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A b s t r a c t  

In assembly lines, service involves assembling units coming from more than one 
source. In queue terminology, we may consider this situation as one in which 
service is rendered only to groups of customers - one from each class. In this paper 
we give procedures to determine response time characteristics of such a system 
under Markovian assumptions when a finite capacity restriction is imposed. This 
restriction is imposed to reflect reality as well as to make analysis tractable. In the 
course of this study, we also give a recursive technique to determine the distribu- 
tion of the time taken for a specific number of departures in a Poisson queue from 
an arbitrary initial state. We demonstrate that this distribution is related to the 
response time distribution of the assembly-like queue. Webelieve that this procedure 
will also be of independent interest. 

K e y w o r d s  

Assembly-like queues, queues with paired customers, response time, Markovian 
systems, first-passage time for departures. 

1. I n t r o d u c t i o n  

At an assembly point on a product ion line, units coming from various sources 

are assembled to make a product .  In this process, typically one unit from each source 

is needed. Such queueing systems in which service can be rendered only to groups of  

customers - one from each source - have come to be known as assembly-like queues. 
Harrison [4] investigated the equilibrium properties o f  the underlying waiting time 

processes and came to the conclusion that,  when there is no restriction on system 

capacity, the vector waiting time process (with waiting time of  the nth arriving 

customer in each class as elements) does not  converge in distribution to a nondefective 

random vector as n -~ ~ .  This result is only to be expected, since the slowest traffic 
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dominates the waiting time process. Harrison also showed that a modified waiting 
time process which is the minimum of waiting times of the nth customers in the 
various classes did converge in distribution as n -~ oo. Although useful in understanding 
the properties of the underlying processes, this result is not useful in practice if one is 
interested in the waiting times of  the various classes of customers. 

In its generality, the structure of an assembly-like queue may be described as 
follows: 

(i) Customers from m sources arrive for service at a single facility. 

(ii) Service is given only to groups of customers with groups made up of one 
customer from each source. 

(iii) The waiting room for customers from each source has a specified capacity. 

(iv) For the study of waiting times, one assumes that the customer groups are 
served in the order they are formed. 

(v) The service facility might also be equipped with the capability to serve 
more than one type of customer group, each having its own set of sources. 

The system analyzed here is a simplified version with assumptions for arrival 
and service processes that make the system Markovian. We consider the case m = 2 in 
detail and outline the procedure by which it can be extended to m > 2, using the case 
m = 3. We assume exponential interarrival and service times and consider only one set 
of sources, thus resulting in service for only one type of customer groups. We also 
assume that the waiting rooms of customers are finite, not necessarily being the same 
for each source. This assumption of finiteness overcomes the problems identified 
in the Harrison study. However, it should be noted that the capacity of the waiting 
room is limited only by our computational capabilities. 

In order to avoid the problems posed by the unlimited waiting room, Latouche 
[5] bounded the excess of one class of customers over the other in an assembly-like 
queue with two customer classes. He used the algorithmic technique introduced by 
Neuts [7] to determine the equilibrium distribution of the number of customers in 
the system. However, in many situations bounding the number of customers in each 
class rather then bounding the excess seems more practical. This is the approach we 
take in our study. 

Our study of assembly-like queues was motivated by the dataflow model of 
a computer system. In the dataflow architecture of computer systems (Dennis [2]), 
execution of programs is data driven in the sense that each instruction is enabled for 
execution just when each required operand has been supplied by the completion of the 
predecessor instruction. Thus, operands are processed only when one operand from 
each of the required classes is available, exactly in an assembly-like manner. Thus, in 
its generality a processor node of a dataflow model may exhibit all properties of 
assembly-like queues described above, and the system we consider is a simplified 
model for such a node. Even though the primary justification for assumptions in our 



U. Narayan Bhat, Finite capacity assembly-like queues 87 

model is the ease of analysis, the finite waiting room assumption can be justified also 
by the architectural restrictions imposed by the initial attempts in system design (see 
Dennis and Misunas [3] ). As can be seen later, only approximate solution techniques 
seem feasible if some of the major model assumptions are relaxed. 

The objective of our study is the determination of the distribution and the 
moments of the response time (= waiting time + service time) using known results 
for the steady state distribution of the number of customers in the system from each 
source. If one is interested only in the unconditional mean response time, Little's law 
can be used to derive it if the queue length distribution is known. The value of our 
study is in providing expressions for response time characteristics conditional on the 
state of the system on the arrival of the customer and the ability to determine the un- 
conditional distribution when the state space is relatively small. 

In an assembly-like queue, when an arriving customer finds more customers 
of its class than the others, the waiting time has the characteristics of the time taken 
for a specified number of departures in a regular queue. Therefore, in the next section 
we give a procedure to determine the distribution characteristics of a specified de- 
parture time in an M/M/1 (Poisson arrival, exponential service, single server) queue. 
This result may also be o f  independent interest since we are not aware of the avail- 
ability of a similar result in the literature for the finite waiting room case. 

Section 3 describes the procedure for the analysis of  assembly-like queues 
with two customer classes. An outline of the extension to three customer classes is 
given in sect. 4. The paper concludes with some remarks on the feasibility of similar 
analysis in the general case in the last section. 

2. P r e l im ina ry  resul ts :  A spec i f ied  d e p a r t u r e  t ime  in an M/M/1 q u e u e  

Consider a single-server queue with Poisson arrivals and exponential service. Let 
X be the arrival rate and/~ the service rate. Let A (t) and D(t) be the number of arrivals 
and the number of departures during (0, t), and Q(t) the number of customers in the 
system at time t. Let 

T (i) = infItID(t)  = d, Q(O) = i l .  

The random variable T (i) is the first passage time for the counting process D(t) and 
is the time taken for d departures, having started initially with i customers in the 
system. 

For i = 0 and an infinite system capacity, the distribution T (~ can be deter- 
mined from the joint distribution of A (t) and D(t) given by Pegden and Rosenshine 
[8]. For an arbitrary i, the distribution of T(a 0 can be obtained from similar results 
derived by Boxma [1 ]. To use Boxma's results, let 
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F(n[)(t) = P(A( t )  = n, D(t)  = r lQ(0)  = i). 

Now one may write 

r = d  n = O  

(2.1) 

Besides the fact that these results are for the infinite capacity queue, the explicit 
expressions are quite cumbersome for getting E(T(i)).  The method we propose here 
is quite simple and is based on the Kolmogorov equations for the process. We consider 
the queue with a finite capacity K. Even though the expressions for the distribution 
become cumbersome for larger values of K, one should be able to obtain the mean of 
the departure time directly for specific parameter values even for large K. 

Define 

P(i)(t) = Pr ( t )  = P(Q(t) = n, D(t)  = r lQ(0)  = i), 
nr  

(2.2) 

Also 

n = 0 , 1 , 2 , . . . , K  

r = 0 , 1 , 2  . . . .  , d - 1 .  

(i) (0 = 0 Pntr ) = I i f n  =i ,  r 

= otherwise. 

Note that in order to consider the first passage time of the process {Q(t), D(t)} to state 
D(t) = d, we make the state (n, d), n = 0, i,  2 . . . .  , K absorbing. Defining g(i)(t)as 
the density function of T (i), we have 

K 

g(i)(t) = # Z p(i) (t) (2.3) 
n , d - 1  

n = l  

which remains true even when K -* oo. The transition probabilities Pnr(t) satisfy the 

following forward Kolmogorov equations. 
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Poo(t) = - kPoo( t ) ,  i = 0 

g 'o ( t )  = - ( x  + U)go(t),  i > o 

P:o(t)  = - ( k +  p ) P o ( t )  + XPn_ 1,o(0,  

P~'_ r, ,(t)  = - ( x  + u ) P . _  r,~(t) + uP~_ ~§ 1 ,r -1  (t) ,  

Pot(t) = - kPor(t ) + I.tel,r_ 1 (t) , 

P:r(t) = - (~k + / 2 ) P n r ( t  ) + ~ n  - 1,r ( t )  + ] d e  + 1 . r -1  ( t ) ,  

{(n,r) = ( i + ] - r +  1,r) 

= (1 +],r) 

] = 0 , 1 , 2  . . . . .  K - i - l }  

PKr(t) : - UeKr(t) + LP K _ 1,r(t) , 

Define the Laplace t rans form 

Cnr (0) = ] e- OtPr (t) d t Re(0)  > O.  

0 

With the initial condi t ions  def ined  in (2.2) ,  we get 

Taking 

j [ 0r ) - 1  i f  n = i ,  r=O 
e-~ ) dt  = 

o 0 (~nr (0)  o therwise  . 

n = i+ 1 , . . . , K  

r = 1 ,2  . . . . .  i 

r = i+ 1 , . . . , d - 1  

for  r = 1 , 2  . . . . .  i 

for  r = i +  1 . . . . .  d - l ,  

r = 1 ,2  . . . . .  d -  1. (2 .4)  

t ransforms ,  cor responding  to  the sets o f  equa t ions  (2.4) ,  we have,  respect ively,  

r  = (0 + ~) -1  

r  = (e + ~ + u)-~ 
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~no(O) = )t(O + )t + /1)-1 q~n_l ,0(O)  

~i_r,r(O) = / 1 ( 0  + ) k  + / 1 ) - 1  ~ ) i _ r + l , r _ l ( O )  

( / ) o r ( O )  = 1 1 ( 0  + ~ ) - 1  ~ ) l , r - 1  ( 0 )  

~nr(O) = ( 0  + ~ + / 1 ) - 1  [ ~ k ( ~ n _ x , r ( O  ) + / 1 ( ~ n + l , r _ l ( O )  ] 

= x(0 +/1)-1 CK_l,r(0). (2.5) 

When K and d are small, these equations can be solved explicitly. For larger values of 
K and d, an algorithmic procedure which can be implemented using a computer may 
be suggested. A diagrammatic representation (fig. 1) of  the transition structure helps 
in describing this procedure. 

�9 �9 �9 �9 ~ �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 . 

�9 �9 . �9 �9 �9 �9 , �9 ~ �9 �9 �9 �9 �9 �9 �9 �9 �9 . �9 �9 �9 �9 �9 , �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 

Figure 1. 

The following observations may be noted. 

(1) When the process is in any one of the states (O,r), r = i . . . . .  d - 1, only 
arrivals affect transition. The residence time in such a state is exponential with rate X 
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and the probability is 1 that the next state will be (0, r + 1). The corresponding Laplace 
transform for the transition time is X/(X + 0). 

(2) When the process is any one of the states (K, r), r = 0, 1 . . . . .  d - 1, only 
departures affect transition. The residence time in such a state is exponential with 
rate /2 and the probability is 1 that the next state is ( K -  1, r + 1). The corresponding 
transform for the transition time is given by/2/(/2 + 0). 

(3) From all other states, both arrivals and departures affect transition and the 
probability of arrival is X/(X +/2) and the probability of departure is/2/(X +/2). Resi- 
dence times in these states are exponential with mean (X +/2)-1 and therefore corres- 
ponding to an (n, r) ~ (n + 1, r) transition we have a Laplace transform (X/(X +/2)) 
((X + /2)/(X + /2 + 0)) and corresponding to an (n, r) --" (n - 1, r + 1) transition we 
have a Laplace transform (/2/(X + /2)) ((X +/2)/(X +/2 + 0)). Thus, because of the 
Markovian properties of the system, obtaining the Laplace transform On, a -1 (0) is 
simply a problem of tracing the various paths from (i, 0) to (n, d - 1), counting the 
number of transitions of the four types mentioned above, attaching the appropriate 
Laplace transform with each transition and getting their product. Thus, suppose a 
path from (i, 0) to (n, d - 1) includes N 1 of type 1 , N  2 of type 2, andN~' of type 3 
with an arrival and N3 d of type 3 with a departure, then the corresponding transform 
is simply 

u N d 
u d) ( ) k ]  NI ( ~ ]  N2 )kN3 l "1 3 

X: = , ( 2 . 6 )  r ' N I ' N 2 ' o ' N 3  \ X + 0 /  /2 + 0,] ()t + /2 + 0)N3 

where we have written N~ + N3 d = N 3 . If there are H(N,,N2,  N~,Ng) paths of this 
type, we get 

q)n,d_l(O) = ( 0 +  ~. + / , / ) - 1 Z  H(N1,N2,  Na, N ~) z(N1,N2, N~,N~) 

=~'~F-NI'N2'N3'N3-() O + k l  \ / 2 + 0 1  k + / 2 + O /  ' 
(2.7) 

where the term (0 + k +/2)-1 of the first expression indicates that the process is still 
in state (n, d - 1), and that the summation is over possible sets of  values of N1, N2, N~ 
and N a. The number of paths H(N1, N2, N~, N g) can be determined by using a com- 
puter algorithm. 

Now the Laplace transform of the distribution of T(i) is obtained from (2.3) as *d 
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K 
e -~ g(i)(t) dt = I~ ~ O n , d .  1 ( 0 ) .  

n = l  0 

(2.8) 

The inversion of this transform can be accomplished by noting from (2.7) that it con- 
sists of  three factors which are transforms of Erlangian (Gamma) distributions. Let 
fN(t/X) denote an Erlangian density such that 

o o  

e-~ dt -- ~ �9 

0 

Using this notation, after inverting (2.8) one gets 

K 
g(i)(t) : l~ ~. ~ F(N1,Nz, N~ ,N  ~) 

r t = l  

fX 1 (t IX) * fX2 (t IV) ,~ fN3 +1 (tlX + iS), (2.9) 

where the second summation is over different values of N 1, N 2, N~ and N3 a resulting 
from different paths from (i, 0) to (n, d -  1). Also, we have used * to denote convolu- 
tion. The transform (2.8) can also be inverted using partial fraction expansions. In 
this case, one would be able to express g(i)(t) as 

I N 1 , N 2 N 3 + 1 q 

g(O(t) = la Z clifi(tlX) + ~ c2ifi(tllJ) + ~ c3ifi(tlX + ll)J (2.10) 
i = 1 i = 1 i = 1 

where cji (j  = 1, 2, 3) are appropriate coefficients appearing in the partial fraction 

expansion. 
It may be noted here that Boxma's [1] procedure is basically similar to this 

solution technique. Without the finite upper limit on Q(t), he is able to use random 
walk methods to give the number of each type of path. Also, for the same reason, 
there are only two types of transitions [(1) and (3)], thus simplifying the inversion. 

If we are interested only in the mean first passage time to state D(t) = d, the 
procedure given above can be used to determine this quantity in a recursive manner. 
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Using a well-known property of non-negative random variables, we have 

o o  

EIT(O]t a = f ]~(T (i) > t ) d t .  

Combining this result with (2.3) we get 

E [  T(i)] = P(i)(t)dtnr 
n = O  r = O  

0 

(2.11) 

K d - 1  

lim ~ ~- end(O) 
0 - + 0  

n = O  r = O  

K d - I  

Z Z%, 
r t=O r = O  

(2.12) 

where we have written lim o __, o ~)nr(O) = Onr" These quantities ~nr can be determined 
from the set of  equations (2.5) recursively as follows. Let 0 -+ 0 in (2.5). We now have 
the set of equations 

= X  -1 i = 0  
~00 

Oio = ( X + p ) - i  , i >  0 

CnO = X(X+ p)-I r  n = i+  1 . . . . .  K 

r  = p ( X +  p)-I  r  ' r = 1 , 2 , . . . , i  

4)Or = PX-I  r  ' r = i+ l . . . . .  d - 1  
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4. ,  = ( x + u )  -1 [x~ ._ l , r  + u~ .+1 , ._11 ,  

( n , r )  = ( i + j - r + l , r )  for r = 1,2 . . . . .  i 

= (1 + j, r )  for r = i + l  . . . . .  d - 1  

/ = 0 , 1 , 2  . . . . .  K - i - 1  

, r = 1 , 2 ,  , d -1 .  ( 2 . 1 3 )  ~K, = xt~-I r  " ' "  

For specific values of  X and /1, these can be recursively solved. When K and d are 
small, explicit expressions can be easily obtained, but when K and d are large, a com- 
puter can eliminate the drudgery of  algebraic simplifications. The type of  results one 

obtains from this is illustrated in the following example. 

EXAMPLE: i = 3, K = 6, d = 5 

The recursion is illustrated in fig. 2. 

0--'.@ 
+ 

,1, @46 6 e 
@4 Q @ 6 ~?:, 

4, ,4, ,I, 6 e 6 @ @  
.!, ,I, .1, ..1, 4, @ @ t'r~ cr~ @ 

Columns: 13 1 2 3 4 

Figure 2. 
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The first four equations of  the set (2.13) give the ~b values for (3, 0) to (6, 0), 
(2, 1) to (0, 3), and (0, 4), which are all on the upper part of the boundary. The fifth 
and sixth equations are used to determine the remaining r values. After some algebraic 
simplification, we get 

- r = O ,  1 ,2 ,3  q~3+~,o (X+ Uy +I ' 

( r + 2) Xr+ 1/a 
1 

~3+r, 1 = , r = - 1 , 0 ,  1 ,2 ,3  
(X+ g)~+3 

( r  2 4 )  Xr+ 2 g2 

~93+r, 2 = , r = - 2 , - 1 , 0 , 1 , 2 , 3  
(X + g)r+ s 

~a+,-,3 

r +  6)  )tr+ 3//3 
3 

(X + ~u) r+ 7 
r = - 3 , - 2 , - 1 , 0 , 1 , 2 , 3  

i(4) (~3 + r, 4 )t 3 + + ' ' "  + 3 ' (X + ~)~+ 9 

r = - - 3 , - - 2 , - - 1 , 0 , 1 , 2 , 3 .  (2.14) 

It should be noted that the expressions are easy to obtain for columns 
O, 1, 2 , . . .  ,i. For columns beyond i, because of the contribution of the numerous 
paths, the expressions become quite cumbersome, as evidenced by the last result in 
(2.14). In view of this, computer implementation of the recursion is recommended. 

The recursive scheme can also be used as K -+ ~ .  Clearly, the terms decrease 
as one moves down along the columns and appropriate cutoff  values can be prescribed 
to terminate calculations in each column. 

. A s s emb ly - l i ke  q u e u e s  w i t h  t w o  c u s t o m e r  classes 

We assume the following queue characteristics: 

(i) Two classes of customers arrive in Poisson streams with rates X 1 and ~k 2 . 

(ii) Service requires pairs of customers - one of each class. 
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(iii) Service times are independent and identically distributed exponential 
random variables with rate/a. 

(iv) Waiting space is provided for only a maximum of K customers in the 
system for each class including the one in service, if any. It should be noted 
that the analysis remains unchanged even when queue capacities are different 
for different classes of customers. We make the assumption of equal capacity 
for notational ease. 

(v) Service is rendered in the order the pairs are formed. 

Let Pnl, n2 be the steady state probability that there are n 1 of class 1 and n 2 
of  class 2 customers in the system. With these assumptions we can easily write down 
the state balance equations and solve them in the usual manner. When the capacity 
constraint is K, there are (K + 1)2 probabilities to be determined. For the remainder 
of this discussion we shall assume that K is relatively small and our computational 
capabilities are such that these probabilities can be determined without significant 
error. 

Let : ( 0  (x) be the probability density of the response time (= waiting time J n l ,  n 2 

+ service time) of a class i (i = 1 ,2 )  customer when it finds n x of class 1 and n 2 of 
class 2 customers on its arrival (n 1, n 2 = 0, 1, 2 . . . . .  K). Also, let R(i)ln 2 be the 
corresponding mean response time. In the determination of fn([)E(X ) and g-(n?n2 we 
have to delineate different cases. 

Case(i): n 1 = n 2 = n >~ O. 

When a customer arrives, if there are only pairs (and no excess in any class) in 
the system, then the response time will include the amount of time needed to serve 
the pairs and its own service time if a customer of  the other class has already arrived 
by that time, or the amount of time for a customer of the other class to arrive plus 
its service time. We have 

x #nyn - 1 

f ( i ) ( x  [ e -I2y ( 1 - e  -x jy )  
" n n -  ) = ] ( n - i ) !  

tie -g(x - Y) d y 

x 

f y n -  1 _ X/y :o(o ) + e-UY ( n - l ) !  e ( x - y ) d y  

0 

K ~> n ~> 0; i , j  = 1,2,  i =~ j ,  (3.1) 
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giving 

_ g n  
R (i) n + 1 + 

"" /~ X! (/~ + X i )"  

i , j  = 1 ,2 ,  i 4 : j ;  0 ~< n <~ K .  (3.2) 

Case(i i) .  n i < nj ( i , j = l , 2 ;  i:r j ) .  

When a customer o f  class i arrives if the excess of  customers (after forming 
pairs) is in class j ( j  4: i), then its response time is the total service time of  the pairs 
ahead of  it plus one service time. We have 

(1) I dn l  + 1 X n l  

f tnln2(X) = e -#x  nl ! , n 1 < n 2, n l ,  n 2 = 0 , 1 , 2 ,  . . . , K  , (3.3) 

giving 

n l + l  
R 0 ) - , n 1 < n 2, n l , n  2 = 0 , 1 , 2  . . . .  , K .  (3.4) n l  n2 tA 

Similar expressions follow when n 2 < n 1 . 

Case(ii i):  n i > nj (i, j =  1 ,2 ;  i 4= j ) .  

When a customer of  class i arrives if the excess of  customers is in its own class, 
then the response time is the service times of  pairs in the system plus the amount  of  
time needed to deplete the (n i - n / +  1) customers to zero. Since no more arrival of  
class i is needed, this time is simply the time taken for n i + 1 departures in an M/M/1 
queue with arrival rate Xj and an initial number  of  nj customers. As defined in sect. 2, 
this is the distribution of  the random variable Tn(n.~l for that system. For convenience, 
we shall denote its probabili ty density as g(nj) ( t l 'X)  Thus we have 

hi+ 1 ] " 

( x ) =  (xiX ) n I > g n  1 + 1 ' 

n 1 , n  2 = 0 , 1 , 2 , . . . , K  (3.5) 
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giving 

R (1) = E r [ (n2) (3.6) 
Tnl+ 1 [ )k21 tl 1 > n 2 �9 n l  n 2 

Similar expressions follow when n 2 > n x . 

Combining the distributions of the number of  customers in the system and 
their response time we have, for f(i)(x) the response time density of an arriving 
customer of class i (i = 1 ,2)  

K-I K 
-1 f ( i ) ( x )  = qi ~ ~ t) flU) (X] (3.7) 

r n l n  2 " n l n 2  ~ : , 
n l = 0  n 2 = 0  

giving R (i), the corresponding mean response time, as 

K - 1  K 1 

= - R ( i )  = E n l  E P n l n  2 ' R (i) qi 1 ~ ~ Pnln 2 nln2 (3.8) 
n 1 = 0  n 2= 0 qi~ki n 1 n 2 

where we have used qi (i ; 1 ,2 )  to denote the probability that a class i customer will 
not be blocked from entering the system. For instance, we have 

K - 1  K 

q l  = E E P n l n  2 " 
n l = 0  n 2 = 0  

The last expression in (3.8) is obtained using Little's law. 

In order to extend these results for an assembly-like queue with three classes 
of  customers, we need the distribution and the mean of the time taken to serve a 
specified number of pairs in a two-class system starting with some initial state (i, j) .  
This can be obtained exactly the same way as for a specified departure time in a one- 
class (M/M/l) system, described in sect. 2. 

4. Assembly - l i ke  q u e u e s  w i t h  th ree  c u s t o m e r  classes 

We make the following modifications to the system characteristics assumed at 
the beginning of  sect. 3. 

(i) Three classes of customers arrive in Poisson streams with rates k 1 , k 2 and 

k 3 �9 
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(ii) Service requires triplets of  customers - one coming from each class. 

(iii) Service is rendered in the order o f  formation of  triplets. In order to 
simplify the discussion, we denote the above system by (ALQ)123. In a similar 
manner,  if we are considering an assembly-like queue with two Poisson arrival 

streams with rates X 1 and X2, we denote it by (ALQ)12, etc. 

Let  Pnl n2rr3 be the steady state probabil i ty that  there are n 1 o f  class 1, n 2 of  
class 2, and n 3 o f  class 3 customers in the system. With a finite capacity constraint o f  

K for the number  of  customers in each class, the steady state probabil i ty pn  1 n2n3 can 
be determined by  solving the (K + 1) 3 state balance equations in the usual manner.  

Let  03 ftnln2n3(X ) be the probabil i ty density o f  the response time (=  waiting 
time + service time) of  a class i customer when it finds n 1 o f  class 1, n z of  class 2, 

and n 3 o f  class 3 customers on its arrival (i  = 1, 2, 3; n l ,  n2, n 3 = 0 ,  1, 2 , . . .  , K ) .  

This conditional density can be determined in different cases as indicated below. 

Case(i)." (n 1 = n 2 = n 3 = 0). 

I f  an arriving customer finds no customers in any of  the classes, the waiting 

time is the maximum of  the arrival times of  customers from the other  two classes. 

Case (ii): (Customer o f  one class arrives; only one of  the other  two classes has 

customers in the system.) 

Suppose a class 2 customer arrives when n 1 > 0, n 2 = n 3 = 0. Then the waiting 
t ime for  service is the time until a customer o f  class 3 arrives. 

Case (iii): (After the arrival, the arriving customer class has the least or one of  the 
least number  o f  customers.) 

Suppose a customer of  class 1 arrives to find n 1 customers. Let n 1 /> 0, 
n 2, n 3 > 0 ,  and n 1 < n2, n 3. Now the response time is equivalent to the service time 
o f  n I + 1 customers. 

Case (iv)." (After the arrival, the number  o f  customers in that class is larger than the 

number  in one class, but  smaller than the other.)  

Suppose a customer o f  class 1 arrives. Let  n 1 + 1 > n 2 and n x + 1 ~< n 3 . Now 
the class 3 process does not  influence the response time. The response time is the time 
needed to serve n 1 + 1 customers in an M/M/1 queue with arrival rate X 2 and starting 
with an initial number  n 2 . 
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Case (v): (After the arrival, the arriving class has the largest number of customers 
in the system.) 

Suppose a customer of  class 1 arrives. Let n 1 + 1 > n2, n 3. Now the response 
time is the time needed for n I + 1 departures in an (ALQ)23 system starting with 
n 2 and n 3 customers in the two classes, respectively. The distribution characteristics 
of this quantity can be obtained as indicated at the end of sect. 3. 

The conditional response time distributions from these different cases can be 
combined to give the unconditional distribution as described in sect. 3 for the two- 
class system. 

5. R e m a r k s  

As demonstrated in the case of the assembly-like queue with three classes, for 
the determination of the response time characteristics of  an n-class system we need 
specified departure time characteristics of  r-tuplets (r = 1, 2 , . . .  ,n - 1) from the 
corresponding ALQ systems. Clearly, as n gets larger, this becomes quite cumbersome 
and untractable. It should also be noted that the determination of the steady state 
distribution of the number of customers in different classes is not a simple problem 
either in the general case. Furthermore, in the dataflow computer system model de- 
scribed in the introduction, the processor is likely to be required to handle more 
than one type of customer sets. For instance, the same processor might be used to 
add/subtract as well as multiply/divide different sets of numbers. One conclusion that 
can be drawn from the analysis given in sects. 3 and 4 is that, in extensions such as 
these, exact analyses are likely to be untractable. Then approximation techniques 
seem to be the only answer to determine general properties of underlying models. 
An example of such an attempt is the article by Lipper and Sengupta [6] appearing 
elsewhere in this issue. 
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