6 1 2  - 3 . 8 6 7 2  12.9 0 . 9 4 7 3  0 . 9 3 2 2 4  1.6 

1.1 - 5 .0416  - 4 . 5 5 3 8  10.6 0 . 9 5 0 8  0 . 9 3 6 2 4  1.5 

Tab le  3 

N u m e r i c a l  r e su l t s  for  d i f f e r e n t  va lues  of  t h e  c o n t r o l  b o u n d s .  (X 1 = X2 = h 3 = ~z = 0 .1 )  

at1 =3"2 =y3 S imul .  A p p r o x .  E r ro r  % Simul .  A p p r o x .  E r ro r  % 

E (~z,) E (e g) E (eu) P~ P~ P~ 

5 - 1 .1425  - 1 .1170  2.7 0 . 8 6 6 4  0 . 8 3 8 5 2  3.3 

10 - 2 . 1 7 5 0  - 2 . 0 7 5 9  4 .8  0 .9333  0 . 9 1 2 3 3  2.3 

15 - 3 . 4 4 5 9  - 3 . 0 3 7 3  13.5 0 . 9 5 0 3  0 . 9 3 9 1 5  1.1 

20 - 4 . 4 1 0 9  - 3 . 9 9 5 5  10.5 0 . 9 6 5 5  0 . 9 5 3 1 3  1.2 

25 - 5 . 2 7 5 9  - 4 . 9 6 2 9  6 .2  0 . 9 7 3 0  0 . 9 6 5 3 2  0.8 
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R = { X 1 , X 2, X 3 X 1 ~< X 2 <~ X 3 ~< X 1 + 0.1 •1 }" 

The results show how, for arrival rates outside the range R,  the approximation per- 
forms better and better as X3/X 1 increases. 

Table 2 presents a comparison between approximation and simulation for 
values of the arrival rates inside the set R. There is a clear trend toward better approxi- 
mations as X 3/X 1 increases, i.e. as the system becomes less strongly coupled. The 
worst approximation for the expected excess at the second synchronizer gives an 
error of  about 13%. The system utilization is always well approximated and, again, 
the error decreases as X3/X 1 increases. The approximation error seems also to be 
decreasing with increasing J1, J2, and J3, as described in table 3. In this case, there 
should be a decreasing influence of the control mechanism with increasing values for 
the bounds. 

The approximation is expected to become worse as N becomes larger. How- 
ever, since the main cause of error is due to the decoupling of successive stages in the 
decomposition, while the MMP approximation is quite precise, we still expect a good 
performance of  the procedure (10% error or less) whenever the arrival rates are not 
approximately equal. 

9. C o n c l u s i o n  

In this work we presented an approximation for assembly-like systems with N 
(N > 2) Poisson arrival streams based on the idea of decomposition. Also, as by- 
products of this investigation, we obtained an analytical solution for the case N = 2, 
and one of the arrival streams is a two-state Markov Modulated process. The study 
presented in this document lends itself to numerous extensions. In particular, more 
general control mechanisms than the one considered can be analyzed, as discussed in 
[2] for the case of the paired customer system. Also, more general service time distri- 
butions can be treated. All the generalizations for the case of the paired customer 
system considered in [3] can in fact be adopted here. 
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