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Abstract

Kitting (accumulating components required for an assembly) plays a crucial role in determining the perfor-
mance of a small-lot, multi-product, multi-level manufacturing system. In this paper, we analyze the kitting
process as of a stochastic assembly system by treating it as an assembly-like queue. Speci0cally, we inves-
tigate the dynamics involved in a simple kitting process where two independent input streams feed into an
assembly process. Unlike previous studies in this domain, we relax the assumption of 0nite bu3er capacity
constraint on the input bu3ers, and still show that the system remains stable under fairly mild conditions. It
is expected that the 0ndings of this study will provide manufacturing system designers with wider variety of
control parameters to choose from in evaluating the system performance under a much broader set of control
policies, which would lead to minimizing the associated costs.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of assembly operations plays a crucial role in improving the overall system performance
in small-lot, multi-product, multi-level manufacturing operations, especially when the system operates
under a stochastic environment [1,2]. According to Chen and Wilhelm [3] assembly operations form
a signi0cant portion of the overall product cycle time (hence the total manufacturing cost) in many
industries including semiconductor manufacturing. Funk [4] reports that assembly operations comprise
of up to 40% of total manufacturing cost in the electronics industry. Therefore, e?cient control and
management of assembly operations is crucial in reducing the cycle time of the 0nal product.
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Conventionally, analysis of assembly operations has been based on the assumption that the sys-
tem operates deterministically. A more realistic analysis hinges on the recognition of the stochastic
elements (i.e., random arrival and random service times) that inFuence the system. Component avail-
ability at the various bu3ers (and consequently, the delivery schedules) is signi0cantly a3ected by
these stochastic elements. The goal of this paper is to understand and evaluate the implications of
kitting operations on the performance measures of assembly systems that operate under stochastic
conditions.

Successful management of kitting operations increases the productivity of any assembly process
[5]. In the electronics manufacturing industry, e?cient kitting mechanisms simplify material Fow and
provide for better shop Foor control [6]. Kitting operations are also studied at the level of production
strategies such as MRP and JIT systems; where production is managed by either a push or a pull
mechanism [7]. In such cases, e?cient control of the kitting operations found to play an important
role in lowering work in process (WIP) inventory and hence decreasing the operational cost. Re-
searchers at the center for quick response manufacturing at the University of Wisconsin-Madison
have been working on examining and comparing the analytical performance of push and pull pro-
duction control strategies [8,9]. Their approximation models favors JIT (pull/Kanban) over MRP
(push)-type production strategies.

Another domain that witnesses widespread use of kitting operations is the subcontracting practice in
supply chain management [10], where subcontractors supply the individual components and services
for the various products to the prime manufacturer and the manufacturer assembles the kits. One
such application environment is found in the various US department-of-defense (DoD) aircraft repair
depots (such as the Oklahoma City Air Logistics Center OC-ALC). In the shop Foor lingo at the
depots, a kit is an actual collection of parts needed to assemble an asset (such as a helicopter engine)
to completion. Typically, these parts, which could either be manufactured internally or supplied
by external contractors, are gathered in an assembly methodology to aid production. Given that
kitting-type operations are commonly found in these environments, a central problem here is e?cient
control of the kit assembly process that optimizes the delivery of these kits based upon the actual
upstream demand for these kits. One such recent initiative titled “lean value chain (LVC) for critical
parts procurement” sponsored by the Air Force Wright Laboratory’s Manufacturing Technology
Directorate involved developing solutions that enable coordinated response to anticipated and known
critical part problems [11,12]. A critical part is de0ned as any part whose anticipated or actual lack
of availability will prevent on-time completion of the weapon system. Critical parts are often the
result of ill-de0ned (or lack thereof) of control policies that dictate their delivery to the kitting
process (historically, within the OC-ALC facilities such as the GE Rotor shop, there was little
or no control policies for the parts ordering and procurement processes). The focus of the LVC
project was to reengineer the processes of linking production with material/component procurement
with the current e3ort being focused on developing and incorporating analytically driven control
policies.

In a related ongoing research e3ort, Leung and Kamath [13] analyze a single-stage assem-
bly system where two components are assembled into a single product via a kitting operation.
Each component has its own 0nite bu3er for temporary storage while waiting for its counter-
part. When a pair of components is available, the components move into the assembly station,
which has its own input bu3er. They develop a model to approximately calculate performance
measures, such as mean system time and mean queue length, when the component arrival
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Fig. 1. The structure of the assembly system under investigation.

processes are Poisson and the assembly time follows a general distribution. In Kamath and Leung
[14], this single-stage building block is used in the context of a production network to test the
usefulness of the approximation developed. Chang and Chen [15] also looked at tandem queues as
assembly-like queues in order to develop control policies that would increase the system performance
measures.

In this paper, we investigate a simple kitting process with two input streams for an assembly
system with the aim of understanding the dynamics involved. We assume that the arrival streams
feeding the kitting process have state-dependent arrival intensities. The assembly system has a similar
structure as modeled in [7,16], and is shown in Fig. 1.

In Fig. 1, M1 and M2 are machines processing parts P1 and P2, and M3 assembles these machined
components. I1 and I2 are the bu3ers for the machined components, I0 is the bu3er for the kitted
component and I3 is the bu3er for the assembled component. Machines M1 and M2 are assumed to
operate independently. They withdraw raw materials from their respective pools of in0nite capacity
and supply machined components to the bu3ers I1 and I2, respectively. A component arriving at
bu3er I1 (I2) is immediately kitted with a part from bu3er I2 (I1), if one is available, and a kit is
supposed to be ready for assembly operation at machine M3. If the kit cannot be composed, the
machined part is held in the bu3er I1 (I2), and awaits the arrival of a “matching” part from I2 (I1).
Once composed, the kit of matching components from I1 and I2 is sent to I0 and the kit is considered
to have arrived at I0 (Fig. 2).

For exponential service times at M1 and M2 and 0nite bu3er capacities at I1 and I2, Som et al.
[16] characterize the occupancy distribution at I1 and I2 at kit departure epochs. Completed kits
are shown to arrive at I0 according to a Markov-renewal process. Also, when machines M1 and
M2 have identical processing rates, and bu3er capacities at I1 and I2 are large enough, they show
that the arrival of completed kits to I0 is well approximated by a Poisson process. This leads to the
decoupling of the kitting operations from assembly, and hence to an easy analysis of the downstream
assembly operations.

Stochastic assembly systems are often studied as assembly like queues [17,18]. Many followed
the same approach in developing approximations for computing the performance measures of
complex assembly operations [19,20]. Harrison [18] in a primarily theoretical study, established
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Fig. 2. Rate diagram for the kitting process.

stability conditions for an assembly queue with renewal and mutually independent arrival streams.
He showed that a su?cient and necessary condition for the queue to be stable is for the com-
ponent bu3ers at I1 and I2 to be 0nite. Thus, when there are no limitations on the inventory
levels, the bu3er sizes at I1 and I2 blow up, even when the arrival intensities (processing rates
for M1 and M2) are the same. This can be intuitively explained by visualizing the queueing phe-
nomena in the context of a double-ended queue [21]. A double-ended queue can best be described
as the classical taxicab problem where taxies and passengers form two mutually separate queues
[22]. A customer waits in the customer queue until a taxi is available, and taxies wait in the taxi
queue until a customer is available. The two queues are interdependent and their combination is
known as a double-ended queue. The underlying queueing process maps into a random walk on
{: : : ;−2;−1; 0; 1; 2; : : :}, which is transient or recurrent null except when the queues are bounded.
Hence, most of the analysis of assembly queues and kitting operations incorporates the 0nite bu3er
size assumption. A more realistic approach is to view the machine processing rates as control
parameters, which dictate the performance measures of the system. The 0nite bu3er capacities case
is a speci0c policy for setting the control parameters which guarantees stability, but it need not
be the optimal policy. The assumption of 0nite bu3er capacity to ensure stability could be fairly
restrictive. This is particularly true since in this case the system remains stable under fairly mod-
erate conditions, allowing the system to be evaluated under a much broader set of control policies.
This approach o3ers system designers with a wider variety of control parameters to choose from
to minimize the associated costs. In this paper, we evaluate the system when the arrival rates (or
the machine processing rates) to I1 and I2 are controlled as a function of the bu3er sizes at I1
and I2, respectively. The service times of machines M1 and M2 are assumed to be exponential,
and dependent on the bu3er sizes at I1 and I2, respectively. Under these conditions in the next
section, we characterize the probability laws for bu3er sizes at I1 and I2 and establish conditions
for system stability. Then we derive the waiting time distributions for kits arriving at I0. We also
show that waiting times degenerate to exponential waiting times under the conditions assumed by
Som et al. [16].

The remainder of the paper is organized as follows. Section 2 presents the de0nitions, theorems
and proofs of our approach. A simple numerical cost structure example is provided in Section 3.
Section 4 concludes the paper by presenting the results and implications of our study.
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2. De�nitions and main results

Let �1(n1):n1¿ 0 and �2(n2):n2¿ 0 be the processing rate of machines M1 and M2, and respec-
tively, where n1 and n2 are the number of machined components waiting at corresponding bu3ers I1
and I2. This is a generic characterization; for example, the special case for 0nite bu3ers of k1 and
k2 at I1 and I2, respectively, and constant and identical machine processing times at M1 and M2 can
be de0ned by the following conditions:

�1(n) = �; 06 n6 k1

= 0; n¿k1

�2(n) = �; 06 n6 k2

= 0; n¿k2:

In order to establish conditions on the control functions �1(n1):n1¿ 0 and �2(n2):n2¿ 0 which
enable system stability, we characterize the probability laws of the number in system and establish
the waiting time for the completed kits arriving at I0 as a function of the processing rate at the
machines M1 and M2. We show that when the inventory capacities at I1 and I2 are unlimited, the
system is stable for very mild conditions on the control functions. Studying the behavior of the
inventory levels at I1 and I2, and the departure rate as a function of the control parameters is
useful in the selection of these parameters. We arrive at these stability conditions by 0rst developing
characterizations for a 0nite capacity system, and then developing the unlimited bu3er size case as
a limiting case of the 0nite capacity system.

Theorem 1. Following the previous research [2,6,16,17], we let the service times of machines M1

and M2 be exponentially distributed with parameters �1(n1), and �2(n2), where n1 and n2 are the
number of machined components at bu<ers I1 and I2, respectively. The permissible queue sizes in
both stations are k1 and k2, respectively. Let 
0;0; 
0;1; : : : ; 
0; k2 ; 
1; 0; : : : ; 
k1 ;0 be the steady-state
probabilities for the system states and let

L =




1 +
[
�1(0)
�2(0)

+
�1(0)�1(1)

�2
2(0)

+
�1(0)�1(1)�1(2)

�3
2(0)

+ · · · +
�1(0) : : : �1(k1 − 1)

�k1
2 (0)

]

+
[
�2(0)
�1(0)

+
�2(0)�2(1)

�2
1(0)

+
�2(0)�2(1)�2(2)

�3
1(0)

+ · · · +
�2(0) : : : �2(k2 − 1)

�k2
2 (0)

]



:

Then,


0;0 =
1
L
;


0; k2 =
�2(k2 − 1) : : : �2(0)

�k2
1 (0)L

;


k1 ;0 =
�1(k1 − 1) : : : �1(0)

�k1
2 (0)L

;
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0; n =
�k2−n

1 (0)
�2(k2 − 1) : : : �2(n)


0; k2 for 0¡n¡k2;


n;0 =
�k1−n

2 (0)
�1(k1 − 1) : : : �1(n)


k1 ;0 for 0¡n¡k1:

Proof. Let the state space for this assembly process be described as a two-tuple (n1; n2), where n1

and n2 correspond to the number of parts in the bu3ers I1 and I2, respectively. The kitting process
is such that if n1 ¿ 0(n2 ¿ 0) then n2 = 0(n1 = 0). Assuming an in0nitesimal kitting time, (i.e., a
part arriving at either bu3er is immediately kitted with a part from the complementary bu3er), we
have if n1 ¿ 0, it follows that n2 = 0 and vice versa.

The balance equation for state (k1; 0) gives


k1−1; 0 =
�2(0)

�1(k1 − 1)

k1 ;0:

Similarly,


k1−2; 0 =
�2

2(0)
�1(k1 − 1)�1(k1 − 2)


k1 ;0

and in general for 0 ¡n¡k1 it follows that


n;0 =
�k1−n

2 (0)
�1(k1 − 1) : : : �1(n)


k1 ;0 (1)

and


0;0 =
�k1

2 (0)
�1(k1 − 1) : : : �1(0)


k1 ;0: (2)

By symmetry, we also have for 0 ¡n¡k2


0; n =
�k2−n

1 (0)
�2(k2 − 1) : : : �2(n)


0; k2 (3)

and


0;0 =
�k2

1 (0)
�2(k2 − 1) : : : �2(0)


0; k2 :

Equating the two expressions for 
0;0, we get


0; k2 =
�k1

2 (0)

�k2
1 (0)

�2(k1 − 1) : : : �2(0)
�1(k1 − 1) : : : �1(0)


k1 ;0: (4)

Substituting (3) in (2) we get


0; n =
�k1

2 (0)
�n

1(0)
�2(n − 1) : : : �2(0)
�1(k1 − 1) : : : �1(0)


k1 ;0: (5)
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The normalizing equation for this system is

(
k1 ;0 + 
k1−1; 0 + 
k1−2; 0 + 
k1−3; 0 + · · · + 
1; 0)

+ (
0; k2 + 
0; k2−1 + 
0; k2−2 + 
0; k2−3 + · · · + 
0;1) + 
0;0 = 1:

Substituting for all the probabilities in terms of 
k1 ;0, using Eqs. (1) and (5) in the above equation,
we have


k1 ;0




1 +

{
�2(0)

�1(k1 − 1)
+ · · · +

�k1−1
2 (0)

�1(k1 − 1) : : : �1(1)
+

�k1−1
2 (0)

�1(k1 − 1) : : : �1(1)

}

+

{
�k1

2 (0)

�k2
1 (0)

�2(k2 − 1) : : : �2(0)
�1(k1 − 1) : : : �1(0)

+
�k1

2 (0)

�k2−1
1 (0)

�2(k2 − 2) : : : �2(0)
�1(k1 − 1) : : : �1(0)

+ · · · +
�k1

2 (0)
�1(0)

�2(0)
�1(k1 − 1) : : : �1(0)

}




= 1:

After employing Eq. (2), the expression for 
0;0 follows as 
0;0 = 1=L, where L is as de0ned
above.

Next, we extend the 0nite capacity case to in0nite bu3ers and derive some su?cient conditions
for stability. For stability, we check conditions under which 
0;0 ¿ 0. This is equivalent to checking
the condition that the series in the denominator of the expression for 
0;0 converges. The following
theorem states the stability conditions for the control function of the kitting process.

Theorem 2. If limk→∞ �1(k)¡�2(0) and limk→∞ �2(k)¡�1(0) then the system is stable.

Proof. The queue is stable i< the series

1 +
[
�1(0)
�2(0)

+
�1(0)�1(1)

�2
2(0)

+
�1(0)�1(1)�1(2)

�3
2(0)

+ · · · +
�1(0) : : : �1(k1 − 1)

�k1
2 (0)

+ · · ·
]

+
[
�2(0)
�1(0)

+
�2(0)�2(1)

�2
1(0)

+
�2(0)�2(1)�2(2)

�3
1(0)

+ · · · +
�2(0) : : : �2(k2 − 1)

�k2
1 (0)

+ · · ·
] converges:

The series above has all positive terms. A su?cient condition for the above series to converge is
that both of the following series converge.

1 +
�1(0)
�2(0)

+
�1(0)�1(1)

�2
2(0)

+
�1(0)�1(1)�1(2)

�3
2(0)

+ · · · ;

and

1 +
�2(0)
�1(0)

+
�2(0)�2(1)

�2
1(0)

+
�2(0)�2(1)�2(2)

�3
1(0)

+ · · · :

Let the kth term in the 0rst series be ak and the kth term in the second series be bk . Series 1
converges if, limk→∞ ak+1=ak ¡ 1. Similarly, Series 2 converges if limk→∞ bk+1=bk ¡ 1. We have,
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limk→∞ ak+1=ak = limk→∞ �1(k)=�2(0)¡ 1 ⇒ limk→∞ �1(k)¡�2(0) and

lim
k→∞

bk+1

bk
= lim

k→∞
�2(k)
�1(0)

¡ 1 ⇒ lim
k→∞

�2(k)¡�1(0);

thus proving the theorem.

Based upon this result, it is evident that system stability is guaranteed under mild conditions on
the control functions. Intuitively, the above result states that the system is guaranteed stability as
long as the control functions �2(k) and �1(k) which represents the tendency to drift towards (0;∞)
and (∞; 0), respectively, are 0nally dominated by �1(0) and �2(0) (which represent the tendency of
the system to pull back to the state (0; 0)), respectively.

Next we establish the waiting time distribution for kits arriving at bu3er I0. Let T1; T2; T3; : : : be
the times of completion of successive kits. Let X1; X2; X3; : : : be the queue sizes. Then Som et al. [16]
show that when the maximum permissible bu3er sizes k1 and k2 are 0nite (Xn; Tn) form a Markov
renewal process. They develop expressions for P{Tn+1 − Tn6 t} and show that it approximates an
exponential distribution as k1 and k2 become in0nitely large. We use the result in Theorem 1 under
the more general assumptions of in0nite bu3er capacity and controlled arrival rates to characterize
the waiting time distributions for kits arriving at I0.

Theorem 3. Let Nt be the number of kits completed up until time t. Let E be the state space for
the process i.e., E = {(k1; 0); : : : ; (0; 0); : : : ; (0; k2)}. Let TNt+1 − t = WNt+1. Then the distribution of
the waiting time WNt+1 at steady state is given by

lim
t→∞ P{WNt+16y} = A(1 − e−�2(0)y) + B(1 − e−�1(0)y)

+ (1 − A − B)(1 − e−�1(0)y)(1 − e−�2(0)y)

where

A =
∞∑
n=1


n;0 and B =
∞∑
n=1


0; n:

Proof.
Case (a):

lim
t→∞ P{WNt+16y=state of system = (k; 0); k ¿ 0}

=P{arrival at station I2 before time y units=state of system = (k; 0); k ¿ 0}
= 1 − e−�2(0)y:

Case (b):

lim
t→∞ P{WNt+16y=state of system = (0; k); k ¿ 0}

=P{arrival at station I1 before time y units=state of system = (0; k); k ¿ 0}
= 1 − e−�1(0)y:
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Case (c):

lim
t→∞ P{WNt+16y=state of system = (0; 0)}

=P{arrival at station I1 & I2 before time y units=state of system = (0; 0)}
= (1 − e−�1(0)y)(1 − e−�2(0)y):

Let

A =
∞∑
n=1


n;0; and B =
∞∑
n=1


0; n:

Then, 
0;0 = 1 − A − B, and we have,

lim
t→∞ P{WNt+16y} = A(1 − e−�2(0)y) + B(1 − e−�1(0)y)

+ (1 − A − B)(1 − e−�1(0)y)(1 − e−�2(0)y): (6)

Next, we derive the joint distribution of two successive kit completions times from an arbitrary
time t.

Theorem 4. Let T1; T2; T3; : : : be the times of completion of successive kits. Let Nt be the number
of kits completed up until time t. Let the bu<er sizes be @nite at k1 and k2, respectively. Let E be
the state space for the process i.e., E = {(k1; 0); : : : ; (0; 0); : : : ; (0; k2)}. Then the joint distribution
of the waiting time and the next inter-departure time is given by

lim
t→∞ P{TNt+1 − t6y1; TNt+2 − TNt+16y2}

=A′(1 − e−�2(0)y1)(1 − e−�2(0)y2) + B′(1 − e−�1(0)y1)(1 − e−�1(0)y2)

+ 
1; 0

[
�1(0)

�1(0) + �2(0)
(1 − e−�2(0)y1)(1 − e−�2(0)y2)

+
�2(0)

�1(0) + �2(0)
(1 − e−�2(0)y1)(1 − e−�2(0)y2)(1 − e−�1(0)y2)

]

+ 
0;1

[
�1(0)

�1(0) + �2(0)
(1 − e−�1(0)y1)(1 − e−�1(0)y2)(1 − e−�2(0)y2)

+
�2(0)

�1(0) + �2(0)
(1 − e−�1(0)y1)(1 − e−�1(0)y2)

]

+
0;0




�1(0)
�1(0) + �2(0)

(1 − e−�1(0)y1)(1 − e−�2(0)y1)(1 − e−�2(0)y2)

+
�2(0)

�1(0) + �2(0)
(1 − e−�1(0)y1)(1 − e−�2(0)y1)(1 − e−�1(0)y2)


 ; (7)
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where

A′ =
k1∑

n=1


n;0 and B′ =
k2∑

n=1


0; n:

Proof. We can write the above expression as

P{TNt+1 − t6y1; TNt+2 − TNt+16y2}
=

∑
i∈E


iP{TNt+1 − t6y1; TNt+2 − TNt+16y2=state at t = i}

=
∑
i∈E


iP{TNt+2 − TNt+16y2=TNt+1 − t6y1}P{TNt+1 − t6y1=state at t = i}: (8)

Case (a) (XNt = (k; 0); k ¿ 1):

P{TNt+2 − TNt+16y2=TNt+1 − t6y1; state at t = i} = (1 − e−�2(0)y2): (9)

Case (b) (XNt = (0; k); k ¿ 1):

P{TNt+2 − TNt+16y2=TNt+1 − t6y1; state at t = i} = (1 − e−�1(0)y2): (10)

Case (c) (XNt = (1; 0)):

P{TNt+2 − TNt+16y2=TNt+1 − t6y1; state at t = i}

=
�1(0)

�1(0) + �2(0)
(1 − e−�2(0)y2) +

�2(0)
�1(0) + �2(0)

(1 − e−�1(0)y2)(1 − e−�2(0)y2): (11)

Case (d) (XNt = (0; 1)):

P{TNt+2 − TNt+16y2=TNt+1 − t6y1; state at t = i}

=
�1(0)

�1(0) + �2(0)
(1 − e−�1(0)y2)(1 − e−�2(0)y2) +

�2(0)
�1(0) + �2(0)

(1 − e−�1(0)y2): (12)

Case (e) (XNt = (0; 0)):

P{TNt+2 − TNt+16y2=TNt+1 − t6y1; state at t = i}

=
�1(0)

�1(0) + �2(0)
(1 − e−�2(0)y2) +

�2(0)
�1(0) + �2(0)

(1 − e−�1(0)y2): (13)

Substituting Eqs. (9) and (13) in Eq. (8) and using Theorem 3, we obtain the desired result.
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Theorem 3 can be used to estimate expected remaining waiting times. Theorem 4 can be used to
study the correlations structure of the kit completion process. Based upon Theorem 4, the following
corollary states that the waiting times are independent under the assumption of �1(n)=�2(n)=�.

Corollary. When both bu<er capacities are in@nite and �1(n) = �2(n) = � for all n, then the above
joint distribution reduces to a product of two exponentially distributed intervals.

Proof. Let k1 = k2 = k. Then, 
i = 1=(2k + 1) ∀i ∈E. The right-hand side in Eq. (7) as given in
Theorem 4, reduces to(

2k − 2
2k + 1

+
1

2k + 1

)
(1 − e−�y1)(1 − e−�y2)

+
1

2k + 1
[(1 − e−�y1)(1 − e−�y2)2 + (1 − e−�y1)2(1 − e−�y2)]

+
1

2k + 1
(1 − e−�y1)(1 − e−�y2)(2 − e−�y1 − e−�y2):

If we let k → ∞, we have limt→∞ P{TNt+2 −TNt+16y2; TNt+1 − t6y1}=(1−e−�y1)(1−e−�y2).

In the next section, we use simple numerical examples to gain further insights and select control
parameters for minimizing overall system costs.

3. Numerical example

Based upon the results of the previous sections it is evident that system stability is guaranteed
under reasonably mild conditions on the control functions. This poses the system designer with the
following question: given a particular cost structure (such as the inventory holding cost, delivery
rate requirements), from the class of control functions satisfying the stability criterion, what is the
‘optimal’ function for the processing rates? Consider the following set that de0nes sequence-tuples
that satisfy the stability criterion:

S =
{

(aj; ak):aj = [aj;n]∞n=0; ak = [ak;n]∞n=0 and lim
n→∞ aj;n ¡ak;0; lim

n→∞ ak;n ¡aj;0

}
:

Any element of the set (aj; ak) ∈ S is an admissible control policy. Then the overall cost function
f can be generically de0ned in terms of the control policy and the cost parameters as

cost function= f((aj; ak); cost parameters);

and the optimal control policy (a∗
j ; a

∗
k ) satis0es

f(a∗
j ; a

∗
k ) = min

All(aj; ak)∈S
f((aj; ak); cost parameters):

Intuitively it can be reasoned that there exists no particular control function that minimizes total
cost over all cost structures. In other words, the nature of the control function would be dependent
on particular cost structure that is present in the application domain. Also, the set of control policies
that are admissible in a domain would be dictated by the capacities of the machines producing
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the individual components (machines M1 and M2). Then the set of admissible control policies are
restricted to

S =

{
(aj; ak):aj = [aj;n]∞n=0; ak = [ak;n]∞n=0 and lim

n→∞ aj;n ¡ak;0; lim
n→∞ak;n ¡aj;0;

sup[aj;n]∞n=06 �1
max; sup[ak;n]∞n=06 �2

max

}
;

where �1
max and �2

max are the upper limits for production capacities at machines M1 and M2, respec-
tively. A closed-form analytical solution to the problem de0ned above is di?cult, and is the focus
of our ongoing research investigation. Nevertheless, we can leverage the research results from the
previous sections to develop simple, yet practical, control strategies (which although not rigorous,
they o3er some level of control on the operational costs). We show a sample numerical exercise
that illustrates the application of the theoretical results. Consider three speci0c classes of control
functions for processing rates at the machines that satisfy the stability criterion.

(1) aj;n = ak;n = �1(n) = �2(n) = C0

(
1
rn

)
; r ¿ 1; n¿ 0;

(2) aj;n = ak;n = �1(n) = �2(n) =


 C1

(
1
n

)
; n¿ 0;

C2; n = 0:

(3) aj;n = ak;n = �1(n) = �2(n) =


 C3

(
1 − n

M

)
; 06 n6M;

0 otherwise:

All of these control functions belong to a speci0c control function type that can be tuned in
terms of parameters (we can call this the control function parameter). For example, the 0rst control
function type is a geometric control function, in which by modifying the parameter r, di3erent
production intensities (and di3erent cost performances) can be achieved. A simple formulation for
the cost function would incorporates a tradeo3 between the lateness cost of assembled kits (cost that
is proportional to the waiting time for completed kits) and the holding cost of components at the
individual bu3ers. The lateness cost reduces when the inter-departure times of successive assemblies
have a lower mean (kits are generated at a higher rate). If we tend to have a high number of parts
in the bu3ers (higher holding costs), then we tend to move away from the situation in which both
bu3ers are starved, which reduces the mean of the inter-departure times. Inherent in the notion of
a lateness cost is the assumption of an in0nite demand of assembled kits at the downstream bu3er
I0. Let

Ch = Holding cost of a part in bu3er I1 or I2:

Cl = Lateness cost of an assembled part:

I = Total number of parts in bu3ers I1 and I2:

W = Remaining waiting time of an assembled kit:

TC = Total cost:
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Fig. 3. Cost values for geometric processing rates with Ch = 0:5 and Cl = 5.

Table 1
Total cost at di3erent cost combinations for three machine processing rates

Control policies Policy 1, Policy 2, Policy 3,
Ch = 0:5; Cl = 5, Ch = 0:5; Cl = 5, Ch = 0:5; Cl = 5,
C0 = 1, optimal r C1 = 1; C2 = 1 C3 = 1; M = 10; 000

Cost 11.683 11.621 12.863

Then, de0ne the total system costs as

TC = ChE[I ] + ClE[W ];

E[I ] is the expected number of components at bu3ers I1 and I2, and is de0ned as

E[I ] =
∞∑
i=0

iP(I = i):

The results from Theorem 1 can be used to compute P(I = i). Similarly, if f(y) is the density
corresponding to the distribution in Theorem 3, then the expected remaining waiting time E[W ] of
an assembled kit is de0ned as follows:

E[W ] =
∫ ∞

0
yf(y) dy:

For a particular combination of Ch (= 0:5) and Cl (= 5), and parameter C0 = 1, Fig. 3 shows the
values for TC as a function of r (achieving an optimal cost value of 11.683). The entries in
Table 1 compare this optimal TC value with the second (for C1 = 1; C2 = 1) and the third (for
C3=1; M=10; 000) control policies. We can see that the second processing rate (where the processing
rate equals the reciprocal of the number of parts in the bu3er) performs the best.

Although the above analysis makes simplifying assumptions and employs a primitive cost structure,
it serves to illustrate the relevance of using machine processing rate functions as control parameters
in improving the performance of assembly operations.
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4. Conclusions

In this paper, we characterize probability laws for queue sizes at bu3ers for a kitting process.
We derive the distribution of remaining waiting time for kits feeding the downstream process. We
show that queue sizes at the component bu3ers are stable under very mild conditions for the control
functions. This is in contrast to previous research, which analyses kitting systems of 0nite component
bu3er capacities, where the 0nite bu3er sizes are imposed to ensure stability. This o3ers system
designers a wide variety of control functions to choose from so as to have the Fexibility to minimize
cost given the cost structure at hand.
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