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Foreword

The present textbook contains the records of a two—semester course on queue-
ing theory, including an introduction to matrix—analytic methods. This course
comprises four hours of lectures and two hours of exercises per week and has
been taught at the University of Trier, Germany, for about ten years in se-
quence. The course is directed to last year undergraduate and first year grad-
uate students of applied probability and computer science, who have already
completed an introduction to probability theory. Its purpose is to present ma-
terial that is close enough to concrete queueing models and their applications,
while providing a sound mathematical foundation for the analysis of these.
Thus the goal of the present book is two—fold.

On the one hand, students who are mainly interested in applications easily
feel bored by elaborate mathematical questions in the theory of stochastic
processes. The presentation of the mathematical foundations in our courses
is chosen to cover only the necessary results, which are needed for a solid
foundation of the methods of queueing analysis. Further, students oriented to-
wards applications expect to have a justification for their mathematical efforts
in terms of immediate use in queueing analysis. This is the main reason why
we have decided to introduce new mathematical concepts only when they will
be used in the immediate sequel.

On the other hand, students of applied probability do not want any heuris-
tic derivations just for the sake of yielding fast results for the model at hand.
They want to see the close connections between queueing theory and the theory
of stochastic processes. For them, a systematic introduction to the necessary
concepts of Markov renewal theory is indispensable. Further, they are not in-
terested in any technical details of queueing applications, but want to see the
reflection of the mathematical concepts in the queueing model as purely as
possible.
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A prominent part of the book will be devoted to matrix—analytic methods. This
is a collection of approaches which extend the applicability of Markov renewal
methods to queueing theory by introducing a finite number of auxiliary states.
For the embedded Markov chains this leads to transition matrices in block form
having the same structure as the classical models. With a few modifications
they can be analyzed in the same way.

Matrix—analytic methods have become quite popular in queueing theory dur-
ing the last twenty years. The intention to include these in a students’ intro-
duction to queueing theory has been the main motivation for the authors to
write the present book. Its aim is a presentation of the most important matrix—
analytic concepts like phase—type distributions, Markovian arrival processes,
the GI/PH/1 and BMAP/G/1 queues as well as QBDs and discrete time ap-
proaches. This is the content of part III of this book.

As an introductory course for students it is necessary to provide the required
results from Markov renewal theory before. This is done in part I, which con-
tains Markovian theory, and part II which combines the concepts of part I with
renewal theory in order to obtain a foundation for Markov renewal theory. Cer-
tainly only few students would like to acquire this theoretical body without
some motivating applications in classical queueing theory. These are intro-
duced as soon as the necessary theoretical background is provided.

The book is organized as follows. The first chapter gives a short overview of
the diverse application areas for queueing theory and defines queues and their
system processes (number of users in the system). The appendix sections in
chapter 15 provide an easy reference to some basic concepts of analysis and
probability theory.

For the simple Markovian queueing models (in discrete and continuous time)
it suffices to give a short introduction to Markov chains and processes, and
then present an analysis of some queueing examples. This is done in chapters
2 through 4. Chapter 5 gives an introduction to the analysis of simple queue-
ing networks, in particular Jackson and Gordon—Newell networks as well as
BCMP networks. This concludes the first part of the book, which deals with
Markovian methods exclusively.

The second part is devoted to semi—Markovian methods. In chapter 6 the most
important results of renewal theory are provided. Chapter 7 contains a short
introduction to Markov renewal theory. This will be necessary for the analy-
sis of the classical semi—Markovian queues (namely the GI/M/1 and M/G/1
systems), which is presented in chapter 8.

More recent approaches which are usually subsumed under the term “matrix—
analytic methods” are presented in the third part of the book. In chapters
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9 and 10 the basic concepts of phase—type distributions and Markovian ar-
rival processes are introduced. The matrix—analytic analogues to the GI/M/1
and M/G/1 queues, namely the GI/PH/1 and BMAP/G/1 systems are analyzed
in chapters 11 and 12. Chapter 13 gives a short overview on discrete time
analogues. Further blockwise skip—free Markov chains, also known as QBD
processes, are analyzed, with an application to the PH/PH/1 queue in dis-
crete time. Finally, in chapter 14 a generalization of BMAPs towards spatial
Markovian arrival processes is presented.

Of course, most of the more classical material can be found in existing text-
books on stochastic processes. For example, Cinlar [25] and Ross [75] still
contain, in our view, the most systematic treatment of semi—Markovian queues.
Also of great value, mostly for the theory of Markov chains and processes, are
the courses on stochastic processes by Karlin and Taylor [46, 47]. Further im-
portant results may be found in Doob [31], Asmussen [5], and Nelson [61].
The material on queueing networks can be found in Mitrani [60], Kelly [48],
and Kleinrock [50]. Monographs on matrix—analytic methods are the pioneer-
ing books by Neuts [65, 66], and Latouche and Ramaswami [52]. For discrete
time methods the overview paper by Alfa [2] was helpful.

However, some aspects of standard presentation have been changed in order to
alleviate the mathematical burden for the students. The stationary regime for
Markov chains has been introduced as an asymptotic mean over time in order
to avoid the introduction of periodicity of states. The definition of Markov
processes in chapter 3 is much closer to the derivation of immediate results. It
is not necessary to derive the standard path properties in lengthy preliminary
analyses, since these are already included in the definition. Nevertheless, the
close connection between the phenomena observed in queueing systems and
the definition given in our textbook is immediately clear to the student.

The introduction of renewal theory has been postponed to the second part of the
book in order to show a variety of queueing application of a purely Markovian
nature first. The drawback that a proof for asymptotic behaviour of Markov
processes must be deferred appears bearable for an average student. The proof
of Blackwell’s theorem, and thus also for the equivalent key renewal theorem,
has been omitted as it is too technical for a student presentation in the authors’
opinion. The same holds for proofs regarding the necessity of the stability
condition for the queues GI/PH/1 and BMAP/G/1. Only proofs for sufficiency
have been included because they are easily based on the classical Foster crite-
ria.

At the end of each chapter there will be a collection of exercises, some of them
representing necessary auxiliary results to complete the proofs presented in
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the lectures. Additional material is given as exercises, too, e.g. examples of
computer networks or certain special queueing system.

The book is written according to the actual scripts of the lecture courses given
at the University of Trier, Germany. It is intended not only to collect material
which can be used for an introductory course on queueing theory, but to pro-
pose the scripts of the lectures themselves. The book contains exactly as much
material as the authors (as lecturers) could present in two semesters. Thus a
lecturer using this textbook does not need to choose and reassemble the ma-
terial for a course from sources which must be shortened because there is no
time to treat them completely. This entails saving the work of reformulating
notations and checking dependencies. For a course of only one semester we
propose to teach parts I and II of this book, leaving out sections 5.3 and 8.3.



Chapter 1

QUEUES: THE ART OF MODELLING

Stochastic modelling is the application of probability theory to the descrip-
tion and analysis of real world phenomena. It is thus comparable to physics,
with the distinguishing property that mostly technical and not natural systems
are investigated. These are usually so complex that deterministic laws cannot
be formulated, a circumstance that leads to pervasive use of stochastic con-
cepts. Application fields as telecommunication or insurance bring methods
and results of stochastic modelling to the attention of applied sciences such
as engineering or economics. On the other hand, often new technological de-
velopments give rise to new questions in an application field, which in turn
may open a new direction in stochastic research, and thus provide an impetus
to applied probability. Stochastic modelling is a science with close interaction
between theory and practical applications. This is nice because it combines the
possibility of theoretical beauty with a real-world meaning of its key concepts.
On the other hand, it is difficult to cover the whole width from theoretical foun-
dations to the details of practical applications. The present book is an essay to
give an introduction to the theory of stochastic modelling in a systematic way
without losing contact to its applicability.

One of the most important domains in stochastic modelling is the field of
queueing theory. This shall be the topic of this treatise. Many real systems
can be reduced to components which can be modelled by the concept of a
so—called queue. The basic idea of this concept has been borrowed from the
every—day experience of the queues at the checkout counters in a supermarket.
A queue in the more exact scientific sense consists of a system into which there
comes a stream of users who demand some capacity of the system over a cer-
tain time interval before they leave the system again. It is said that the users are
served in the system by one or many servers. Thus a queueing system can be
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described by a (stochastic) specification of the arrival stream and of the system
demand for every user as well as a definition of the service mechanism. The
former describe the input into a queue, while the latter represents the function-
ing of the inner mechanisms of a queueing system. Before we give an exact
definition of a queueing system, a few examples shall provide an idea of the
variety of applications.

Example 1.1 Single Server Queue

' ' ' ‘ ‘ ‘ ‘

arrival process queue server departure
process

Figure 1.1. Single server queue

A queue in front of the checkout counter of a supermarket may serve as the
simplest illustration for a queueing system. There is one input stream, and one
server who serves the customers in order of their appearance at the counter.
This service discipline, which does not admit any preferences among users, is
called first come first served (abbr.: FCFS).

Example 1.2 Multi-Server Queue

* * * ‘ ‘ ‘ ‘

departure
process

arrival process queue

X |®

SErvers

Figure 1.2.  Multi-server queue



Queues: The Art of Modelling 3

The first real application of queueing theory, in fact the one that engendered
the development of the whole field of research, has been the design and analy-
sis of telephone networks. In the early days of Erlang at the beginning of the
20th century, telephone calls first went to an operator before they could be
conected to the person that was to be reached by the call. Thus an important
part of a telephone network could be modelled by a queueing system in which
the servers are the operators in a call center who connect the incoming calls
(which are modelled by the input stream of users) to their addressees. Here,
the time of connecting is represented by the service demand of a user. A cru-
cial performance measure of such a system is the probability that a person who
wants to get a connection for a call finds all operators busy and thus cannot
be served. This value is called the loss probability of the system. For a mod-
ern call center, where questions are answered instead of cables connected, the
service times represent the time of the call between the user and the operator.

Example 1.3 In recent times, computer networks (the most prominent exam-
ple is the internet) have increasingly become the object of applications of
queueing theory. For example, a server in a computer network receives de-
mands from its clients and needs to serve them. The demands make up the
input stream into the queueing sytem that represents the server utilization. A
service discipline that is often used in these kinds of application is the follow-
ing: The processing capacity of the server is divided into equal parts among
the jobs such that none of the clients is favoured, but each client’s service
time depends on the total number of clients that are resident at the same time.
Because of its prevalence in computer applications, this service discipline is
called processor sharing.

Example 1.4 Queues find further applications in airport traffic. Here, the
servers are the several landing fields available for arriving airplanes, while the
latter are the users of the system. Obviously, there cannot be any queue of
planes waiting in the air, so that an arriving airplane finding all landing fields
in use needs instead to fly an extra circle around the airport and then try again
for a possibility to land. Such a manoeuver is called a retrial, and the corre-
sponding queueing model is called a retrial queue. Since with every extra circle
that a plane has to perform its gasoline is reduced more, the priority of such
an aircraft to obtain a landing permission is increasing and should be higher
than that of more recent airplanes with fewer retrials. Such an influence on the
service schedule is called priority queueing.

Example 1.5 More complicated queueing models have been developed for the
design of traffic lights at crossroads. In such a model, there are several distin-
guishable queues which represent the different roads leading to the intersec-
tion. A green light at one road means that vehicles waiting on it are served
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on a first come first served base. There are as many servers as there are traffic
lights at the intersection, and it is obvious that these servers must function in
dependence on each other. Such queueing systems are called polling systems.

Example 1.6 In modern production systems an analysis of assembly lines has
become a fundamental necessity. They are modelled by so—called tandem
queueing networks, which are defined as a series of several single queueing
systems where the output of one queue forms the input of the next.

Example 1.7 Finally, perhaps the most interesting object of analysis for to-
day’s computer science, the internet, would merely appear as a highly complex
queueing network, at least so from the point of view of stochastic modelling.

These examples illustrate the very different interpretations and thus applica-
tions that queueing systems can assume. They should suffice as a motivation
to undergo the strain of developing methods and concepts for the analysis of
queueing systems of the highest possible complexity and generality. Our in-
troduction to the theory of queues gives a (hopefully) balanced presentation of
potentially very general methods of analysis based on the theory of Markov
renewal processes, and at the same time tries to apply these to the practically
relevant analyses of queueing systems. Opening the exact part of the presenta-
tion we begin with a definition of the concept of a queue:

For every n € N, let T, and S,, denote positive real-valued random variables
with T,,4+1 > T, for all n € N. The sequence 7 = (T}, : n € Np) is called
arrival point process and S = (S, : n € N) is the sequence of service
times. Further choose a number k of servers and the system capacity c, with
k,c e NU {co}.

Finally a service discipline B needs to be specified. This can be first come first
served (FCFS), last come first served (LCFS), processor sharing (PS), some-
times working with certain priorities or preemption rules. Normally we choose
FCFS, meaning that the first user who arrives in the system will be the first to
get access to a server. If other service disciplines will be used, they will be
explained whenever introduced.

The 5-tuple (7, S, k, ¢, B) is called a queue (or queueing system) with arrival
point process 7, sequence of service times S, number k of servers, system
capacity c, and service discipline B.

Define further the nth inter-arrival time by 7, := 1T} and Z,, :=T,, — T,
for all n > 2. The standard way to specify a queue is the Kendall nota-
tion. This merely denotes the 5—tuple (7, S, k, ¢, B) in the above definition
by 7/S/k/c/B and additionally sets some conventions for interpreting this
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notation: If the 4th or 5th parameter is left out, this is agreed to mean ¢ = oo
or B = FCFS, respectively. Further, for the first two parameters the letters
M (resp. &) stand for geometric (resp. general) inter—arrival and service times
for queues in discrete time and for exponential (resp. general) inter—arrival
and service times for queues in continuous time. There are additional conven-
tions: D stands for deterministic (Dirac) distributions, Geo is the same as M
for discrete time systems, etc.

The main goal of any queueing analysis will be to specify and analyze the
system process Q = (Q; : t > 0), where Q; is the number of users in the
queueing system (usually including the number of users in service) at time .
An important measure (in case of existence) will be the asymptotic distribu-
tion of (); for ¢ tending to infinity.

Our first result concerns a sample path property of general conservative sys-
tems with inputs and outputs. Conservative systems do not create or destroy
users. Let a(t) denote the number of arrivals into the system until time ¢. De-
fine \; := «a(t)/t as the average arrival rate during the interval [0, ¢|. Further
define T' as the average time a user spends in the system. Finally denote the
average number of users in the system during [0, ¢] by N;. Then we can state

Theorem 1.8 Little’s Result
If the limit A\ = limy_.oo Ay and T do exist, then the limit N = limy_,o, N; does
exist, too, and the relation

N = )\T

holds.

Proof: We introduce the notation §(¢) for the number of departures from the
system during [0, ¢] and N(¢) for the number of users in the system. If the
system starts empty, then these definitions imply the relation

N(t) = aft) — (t)
for all times ¢ (see the following figure).

Denote the total time that all users have spent in the system during [0, ] by

:/OtN(s) ds

If we define 7T; as the system time per user averaged over all users in the interval
[0, t], then the definitions of a(t) and ~(¢) imply the relation
(t

)
a(t)

~2

T; = (1.1)

/\
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N(©)

number of users

time

Figure 1.3. Total system time

The average number of users in the system during [0, ¢] can be obtained as

o=@ @) alt)
t ) the

where the last equality comes from (1.1) and the definition of A;. If the limits
Xand T = lim;_ T} exist, then the stated relation N = AT follows for ¢
tending to infinity.

O

For ease of reference, we finally provide a table of some basic probability
distributions which will occur frequently throughout the book.

Distribution Density Range Parameters

Exponential e M t>0 A>0
Erlang %e*m“t t>0 meN >0
Poisson %e‘A n € Ny A>0

Geometric (I—p)p" n € Ny p €]0,1]

Binomial  (Y)p"(1-p)¥ ™ 0<n<N NeN,pel,1]
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Notes

The first formal proof for Little’s result appeared in Little [53]. The proof
presented here is taken from Kleinrock [50].






PART I

MARKOVIAN METHODS



Chapter 2

MARKOYV CHAINS AND QUEUES IN DISCRETE
TIME

1. Definition

Let X,, with n € Ny denote random variables on a discrete space F. The
sequence X = (X, : n € Ny) is called a stochastic chain. If P is a probability
measure X such that

P(Xpi1 =371 Xo=1d0,..., Xn =ipn) =P (Xpny1 = 7| Xpn = in) 2.1

for all ig,...,7,,7 € E and n € N, then the sequence X shall be called a
Markov chain on . The probability measure IP is called the distribution of
X, and F is called the state space of X.

If the conditional probabilities P (X,,+1 = j|X,, = 4,,) are independent of the
time index n € Np, then we call the Markov chain X homogeneous and denote

pij =P (Xny1 = j|Xn = 1)

forall 7, j € E. The probability p;; is called transition probability from state
i to state j. The matrix P := (pi;), ;. shall be called transition matrix of
the chain X'. Condition (2.1) is referred to as the Markov property.

Example 2.1 If (X, : n € Ny) are random variables on a discrete space E,
which are stochastically independent and identically distributed (shortly: iid),
then the chain X = (X, : n € Ny) is a homogeneous Markov chain.

Example 2.2 Discrete Random Walk
Set E := Z and let (S, : n € N) be a sequence of iid random variables with
values in Z and distribution 7. Define X := 0 and X,, := »_;_; Sy for all
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n € N. Then the chain X = (X,, : n € Np) is a homogeneous Markov chain
with transition probabilities p;; = m;_;. This chain is called discrete random
walk.

Example 2.3 Bernoulli process
Set E := Ny and choose any parameter 0 < p < 1. The definitions Xy := 0

as well as
fp =it
S FE A B

for i € Ny determine a homogeneous Markov chain X = (X, : n € Np). Itis
called Bernoulli process with parameter p.

So far, al examples have been chosen as to be homogeneous. The following
theorem shows that there is a good reason for this:

Theorem 2.4 Be X = (X,, : n € Ng) a Markov chain on a discrete state
space E. Then there is a homogeneous Markov chain X' = (X, : n € Ny)
on the state space E x Ng such that X,, = pr1(X}) for all n € Ny, with prq
denoting the projection to the first dimension.

Proof: Let X’ be a Markov chain with transition probabilities
Prsij = P(Xnq1 = j| Xn = 9)

which may depend on the time instant n. Define the two—dimensional random
variables X/ := (X,,,n) for all n € Ny and denote the resulting distribution of
the chain X’ = (X, : n € Ny) by . By definition we obtain X,, = pri(X),)
for all n € Ny.

Further P'(X| = (i,k)) = ko - P(Xo = 4) holds for all i € E, and all
transition probabilities
PGy = P (X = G, DX = (6, k) = 0ig41 - Prij

can be expressed without a time index. Hence the Markov chain X’ is homo-

geneous.
U

Because of this result, we will from now on treat only homogeneous Markov
chains and omit the adjective "homogeneous”.

Let P denote the transition matrix of a Markov chain on F. Then as an im-
mediate consequence of its definition we obtain p;; € [0,1] for all 4,5 € E
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and ) jepbij = 1foralli € E. A matrix P with these properties is called
a stochastic matrix on F. In the following we shall demonstrate that, given
an initial distribution, a Markov chain is uniquely determined by its transition
matrix. Thus any stochastic matrix defines a family of Markov chains.

Theorem 2.5 Let X denote a homogeneous Markov chain on E with transi-
tion matrix P. Then the relation

P(Xn-i-l :j17 s 7X7l+m = jm|Xn = Z) =Diji - Pjm—1,Jm
holds for alln € No, m € N, and 1, j1,...,Jm € E.

Proof: This is easily shown by induction on m. For m = 1 the statement holds
by definition of P. For m > 1 we can write

P(Xn-i-l :jla o -aXn—i—m = ]m|Xn - Z)
P(Xn—i-l :jlw'an-&-m :]maXn = 1)
P (X, =1)
_ P<Xn+1:jla--‘aXn-&-m:jmaXn:i)
P(Xn—i-l - jly e 7Xn+m—1 - jm—laXn == l)
" P (X1 =J1s- s Xntm-1 = Jm—1, Xn = 1)
P (X, =1)
— IED(AXn—i-m = 7m|Xn - ivXn—i-l = jla ceey Xn—i—mfl = jmfl)

X Pigi - Pim-2,4m—1
= p.jmflvjm : piv.jl et p.j’rn727jm71

because of the induction hypothesis and the Markov property.
O

Let 7 be a probability distribution on E with P(Xy = i) = m; forall i € E.
Then theorem 2.5 immediately yields

P (XO =Jo, X1 =715, X = ]m) = Tjo " Pjo,j1 ++ * Pim—1,jm (2.2)

for all m € N and jg,...,jm € L. The chain with this distribution P is
denoted by X™ and called the m—version of X'. The probability measure 7 is
called initial distribution for X.

Theorem 2.5 and the extension theorem by Tulcea (see appendix 2) show that
a Markov chain is uniquely determined by its transition matrix and its initial
distribution. Whenever the initial distribution 7 is not important or understood
from the context, we will simply write X" instead of X™. However, in an exact
manner the notation X’ denotes the family of all the versions X™ of X', indexed
by their initial distribution 7.
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Theorem 2.6 Let X denote a homogeneous Markov chain with transition ma-
trix P. Then the relation

P(Xpim = j| Xn =1) = P"(i,))

holds for all m,n € Ny and i,j € E, with P (i, j) denoting the (i, j)th entry
of the mth power of the matrix P. In particular, P° equals the identity matrix.

Proof: This follows by induction on m. For m = 1 the statement holds by
definition of P. For m > 1 we can write

P(Xpim =7, Xp =1)
P (X, — i)
o P(Xn+m =7 Xn+m—1 =k X, = Z)
D P (X1 = k> X — 1)

P(Xn+m = J‘Xn = Z) =

keE
o P(Xpim1 =k, X,, =1)
P (X, =1)
- Z P (Xntm = j|Xnsm—1 =k, Xn = 1) - Pmil(ia k)
keE
= iy PN R) = P, )
keE

because of the induction hypothesis and the Markov property.
0

Thus the probabilities for transitions in m steps are given by the mth power
of the transition matrix P. The rule P = P™ P™ for the multiplication of
matrices and theorem 2.6 lead to the decompositions

P(Xpyn = j1Xo =1i) = Y P(Xp = k[ Xo =) - P(X, = j| Xo = k)
keE
which are known as the Chapman-Kolmogorov equations.

For later purposes we will need a relation closely related to the Markov prop-
erty, which is called the strong Markov property. Let 7 denote a random
variable with values in Ny U {00}, such that the condition

P(r <n|X)=P(r <n|Xy,...,X,) (2.3)

holds for all n € Ny. Such a random variable is called a (discrete) stopping
time for X. The defining condition means that the probability for the event
{7 < n} depends only on the evolution of the chain until time n. In other
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words, the determination of a stopping time does not require any knowledge of
the future. Now the strong Markov property is stated in

Theorem 2.7 Let X denote a Markov chain and T a stopping time for X with
P(1 < 00) = 1. Then the relation

P(Xrym = j|Xo = i0,..., X7 =ir) = P(X,, = j| X0 = i)

holds for all m € Nand iy, ...,1;,7 € E.

Proof: The fact that the stopping time 7 is finite and may assume only count-
ably many values can be exploited in the transformation

P(Xrim = §|Xo = i0,..., Xy = ir)

o
=3 P(r=n,Xrym = j| Xo =0, ..., Xr = i)

n=0

:ZP(XTer =jlr =n,Xo =1ig,..., X; = i)

n=0

XP(T:n|X0:i0,...,XT:iT)

= Z]P)(Xn—i—m = j| Xy =i7) - P(7 = n|X)

n=0

= P(r = n|X) - P(X,, = j| Xo = i)
n=0

which yields the statement, as 7 is finite with probability one.
O

2. Classification of States

Let X denote a Markov chain with state space E' and transition matrix P. We
call a state j € E accessible from a state 7 € F if there is a number m € Ny
with P(X,,, = j|Xo = ¢) > 0. This relation shall be denoted by ¢ — j. If for
two states ¢, 7 € E, the relations ¢ — j and 7 — ¢ hold, then ¢ and j are said
to communicate, in notation 7 < j.

Theorem 2.8 The relation < of communication between states is an equiva-
lence relation.

Proof: Because of P’ = I, communication is reflexive. Symmetry holds
by definition. Thus it remains to show transitivity. For this, assume i < j
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and j < k for three states 4,5,k € F. This means that there are numbers
m,n € Ny with P™(i,5) > 0 and P"(j,k) > 0. Hence, by the Chapman—
Kolmogorov equation, we obtain

P(Xmin = k|Xo =) = Y P(Xp = h|Xo = 1) - P(X, = k| X = h)
heE
>P(X = j|Xo=1) -P(X, =kl Xg=3)>0

which proves ¢ — k. The remaining proof of £ — ¢ is completely analogous.
]

Because of this result and the countability, we can divide the state space F of
a Markov chain into a partition of countably many equivalence classes with
respect to the communication of states. Any such equivalence class shall be
called communication class. A communication class C' C E that does not
allow access to states outside itself, i.e. for which the implication

i—j, ieC = jeC

holds, is called closed. If a closed equivalence class consists only of one state,
then this state shall be called absorbing. If a Markov chain has only one
communication class, i.e. if all states are communicating, then it is called irre-
ducible. Otherwise it is called reducible.

Example 2.9 Let X denote a discrete random walk (see example 2.2) with the
specification 7y = p and w_1; = 1 — p for some parameter 0 < p < 1. Then X
is irreducible.

Example 2.10 The Bernoulli process (see example 2.3) with non—trivial pa-
rameter 0 < p < 1 is to the highest degree reducible. Every state x € Ny
forms an own communication class. None of these is closed, thus there are no
absorbing states.

Theorem 2.11 Be X a Markov chain with state space I and transition matrix
P. Let C ={c,:n €I} C Ewithl C N be a closed communication class.
Define the matrix P' by its entries p;; = pe,c; for all i,j € I. Then P’ is
stochastic.

Proof: By definition, p;j € [0,1] forall 4, j € I. Since C is closed, p;, , = 0
foralli € I and k ¢ C. This implies

Zp;j - chwj =1- chi,k =1

jel jel kgC
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forall 7 € I, as P is stochastic.
O

Thus the restriction of a Markov chain X with state space E to the states of
one of its closed communication classes C' defines a new Markov chain with
state space C'. If the states are relabeled according to their affiliation to a
communication class, the transition matrix of X can be displayed in a block

matrix form as ~
Q Q1 Q2 @3 Qu
0O P 0 0 0

p=10 0 P 0 0o ... (2.4)
0o 0 0 P O

with P, being stochastic matrices on the closed communication classes C,.
The first row contains the transition probabilities starting from communication
classes that are not closed.

Let X denote a Markov chain with state space E. In the rest of this section
we shall investigate distribution and expectation of the following random vari-
ables: Define 7; as the stopping time of the first visit to the state j € F, i.e.

7 :=min{n € N: X,, = j}
Denote the distribution of 7; by

Fi(i,7) :==P(1; = k| Xo = 1)
forallé,7 € Fand k € N.

Lemma 2.12 The conditional distribution of the first visit to the state j € E,
given an initial state Xy = 1, can be determined iteratively by

s Dij, k=1
Fk 1,]) = )
( ) {Zh;éjpthkl(h?j)’ k>2

foralli,j € E.
Proof: For k = 1, the definition yields

Fi(i,7) = P(rj = 1[Xo = i) = P(X1 = j|Xo = i) = pjj
for all 7, 7 € E. For k > 2, conditioning upon X yields
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=Y P(X; = h|Xg =)
h#j
X IP)(X2 #ja"'vXk'—l 75]>Xk :]|XO = iaXl = h‘)
= pin P(X1 # -, Xpo # J, Xp1 = j| Xo = h)
h#j

due to the Markov property.
O

Now define

fij =P(r; < 00| Xg = 1) = > _ Fi(i,5) (2.5)
k=1

for all 4, 7 € E, which represents the probability of ever visiting state j after
beginning in state ¢. Summing up over all £ € N in the formula of Lemma
2.12 leads to

fii =pij + Y pintnj (2.6)
h#j
forall 7,5 € E. The proof is left as an exercise.

Define N; as the random variable of the total number of visits to the state
J € E. Expression (2.6) is useful for computing the distribution of V;:

Theorem 2.13 Let X denote a Markov chain with state space E. The total
number of visits to a state j € F under the condition that the chain starts in
state i is given by

P(N; = m|Xo = j) = [/ (1= fij)
and for i # j

1_fij7 m=0
fiffi (L= fi), m=>1

Thus the distribution of N; is modified geometric.

(1)

Proof: Define le (k+1) (k)

= 7; and = min{n > 7,77 : X,, = j} for all
k € N, with the convention that min () = co. Note that Tj(k) = oo implies

T](l) = oo foralll > k.

Then the sequence (Tj(k) : k € N) is a sequence of stopping times. The event

{N; = m} is the same as the intersection of the events {Tj(k) < oo} for
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k=1,....Mand {r""*" = co}, with M = m if i # j and M = m — L if
1 = j. Now this event can be further described by the intersection of the events

{T]-(,H_l) - T;k) < oo}fork=0,...,M—1and {T](M—H) — T](M)

M as above and the convention T](O) = 0.

= oo}, with

The subevent {T](k+1) — TJ(M < oo} has probability f;; for k = 0 and because

of the strong Markov property (see theorem 2.7) probability f;; for k > 0. The
probability for {T;MJFI) - TJ(JV]) =oo}is1— fij for M = 0and 1 — f;; for
M > 0. Once more the strong Markov property is the reason for independence
of the subevents. Now multiplication of the probabilities leads to the formulae
in the statement.

il

Summing over all m in the above theorem leads to
Corollary 2.14 Forall j € E, the zero—one law

L fi <1
0, fij=1

holds, i.e. depending on f;; there are almost certainly infinitely many visits to
a state j € E.

P(N; < 00| Xg =j) = {

This result gives rise to the following definitions: A state j € F is called re-
current if f;; = 1 and transient otherwise. Let us further define the potential
matrix R = (7;); jer of the Markov chain by its entries

Tij = E(NJ|X0 = Z)

for all 4,7 € E. Thus an entry ;; gives the expected number of visits to the
state j € F under the condition that the chain starts in state ¢ € E. As such,
r;; can be computed by

oo
rig =y P"(i, ) 2.7)
n=0
for all ¢, 7 € E. The results in theorem 2.13 and corollary 2.14 yield
Corollary 2.15 Foralli,j € E the relations
rij=0—fi;)"" and iy = fyry

hold, with the conventions 0~ := 0o and 0 - 0o := 0 included. In particular,
the expected number r;; of visits to the state j € E is finite if j is transient and
infinite if j is recurrent.
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Theorem 2.16 Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent communication class is
always closed.

Proof: Assume that i € FE is transient and 7 < j. Then there are numbers
m,n € Nwith0 < P™(i,5) < 1and 0 < P"(j,i) < 1. The inequalities

ZP’“Z@ >ZPm+h+"(ll)>P i,J)P"(j,1 Zpk]]

k=0 h=0

now imply r;; < oo because of representation (2.7). According to corollary
2.15 this means that j is transient, too.

If j is recurrent, then the same inequalities lead to
rig = P"(i, j)P"(j,9)rj; = 00

which signifies that ¢ is recurrent, too. Since the above arguments are symmet-
ric in ¢ and 7, the proof of the first statement is complete.

For the second statement assume that ¢ € F belongs to a communication class
C C E and p;; > 0 for some state j € £\ C. Then

fii = pii + Zpihfhi <1l-py<l1
h#i

according to formula (2.6), since f;; = 0 (otherwise ¢ < j). Thus ¢ is transient,
which proves the second statement.
O

Theorem 2.17 If the state j € E is transient, then lim,_,, P"(i,j) = 0,
regardless of the initial state i € E.

Proof: If the state j is transient, then the first equation in corollary 2.15 yields
rj; < oo. The second equation in the same corollary now implies r;; < oo,
which by the representation (2.7) completes the proof.

O

3. Stationary Distributions

Let X denote a Markov chain with state space &/ and m a measure on E. If
P(X, =i) =P(Xo =1i) =mforalln € Nand i € E, then X™ is called
stationary, and 7 is called a stationary measure for X'. If furthermore 7 is a
probability measure, then it is called stationary distribution for X'.
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Theorem 2.18 Let X denote a Markov chain with state space E and transition
matrix P. Further, let ™ denote a probability distribution on FE with P = T,

ie.
= Z TiPji and Z m; =1
JEE JEE
forall i € E. Then w is a stationary distribution for X. If 7 is a stationary
distribution for X, then P = m holds.

Proof: Let P(X, = i) = m; forall i € E. Then P(X,, = i) = P(Xo = 1)
for alln € N and 7 € E follows by induction on n. The case n = 1 holds
by assumption, and the induction step follows by induction hypothesis and the

Markov property. The last statement is obvious.
O

The following examples show some features of stationary distributions:

Example 2.19 Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P=

Then 7 = (0.5,0.5,0,0), 7/ = (0,0,0.5,0.5) as well as any linear combina-
tion of them are stationary distributions for . This shows that a stationary
distribution does not need to be unique.

Example 2.20 Bernoulli process (see example 2.1)
The transition matrix of a Bernoulli process has the structure

1—-p »p 0 0
0 1-p »p 0
0 0 1—-p p

P=

Hence mP = 7 implies first
7['0-(1—]3):71'0 = 79 =0

since 0 < p < 1. Assume that m, = 0 for any n € Ny. This and the condition
m P = 7 further imply for m,, 4

Tn D+ Tpnt1 - (L—=p) =7Tpy1 = 7Tpy1 =0
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which completes an induction argument proving 7, = 0 for all n € Ny. Hence
the Bernoulli process does not have a stationary distribution.

Example 2.21 The solution of 7P = 7 and ) | jep ™j = 1is unique for

p_ (=P »p
p 1-p
with 0 < p < 1. Thus there are transition matrices which have exactly one
stationary distribution.

The question of existence and uniqueness of a stationary distribution is one of
the most important problems in the theory of Markov chains. A simple answer
can be given in the transient case (cf. example 2.20):

Theorem 2.22 A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7 and take any enu-
meration £ = (s, : n € N) of the state space £. Choose any index m € N
with 7,,, > 0. Since ) 7, ms, = 1 is bounded, there is an index M > m
such that >, s < . Sete :=mg, — >~ /s, . According to the-
orem 2.17, there is an index N € N such that P"(s;, s,,) < ¢ forall i < M
and n > N. Then the stationarity of 7w implies

[%S) M—-1 oo
N N N
T8 = § 7TsiP (Siv Sm) = § WsiP (Si, Sm) + § WsiP (Siv Sm)
i=1 i=1 i=M
o
< e+ g Ts; = Ms,,
=M

which is a contradiction.
O

For the recurrent case, a finer distinction will be necessary. While the expected
total number 7;; of visits to a recurrent state j € F is always infinite (see
corollary 2.15), there are differences in the rate of visits to a recurrent state.
In order to describe these, define /V;(n) as the number of visits to state ¢ until
time n. Further define for a recurrent state ¢ € E the mean time

m; = E(r| Xo = 1)

until the first visit to ¢ (after time zero) under the condition that the chain starts
in 7. By definition m; > 0 for all ¢ € E. The elementary renewal theorem
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(which will be proven later as theorem 6.12) states that

L EN)|Xo=j) 1

n—o0 n m;

(2.8)

for all recurrent 7 € E and independently of 7 € E provided j < %, with the
convention of 1/00 := 0. Thus the asymptotic rate of visits to a recurrent state
is determined by the mean recurrence time of this state. This gives reason to the
following definition: A recurrent state i € E with m; = E(7;|Xo = i) < o0
will be called positive recurrent, otherwise ¢ is called null recurrent. The
distinction between positive and null recurrence is supported by the equiva-
lence relation <, as shown in

Theorem 2.23 Positive recurrence and null recurrence are class properties
with respect to the relation of communication between states.

Proof: Assume that i < j for two states ¢, j € E and ¢ is null recurrent. Thus
there are numbers m, n € N with P" (i, ]) > 0 and P™(j,7) > 0. Because of
the representation E(V; (k)| Xy = 1) = leo !(i,14), we obtain

Yoo PG d)

0= 1
k—m-—n pl/: -
P

2 hm Zl:o (]7]) X Pn(z,j)Pm(],Z)

k—oo k

E—m—n Zk m— nPl( )

= 1li - P"(i,7)P™(j,1

kLrgO A E—m—n (4,7) (4, 17)

— lim Zl Ok ( ) Pn(’L ])Pm(% )

and thus m; = oo, which signifies the null recurrence of j.
O

Thus we can call a communication class positive recurrent or null recurrent. In
the former case, a construction of a stationary distribution is given in

Theorem 2.24 Let i € E be positive recurrent and define the mean first visit
time m; := E(7;| Xo = ©). Then a stationary distribution T is given by

T = m;l . ZIP’(Xn = j, 7 >n|Xo = 1)
n=0
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forall j € E. In particular, m; = m;l and 7y, = 0 for all states k outside of
the communication class belonging to 1.

Proof: First of all, 7 is a probability measure since

(o) o0
YN PXn=jmi>nXo=i)=) > P(X,=j7>n[X=1i)

JjeEn=0 n=0j€E
oo
= ZP(TZ' > TL‘XO = ’L) =m;
n=0

The particular statements in the theorem are obvious from theorem 2.16 and
the definition of 7. The stationarity of 7 is shown as follows. First we obtain

oo
mj=m; S P(X, = jori > | Xo = i)
n=0
o0
=m; > P(Xp=j,m > n|Xo =)
n=1
o0
—m; 1. ZP(Xn =41 >n—1/Xg=1)
n=1
since Xo = X, = 7 in the conditioning set { Xy = i}. Because of
P(X,, =j, 7 >n—1Xo=1)
_ P(X, =j,7 >n—1,Xo=1)

P(Xo —9)

B Z]P)(Xn:]’Xnil :k‘,Tl’ >TL—1,X() :’L)

heE P(XU = Z)
B P(Xn:j,Xn_l:k,Ti>n—1,X0:i)

ke B\{i) ]P)(Xn_l =k, >n—1,Xg= Z)

y P(anl =kn>n—1,Xg= Z)
P(Xo = i)

= priP(Xn1 =k, >n— 1|X, =)

keFE

we can transform further

[ee]

me Y Y B = k> = 1y =
n=1kecFE
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= pkom Y P(Xn =k, > n|Xo=d) = > mpk

kek n=0 keE

which completes the proof.
O

Theorem 2.25 Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof: Existence has been shown in theorem 2.24. Uniqueness of the station-
ary distribution can be seen as follows. Let m denote the stationary distribution
as constructed in theorem 2.24 and ¢ the positive recurrent state that served
as recurrence point for . Further, let v denote any stationary distribution for
AX. Then there is a state j € F with v; > 0 and a number m € N with
P™(j,i) > 0, since X is irreducible. Consequently we obtain

v = Z veP™ (ki) > v; P™(4,4) > 0
keE

Hence we can multiply v by a skalar factor ¢ such that ¢ - v; = m; = 1/m;.
Denote v := ¢ - v.

Let P denote the Eransition matrix P without the ith column, i.e. we define the
(j, k)th entry of P by pjr. = pji if k # i and zero otherwise. Denote further
the Dirac measure on ¢ by ¢°, i.e. 5;'- = 1if ¢ = j and zero otherwise. Then the

stationary distribution 7 can be represented by m = m;1 - > =

We first claim that m; 7 = &% + miﬂp. This is clear for the entry 7; and easily
seen for ; with j # i because in this case (?P); = c¢- (vP); = 1;. Now we
can proceed with the same argument to see that

m;v = 6" + (6" + mpP)P = ' + 6'P + mpP? = ...
o
= (5Z Z 1571 = my;T
n=0

Hence 7 already is a probability measure and the skalar factor must be ¢ = 1.
This yields v = = 7 and thus the statement.
O

Remark 2.26 At a closer look the assumption of irreducibility may be relaxed
to some extend. For example, if there is exactly one closed positive recurrent
communication class and a set of transient and inaccessible states (i.e. states j
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for which there is no state ¢ with ¢ — 7), then the above statement still holds
although X is not irreducible.

A first consequence of the uniqueness is the following simpler representation
of the stationary distribution:

Theorem 2.27 Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by
1 1

T T R (] X = j)

forall j € E.

Proof: Since all states in E are positive recurrent, the construction in theorem
2.24 can be pursued for any inital state j. This yields 7; = m; ! forall j € E.

The statement now follows from the uniqueness of the stationary distribution.
O

Corollary 2.28 For an irreducible, positive recurrent Markov chain, the sta-

tionary probability 7; of a state j coincides with its asymptotic rate of recur-
rence, i.e.
. E(N;(n)|Xg=1
i OGO =)
n—oo n

for all j € E and independently of i € E. Further, if an asymptotic distribu-
tion p = lim,_,, P(X,, = .) does exist, then it coincides with the stationary
distribution. In particular, it is independent of the initial distribution of X.

Proof: The first statement immediately follows from equation (2.8). For the
second statement, it suffices to employ E(N;(n)|Xo = i) = > 1, P'(3,5). If
an asymptotic distribution p does exist, then for any initial distribution v we
obtain

p; = lim (vP"); = Zl/i lim P"(i,j)

n—00 n—oo
i€l
n ..
. Lo P(i,j
=Y lim 2o P(J) S v
4 n—o00 n ‘
el el

independently of v.
0
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4. Restricted Markov Chains

Now let F' C E denote any subset of the state space E. Define 77 (k) to be the
stopping time of the kth visit of X to the set F, i.e.

Tr(k + 1) :=min{n > 7p(k) : X,, € F'}

with 77(0) := 0. If X is recurrent, then the strong Markov property (theorem
2.7) ensures that the chain X* = (XF : n € N) with X" := X__(,)isa
recurrent Markov chain, too. It is called the Markov chain restricted to F'. In
case of positive recurrence, we can obtain the stationary distribution of X'’

from the stationary distribution of X in a simple manner:

Theorem 2.29 [fthe Markov chain X is positive recurrent, then the stationary
distribution of X*' is given by

-
o J

7 EkeF Tk

forall j € F.

Proof: Choose any state 7 € F' and recall from theorem 2.24 the expression
oo
mp=m; -ZIP’(Xn =J,7i > n|Xo =1)
n=0

which holds for all j € F'. For Trf we can perform the same construction with

respect to the chain X¥'. By the definition of X" it is clear that the number
of visits to the state j between two consecutive visits to ¢ is the same for the

chains X and X'F'. Hence the sum expression for f', which is the expectation

of that number of visits, remains the same as for ;. The other factor m;l

in the formula above is independent of j and serves only as a normalization
constant, i.e. in order to secure that » jer ™ = 1. Hence for a construction of

7rf with respect to X' this needs to be replaced by (m; - > ..o T) "', which
then yields the statement.

0

Theorem 2.30 Let X = (X,, : n € Ny) denote an irreducible and positive
recurrent Markov chain with discrete state space E. Further let F' C E denote
any subset of E, and X*' the Markov chain restricted to F. Denote

7r:=min{n € N: X,, € F'}
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Then a measure v on E is stationary for X if and only if V'

= (Vi 11 € F) is
stationary for X and
[e.e]
vi=Y wY P(X,=j1r>n|Xo=k) (2.9)
keFF n=0

forallj € E'\ F.

Proof: Due to theorem 2.29 it suffices to prove equation (2.9) for j € E \ F'
Choose any state 7 € F' and define

7i:=min{n € N: X,, =i}

According to theorem 2.24 the stationary measure v for X is given by

Ti—1
v; ZIP’ Xp=jmi>nXo=1i)=v;- (Zan ]>
n=0

for j € E'\ F, where E; denotes the conditional expectation given Xy = i
Define further

= min{n e N: X' =4}

Because of the strong Markov property we can proceed as

-1 TF—1
vi=vi-Ei | Y Exr Y 1x,-;
n=0 m=0
TiFil /7—F_1
S0 YT D SLRNN PN ) LTy
kel n=0 m=0

Regarding the restricted Markov chain X', theorem 2.24 states that

7'—1 00
E; Z1XFk =S P =k saxf =i =2

Vi

for all k € F. Hence we obtain

o
v = ZykZIP’(Xn =j,7r > n|Xg=k)

keF n=0

which was to be proven.
0
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5. Conditions for Positive Recurrence

In the third part of this course we will need some results on the behaviour of a
Markov chain on a finite subset of its state space. As a first fundamental result
we state

Theorem 2.31 An irreducible Markov chain with finite state space F' is posi-
tive recurrent.

Proof: Foralln € Nandi € F we have ), P"(i,j) = 1. Hence it is
not possible that lim,,_.., P™(4,j) = 0 for all j € F. Thus there is one state
h € F such that rp;, = Y 2, P"(h, h) = oo, which means by corollary 2.15
that h is recurrent and by irreducibility that the chain is recurrent.

If the chain were null recurrent, then according to the relation in (2.8)

1 n
li = Pk A
Jm 5 2 PHG9) =0

would hold for all 5 € F, independently of ¢ because of irreducibility. But this
would imply that lim,,_., P"(i,j) = 0 for all j € F, which contradicts our
first observation in this proof. Hence the chain must be positive recurrent.

OJ

For irreducible Markov chains the condition E(7;| X = i) < oo implies pos-
itive recurrence of state ¢ and hence positive recurrence of the whole chain.
Writing 77 for the time of the first visit to the set F', we now can state the
following generalization of this condition:

Theorem 2.32 Let X denote an irreducible Markov chain with state space E
and be F' C FE a finite subset of E. The chain X is positive recurrent if and
only if E(tp|Xo = i) < oo forall i € F.

Proof: If X is positive recurrent, then E(77|Xo = i) < E(1;|Xo = i) < o0
for all 7 € F', by the definition of positive recurrence.

Now assume that E(7x|Xo = i) < oo for all i € F. Define the stopping times
o(i) := min{k € N : X} = i} and random variables Y}, := 7 (k) —7p(k—1).
Since F is finite, m := maxjcr E(7p|Xo = j) < co. We shall denote the
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conditional expectation given Xy = 7 by [E;. For 7 € F' we now obtain

O'(Z) oo
E(r;| Xo = i) = E; ZYk = ZEz (E(YVil X (1) - Tk<o))
k=1 k=1
<m-» P(o(i) > k|Xo =1i) =m-E(c(i)| Xo = 1)
k=1

Since F is finite, X¥" is positive recurrent by theorem 2.31. Hence we know
that E(o(i)|Xo = i) < oo, and thus E(7;| Xy = i) < oo which shows that X
is positive recurrent.

0

An often difficult problem is to determine whether a given Markov chain is
positive recurrent or not. Concerning this, we now introduce one of the most
important criteria for the existence of stationary distributions of Markov chains
occuring in queueing theory. It is known as Foster’s criterion.

Theorem 2.33 Let X denote an irreducible Markov chain with countable state
space E and transition matrix P. Further let F' denote a finite subset of E. If
there is a function h : E — R with inf{h(i) : i € E} > —oc, such that the
conditions

> pah(k) <oo  and > pirh(k) < h(j) e
keE keE

hold for some ¢ > 0 and alli € F and j € E\ F, then X is positive recurrent.

Proof: Without loss of generality we can assume h(i) > 0 for all i € E,
since otherwise we only need to increase h by a suitable constant. Define the
stopping time 7 := min{n € Ny : X,, € F'}. First we observe that

E(h(XnJrl) ) 1TF>TL+1‘XUa ) Xn) < E(h(XnJrl) ' 17—F>n|X07 v aXn)

= 1TF>TL : Zan,kh(k)
keE

< pon - (B(X,) — &)
= h(Xn) . 1Tp>n —&- 1TF>n
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holds for all n € Ny, where the first equality is due to (15.3). We now proceed
with

0 <E(h(Xn+1) - Lrp>nt1]Xo = i)
= E(E(M(Xns1) - Lrpsni1| X0, - -5 X0)| Xo = 0)
< E(h(X,) - Lrpsn|Xo = i) — eP(7F > n| X = 1)
<
n
< E(h(Xo0) - 1rpso|Xo =) — € Y _ P(rp > k[ Xo = i)
k=0

which holds for all i € E'\ F and n € Ny. For n — oo this implies

E(rp|Xo =i) =Y P(rr > k|Xo = i) < h(i)/e < o0
k=0

fori € E'\ F. Now the mean return time to the state set F' is bounded by

E(rp|Xo =) = sz'j + Z pi E(1r + 1| X0 = j)

jeF JEE\F
<1+ 671 szjh(]) < 00
jerE

for all 7 € F', which completes the proof.
0

6. The M/M/1 queue in discrete time

Choose any parameters 0 < p,q < 1. Let the arrival process be distributed as
a Bernoulli process with parameter p and the service times (S, : n € Ny) be
iid according to the geometric distribution with parameter q.

The geometric service time distribution and the Bernoulli arrival process have
been chosen because this simplifies the formulation of the system process in
terms of a Markov model due to the following memoryless property:

Theorem 2.34 Let S be distributed geometrically with parameter q, i.e. let
P(S=k)=(1—q)f 'qforallk € N. Then P(S = k|S > k — 1) = q holds
for the conditional distribution, independently of k. Likewise, if Z, is the nth
inter—arrival time of a Bernoulli process with parameter p, then the relation
P(Z, = k|Z, > k — 1) = p holds, independently of k and n.
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Proof: First the proof for the geometric distribution: For all £ € N, the argu-

ment

P(S—k|S>k—1)= L=k S>k=1) _PS=k)

P(S>k—-1)  P(S>k-1)
_A-9"e _
(1—gq)+

holds, which shows the first statement. For a Bernoulli process, the nth inter—
arrival time Z,, = T, — T},_ is distributed geometrically with parameter p,
due to the strong Markov property. This completes the proof for the second
statement.

O

Thus the memoryless property states that no matter how long a service time or
an inter—arrival time has already passed, the probability of a service completion
or an arrival at the next time instant is always the same. Hence the system
process Q = (@, : n € Ny) of the M/M/1 queue in discrete time with arrival
process 7 and service times S,, can be formulated easily as a homogeneous
Markov chain. It has state space 2 = Ny and transition probabilities pg; := p,
poo := 1 — p, and

p(1—q), j=1i+1
pij = 4pg+ (1 —p)(1—q), j=i
q(1—p), j=1—1

for ¢ > 1. Because of the simple state space, the transition matrix can be
displayed in the form of a triagonal matrix

1—-p P 0
q(1—=p) pg+(1—p)(1—q) p(1—q)
0 q(1—p) pq+ (1 —p)(1—q)

Since p, ¢ > 0, the chain Q is irreducible. If p < g, then h(n) := n defines a
function which satisfies the conditions for Foster’s criterion, as

Y pixh(k) =q(1=p)- (i — 1)+ (gp+ (1 - q)(1 —p)) -
k=0

+p(1—q)-(i+1)
=i—q1l—p)+pl—q)=i—q+p<i—c¢
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foralli € N, withe = ¢ —p > 0,and Y _;° ; pox - h(k) = p < oo show. The
ratio p/q is called the load of the queue. Thus the system process Q is positive
recurrent if the queue load is less than one.

In order to derive a stationary distribution for Q, we first introduce notations
p :=p(l —q) and ¢’ := q(1 — p). Then we translate the condition 7P = 7
into the equations

7o = mo(1 — p) + mq’ (2.10)
m =mp+m(1l—p' —¢')+mq (2.11)
Tn = anlp/ + 7Tn(1 - (p, + q,)) + 7Tn+1q, (212)

for all n > 2. For the solution, we guess the geometric form
Tpyl = My - T
for all n > 1, with » > 0. Thus equation (2.12) becomes
0=mnp — Tt +¢) + mr’d =m0 (0 =70 + ¢) +1°¢)

for all n > 1, which leads for non—trivial 7 # 0 to the roots » = 1 and
r = p'/q of the quadratic term.

In the first case r = 1, we obtain 7,41 = m, for all n > 1. This implies
> jer ™j = o0 and thus cannot lead to a stationary distribution. Hence in the
case r = 1 the geometric approach is not successful.

The second root r = p’/q’ allows solutions for the other equations (2.10) and
(2.11) too. This can be checked as follows: First, the relation

P
I—p

_ P _
T = 7-‘-07/ = T
is a requirement from equation (2.10). Then the second equation (2.11) yields
1 1 (p
™= (0 +¢') — mop) = 7 <q,(p’ +4q) —p) 0

_ p (PV+d L) — P
= To— — —7'('1?

in accordance with our geometric approach. Now normalization of 7 leads to

[e'e) 00 7\ n—1
p p

1= mm (1423 (5))
n=0 qn:l q
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from which we obtain

with p := p/q, because of ¢ — p’ = ¢ — p. Hence the approach 7,11 = m, - 7
with r = p’/¢’ leads to a solution of 7P = .

Note that » < 1 if and only if p < ¢. Further, the mean inter—arrival time is
E(T1) = 1/p and the mean service time is E(S71) = 1/¢. Thus the geometric
approach is successful if the so—called stability condition

_p _ E(5)

=—-= <1
q [E(T1)

holds. This condition simply postulates that the mean service time be shorter
than the mean inter—arrival time. In this case, the stationary distribution 7 of
Q has the form

4 7,,nfl
1-p

mo=1—p and T = (1 —p)

for all n > 1. It thus is a modified geometric distribution with parameter
r=p'/¢d <1.

Notes

Markov chains originate from a series of papers written by A. Markov at the
beginning of the 20th century. His first application is given here as exercise
2.3. However, methods and terminology at that time were very different from
today’s presentations.

The literature on Markov chains is perhaps the most extensive in the field of
stochastic processes. This is not surprising, as Markov chains form a simple
and useful starting point for the introduction of other processes.

Textbook presentations are given in Feller [34], Breiman [16], Karlin and Tay-
lor [46], or Cinlar [25], to name but a few. The treatment in Ross [75] contains
the useful concept of time-reversible Markov chains. An exhaustive introduc-
tion to Markov chains on general state spaces and conditions for their positive
recurrence is given in Meyn and Tweedie [59].



Markov Chains and Queues in Discrete Time 35

Exercise 2.1 Let (X,, : n € Np) be a family of iid random variables with
discrete state space. Show that X = (X, : n € Ny) is a homogeneous Markov
chain.

Exercise 2.2 Let (X,, : n € Ny) be iid random variables on Ny with probabil-
ities a; := P(X,, = i) forall n, i € Ngy. The event X,, > max(Xq,..., X, 1)
forn > 1is called arecord at time n. Define T; as the time of the 7th record, i.e.
Ty :=0and T4 := min{n € N: X,, > Xp} for all i € Ny. Denote the ith
record value by R; := Xy,. Show that (R; : i € Ny) and ((R;,T;) : i € Ny)
are Markov chains by determining their transition probabilities.

Exercise 2.3 Diffusion model by Bernoulli and Laplace

The following is a stochastic model for the flow of two incompressible fluids
between two containers: Two boxes contain m balls each. Of these 2m balls, b
are black and the others are white. The system is said to be in state ¢ if the first
box contains 7 black balls. A state transition is performed by choosing one ball
out of each box at random (meaning here that each ball is chosen with equal
probability) and then interchanging the two. Derive a Markov chain model for
the system and determine the transition probabilities.

Exercise 2.4 Let X denote a Markov chain with m < oo states. Show that
if state j is accessible from state ¢, then it is accessible in at most m — 1
transitions.

Exercise 2.5 Let p = (p, : n € Ny) be a discrete probability distribution and
define

Po P11 P2
Po P1

P:
Po

with all non—specified entries being zero. Let X denote a Markov chain with
state space Ny and transition matrix P. Derive an expression (in terms of
discrete convolutions) for the transition probabilities P( X, = j| X, = 1)
with n,m € Ny and 7,7 € Ng. Apply the result to the special case of a
Bernoulli process (see example 2.3).

Exercise 2.6 Prove equation (2.6).

Exercise 2.7 Prove the equation P"(i, j) = > p_, Fx(i,j)P"*(j, j) for all
neNandi,j € E.
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Exercise 2.8 Let X’ denote a Markov chain with state space £ = {1,...,10}
and transition matrix
/2 0 1/2 0 0 0 0 0 0 0
0 1/3 0 0 0 023 0 0 0
1 0 0 0 0 0 O 0 0 0
0 0 0 0 1 0 0 0 0 0
p_| 0 0 0 13130 0 0 13 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 01/4 0 3/4 0
0 0 1/4 1/4 0 0 0 1/4 0 1/4
0 1 0 0 0 0 O 0 0 0
0O 1/3 0 0 1/30 0 0 0 1/3

Reorder the states according to their communication classes and determine the
resulting form of the transition matrix as in representation (2.4). Determine
further a transition graph, in which

means that f;; > 0.

Exercise 2.9 Prove equation (2.7).
Hint: Derive a representation of N; in terms of the random variables

1, X,=9
A=< " ‘]
0, Xn,#J

Exercise 2.10 Prove corollary 2.15.
Exercise 2.11 Prove remark 2.26.

Exercise 2.12 A server’s up time is & time units with probability p,, = 27,
k € N. After failure the server is immediately replaced by an identical new
one. The up time of the new server is of course independent of the behaviour
of all preceding servers.

Let X, denote the remaining up time of the server at time n € Nj. Determine
the transition probabilities for the Markov chain X = (X,, : n € Ny) and
determine the stationary distribution of X'.
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Exercise 2.13 Let P denote the transition matrix of an irreducible Markov
chain X’ with discrete state space £ = F' U F, where F'“ = E '\ F. Write P

in block notation as
p_ Prr  Pppe
PF‘(:F PFCFC

Show that the Markov chain X' restricted to the state space F has transition
matrix
PP = Ppp + Pppe(I — Ppepe) ' Ppep

with I denoting the identity matrix on F°.

Exercise 2.14 Let X' denote a Markov chain with state space £ = {0,...,m}
and transition matrix

Poo Po1
P10 P11 P12

P = P21 P22 D23

Pmm—1  Pmm

where p;; > 0 for |¢ — j| = 1. Show that the stationary distribution 7 of X is
uniquely determined by

n m
Pi—1, Pi—1,
o= [[2EM and omo= [ SOJ[EM

iy Pii-1 =0 =1 Pii-1

-1

foralln =1,...,m.
Use this result to determine the stationary distribution of the Bernoulli-Laplace
diffusion model with b = m (see exercise 2.3).

Exercise 2.15 Show that the second condition in theorem 2.33 can be substi-
tuted by the condition

> pijh(j) < h(i)—1  forallie E\F.

JEE
Exercise 2.16 Show the following complement to theorem 2.33: Let P denote
the transition matrix of a positive recurrent Markov chain with discrete state

space E. Then there is a function h : £ — R and a finite subset /' C FE such
that

Zpijh(j) < 00 for all 7 € F, and

JjEE

S pih() <h(i)—1  forallie E\ F.
jeE
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Hint: Consider the conditional expectation of the remaining time until return-
ing to a fixed set I of states.

Exercise 2.17 For the discrete, non—negative random walk with transition ma-
trix

Poo  Pol
P pio 0 pio
- pio 0 pio

determine the criterion of positive recurrence according to theorem 2.33.






Chapter 3

HOMOGENEOUS MARKOV PROCESSES
ON DISCRETE STATE SPACES

In the present chapter we will transfer the discrete time results of the previous
chapter to Markov processes in continuous time.

1. Definition

Define T := 0 and let (7}, : n € N) denote a sequence of positive real-valued
random variables with T,,4; > T, for alln € Ny and T;,;, — o0 asn — oc.
Further, let E denote a countable state space and (X,, : n € Nj) a sequence of
E—valued random variables. A process ) = (Y; : t € Rar) in continuous time
with

Y:; = X, for Th <t<Tht1

is called a pure jump process. The variable H,, := T, 1 — T, (resp. X,,) is
called the nth holding time (resp. the nth state) of the process ). If further
X = (X, : n € Ny) is a Markov chain with transition matrix P = (p;;)i jcE
and the variables H,, are independent and distributed exponentially with pa-
rameter Ax, only depending on the state X, then ) is called homogeneous
Markov process with discrete state space . The chain & is called the em-
bedded Markov chain of V. As a technical assumption we always agree upon
the condition A := sup{\; : i € E} < o0, i.e. the parameters for the exponen-
tial holding times shall be bounded.

An immediate consequence of the definition is that the paths of a Markov
process are step functions. The lengths of the holding times are almost cer-
tainly strictly positive, since exponential distributions are zero with probability
zZero.
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Figure 3.1. Typical path of a Markov process with discrete state space

Example 3.1 Poisson process

Define X,, := n deterministically. Then X = (X,, : n € Np) is a Markov
chain with state space & = Ny and transition probabilities p,, ,+1 = 1 for all
n € Ny. Let the holding times H,, be distributed exponentially with identical
parameter A > 0. Then the resulting process ) as defined in the above defini-
tion is a Markov process with state space Ny. It is called Poisson process with
intensity (also: rate or parameter) \.

Next we want to prove a property similar to the Markov property for Markov
chains in discrete time. To this aim, we need to show the memoryless prop-
erty for the exponential distribution, which is the analogue to the memoryless
property for geometric distributions in discrete time.

Lemma 3.2 Let H denote a random variable having an exponential distribu-
tion with parameter \. Then the memoryless property

P(H>t+s|/H>s)=P(H>t)

holds for all time durations s,t > Q.

Proof: We immediately check

P(H>t+s,H>s) PH>t+s)
P(H>t+s/H>s)= P > 5) = P > 5)

e~ A (t+s)

=———=¢ M=PH>1
e

which holds for all s,¢ > 0.
O
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Theorem 3.3 Let ) denote a Markov process with discrete state space E.
Then the Markov property

P(Y; = j|Yu:u < s) = P(Y; = j|Y)

holds for all times s < t and states j € F.

Proof: Denote the state at time s by Y = . Because of the memoryless prop-
erty of the exponential holding times, the remaining time in state ¢ is distributed
exponentially with parameter );, no matter how long the preceeding holding
time has been. After the holding time in the present state elapses, the process
changes to another state j according to the homogeneous Markov chain X.
Hence the probability for the next state being j is given by p;;, independently
of any state of the process before time s. Now another exponential holding
time begins, and thus the past before time s will not have any influence on the
future of the process ).

O

Analogous to the discrete time case, for any two time instances s < ¢ the con-
ditional probabilities P(Y; = j|Y; = i) shall be called the transition proba-
bilities from time s to time ¢. We will now derive a recursion formula for the
transition probabilities of a Markov process by conditioning on the number of
jumps between time s and time ¢:

Theorem 3.4 The transition probabilities of a Markov process ) are given by
S p
P(Y; = jlYe=i) =Y P (s,1)
n=0
for all times s < t and states i,j € E, with
P (s,) = b e
and recursively

t
n+1 —\i-u n
Pi(jJr)(s,t):/e NS pa P (ust) du
7S keE

for all n € Ng.

Proof: The above representation follows immediately by conditioning on the
number of jumps in |s,t|. The expressions Pi(f)(s,t) represent the condi-
tional probabilities that Y; = j and there are n jumps in |s,t| given that
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Ys = 4. In the recursion formula the integral comprises all times u of a pos-
sible first jump along with the Lebesgue density e *"*)\; of this event, after
which the probability of n remaining jumps reaching state j at time ¢ is given

by ZkeEpikP]g_?)(ua t).
[l

For every two time instances s < t, define the transition probability matrix
P(s,t) from time s to time ¢ by its entries

Pij(s,t) :=P(Y; = j|Ys = 1)

Using the recursion formula, it is shown by induction on 7 that the conditional
probabilities PL.(f’) (s,t) are homogeneous in time, i.e. they satisfy

(n) _ p)
Py (s,1) = Py (0,t—s)

for all s < ¢. Thus we can from now on restrict the analysis to the transition
probability matrices
P(t) := P(0,t)

with ¢ > 0. With this notation the Markov property yields the Chapman-
Kolmogorov equations
P(s+t) = P(s)P(t)

for all time durations s,¢ > 0. Thus the family {P(¢) : ¢ > 0} of transition
probability matrices forms a semi—group under the composition of matrix mul-
tiplication. In particular, we obtain for the neutral element of this semi—group
P(0) = Ig := (0ij)i,jer With §;; = 1 for i = j and zero otherwise.

In order to derive a simpler expression for the transition probability matrices,
we need to introduce another concept, which will be called the generator ma-
trix. This is defined as the matrix G' = (g;;)i jer on £ with entries

) =pi), =3
Gij = ) .
Ai * Dij i# ]
for all states ¢, j € F. In particular, the relation
i =~ Y _ Gij (3.1)
J#i
holds for all 7 € F.

The (i, 7)th entry of the generator G is called the infinitesimal transition rate
from state s to state j. Using these, we can illustrate the dynamics of a Markov
process in a directed graph where the nodes represent the states and an edge
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0 : 0

means that g;; = r > 0. Such a graph is called a state transition graph of
the Markov process. With the convention p;; = 0 the state transition graph
uniquely determines the Markov process.

Example 3.5 The state transition graph of the Poisson process with intensity
A (see example 3.1) is given by

oo

Figure 3.2.  Poisson process

Theorem 3.6 The transition probabilities P;;(t) of a Markov process satisfy
the systems

W = Z P () gk = Z 9ik Prj (t)

keE keE

of differential equations. These are called the Kolmogorov forward and
backward equations.

Proof: From the representation in theorem 3.4, it follows by induction on the
number of jumps that all restricted probabilities P (t) are Lebesgue inte-

grable with respect to ¢ over finite intervals. Since the sum of all Pi(jn) (t)isa
probability and thus bounded, we conclude by majorized convergence that also
P(t) is Lebesgue integrable with respect to ¢ over finite intervals.

Now we can state the recursion

t
Pij(t) = e N5 + / e NN pinPej(t — ) ds
0

keE

which results from conditioning on the time s of the first jump from state i. We
obtain further

t
Py(t) = e it <5ij -|-/ ethiuy, Zpikpkj (w) d“)
0

keE
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by substituting u = ¢ — s in the integral. Since ), _ppix = 1 is bounded,
we conclude that P(¢) is continuous in ¢. Further, we can differentiate P(t) as
given in the recursion and obtain

dP;; . ! Y
P;t(t) = —Ne M. <5ij +/0 f(u) du) +e Mt f(t)

with f denoting the integrand function. This means nothing else than

dp;;(t)
— = = AP () + A Y pirPi (1)
keE
= —Ni(1 = pii) - Py(t) + Zgz’kpkj(t)

ki

and thus proves the backward equations. For the forward equations, one only
needs to use the Chapman—Kolmogorov equations and apply the backward
equations in

dP;(t) .. Pyt+h)—Pyt) . Pyj(h) — 0
=1 =1 Py (t)—~—"

dt - heo pm 2 Pa()—

k:EE
. Pyi(h) Pk
= Z sz (t) }gr(l) ]( 7 Z P?,k' gkj
keE kCE
which holds for all ¢, j € E.

0

Theorem 3.7 The transition probability matrices can be expressed in terms of
the generator by

for all t > 0, with G™ denoting the nth power ofthe matrix G.

Proof: First we validate the solution by

o0

iGt iz ZGndtn_ZGn tnil -G G-t
att T at dinl ~ 4= -1 °

which holds for all ¢ > 0. Furthermore, it is obvious that

Gt _ " n __ 1" n _ Gt
Gt =Gy G —<Zn!G>G—6 G
n=0 n=0
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and thus P(t) = ¢“* is a solution of Kolmogorov’s forward and backward
equations.

Now we show uniqueness of the solution. Let lf’(t) denote another solution of
the forward equations. The differential equations with initial condition trans-
late into the integral equations

t t
P(t) =1Ig —|—/ P(u)Gdu  and  P(t)=1Ig +/ P(u)G du
0 0
Define a norm for matrices M = (m;;); jer on E by
| M| := sup Z\mw\ el
JjEE

Then |G| < 2- Aand |[AB|| < ||A]| - || B| for any two matrices A and B on
E. Further we obtain

-] -|

/Ot P(u) — P(u) du GH

t
g/ | Py~ P -1 (3.2)
0

<A t-|G (3.3)

with A; := sup{||P(u) — P(u)|| : w < t}, which is finite, since for all u > 0
we know that || P(u)|| = [|P(u)|| = 1. Plugging the result (3.3) into the right
hand of the bound (3.2) again (with time u instead of t), we obtain

- t 12
|P® =P < [ Acw 6] du- 161 = & G- 1P

Likewise, n—fold repetition of this step achieves the bound

(2 - )"
n!

lpt) - P < &L e <

which in the limit n — oo yields 0 < HP(t) - ﬁ(t)H < 0 and consequently

P(t) = P(t). As t has been chosen arbitrarily, the statement is proven.

Hence the generator of a Markov process uniquely determines all its transition
matrices. This can also be seen from the definition, if we agree (without loss
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of generality) upon the convention p;; = O for all € E. Then the parameters
for the definition of the Markov process can be recovered by

Ai=—gi and  pj =

foralli # j € F.

However, as in the discrete time case of Markov chains, Markov processes
are not completely determined by their transition probability matrices only.
The missing link to a complete characterization again is given by the initial
distribution 7 with m; = P(Yy = X = i) for all i € E. Then we can express
all finite—~dimensional marginal distributions as in

Theorem 3.8 For a Markov process Y with initial distribution ™ and time
instances 0 < t1 < ... < tn, n € N, the equation

]P)(}/;j :j17' "7Y;n :]n)

= Z mi Py j, (tl)Pjth (t2 —t1) .. Pj, 1 gn (tn —tn-1)
i€l

holds forall j1,...,5, € E.
The proof is left as an exercise. Thus a Markov process ) with transition

probability matrices (P(t) : ¢ > 0) admits a variety of versions depending on
the initial distribution 7. Any such version shall be denoted by J™.

2.  Stationary Distribution

From now on we shall convene on the technical assumption
Ni=inf{\:i€E} >0

which holds for all queueing systems that we will examine. Then a Markov
process is called irreducible, transient, recurrent or positive recurrent if
the defining Markov chain is.

An initial distribution 7 is called stationary if the process V™ is stationary, i.e.
if

]P)(}/tir - j17 cee 7Y:f: = 771) = ]P)(}/Zr—&-s = jlv o 7}/;:-1-3 - 7n)
foralln e N,0 <t <...<t,, and states j1,...,Jy, € F,and s > 0.

Theorem 3.9 A distribution 7 on E is stationary if and only if tG = 0 holds.
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Proof: First we obtain

TP(t) = meCt = ZﬁwG” =mnlg +Zﬁ7rG” =n+0=m
n=0 n=1

for all ¢ > 0, with O denoting the zero measure on F. With this, theorem 3.8
yields

]P)(Y;Flr :j1>"'7y;‘7r :]n)

= miPi (0 Pt —t1) - Py (b — 1)
i€l
=75 P}, 4 (tQ - tl) N S (tﬂ - tnfl)
= ZﬂiPi,jl (t1 + S)Pjth (ta —t1)... P, . (tn — tn—1)
i€k
- IP)(YVtT+s =J1,--- ’}/t:+s - jn)
for all times ¢; < ... < t, with n € N, and states ji,...,J, € E. Hence the
process V7 is stationary.

On the other hand, if 7 is a stationary distribution, then we necessarily obtain
mP(t) = me%! = 1 forall t > 0. As above, this means Y °° | L,7G™ = 0 for
all t > 0, which yields 7G = 0 because of the uniqueness of the zero power
series.

O

By definition of the generator GG and equation (3.1), the equation 7G = 0 is
equivalent to an equation system

ngij = —Tigjj = ngij =Tj Z!]ji (3.4
i#j i#j i#j
forall j € E. This system can be intepreted as follows. We call the value 7;g;;
stochastic flow from state i to state j in equilibrium. Then the above equations

mean that the accrued stochastic flow into any state j equals the flow out of this
state. Equations (3.4) are called the (global) balance equations.

Example 3.10 The generator of the Poisson process with parameter A (see
example 3.1) is given by

-2 A 0 O
0O —=x X 0
0 0 =X A

G:
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This process has no stationary distribution, which can be seen as follows. The
balance equations for the Poisson process are given by

7T0)\:0 and 71'1')\:71'1'_1A

for all ¢ > 1. It is immediately evident that these are solvable only by m; = 0
for all 7 € E, which means that there is no stationary distribution 7.

The question of existence and uniqueness of a stationary distribution for )
can be reduced to the same question for X', which we have examined in the
preceding chapter:

Theorem 3.11 Let the underlying Markov chain X in the definition of the
Markov process Y be irreducible and positive recurrent. Further assume that
A= inf{\; : i € E} > 0. Then there is a unique stationary distribution for
Y.

Proof: According to theorems 2.25 and 2.18, the transition matrix P of X
admits a unique stationary distribution v with vP = v. The generator G is
defined by G = A(P — Ig), with A = diag(); : ¢ € E). Hence the measure
1 == vA~1 is stationary for ). Since A > 0, the measure y is finite, with total
mass bounded by A~! < co. Now the normalization

mio v/
dliep M DiepVilNi
for all j € E yields a stationary distribution for ). This is unique because v is

unique and the construction of 7 from v is reversible.
0

(3.5)

i =

Finally we give two important results for the asymptotic behaviour of a Markov
process. These shall be proven in chapter 7 (see example 7.13). We call a
Markov process regular if it satisfies the conditions given in the preceding
theorem. If ) is a regular Markov process, then the limit
flim P(Y; = j) =m; (3.6)
of the marginal distribution at time ¢ tends to the stationary distribution as ¢
tends to infinity. Further the limit
lim Pij(t) =Ty (37)

t—oo

holds for all 7, 7 € E and is independent of s.
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Notes

An early text book on Markov processes with discrete state space is Chung
[27]. Other classical text book presentation are Karlin and Taylor [46], Breiman
[16], or Cinlar [25]. An exposition on non—homogeneous Markov processes on
discrete state spaces can be found under the name Markov jump processes in
Gikhman and Skorokhod [39, 38].

Exercise 3.1 Consider a population of male and female species. There is an
infinitesimal rate A > 0 that any male and female produce a single offspring,
which will be female with probability p. Determine a Markov process which
models the numbers F} and M; of female and male species at any time ¢.

Exercise 3.2 Let X and Y denote two independent random variables which
are distributed exponentially with parameters A and p, respectively. Prove the
following properties:

(a) X # Y almost certainly.

(b) The random variable Z := min{X, Y} is distributed exponentially with
parameter A + .

©P(X <Y) = M\(A+n)

Exercise 3.3 Let y(1> and y<2> denote independent Poisson processes with
intensities A; and Ag, respectively. Show that the process ) = (Y; : t € Rg )

defined by Y; = Yt(l) + Yt(z) for all ¢ > 0 is a Poisson process with intensity
A = A1 + \o. The process Y is called the superposition of V) and V(2.

Exercise 3.4 Prove theorem 3.8.

Exercise 3.5 Determine the finite—dimensional marginal distributions for a
Poisson process with parameter .

Exercise 3.6 Let ) denote a Poisson process with parameter A. Given that
there is exactly one arrival in the interval [0, ¢], show that the exact time of the

arrival within [0, ¢] is uniformly distributed.

Exercise 3.7 Verify the Chapman—Kolmogorov equations for a Poisson process.






Chapter 4

MARKOVIAN QUEUES IN CONTINUOUS TIME

The methods of analyzing Markov processes are already sufficient for the treat-
ment of quite a variety of queueing systems. These are commonly known as
elementary or Markovian queues. The most classical of them shall be exam-
ined in this chapter.

1. The M/M/1 Queue

The M/M/1 queue in continuous time is defined by the following character-
istics: The arrival process is a Poisson process with some rate A > 0. The
service times are iid and distributed exponentially with service rate p > 0.
There is one server and the service discipline is first come first served (FCFS,
see example 1.1).

Poisson(A) Exp(u)

Figure 4.1. M/M/1 queue

For the Poisson process, the inter—arrival times are distributed exponentially
with parameter \. Since the exponential distribution is memoryless, the system
process Q@ = (Q : t € ]R(T ) can be modelled by a Markov process with state



52 AN INTRODUCTION TO QUEUEING THEORY

space ' = Ny and generator

—-A A 0 0
b =AU A 0
G:

0 I —“A—u A

Here, the first line represents the possible transitions if the system is empty. In
this case there can only occur single arrivals according to the Poisson process
with rate A. If the system is not empty, there are two possibilities: Either an
arrival occurs (with rate \) or a service is completed (with rate p). Contrary
to the M/M/1 queue in discrete time, arrivals and service completions cannot
occur at the same time. This follows from the memoryless property of the
exponential distribution and exercise 3.2. The parameter of the holding time
for the states of a non—empty system is explained by exercise 3.2.

Clearly, the structure of the matrix G shows that the process Q is irreducible
and hence there is at most one stationary distribution 7 for Q. According to
theorem 3.9, this must satisfy 7G = 0, which translates into the system

TN = Tl 4.1)

TN+ @) = Tpa A+ Ty forall n>1 4.2)
o

Z =1 (4.3)
n=0

of equations, where the latter is simply the normalization of the distribution 7.
The first two equations are the global balance equations and can be illustrated
by the following scheme:

A A
P NN

()

@\/\/\/\/\/

Figure 4.2. Transition rates for the M/M/1 queue

This gives the rates of jumps between the states of the system. If we encircle
any one state, then the sum of the rates belonging to the arcs reaching into this
state must equal the sum of the rates which belong to the arcs that go out of
this state. If this is the case, then we say that the system is in balance. The
conditions for this are given in equations (4.1) and (4.2).
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The solution of the above system of equations can be obtained by the following
considerations: The first equation yields

A

T = To— =:Top
1
with p := A/pu. By induction on n we obtain from the second equation
1
Tpn41 = *(Wn()\ + ,u) - 7Tn71)\) =Tp— +Tp — Tp-1—
H H H

= ’]rnp

for all n € N, where the last equality holds by induction hypothesis. Thus the
geometric approach m, = myp" for all n € Ny solves the first two equations.
The last equation now yields

oc ) 1
n=0 n=0

if and only if p < 1, which means A < u. Hence there is a stationary distribu-
tion of the system, given by

T = (1—p)p"

for all n € Ny, if and only if the so—called queue load p = A\/u remains
smaller than one.

In this case several performance measures of the queueing system can be de-
rived immediately. All of them are computed by means of the stationary dis-
tribution. Thus they hold only for the system being in equilibrium, which is
attained asymptotically.

For instance, the probability that the system is empty is given by 79 = 1 — p.
The mean and the variance of the number N of users in the system are given
as

(e} o
E(N) =Y nmy = (1= p) Y np" = 2=
n=1 n=1 p

and Var(N) = p/(1 — p)2. The probability Ry that there are at least K users
in the system is

o o0
Re=> m=00-p) > p"=p~
n=K n=K

As expected, these equations show that with increasing load p — 1 the mean
number of users in the system grows and the probability of an idle system
decreases.
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2.  Skip-Free Markov Processes

There are many variations of the M/M/1 queue which can be analyzed by the
same method. In order to show this we first put the analysis presented in the
preceding section in a more general context. This will be applicable to a large
variety of queueing models.

The Markov process which models the M/M/1 queue has the decisive property
that transitions are allowed to neighbouring states only, i.e. g;; = 0 for states
i,7 € Ng with | — j| > 1. The result is a very simple state transition graph of a
linear form and correspondingly a set of balance equations, given by (4.1) and
(4.2), which can be solved easily. We can retain the same method of analysis
if we relax the special assumption that g; ;41 and g; ;1 be independent of i.

Thus we define a skip—free Markov process by the property that its generator
G = (9ij)ijer satisfies g;; = 0 for all states ¢,5 € E C Ny with |i —
j| > 1. For queueing systems this means that there are only single arrivals or
departures. Thus every Markovian queueing system with single arrivals and
departures can be modelled by a skip—free Markov process.

Denote the remaining infinitesimal transition rates by
Ai = Giit1 and Wi = Gii1

for all possible values of ¢. The rates A; and p; are called arrival rates and
departure rates, respectively. The state transition graph of such a process
assumes the form

Ao A A,
olRoghosh
M\\/

Ml uz “’3

Figure 4.3. A skip—free Markov process

Its balance equations are given by A\gmg = w171 and
(Ni =+ pi) T = Ni—amio1 + Hit 1T

for all © € N. By induction on ¢ it is easily shown that these are equivalent to
the equation system
Aic1Ti—1 = [T (4.4)
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for all ¢ € N. This system is solved by successive elimination with a solution
of the form

i—1
mi=mo [ 2L = mp (4.5)
i=0 Hj+1 K12 - g

for all > 1. The solution 7 is a probability distribution if and only if it can be
normalized, i.e.if ) 5 7, = 1. This condition implies

B3| S o) |
= M =T
neE ’ =0 Hi+l ’ nel j—o Hitl

with the empty product being defined as one. This means that
~1

TN
m=|>_]] (4.6)

nel j—o i+l

and thus 7 is a probability distribution if and only if the series in the brack-
ets converges. In this case, the stationary distribution of a skip—free Markov
process is given by (4.6) and (4.5).

3. The M/M/oco Queue

The first application of the analysis of the last section to a queueing system
shall be the M/M/oo queue. This is a queue without queueing: There are in-
finitely many servers such that every incoming user finds an idle server im-
mediately. Arrivals are governed by a Poisson process with intensity A > 0,
and the service times are exponentially distributed with rate ¢ > 0, equal for
each server. Due to lemma 3.2, the system process is Markovian. Furthermore,
there are only single arrivals and departures. Hence the M/M/oo queue can be
modelled by a skip—free Markov process.

Since the arrival process is independent of the rest of the queue, the arrival
rates of the respective skip—free Markov process are constant. In the notation
of section 2 we can thus specify A, = X for all n € Ny. Departures occur
upon service completions. According to lemma 3.2 and due to the memoryless
property of the exponential distribution (see lemma 3.2), the departure rates
are given by p,, =n - pforalln € N.

Define p := A/pu. Then the series in (4.6) assumes the value

oo n—1

O | P ST

n=o j=0 Mi+1 5
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and thus converges regardless of the value of p. This means that the M/M/co
queue always has a stationary distribution, which is not surprising as infinitely
many servers cannot be exhausted, whatever the arrival intensity amounts to.

Due to formulae (4.6) and (4.5), we obtain the stationary distribution 7 as given
by mg = e * and
T, = P r"
nl
for all n € N, which is a Poisson distribution with parameter p. Hence the

mean and the variance of the number N of users in the stationary system are
given by E(N) = Var(N) = p.

Since there is no queueing in the M/M/oo system, all waiting times are zero
and the mean sojourn time in the system equals 1/x. This means that all users
passing through such a system are independently kept there for an exponen-
tially distributed time. In the context of queueing networks (see chapter 5), the
M/M/oo queue is therefore often called an (independent) delay system.

4. The M/M/k Queue

The M/M/k queue is provided with & identical servers which can serve users
in parallel. Users arrive according to a Poisson process with intensity A > 0,
and the service time distribution is exponential with parameter ;z > 0 at all
servers. Whenever a user arrives and finds all servers busy (i.e. at least k users
in the system) he queues up in the waiting room. From there the next waiting
user is served in the order of a FIFO discipline as soon as one of the servers
becomes idle. An arriving user finding less than & users already in the system
(i.e. there are idle servers at the time of arrival) chooses any server and starts
service immediately.

For this type of queue the dynamics is a mixture between the M/M/oc queue
and the M/M/1 queue. Up to the value of k users in the system, the service
(and thus the departure) rate increases like p,, = n - p for 1 < n < k. Starting
from k users in the system there are no servers anymore to keep up with newly
arriving users, and the departure rate remains p,, = k- p foralln > k+1. The
independence of the arrival process yields constant arrival rates A, = X for all
n € Np.

Again we define p := \/u. The series in (4.6) specifies to

_Z /AZ()

n=

oo n—1

n—=0 j= 0M+1
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u
s .
L]
arrival process queue departure
process
u
servers

Figure 4.4. M/M/k queue

which is finite if and only if p < k. In this case the stationary distribution 7 is
given by formulae (4.6) and (4.5) as

kflpn o 1
e ( w <k—1>!~<k—p>>

n=0
and
pn
Tn = T0 " —» 1<n<k
n!
n—=k
Ty = Tk (%) , n>k

Here we see the M/M/oc form for n < k and the M/M/1 form beginning with
n > k, where 7 substitutes the base value that is played by 7 for the pure
M/M/1 queue.

The fact that the M/M/k queue behaves for more than £ users in the system like
an M/M/1 queue with load p/k is further illustrated by the following observa-
tion. Let N denote the number of users in the system that is in equilibrium.
Consider the conditional probability p,, := P(N = n|N > k) for n > k. This
is computed as

R ARSI (B

Since n — k is the number IV, of users waiting in the queue, the conditional dis-
tribution of N, given that all servers are busy has exactly the same (geometric)
form as the stationary distribution for the M/M/1 system process.
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The probability P{N > k} of the conditioning event that in equilibrium all
servers are busy is given by

0 k=1 -1
an:(1+(k—1)!.(k_p).zﬂn'k> (4.7)
n==k ’

n=0

This is the probability that a newly arriving user must wait before he is served.
The above formula for it is called Erlang’s delay formula.

5. The M/M/k/k Queue

In stochastic modelling there always is a trade—off between the adaptation of
the model to reality and its simplicity, i.e. its analytic tractability. We have
seen that the nicest solutions could be derived for the M/M/1 queue (a geomet-
ric distribution) and the M/M/oco queue (a Poisson distribution). The solution
for the M/M/k queue, which is more realistic for most practical applications, is
also more involved. For all these models we kept the often unrealistic assump-
tion of an infinite waiting room. The models in this and the following sections
stem from more realistic specifications. Historically, they belong to the first
applications which founded the field of queueing theory.

In the times of A.K. Erlang, at the beginning of the 20th century, telephone
calls had to be connected by an operator. The telephone companies installed
call centers where a number k of operators served call requests which arrived
from a large number of subscribers. Whenever all operators are busy with
serving call requests and a new subscriber calls to get a line, this subscriber
will be rejected.

If we model the arriving requests by a Poisson process and the duration of
the operators’ services by an exponential distribution, then we get an M/M/k/k
queue as a model for this application. The subscribers with their call requests
are the users and the operators are the servers. There are k servers and as many
places in the system, i.e. there is no additional waiting room.

Let the intensity of the Poisson arrival process and the rate of the exponential
service times be denoted by A > 0 and ¢ > 0, respectively. Again we can use
a skip—free Markov process to analyze this system. In this notation, we obtain
Ap=Aforalln=0,...,k—1and p,, =n-puforn =1,...,k. The values
of A, and p,, are zero for all other indices n. Define p := \/u. The series in

(4.6) is in this case
Sy
N n!

nek j=0 Hj+1 n=0
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which is finite, regardless of the value for p. Hence a stationary distribution 7
always exists and is given by

k n -1 7
Ty = < p) and 7rn:7rg-p—

n!
n=0

foralln = 1,..., k. The main performance measure for this application is the
probability that all operators are busy and the company is unable to accept new
call requests. This is given by

AN
n=0

which of course is valid only under the stationary regime, i.e. in equilibrium.
This expression is known as Erlang’s loss formula.

Note that the expression of my for the M/M/oc queue is the limit of the re-
spective expression for the M/M/k/k model as k tends to infinity. Even further,
the stationary distribution for the M/M/k/k queue converges to the stationary
distribution of the M/M/oc for increasing k.

6. The M/M/k/k+c¢/N Queue

A simplifying assumption in the previous model has been the constant arrival
rates A, = A. This implies that even for a high number of users in the queue
the intensity of new arrivals does not diminish. While this is a reasonable as-
sumption for an application to call centers, where the number of operators (and
thus the maximal number of users in the system) is only marginal compared to
the number of all subscribers, there are other applications for which such an
assumption would not be realistic.

Consider a closed computer network with % servers and NV terminals. Every
terminal sends a job to one of the servers after some exponentially distributed
think time. If a server is available, i.e. idle, then this job is served, demanding
an exponential service time. A terminal that has a job in a server may not send
another job request during the service time. Whenever a terminal sends a job
request and all servers are busy at that time, then the job is put into a queue.
This queue has maximal capacity c, i.e. if a terminal sends a job request and
the queue is already filled with c jobs, then this new job request is rejected and
the terminal starts another think time.

This application can be modelled by an M/M/k/k+c/N queue if we interpret the
users in the system as the job requests that are in service or waiting. Denote
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/ queue

terminals

- )

SErvers

Figure 4.5. A closed computer network

the parameters of the exponential think time and service time distributions by
A > 0and g > 0, respectively. Without loss of generality we may assume that
k + ¢ < N. Then the queue in consideration is a skip—free Markov process
with arrival rates A,, = (N —n)-Aforn =0,...,k+ ¢ — 1 and departure
rates i, = min(n, k) - pforn = 1,...,k + c. As always, define p := \/pu.
The series in (4.6) amounts to

ST i<>ﬂ+k§: iy e

nek j— 0H3+1 n—=0 n— k+1

and thus is finite for every value of p. The stationary distribution 7 is given by

50 E )

n=0 n= k+1

and

N
7Tn:7To-< )-p”, 1<n<k

n
N!.pn
(N —n)! -kl kn—k’

Ty = T - k+1<n<k+c

There are several interesting special cases. For ¢ = 0 there is no room for a
queue of waiting jobs. Then the stationary distribution simplifies to a binomial
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distribution with parameters (N, p), where p = p/(1 + p), which is truncated
to the statesn = 0, . . ., k. Such a distribution is called an Engset distribution.

For ¢ = N —k the queue has an important application in reliability theory. This
is known as the machine repair problem. In a production site there are N ma-
chines which are prone to failure. Each of them breaks down after a working
time which is exponentially distributed with parameter A\. There are k repair-
men that take care of the broken machines sequentially. The repair times are
exponential with parameter x. Then the system process of the M /M /k/N/N
queue yields the number of broken machines.

Notes

The models presented in this chapter are the oldest within queueing theory.
Applications to telephone networks date back to the beginning of the 20th cen-
tury, notably Erlang [33] and Engset [32].

Skip—free Markov processes have been extensively used for populations mod-
els. Therefore the name birth—and—death processes is very popular for them,
with \; and p; denoting the transition rates for a birth and a death, respectively,
if the population has ¢ members. However, the authors think that such a name
is inappropriate for queueing models and thus prefer the more technical term
skip—free.

For more Markovian queueing models see Kleinrock [50]. An analysis of non—
homogeneous (namely periodic) Markovian queues is given in Breuer [17, 22].

Exercise 4.1 Verify the formula Var(N) = p/(1 — p)? for the stationary
variance of the number of users in the M/M/1 queue.

Exercise 4.2 Show that the equation system (4.4) is equivalent to the balance
equations for a skip—free Markov process. Prove the form (4.5) of its solution.

Exercise 4.3 Prove Erlang’s delay formula (4.7).

Exercise 4.4 Compare the stationary mean number of users in the system for
the following three queueing systems: (a) an M/M/1 queue with arrival inten-
sity A and service rate u, (b) an M/M/2 system with arrival intensity A and
service rate £/2, and (c) two independent M/M/1 queues with arrival intensity
A/2 to each of them and equal service rate p. Explain the differences.

Exercise 4.5 Explain equation (4.8).
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Exercise 4.6 Show that the stationary distribution for an M /M /k/k/N queue
is an Engset distribution.

Exercise 4.7 Analyze the M/M/1/c queue with arrival intensity A and service
rate p. This always has a stationary distribution 7. Show that in the limit
¢ — 00, there are two possibilities: Either p < 1 and 7 converges to the
stationary distribution of the M/M/1 queue, or p > 1 and 7 converges to the
Zero measure.

Exercise 4.8 Examine the M/M/1 queue with users who are discouraged by
long queue lengths. This can be modelled by arrival rates A, = A\/(n + 1) for
all n € Ny. Show that the stationary distribution is Poisson.



Chapter 5

MARKOVIAN QUEUEING NETWORKS

A set of interconnected queueing stations in which any user, upon departing
from one station, can join another or must leave the total system is called a
queueing network. The paths along which a user may travel from station to
station are determined by routing probabilities ¢;;. Travel times, in general,
are assumed to be zero.

A queueing network may be regarded as a directed graph whose nodes rep-
resent the stations, and whose edges represent links between nodes. Between
nodes 7 and j an edge exists if and only if the routing probability g;;, i.e. the
probability to join station j after service completion at station ¢, is greater
than zero. There may be also links from and to the outside of the network,
representing the possibility for users to enter or leave the system. Let ¢;o de-
note the probability for a user to depart from the network after being served
at node j. Then Zﬁ/lz 0%k = 1, with M the number of stations in the net-
work. The matrix Q = (¢;;)i j<u is called the routing matrix of the network.
Given @, the g\)/Irobabilities for network departures are implicitly determined by
a0 =1 =2 k=1 G-

Routing probabilities may be state dependent, where a network state usually is
defined by the vector n = (nq,...,nys) of actual numbers n; of customers in
stations ¢ = 1,..., M. More complex state definitions arise when customers
of different classes require different amounts of service and follow different
routes through the network. It may be the case that a particular routing behav-
iour is associated with a certain group of classes, while other groups follow
different rules. This leads to the notion of chains in a network. A chain de-
fines a particular subset (called category) of customers who travel through the
network according to a particular routing mechanism. Class changes of cus-
tomers within a chain are possible, but no customer can pass over to some class
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of another chain. The pair of class and chain identifiers is called a category
index.

qij J

q0i

- — — > ] - — — >

-]

Figure 5.1.  Open Queueing Network

A network is called a closed network if there is no traffic entering the network
from outside, and all departure probabilities g;o are zero. A network that allows
incoming and outgoing traffic is called an open network. Since we are only
interested in systems that eventually reach equilibrium, the cases with entering
but no outgoing traffic, or vice versa, are excluded from investigation. As
mentioned above, it is further possible to discriminate between different user
classes and different chains in a network. Each chain is associated with its own
routing matrix (.. In this case the network may be open for some chains, and
closed for others. Such a network is called a mixed network. In this book we
concentrate on the case of state independent routing.

In the simplest case, when customers are non-distinguishable, the dynamic be-
haviour of a queueing network is best described by a vector-valued stochastic
process (N, : t > 0) with state space N}!. In case that we consider different
customer classes and/or special characteristics of service or even inter-arrival
times, a network state, clearly, may be described differently. As a construct for
stochastic modelling, queueing networks are subject to performance analysis,
the performance measures of interest being similar to those for isolated sta-
tions. In most cases one is interested in the average delay (or system time) 7T’
that a user experiences when travelling through the network, and in the mean
throughput S as well as the mean total number N of customers that are resi-
dent. According to Little’s result (see theorem 1.9), these quantities are related
by

S-T =N. (5.1)

They can easily be evaluated by means of the stationary state probabilities (that
hold in equilibrium), if those exist and are known. For instance, with p, denot-
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ing the stationary probability for the network to be in state n = (ny,...,nar),
M
WIS ot
neNY i=1

In general, the calculation of stationary probabilities, if they exist, represents
an unsolved or at least intricate problem. This is due to the fact that in most
cases no closed form expressions are known. Nevertheless, there are queueing
networks for which stationary state probabilities can be obtained by forming
the product of all those stationary state probabilities that are associated with
the network stations in isolation. Such queueing networks are called product
form (PF-) networks or separable networks. Among separable networks, the
best understood are Markovian queueing networks, i.e. networks for which the
stochastic process (/N : ¢ > 0) is Markov, and which allow a product form
solution. We shall be concerned mainly with the class of PF-networks in the
following sections, and shall concentrate on the most simple cases only. For
continuing information about queueing networks of more complex structure
the reader is referred to the abundant literature on this topic.

1. Balance Equations and Reversibility
Properties

Let N = (N; : t > 0) be a vector-valued continuous time Markov process
with state space E that describes a queueing network with M stations. In the
simplest case, when there is only one class of customers travelling through the
network, and no phase structures need to be considered for service (and inter-
arrival) time distributions, the state space E forms a subset of N}/,

N can be considered as a random walk process on the network graph. Let G =
( gmn)mme £ denote the generator matrix of A. Then, given that the process is
irreducible, it assumes equilibrium if and only if the system of equations

pG= megmn:() (5.2)

mekl

possesses a finite positive solution p = (pn)nck (see theorem 3.9). Any such
solution p can be normed as to satisfy ) _p.pn = 1 and to represent the
unique stationary distribution of N, i. e. the joint stationary queue length
distribution of the network. For indistinguishable customers, irreducibility
of AV is equivalent to the possibility for a customer to be able, upon leav-
ing a station ¢ and subsequently travelling through the network, to finally
reach any other station j or, in case of an open network, to reach the exte-
rior of the network. Mathematically spoken, this means that there are integers
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ki =i,ko, ..., kn, kny1 = j such that [, kg ke, > 0, where in case that
the exterior is meant by the source or the destination, the respective index ¢ or
7 has value 0.

Equation (5.2) mirrors a situation that we call global balance. A term of the
form Py, gmn, Where gmn is the instantaneous transition rate from state m to
state n, is called probability flux or rate of flow from m to n. Since G, as a
generator matrix, satisfies Zne 1 9mn = 0, (5.2) is equivalent to

Z Pm Ymn = Z Pn gnm; (5.3)

meE meE
m#n m#n

stating that the probability flux into state n equals the probability flux out of
state n. As opposed to that, we speak of a detailed balance equation, if

Pm dgmn = Pn Ynm- (5.4)

There are several concepts of balance between rates of flow in Markov processes
and, correspondingly, in Markovian queueing networks. These concepts are
tightly connected with the property of reversibility in the theory of Markov
processes. In order to illustrate this relationship, let us first specify what
is meant by a reversed process N'(") = <Nt(r))teR0+ associated with some

Markov process N = (N;), R} with state space .

The reversal ") of the Markov process N is a process that is develop-
ing in time in forward direction just as the original process does in back-
ward direction, on the same state space F, i. e., for some 7 € R, we have

Nt(r) =N, Vte ]Rar. If \V is time-homogeneous and stationary, the value
of 7 does not matter, and so

N =N_, forall teR}.

N is called the forward process corresponding to the reversed or backward
process \/("). If the forward process \ is time-homogeneous, irreducible, and
stationary, then so is the reversed process (7).

Let G = (gmn)mner and G = ( ,(;L)m,ne g denote the generator matrices
of N and N ("), respectively, with total transition rates

Ym = Z Ymn, W’r(;) = Z gl(qu)n forany m € F.

nekrE nckE
n#m n#m

. . .. T
As can easily be seen, the instantaneous transition rates gyn and gl(n)n are,

in general, not the same for an arbitrary pair of states m,n. On the other
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side, given that p = (pn)necr and p = (pg ))ne g denote the stationary
distribution vectors of A" and A'("), we have

p") = p. (5.5)

This follows directly from the fact that reversing time does not alter the average
fraction of time the process spends in a state. Setting —t—dt =: to, the defining
equation

P(Npsgy =1, Ny =m) = P(N") , =n N) = m)
= P(Nt(gidt =m, Nt((?) =n)

leads 10 P - P(Nir = 1 | Ny = m) = pi}) 'P(Nt(gldt =m | N =n),
such that, by dividing both sides by dt, letting dt — 0, and observing (5.5), we
obtain

Pm * gmn = Pn - 91(121. (5.6)

An important statement that characterizes the transition rates of the reversed
process is the following.

Theorem 5.1 Let N' = (Ny) teR} be a stationary Markov process with state

space E and generator G = (gmn)mnei. Assume that there are nonnegative
numbers gy, satisfying

ngnz ngnn:O forall m € E,

nekl nek

and positive numbers py, n € E, summing to 1, such that the equations

PmYmn = Pnlnm Sorall m € E

are satisfied. Then (gjun)mneE = G") is the generator of the reversed
process, and the pn, n € FE, form the stationary probability vector p for both,
the reversed and the forward process.

Proof: In order to show that p = (ppn)nep is the stationary vector of N, ob-

| .
serve that ZmEE’ Pm dmn = Pn EmEE g;klm = Pn ZmeE Ggnm = O, Saying
that p satisfies the global balance equation. Additionally, pmgmn = PnYnm

implies g, = gl(lrl’)n according to (5.6).

O

Joint distributions of the original and the reversed process are not identical in

general. Witht; < ... <t a Eth-order joint distribution of N reads
pml...mk(th e 7tk:> — P(Nh =mi,... 7Nt

L = my),
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whereas
PN = N =my) =P(N_,, = Ny =
( t1 mi,..., t mk) ( —t1 mi,..., —t mk),
which need not be the same as pm,..m, (t1,- - ., tk).

Definition 5.2 A stochastic process is called reversible, if the joint distribu-
tions of the forward and the reversed process are identical, i.e.

P(Ntl =my,.. "Ntk = mk) — ]P)(Nt(:) — ml,-'-,Nt(]:) _ mk)

Reversibility is related to the notion of detailed balance equations (5.4). First
note that any reversible Markov process is stationary, as can immediately be
deduced from the equality

P(Ntyy.. .y Ne) =P(Neygry oo, Nepr) = P(N_ty, ..., N_y,)
forany 7 € Ra’ . Secondly, the following more general statement holds.

Theorem 5.3 A stationary Markov process N' = (Ny) teR} is reversible if and
only if the detailed balance equations (5.4) are satisfied for all m,n € E and
some positive vector p = (Pn)nep With ) pPn = 1.

Proof: 1. The properties of stationarity and reversibility imply that P(N; = n)
does not depend on ¢. The numbers P(N; = n) =: py, are positive and sum to
1. From reversibility and time-homogeneity we can conclude that
P(Nipar =0, Ny = m) = P(N7), = n, N") = m)
=P(N_¢ g =n,N_; =m),

which (setting —t — dt =: t) is equivalent to py, - P(Ny1q = n | Ny = m) =
pn - P(Nyy+ar = m | Ny = n).! Forming the differential quotient on each
side, one obtains (5.4).

2. The detailed balance equations guarantee global balance, so p represents the
equilibrium distribution of the Markov process. Considering now an arbitrary
interval [T, T], we calculate the joint probability density for the event that
the process is in state m; at time —7', jumps to state my at time —71" + x1,
to state mg at time —1" + x7 + xo, and so forth, until it reaches state m;
at time —7" + Z’;;% T,, staying there until 7', i. e. for some time interval of

length zj, that satisfies 25:1 x,, = 2T. The probability, that upon leaving a

'Remember, that it is even possible here to replace to by ¢ due to time-homogeneity.
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state m,, the process jumps to state my, 1, 1S gm,m, /7m, - Further, since we
have a Markov process, the probability density of the sojourn time in state m,,
equals ym, € 7™ ¥ whereas we have P(sojourn time in state my, > xj) =
e T, Tk Ag a consequence, the probability density for the above mentioned
process behaviour in [—7, T reads

‘Tl e*'YmQ'x2 ~Ymp Tk B*ka'mk

— .
Pm;€ ™17 gmim, 9momy - - - € 9my,_1my,

Applying now the detailed balance property, we obtain for the same density
the expression

~—YmjT1 —Ymg T2 TYmy 1 Tk-—1 —Ymy Tk
Pm,€ L 9mymy_ € 27 09my_my_p -+ € k-t 9mom; € k

(SINC€ Pm; Ymimo 9moms = Pmsy Ymomi Ymomg ; Pm3z Jmszmy Ymomi > etc.).
This density, but, describes a process behaviour, where the process starts at
time —7" in state myg, stays there for some time x, then jumps to state my_ 1,
stays there for some time x;_1, and so forth, until it reaches state m;, where
it remains at least for a period of z; time units. Consequently, the reversed
process (Nt)te[,T,T] proves to behave exactly in the same way as the reversed
process (N_t)te[,Tj]. Since T has been arbitrarily chosen, N must be re-
versible.

O

For queueing network analyses the property of product form related to the state
probabilities of isolated stations is of paramount importance. The following
result relates reversibility with some other type of product form.

Theorem 5.4 The stationary distribution of any irreducible and reversible
Markov process can be calculated from a product of ratios of transition rates.

Proof: Let A/ be an irreducible and reversible stationary Markov process, such
that, according to theorem 5.3, the detailed balance equations (5.4) are satis-

fied. We select an arbitrary state, say s = (s1,...,Sn), as a fixed ”starting
state”, from which any other state n is reachable due to irreducibility, that is,
there is at least one sequence s = mj, mgo, ..., m; = n such that

gmlm2 ngmS A gmk—lmk % 0

Using this fact, we further select for each state n € E one and only one con-
necting sequence of this form with m; = s and my; = n, and define positive
numbers 7y, by

dmims gmoma---Gm;._ 1 my,
1mg gmomg k—1Mg for n#s
Tn = 9mpmy_ g Jmyp_qmy_g---Imomg
1 for n=s
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(clearly, the intermediate states m,, as well as the value of the index & depend
on n). Next, setting Zne g™ = C, we show that the distribution vector

D = (Fn)ncE With
k —1
1 1

=1 gmu+1my

satisfies the global balance equation (5.2). For that purpose, observe that ac-
cording to detailed balance,

k(n)—1 k(n)—1
Tpn = H gmymu+1 — H pmu+1 — prI’
=1 9m,pmy =1 Pm, Ps

which is true also for n = s. Consequently,

- 1 P 1
Z Pngnm = 6<gsm + Z pf : gnm) = . C Z Pn Gnm = 0,

nek nek nek
n#s

implying that p = p. This proves the assertion.
O

Let NV; ; denote the random number of customers in a single queueing station %
at time ¢. If (N 4), R} is a stationary reversible Markov process then we call ¢
a reversible queueing station. An important consequence from reversibility is
the so-called input-output property: For any reversible queueing station the
departure process has the same joint distribution as the arrival process. This is
due to the fact that, whereas the points in time when /V; ; increases by 1 corre-
spond to arrivals, the points in time when /NV; ; decreases by 1 correspond to de-
partures and, by definition, to the epochs when the reverse process (V. i(;) )i R}
increases by 1. Since joint distributions of the original and the reverse process
are the same, the arrival and the departure process exhibit the same joint sta-
tistics. As a consequence, we have the fact that a reversible queueing station,
when being fed by a Poisson (Markov) stream, causes a Poisson (Markov) out-
put stream. This property is called M = M property.

Before considering other balance concepts, let us point to a general property
of stationary Markov processes. Assume, as we do mostly in this chapter, that
a stationary Markov process A/ can be interpreted as a random walk in a finite
graph G; then the rates of flow in opposite directions across a cut in G are
identical. In other words, for some arbitrary subset A in the set E of nodes
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(the state space) we have?

D 2 PmGmn =D, D Pnfum

meAncE\A meAneE\A

This is a direct consequence from global balance, since by summing on both
sides of (5.3) over all n, and subtracting

YD Pmgmn=D_ > Pnbam

meAneFE meAneA
, we obtain the above equation.

Opposed to the notions of global and detailed balance, the term partial bal-
ance plays an important role. In fact, the property of partial balance is the most
general property, since global and detailed balance as well as other terms (such
as station or local balance) can be regarded as special cases of partial balance.

An irreducible stationary Markov process with equilibrium distribution p =
(pn)nep and transition rates gm,p is said to be in partial balance with respect
to a subset A of its state space FE, if

Z Pm Jmn = Z Pn Ynm, NE A. 5.7)

mecA meA

Notice, that the stationary distribution p satisfies the partial balance equations
(5.7) if and only if

Z Pm gmn = Z PnYnm, NE A;

meFE\A meFE\A

this follows from stationarity, i. e. the fact that the process is in global balance
and satisfies (5.3).

In many application oriented publications the property of partial balance is
described in somewhat vague terms, e. g. saying that partial balance for some
state m is present if the rate of flow out of m due to changes of a particular
nature equals the rate of flow into m due to changes of that very particular
nature.

It is here the point to pay attention to the fact that a network state, in general, is
determined by several actual values of system parameters, rather than just by

2The exterior of a queueing network is represented by a node 07, such that go; is a routing probability into
node 7 from outside the network, and g; is the routing probability from node j to outside the network. The
node 0 is contained in the node set of G.
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the number of customers in each station (the latter definition leading to £ =
Né” ). For example, in a multi-class network with R classes a state description
may contain information about the number of class r customers, their actual
waiting (and/or server occupancy) positions, and the actual phases of service at
every stationi € {1,..., M}. Accordingly, the term partial balance includes a
variety of specific definitions, among which the notions of station balance and
local balance deserve particular notice.

Probably the most important property is that of local balance. Introduced by
Chandy et alii [26], this term depicts a situation, where the rate of flow into
a network state m due to the arrival of a class r customer at a network queue
1 is balanced against the rate of flow out of the same network state due to
the departure of a class r customer from that network queue 7. If the state
description contains information about the actual phase of service in case of
non-exponentially distributed service times, state changes are caused also by
phase transitions or by an entry into the first phase of a service time distribu-
tion. Local balance, then, means that the probability flux into network state m
due to the arrival of a class r customer at a network queue ¢ by entering a ser-
vice phase ¢ equals the probability flux out of the same network state due to the
departure of a class r customer from that service phase ¢ at queue 7. Chandy
used the term “’stage of service” for the tripel (4,7, ¢) of queue index i, class
index r, and phase index ¢. Thus, a network is said to be in local balance, if
the rate of flow into a stage (i, 7, ¢) of service is equal to the rate of flow out of
the same stage (i, 7, ¢) of service for all admissible values of 7, r, and /.

Let us write gﬁfff ™) for the rate out of state m due to a departure of a class r

customer from queue ¢ (this rate is zero if there is no such customer at  in state
m), and gfi’;’;:(”) for the rate into state m due to an arrival of a class r customer

at queue 7. The local balance equations then read
P gemri®) = g2 forall i€ {1,...,M}, 1<r<R. (5.8)

To illustrate the concept, consider a single class queueing network with M sta-
tions whose states are completely described by the vectors m = (my, ..., mps)
of station specific customer numbers. Let \;(m;) and j;(m;), respectively, de-
note the arrival rate into, and the service completion rate at station i, when there
are m; customers present ( = 1,..., M). According to the above definition
of local balance, the rate of flow into some network state m due to an arrival
at queue ¢ must be equal to the rate of flow out of state m due to a departure
from queue . Let e; denote a vector of length M that has a 1 at position 7 and
zeros at all other positions (the ith canonical row base vector). An arrival at
queue ¢ can transfer a state n into m only if n equals m — e; (notice that a
transition from m — e; + e; to m would be due to a departure from queue j,
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rather than due to an arrival at queue ¢). Similarly, a departure from queue ¢
can transfer the state m only to one of the two states m —e; orm —e; +e;. As
a consequence, the local balance equations for that simple single class network
with state space N} read

M
Pm—e; Ai(mMi — 1) = pm pi(mi) gio + me wi(m;) gij
j=1
foralli € {1,..., M}, where g;o and ¢;;, respectively, are the routing proba-

bilities from station ¢ to the exterior of the network and to station j. Observing
Gio + Zf\i 1 ¢i; = 1 and p;(0) = 0, we finally state that local balance means

Pm—e; Ai(mi — 1) = pm pi(m;) if my >1, i=1,..., M. 5.9

The next theorem should be considered as the central result with respect to the
notion of local balance. We provide an exemplary proof only for the most sim-
ple situation of a single class network with state space £ = Né” , Whose state
descriptions m = (my, ..., mys) reflect the station occupancies and whose
routing probabilities are state independent. The general case can be handled
similarly, although leading to more complex and intricate expressions. We
refer to the books of Kelly [48], Kant [45] and Nelson [61] for further details.

Theorem 5.5 Local balance implies global balance and product form.

Proof: (For the most simple case with only one class of customer and state
independent routing, where a state at some arbitrary point in time is determined
by the actual numbers of customers present in the network queues.)

1. Assume that a probability distribution (ppn)nep satisfies the local balance
equations (5.8). We show that (pn )ner then satisfies global balance. Consider
all neighbouring states m + e; and m =+ e; F e; that are reachable from state
m, such that the probability flux into state m is given by

M
angnm = me*eigggiieim
=1

nck
n#m

M M M
dep; dep;
+ meJrei grn+zei m T Z me+ei*ej gm#eifej m*
i=1 i=1 j=1
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Applying (5.8), this yields

M M M
Z Pngnm = me gifiil—ei + Z me g:lrf%l—eﬁ-ej +
i=1

nek i=1 j=1
n#m

M M M
dep; dep;
+ E Pm+e; gm-l,-lev; m T § : E :pm+ei_e.7' gm‘f'zei_ej m-*
i=1 i=1 j=1

Now express m as m = n — e; in the first of the two sums in the second line,
and as m = n — e; + e; in the second one. Then these expressions can be
rewritten as

M M M | M
dep; dep; R arr;
E Pn gn nl—ei + E § Pn gn nl—ei—f—e]- o E Pn—e; gn—éi n
i=1 i=1 j=1 i=1

M

_ arr;

- Pm Gm m-+e;’
1=1

such that the global flux into state m reads

M M M M
2 : _ dep; 2 : dep; arr;
Pngnm = Pm Z Im m-—e; + Z gmmfeﬂrej + Z Im m+e;
=1 =1

el i i=1 j=1
The right hand side, but, of this expression is nothing else than the total prob-
ability flux out of state m, which proves that (py, )nep satisfies global balance
and, therefore, is the equilibrium state distribution of the network process .
Consequently, all probability distributions over E that satisfy the local balance
equations must coincide with the unique equilibrium state distribution of the
network process \V.

2. We show that the distribution vector (pn )ne g that satisfies local balance has
product form. Take any network station 7 in isolation, i.e. decoupled from the
network, and provide the same input flow to ¢ that the station experiences when
communicationg with other stations in the network, such that the arrival and
departure rates are the same as before. Obviously, local balance implies that
i is in equilibrium. Let p;(m;) be the steady state probability for the isolated
station 4 to be in state m;, and let \;(m;) and p;(m;) denote the arrival rate
into 7 and the departure rate from i, respectively, when 7 is in state m;. Then,
equations (5.8) take the form

pi(m; — D)Ai(m; — 1) = pi(m;) pi(m;) Vom; > 1,
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Define a probability vector p = (n)ner Over E = Né\/f by

M
1
Pn = CMIIIpZ(nZ) for n= (n1,...,nun),

where Cry = > cp 1, pi(n:). In the network, the arrival rates into station
¢ and the departure rates from station ¢, respectively, are
g%ﬂgeim = /\1(7771 - 1)a

d i d 7

fori,j € {1,..., M}. The construction of p leads to

= i pl(m' - 1)
e Serm == Gy M=
M M
=~ d 7 d 7 ~
Pm (gnf]fn—e,; + gn?ljn—eq;—&—ej) = Pm (Ni(mi) qio + Z pi(mi) %’j)a
J=1 j=1

which implies that fim o, Gin”"e, m = B (G-, + 111 Gon-orte, ) i
p satisfies the local balance equations. Consequently, p coincides with the

uniquely determined equilibrium distribution p = (pp )nep of .
]

In general, it is necessary to be careful when reading statements on local bal-
ance in the literature since, unfortunately, there are no uniform standards for
the definition of this notion. The reader who is interested in physical meanings
and practice oriented versions is referred to the book of Van Dijk [30].

Another remark is in place addressing the property of station balance. Here the
term “station” does not stand for “network station” in the sense of ”a queue in
the network” rather, it marks a position in the waiting or server room of a single
queue that is occupied by one customer! A queue, in turn, is viewed as a set of
stations. To illustrate the situation, consider an isolated multiple server queue
that is visited by customers from different classes. Obviously, for a "first-come
first-served” (FCES) or "last-come first-served” (LCFS) scheduling discipline,
the waiting positions at the top and the end of the queue, respectively, have
particular meanings. Additionally, in case that specific servers are associated
with specific classes, also the discrimination between servers (where service
completions are to be expected) may be of importance. In that case to each
server there is assigned a special subqueue containing customers at their wait-
ing positions.
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Bearing these peculiarities in mind, a “station” is determined by a position
index j. A network queue ¢ is viewed as a set of stations, and if there are in to-
tal n; customers resident at ¢, the occupied stations are indexed 7y,...,7y,,
with 7; indicating the class of the customer at station (position) j. Even
more complex descriptions are in use when routing chains are to be distin-
guished in the network, each containing users of different classes; we shall
mention that below. In the more simple case, when discriminating between
classes only, a possible single queue state definition is given by a 2n; - tupel

n; := (ry,...,Tn,;,&1,..., Ty, ), where i marks the queue in the network, n;
is the actual number of customers at this queue i, o; = (71, . ..,7y,) forms the
sequence of customer classes at positions 1, ...,n;, and 1, ..., 2y, is a vector

of remaining service requirements at these n; positions. So, we have
m= (ny,...,ny)

when speaking of state m € F. A queueing network is said to be in “’station”
balance if during state m for any position (“’station”) j the actual fraction of
the service rate associated with that position is proportional to the probability
that a customer of the same category will arrive and be placed into this posi-
tion. ”Station” balance is tightly connected to the notion of symmetric service
disciplines that we shall deal with in section 3 below. There we shall give a
more precise definition. Clearly, ”station” balance implies local balance and,
consequently, global balance and product form. We have set the word “sta-
tion” in quotation marks for two reasons: First, the term position in most cases
reflects more precisely what is meant when describing a specific network state
in a system with position depending dynamics and several chains and/or cus-
tomer classes. Second, we wish to reserve the term station in this introductory
book for a true queueing station in a network. There is a multitude of excellent
books on that topic, and for details we refer to the literature mentioned at the
end of this chapter.

Let us now turn back to the relationships between reversibility properties and
flow balance. Asking for a property that guarantees partial balance we are
led to the notion of quasi-reversibility. Let again N' = (N, : ¢ > 0) be a
Markov process with state space E that describes the dynamics of a queueing
system serving customers from R different classes. As we saw already, a state
n € E may be identified by a fairly complex description, rather than merely
by indicating the respective numbers of class specific customers in various
stations.

Definition 5.6 \ is called quasi-reversible if for any time ¢, the state N, is
independent of arrival times of class r customers after ¢y and departure times
of class r customers prior to tg (1 < r < R).



Markovian Queueing Networks 77

A quasi-reversible process, in general, is not reversible (see exercise 5.3), and
reversibility, in turn, does not imply quasi-reversibility. Accordingly, it should
be stressed that these two notions are completely unrelated. For queueing net-
works, but, the property of quasi-reversibility is of significant pertinence. This
is due to the fact that — as we shall see below — quasi-reversibility gives rise
to product form expressions for the equilibrium state probabilities. Queues
in ”station” balance form an important subclass in the set of quasi-reversible
queues. We first prove a result that is usually termed the input-output property
of quasi-reversible queues.

Lemma 5.7 (Input-Output Property) The arrival epochs as well as the de-
parture epochs of class r customers in a stationary quasi-reversible queue form
Poisson processes with class specific identical rates \,.

Proof: The set of all states n € F that provide the same state information as a
given state m except that there is one class r customer more in the system, is
marked S(m + 7). Let G = (gmn)m ner be the generator matrix of N then
the rate of state changes due to class r arrivals when the state is m; at time ¢ is

)\T‘(mt) = Z 9mqn-

neS(me+r)

1. According to quasi-reversibility the probability of a class 7 arrival during
the interval (¢,¢ + dt] is independent of the state my, and so is A,(m;) =
Ar. Further, according to the Markov property, the path realization prior to ¢
has no influence on the probability for an arrival in (¢,¢ + dt|, which means
that the arrival process is memoryless with rate A, independent of all earlier
states prior to . Consequently, the class r arrival epochs form an independent
Poisson process with rate \,.

2. Interchanging the meaning of arrivals and departures of class r customers,
the reverse process A/(") again is to be interpreted as the state process of a
queue with R customer classes, and since A is quasi-reversible, so is N (r),
Therefore, the same reasoning applies, stating that the class r arrival process
of N') forms a Poisson process with rate 8, = > _neS(my+r) 9. This rate
is the class r departure rate of AV, and so, due to stationarity, equals \,., which
proves the assertion.

0

We are now in the position to formulate the relationship between quasi-reversibil-
ity and partial balance.

Lemma 5.8 Any quasi-reversible Markov process N = (Ny : t > 0) over
some state space E that describes the dynamics of a queueing system with R
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customer classes satisfies partial balance with respect to the set S(m + ) for
anym € E.

Proof: Remember, that S(m + ) describes the set of all states n € FE that
provide the same state information as a given state m except that there is one
class r customer more in the system. From equation (5.6) we obtain

Pm Z q1(’:12’1 = Z Pn * Ynm,
neS(m+r) neS(m+r)

since the reversal of the reverse process is the original one. According to the
proof of lemma 5.7,

Ar = Z Jmn = Z 91(11;)117

nesS(m+r) nesS(m+r)
and so
Pm Z Jmn = Z Pn * gnm-
neS(m+r) neS(m+r)
]

Let us now consider a vector-valued continuous time Markov process N =
(N : t > 0) with state space E' that describes a multi-class queueing network
with M stations and R classes of customers. Upon completing service at one
station 7, a class r customer not only may join another station j of the network
or depart from the network, but also may change its class before joining another
queue. In general, the probability to undergo such type of change may depend
on the history of the customer’s behaviour and on the state of the process.
The analysis of queueing networks of that generality has turned out to be very
complex, if not impossible. When speaking of Markovian queueing networks
in this chapter, we mean a subclass of networks that is characterized by the
property that the routing probabilities are memoryless and independent of the
network states, this way defining the transition matrix of a Markov chain.

Let g;,.j,» denote the probability that a class r customer, after leaving queue
i, joins queue j as a class 7’ customer, and set @ir;00 for the probability that a
class r customer leaves the network after service completion at station ¢. Then
Z;‘\il 2521 Qir.jr' + Qir;00 = 1, and the discrete time - discrete state Markov
chain defined by

3
Q= (Qir;jr’)i,je{(],...,M},T,T’E{O,...,R}

3Where, for 7 = 0only 7" = 0is possible, and vice versa.
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is called the routing chain. A queueing network of that type is said to perform
Markov routing.

Remark 5.9 If an asymptotic distribution p for a Markovian network process

N = (N; : t > 0) does exist, then there is an asymptotic marginal distribution
pi = pi(k) for any queue i, too.

This can be seen from

pi(k) = lim P(pry(N;) = k) = lim > PN =n)

t—o0
nEpr;](k)
— Y jmENew- Y om
nEpr{l(k) neprfl(k)

with pr; denoting the projection on the ith station specific state component,
and pr; *(k) = {n € N} : n; = k}.

We close this section by formulating some sort of a quintessence from the
above treatment of quasi-reversibility.

Theorem 5.10 Letr N' = (N; : t > 0) be a stationary vector-valued con-
tinuous time Markov process with state space E that describes a multi-class
queueing network with M stations and R classes of customers. If each queue-
ing station in isolation behaves as a quasi-reversible queue, and if the network
performs Markov routing, then N is again quasi-reversible, and its equilibrium
distribution p = (pn)nep assumes product form, i.e.

LM
Pn =5 Hfi(ni)a

where f;(n;) is a state depending function for an isolated station i in steady
state n;, and C' is some normalization factor.

We give a sketch of the proof for the simple case of a network whose states
are defined by class specific customer occupancies only, and in which no class
changes occur. For the more general cases we refer to the excellent treatments
given by Kelly [61], and Nelson [48].

Proof: Stationarity of the whole network implies that of any single station.
Consider a station ¢ in isolation with the same class specific input streams,
and let p;(n;) = pi(ki1,...,kig) for k, € Noand r € {1,..., R} be its
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steady state distribution. Quasi-reversibility means that the input and the out-
put stream for each customer class r at ¢ are Poisson (with same rate \;,.), so we
have pi(kﬂ, ey ki — 1,00 ;kiR) Nir = pi(kil, .. 7kiR) ,ui,,(k:iT). Construct
a probability distribution by

1 M
n = N/ 175 Do\ Zklaakl
p C(M,R)il;[lp( 1 R)

Then this distribution satisfies local balance (cf. proof of theorem 5.5) and,
therefore, also global balance.
O

Notice, that the essential property here for a product form to hold is the prop-
erty of each station to produce, when being fed by a Poisson input stream, an
output stream that again is Poisson. This is nothing else than the M = M

property.

2. Jackson and Gordon-Newell Networks

Let us consider now the simplest type of queueing network. This is an open or
closed single class network of, say, M queues, whose state space is determined
by the station specific numbers of customers only. Let N' = (N; : ¢ > 0) de-
note the stochastic process that describes the dynamics of such a network with
respect to the varying numbers of customers in the stations.* Its state space F
is a subset of N}/

As before, we denote with Q@ = (gi;); je{i,..,a) the routing matrix, and with
G = (gmn)m nen M the generator of /. An open network of that kind is called
a Jackson network if the following conditions are satisfied.

1 Any user entering A at some node i may reach any other node in finitely
many steps with positive probability. Similarly, starting from some node ¢
a user can leave the network in finitely many steps with positive probability
Ge{l,...,.M}).

2 The network performs Markov routing, i.e. () represents the transition ma-
trix of a Markov chain.

3 Each queueing station i is of type */M/s; with s; € N U {oc}, i.e. the
service time distribution at station ¢ is exponential with parameter p; for
each of the s; servers.

4The letter A/ may also stand for the queueing network itself, as long as no ambiguities are to be expected.
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4 The total arrival stream from outside the network forms a Poisson stream
of intensity +. The separate arrival streams to stations ¢ = 1,..., M are
determined by the routing probabilities gg; with Zf\i 1 90i = 1. They are
Poisson streams with intensities ~y gg; =: ;.

N is irreducible due to property 1, and is Markov due to the memoryless prop-
erty of the exponential service and inter-arrival time distributions. As such, the
network assumes equilibrium if and only if there exists a positive finite solution
P = (Pn)nck to the system of equations

pG = Z Pm gmn = O,
meck

where G = (an)m,neNgf is the generator of V.

Let \; and §;, respectively, denote the total mean arrival and departure rates
at stations ¢ = 1, ..., M, each being independent of the actual occupancy at
the stations. Then, \; = v; + Z;‘il d; qji- In equilibrium, §; = A; for each
ie{l,..., M}, and so

M

N=v+ Y N, i=1,...,M. (5.10)
j=1

(5.10) is called the system of traffic equations for a Jackson network in equi-
librium. The next lemma shows that this system always possesses a unique
solution.

Lemma 5.11 For a Jackson network with routing matrix @, the matrix I — Q)
is invertible.

Proof: Consider a Markov chain X with transition matrix

1 0
P_<QO Q)’

where qo = (q10,-.-,qn0)" is a column vector, and 0 = (0,...,0) is the
zero row vector. Irreducibility of the Jackson network implies that the set of
states {1, ..., M} forms a transient communication class in the state space of

X, whereas the state zero is absorbing. Hence, according to corollary 2.15, the
submatrix R of the potential matrix R of X (as defined in (2.7)) that contains
entries R(ij) with4,j € {1,..., M} only, is finite. Due to the structure of P,
R= ZZ‘;I @™, and since Ris finite, the Neumann series

R+I=) Q"=(1-Q) "

n=0
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is finite, too. This proves the assertion.
O

We denote, as usual, by p; = \;/p; the load factor of station i, 1 < i < M. In
general, the service completion rate at each station ¢ is state dependent, given
by pi(n;) = p; min(s;, n;) when there are n; customers present at i. Obvi-
ously, a necessary condition for the network process A to attain equilibrium is
that all individual station specific processes attain equilibrium, i.e. stationarity
of N implies

pi <s; forall ie{l,...,M}. (5.11)

The following statement has first been proven by Jackson as early as in 1963
[42]. It shows that (5.11) not only is a necessary, but also a sufficient condition
for stationarity of \/, and that any Jackson network is a product form (PF)
network.

Theorem 5.12 (Jackson) Let N denote a Markov process describing a Jack-
son network with M stations, and assume p; < s; forall 1 <1 < M. Then a
stationary distribution of N exists and is given by

M
pn = [ pilna), (5.12)
i=1
forn = (ny,...,ny), where p; = (pi(n;))n,en, is the stationary distribution

of an isolated M /M /s; queueing system with arrival rate \; and service rate
L; at each server.

Proof: (pn)neNgf is a probability distribution since p;(n;) > 0 for all i €

{1,..., M}, and
o0 oo M M oo
Z Pn = Z Z Hpi(ni) = H pi(n;) = 1.
neNéVI n1=0 ny=01i=1 i=1n;=0

From equations (5.11), (5.12), and (5.9) we know that
DPm—e; \i = Pm pi(si) forall e {l,... .M},

which means that the distribution (5.9) satisfies local balance. Thus, by theo-
rem 5.5, (pn)neNé” is the equilibrium distribution of N.
O

Jackson has proved this theorem by directly establishing the global balance
relations. We repeat his rationale here for pedagogical reasons in order to
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illustrate the interplay of input and output flows in a Jackson network.
For a Jackson network, the transition rates gnm, info a network state m =
(mq,...,my) read

i if n=m-—e
gnm — 1 (nj + 1) * qji if n=m-—e;+ €;
,ui(ni—i—l)-qio if n=m+e;
whereas the rates out of a network state m = (nj....,nys) read
Vi if n=m+e;
gmn = pi(ni) g if n=m-—e; +e;

pi(ni) - qo if n=m—e;

Due to p; < s; for all 4, each network station in isolation with same arrival rates
assumes equilibrium, satisfying the local balance equations p;(m;+1) p;(m;+
1) = pi(m;) A\; forall m; > 0, 1 < i < M. Consequently, an expression of
the form (5.12) leads to’

Pm-e; = Hpk(mk)pi(mi — 1) = pmb (/\ ),
k#i i
P eite; = || Prlme)pi(mi —1)p;j(m;+1) = pm pima) Ay ,
ki ] i pj(my+1)
Ai
.= n (n; +1) = _,
Pm-+te; ]];J;pk( k)pz( i ) pmui(mi T 1)

and the probability flow info network state m is

S i)~ i (ma) -
PO R D) IS WIED s
neNM i=1 t i=1 j=1 ! i=1

which, according to Z]Ai 1Aj @i = Ai — i (which follows from the traffic
equations) and Z;\i 197 = 1 — g0, reduces further to

M
> pugum = pm > (mi(mi) + 7)) (5.13)
neN i=1

SNote that p;(v) = 0 for v < 0, and p;(v) = 0forv < 0,1 <43 < M.
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On the other side, by the same reasoning, the probability flow out of network
state m can be rewritten as

M M M M
Z Pm 9mn = Pm Z%: + Z Zﬂz‘(mi) qij + Zﬂi(mi) qio ¢
-1 i—1

neNY i= i=1 j=1
and this, as is easily seen, is the same as (5.13), proving theorem 5.12.
A closed network possessing all the properties 1 - 3 of a Jackson network
(with the exception of property 4) is called a Gordon-Newell network, or GN

network for short. As shown by W. J. Gordon and G. F. Newell in 1967 [40],
such a network assumes equilibrium with stationary distribution

1 M

n= = [T »:(n: 5.14

D CM(K) i:1pz( z) ( )

forn = (n1,...,na), where again p; = (p;(ni))n,en, is the stationary distri-

bution of an isolated M /M /s; queueing system with arrival rate \; and service
rate y; at each server, and where Cy;(K) = Y oneE Hf\i 1 pi(n;) represents a
normalization factor that guarantees ) - pn = 1 (K the constant number of
customers in the network).

This statement is usually called the Theorem of Gordon-Newell. Its proof is
given by the same reasoning as for the theorem of Jackson by setting v; = 0
and ¢;0 = Ofor 1 <+¢ < M. In both cases the participating network stations be-
have as if being completely independent, a result that is somewhat surprising,
since — at least for a Gordon-Newell network — the dependency of station
specific events is obvious: Given, that there are K customers in the network,
we always have Zf\i 1 n; = K. The reason behind is the M = M property
that implies local balance.

The state space £ = E(M, K) of a Gordon-Newell network with A stations
and K customers is given as the set of vectors

M
E(M,K):{n:(nl,...,nM):niEO Vi, Zn,—K}
i=1

and has size

B K| = (M+K—1>.

M -1

The latter is easily seen by induction: Obviously, |E(M,0)| = |E(1, K)| = 1.
Further, we have |E(2, K)| = K + 1, since, according to n; + ny = K,
any state n = (nj,n2) is already determined by only one of its entries n; €
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{0,1,...,K}. Assume that |[F(M — 1,K)| = (M+K*2). Adding another

M—2
node to the network that is appropriately connected with the former nodes, the
new node may contain v € {0, 1, ..., K'} users when there are K — v users at

the remaining M — 1 nodes. Hence,

BOML )| = i(ﬂ“ﬁﬁjw) —g(Mﬁ;y)

SR

14

and the well known relation
n n n+1
+ = ,
k k+1 k+1
withk =M —2andn = M — 2 + v, yields
K

rono = (o)« 2 (1) - (M)

=1
(M -1+K
N M-1 )
2.1 The Performance of a Jackson Network

The performance measures of a Jackson network are easily obtained from those
of isolated M /M /s; stations. As has previously been shown,

o AN
o = (SE50-2))
k=0 '

p:(0) ’:fi! for 0<n; <s;
Ni 54
pi(0) <§—Z) i for n; > s

s;!

pi(ni) =

where p; = \;/p;.° So, for a Jackson network, any state probability is im-
mediately obtained from (5.12), whereas for a Gordon-Newell network it is
necessary to additionally compute the normalization constant. Notice, that the
steady state probabilities depend only on the mean values z; = 1/u; of the

%In some publications the quantity p; is defined as p; = A;/(s; u1;) and termed utilization factor; this is
the mean fraction of active servers (see [50]).



86 AN INTRODUCTION TO QUEUEING THEORY

service time distributions, and not on higher moments. This property is com-
mon to all product form networks, and is called the product form network
insensitivity property.

Let, for an M /M /s; station, N; denote the mean number of customers in the
station, 7}; the mean sojourn time, WZQ the mean waiting time in the queue,

]\_fiQ the mean queue length, and S; the mean throughput through the station.
Then,

N, = p; +pi(0 | ’
; Pi +pz( )(Si_l)!(si—pi)z
) 1 i
. < ( )(Si —1D)l(s; — pi)?
s
o 1 Pi
i pi(0 7
" i )(Si_l)!(si—pi)Q

and the total average number N of customers is

M
N=YN.
i=1
Applying Little’s result (see theorem 1.9), the total mean sojourn time or net-
work delay a customer experiences is obtained as
1
T=-—-N,
v
where v = Zf\i 1% = S is the total mean throughput through the network.
We denote by 7; the mean time between a user’s arrival at node ¢ and his fi-

nal departure from the network. For this quantity we immediately realize the
relation

M
Ti:Ti—FZqz‘jTj, 1<i< M.

j=1
Let v; denote the mean number of visits a user makes at sation 7. The total
number of customers that enter the network per unit time is 7, and each of
these customers visits node ¢ in the average for v; times, so yv; gives the
average ratio of arrivals per unit time at station ¢, implying that v v; = A;. The
traffic equations (5.10), therefore, yield

M
vi:%+zvjqij, 1<i<M. (5.15)
7=1
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For any Jackson network the system (5.15) always possesses a unique non-
negative solution due to lemma 5.11.

2.2  Computational Methods for Gordon-Newell
Networks

The calculation of performance measures of a Gordon-Newell network is by
far not as easy as in the case of Jackson networks. The main problem consists
in computing the normalization constant

M
Cu(K)= > []ritn). (5.16)

neB(M,K) i=1

What is the reason? It is simply the fact that the huge number of terms oc-
curring in (5.16) makes it very difficult, in general, to numerically evaluate the
product form solution. Special algorithmic methods are in place here, and we
shall demonstrate one below.

The Convolution Algorithm

Consider the traffic equations of a GN network,

M
A= XNgij, 1<i<M (5.17)

Jj=1
Obviously, the quantities \; are only determined up to some non-zero constant,
and in order not to identify them with the “true” arrival rates, it is convenient

to replace the term \; by y; and just look at these y; as solutions of the above
system (5.17). For technical reasons we set

zi(n;) = pl(m), and Cy(K):= 7]5[”( ) .
pi(0) [1:Z1 pi(0)
The product form equation (5.14) then takes the form
Pn = C]V[ H Tz nz (5.18)

and according to the local balance equations p;(n; + 1) pi(n; + 1) = pi(ni) \i
as well as the convention \; = y; we have

Yi

w0 =1, k) =mlk 1)

for1 <k < K. (5.19)
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Thus, given any solution y1, ..., yas of the system of traffic equations (5.17),
we can compute all the z;(n;) simply by iteration.

Let us pause here for a moment in order to introduce the notion of discrete
convolution of vectors of equal length (or even sequences with infinitely many
components): Given a = (a1, ...,ay) and b = (by,...,by), the convolution
of a and b is defined as the vector ¢ = (¢, ...,cy) of same length that has
the components

k k
cL = Zakfébé = ZaebH, 0<k<N
=0 £=0

9,9

(N < 00). The common symbol for the convolution operation is the ”x”, i.e.
we write ¢ = a * b. It is obvious that (a * b) * ¢ = a * (b * c) for arbitrary
vectors a, b, ¢ € RY. For a convolution of some vector a € R with itself we

write

*M —1

a — a*n

where a*’ is defined as a** = (1,0,...,0), hence a**xb = b forall b € R,

xa for n>1,

We return now to the problem of computing the steady state probabilities
(5.18). Although the x;(n;) can easily be computed by iteration, the compu-

tation of the normalization constant Cy(K) = 3" .c g, (k) Hf‘i 1 Zi(n;) still
turns out to be rather difficult if M and K attain large values. In this situation
J. Buzen [24] observed that (5.16) is nothing else than the K th component of
the discrete convolution of the vectors

Precisely, we have

M
CuE)= > JJailni) = (xa%...xxar)(K). (5.20)

neB(M,K) i=1

Formally, expression (5.20) is characterized by the two parameters M and K,
and so it is suggesting itself that we define, for 1 <m < M, 1 < k < K, the
components C,, (k) of the convolution vector C,;, = X1 * ... % X, by

Cm(k) = Z Haz(m) = (x1 % ...%Xp)(k),
neE(m,k) i=1
where E(m, k) = {n =(n1,...,0m): n; >0, Y7 n; = k} Similarly,

the constant Cj7(K) can be written as the K component of the convolution
of Cpy_1 and x,;:

Car(K) = (Casr % xa1)(K).
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In general terms, we arrive at
C(k) = (Cp—1 xxp)(k), 1<m< M, 1<k<K. (5.21)

This, in fact, is the basis of Buzen’s convolution algorithm. It can roughly be
described as follows.

1 Set Cp(0) =1,and Cy(¢) =0forl1 < /¢ < K.
2 Forallm,1 <m < M, set 2,,(0) = 1.

3 Compute successively, for any m € {1,..., M} and k = 0,..., K, the
values (k) = Zpn—1 Ym/pm (k) and Crn (k) = X e, () TTi20 @i (0).

Performance Measures

The computation of all the (normalization) constants C,, (k) opens the way for
an easy and direct evaluation of station specific performance measures. Note
that, by adequate renumbering, we always can achieve that an arbitrary station
has index M. Let pys(n; K) denote the marginal steady state probability to
find n users at station M. Then, according to the product form (5.18),

pu(n;K) = Z DP(ninz,....npr—1,n)
neE(M—-1,K—n)

- 127" @i(ni) zar(n)
B Z : Cu(K)

neE(M—-1,K—n)
CM,1 (K — n)

= —CM(K) . xM(n) (5-22)

The mean number Nj;(K) of customers in station M is now immediately
obtained as’

K
Nu(K) = pu(n; K) - n.
n=0

Hence,
~ 1 K
Nu(K) = RI) nz()cM_l(K —n)za(n) - n. (5.23)

7We intentionally indicate here and in the following in each term the total number of customers present in
the network.
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It may be worthwile to note that this expression again takes the form of a
convolution: Set zy; = (0, zp/(1), 220/(2), ..., Kxpr(K)); then

In equilibrium, the mean throughput rate Sy;(K) through station M in a GN
network with K customers equals the mean arrival rate Ay/(K) (as well as the
mean departure rate 7 (K)). It is given as

K
Su(K) =3 par (03 K) ().

n=1
From this expression, by inserting (5.21) and exploiting (5.19), we obtain

< Cu(K —1)
Su(K) = —F———-ym. 5.24
We proceed to calculate the mean time T); (/) a user spends in a station i
(mean system time, or mean sojourn time). According to Little’s result we

have T (K) = /\1? Ny(K) = ]glj\j((fé)) , and so the above results yield

n oy ot Cara (K —n)zy(n)n
Tu(K) = 1 C’M(IK - Dym

(5.25)

The mean number NZQ (K, s;) of customers waiting in the queue at some sta-
tion ¢ that has s; exponential servers is given as Zi _s, Di(ni; K) (ni — si).
Thus, by (5.21),

S onsy Car-1(K =) @ar(n) (n = sar)

NY(K,s;) = e K]

(5.26)

The Principle of Mean Value Analysis

In case that each network station either is a single server station or an infinite
server station, an even easier way can be pursued, avoiding the explicit com-
putation of the values (5.21). In fact, it is possible to obtain all mean values
by some simple iteration process. For stations with more than 1 and less than
K servers, but, one still has to rely on (5.21) and related expressions. The ap-
proach in question, in its general form, is called mean value analysis (MVA)
and has been suggested by Reiser and Lavenberg in 1980 [73].



Markovian Queueing Networks 91

For a GN network the mean visiting numbers satisfy the equations

V; = Zl}j 4ji, 1 < 1 < M. (527)
j=1

These equations, clearly, do not possess a unique solution, as has been the
case for an open network. So, neither we can determine the exact values for
the visiting numbers v; and the mean arrival rates );, nor we can compute
other mean values by imitating the previous approach. In order to achieve
yet similar results, we proceed by turning a closed network into an open one
without changing any of the performance criteria. The idea is the following:
Add another fictitious node 0 to the network graph between two nodes 7 and
Jjo that are connected by an edge (possibly ig = jo), where ig, jo € {1,..., M}
(see figure 5.2).

qin(Q

virtual node
Figure 5.2.  Modified Network

Any customer, who is routed to node jy after service completion at node g
is now assumed to depart from the network, and to be immediately replaced
by another new customer who enters the network at node jo. This way, the
number K of customers in the network is preserved all the time, and all net-
work parameters remain exactly the same. The construction allows to speak of
performance items like network delay 7" (i.e. the total time a customer spends
in the network), or throughput S through the network. In partlcular we shall
be able to calculate the mean values 7', S and N = Zz 1 N;.% and to de-
termine the mean number v; of visits that a customer makes at station ¢ for
ie{l,...,M}.

8These values depend on the number K of customers in the network, and we shall indicate this dependency
in the following.
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First observe that any “newly arriving” customer from “outside the network”
(i.e. from node () visits node iy exactly k times with probability given by
Giojo(1 — @igjo)* 1, implying that the mean number v;, of visits at node ¢ for
any customer in this open network attains the value

1

o0
k—1
Vip = 3 _ K igjo(1 = Gigjo)" ! = —.
k=1 q7’0_70

This determines all other visiting numbers v; according to equation (5.27):

M e
vi= D vt~
j=1 20J0
J#ig
Equations (5.17) and (5.27) show that the vectors A = (A1,...,Ay) and v =
(v1,...,vpr) are proportional, A = v v. The A; (and so the constant ) depend

on the number K, whereas the v; are functions of the routing probabilities only.
Since in equilibrium the average departure rate from node ¢g equals its average
arrival rate \;,, the expression Ay, giyj, = i, /i, represents the mean transfer
rate from node iy to node jj in the original GN network. Consequently, in our
artificial open network, the constant v is nothing else than the total average
input rate from outside (or throughput rate S through) the network:

>‘i0 Qigjo =~ )‘io/vio =7= S(K)

The visit numbers \; /vy = v; are sometimes referred to as relative throughput
rates.

Let again, for any station i € {1,..., M} in a network with K customers,
denote by N;(K, s;) the mean number of customers in i, and by T} (K, s;) the
mean sojourn time in station 7 if there are s; servers at that station. We obtain
the following relations:

Ni(K,s;) = X\Ti(s;) (Little’s rule),
M M
K = Y Ni(K,s)=8(K)) uiTi(K,s),
=1 =1
B M B M IV
T(K) = izzlviTi(K,si):i:ZlS(K)Ti(K,si).

The last equation confirms K = S(K)T(K) (Little’s rule). Notice, that the
mean system times 7} (K, s;) cannot be calculated as sojourn times of isolated
independent M /M /s; stations as in case of a Jackson network, since the num-
bers N;(K, s;) are now dependent upon each other due to the second of the
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above equations. Accordingly, we have to find another way to compute the
T;(K, s;) in order to solve the equations for all other unknowns.

Let us call a customer, who has completed service at some station j and is
about to enter station ¢ (but not yet there), to be a customer in transit to 7. As-
sume that such a customer ”sees” A;(K, s;) customers in total, and A?(K , 8i)
customers waiting in the queue at station ¢ immediately before his entrance
there. Clearly, A;(K,s;) and A?(K , 8;) are random numbers. Let 4;(K, s;)
and A?(K , ;) denote their respective expectations. With A;(K, s;) the mean
system times 7;(K, s;) for the cases s; = 1 and s; > K are given as

T(K,s;) =4 4 s K (5.28)

— { i+iAZ(K’SZ) if s,=1
T

(remember, that service times are exponentially distributed, and that 1/, is
the mean of the service time at station 7). We shall show later that the corre-

sponding value for the case 1 < s; < K reads

_ 1 1r-
Ty(K,s;) = 7(1 + —[A?(K, s1) + bi(K — 1)]), 1< s <K,
Hi Sq
where b;(K — 1) is the probability for the event that, in a closed network of
same type with K — 1 customers, all of the s; servers at station ¢ are occupied.
The task here is to compute the mean values AZQ(K ,8;) as well as the proba-
bilities b;(K — 1) fori € {1,...,M}.

In order to determine the A;(K, s;) in (5.28) we mention an important general
feature of product form networks that is called the arrival property in case of
open networks, and the random observer property in case of closed ones.’
Here we confine ourself to the case of a single class GN network, but it should
be clear from the proof below that this property also holds for multi-class (open
or closed) PF networks.

Theorem 5.13 (Random Observer Property) Let a;(n—e;) denote the prob-
ability for the event that a customer in transit to 1 ’sees” the state disposition
n—e; = (ny,...,n; —1,...,ny) immediately before his arrival at station i.
If N describes a closed GN network with, say, K customers, then this proba-
bility a;(n — €;) is the same as the steady state probability for state n — e; for
a network of same type with one customer less.

9For a single queueing station this is comparable with the PASTA property (Poisson arrivals see time aver-
ages).
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Proof: We denote by 7;(n) the mean number of customers in transit to i per
unit time who “see” the state disposition n. Obviously, we have

M

ni(n - ei) = an—eﬁ—e]- gn—e;+e;n- (5.29)
j=1

The probability a;(n — e;) can be expressed as the relative portion of the rate
n;(n — e;) compared with the sum over all rates 7;(m):

ni(n —e;)
2 me (M) (M)

ai(n—e;) =

Observing n—e;+ejn = [ (nj + 1)qu~, as well as the local balance equations
pj(nj +1) pj(n; + 1) = pj(n;) A,

and exploiting the product form (5.14), we obtain from (5.29), that

M
ni(n - ei) = Pn—e; Z )\j qji = Pn—e; i,
Jj=1

and likewise 7;(m) = pm A; forany m € E(M,K),i € {1,...,M}. This
Proves an_e; = Pn—e;-
O

The random observer property enables us to determine the values A;(K, s;)
and AZQ(K, si) as

Ai(Kasi):Ni(K_LS’i)’ A?(Kasl):NzQ(K_lasl)

fori € {1,..., M}, where we indicate by s; the number of servers, and by K
or K — 1 the number of customers in the network. According to these results
the station specific mean system times in a GN network with K customers are
given by!?

i—l-iNi(K—l,Si) if ;=1

TiK, ) =4 it 5> K
i<1+Sli[Nf?(K—1,si)+bi(K—1)D if 1<s <K
(5.30)

10The third line expression for 1 < s; < K will be derived later.
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For a network that is built up by only single server or infinite server sta-
tions we arrive at a system of recursion equations for the unknowns 7 (K, s;),
N;(K,s;), and S(K), viz.

1 1 A7 .
_ f—i-fNi(K—l,Si) if ;=1
: . — Hi Hi
E(Kvsl) { i if S; > K
- K
S(K) = -
Zz—l /UiTi(K7 Sl)

In essence these expressions explain what is usually meant with “mean value
analysis” for Gordon-Newell networks: It is a simple iteration process that
starts with N;(0, s;) = 0and T}(1, s;) = 1/u; and requires to compute succes-
sively, for 1 < k < K, the values T}(k, s;), S(K), and N;(K, s;) according to
(5.31).

The computational overhead is fairly small, and can even be further reduced if
approximate results are tolerated. The quantities fli(K ,8;) = Ni(K —1,s)
may roughly be estimated as

_ K—-1_
AZ'(K, Si) ~ TNi(Kysi)a

a relation that is exact for K = 1, and tends, for increasing K, asymptotically
to an exact equation. It even provides, in many practical cases, good results for
intermediate values of K. Inserted in (5.31) we obtain

1 vi(K=1)Ti(K,si) -
{ i (1 * oL v Ty (K s0) it si=1

1 if s;>K
i

T (K, s;) =

So we see that, if one accepts approximate results, the overhead for the compu-
tation of the T;(K, s;) can drastically be reduced, and limited to the solution of
some fixed-point equations. It may also be the case that the total mean through-
put rate S = + is given in a concrete situation, meaning that we can measure
somehow the average transfer rate between two connected network nodes g
and jo. Then the relative throughput rates \;/v; = « and, consequently, the
exact arrival rates \; are obtained immediately, providing the T;(K, s;) from
direct recursion:

>

+ ot Ti(K = 1,s;) if s;=1

if s> K

b

Ti(K, Si) = {

F|=F|=

We refer the reader to the literature for more detailed descriptions of the prin-
ciples of mean value analysis. A practice oriented treatment, for instance, is
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given in the book of Bolch et al. [15], where several examples and algorithms
are presented.

Example (Central Server Systems).

A closed network in which all customers are routed through some particular
station before they can visit other network nodes is called a central server sys-
tem. Examples for real configurations that may be modelled this way are com-
puter multiprogramming systems (with a fixed degree of multiprogramming),
multiprocessor systems connected with external memory modules, or a combi-
nation of independently working machines together with one single repair unit
that is visited whenever one of the machines fails. The latter configuration is
representative for many related ones and is known as the machine-repairman
model (already encountered in section 6). Common to all is the possibility to
model the system as a closed queueing network of the above mentioned type.

Consider, for instance, a multiprocessor system in which each processor or
CPU is connected with a bank of memory modules. As soon as a processor
needs some data (e.g. instructions) from a memory module it sends a request
to the bank and stops working until the request is satisfied. The memory mod-
ules have buffers into which requests are arranged according to the first-come
first-served (FCFS) order. A request is ’served” by sending back the data to the
requesting processor. Such a system can be modelled as a closed network in
which the multiprocessor system represents one single infinite server (IS) sta-
tion, and the, say, M — 1 memory modules are single server queueing stations
(see figure 5.3).

1

— 10O

SO&

=0/
IS station M EOM -1

Figure 5.3.  Central Server Model

The number K of processors usually is much higher (e.g. 28 = 256) than
the number of memory modules. Since a processor is assumed to wait (re-
mains in idle state) when a request to the memory bank has been sent, these
requests are to be interpreted as the “users” of the single server stations num-
bered 1,..., M — 1, whereas intermediately executed job partitions represent
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the “users” in the central IS station. In many cases it is well justified to as-
sume the time to satisfy a request being exponentially distributed. We shall
see below that — with respect to an expected product form solution — there
is no reason to restrict possible choices of service time distributions at the cen-
tral IS server to negative exponential distributions (section 3). Nevertheless,
in order to give a simple formulation, we confine ourselves to the case of an
IS station with identical exponential servers with rate pps. As a consequence,
the multiprocessor system can be modelled as a closed PF (Gordon-Newell)
network.

After partially executing a job a processor may execute another partition or
send a request to the memory bank. In practice, the memory bank is needed
only for, say, « times in the average. Let « be identical for all processors. We
summarize the assumptions as follows:

= Service times at the memory modules ¢ = 1,..., M — 1 are exponentially
distributed with parameters ;.
= Processor execution times are exponentially distributed with mean 1/1p;.

m Each processor references memory module ¢ in the long run with probabil-
ity qasq, where Zf\i Il qnyri = 1 (central server condition).

m  After x execution times a job is finished, and starts anew (as another job)
immediately after at the same processor.

Turning the closed network into an open one by applying a similar construction
as mentioned in this section, the interpretation of restarts after job finishing
finds its adequate portrayal in the model.

Let a virtual node (the "network exterior”) be inserted between the routing
edge from M to M, such that the mean number of visits to node M attains the
value vy = 1/qpr = & (figure 5.4).

Then the routing probabilities satisfy the relations

M1
a0+ Y awi = 1,
i=1
gm = 1 forall i€ {1,...,M — 1},
g; = 0 forall 4,5 € {1,...,M — 1}
1 1
qmo = qMo = qMM = = —.
Um K

What are the performance measures to be computed? It is likely that one is
interested, in the first line, in the mean time 7' that is required to completely
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Figure 5.4. Modified Central Server Model

execute a job, the average delay T; at memory module i per request, the total
mean throughput S of jobs through the multiprocessor system, and the average
number N; of requests waiting or being treated at some memory module :.

These quantities are easily obtained according to the mean value analysis prin-
ciple: Exploiting equations (5.30), merely the corresponding iteration process
has to be performed, using N;(0, s;) = 0 as the starting value.

The General Case 1 < s; < K

We close this section by turning back to the general case of GN networks that
contain multiple server stations with s; < K. Relying on the results from con-
volution analysis, we can express the quantity 7'(K; s;) for a customer’s mean
sojourn time at some station ¢ € {1,..., M} as a function of the quantities
NiQ (K—1,s;)and b;( K —1) as follows. Let a renumbering be performed such
that our station under consideration has index M. According to x,,(0) = 1
and xps(n)/ynm = xar(n — 1)/ puar(n), the expression (5.25) can be rewritten
as

Cy1(K—=1—[n—-1)zpyn—1)n
Cu (K —1) par(n)
Cy—1(K—1—[n—-1)zymyn—1)n
Cy(K —1)nuy

Tu(K) =

|
Sk

3
I
—_

I ZK: Cy1(K=1—=[n—-1)zpyn—1)n

Cu(K —1) sy pmr

n::sA44—1
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K-1

Cy—1(K —1—n)xp(n)
7;) Cu(K —1) pm
1 K Ov(K —1—n)zy(n—1) (n— sy)
S 2 (K ~1) |

Exploiting %' Coy (K — 1 = n)zp(n) = (Cyq * xp)(K — 1) =
Cy (K — 1) in the first term, and settingn — spr = (n — 1) — sp7 + 1 in the
second one, we obtain from (5.21) and (5.26)

K—1
Tu(K) = /iw-i- uMlsM (Z (n—sM)CMl(é(M—(;(—_Ti))fEM(n)
n ZCMl —1—_1;))9:]\4( ))

= L—i— ! (Nﬁ[( —1,sm) + ZpMnK—1)>

Har KA SM sy

The sum Zf;slM pum(n; K — 1) represents the probability for the event that,
in a network with K — 1 customers, at least as many customers are present
at station M as there are servers, which is nothing else than the probability
bar(K — 1) for the event that all servers sy are occupied. Hence, replacing
the index M by an arbitrary station index ¢ € {1,..., M}, we have

_ 1 1r._

T(K) = M(H—;{N?(K—1,si)+bi(K—1)]). (5.32)
1 1

The remaining mean values are given by equations (5.23), (5.24), and (5.26).

In principle, all performance measures of a Gordon-Newell network with K

customers can be calculated from the corresponding expressions for a network

with one customer less, as is obvious from equations (5.30) and (5.32).

3. Symmetric Service Disciplines

Consider a queueing network with several chains and R customer classes, and
remember that the pair (7, ¢) of class and chain identifiers defines the category

of a customer. Let ug-?c(ni) denote the mean service rate for a category (r, ¢)

customer at position j in station ¢, when the latter is in state n;, and denote by
20

Tir c(nz) the probability for the event that a category (r, ¢) customer in transit
to 7 is going to enter this very position j when immediately before his entrance
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the state is n;. Further, let (") (n;) be the total mean service rate at station 7 in
that state. Then ‘
(@) (n;)
Hjre\i) (i)
@ = ‘pjrc(ni)
i) (mg)
represents the fraction of the service rate that category (r, ¢) customers in po-
sition j produce at station ¢ in state n;.

Definition 5.14 The service discipline at a station 7 is called a symmetric ser-
vice discipline, and the station is said to be in station balance, if

W;?c(nz + erc) = ﬂ_g:«)c(ni)a (533)
that is, if the service rate ug-?c(ni + e,c) is proportional to the probability
RICHRE

The main difference between station balance and local balance lies in the fact
that station balance, in comparing rates, links together the position of a cus-
tomer who completes service and the position that an arriving customer is
about to occupy, whereas local balance just relates arrival and departure rates
for customers of same type. Two conclusions are immediately to be drawn
from this fact:

= Station balance implies local balance, but not vice versa.

® A non-exponential service discipline can only be symmetric if any arriving
customer receives service immediately, i.e. as soon as he enters the system.

We now give some examples for symmetric disciplines. Thereby, in order to
illustrate the relationships between the arrangement probability upon arrival
and the fraction of service rate at some position, we confine ourselves to the

9 (i +epe) =

case that only one class and only one chain exists, such that .

<p§-i) (n; + 1), and the condition for symmetry reads

o\ (i + 1) = 787 (ny).

The reader should realize that this simplification is unimportant for the exam-
ples given below, and that symmetry also holds in these cases when there are
several chains and several classes.

11 Again, the vector e, is defined as to contain a 1 at the entry of n; that belongs to the category (r, c), and
zeros anywhere else.
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1. Processor sharing (PS) discipline. This is the limiting case for 7 — 0 of
a Round Robin discipline that provides service to each customer in form of
time slices of duration 7. Positions in the queue remain undefined and can
be assumed to be equal. For the fraction of service in state n; 4+ 1 (i.e. when

there are n;+1 customers in station i) we have, forany j € {1,...,n;+1},
(i) 1
(n;+1) = .
¥ (n + ) n;+1

If the state is n; immediately before an arrival, then the newly arriving cus-
tomer can be arranged in any of n; + 1 positions with same probability. So,
(@) (n;) = — (%)

; pryr V2N (n; + 1), and the discipline proves to be symmetric.

2. Infinite servers (IS) discipline. As in case of processor sharing the posi-
tion of a customer doesn’t play any role. The fraction gogl) (n; + 1) of the
service rate that an (n; + 1)** customer receives is always the (n; + 1)

part of the total service rate in this state, viz. gpg-l) (ni+1)=1/(n;+1). The
position where to be inserted is not important for an arriving customer, and
may be seen to be equal for each position among, or in front of, or behind,

the n; existing customers in the station. Thus, the probability 773(.1) (n;) is

the same for all j, and wj(i) (nj)) =1/(n; +1) = gog-i) (n; + 1), showing the

symmetry also in this case.

3. Last-come first-served preemptive-resume (LCFS-PR) discipline. In this
discipline any newly arriving customer ousts the one in service from his
place. Let the position of the customer in service be 1. Then the fraction

gogl) (n; + 1) of service that the arriving customer receives, is one since all

other customers are not served during state n; + 1, i.e. go(li)(ni +1) =1
On the other side, the probability w%z) (n;) for the event that an arriving cus-
tomer is arranged in position 1 at station ¢ (when station ¢ was in state n; im-

mediately before his arrival) is one, too. Therefore, gogi) (ni+1) = 77%1') (n;).

A special role plays the first-come first-served (FCFS) discipline. As is eas-
ily seen, this discipline is not symmetric, since an arriving customer is always
added to the queue at its end whereas service is provided only to the customer
at its front (first) position. If customers deserve service from different ser-
vice time distributions then (5.33) cannot be satisfied for all. There is, but,
one exception: If service times are chosen from the same exponential distri-
bution for all customers, then positions and customers are indistinguishable,
and the actual service completion rate at any time, also at an arrival instant,
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remains the same due to the memoryless property of the exponential distribu-
tion. That means that the rate / fraction equation (5.33) holds. Consequently,
an FCEFS station providing exponential service with the same intensity to all its
customers attains station balance.

A network station that provides service according to one of the above disci-
plines is called a PS station, IS station, LCFS-PR station, or FCFS exponential
station, respectively.

We are now in the position to conclude, that a multiple chain/multiple class
queueing network that is fed by Poisson arrival streams (if open or mixed), and
is built up by stations of types PS, LCFS-PR, IS, or FCFS exponential, attains
station balance and, consequently, local balance and product form.

This result has first been proven by Baskett, Chandy, Muntz, and Palacios in
1977 [8], and is well known as the BCMP theorem. The authors introduced
a numbering for the four types of service disciplines that has been adopted by
most experts in the field. It runs as follows:

m Type 1 service: The service discipline is FCFS, and all customers have the
same negative-exponential service time distribution. The service rate may
depend on the number of customers at the station (this is the case when
there are more than one servers available).

m Type 2 service: The service discipline is PS, there is a single server at
the station, and each class of customer may have a distinct service time
distribution. The service time distributions have rational Laplace transform.

m Type 3 service: The number of servers at the station is greater than or equal
to the maximum number of customers that may visit this station (IS disci-
pline). Each class of customer may have a distinct service time distribution.
The service time distributions have rational Laplace transform.

m Type 4 service: There is a single server at the station, the service discipline
is LCFS-PR, and each class of customer may have a distinct service time
distribution. The service time distributions have rational Laplace transform.

The BCMP theorem explicitly describes the factors of the product form for
closed, open or mixed networks (with Poisson arrival streams). In order to
present these results adequately we have to explain some details. First, two
types of arrival process are distinguished: A single Poisson arrival stream
whose intensity v may be a function of the state dependent total number K (n)
of customers in the network, or several chain specific Poisson streams with
intensities 7. that in turn depend on the numbers K.(n) of customers in the
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respective chains (1 < ¢ <V, V the total number of chains). Second, the state
descriptions are type specific as follows:

1 For type 1 service stations (exponential service, undistinguishable customers)
the queue specific states are represented by the vectors

n; = (7“1‘1, cee ,""mi),

where n; is the total number of customers present at station 7, and r;; is
the class of the customer at position j in the queue. Positions are counted
beginning from the ”server position” 1 up to the end of the queue n;. The
need for discriminating between classes will become clear below when we
specify f;(n;).

Tin; ---Ti3 T'i2 Ti1

Figure 5.5. FCEFS Order

2 For types 2 and 3 the service time distributions have rational Laplace trans-
form, so they belong to the family of Cox-distributions. A Cox distribution
is characterized by a sequence of exponential stages that are visited by the
customer in service in compliance with routing probabilities ;... These
probabilities (or their complementary values 1 — «,¢) steer the customer
to the next stage or to exit from service (see figure 5.4). Here r is the class
index of the customer in service, and ¢ the station index.

ajr1 =1 Qir2 Qir3 Qjrug,.
(OO '(ik'
/ / / \ .
1—aira 1 — ctirs 1 — diruy,

Figure 5.6. Cox Distribution

The state vector n; of station i takes the form n; = (s;1,...,s;r), where
each s;; = (Sir1, ..., Siru;, ) is a vector of labels s;,¢, and

6, = number of class r customers (if any) at
£ = station 4, who are in stage £ of service.
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Sir¢ 18 set to zero if there are no class r customers in station ¢. u;, is the
number of exponential stages for a class r service time distribution at ¢
1 <r<R).

3 Type 4 centers are characterized by the LCFS-PR scheduling discipline,
offering service according to Cox distributed service times. Whereas in
case of PS or IS disciplines (types 2 and 3) the customer position has no
significance, here it is very important. The so-called LCFS order has the
opposite direction of FCFS order (see figure 5.5). The state vector n; re-
flects the classes as well as the stages of service of all the customers at their
respective positions,

n; = ((rl,zl),(rz,eg),...,(rm,zm)).

n; is the total number of customers in station ¢ in that state, r; is the class,
and /; the stage of service of the customer in position j. Position n; is that
of the customer who arrived last and who is actually in service.

Ti1 742 -« Tin,— 1 Tin;

Figure 5.7. LCFS Order

If there exist open chains in the network, then one may count the customer
visits to the stations. The mean visit number to station ¢ of a class  customer
who belongs to chain c is defined as the ratio

Vi — Aire
T e(Ke(n)’

where A\ is the mean arrival rate of category (r,c) customers at station i,
and 7.(K.(n)) is the total chain ¢ arrival rate from outside the network, that
may be dependent upon the number K.(n) of class ¢ customers in the network
during state n. Let M, be the subset of stations visited by chain ¢, and R, the
subset of classes occurring in chain ¢, and set £. = M, x R.. Then the \;.
satisfy the traffic equations

Aire = VC(KC(D)) qosire + Z )‘47'8C Qjsc;irc-
(4,5)€Ee

Consequently, the mean visit numbers v, (also called the relative through-
puts) satisfy the equations

Vire = Q0yirc + Z Vjsc 4jscire- (5.34)
(4,8)€F.



Markovian Queueing Networks 105

We are now in the position to formulate the result of Baskett, Chandy, Muntz,
and Palacios. Let R be the total number of customer classes, V' the total num-
ber of chains, and A;,, the product of steering probabilities in a Cox distribu-
tion (compare figure 5.6),i.e.,for1 <i: < M, 1 <r <R, and 1 < /{ < u;,

4
Airé = H Qjpryp -
v=1

Theorem 5.15 (BCMP theorem) Let an open, closed, or mixed queueing net-
work with V' chains and R customer classes contain service stations of types
1, 2, 3, or 4, only. Assume, that in case of an open or mixed network the exter-
nal arrival streams are Poisson of type 1 or 2, respectively. Then, the network
attains equilibrium with a product form steady state distribution

d(n)
Po =~ 1;[ (5.35)

where the f;(n;) are service type dependent state functions, and the value d(n)
is defined by

1 for a closed network (only I chain,
no external arrival process)
d(n) = Hf:((r)l)fl ~v(k) for an open network (only I chain,
' - external arrival process of first type)
M, H?:an)fl Ye(k) for a mixed network (several chains,
\ external arrival processes of second type)

The state functions f;(n;) are given by the following expressions.

Type 1 (FCFS exponential):

Type 2 (PS, Cox distribution):

R ugr Sir
| vir A ird £l
s = 1T :

I Hire Sire:
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Type 3 (IS, Cox distribution):

R wir . . Sire
fi(l’ll') _ HH (Uerz'ré> 1 ’

r=1/¢—1 Hire Sire:

Type 4 (LCFS-PR Cox distribution):

g

Vir;; Ain il
filny) = [ 22—

=1 Hir; ;65

Essentially, the BCMP theorem is a consequence from the fact that station
balance implies local balance and product form. The detailed elaboration of
the above mentioned concrete expressions for the factors in (5.35) can be per-
formed by applying the symmetry relations (5.33) and the resulting local bal-
ance equations to the product of state probabilities of isolated stations, just as
in case of Jackson or Gordon-Newell networks. This line of reasoning has been
pursued by Baskett, Chandy, Muntz, and Palacios. We do not repeat this here,
rather we refer to their original work in [8].

Notes

There is a multitude of additional results on queueing networks, including var-
ious algorithms for the exact and approximate treatment of product form (PF)
networks, refined approximation methods for non-PF networks, generaliza-
tions to networks with blocking, approximation techniques for networks with
priority handling, and even maximum entropy methods. To cover all these
results would go far beyond of the scope of this introductory book. The el-
ements of queueing network theory can already be found in Kleinrock’s fun-
damental book on queueing systems (Volume I: Theory) [50], and in an early
overview on exact and approximate methods for the evaluation of steady state
probabilities of Markovian networks (including Jackson, Gordon-Newell, and
BCMP networks) by Gelenbe and Pujolle in 1987 [36]. Also in 1987 appeared
the excellent little introduction to performance analysis methods for computer
communication systems by I. Mitrani [60]. The beginner is well advised to
read this book first. It presents a neatly formulated and easy to understand
explanation of the basic ideas behind various fundamental approaches.

A standard work on reversibility properties and their relationships to balance
behaviour is that of Kelly of the year 1979 [48]. The various techniques de-
veloped there are employed also by Nelson in his recommended treatise on
probability, stochastic processes, and queueing theory [61]. We further refer
to the more application oriented books of Van Dijk [30], who addresses the
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physical background of flow balance properties, and Harrison and Patel [41]
who — with respect to queueing networks — describe several applications to
computer networks and computer architectures. A more recently published
comprehensive treatment of queueing networks and Markov chains is that of
Bolch et alii [15]. This book covers all main aspects of modern queueing net-
work analysis, and presents up to date algorithmic methods. The reader may
also find an exhaustive list of references in [15]. Finally, we refer to the excel-
lent investigation of queueing networks with discrete time scale that has been
presented in 2001 by Daduna [29]. Due to the discrete structure of most of
todays communication systems this approach should attain particular attention
in the future.

Exercise 5.1 Show that a stationary Markov process whose undirected state
transition diagram forms a tree is reversible. Hint: Use the fact that the proba-
bility flux in one direction across a cut of the graph equals the flux in opposite
direction.

Exercise 5.2 Show that any stationary birth-death process is quasi-reversible,
and conclude from this fact the Theorem of Burke for M /M /s queues: The
departure process of an M /M /s queue is Poisson with same rate as the arrival
process.

Exercise 5.3 Prove that a quasi-reversible process need not be reversible. Hint:
Consider an M /M /1 queue with mean arrival rate \, whose state 1 is separated
in two different states 1’ and 1”, such that 1’ is reached from state 0 with rate
A - p, and state 1” is reached from state 0 with rate A - (1 — p) for 0 < p < 1,
the departure rates remaining unchanged.

Exercise 5.4 A data transmission unit works as follows. Data packages ar-
rive at the unit according to a Poisson process with intensity A. For each data
package there is an exponential time (with parameter 1) from the beginning of
transmission to the receipt of an acknowledgement. Arriving packages which
find the transmission unit busy wait in a queue and are served in FCFS or-
der. The buffer for the queue is so large that it may be assumed to be infinite.
With probability p, a data package incurs a transmission error and needs to be
retransmitted. The stream of data packages to retransmitted is added to the
regular arrival stream.

a) Derive a model for this kind of data transmission in terms of a Jackson net-
work.

b) Show that the combined stream of regularly arriving packages and the pack-
ages to be retransmitted is not a Poisson process.

¢) Determine the mean time needed for a successful transmission of a data
package in the stationary regime.
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Exercise 5.5 A server in a computer pool is modelled as a queueing network
with two stations. The first of these represents the CPU, the second one all
output devices. Service times in both stations are distributed exponentially,
with parameters p; and po. Jobs arrive from the pool as a Poisson process
with intensity A. After service in the CPU, a job is done with probability p.
With probability 1 — p it needs additional service by one of the output devices.

output

Figure 5.8.  Simple model of a computer pool

Determine the mean sojourn time of a job in the server under the stationary
regime. Networks consisting of some stations in series are called tandem
queues. However, in general tandem queues the service times do not need
to be exponential.

Exercise 5.6 For a cyclic closed network with M stations, the routing matrix
Q is given by
1, j=i+1,1<i< M
QG,j) =<1, j=1i=M
0, else

Assume that there are K users in the network. Show that the stationary distri-

bution is given by

1 ,uf(fm

PG T

with u; denoting the service rate at station 1.

Exercise 5.7 An internet based company seeks to ensure constant online ac-
cess, because it cannot operate without. To this aim, two servers instead of one
are employed concurrently. Each of them has a failure rate A > 0, meaning
that their up time is exponentially distributed with parameter A. After failure,
a server is repaired with probability p. The repair time is distributed expo-
nentially with parameter ;11 > 0. With probability 1 — p, the server must be
replaced by a new one, which requires an installation time that is distributed
exponentially with parameter po > 0. After the server is repaired, there is still
a probability ¢ that it must be replaced by a new one, requiring additionally the
same installation time.
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Derive a model for this situation in terms of a Gordon—Newell network. For the
values A = 2, iy = 1, uo = 3, p = 3/4, and ¢ = 1/3, determine the stationary
probability that both servers are down and the company cannot operate. Com-
pare this to the stationary probability that the company cannot operate for the
case that only one server is employed. Such questions are typical for reliability
theory.






Chapter 6

RENEWAL THEORY

1. Renewal Processes

Be (X,, : n € Ny) a sequence of independent positive random variables, and
assume that (X,, : n € N) are identically distributed. Define the sequence
S=(S,:neN)by S := Xpgand S,,11 := S, + X, forall n € N.
The random variable S,,, with n € N, is called the nth renewal time, while
the time duration X,, is called the nth renewal interval. Further define the
random variable of the number of renewals until time ¢ by

Ny :=max{n e N: S, <t}

forall ¢ > 0 with the convention max () = 0. Then the continuous time process
N = (N; : t € RY) is called a renewal process. The random variable X,
is called the delay of V. If X and X have the same distribution, then \ is
called an ordinary renewal process.

I
S, t S, o time

Figure 6.1. Random variables of a renewal process

We will always assume that P(X; = 0) = 0 and m := E(X;) < oo is finite.
The strong law of large numbers implies that \S,, /n — m with probability one
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as n — oo. Hence S,, < t cannot hold for infinitely many n and thus /V; is
finite with probability one. By standard notation we will write

G(z) =P(Xo <x) and F(x) :=P(X; <)
forall x € R{.

Example 6.1 A light bulb has been installed at time zero. After a duration
X, it will go out of order. We assume that it will be immediately replaced
by a new light bulb at time S; = X. Assume that the new light bulb is of a
type identical to the old one. Then the duration X until it goes out of order
is distributed identically to Xy. Of course, the life times of the light bulbs
are independent from one another. Keeping up this rechangement policy over
time, the number V; of used light bulbs until time ¢ forms an ordinary renewal
process.

Remark 6.2 A Poisson process with intensity A (see example 3.1) is an ordi-
nary renewal process with F'(z) = G(z) = 1 —e~?%, i.e. the renewal intervals
have an exponential distribution. Thus a renewal process can be seen as a gen-
eralization of the Poisson process with respect to the distribution of the renewal
intervals.

In order to derive an expression for the distribution and the expectation of V; at
any time ¢, we need to introduce the concept of convolutions of a non-negative
function and a distribution function. Let F' denote a distribution function on
Rg and g : ROJF — ]R(J{ a Lebesgue—measurable function which is bounded on
all finite intervals [0, ¢] with £ > 0. Then the function defined by

Fxg(t) := /0 g(t —u) dF (u)

for all t € R is called the convolution of F' and g. In particular, the definition
of a convolution applies if g is a distribution function. As an exercise the reader
can prove

Theorem 6.3 For any distribution functions F' and G as well as non—-negative
Lebesgue—measurable functions (g, : n € N) on RY, the following properties
hold:

(1) The convolution F * G is a distribution function on R(’)L .

Q)F«G=Gx F

() F* 307 gn = >0y F* gn

(4) The Dirac measure 5y on 0 with distribution function Iy, which is defined
by Io(t) :== 1 forallt > 0 and 1y(t) := 0 otherwise, is neutral in regard to
convolutions, i.e. Iy x G = G for all distribution functions G.
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(5) If the random variables X and 'Y are independent and distributed accord-
ing to F and G, respectively, then P(X +Y <t) = F x« G(t) forall t > 0.
(6) Fx(Gxg)=(F*xG)*g

Let F' denote any distribution function for a real-valued random variable. De-
fine the convolutional powers by F*! := F and recursively F*" 1 .= F*" 4
for all n € N. Because of property (4) in the above theorem, we define
F*9 .= I, for every distribution function F.

Now denote the distribution function of the random variable X (and hence
of all X,, with n > 1) and X by F' and G, respectively. Since the random
variables (X,, : n € N) are iid, part (5) of the above theorem yields for all
n € Ny the relation P(N; > n) = P(S,, < t) = G * F*"~1(t) and thus we
obtain P(N; = 0) =1 — G(t) and

P(N; =n) = P(Sy < t) = P(Spy1 < t) = G F7(t) — G+ F*™(¢)

for n > 1. The expectation of V; is given by

EN) =3 BN =n) =3 PS. <) =G+ 3 F(1) 6.
n=1 n=1 n=0

for all ¢ > 0 (for the first equality see Exercise 6.2). The rate of growth of a
renewal process is described by

Theorem 6.4 Let N' = (N : t > 0) denote a renewal process with renewal
intervals having mean length m < oc. Then

holds with probability one.

Proof: By definition of V; (see picture below and figure 1), the inequalities
Sy, <t < Sp,+1 hold with probability one for all times ¢.

4 4 >
T t T >

Sy t Sy .1 time

Dividing these by /V; and using the strong law of large numbers, we obtain

m= lim — = lim
n—oo n t—o0 Nt

< 1 ¢
im —
T t—oo Nt
) Sn+1 Ne+1 . Spp1 . n+1
< 1i . = lim - lim =m-1
t—oo \ N} + 1 Ny n—oomn+1 n—oco n
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which proves the statement.
O

Because of this theorem, the inverse 1/m of the mean length of a renewal
interval is called the rate of the renewal process. It describes the asymptotic
rate at which renewals occur.

Example 6.5 Regarding a Poisson process N' = (N; : ¢ > 0) with intensity
A > 0, it can be shown that

(A"

P(N, =n) = e (6.2)

forall t > 0 and n € Ny. The expectation of N, is given by E(/V;) = A - ¢.

Thus a Poisson process with intensity A has at time ¢ a Poisson distribution
with parameter A - t. Moreover, the intensity A is also the rate of the Poisson
process, since a mean renewal interval has length 1/\.

Given an observed stream of events (e.g. job requests at a server) over some
time interval of length ¢, we can count the number N (¢) of events that have
occurred in this interval. If we want to model such event streams by a Poisson
process, then we need to find a statistical estimator for the intensity A. Now
theorem 6.4 states that the fraction N (¢)/t comes close to A for large interval
lengths ¢. Thus a consistent statistical estimator for the intensity A is given by
A= N(t)/t.

Example 6.6 There is a discrete—time analogue of the Poisson process, which
is called Bernoulli process. This is an ordinary renewal process with renewal
intervals that have a geometric distribution. Given a parameter p €]0, 1], the
length of the renewal intervals is distributed as P(X; = n) = p- (1 —p)* !
forn € N.

2. Renewal Function and Renewal Equations

The function defined by R(t) := > -2, F*"(t) for all ¢ > 0 is called the
renewal function of the process A. The renewal function will play a central
role in renewal theory. First we need to show that it remains finite:

Theorem 6.7 If F'(0) < 1, then R(t) = .02, F*"(t) < oo forall t > 0.

n=1

Proof: Since F'(0) < 1 and F is continuous to the right, there is a number
a > 0 such that F'(a) < 1. Fix any ¢ > 0 and choose k& € N such that
k-a >t. Then F**(t) <1— (1 F(a))® =: 1 — g with0 < 3 < 1. Thence
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we obtain the bound F*™*(t) < (1 — 3)™ for any m € N. Since F(0—) = 0,
we can use F*"(t) > F*'(t) foralln < h € N. Putting these bounds together,
we obtain

since 3 > 0.
O

Theorem 6.8 An ordinary renewal process is uniquely determined by its re-
newal function.

Proof: First we take the Laplace—Stieltjes transform (LST, see appendix 3) on
both sides of the equation R(t) = Y 2 | ["*"(t). This yields

ZF*n = () I EG) = e 63)

n=0

for s > 0, or ~
~ R
1+ R(s)
and thus determines the LST F(s) of F uniquely in terms of R(s). Now

uniqueness of the LST yields the statement.
OJ

For an ordinary renewal process we can derive an implicit integral equation for
the renewal function, which is known as a renewal equation. Note that for an
ordinary renewal process E(N;) = R(t) for all times ¢ (see (6.1) with G = F).
Hence the function R is increasing. If we condition upon the length x of the
first renewal interval X, we obtain

E(N,) = [O E(N,|Xo = 2) dF (z)

Since E(N¢|Xo = z) = 1+ R(t — z) for t > x and E(N;| Xy = ) = 0 for
t < x, we can simplify this equation to

R(t):/ot(1+R(t—:c))dF /Rt—x ) dF (x)

for all £ > 0. A renewal equation is the generalized form

g(t) = h(t) + /Otg(t —x) dF (), t>0 (6.4)
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where a function h on [0, o[ and a distribution function F' on [0, co| are given

3

and the function g on [0, oco[ is unknown. The solution is given in

Theorem 6.9 The unique solution g to equation (6.4) is given by

t
g(t) = / h(t — x) dR(x) + h(t)
0
where R(t) =Y >° | F*"'(t) denotes the renewal function for F.

Proof: Equation (6.4) can be written as ¢ = h-+g* F'. Because of the definition
R =37, F*" we obtain

F*(R*h—}—h):F*h+ZF*”+1*h:ZF*"*h:R*h

n=1 n=1
which shows that ¢ = R * h + h is indeed a solution of (6.4).
Let ¢’ denote another solution and define the function
§:=g —Rxh—h

Then (6.4) implies 6 = F * ¢ and thus 6 = F* % § for all n € N. Since
R(t) < oo for any fixed ¢ > 0, we infer that F* — 0 as n — oo. Hence
d(t) = 0 for all ¢ > 0, which completes the proof.

O

3. Renewal Theorems

In order to present the most powerful results of renewal theory, it will be useful
to introduce stopping times and Wald’s lemma. Recall from (2.3) that a random
variable S with values in Ny U {oo} is called a stopping time for the sequence
X = (Xo:neNy)if

P(S <n|X) =P(S < n|Xo,...,X,) (6.5)
holds for all n € Ny.

Lemma 6.10 For a renewal process N with delay X, and renewal intervals
(X, : n € N), the random variable Ny is a stopping time for the sequence
(X%:?IGENU)

Proof: This follows from the observation that N; = k is equivalent to

k—1 k
Y Xa<t<> X,
n=0 n=0
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which implies that the event V; < k depends only on X, ..., X.
g

Lemma 6.11 Wald’s Lemma

Be X = (X,, : n € Ny) a sequence of stochastically independent positive
random variables with the same expectation E(X,,) = m for alln € N. The
expectations B(X) and E(X1) shall be finite. Further be S a stopping time of
the sequence X with E(S) < oc. Then

S
E (Z Xn> =E(Xo) + E(S) - m
n=0

Proof: For all n € Ny define the random variables I,, := 1 on the set {S > n}
and I,, := O else. Then 25:0 Xn => 0" o I, X, and hence

S 00 0
E (Z Xn> —F (Z Ian> = E(I.Xp)
n=0 n=0 n=0
by monotone convergence, as I, and X, are non—negative. .S being a stopping
time for X', we obtain by definition P(S > 0) = 1, and further
P(S>nlX)=1-P(S<n—-1X)=1-P(S<n-1|Xq,...,Xpn-1)

for all n € N. Since the X, are independent, I,, and X,, are independent, too,
which implies E(/y Xy) = E(Xj) and

E(I,X,) = E(L,) - E(X,) = B(S > n) -m
for all n € N. Now the relation ) .~ | P(S > n) = E(S) yields

S 0o oo
E (Z Xn> - ZE(Ian) = E(Xo) + ZIP(S >n)-m
n=0 n=0

n=1

= E(Xo) + E(S) -m

0

Theorem 6.12 Elementary Renewal Theorem
Be N a renewal process with renewal intervals (X,, : n € N) and mean
renewal time E(X1) = m > 0. Assume further that the mean delay is finite,
i.e. E(Xo) < oco. Then for the counting function Ny the limit
E(N, 1
lim M —

t—oo t m
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holds, with the convention 1 /00 := 0.

Proof: For every ¢ > 0, the bound ¢t < Zfl\io X, holds almost surely. By
Wald’s lemma, this implies

N
t<E <z Xn) =E(Xo) + E(NV;) - m
n=0

and thence for m < oo

1 E(XO)<E(Nt)

m m-t t

forall ¢ > 0. For E(X() < oc and t — o0, this yields the bound

E(NV; 1
lim inf D) > —
t—o0 t m

which trivially holds for the case m = oc.

Now it remains to show that limsup,_, .  E(NV;)/t < 1/m. To this aim we
consider the truncated renewal process, denoted by A/, with the same delay
Xy = X, but renewal intervals X,, = min(X,, M) for all n € N, with M
being a fixed constant. Denote further 7 = E(X,).

Because of f(n < M the bound ng;o f(n < t+ M holds almost certainly for
all ¢ > 0. Taking expectations and applying Wald’s lemma, we obtain

N
E(Xo) +E(N) -m=E > X, | <t+M
n=0
For E(X() < oo and t — oo, this yields
E(N;) 1
lim sup ) < —
t—o00 t m

Since Xn < X, for all n € N, we know that Nt > N forall t > 0. Thus we
obtain further

for any constant M. Now the result follows for M — oo.
0
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Remark 6.13 In view of theorem 6.4 one might be tempted to think that this
trivially implied the statement of the above theorem 6.12. However, the fol-
lowing example shows that a limit with probability one in general does not
imply a limit in expectation.

Let U denote a random variable which is uniformly distributed on the interval
10, 1[. Further define the random variables (V,, : n € N) by

Vo 0, U>1/n
" n, U<1/n

Since U > 0 with probability one, we obtain the limit
V, — 0, n — 00

with probability one. On the other hand, the expectation for V), is given by

E(Vn,):n-IP’(Ugl/n):n-%:l

for all n € N and thus E(V,,) — 1 asn — oc.

A non-negative random variable X (and also its distribution function F') is
called lattice if there is a positive number d > 0 with )~ >° (| P(X = nd) = 1.
If X is lattice, then the largest such number d is called the period of X (and
F'). The definition states that a lattice random variable X assumes only values
that are multiples of its period d.

The next result is proven in Feller [35]. The proof is lengthy and technical and
therefore not repeated.

Theorem 6.14 Blackwell’s Theorem
Be N a renewal process with renewal intervals (X,, : n € N) and mean
renewal time E(X1) = m. If X1 is not lattice, then for any s > 0 the counting
function N; behaves asymptotically as

lim (E(Niys) — E(N)) = %

t—oo

with the convention 1 /0o := 0.

Blackwell’s theorem suggests the following argument: Because of the identity
E(Ny) = R(t), it states that asymptotically

1
R(t+s)—R(t)—>s-a as t— oo
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This means that increments of the renewal function ¢ — R(¢) tend to be linear
(with coefficient 1/m) for large ¢. If we let s — 0, this would suggest

1
dR(t) — —dt as t — oo
m
For functions g which behave nice enough and vanish at infinity (i.e. g(¢) — 0
as t — 00), we thus can hope to establish

tim [ gt — ) dR(r) = - /0 o) dt

t—o0 0

In order to do this, we first need to define what we require as “nice behaviour”
from g. Let g : ]Rar — IR denote a real-valued function on the time axis and
define fora > 0andn € N

al (6.6)

M, (a) :=sup{g(z): (n—1a<z<n
a <z <na} (6.7)

mp(a) :=inf{g(z) : (n — 1)

The function g is called directly Riemann integrable if >">° | M, (a)| and
> 02 1 Imp(a)| are finite for some a > 0 (and then for all 0 < o’ < a), and

ilg(l) a 2 My, (a) = ilir(l] a nzz:l my(a) (6.8)
Remark 6.15 Direct Riemann integrability is somewhat stronger than usual
Riemann integrability. The similarity is that upper and lower sums converge to
the same limit as ¢ — 0. The difference is that this must happen uniformly for
all intervals of the time axis.

In the rest of this book, we will deal with only two kinds of directly Riemann
integrable functions. For these we provide the following lemma, which the
reader may prove as an exercise.

Lemma 6.16 Assume that g(t) > 0 for all t > 0. If either

(1) g is non—increasing and Lebesgue integrable, or

(2) g is Riemann integrable and there is a function g* with g(t) < g*(t) for all
t > 0, such that g* is directly Riemann integrable,

then g is directly Riemann integrable.

Now we can state the main result of renewal theory:
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Theorem 6.17 Key Renewal Theorem
Assume that m = E(X;) > 0, where X is not lattice, and let g denote a
directly Riemann integrable function. Then

t o]

Jim (R*g)(t) = lim [ g(t —z) dR(z) = — [ g(y) dy

t—oo Jg m Jg
holds with the convention 1 /00 = 0.
Proof: Let (z,, : n € Ny) with xg := 0 denote any countable partition of the

time axis ROJF into intervals of the form I, := [x,,_1, x,[. Define the indicator
function of I,, by iy, (t) := 1if ¢t € I,, and i, () := 0 otherwise. Then

t—Tn—1

t
(R x1,)(t) = / in(t—u) dR(u) = / dR(u)
0 t—Tn
=R(t —xp_1) — R(t — )
for all ¢ > x,,. Now Blackwell’s theorem 6.14 yields

lim (R % i) (t) = 2 2n=t

t—o0 m
for every n € N.
For any finite interval [t — [, t[ of length [, the interpretation that R(t) = E(V;)
for an ordinary renewal process N yields with G¢(z) := P(Sn,+1 — t < )
the bound
!
R(t+1) = R() = B(New = N) = [ (R(=2)+1) dGifa)
0
<R()+1=:B(l) <
for every [ > 0.

For a function h = Zn 1 Cnipn with maximal interval length M and coeffi-
cients bounded by > 7 | ¢,, < 0o, we obtain thus

k k [e's)

D en s (Rxin)(t) < (Rxh)(t) <Y e (Ruin)(t) + BM)- >

n=1 n=1 n=k+1

for every k € Nand ¢ > 0. Letting first t — oo and then & — oo, the limit

1 — 1 [>
1 h)( — n — Tp_1) = — h
1m(R>k m;C Tn—1) m/o
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is established for any such function h.

Since g is directly Riemann integrable, there is a family of functions

fre=> _mn()in and hy:=> My(l)in
n=1 n=1
using the definitions (6.6) and (6.7). These functions satisfy f; < g < h; and
have the form of the function h above with interval length /. Then

R+ fi<Rxg<Rxh

for all [ > 0, and the result follows for [ — 0 according to condition (6.8).
O

This proof shows that the key renewal theorem is a consequence of Blackwell’s
theorem. The simple case g := 1jg [, i.e. g(t) = 1 for0 <t < sand g(t) = 0
for t > s yields

. . . 1
Jim (B(Niy.) — B(N)) = Jim (B(N, — Ni-)) = Jim (R g)(t) = — - 5
as an application of the key renewal theorem. Hence the statements in Black-
well’s and the key renewal theorem are equivalent.

Besides its central role in renewal theory, the key renewal theorem will serve
mainly two purposes in the further presentation. First, it will give a foundation
for the proof of the main limit theorem in Markov renewal theory (see chapter
7). Second, it yields a limit theorem for regenerative processes (see section 1)
as an immediate corollary.

4. Residual Life Times and Stationary Renewal Processes

Choose any time ¢ > 0. Denote the duration from ¢ until the next arrival by
B; := Sn,+1 — t and call it the residual life time (or the excess life) at ¢.
Further we define A; := ¢t — Sy, and call A; the age at t. The distribution of
B; appeared already in the proof of theorem 6.17.

Theorem 6.18 Be N an ordinary renewal process with renewal intervals hav-
ing distribution function F'. Then

t
P(By <z)=F(t+x)— / (1-F(t+x—y)) dR(y)
0
forallt > 0. Further the limit

lim P(B, < 2)= /0 (1- F(y) dy 6.9)

t—o0
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holds if F' is not lattice.

Proof: Fix any = > 0. First abbreviate g(t) := P(B; > x) for all ¢ > 0.
Conditioning on X yields

g(t) = /000 P(B; > z| Xy = s) dF(s)

By definition the event {B; > x} is equivalent to the event that there are no
renewals in the interval |¢, ¢ + x|. This observation and the fact that the process
restarts at 51 = X yield

.Q(t_8>a s<t
P(B: > z|Xo =s) =<0, t<s<t+4z
, s>t+x

—_

Hence we obtain the renewal equation

g(t) = /Otg(t —8)dF(s)+1—F(t+x) (6.10)

with solution .
g(t) :/ (1-F(t+z—-vy))dR(y)+1—F(t+x)
0
This yields the first statement. The second one is obtained by using the key

renewal theorem to equation (6.10). This is applicable by condition (1) of
lemma 6.16 and leads to

lim g(t) / (1—-F(t+x)) / (1-F
t—o0 m m

and because of m = [;(1 — F(y)) dy we obtain further

Jim (B <) = 1= [ "0 =P du= - ["0= P dy

O

Remark 6.19 For m = oo, equation (6.9) states that the residual life time
asymptotically tends to infinity with probability one.

Because of the equality {A; > =} = {B;—, > =}, an immediate application
of theorem 6.18 is
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Corollary 6.20 Be N an ordinary renewal process with renewal intervals
having distribution function F'. Then

F(t)— [y "(1—F(t—y)) dR(y), =<t

1, x>t

If F' is not lattice, then the limit

lim P(A; < z) = / 1-F
m

t—o0

holds.

Remark 6.21 The above results show that the distributions of age and residual
life time asymptotically tend to be the same. For m = oo the same phenom-
enon as for the residual life time happens: The age asymptotically tends to
infinity with probability one.

Theorem 6.22 If F is not lattice and E(X?) < oo, then the limit

E(X?)
2m

flim E(B;) =
holds.

Proof: Define the functions g(t) = E(B;) and h(t) := E (B - 1{x,>) for
all ¢ > 0. Then the renewal equation

olt) = h(t) + [ gt =2) aF(a)

holds. The function h is positive, not increasing, and integrable with

AOO h(t) dt = /t: L:(x —t) dF (z) dt
(X?D)

2

Thus the key renewal theorem applies (due to condition (1) of lemma 6.16) and
yields
X2
lim E(B;) = / E(X7)
t—o0 m 2m
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which completes the proof.
O

For a stationary renewal process we would postulate that the distribution
of the counts in an interval [s, s + ¢] be independent of s and thus equal the
distribution of N. If this holds for a process A/, then we also say that N has
stationary increments. This implies in particular that the distribution of the
residual life time must be independent of £, i.e. it coincides with the distribution
of By and hence of X. Regarding the limit given in (6.9), we first guess that
it satisfies

PO <) = — [ (1= F) dy 6.11)

for all x > 0, where F' denotes the distribution function of Xy and further
m = E(X1) < oc. Indeed we can show

Theorem 6.23 For a renewal process N defined by (6.11) the following prop-
erties hold:

(1) E(Ny) =t/m  forallt >0

(2)P(B;<z)=m™' [[(1—-F(y))dy forallt>0

(3) N has stationary increments.

Proof: (1) The distribution G of X, has a density g(t) = (1 — F(t)) Hence
the Laplace—Stieltjes transform (LST) of G is

/ e st dt—/ e S'F(t) dt)
0 0

- L <1 _ 1/ e St dF(t)> - 1_71:(8)
m\s SsJg sm

with 15’(5) denoting the LST of F. According to (6.1) we have the repre-
sentation E(Ny) = G = > o2 F*"(t) for all ¢ > 0. Hence the LST of
M (t) := E(N;) is given by

G(s) = [O et (1 F(t)) di = — (

m m

- B G(s) 1
M(s) = 71 - F(s) =

for all s > 0, and thus coincides with the LST of the measure dz/m. Since the
LST uniquely determines a function on [0, oc[, this proves the first statement.
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(2) The joint distributions

]P)(Bt > l‘aNt - ’I’L) = / ]P(Bt > LE,Nt = 7’L|Sn — y) dG * F*nfl(y)
0

— /Ot(1 — F(t+x —y)) dG = F* (y)

for n > 1 are immediate from the definition. Abbreviating F'°(x) := 1—F(x),
G¢(z) := 1 — G(z), and denoting M (t) := E(NN;), we can write

P(B, > z) =Y P(B; >z, N, =n)

n=0

ot
—Gc(t+x)+2/ Fe(t +x — 1) dG x F*™ 1(y)
n=1"9

:Gc(t+x)+/th(t+x—y) d (iG*F*"‘1> (y)
n=1

0

—Gc(t+a:)+A Fe(t+x —y) dM(y)

Using statement (1) and the definition of (G, we obtain

1 t+x 1 t
P(By>x)=1-— (I-F)dy+— [ A-F(t+z—y))dy
m Jy m Jy
1 x
=1-— 1-F d
~[a-ruya

which proves the second statement.

(3) The difference Ny; s — N, simply counts the number N/ of events in time
t of the renewal process N/ with the same distribution F' of X; but a delay
X(’) ~ Bs. Now statement (2) shows that Xy ~ Bs; = By. Hence we obtain
N/ = Ny = Ny;s — Nj in distribution, which was to be proven.

0

Because of the results above a renewal process which satisfies condition (6.11)
is called stationary renewal process. As one would expect, also the mean
residual life time E(B;) of a stationary renewal process coincides with the
limit of the mean residual life time of an ordinary renewal process:

Lemma 6.24 For a non—negative random variable X the nth moment can be
expressed by

E(X™) = / P(X >2)-naz"" ' da
0
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Proof: This follows simply by writing

E(X”)—/OOOIP’(X”>z) dz—/OOOIP(X> Vz) dz

and substituting » = {/z with nz"~! dz = dz.
U

Theorem 6.25 For a stationary renewal process with E(X?) < oo the mean

residual life time is given by

E(X?)
2m

E(B:) =
independently of t > Q.

Proof: Using part (2) of theorem 6.23, we obtain

E(Bt):/ P(B: >y) d / / (1= F(z)) dx dy
z=y
= / / (1-F dyd:c—/ P(X1 > x) o dx
m Jy=0

and the statement follows from lemma 6.24.
O

Example 6.26 Waiting time at a bus stop

Consider a bus stop where buses are scheduled to arrive in intervals of length
T. However, due to traffic variations the real inter—arrival times are uniformly
distributed within intervals [T" — a, 7'+ a| with some a > 0. Now suppose that
somebody arrives at the bus stop “at random”, i.e. without knowing the bus
schedule. Then we can model the mean waiting time for the next bus by the
mean residual life time E(B;) in a stationary renewal process with distribution
X1 ~U(T —a,T + a). We obtain

1 T+a ) 1 ) , a2
IE(X1) 2@/ r° dr = % 3(6T a—|—2a):T -1-3

and by theorem 6.25

2
T?+ % T a?
2.T 2 6T
Thus the mean waiting time for random inter—arrival times (meaning a > () is

longer than it would be for deterministic ones (namely 7'/2). This phenomenon
is called the waiting time paradox.

E(B) =
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5. Renewal Reward Processes

Consider an ordinary renewal process where for every renewal interval X,
there is a real-valued random variable Y,,, called the nth reward, which may
depend on X,. If the pairs (X,,, Y,,),n € Ny are iid, then the two—dimensional
stochastic chain ((X,,Y,) : n € Np) is called an ordinary renewal reward
process. The random variable

N¢—1

Y(t)= >V,
n=0

is called the total reward until time ¢.

Theorem 6.27 IfE(|Y1|) and m = E(X7) are finite, then

LY EW)

t—oo m

holds with probability one. If there is further a constant ¢ € R with Y1 > ¢

almost certainly, then
E [ ]
L E(Y()  E(W)
t—00 t m

Proof: The first statement follows from

Y() _ SN N,
t N, t

as the first factor tends to E(Y7) by the strong law of large numbers and the
second tends to 1/m according to theorem 6.4.

For the second statement, we can assume without loss of generality that Y is
positive almost certainly, since otherwise we consider Z,, := Y,,+c instead. NV,
is a stopping time for the sequence (Y}, : n € Ny), as {N; < n} is independent
of (Xp4x : k € N) and thus independent of (Y,,.x : k& € N). Hence we can
apply Wald’s lemma, which yields

Ni—1 Nt
E <Z Yn> —E <Z Yn,) —E(Yy,) = R(t) - E(Y1) —E (Ya,)
n=0 n=0

and thus
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for all t > 0. Because of lim;_,o, R(t)/t = 1/m it now remains to show that
lim; o E(Yx;, )/t = 0. To this aim we condition on X to obtain

g(t) == E(Y,) = /O T E (Y Xo = u) dF(u)

- /OtE(YNt\XU — ) dF(u) + /tOOE(YNt\XU = u) dF(u)

for all ¢ > 0. Abbreviating the latter integral by h(t) and recognizing that
E (Yn,|Xo = u) = g(t — u), we obtain the renewal equation

o(t) = /O o(t —u) dF (u) + h(t)

Theorem 6.9 yields the unique solution

g(t) = h(t) -l—/ h(t —u) dR(u)

0

forall t > 0. As Xg > t implies Ny = 0, we know further that
h(t) = / E (Y| X0 =u) dF(u) <E(Yy) < o
t

and h(t) — 0 as t — oo. This means that for any given ¢ > O thereisa 7 > 0
such that |h(t)| < e for all ¢t > T. Using this we obtain

t—T t
g(tt) < hit)\ +1/0 |h(t_u)dR(u)+1/t_T|h(t—u)|dR(u)
C L RE-T) L RO RG-T)

t t

IA

e S E(Y)
for all t > T. For t — oo the right-hand side tends to £/m by the elementary
renewal theorem, as R(t) — R(t — T') is bounded by R(T') + 1 (see the proof
of the key renewal theorem). This completes the proof, as £ can be chosen
arbitrarily small.

O

Example 6.28 Machine maintenance

Consider a machine that is prone to failure and may be either repaired or re-
placed by a new machine. Let X,, denote the run time of the machine after the
n — 1st failure and assume A := E(X;) < oco. Since the state of the machine
after the nth repair is usually worse than after the n — 1st repair, we model this
by the assumption that (a” ' X,, : n € N) with a > 1 forms a renewal process.
In particular, the X,,,n € N are independent random variables. The sequence
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(X, : n € N) is called a non—increasing geometric process with parameter a.
The reward rate for the machine running is r = 1.

The duration of the nth repair is denoted by Y,,, n € N, with the assumption
w:=E(Y1) < co. As the machine becomes more and more difficult to repair,
we assume that (b"*IYR : n € N) with b < 1 forms a renewal process. The
sequence (Y, : n € N) is called a non—decreasing geometric process with
parameter b. Again this implies that the Y;,,n € N are independent random
variables. Furthermore we assume that {X,,,Y,, : n € N} is an independent
set of random variables. The cost (i.e. the negative reward) rate for the repair
of the machine is denoted by ¢; > 0.

Instead of repairing the machine after a failure, we can choose to replace it by
a new machine. This incurs a fixed cost ¢ > c¢;. Given this information, we
want to determine the long—run expected reward per unit time for the machine.
This depends on the variable N € N which indicates the policy that a machine
is replaced after the Nth failure.

Clearly the replacement times (7,, : n € Ny) with Ty := 0 form an ordinary
renewal process and the reward of a machine (i.e. between replacement times)
is independent from the rewards and life times of other machines. Denote the
life time and the reward of the nth machine by L,, := T, — T,,_; and R,,
respectively. Then ((L,, R,,) : n € N) is a renewal reward process and the
long—run expected reward per unit time is given by

B AR a6 e i)
E(Ly) AN a1 4 SN (k)

according to theorem 6.27. In order to find the optimal replacement policy,
this equation can now be used to determine the value N which maximizes the
expected reward rate R(NNV).

Notes

A classical presentation of renewal theory is chapter 11 in Feller [35]. The
presentation in this chapter is largely adapted to Ross [74, 75] as well as Karlin
and Taylor [46]. The concept of regenerative processes has been developed by
Feller and Smith [80, 81]. Example 6.28 is taken from Lam Yeh [51].

Exercise 6.1 Prove theorem 6.3.

Exercise 6.2 In the proof for Wald’s lemma 6.11 we have used the relation
E(S) = Y72y P(S > n), and in theorem 6.18 E(F) = [(1 — F(y)) dy.
Give a proof for these equations.
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Exercise 6.3 Show for a Poisson process N with intensity A > 0 that

P(N; = k) = (Al:!)ke—“

forallt > 0and k € Ny, and E(IV;) = A - t.

Exercise 6.4 A plumber receives orders at time intervals which are distributed
exponentially with parameter A. As soon as he has received an order he goes to
work, which takes an exponentially distributed time with parameter y. During
work he cannot receive any orders. Assume that at time zero the plumber is
working. Give a model of the plumber receiving orders in terms of a renewal
process and determine the density of the renewal intervals’ distribution.

Exercise 6.5 An intelligence agency eavesdrops on telephone calls automati-
cally. If there occurs a suspicious sequence of words, a closer investigation is
initiated. The probabilitiy for such a sequence is one in a thousand for every
call. The length of a call is distributed exponentially with a mean of 20 sec-
onds. How long is the expected amount of time before a closer investigation
begins? Use Wald’s lemma.

Exercise 6.6 Let N = (N; : t > 0) denote an ordinary renewal process with
X1 ~ F'. Show that the current life time X, satisfies

P(Xy, >z)>1— F(x)
for all x > 0.

Exercise 6.7 Give an example which shows why we need to assume in Black-
well’s theorem that the distribution of the renewal intervals is not lattice.

Exercise 6.8 Prove lemma 6.16.

Exercise 6.9 Show that the age A; of a stationary renewal process is distrib-
uted as

1 X
P(A <) = [ (1= Flw) dy
m Jy
independently of ¢ > 0.

Exercise 6.10 Show that for an ordinary renewal process with E(X?) < oo
and m := E(X) the limit

t—o0 2m
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holds.

Exercise 6.11 Passengers arrive at a train station according to an ordinary re-
newal process with rate 1/m. As soon as there are N passengers waiting, the
train departs. The cost for the ticket per passenger is C. Assume that the rail-
way company reimburses every passenger for the waiting time by an amount of
W per time unit that the passenger had to wait. Determine the minimal value
for C' such that this train connection will be profitable in the long run.

Exercise 6.12 A delayed renewal reward process is defined as a stochastic
chain ((X,,Y,) : n € Np) for which ((X,,Y,) : n € N) is an ordinary
renewal reward process and Xy > 0. The pair (X, Yy) may have a different
distribution than (X1, Y7). Prove the statement of theorem 6.27 for a delayed
renewal reward process that satisfies E(X() < oo and E(|Yy|) < oc.



Chapter 7

MARKOV RENEWAL THEORY

1. Regenerative Processes

Let Y = (Y; : t > 0) denote a stochastic process on a discrete state space
E with right—continuous paths. Further let 7" denote a random variable with
values in [0, oo] such that the condition

P(T < t|Y) =P(T < t[Yy:s<t) (7.1)

holds for all ¢ € Ra’ . Such a random variable is called a (continuous) stopping
time for the process ). As in the analogue for discrete time, the defining
condition means that the probability for the event {T" < ¢} depends only on
the evolution of the process until Y;. In other words, the determination of a
stopping time does not require any knowledge of the future.

If there is a sequence 7 = (T}, : n € Ny) of stopping times for ) with Tj) := 0
and Ty, 11 > T, for all n € Ny such that 7 defines an ordinary renewal process,
and if further

IPj(YVTnﬂ‘/l =J1s--- 7YTn+tk = ]k‘Yu tu < Tn) = ]P)(Ytl =J1,--- 7Ytk: = Jk)

forallk € N, ¢1,...,t; > 0and n € Ny holds, then ) is called a regenerative
process. The T,, are called regeneration times and the defining condition
above is called regeneration property. The interval [T}, 1, T),[ is called the
nth regeneration cycle.

Example 7.1 M/G/k Queue
The M/G/k queue has a Poisson arrival process and k servers with general
service time distribution. Whenever the queue is empty, all servers are idle and
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only the arrival process has an effect on the future. Thus the system process
regenerates at the points 7}, of the system becoming idle for the nth time. The
durations 7,1 — 15, between these points are iid. Hence the M/G/k system
process is a regenerative process.

Theorem 7.2 [f T} is not lattice and E(T1) = m < oo holds and if the func-
tion K;(t) := P(T} > t,Y; = j) is Riemann integrable, then
1 oo

mj = lim P(Y; = j) = K;(t) dt

=00 m Jo

forall j € E.

Proof: Let F' denote the distribution function of 7. By conditioning on the
first regeneration time 77, we obtain the equation

P(Yi = j) = P(Th > 4, Y; = ) + /Otw _ Ty = ) dF(s)

—P(Ty > 1,Y; = j) + /Otlf"(Yts = j) dF (s)

where the second equality is due to the regeneration property. The function
K;(t) =P(T1 > t,Y; = j) is non—negative and bounded by (77 > t), which
in turn is Lebesgue integrable and non—increasing. By assumption K(t) is
Riemann integrable. Hence lemma 6.16 yields that K;(¢) is directly Riemann
integrable. Thus the key renewal theorem 6.17 applies and yields the statement.
0

Introduce a real-valued function f : F — R on the state space of the process
Y. The value f (i) can be interpreted as a reward rate which is incurred in state
1€ E.

Theorem 7.3 [fE(T1) < oc and f is bounded, then

Mg / St E(TI)

holds with probability one. If further E(T?) < oo, then

Jim <1Q/Otf(Ys) ds) _ IW

Proof: Define X,, := T,,+1 — T;, and Z,, := f Tnt1 f(Y5) ds for all n € Ng.
Since ) is regenerative, the chain ((X,, Z,) : n e Np) is a renewal reward
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process, with N; := max{n € Ny : T,, < t} and Z(t) := > ! Z,, defined
as usual. We can write

t

[ rvyas=z+ [ g as 12)

TNt

for all £ > 0. Since Z(t)/t converges to the fraction on the right-hand side

of the statement (see theorem 6.27), it remains to show that ¢ ! f,}N f(Yy) ds
t

tends to zero as ¢ — oco. We obtain

1 rt 1 [t Ny Xp N,
- Y,)ds = — Y)ds- — < Lesup|f(i)] - —
[ sas= g [ o< g sl

X N,

— lim 22 . sup|f(i)]- lim —*

n—00 N e[ t—oo t

as t — oo. According to the strong law of large numbers, we know that
> p—1 Xk/n — m < oo almost certainly and hence X,,/n — 0 as n — oc.
This and theorem 6.4 complete the proof for the first statement.

The same partition (7.2) and theorem 6.27 show that for the second statement
it remains to show that ¢~ <f;N f(Ys) ds) — 0 as t — oco. However, this
t

follows from .

f(Ys) ds < Ay - sup [ f(7)]
T, i€E

and limy_, E(4;) = E(X?)/(2m) < oo by exercise 6.10 and the assumption
that E(T?) be finite.
0J

Theorem 7.4 If T is not lattice and E(T) as well as E ‘ fOTl f(Yy) dt‘ are
finite, then

E [ f(Y3) dt .
OE(#Q Zj%;%'f(ﬁ

with m; as defined in theorem 7.2. If Ty is not lattice and E(T1) < oo, then

t
7Tj = tli)r& — ; 1{Ys:j} ds
holds with probability one for all j € E. This means that the limiting proba-
bility m; of j equals the asymptotic proportion of time spent in state j for every
path.
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Proof: The Lebesgue construction of an integral yields

fYt ) dt =" f(j) /1{1/”}6“

0 JjEE

and after taking expectations we obtain

E fYtdt > rG) /K

0 JjEE

with K;(t) = P(T1 > t,Y; = j). Now the first statement follows from
theorem 7.2. The second statement follows from the first one and theorem 7.3

for f(Yt) = 1{%:‘7‘}.
O

2. Semi-Markov Processes

In this section we will introduce a special class of regenerative processes which
is very useful for the analysis of many queueing systems.

Let E/ denote a countable state space. For every n € Ny, let X,, denote a
random variable on F and 7;, a random variable on Rar such that Ty := 0,
T, < T,y forall n € Ny, and sup,,_, ., I, = oo almost surely. Define the
process Y = (Y; : t € R{) by

Y = X, for T, <t<Th4
forall ¢ > 0. If

]P)(Xn—H = j, Tn+1 — Tn S ’11,|X(), e ,Xn, T(], e ,Tn)
= ]P)(Xn-i-l =Jy Tny1 —Tn < U‘Xn) (7.3)
holds for all n € Ny, j € E, and v € Ry, then ) is called a semi-Markov
process on E. The sequence (X,7) = ((X,,T,) : n € Np) of random

variables is called the embedded Markov renewal chain. We will treat only
homogeneous semi—-Markov processes, i.e. those for which

Fij(t) = P(Xpy1 = J, Tny1 — T <t X, = 1)

is independent of n. For all i, j € E, the functions t — Fj;(¢) are assumed
non-lattice.

By definition a semi—Markov process is a pure jump process. Thus the sample
paths are step functions:
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A Yt
=]
X=i o+

Figure 7.1. Typical path of a semi-Markov process

By construction, the semi—Markov process ) is determined by the embedded
Markov renewal chain (X', 7) and vice versa.

Remark 7.5 Let ) denote an homogeneous Markov process with discrete
state space E' and parameters \;, ¢ € F, for the exponential holding times. The
embedded Markov chain X of ) shall have transition matrix P = (pij)i,je E-
Then ) is a semi—Markov process with

Fii(t) = pij - (1 - e*Ai't>

for all 4,5 € E. Thus for a Markov process the distribution of 7,41 — T,
is exponential and independent of the state entered at time 7;,11. These are
the two features for which the semi—Markov process is a generalization of the
Markov process on a discrete state space.

Theorem 7.6 Let Y be a semi—Markov process with embedded Markov re-
newal chain (X, T). Then X = (X,, : n € Ny) is a Markov chain.

Proof: From the condition (7.3) we obtain for every n € Ny

P(X,11 =7|Xo,. .., Xpn) =P(Xpnt1 = J, Tht1 — T, < 0| Xo, ..., Xp)
=P(Xpy1 = J, Tng1 — Tn < 00| Xy)
- P(Xn—H = ]‘Xn)

since all 7;, are finite by definition.
O

We denote the transition matrix of X by P = (p;;); jer. Then the relation

pij = P(Xpq1 = jl X = i) = tlggc Fi;(t)
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obviously holds for all ¢, € E. This means in particular that the functions
F;;(t) are distinct from distribution functions in the feature that the total mass
distributed by them may be less than one. Therefore they shall be called sub—
stochastic distribution functions.

According to its embedded Markov chain &', we call a semi—Markov process
irreducible, recurrent or transient. Clearly, an irreducible recurrent semi—
Markov process is regenerative, as one can fix any initial state 7+ € E and find
the times of visiting this state to be a renewal process.

Define G;j(t) := Fjj(t)/pi; forallt > 0 and i,j € E if p;; > 0, while
Gi;(t) := 0 otherwise. The definitions of P and F yield the interpretation

Gij(t) =P(Thy1 — Ty <t Xy = 0, X1 = J)
which in turn yields

Theorem 7.7 Let ) denote a semi—Markov process with state space E and
embedded Markov renewal chain (X, T). Then

P(Tl — TO S ULy 7Tn — Tn—l S un‘Xo, e ,Xn)
= Gxo,x, (ur)... Gx, 1,Xn (un)

for all n € N, meaning that the increments Ty — Ty, ..., T,, — T,,_1 are con-
ditionally independent, given the values Xy, . .., X,.

Remark 7.8 If the state space F is trivial, i.e. consisting of only one element,
then these increments are even iid. In this case, 7 = (T, : n € Np) is
a renewal process. This property and theorem 7.6 justify the name Markov
renewal theory for the study of semi—Markov processes, as the latter generalize
Markov processes and renewal processes at the same time.

2.1 Transient distributions

For Markov chains and Markov processes we have been able to give formulae
for the transition matrices. Because of the Markov property, this in turn de-
termined all finite—dimensional marginal distributions and thus the complete
distribution of the process. In the case of a semi—Markov process, we can-
not give as much information. However, what we can derive are the transition
probabilities starting from a regeneration time. Since Ty := 0 is a determin-
istic regeneration point, this yields together with a given initial distribution
the one—dimensional marginal distributions at any given time. These shall be
called transient distributions.

In order to determine the transient distributions of a semi—Markov process, we
will view the collection F' = (Fij)i,je g of sub—stochastic distribution func-
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tions as a matrix with entries being functions instead of numbers. This matrix
contains all stochastic laws for the construction of the semi—Markov process
Y. Therefore it shall be called the characterizing matrix of ).

We define a matrix convolution of two such matrices F' and G by the entries
(F Q) (1) / Gy (= ) dFy(u)
kEE

forall 4,5 € E and ¢t > 0. Based on this definition, we define the matrix
convolutional powers by F*? := I, denoting the identity matrix on , and by
recursion F*" 1 = [*" x I Now we can state the following formula for the
transient distributions of a semi—Markov process:

Theorem 7.9 Let ) denote a semi—Markov process with characterizing matrix
F, and 7 any initial distribution of ). Then the transient distribution of Y™ at
any time t is given by P(Y;™ = j) = > .. p i Pij(t) with

Z/ (1—2 kt—u) dF; (u)

kek

Proof: This expression is obtained by conditioning on the number n of renewal
intervals that have passed until time ¢.
O

2.2  Asymptotic behaviour

Next we want to examine the asymptotic behaviour of the transient distribu-
tions, i.e. we want to determine the limits lim;_,o P(Y; = j) forall j € E.
This will be achieved by specifying the results which have already been ob-
tained for regenerative processes.

If we want to use theorem 7.2, then we need the information for the respective
regenerative process with embedded renewals being the visits to any fixed state
J € E. Define

[os)
mij = E(Tl . ]—Xl:j‘XO = 7) = / t (]Fl](f)
0

m; ‘= E(Tl‘Xo == Z) = Zmij == /Uoo (1 - Z Flk(t)> dt

JjeEE keE

for all ¢, 7 € E. Further define
7 :=min{T, : X;, = j,n € N} and p;; = E(r;|Xo = 1) (7.4)
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for all 4, j € E. The random variable 7; is called first return time to state j.

Now consider any Markov renewal time 7;,. If the Markov chain X is irre-
ducible and positive recurrent with stationary distribution v = (v; : i € E),
then we would expect a proportion v; of sample paths with transition into j
at time 7;,. Furthermore, m; represents the mean time spent in state j until
the next transition happens at time 73,1 1. Therefore, if there is an asymptotic
distribution 7; = lim;_,~, P(Y; = j), we would expect it to be proportional to
Vi - my, i.e.
Vj - m;

T = ="
J
Zz’eEVi'mi

We will prove this by examining the above mentioned embedded regenerative
process of visits to state j.

Lemma 7.10 The relation

Hij = m; + sz‘k,ukj
k73

holds forall i,j € E.

Proof: Conditioning on the state X; = k at time 77, we can write

ij = Z E(7j - 1x,=k|Xo = 1) = Z(pikukj + mig) + mi;

keE k#j
= Z Mk + Zpik kg =M+ Zpikﬂkj
keE k#j k#j

which is the statement.
O

Lemma 7.11 Let Y denote a semi—-Markov process with embedded Markov
renewal chain (X,T). Assume that X is positive recurrent and denote its
stationary distribution by v = vP. Further assume that ) ;. v;m; < 0.
Then the mean recurrence time of a state j € F can be expressed by

. 1
pij = E(7j| X0 = j) = o ZVimi
1 icE

forall j € E.
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Proof: We multiply both sides of lemma 7.10 by v; and sum up over all i € E.
Then we obtain

Z Vifbij = Z vimi + Z Vi Z Piklkj = Z vimi + Z ik Z ViDik

i€k i€k i€E  k#j i€E k£j  i€E
= E vim; + § Vk ok
i€k k#j

which implies
vikii = Y vimi
i€E
and thus the statement.
O

Theorem 7.12 Let Y denote a semi—Markov process with embedded Markov
renewal chain (X, T) and characterizing matrix F. Assume that X is irre-
ducible and positive recurrent and v = v P is the stationary distribution of its
transition matrix P. Further assume that Zie g vVim; < oo. Then the limits
ieE Villli

hold for all j € F, independent of the initial distribution.

Proof: Since the times of successive visits to state j form a (possibly delayed)
renewal process, the process )V is regenerative. Since all functions Fj; are
assumed non-lattice, the regeneration cycles of ) are not lattice either. Thus
we can apply theorem 7.2 (in the form of exercise 7.1), which yields

lim P(Y; = j) = 2

t—o0 Hjj

Now lemma 7.11 leads to the statement.
O

Example 7.13 This limit theorem finally suffices for an application to Markov
processes. The two limit theorems (3.6) and (3.7) follow from the interpreta-
tion of a Markov process as a special semi—Markov process. For a Markov
process, the mean holding times in a state 7 are given by

o] S8 1
m; = / P(Th > t|Yo =) dt = / e Ntdt = —
0 0 Ai
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forall 7 € E. Since \; > A > 0foralli € FE, we know that EieE v;m; < 00.
Hence we obtain

Vil
lim P;i(t) = lim P(Y; = j) = =2~
Jim Py = i PO =) = =

as given in equation (3.5).

3.  Semi-regenerative Processes

Semi—Markov processes play a similar role for the analysis of a more general
class of processes that renewal processes have played for the analysis of regen-
erative processes. These more general processes are called semi-regenerative
and shall be defined as follows:

Let Z = (Z; : t € R} denote a stochastic process with countable state space
FE. Then Z is called a semi-regenerative process if there is an embedded
Markov renewal chain (X, 7") such that all 7,, are stopping times for Z, all
X, are deterministic functions of (Z,, : u < T},), and

P(ZTn+t1 = j17' . '5ZTn+tk :]k‘Zu U S T’an’n = Z)
=P(Zy, = j1,..., Zs, = jp|Xo=1) (71.5)

holds for all n,k € N, i,j1,...,5k € E,and t; < ... < t;, € RI. This
condition postulates that for any prediction of the process (Z,, : u > T,)
all information of the past (Z, : u < T,,) is contained in the state X,,. We
abbreviate

Kij(t):=P(Ty > t,Zy = j| Xo = 17)

foralli,j € Fandt € RY.
Theorem 7.14 The transient distributions of a semi—regenerative process Z

with embedded Markov renewal sequence (X, T ) and initial distribution m are
given by P(Z; = j) = >, p mi Py (t) with

Py() = 303 [ Kiytt =) aFg(w)
n=0kcE "

forallt >0andi,j € E.

Proof: This expression is obtained by conditioning upon the number n of
Markov renewal points until time ¢ and the state & which is observed at the
last Markov renewal point before ¢.

0
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The following limit theorem is the main result of this chapter and will be ap-
plied to many classical queueing systems later on. We define the column vector
m = (m; : i € FE) with

m; = E(Tl‘XO = Z)
for all 7 € E, and abbreviate vm := ZieE v;m;.
Theorem 7.15 Let Z denote a semi—regenerative process with irreducible and

positive recurrent embedded Markov chain X. Denote the stationary distribu-
tion of X by v and assume that vm < oo. Then the limit

[e.e]

1
lim P(Zy =)= — > v | Kyt) dt

t=o0 vm 0
keE

holds for all j € E and is independent of the initial distribution.

Proof: Since X is positive recurrent and ¥m < oo, the process Z is regener-
ative with regeneration times being the transition times to some state ¢ € F.
Then theorem 7.2 and lemma 7.11 yield

1 o
lim ]P’(Zt = j) = — ]P)(Zt =7,7 > t|X() = Z) dt
t—oo Kii Jo

V; i
= — . </ 17,—; dt>
vm 0

with 7; defined as in (7.4) and [E; denoting the conditional expectation given
X = i. Defining the stopping time o; = min{n € N : X,, = i}, we can write
7, =y ot (Ty — Tn—1). The semi-—regenerative property (7.5) yields

Ty Ty
E; (/ 1z,—jdt| Zy :u<Tp 1,Xp 1= k‘) = Eg (/ 1z,—; dt)
Tt 0

foralln € N and k£ € E. Hence we can write

g; T1
i =9) = VZ . . '
tll%lo]P’(Zt =J)= vm E; <nzz:1 Ex, , </o 1y,—; dt>>
v; i T

n=1kek

o; T
Vi
= > Ei <; 1Xn]:k> Ky, <A 17,— dt>

keE




146 AN INTRODUCTION TO QUEUEING THEORY

By theorems 2.24 and 2.27 we get

o
1z
E; <§ 1Xn1=k> =
n=1 v

whence the statement follows.
O

Notes

Early papers on Markov renewal theory go back to Pyke [69, 70]. Classi-
cal textbooks on semi—Markov processes are Ross [74, 75] and Cinlar [25],
the latter containing further an extensive presentation on semi-regenerative
processes. The proof for theorem 7.15 is due to Asmussen [5]. For more ad-
vanced material on regenerative processes see Kalashnikov [44].

Exercise 7.1 A regenerative process is called a delayed regenerative process
if the respective sequence 7 = (7, : n € N) of stopping times is a delayed
renewal process. Prove theorem 7.2 for delayed regenerative processes.

Exercise 7.2 Prove theorem 7.7.

Exercise 7.3 Consider a machine that switches states between ”on” and “off”.
First it is switched on for an amount X; of time, then it is off for an amount
Y1 of time, followed by an amount X, of time switched on, and so forth.
Assume that the sequences (X, : n € N) and (Y,, : n € N) are both iid
with distribution functions F' and GG for X; and Y7, respectively. Give a model
for the state of the machine in terms of a semi—Markov process and show that
for F' x G being not lattice and E(X; + Y1) < oo the long—run fraction 7, of
time that the machine is switched on can be expressed as

_ E(X)
Ton T E(XT) + E(1)

Such a process is called an alternating renewal process.

Exercise 7.4 For a positive recurrent Markov process with discrete state space
E, derive an expression for the mean recurrence time to a state 7 € E.



Chapter 8

SEMI-MARKOVIAN QUEUES

The term semi—Markovian queues signifies the class of queues that can be
analyzed by means of an embedded semi—Markov process, i.e. by modelling
the system process of the queue as a semi-regenerative process.

1. The GI/M/1 Queue

The first queue that shall serve as an example for an application of the semi—
Markovian method is the GI/M/1 queue. This has an arrival stream which is
a renewal process, i.e. the inter—arrival times are iid with some common dis-
tribution function A. There is one single server with exponential service time
distribution. Its intensity, i.e. the parameter of the exponential distribution,
shall be denoted by > 0. The service displine is FCFS and the capacity of
the waiting room is unbounded.

The system process Q = (Q; : t € RY) has state space E = Ny, with Q;
indicating the number of users in the system (i.e. in service or waiting) at time
t. It can be modelled by a Markov process only for the case of exponential
inter—arrival times, i.e. for A(t) = 1 — e~ with some \ > 0, since only the
exponential distribution is memoryless (see section 4). For general distribution
functions A, we need to find another method of analysis.

One feature that clearly distinguishes this particular queueing system GI/M/1 is
the independence of the arrival process from the rest of the system, which leads
immediately to the construction of an embedded Markov renewal sequence at
times of arrivals. This is possible since at times of arrival we know that the
new inter—arrival time has just begun and because of the memoryless service
time distribution we do not need to remember anything else than the number
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of users in the system. Thus an analysis of the system as a semi-regenerative
process seems appropriate. That this is indeed successful will be shown in the
following.

Define T}, as the time of the nth arrival and X,, := @7, — 1 as the number
of users in the system immediately before the nth arrival. Clearly, the 7, are
stopping times and X, is a deterministic function of (J7;,. Assume that A is
not lattice. Further we postulate A(0) = 0 and E(A) < oc. This implies in
particular that T,, — oo almost surely as n tends to infinity. The sequence
X = (X, : n € Np) is a Markov chain since at times of arrivals the future
of the system is determined only by the current number of users in the system,
due to the memoryless property of the service times. The same property of the
queue ensures the validity of equation (7.5) for the system process Q.

Thus the system process Q is semi-regenerative with embedded Markov re-
newal chain (X, 7), denoting 7 = (7,, : n € Ny) with Ty := 0. For the
characterizing matrix F' of (X, 7) we obtain

ot ()1 .
T e uf%dA(t), 1<j<i+1
- 1_22=0Fik(x)7 J=0

0, j>i+1

forall i, j € E = Ny. The transition probability matrix P = (p;;); jen, of X
is given by its entries
o t)itl—i . .
Aiy1—j = fo' e “t((’ﬁﬁli,j), dA(t), 1<j<i+1
Pij = \bi=1—=> _,an, j=0
0, j>i+1

for all 7,57 € Ny. Here the first line describes the case that within an inter—
arrival time exactly 7 + 1 — j users are served such that immediately before the
next arrival there are j users in the system, given that ¢ users have been in the
system immediately before the last arrival. The third line states that after one
inter—arrival period there can only be an increase by one user in the system.
The second line distributes the remaining probability mass to the only possible
case left.

Clearly, b,, = Ziozn 41 ax holds for all n € Ny. With the abbreviations a,, and
bn, the matrix P is strucured as

b() a 0 0 0
b1 ay ap 0 0 e
P = b2 as a1 ap 0 Ce (81)
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Such a matrix is called upper Hessenberg matrix or skip—free to the right.
It is characterized by the feature that above the first diagonal on top of the main
diagonal the matrices contain only zeros.

The function K (¢) describing the behaviour of the system process between
Mar-kov renewal points is given by K;;(t) = P(T} > t,Q; = j|Xo = 1)
for 7,5 € Ng. Exploiting the independence of arrival process and service we
obtain

(1— A@p) - el 1<j<i+l
Kij(t) = q (1 - A®t))-ertyoe, WD 5= (8.2)
0, j>i+1

forallt > 0, and ¢, 5 € Ny. The transient distributions of the system process
can now be determined according to theorem 7.14.

In order to employ theorem 7.15 for the calculation of the asymptotic distribu-
tion of the system process, we need to determine the stationary distribution v
of X, and the vector m of the mean time between Markov renewal points. The
vector m is obtained in a straightforward manner as

mi = E(T1|Xo = i) = E(A) (8.3)

independently of ¢ € Ny, since the arrival process does not depend on the
number of users in the system. Thus the vector m is constant.

The most difficult part is to determine the stationary distribution v of the
Markov chain X. Since ag > 0 and b, > 0 for all n € Ny, the transition
matrix P is clearly irreducible. Hence there is at most one stationary distribu-
tion of X'. The stationary distribution v of X" can be determined by solving the
following system of equations:

oo oo
=Y vpby and v = Y Ul g (8.4)
n=0 n=k—1

With a geometric approach, i.e. assuming v, = (1 — &) - £" for all n € Ny and
some 0 < £ < 1, the equations for k£ > 1 can be transformed to

(1= =01-¢ )
=k—

n

an ppn & E=Y e (85)
n=0

1
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If some 0 < £ < 1 satisfies this equation, then

%] [%S) [e%S] oo k—1
o= by =(1=> & Y ar=01-9) ) a"
n=0 n=0 k=n+1 k=1 n=0

:Zak(l—fk):1—a0—2ak§k:1—ao—(§—ao):1—5
k=1 k=1

holds, too. This means that the approach
v, = (1 =&)E" forall n € Ny (8.6)

would yield a stationary distribution for & if the number 0 < £ < 1 satisfying
§= Zfﬁzo &"a,, can be determined.

To this aim, we consider the power series f(x) = > ; a,z™ which is well-
defined on the interval [0,1]. Clearly, f(1) = 1 and f(0) = ag > 0. Since
a, > 0 for all n € Ny, we obtain f”(x) > 0 for all # which means that the
function f is strictly convex on [0, 1]. A fix point £ = >~ &"a,, geometri-
cally signifies the first coordinate of an intersection between f and the identity
function.

f(x)

|

Figure 8.1. Fix point as intersection with diagonal

The above properties of f and the mean value theorem together imply that
such a fix point £ does exist if and only if the condition f’(1) > 1 is satisfied.



Semi—-Markovian Queues 151

Because of

THOE Znan = /OO e“th('Lfl)n dA(t)
n=1 0 n=1 N

00 o n—1 o)
—A e#tz((ztz 511t dA(t):u-/ £ dA(t)

0

this condition translates to
pw-E(A) > 1 & E(A) > — (8.7)
W

which simply means that the mean inter—arrival time is strictly greater than the
mean service time.

Remark 8.1 One way to calculate the number £ is the following: We start with
&o := 0 and iterate by &, 11 := f(&,) forall n € Ny. Then § = lim,, o &,- In

order to prove this we first observe that the sequence (&, : n € Ny) is strictly
increasing. This follows by induction, as &1 = ag > 0 = &y and

o oo
Gnr1 =D _aplh > apgh =6,
k=0 k=0

by induction hypothesis, since all a,, are strictly positive. Again by induction
we obtain &, < 1 forall n € Ny, as £y < 1 and

[ee] o0
k
€n = Zakﬁnq < Zak =1
k=0 o

for all n € N. Hence the sequence (&, : n € Ny) converges as it is increasing
and bounded. Now for the limit £, we obtain

o0 oo
k
. . . . o . k . .
foo = lim & = lim &uir = lim Y ary =) ax (nh_{go €n>
k=0 k=0
oo
k
= Z akfoo
k=0

which means that £, is a fix point for the function f. This is strictly increasing,
as f'(x) > 0 for all z > 0 due to the positivity of all a,,. Hence

flz) < f(¢§)=¢ forall z<¢

Since the sequence (&, : n € Ny) starts with £y = 0, this means that &, < &
for all n € Ny. Hence £, = &, since € is the only fix point smaller than one.
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Now theorem 7.15 can be applied with the values for v, m and K as determined
above. This yields for the asymptotic distribution of the GI/M/1 queue the
following results (see exercises):

mj = lim P(Qy = j) = G;Eff)f)jl /OOOG —A(t))e 1= dt (8.8

forall 7 > 1 and

1 o
m = lim P(Qr=0) =1~ A /O (1—A(t)e =8 gt (8.9)
Because of
=) and" = / *“tz (p tf / -9 dA(t)
n=0 /0

and integration by parts

> Cupt(l-g) g, 1 —ut(1-6)]%
A A 0 dt = [A(t)e Z }0
e R R e T
gl ¢ ©)
_ ¢
p(l—¢)
we obtain
/0 00(1—A(t))e—ut<1—f> dt = /0 Tt gy _ /O OOA(t)e—f“f(l—f) dt
1 ¢ 1
= - = 8.10
p(l=¢& wl-=8 u (810

Hence the asymptotic distributions are given by
mo=1—p and = (1-€6&

for j > 1, with p := (11- E(A))~!. The condition (8.7), which assures positive
recurrence of the chain &X', is equivalent to the stability condition p < 1. This
guarantees the existence of an asymptotic distribution of the system process.
The value p is called the load of the queueing system.

If p > 1, which means that the mean service time is not smaller than the mean
inter—arrrival time, we expect the queue to be unstable. For the system process
O and already for its embedded Markov chain X we would in this case expect
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that no asymptotic resp. stationary distributions exist. This will be shown in
the remainder of this section.

To this aim we will use the concept of a subinvariant measure, which is defined
as follows: Let E denote a countable space and P an irreducible stochastic
matrix with state space E. A measure i on F is called subinvariant for P if

Hy = Z LiDij
el
holds for all 7 € E. If there is an equality in the above relation, then  is called
invariant for P.

Let X denote a Markov chain with transition matrix P. Define the so—called
taboo probabilities in n steps by

P i) =P(X, =5, X, ¢ TV 0 <k <n|Xo=1) 8.11)

for all 4, j € E and the taboo set T' C E. If T = {a} has only one element,
we will write « instead of {a} as an index. Now we can show the following
important result for irreducible stochastic matrices:

Theorem 8.2 Let X denote an irreducible Markov chain with transition ma-
trix P and countable state space E. Choose any state a« € E. Then the
measure u> defined by

oo
,u(; = Zapn(avj)
n=1
is the minimal subinvariant measure for P in the sense that for any other
subinvariant measure pu with j1, = 1 the relation pj > (i holds for all j € E.
Further ™ is invariant for P if and only if P is recurrent. In this case, u® i
the only subinvariant measure for P with & = 1.

Proof: By definition of 1, we obtain

Zﬂgpm PaPa,j + Z Z (i pzy

S iZan=1
(3]
<aP'(a,§) + > oP (e, ])
n=2

where the inequality comes from the bound & = P(7, < oo/ Xy = a) < 1,
with 7, denoting the first return time to state «. Thus p is subinvariant and
invariant if and only if P(7, < 00| Xy = a) = 1, i.e. if X is recurrent.
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Let 1 denote any other subinvariant measure for P with u, = 1. We will
show by induction on n that p; > >}, oP*(a, 7) holds for all n > 1. First,
subinvariance of p yields

= Zmpz‘j > loPaj = Paj = o P (v, 7)
i€E

for all j € E. The induction step follows from

n
1 2 faPaj + Z/Mpij 2 Pa,j + Z (Z aPk(OM)) Dij

(e i#a \k=1
n+1
= Zapk(a’j)
k=1

where the first inequality is due to the subinvariance of 1 and the second one
follows from the induction hypothesis. The minimality of y® follows in the
limit n — oo.

Assume that X is recurrent which implies invariance of p® and u& = 1. Let
1 denote another subinvariant measure for P and assume po, = 1. If u # u®,
then there is a state j € F and a number n € N such that p; > 5 and
P"(j,a) > 0, due to the minimality of u® and irreducibility of P. Then we
obtain

L= pio >y pi- P(i,0) > > - P(i,a) = pi =1
i€eE icE

which is a contradiction. Hence there is no other subinvariant measure p with
ta = 1.
O

Now we will apply this result to the embedded Markov chain X immediately
before arrival times of a GI/M/1 queue. Define the sets [k] := {0, ..., k} for
all k£ € Ny. Because of the upper Hessenberg structure of the transition matrix
P, we obtain

n—1
oP"(0,k+1) =Y oP'0,k) - jgP" 'k, k + 1) (8.12)
=1

for all £ € N by conditioning upon the time of the last visit to state k. The self—
similarity of P yields PY(k,k +1) = P'(0,1). Summing the equations in
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(8.12) for all n > 1 yields

o] oo n—1
D 0P 0 E+1) =Y gPH0k) - g P (B k+ 1)
n=1 n=1 =1

=> 0P 0K) > Pk k4 1)
=1

n=I[+1
- <Z OP”(O,]@)) . <Z UPn(O’ 1))

Setting o = 0, we obtain for the minimal subinvariant measure
0 0,0 0 0 ¢k
M1 = K- B A i = g - €

with ¢ = 9. Thus any invariant measure for P must have a geometric form.
Because of (8.5), the parameter of this geometric distribution is given by the
fix point £ = >, a,&". If there is no solution 0 < & < 1 for this equa-
tion, then there cannot exist a finite invariant measure and hence no stationary
distribution.

2. The M/G/1 Queue

The classical counterpart of the GI/M/1 queue is the M/G/1 queue. It ad-
mits a similar method of analysis. The M/G/1 queue has a Poisson arrival
process and general iid service time distributions. One server works according
to the FCFS discipline. The waiting room is infinite such that there are no lost
users. Denote the arrival intensity, which is the parameter of the Poisson arrival
process, by A > (. Further denote the distribution function of the service time
by B.

In the GI/M/1 queue, the exponential service time appears to be a rather spe-
cial assumption, since telephone calls, demands on server capacity etc. are cer-
tainly not memoryless. This peculiarity translates to memoryless inter—arrival
times for the M/G/1 counterpart. However, the following theorem 8.3 shows
that this property follows from a few assumptions which can often be observed
in classical fields of application, such as the classical (voice only) telephone
network.

A pure jump process A = (A; : t € R{) with state space Ny and the property
that Ay > A, forall t > s is called a counting process or an arrival process.
For an arrival process in a classical telephone network we may assume the
following properties. There is a large population of possible users which all
act independently from each others. Hence only a finite number of users can
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decide to use the system within a finite time interval. Their decision to enter
the system, i.e. to use the system capacity, is homogeneous in time.

Theorem 8.3 Ler A denote an arrival process with the following properties:
(a) Only a finite number of arrivals occur within a finite time interval.

(b) The process A has indendent increments, i.e. the random variables Ay — A
and A, — Ay are independent for all s <t < u < v.

(c) The process A has stationary increments, i.e. the distribution of Ay — As
for any s < t depends only on the distance t — s.

(d) There are only single arrivals, i.e. limp,_o(Airn—At) < 1 almost certainly
forallt > 0.

Then A is a homogeneous Poisson process.

Proof: Let ®(¢) denote the probability that no arrivals occur in the interval
[0, ], i.e. define
O(t) :=P(A — Ay =0)

forall ¢ > 0. By definition, 0 < ®(¢) < 1 forall ¢ > 0. Because of assumption
(a), the function ¢ does not vanish identically, i.e. ® # 0. Assumptions (b)
and (c) imply

O(s+t) = D(s) - P(t) (8.13)

for all s,t > 0. If there were a time o > 0 with ®(ty) = 0, then property
(8.13) would yield

0= B(to) = (B(t0/2))> = (B(to/4))" = ...

such that ® would vanish arbitrarily near ¢ = 0 and therefore ® = 0 since ® is
monotone non—increasing. Hence ®(¢) > 0 for all ¢ > 0. The only monotone
non—vanishing solution to (8.13) is given by

d(t)=e M

for some value A > (. By assumptions (b) and (c), this means that the time
until the first arrival is distributed exponentially with parameter A, where A is
independent of the number of arrivals that have already occurred. By assump-
tion (d) there is only one arrival at a time. These two conditions are exactly the
defining properties of the Poisson process as given in example 6.5. The case
A = 0 corresponds to the singular case where no arrivals occur ever.

OJ

Again, the system process @ = (Q; : t € RJ) has state space £ = Ny
and (); denotes the number of users in the system at time ¢. Similar to the
GI/M/1 queue we can construct an embedded Markov chain by considering
the number of users in the system immediately after service completions. At
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these time instances we know that the current service (if there is one) has just
begun and need only to remember the number of users in the system in order
to predict this number immediately after the next service completion.

Define T := 0 and T, as the time of the nth service completion. Further
define 7 := (T}, : n € Ny). Let X, := Qr, for all n € Ny and assume that
at the time origin there are no users in the system. The T}, are stopping times
for Q and by definition X,, is a deterministic function of (J7,,. Assume that
0 < E(B) < oo. This implies 7,, — oo for n — oo. As shown above, the
chain X = (X,, : n € Np) is a Markov chain due to the fact that at service
completion times there is either no new service (if the system is empty) or a
new service has just begun. The same property of the queue yields condition
(7.5). Hence Q is a semi-regenerative process with embedded Markov renewal
chain (X, 7).

The transition matrix P of X is given by its entries

o {ak = [ e MO GB(), =i 1+k
Dij = . .
Oa g <1— 1

fori > 1, and pg; = a; for all j € Ny. The first line above describes the
fact that during one service time there need to be k = j — ¢ + 1 arrivals in
order to observe j users in the system after the next service completion if there
were ¢ users after the last service completion. The second line simply states
that within one service time not more than one user can leave the system. The
entries pg ; are explained by the fact that if the system is empty after a service
completion, then the next service starts only after an arrival has occurred and
hence pg ; = p1 ;. The matrix P is structured as

ayg a1 ag as
ayg a1 ag as
= 0 apg a1 ag

Such a matrix is called lower Hessenberg matrix or skip—free to the left. The
Markov renewal chain (X', 7') is characterized by Fj;(t) = p;; - Gi;(t), with
Gij(t) = IP)(jjn—i-l —-T, < t‘Xn =1, Xn+1 = ])

[ B@), i>0
Sy e MAB(t—u) du, =0
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independently of j € Ny. The values K;;(t) = P(T1 > t,Q¢ = j|Xo = i) are
given by

e M, i=j=0
Kij(t) = 4 Jy e Mae M0 QS (1— Bt — ) du, i=0,j>0

(1-B(1) - e MO, 0<i<j
for all ¢t > 0.

Since all a,, are strictly positive, the matrix P is clearly irreducible. Assume
that >~ , na, < landsete := 1 — 3 >° , nay. Further define the function
f(n) :=nforall n € Ny. Because of

o0 o0 (e.0)
Zpijf(j) = Z aj—iy1] = Z aj_i+1(j—i+1)+’i—l
i=0

j=i—1 j=i—1

= " nan — 1+ f(i) < (i) -

for all ¢ > 1, the function f satisfies Foster’s criterion (see theorem 2.33) and
hence X is positive recurrent if the condition > | na,, < 1 holds. Since

Znan—z / (A" At dB(t A Z A it_nll (At) dB(t)

n=1

A EB)

the above condition is equivalent to the stability condition

p=XAEB) <1 &  EB)< % (8.14)

which simply states that the mean service time be strictly smaller than the mean
inter—arrival time.

In order to obtain the stationary distribution v for X', we need to solve the
equation system

vy = Vpag + V140
V1 = Vpa1 + via1 + vaag

V9 = Vgag + V1a9 + 2a1 + v3ag
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For each line k, adding the first k& equations yields the recursive scheme

agl1 = Voro
aglo = Vgr1 + V1 (8.15)

apVs = Voro + V1T + VoT

with the abbreviations 7, = 1 — Zﬁ:o an = Y oy 41 @n. Define further
ro= Y 7, and note that r = » 7, na, = p < land ap = 1 — 7.
Adding all these equations yields

[e.e] o
1=70)Y vn=vor+ Y valr—ro) (8.16)
n=1 n=1
which implies
oo 1 .
Zyn:VO ! <= 1:U()r+( T>: i
= 1—7r 1—7r 1—0p

Hence the stationary distribution of X is given by vy = 1 — p and the recursive
scheme above.

Theorem 8.4 If the stability condition (8.14) holds, then the asymptotic dis-
tribution of the M/G/1 queue is given by

mj = lim P(Q; = j) = v;

t—o0

forall j € Ny.

Proof: By theorem 7.15 and the fact that K;;(¢) = 0 for i > j we obtain

1 &
Wj:mglji/o Kij(t) dt

for all j € E. For the mean renewal interval we get
1 > 1—p 1
vm = g ()\ + E(B)) + ;Vn]E(B) =— 7 E(B) = X

Thus it remains to prove that

J oo
ﬂ'j_)\zvi/o Kij(t) dt:Vj
=0
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holds for all j € E. Abbreviate B(t) := 1 — B(t) for all t > 0. First we
observe for j > 0

00 [ee) t t—u =1
/O Ko ;(t) dt = ] e/\u)\ek(tU)()\((j_uf))!B(t—u) du dt

For 1 < ¢ < j it can be shown (see exercises) that
00 [oe) M j—t
| gty de= | By a
0 ' 0 (j —)!

L R A Uk
:A/o Z e M o dB(t) (8.17)

k=j—i+1

A
the last equality by definition of (ay)nen, and rj—;. Hence we obtain for j > 1

j
m; = Vorj—1 + Z Virj—i = Vj
i=1
according to (8.15). As 7 and v are probability distributions and we have
shown that ; = v; for all j > 1, we can infer my = 1/ as well.
0

As we have done for the GI/M/1 queue, we want to show now that in case of
p > 1 there is no stationary distribution of the embedded Markov chain X" at
times of service completion. We will prove this by contradiction. Assume that
p > 1 and v be a stationary distribution. Then the recursion scheme and in
particular equation (8.16) holds, regardless of the value for p = r.

For the case » = 1 we obtain from this equation 0 = 1y, which implies further
vp = Oforall n > 1 because of P being irreducible. This is in contradiction to
the assumption that v be a distribution. In the case r > 1, we get from equation
(8.16) that fozl vy, = r > 1, again a contradiction to the assumption that v
be a distribution.

3. The GI/M/m Queue

The last example for semi—Markovian queues is a multi—server queue with
exponential servers. Denote all the parameters as for the GI/M/1 queue, i.e.
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the inter—arrival times are iid with distribution function A, and every server
has an exponential distribution with parameter 1 > 0. Of course, instead of
one server as in section 1, we now have m servers. The service displine is
FCEFS and the capacity of the waiting room is unbounded.

Regardless of the number of servers, all of them are memoryless. Hence the
times of arrivals lead to an embedded Markov renewal chain, just as in the case
m = 1. The system process @ = (Q; : t € R{") has state space E = Ny, with
(@ indicating the number of users in the system (i.e. in service or waiting) at
time ¢. Define 7}, as the time of the nth arrival and X,, := @7, — 1 as the
number of users in the system immediately before the nth arrival.

Clearly, the 7;, are stopping times and X, is a deterministic function of Q.
Again we assume that A is not lattice, and 0 < E(A) < oo. This implies in
particular that 7;,, — oo almost surely as n tends to infinity. The sequence
X = (X, : n € Np) is a Markov chain since at times of arrivals the future
of the system is determined only by the current number of users in the system,
due to the memoryless property of the service times. The same property of the
queue ensures the validity of equation (7.5) for the system process Q. Thus the
system process Q is semi—regenerative with embedded Markov renewal chain
(X, 7).

The transition probabilities p;; of X’ are derived by the following considera-
tions. Clearly, there may be only one arrival in any interval |T,,, T;,11]. Hence
Pij = 0forj > i+ 1.

Now consider the case j < ¢+ 1 < m. This means that during one inter—
arrival period no user is waiting and all are served with exponential intensity
1. Given that the inter—arrival period has length ¢ > 0, the probability for any
user to complete service is 1 — e #!. A transition from state i to state j for the
Markov chain & means that ¢ + 1 — j out of 7 + 1 users are served during one
inter—arrival period. There are (H’:{ij) = (’J;.l) combinations to choose which
users complete their service and which do not. Hence for j < i+ 1 < m we
obtain
o s
po= [ (o mann @)
0 J

by conditioning on the length ¢ of the inter—arrival period. Note that the inte-
grand is the binomial distribution with ¢ 4 1 degrees of freedom and parameter
e M evaluated at 0 < Jj<i+41.

The third case is m < j < 7 + 1. Here, all m servers are busy during the
complete inter—arrival period. Then the number of users served in time ¢ is dis-
tributed like a Poisson process (see example 6.5) with intensity m - u evaluated
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at time t. Conditioning on the length of the inter—arrival period, we obtain

X (mp - )T
P . —e MHT dA(t 8.19

pl] ./(; (Z+1—])' () ( )
for m < j < i+ 1. Note that this expression coincides with formula (8.18) for
m = j = i + 1. Furthermore it depends only on the difference 7 + 1 — 7, but
not on the values of i, j themselves.

The last case to consider is j < m < ¢+ 1. In this situation there are t +1 —m
users waiting in the queue at the beginning of the inter—arrival period, while
m — j servers are idle at the end of it. This is a mixture between the second
and the third case. First the regime of the latter governs, until there are no
waiting users any more (i.e. the queue has emptied). Then the former case
applies. Thus we condition first on the length ¢ of the inter—arrival period and
then on the time u < t to empty the queue. The time to empty the queue has
an Erlang distribution £} with i + 1 — m stages and intensity myu. After
that the number of served users has a binomial distribution B}, with m degrees
of freedom and parameter p := e #(!~%)_ This leads to an expression

oo t
pi= [ Bhm i) B ) aac)
o0 t i
o my gt (mHU)Zm —pu _ —ptym—j
_/0 (j)e JH /0 Ti—m) (e7H — e ™M) I du dA(t)
(8.20)

which the reader may verify as an exercise.

Collecting these results, we can sketch the structure of the transition matrix as

Poo Po1
P10 P11 P12

Pm—-20 --- Pm—2m—1
P = Pm—-10 --- Pm—1m—1 Bo
Pmo .- Pmm—1 B Bo

Pm+n0 .- Pm+nm—1 611—0—1 Bn - Bo

abbreviating 3, := p; ;j+1—k in case (8.19). The non-specified entries in P
correspond to the case 7 > ¢ + 1 and hence are zero. The matrix P has an
upper Hessenberg form like the respective transition matrix for the GI/M/1
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queue. The most important part of it is the lower right-hand part containing
the entries (3. The other parts are boundary conditions.

In order to determine the stationary distribution of X, we first consider the
partition £ = F U F° with F' = {0,...,m — 2}. We then obtain for the
transition matrix P’ of the Markov chain restricted to F'¢ the form

ro  Bo
, i B Do
P=Ary B B Bo

withr, =1 — ZZ:o B.. This has the same form as the transition matrix (8.1)
for the GI/M/1 queue. Define

1
P= mu - E(A)

The arguments in section 1 all apply to the matrix P’ with p defined as above.
In the case p < 1 we obtain a stationary distribution v/ = v/ P’ given by

v, =(1-&¢" (8.21)

with § = "7 €™ 3,. For the case p > 1 it follows that P’ (and hence P) is
not positive recurrent. In the following we assume p < 1.

By theorem 2.30 there is a unique extension of ¢/ to a stationary measure for

P, denoted by v = v P. For this we have v, = v;,_, ., foralln >m —1
and
Vg1 = Z Vi Pkl = Z Vi Pkt
foralln =0,...,m — 2, Wthh leads to
1 ]‘ /!
Vp = Vn+1'(1 pn+1n+1 2{: Vkpkn+1 (8.22)
Pnn+1 k—nt2

Thus v/, and iteratively v/, s, ..., 1 can be determined by formula (8.22).

The stationary distribution v = v P for X is then given as v = ¢ - V" for a
constant ¢ > (. This is determined by

00 m—2
=Y =Y vi+1 (8.23)
n=0 n=0

Altogether, formulae (8.21), (8.22), and (8.23) yield the stationary distribution
v =vP for X.
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The asymptotic distribution 7 of the queueing process Q can now be obtained
by theorem 7.15. For n > m we obtain

R oo i oo . t(mut)k_Hin
™ = E A k_znjlu —g)ek( 1>/0 (1= A(t))e ™ mdt

_ ¢ (1 - g) * —mput ¢gn—m - (m/’bt ) g)k—&-lfn

= TE(A) /0 (1= A@)e "¢ k:%:l Giri—ml @

_M n-m [ _ o—miut-(1-6)
- Sk /0 (1= A(t))e 00 gy

Due to (8.10) the integral above equals (mu) ! and thus we get to
T=poc (1-€E ™ (8.24)

for n > m. The asymptotic probability that all servers are busy is given by

o
E Ty =p-C
n=m

Hence the conditional asymptotic probability that there are & users in the queue
(i.e. k + m users in the system) given that all servers are busy equals

Tm+k k

n=m "1
which means that the conditional asymptotic queue length distribution given
that all servers are busy is geometric.

Concerning the asymptotic probabilities 7, withn = 1,..., m—1, we employ
the rate conservation law, for which we first give an intuitive explanation.
The arrival process of the GI/M/m queue is a renewal process with renewal
intervals distributed by A. Blackwell’s theorem 6.14 states that asymptotically
an arrival occurs with constant rate (E(A))~!. Given that an arrival occurs,
there is an asymptotic probability v,,_1 of observing n users in the system. On
the other hand, out of state n < m — 1 (which has asymptotic probability m,)
the exponential servers provide a constant rate n - y to switch to state n — 1.
Now the rate conservation law states that asymptotically

1
SR
which means that the probability flow from state n — 1 to state n equals the
flow from n to n — 1. This yields

Un—1

Tn
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forn =1,...,m — 1. Finally we obtain 7y by normalization, i.e.

[ee] mfly
Fo:l—Zﬂ'n:l—p-C—mpZ n-l
n=1 n=1 n

This and formulae (8.25) and (8.24) collect all asymptotic probabilities.

Notes

The idea to analyze the M/G/1 queue via its embedded Markov chain has been
presented in Kendall [49]. Earlier text book presentations for the M/G/1 and
the GI/M/1 queue can be found in Cohen [28] or Cinlar [25]. The former con-
tains further many special queues which are analyzed via embedded Markov
chains as well. The GI/M/m queue has been examined in Kleinrock [50] and
Asmussen [5]. The latter contains further an exact presentation of the rate
conservation law.

For more examples of semi—Markovian queues see Cohen [28]. An application
of the semi—Markov method to tandem queues is given in Breuer et al. [23].

Exercise 8.1 Assume exponential service times and a Poisson arrival process
for the M/G/1 and GI/M/1 queue, respectively, and show that the results for
the asymptotic distribution coincide with the results obtained for the M/M/1
queue.

Exercise 8.2 Verify equalities (8.8) and (8.9).

Exercise 8.3 Compute mean and variance of the asymptotic number of users
in the system for the GI/M/1 queue. These may be expressed in terms of €.
Derive further the mean sojourn time in the system.

Exercise 8.4 Verify equality (8.17).

Exercise 8.5 For an M/G/1 queue, show that the z—transform of the number
of users which arrive during a service is given by

H(z) = Zanz" = B*(\— \2)
n=>0

for all |z| < 1, where B* denotes the LST of the service time distribution.
Show that the mean and the variance of this number are p and A\%us(B), re-
spectively, where p2(B) denotes the second moment of the service time distri-
bution.
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Exercise 8.6 Consider an M/G/1 queue with batch arrivals. Instead of sin-
gle arrivals as in the ordinary M/G/1 queue, at every arrival instant the arrival
consists of a batch of n € N independent users with probability g,. Arrival
instants are distributed as a Poisson process with intensity A > 0.

a) Define the z—transform G(z) := > > | g, 2" of the batch size distribution.
Show that the z—transform of the number of users which arrive in an interval
of length ¢ is N*(t, z) = e M1 -G (),

b) Let B*(s) denote the LST of the service time distribution. Show that the
z—transform of the number of users which arrive during a service is given by
B*(\ = A\G(2)).

Exercise 8.7 Let Q¢ denote the number of users in the system after the nth
departure and K, the number of arrivals between the nth and the n + 1st
departure. Justify the relation

Dyi1= (D, - 1"+ K,

where a™ = max(0, a). As n tends to infinity, we obtain for D := lim,, o D,
and K := lim,_, K, the equality

D=D—-1psg+ K
in distribution. Take the expectation of D? in order to derive
p*p2(B)
2(1 = p)pi(B)

where 12(B) and po(B) denote the squared first and the second moment of the
service time distribution. Use the results from exercise 8.5. Why is this also
the mean asymptotic number of users in the system? Equation (8.26) is known
as the Pollaczek—Khinchin mean value formula.

E(D) = p + (8.26)

Exercise 8.8 Show that the asymptotic mean number of users in an M/G/1
queue is minimal for deterministic service time distributions.

Exercise 8.9 Derive expression (8.20).



Chapter 9

PHASE-TYPE DISTRIBUTIONS

The memoryless property of the exponential distribution has been substantial
for arriving at embedded Markov chains in chapter 8 when analyzing GI/M/1
and M/G/1 queues. The stationary distributions of these chains served as a
foothold for a semi—regenerative analysis.

Our goal pursued in the next two chapters is to find generalizations beyond the
exponential distribution and/or the Poisson process that are more versatile in
their modelling capacity, but still allowing analyses of the respective queues
by means of embedded Markov chains.

1. Motivation

In the present chapter, an extremely versatile class of distributions, the so—
called phase—type or PH distributions, will be introduced. It is possible to
approximate any distribution on the non—negative real numbers by a PH dis-
tribution, and the resulting queueing models can be analyzed almost as if we
have dealt with the exponential distribution.

As a motivation, we begin with a practical example. Consider the M/M/c/c+K
queue, which is defined as follows. Arrivals are modelled by a Poisson process
with rate A > 0. Service times are exponentially distributed with rate o > 0.
There are c servers, and the capacity of the waiting room is /K. That means that
in total there is room for ¢+ K users in the system including the servers. If upon
an arrival the system is filled, i.e. with ¢ + K users already in it, this arriving
user is not admitted into the system. In this case we say that the arriving user
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is lost. Queueing systems with the possibility of such an event are thus called
loss systems.

The queue described above is a simple Markov process with generator

—-A A
nwoo=A—u A
2u A =2 A

e —A—cu A

e —A—cu A
cl —cp
up to the first loss (all non—specified entries equal zero).

From a system administrator’s point of view, the loss of a user is regarded as
a bad event, and thus the question arises naturally how the distribution of the
time up to the first loss might be expressed. However, the above description
of the queueing process simply ignores loss events, as can be seen from the
missing A entries in the last line of the generator.

In order to include a possible loss event into our model of the queue, we add a
new element to the state space and enlarge the generator as follows:

—-A A
nwoo=A=pu A
O = et —A—cu A
cp —A—cl A
cl —A—cu A
0 0

again with all non—specified entries being zero. The first m = c+ K + 1 states
describe the number of users in the system, just as in the former generator ().
But now there is the possibility to enter another state m + 1 with rate A from
state m, obviously meaning exactly that a loss has occured. Since we want to
observe the system only until the first loss, we choose the loss state m + 1 as
an absorbing one. Thus all entries in the last line are zero.

Now the system administrator’s question can be formulated mathematically as
the distribution of the time until the Markov process with generator ()’ enters
the absorbing state m + 1. Exactly this problem is addressed (in a general
form) by the concept of a phase—type distribution.
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2.  Definition and Examples

Definition 9.1 Let X = (X, : ¢ > 0) denote an homogeneous Markov process
with finite state space {1,...,m + 1} and generator

- (5 )

where T is a square matrix of dimension m, 1 a column vector and O the zero
row vector of the same dimension. The initial distribution of X’ shall be the
row vector & = (v, up41), With a being a row vector of dimension m. The
first states {1,...,m} shall be transient, while the state m + 1 is absorbing.
Let Z := inf{t > 0 : X; = m + 1} be the random variable of the time until
absorption in state m + 1.

The distribution of Z is called phase—type distribution (or shortly PH distri-
bution) with parameters («,T"). We write Z ~ PH («,T'). The dimension m
of T is called the order of the distribution PH («, T'). The states {1,...,m}
are also called phases, which gives rise to the name phase—type distribution.

Let 1 denote the column vector of dimension m with all entries equal to one.
The first observations to be derived from the above definition are

n=-T1 and amnpy1=1—al

These follow immediately from the properties that the row sums of a generator
are zero and the sum of a probability vector is one. The vector 7 is called
the exit vector of the PH distribution. Now the distribution function and the
density of a PH distribution are derived in

Theorem 9.2 Let Z ~ PH(«,T). Then the distribution function of Z is given
by

Fit):=P(Z<t)=1—-ae' 1 9.1)
for allt > 0, and the density function is
f(t) = ae™y 9.2)

for all t > 0. Here, the function "' := exp(T - t) := 300 L. T™ denotes a
matrix exponential function.

Proof: For the Markov process X with generator () as given in definition 9.1

the equation
Tt 1— eT-t1>

P =ex@ 0= (5 17
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holds for the transition matrix P(t) at every time ¢ > 0. This implies

F(t) = deQ'temH =am+1 +a- (1 — 6T't1) = om41 +al — ael 1
=1—ael1

with e, 11 denoting the m -+ 1st canonical base vector. For the density function
we obtain

ft)y=F'(t)= —a%eT'tl = —aTel 1 = ael'(~T1) = ael'y

which was to be proven.
0

A first consequence is F'(0) = a1, which is also clear from definition 9.1.
An important question to be examined is when a phase—type distribution is
non—defective, i.e. what the conditions for F'(co) = lim;_. F(t) = 1 are.
This is answered in

Theorem 9.3 Let F denote a PH(«,T) distribution function. F' is non—
defective, i.e. F'(00) = 1 for all o, if and only if T is invertible. In this case,
(—Tﬁl)ij is the expected total time spent in state j given that the process X
started in state 1.

Proof: Let E;; denote the expected total time spent in state j given that the
process X started in i. Define £ = (Fj;); j<m as the respective matrix of
expectations.

First we assume that F'(oo) = 1 for all «, i.e. that F' is non—defective. This
means that with probability one there is an absorption from any initial state <.
This implies for F to be finite, i.e.

E;; < o0 foralli,j € {1,...,m}

Conditioning on the first state visited after ¢ yields the relations

T,
By=) %Ekj forall i # j

113

k2i
1 Ty
Eii = + Z E;
T 4 ”y =Ty
In matrix notation, this is expressed as T'E = —1I, with I denoting the identity

matrix. Hence we obtain £ = —T~!, which was to be proven.
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Now we assume that 7" is invertible. Define the vector ®(z) = exp(7'x)1 for
all z > 0. The numbers ®; () are the probabilities that the process X is in one
of the states {1, ..., m} after time x given that the initial state was i. Hence

®,(x) € [0,1] foralli e {1,...,m}

Further the equation
t
et =1 +/ Te™" dx
0

holds as can be seen by differentiating both sides and acknowledging e”*0 = I.

Multiplying by 7! from the left side and by 1 from the right side yields
t
T'ot)=T""e1=T7""1 +/ e dxl
0

As all entries of ®(¢) are finite, we obtain for ¢ tending to infinity

t
lim el de < oo
t—o0 0
in an entry—wise meaning. But the values (e’™* )i; are simply the probability
that the process & is in state j at time = given that it started in state . Hence
we obtain

oC
El-j—/ (e*)jdr < oo foralld,je {1,...,m}
0

which means that all states j € {1,...,m} are transient. Thus an absorption
in state m + 1 is certain regardless of the initial distribution, which was to be
proven.

O

From now on 7" shall be assumed to be invertible. In order to show the versatil-
ity of the phase—type concept, we shall give a few examples below. Important
characteristics for distributions are their moments. Given a distribution func-
tion F, its nth moment (if existing) is given by

M, (F) := /0 T ndE()

Clearly, the first moment is the mean of the distribution. The nth moment of
the exponential distribution with parameter A is given by M,, = n!/(\") (see
exercises). Another important characteristic is the so—called squared coeffi-
cient of variation, defined by

Cy (F) := Var(F)/E(F)?
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with Var(F') denoting the variance of F'. For any exponential distribution this
equals one. The values of the squared coefficient of variation will explain the
names for the hypo- and hyper—exponential distributions introduced below.

Example 9.4 Erlang distribution

A well-known distribution within the family of Gamma distributions is the
so—called Erlang distribution. An Erlang distribution £, with n degrees of
freedom (or stages) and parameter \ is the distribution of the sum of n expo-
nential random variables with parameter A. It has the density function

) = 2,

for all ¢ > 0. Its interpretation as a succession of n exponential distributions
with rate A each can be illustrated graphically as in

Figure 9.1. Erlang distribution

tnflef)\t

Here we see that an Erlang distribution can be represented as the holding time
in the transient state set {1,...,n} of a Markov chain with absorbing state
n + 1 where the only possible transitions occur from a state k to the next state
k41 ({for k =1,...,n), with rate A each. In terms of our definition 9.1, we
have a PH representation

XA 0

a=(1,0,...,0), T= and n=|"°
( ) 3 =,

)\ A

with all non—specified entries in 7" being zero.

The mean of an Erlang distribution with n degrees of freedom and parameter
A is n/A, while its squared coefficient of variation is 1/n, i.e. less than one if
n > 1 (see exercises). This explains the name hypo—exponential distribution
appearing in the next example.

Example 9.5 Generalized Erlang distribution

A slight generalization of the Erlang distribution is obtained if one admits the
exponential stages to have different parameters. Then we talk about a general-
ized Erlang (or a hypo—exponential) distribution. The representation as a PH
distribution results in the figure
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: : )\1 i : )\2 )\nfli :

Figure 9.2. Generalized Erlang distribution

and leads to a PH representation

M A 0

a=(1,0,...,0), T= g and n=|"°
( ) _)\nfl /\nfl ! 0
-\ An

with all non—specified entries in T’ being zero. For this family of distributions,
a closed formula for the density function is already rather complex.

Example 9.6 Hyper—exponential distribution

A hyper—exponential distribution is a finite mixture of n € N exponential
distributions with different parameters \;, (k = 1,...,n). Its density function
is given as

FO) =D ahee
k=1

with proportions ¢ > 0 satisfying >, g5 = 1. A graphical representation
of this distribution is

q1 °
qs °

0

Figure 9.3. Hyper—exponential distribution

This leads to a PH representation by

—)\1 /\1
a=(m,...,m), T = and n=
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with all non—specified entries in 7" being zero.

The mean of a hyper—exponential distribution is » " ; m;/\;, while its squared
coefficient of variation is always larger than one if n > 1. This explains the
name hyper—exponential distribution.

Example 9.7 Cox distribution

A more complex example of the classical families of distributions are the Cox
distributions. These are generalized Erlang distributions with preemptive exit
options. A Coxian random variable measures the holding time within the box
depicted as

Figure 9.4. Cox distribution

A Cox distribution can be described as a special PH distribution with parame-
ters « = (1,0,...,0) and

A1 @M (1—aq)M
_)\nfl anl)\nfl (1 - anl))\nfl
_)\n )\n

for which all non—specified entries in 1" are zero.

As we have seen in example 9.6, the set of transient states in a PH distribution
may fall apart into several communication classes. The definition of a phase—
type distribution leaves open the possibility of a transient communication class
which cannot be entered because the respective initial probabilities contained
in the row vector o are zero. Such states are called superfluous, since the
Markov process X defining the PH distribution will never be in such a state. As
we will obtain the same distribution of the time until absorption if we leave out
superfluous states, we shall from now on (unless stated otherwise) assume that
there are no superfluous states in the definition of a phase—type distribution.

3. Moments

A good means to determine the moments of a distribution is the Laplace-
Stieltjes transform (or shortly LST, see appendix). This is derived in
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Theorem 9.8 The LST of a phase—type distribution F = PH («,T) is given
by
O(s) := / e N dF(t) = amy1 +afs- T —T) 'n
0

forall s € C with Re(s) > 0.

Proof: For s = 0 the statement is obvious. Be s # 0 and Re(s) > 0. Integra-
tion by parts yields

oo _1 0o o
/0 e stel™t qt = — ([eSteT't}O _/0 e steltr dt)

As T is assumed to be invertible, we know from the proof of theorem 9.3 that
I et dt < oo entry—wise, and hence lim;_.o, e’ * = 0, also entry—wise.
This yields

X st Tt 1 1 X st Tt
/ e e dt—-[—i—-/ e et dtT
Jo § JO

s
which implies

oo
/ et dt (s- 1 —T)=1
0

and hence
o
/ e SteTtdt = (s- I —T)7! for all s # 0 with Re(s) > 0.
0
This leads to
O(s) = / e dF(t) = apman —I—/ e Staelty dt
0 0
= Qmt1 + a/ e st dtn=am +als-I-T) n
0

which is the statement.
O

Corollary 9.9 Let Z ~ PH(«,T). The moments of Z are given by
E(Z") =(-1)"-n!-aT™"1
foralln € N.

Proof: Because of
j—(s T=T)" = (=1)"-nl-(s- I —T)" "+
Sn
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we obtain
d’I’L
E(Z") = (=1)" - 55 ®(s)ls=0
=nl-als- 1 —T) " _onp=nl-a(-T)"(-T)"(-T)1
=nl-a(-T) "1
O

In the next chapter it will be shown in corollary 10.12 that another expression
for the mean is given by E(Z) = (7n)~! with (T + na) = 0.

4. Closure Properties

A useful advantage of phase—type distributions is the fact that certain compo-
sitions of PH distributions result in PH distributions again. This means that
the class of PH distributions is closed under these compositions. For PH dis-
tributed random variables Z; and Z5 we will show closure properties for the
compositions Z; 4+ Z5 (convolution), pZ1 + (1 —p) Zs with p € [0, 1] (mixture),
and min(Zl, ZQ)

Theorem 9.10 Let Z; ~ PH (oY, TM) of order m; for i = 1,2. Then Z =
Z1 + Zy ~ PH(a, T) of order m = my + mq with representation

O‘l(cl)‘/ 1<k<m
Q. =
aiﬂﬂ-afﬁm], m+1<k<m
and
1) D)2
r— (T 1«
0 T2
where ) = —TM 1, and 0 denotes a zero matrix of appropriate dimension.

Proof: By definition, Z; is the random variable of the time until absorption in
a Markov process X; with transient states {1,...,m;} and an absorbing state
which shall be denoted by e; in this proof. The transition rates of &; within
the set of transient states are given by the matrix 7(Y) and the absorption rates
from the transient states to the absorbing state are given by the vector 1%,

Then the random variable Z = Z; 4+ Zs is the total time duration of first enter-
ing e; and then ey in the Markov process which is structured as follows:
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Figure 9.5.  Convolution of two PH distributions

Here the point e; is not a state of the Markov process described above but only
an auxiliary construction aid for a better illustration. In particular there is no
holding time in e1. The only absorbing state in the Markov process constructed
above is es.

With probability 0‘1(72 1 we enter the first absorbing state e; immediately, while
the vector a(!) contains the probabilities that we first enter the set of transient
states of X;. In the latter case, the matrix T and then the vector 17(1) deter-
mine the time until the first absorption in e;.

After having reached e, the chain immediately (i.e. with no holding time in
e1) proceeds to the second stage, which is completely analogous to the first.
With probability afji 41 we enter the second absorbing state e2 immediately,
while the vector o(?) contains the probabilities that we first enter the set of
transient states of Xo. In the latter case, the matrix T@) and then the vector

n?) determine the time until the first absorption in es.

Thus we get to the second absorbing state eo immediately with probability
agﬂ -aggﬂ. There are transient states {1,...,my,mi+1,...,m1 +mo}.
The first m; of these are reached with probabilities a1, . . . , &, , While the last
mg of these states can only be reached via an immediate first absorption in e
and thus with probabilities a,(ylli 11 al@)

expression for a.

fori = 1,...,mq. This explains the

In order to explain the structure of ', we observe first that there is no path from
the second set of transient states to the first, whence the lower left entry of T°
is zero. The diagonal entries of 7" describe the transition rates within the two
sets of transient states, respectively, and thus are given by 7(1) and 7). The
only way to get from the first to the second set of transient states is the path
via e; for which we first need the rates given in () and then the probabilities



180 AN INTRODUCTION TO QUEUEING THEORY

contained in «?). Hence the upper right entry of 7.
0

Theorem 9.11 Let Z; ~ PH(a™ TW) of order m; for i = 1,2, as well as
p €10,1]. Then Z = pZ1 + (1 — p)Zy ~ PH(«,T) of order m = mq + msy
with representation

TW 0
a=p oM (1-p-a?) and T:< 0 T(2)>

where 0 denote zero matrices of appropriate dimensions.

Proof: Going along the line of reasoning of the last proof, we observe that Z
is equal to Z; with probability p and equal to Z5 with probability 1 — p. Hence
we obtain the following construction of a Markov process:

e

Figure 9.6. Mixture of two PH distributions

)

Here, we enter the first set of transient states with probabilities p - ;" for
i =1,...,m and the second set with probabilities (1 — p) - agz) for phases
1 =m1 + 1,...,mo. This explains the expression for c.

From either of these sets we proceed with transition matrices 7 and exit
vectors "), i = 1,2, in order to reach the absorbing state e. There is no path
from one set of transient states to the other, which explains the structure of 7.

The absorbing state e can be reached immediately (i.e without entering any
transient state) with probability pagi g+ = p)agi i1

0

In order to formulate the next theorem, we first need to define the so—called
Kronecker compositions of matrices. Let A = (a;;) and B = (b;;) denote
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n1 X mq and ne X msy matrices, respectively. The Kronecker product of A
and B is defined as the (11 - na) x (mq - mg) matrix A ® B with entries

(A ® B)(l'] ji2),(j1,52) *— Qiyg1 - bizyjz

forall 1 < ip < npand1 < j < mg, & = 1,2. As a block matrix we can

write
anB ... aim, B

A® B =

an1B ... anm B

If A and B are square matrices, i.e. n = my, for k = 1,2, then the Kronecker
sum A @ B of the matrices A and B is defined as

A®B=AL+11®B

with Ij, denoting the n; x nj identity matrix for k = 1, 2.

Example 9.12 Letny =my; =1landns =mo =2. If A= — )\ and

B_ (ON ”ﬂ) , then A®B= ((/\o+ g f(AM+ u))

is an explicit expression for the Kronecker sum of A and B.

Theorem 9.13 Let Z; ~ PH(a® T of order m; for i = 1,2 and de-
fine Z = min(Zy,Z3). Then Z ~ PH(«a,T) of order m = my - ma with
representation

a=aoW & a?® and T =10 &> T

in terms of the Kronecker compositions.

Proof: For ¢ = 1,2, the random variables Z; are the times until absorption

in the Markov processes &; = (Xt(z) : t > 0) where the initial distributions
for the transient states are (") and the transition rates among the transient
states are given by 7", Thus we can determine Z if we start running X; and
X> concurrently and stop whenever the first of the two processes enters the
absorbing state. We will show that the two—dimensional Markov process X
depicted as in the figure below has the same time until absorption as the first
absorption of the concurrent processes & and X5.

The state space of X shall be

E={(i,7):1<i<my,1<j<mo}U{e}
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Figure 9.7.  Superposition of two PH distributions

where e is the absorbing state and all other states are transient. We will keep
in mind the interpretation that X; = (7, j) means Xt(l) = ¢ and Xt(z) = j for

all transient states ¢, 7. The exit vector 77 of dimension m; - mo has entries

(1) (2)

Nij =1, —Hyj for all i < m; and j < meo.

Since we start the processes X; and X5 independently, we clearly have an
initial distribution

P(Xo = (i.4)) = P(X§" =) - P(Xg” = j) = " -
which explains the expression for a. If the process X is in state (4, 7), this
means that the exponential holding times in the states ¢ (for X;) and j (for
Xs) are running concurrently. According to lemma 3.2 they almost certainly
do not stop at the same time instant. Thus & has only state transitions from
(i,7) to either (i, h) or (k, 7). These occur with transition rates T(h) or Tl(k1 ),
respectively, if h and k are transient states. According to lemma 3.2 the holding
time in state (i, j) is exponential with parameter —(T,L.(Z. )y Tj(jz)) This explains
the structure of 7'. The values of 7 are readily verified by

1 2 2 1
g = —(Tlhma) iy = — | T+ TS+ 310 + 3" 1)
htj ki
(2)

mi
:_ZT(l ZTJ(?L - +77]
k=1

Thus we can see that Z = min(Z;, Z3) is the time until absorption in the
Markov process X'.
O

Example 9.4 and theorem 9.11 already suffice to prove the following powerful
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Theorem 9.14 The class of phase—type distributions is dense (in terms of
weak convergence) within the class of all distributions on Ra' .

Proof: Let F' : Rf — [0,1] denote any non-negative distribution function.
Since it is bounded, monotone and right—continuous, we can approximate F
by a step function G with countably many jumps at (¢, : n € Ny), where
tn < tpy1 for all m € N. The error € > 0 of approximation can be chosen
arbitrarily small such that |F'(t) — G(t)| < ¢ holds for all ¢ > 0.

If tg = 0, i.e. if there is a jump of G at zero, we can write

G:p0-50+(1—p0)-G

with pg = G(0) and G = (G—G(0))/(1—py). The Dirac distribution function
do is a phase—type distribution with m = 0 and o, 11 = 1. In view of example
9.4 and theorem 9.11, it now suffices to show that we can approximate the
function G by a finite mixture of Erlang distributions. First we find a truncation
point T of G such that G(T) > 1 — e. Then there is a number N € N such
that ¢, > T for all n > N. Thus G can be approximated by

N-1

H = Z (G(tn) — G(tn-1)) - 01, + (1 — G(tN)) - Oty
n=1

with an error bounded by e.

For every n = 1,..., N we approximate the Dirac distribution d&;, by a suit-
able Erlang distribution. This possible because of the following argument: The
variance of an Erlang distribution £/ ’k“)‘ of order k£ with parameter k - A is given
by (k- A2)~! (see exercises) and thus tends to zero as k grows larger. Since
the mean of such an Erlang distribution is 1/ (see exercises), Chebyshev’s in-
equality tells us that the sequence (E ,lj/\ : k € N) converges in probability (and
hence weakly) towards d;, if we chose A = 1/t,,. This means that there is a

number K € N such that the distribution function H,, of an Eg/ i distribution
satisfies |Hy,(t) — 0, (t)] < e forall ¢ > 0.

If we pursue the above approximation method for every n = 1,..., N and
define
-1
H =" (G(tn) = G(tn-1)) - Ho + (1 = G(ty)) - Hx

n=1

then we obtain an approximation bound |H — H | < e. According to example
9.4 and theorem 9.11 the distribution H is phase-type.

In summary, we have approximated F' by pg - dp + (1 — po) - H with an ap-
proximation bound of 3 - €. This proves our statement.
g
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Notes

Phase—type distributions have been introduced in Neuts [62] as a generalization
of the Erlang and hyper—exponential distribution. A classical introduction to
phase—type distributions is given in Neuts [65]. Statistical methods for fitting
PH distributions are given in Asmussen et al. [7]. Phase-type distributions
with infinitely many phases are introduced in Shi et al. [78], and Shi and Liu
[79].

The name of a superfluous state as well as the motivating example at the be-
ginning of the section have been taken from Latouche and Ramaswami [52].

The proofs of the closure properties have been chosen to be as constructive and
illustrating as possible. More classical proofs via comparison of the Laplace
transforms can be found in Neuts [65].

Exercise 9.1 Show that the density f(¢) of a phase—type distribution function
is strictly positive for all ¢ > 0.

Exercise 9.2 Compute the Laplace—Stieltjes transform, all moments as well
as the squared coefficient of variation for the exponential, the Erlang, and the
hyper—exponential distribution.

Exercise 9.3 Use the results from exercise 9.2 in order to show that the Erlang
distribution with parameter nA and n degrees of freedom is the n—fold convo-
lution of an exponential distribution with parameter nA. Employ this result for
a simple proof of formula (6.2).

Exercise 9.4 Consider two machines running independently at the same time.
The one has a life time which is distributed as a generalized Erlang with two
stages and parameters A\; and Ao. The other machine’s life time has a hyper—
exponential distribution with density f(t) = p - pre #1t + (1 — p) - pge H2t,
As soon as a machine fails, it is given to repair which takes an exponentially
distributed amount of time with parameter . After repair it starts working
immediately. Determine the distribution of the time until both machines are
broken down.

Exercise 9.5 Consider the M/PH/k queue with Poisson input and phase—type
service time distribution for all its k servers. Derive a description for this queue

in terms of a (k + 1)—dimensional Markov process.

Exercise 9.6 Find the stationary distribution for the M/PH/1 queue.



Chapter 10

MARKOVIAN ARRIVAL PROCESSES

In this chapter we are going to generalize the concept of a Poisson process in
three steps. We shall arrive thereby at the class of so—called Batch Markovian
Arrival Processes (shortly BMAPs) that comprises a great variety of processes
and so provides much more realistic modelling tools than the class of processes
considered so far can offer. The big advantage of the very procedure of gener-
alizing basic Markovian concepts is that it essentially keeps a lot of Markovian
behaviour.

1. The PH renewal process

The Poisson process is a renewal process with exponentially distributed re-
newal intervals (see example 6.5). In the last section we have introduced a
powerful generalization of the exponential distribution. As a first step to go
beyond the Poisson process, it seems natural to replace the exponential dis-
tribution of the renewal intervals by a phase—type distribution. This leads us
immediately to the class of PH renewal processes. To be precise, a renewal
process N' = (N, : t € Rar ) with phase—type distributed renewal intervals is
called a PH renewal process.

While a concrete determination of the renewal function or the time—dependent
behaviour of an arbitrary renewal process is hard to derive, we have seen in ex-
ample 6.5 that in the case of exponential renewal intervals, i.e. for the Poisson
process, simple expressions can be derived. Since an exponential distribution
is a phase—type distribution of order m = 1, a PH renewal process clearly
generalizes the Poisson process. We want to show that the behaviour of PH
renewal processes can still be described by rather simple expressions.
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To this aim, we first will give a Markovian description of a PH renewal process.
For a phase-type distribution PH («, T'), the remaining time Z until absorp-
tion, given that the current phase is 4, can be expressed by

P(Z <t|Xg=1i)=1—eel "1

and thus has the same form as a PH (e;, T') distribution, with e; denoting the
ith canonical row base vector. This is the conditional memoryless property
of the phase—type distribution.

If we keep track of the current phase of the PH distribution during renewal
intervals, then we obtain a Markovian description (N, 7) of the PH renewal
process V. This is derived as follows (cf. notations in definition 1). Clearly,
the state space of ) = (N, J)is E = Ny x {1,...,m}, with N; denoting the
number of arrivals until time ¢ and .J; being the current phase at time ¢.

The holding times depend only on the current phase of the PH distribution, i.e.
Ani = A forall n € Ny. Since N is a renewal process, the state transitions
of the embedded Markov chain X are restricted by py, ;. j = 0 for m < n or
m>n+ 1.

Thus there are state transitions from (m, i) to (m + 1, j) or to (m, j), which
are called transitions with or without arrivals, respectively. For transitions
without arrivals, there is no renewal event and hence no absorption for the PH
distribution, which means that these transitions are described by the parameter
matrix 1" of the PH distribution of the renewal intervals. For transitions with
arrivals, we observe the following dynamics.

Being in phase ¢, there is an absorption (hence a renewal event) with rate 7;.
After that, a new PH—distributed renewal interval begins and a phase is chosen
according to the initial phase distribution ov. Hence transitions with arrivals are
determined by the rate matrix A := na with n := —T'1.

After ordering the state space E = Ny x {1, ..., m} lexicographically, we can
write the infinitesimal generator matrix G of the Markov process ) = (N, J)

as a block matrix
T A

T A
G = T A

with the non—specified blocks being zero matrices, and A := na.

Before analyzing the behaviour of this process, we shall generalize its struc-
ture two steps further. Then we will pursue an analysis from a more general
viewpoint.
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2.  From PH renewal processes to MAPs

An essential feature of the PH renewal process is that immediately after an
arrival (i.e. a renewal event) the phase distribution always is «. This makes it
a real renewal process with iid renewal intervals. However, in modern com-
munication systems like the internet or other computer networks there may be
strong correlations between subsequent inter—arrival times. Thus it is a natural
idea to introduce a dependence between the subsequent renewal intervals. This
can be done without changing the block structure of the generator.

Writing down the row vectors of the matrix A, we observe

A=
Mm@

meaning that the row entries differ only by a scalar n; and thus the new phase
after an arrival is chosen independently of the phase immediately before that
arrival.

If we relax this restriction, we arrive at a new matrix

m-oq
A/: .

Tim * Om

with the only requirement that o;1 = 1 for all ¢ = 1,..., m. Here the phase
distribution after an arrival depends on the phase immediately before that ar-
rival. However, the requirement ;1 = 1 in connection with the fact that
n = —T'1 simply restates the observation that the row entries of a generator
matrix sum up to zero.

Thus there is no real restriction in choosing A’. If we denote Dy := T and
Dy := A’ as usually done in the literature, we arrive at a generator

Dy Dy
Dy Dy
G = Dy Dy

with no restrictions on the matrices Dy and D; except that G be a generator
matrix and D; is non—negative. A Markov process with such a generator is
called Markovian Arrival Process (or shortly MAP). These arrival processes
play an important part in today’s queueing models.
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Differing from PH renewal processes as a special case, MAPs are not renewal
but semi—Markov processes (see section 2). The methods we will employ for
their analysis still allow a further generalization, which also is motivated by
observations of traffic in modern communication networks.

3. From MAPs to BMAPs

In a computer network it is not uncommon that a client sends various jobs
to the server at the same time. After being sent they are treated as separate
entities. For our modelling tools concerning the arrival process this means that
we observe several arrivals at the same time. These are called batch arrivals
or arrivals in batches.

It is a simple matter to include this into our concept of Markovian arrival
processes. We observe that for MAPs the matrix Dy on the main block di-
agonal contains the transition rates without arrivals. The matrix Dy on the first
upper block diagonal contains transition rates with single arrivals. The lexi-
cographic order of the state space implies that any (positive) entry in the kth
upper block diagonal of the generator matrix G would be a transition rate for
an arrival of k jobs at the same time.

Hence a natural extension of MAPs which include the possibility of batch ar-
rivals are Markov processes with a generator of the block structure

Dy D1 Dy Ds
Do Dy Do
Dy Dy

again with the non—specified blocks (i.e. all entries in the lower block diago-
nals) being zero matrices. Such processes are called Batch Markovian Ar-
rival Processes (or shortly BMAPs). A matrix Dy, contains the transition rates
for a batch arrival of size k, i.e. the event that k jobs arrive at the same time. The
sequence A = (D,, : n € Ny) uniquely determines the generator G and thus
the BMAP. We call it the characterizing matrix sequence or the sequence of
characterizing matrices for the BMAP.

The entry Dy.;; with & < 1 and 7,j < m indicates the transition rate for a
batch arrival of size k£ occuring in connection with a phase transition from ¢ to
j. The entry Dg,; with ¢ # j < m indicates the transition rate for a phase
transition from 4 to j without an arrival. Finally, the entry Dy.;; with i < m
indicates the negative parameter of the exponential holding time in any state
(n,i) withn > 0 and i < m.
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Clearly, MAPs and thus PH renewal processes are special cases of BMAPs.
The following examples further show the great versatility of the BMAP con-
cept.

Example 10.1 Markov-modulated Poisson process

One of the most prominent examples of a MAP is the Markov-modulated
Poisson process (or shortly: MMPP). It is a doubly stochastic Poisson process
in the following sense: First we define an underlying (or governing) Markov
process X with a finite number m of states. This is sometimes referred to as
the environment process. Denote its generator by R. Depending on the state
of X, single arrivals occur with one of the rates Ay, ..., \,,. Define the diag-
onal matrix A = diag(A1, ..., \n). Then we obtain a BMAP specification of
the MMPP by setting Dy = R — A, D1 = A, and Dy, = 0 for k > 2. This
process is often used to model a semi—Poisson behaviour where the rates of the
Poisson arrivals depend on a changing environment.

Example 10.2 Interrupted PH renewal process

Consider a source that emits arrivals according to a PH renewal process. This
source may not be working during certain time intervals, due to failure or other
reasons of inactivity. Denote the parameters for the second PH distribution
(governing the durations of inactivity) (/3,U) where U shall be of order n.
Denote the number of active states by m. If the source is in an active state
1, it may change to inactivity with rate +; and to another active state k with
rate S;;. Arrivals in state ¢ occur with rate 7);, and the initial distribution of
active states is given by the row vector . Define the off—diagonal entries of
the square matrix S to be the rates S;;, and set S;; := —y; — > ;. 4i Sik — ;.
Then the interrupted PH renewal process has a BMAP specification

_(5 B _(na 0

D0<1/a U> and D1<O 0
with v = —-U1,, D = 0 for k£ > 2. The name interrupted PH renewal
process comes from the fact that this process models the behaviour of a source
which normally emits arrivals according to a PH renewal process but may be
interrupted for PH—distributed periods of time. A classical special case of

the interrupted PH renewal process is the interrupted Poisson process (shortly:
IPP), where n = m = 1.

Example 10.3 As we have seen in the beginning of section 9 the time until
an overflow occurs in a Markovian queue can be modelled by a PH distribu-
tion. Likewise, the output process of Markovian queueing networks with finite
buffers can be described as a MAP.
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A useful feature of BMAPs is the closure property under superposition. Let
N; = (Nt(i) :t > 0) for i = 1,2 denote two arrival processes. Then the
process N' = (N; : t > 0) defined by N; := Nt(l) + Nt(2) is called the
superposition of A/; and V5. Analogously to the proof of theorem 9.13 one
can show

Theorem 10.4 If Ni and Ny are two BMAPs with characterizing matrices
(DS) :n € Ng) fori = 1,2, then the superposition N' = N1 + N3 is a BMAP
with characterizing matrices D,, = DS) @ fo) forall n € Ny.

4. Distribution of the Number of Arrivals

The most important random variable of a BMAP is the number /V; of arrivals
until some time ¢. Since BMAPs are Markov processes, we can express all
transition probabilities in terms of the generator matrix GG and thus in terms
of the characterizing matrices D,,. According to theorem 3.7, the transition
probability matrix P(t) of a BMAP Y = (N, J) with generator G is given by

P(t) = eft = EG” (10.1)

n=0

for all £ > 0, with G™ denoting the nth power of the matrix . Here the entry
Py i j(t) = P(Ny = n,Jy = j|No = k,Jo = i) indicates the conditional
probability that until time ¢ there have been n arrivals and the phase at time ¢
is j given that at time O there already have been k arrivals and the phase is .

In order to find an expression of P(t) in terms of the matrices D,,, we need to
introduce convolutions of matrix sequences. Let M = (M,, : n € Ny) and
K = (K, : n € Np) denote two sequences of m xm matrices. The convolution
M x K of these sequences is defined as the sequence £ = (L, : n € Ny) of
m X m matrices with L,, := ZZ:O MK, ;. forall n € Ny.

Define the convolutional powers of a matrix sequence M by the initial se-
quence M*0 := (I,0,0,...) and recursively M*("+1D) .= M*™ s M for all
n € Ny. If we denote the kth matrix of a sequence M*" by M;", then we can
write /\/l}zo = Jyo - I for all £ € N, with 9 denoting the Kronecker func-
tion and I denoting the m x m identity matrix. Further we have by definition
ML = M, for all k € Ny. With these definitions we can state

Lemma 10.5 For all n € Ny, the nth power of the generator matrix G of a
BMAP has block entries

n __ A*N
kl — =—k
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forallk <1 e Ny, and G}, = 0 forall k > | € Ny.

Proof: Fix any k.| € Ny. Clearly, G* is the identity matrix, which proves the
statement for n = 0. Now assume that the statement is true for some n € Nj.
Then

o] l
Gyt => " GlGu =Y _ GG

since G}, = 0 for h < k by induction hypothesis and G; = 0 for h > [
as G is an upper triangular block matrix. In particular we obtain G”Jrl =0
for £ > [ and we can assume k£ < [. The induction hypothesis as well as the
structure of G yield G, = A;™ . and G; = D;_j. Hence we obtain

which completes the proof.
g

Define the convolutional exponential of a matrix sequence M by the se-
quence e*M* of matrices with the kth matrix being Yoo n,./\/l*" for all
k € Ny. Further define the matrices Py (t) = (Priy1(t))ij<m. With these
definitions and the above lemma we arrive at

Corollary 10.6 The (k,l)th block entry of the transition probability matrix of
a BMAP with characterizing sequence A is given by

At o "
Proi(t) i= Pu(t) = (¢27) =3 A,
n=0

forall k <1 € Ny, and Py (t) = 0 forall k > | € Ny.

It is not surprising that we obtain Py;(¢) = 0 for k > [ as a BMAP cannot count
more arrivals in any subset of a time interval than in the time interval itself.
Furthermore, it is not surprising to see that the block entry Py;(t) depends only
on the difference [ — k, since future arrivals depend only on the current phase
and not on the number of arrivals observed in the past. Thus we can abbreviate
notations by Pj(t) := P 1(t). An immediate consequence is

Corollary 10.7 The matrix containing the probabilities that within a time in-
terval of length t there are no arrivals is given by

PO (t) = GDO t
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forallt > 0.

Define 7 := min{t > 0 : N; > 0) as the stopping time until the first arrival.
Then the expectation matrix E(7) of 7, having dimension m x m and entries
E(r - 17,—;]Jo = i), is given by

0

For a BMAP with characterizing matrices (D,, : n € Ny) define the matrix
D := ">, D,. This describes the transition rates of the marginal process
J = (Jy : t > 0), which is called the phase process of the BMAP. Define
the transition probability matrix of J by P®(t) = (Pi?(t))mgm with entries
Pi?(t) :=PP(J; = j|.Jo = i). For this we obtain

Theorem 10.8 The transition probability matrix of the phase process J is
given by

oo
PP(t) =) Py(t) ="
k=0
forallt > Oandi,j7 < m.

Proof: The first equation holds by definition, since the phase process is the
marginal process of (A, 7) in the second dimension. The second equation is
obtained via corollary 10.6 and Fubini’s theorem as

oo 0 4 0 4 0o n
_ v *N v _ D
-3 3 ar -3 (S0
k=0 n=0 k=0 n=0 k=0
where the second equality is due to the relation
(9] 00 n
Z AR = (Z Dk) (10.3)
k=0 k=0

which the reader may prove as an exercise.
O

5.  Expected Number of Arrivals

The expressions Py (t) will help us to derive a simple representation of the
expected number E(V;) of arrivals until time ¢. To this aim we first derive an
expression for the z—transform which is defined as N;*(z) := Y 07 | P, (t)z"
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for z € C with |z| < 1. The z-transform of the matrices (D,, : n € Np) is
defined as D(z) := Y7, Dyz™. Using this, we obtain

Theorem 10.9 The z—transform of a BMAP having characterizing matrices
(D, : n € Ny) is given by

Ny (2) = €D

forall z € Cwith |z] < 1.

Proof: The definition, together with corollary 10.6, yields

Ni() = 303 ke = 3 S Ak
n=0k=0 " k=0 """ n=0

Since the transform of a k—fold convolution of a sequence equals the kth power
of the transform of the sequence (see exercises), we obtain further
k .
Nz =) 7 (P)" = Pt
k=0
which is the statement.
O

Let 7 denote the stationary probability vector of the phase process, satisfying
mD = 0. If the initial phase distribution of a BMAP is 7, then we say that the
BMAP starts in phase equilibrium. Now we can state

Theorem 10.10 The expected number E.(Ny) of arrivals until time t, given
that the BMAP starts with initial phase distribution w, is determined by

o
Er(Ny)=t-7Y kDl
k=1

Proof: The first moment can be derived from the z—transform via

d o= t"
Er(Nt) = m— —(D(2))" 1
#(Ny) ”dzn;n!( (2) ~

oo tn n o
= wZ—'ZDh”Zk-Dk Drhq
=0 " h=1 k=1

Now the statement follows from 7D = 0 and D1 = 0 which implies that the
right-hand sum over h is zero except forn = h = 1.
0
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The term A := 7Y ;- ; kD, 1 is called the mean arrival rate of the BMAP.
For the special case of a PH renewal process, this term equals m(na)l = mn.
Furthermore the stationary phase distribution 7 is easily determined via corol-
lary 7.2. Thus we obtain

Corollary 10.11 For a PH renewal process with parameters (o, T') starting
in phase equilibrium, the expected number E,(Ny) of arrivals until time t is
given by

ETI’(Nt) =t-mn

with n = —T'1. The stationary phase distribution 7 is given by

1 (0.)
™= —————=- / O{eT.t dt
—CYTill 0

Proof: The first statement is a specification of theorem 10.10. The expression
for 7 is verified by

1 > T-t
D = W/{; e dt (T+770é)

1 /°° T4 /°° T4 >
=—F— |« e T dt + ae’ 'ndt a
—OéTill < 0 0

1
= 71 (a(=I)+a)=0

with I denoting the identity matrix, and

[ee] oo
/ aeltdt1 =« / elTtdt1=—aT 11
Jo Jo

O

The above PH renewal process N is a delayed renewal process with initial
delay Xo ~ PH(mw,T) and renewal intervals X,, ~ PH(«,T) for n € N.
The elementary renewal theorem 6.12 then states that lim; ..o E(Ny)/t =
1/E(X7). Thus we obtain another expression for the mean of a phase—type
distributed random variable (cf. corollary 9.9).

Corollary 10.12 For a PH(«, T') distributed random variable X the expec-

tation is given by E(X) = (7n) %
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Notes

The first presentation of the PH renewal process has been given in Neuts [63].
The MAP in the present formulation has been introduced first in Lucantoni
et al. [56] as a generalization of the PH renewal process and the Markov—
modulated Poisson process. Its further generalization to the BMAP with batch
arrivals has been introduced in Lucantoni [54]. An early algorithms for a com-
putation of the transition probabilities can be found in Neuts and Li [67]. The
calculus of matrix convolutions that leads to explicit expressions for the transi-
tion probabilities of BMAPs has been introduced in Baum [9] or Breuer [21].

The class of BMAPs is equivalent to the class of versatile Markovian point
processes (or N—processes) introduced in Neuts [64]. However, this formula-
tion is more complicated and does not yield as simple an anlysis of the respec-
tive queueing systems. For generalizations of BMAPs see Pacheco and Prabhu
[68], Baum and Kalashnikov [11, 13], or Breuer [19, 21]. A result which is
analogous to theorem 9.14 is that the class of all MAPs is dense within the
class of all marked point processes (see Asmussen and Koole [6]).

An extensive treatment on the history of the BMAP, along with many refer-
ences, can be found in Lucantoni [55]. Statistical methods for fitting MMPP
and BMAP models are given in Ryden [76] and Breuer [18].

Exercise 10.1 Prove theorem 10.4.

Exercise 10.2 Prove equation (10.3) as well as

oo

YA = (D(2))

n=0

for z € C with |z] < 1.

Exercise 10.3 Give a model (in terms of a PH renewal process) for the number
of orders the plumber of exercise 6.4 receives.

Exercise 10.4 Show that an IPP is uniquely determined by the first three mo-
ments of the inter—arrival time distribution.

Exercise 10.5 In a telephone network data transmission via the package voice
system works as follows. The language source is digitalized and divided into
packages, which are to be transmitted. A language source switches between
“talk spurts” and ’silent periods”. Thus a model in terms of an IPP seems
reasonable.

Measurements yield a mean inter—arrival time of 3 ms for the packages. The
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squared coefficient of variation is 300. Further it is known that a silent period is
about two times as long as a talk spurt. Adjust the IPP to these measurements.

Exercise 10.6 Describe the BMAP/PH/k queue in terms of a Markov process
with (k 4 2)—dimensional state space.



Chapter 11

THE GI/PH/1 QUEUE

In section 1, we have analyzed one of the classical semi—Markovian queue-
ing systems, the GI/M/1 queue. For practical applications, this model has the
disadvantage that the assumption of exponential service times is often inap-
propriate for the actual service time distribution governing the system. More
typical service times often are distributed like generalized Erlang or Cox distri-
butions, or special distributions like the lognormal or Weibull type. The former
are special cases of phase—type distributions, the latter can be approximated by
them. Thus the wish to extend the results for the GI/M/1 queue to GI/PH/1
queues is understandable.

It will turn out in the presentation of this chapter that the analysis of GI/PH/1
queues can be performed in a strikingly similar manner to the GI/M/1 analysis.
This is one of the main reasons for the success of the phase—type concept in
queueing theory.

The GI/PH/1 queue is characterized by the following features. Arrivals are
generated by a renewal process with inter—arrival times distributed by a distri-
bution function H with 0 < E(H) < oo. The service times are iid according to
a PH(«,T) distribution of order m € N, with a;,+1 = 0. There is one server,
and the service discipline is FCFS. The waiting room capacity is infinite such
that there are no users lost.

In order to keep a complete description of the system state, it is not sufficient
anymore to remember the number of users in the system only, but we need to
keep track of the current phase of the service time distribution, too. Thus we
examine the process Q@ = (Q; : t > 0) with Q; = (Ny, J;) for all £ > 0, where
N; and J; denote the number of users in the system and the current phase of
service at time ¢, respectively. If the system is empty, i.e. NV; = 0, there is no
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service and we do not need to keep track of a phase of service. In this case we
set J; = 0. Thus the state space of Qis £ = {0,0} UN x {1,...,m}.

1. The Embedded Markov Chain

As for the GI/M/1 queue we observe that at times of arrivals the conditions for
a prognosis of the future of the system are less difficult, since we know that the
time until the next arrival is distributed by F'. This is due to the iid inter—arrival
times and the independence of the arrival process from the rest of the system.
Hence we can construct a Markov chain embedded at arrival instants.

Define T, as the time of the nth arrival and X,, := (N, —1, Jg,,) foralln € N.
Since at times 7, there is always at least one user in the system (namely the one
that has just arrived), the state space of X = (X, : n € N)isNgx {1,...,m}.
If we know that the phase of service currently is j, then we also know that
the time until the next service completion will be distributed by a PH (e;, T')
distribution, with e; denoting the jth canonical row base vector. Since we
further know that the time until the next arrival after 7}, will be distributed by
F (the inter—arrival time has just begun), the chain X" is Markovian.

Now we want to determine the transition matrix P of X. Since the state space
of X is two—dimensional, the structure of P must become more complicated
than for the analogue of the GI/M/1 queue. However, we can order the state
space of X’ lexicographically as

{(07 1)7 R (O7m)/ (]‘7 1)7 ct (17 m)7 (2/ 1)7 i }
such that the transition matrix P will have a block structure. The first dimen-
sion of the state space shall be called the level of the process, while the second
dimension is called the phase. The chain pro(X'), with pro denoting the pro-
jection on the second dimension, will be called the (embedded) phase process.

The general structure of P is determined by two considerations. First, between
two arrival instants the number of users in the system can increase by at most
one. Second, as long as the system is not empty, the change of the number of
users between two arrival instants 7}, and 7}, 1 does not depend on the number
of users in the system at time 7;,. Thus we obtain the structure

By A()
By Al Ao

P = By Ay Ay A (11.1)

for the transition matrixf’, with the non—specified entries being zero matrices.
We see that the matrix P has a block Toeplitz structure with one upper diag-
onal and special boundary entries in the first column. In terms of levels, the
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matrix is skip—free to the right as in the GI/M/1 case. Because of the similar-
ity to the GI/M/1 case, such a matrix is also called a GI/M/1 type matrix.

Here, the (7,j)th entry Aj.;; of the matrix A, indicates the probability that
between two consecutive arrivals instants 7}, and 7}, 1, k users are served and
the phase of service changes from ¢ at time 3, to j at time 7,, 1. The entries
By,;; indicate the probabilities that between two consecutive arrivals instants
T, and T}, 1, at least k + 1 users are served and the phase of service changes
from ¢ at time T}, to j at time 7}, 1.

In order to find expressions for the matrices Ay and By, we define the following
family of matrices. For every ¢t > 0, k € Ny, and i,5 € {1,...,m} let
Py.;;(t) denote the probability that during the interval [0, ¢| there are k service
completions and the phase of service at time ¢ is j given that the phase of
service at time O has been 7. Further define the respective m x m matrices
Py(t) = (Pp.ij(t))ij<m- Then we can write

Ak—/ Pk(t) dH(t) and Bk: Z Ai
70 i=k-+1

for all & € Ny. The matrices Py (¢) can be determined according to the ex-
pression given in corollary 10.6 by specifying A = (T,7na,0,0,...), with

n = —T1. Since A := >, Ay is stochastic, we immediately obtain
k
B, =1a — Z Ala
i=0

for all k& € Ny.

2.  Stationary Distribution at Arrival Instants

From now on we shall assume that the stability condition E(H) > —aT~'1
for the embedded Markov chain X is satisfied. In the next section it is shown
that then a stationary distribution for X does exist. In this section we want to
show how this can be determined.

Denote the stationary distribution for X by x = x P and write
x=(xp:n€Ng)=(zp;:n €Ny, 1<i<m)

with x,,; being the stationary probability that the chain X is in state (1, 7). The
vectors X, contain the stationary probabilities of the chain A being in level n.

For the GI/M/1 queue we could derive a geometric structure v,4; = v, & for
the stationary distribution v of the embedded Markov chain. In the present
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case of a GI/PH/1 queue we will have a similar structure for the distribution
x, namely the relation x,4+; = x,R where now the factor R is a matrix.
To underline the analogy, such a distribution is called a matrix—geometric
distribution and R is called rate matrix.

We will first define the matrix R and then show that x indeed is matrix—
geometric with rate matrix R. For all phases 7,5 < m and levels £ > 0,
define the taboo probabilities (cf. definition (8.11))

WP = P(Xy = (B+1,5),pr1(Xp) £ kY 1 < h < n|Xo = (k, 1))

that the chain X enters level k£ 4 1 in phase j after n steps and does not enter
level k before, given that it starts in level k£ and phase i.

The structure of P is self—similar in the sense that if we delete the first n
(block) rows and columns of P for any n € N, we obtain the same matrix as
if we deleted only the first row and column. This implies that the probabilities

kPl(q;nz) ki1, Are independent of k£ € Ny. Hence we can define

" pn)
Tij = kPk,é;kHJ
n=1
foralli,j € {1,...,m}, independently of k£ > 0. The value r; is the expected
number of visits of the chain X’ to the state (k + 1, j) before returning to level
k if X is started in state (k,7). Finally, we define the matrix R = (7;)i j<m
and call it the rate matrix.

Theorem 11.1 The stationary distribution x = (x, : k € Ny) of X satisfies
the relation

X1 = Xp R

for all k € Ny.

Proof: Fix any level £ € Nj. By conditioning on the last time and phase of
the last visit to level £ we obtain the relation

m n
(n) _ (n) (r) (n—r)
P sy = oP iy T 00 2 P WP
i=1 r=1
foralln > 1.

If we add these equations forn = 1,..., N, divide both sides by /N and then
let N tend to infinity, the left-hand side tends to x4 1 ; according to corollary
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2.28. Since the sum » > , kPg;)l Iy is finite if X is positive recurrent, the

first term on the right-hand side tends to zero. The second term equals
pln=r)
m Z Z Z P g P
n=1r=1
m

L

k+17kz E:k k,z,k+17

N—r m
k-i—l,]kz' hm E:kpkzkﬂg E:xkf%
=1 n 1 =1

by corollary 2.28 and the definition of R.
O

3t
o 5

The matrix R contains the expected number of visits to any level [ +1 € N
between two consecutive visits to level [. In case of positive recurrence this
matrix is entry—wise finite by theorem 2.24. For the powers of I we obtain the
following interpretation:

Theorem 11.2 For any k € N, the (i, j)th entry of the matrix R* indicates the
expected number of visits to the state (I + k, j) between two consecutive visits
to level | € Ny, given that the chain X starts in state (1, 1).

Proof: The statement holds for £ = 1 by definition of R. Now we assume that
it holds for some k£ € N and want to show the induction step to £ + 1. For
n > k + 1 the relation

(n—r)
lPl,z,l+k+17 E : E :lPlzlJrkh l+krPl+k,h;l+k+1,j
h=1r=0

_ (n—r)
ZZlPlzl—f—kh lPlhl—f—l,j
h=1r=0

is obtained after conditioning on the time r and the phase & of the last visit to
level [ + k before visiting level [ + k£ 4 1. For n < k both sides of the equation
are zero, such that we can sum over all n > 0. The left-hand side sums up to
the desired expectation for the level k£ + 1. On the right-hand side we obtain

Zzzlpg?ﬂrkh 1(7;;,1117 Zzlplzl+khzlplhl+17

h=1n=0r=0 h=1r=0

m
_ k
= E Rip,rng
h=1
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which completes the induction step.
O

There is an interesting relation between the matrix R and its powers, which at
the same time yields a method to compute R without needing to calculate the
n—step taboo probability matrices P by which R is defined. This is given
in

Theorem 11.3 [f X is positive recurrent, then the matrix R is the (entry—wise)
minimal non—negative solution to the matrix equation

o
M = Z M"A,,
n=0

It can be obtained as the limit R = limy_,o, M (k) with M(0) := 0 and
M(k+1) =322, M(k)"A, forall k € N.

Proof: First we observe lP( ) = Ag,;j. For n > 2 we obtain

Lil4+1,5
1P lzl+l,] E:E:lplzlJrkh Aksng
h=1k=1

by conditioning on the state (I + k, k) from which the level [ is entered for time
n. If we sum up these equations for all n, we obtain R = ) >° | R"A,,.

For the second statement, consider the sequence M = (M (k) : k € Np).
Clearly, M (1) > M(0) and R > M (0) entry—wise. The fact that

M(k?Jrl)—M(k)=i(M(k)”—M(k—1)")An20

n=0
oo

R—M(k)=> (R"—M(k—1)")A, >0
n=0
yields by induction that the sequence M is entry—wise monotonically increas-

ingand M (k) < Rforall k € N. Hence there is a matrix M* = limy_,o, M (k)
with M* < R. Thus we can use the dominated convergence theorem to verify

= lim M(k) = lim > M(k—1)"A, = Zklim M(k—1)"A,

k—oo

- Z(M
n=0
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such that M* is indeed a solution to the matrix equation.

Every other non-negative solution M’ to the matrix equation must satisfy
M' > Ay = M(1). But M > M (k) implies
M =Y (M')"Ay > M(k)"Ap = M(k + 1)
n=0
and thus by induction M’ > M (k) for all k£ € N and in the limit M" > M*.
Hence M™ is minimal.

It remains to show that R < M*. Define the matrices

— (n)
P = (lplz;l+r,j)ij<m

for all n, r € Ny and remember that their definition is independent of the start
level [. The matrix qu(nn) contains the (phase—dependent) probabilities that the
level of the chain is raised by r after exactly n steps. Because of the structure

(11.1) it is clear that ;P = 0 for r > n.

Further define the matrices YS(T) = ZS ngn) and set Y := Ys(l). Then we

n=0
can write R = lim,_,,, Ys. The matrix YS(T) contains the (phase—dependent)
expectations of the number of visits to the level [ + r within the course of s

steps beginning from taboo level [. Again the structure (11.1) yields YS(T) =0
forr > s.

Because of lP(ln’) = Zf;lo PV A, we obtain

s s—1 k oo s—1 oo
O NN WIS SO DL IS Skt
n=1 r=0

k=0 r=0 r=0 \k=0

for all s € N. Conditioning on the time % of the last visit to level [ +r — 1
yields

P =5 W Pk
k=0

which implies

s—1 n s—1 s—1
VO = S P, P < 5P, SR = vy
n=0 k=0 k=0 n=0

whence Ys(f)l < Y] ,forall » > 1. Thus Y} satisfies the inequality

sz S i Y;TilAﬂ

n=0
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Clearly, the sequence (Ys : s € N) is increasing and Y7 = Ay = M (1), while
Y> < M (2). Now the above inequality yields Y, < M (s) for all s € N, which
implies the desired bound R < M*.

O

Theorem 11.4 The stationary probability vector xq of X is determined by
xo=xoB[R] and xo(I-R) '1=1
with B[R] = >">°  R"B,,.

Proof: The stationarity of x = xP yields according to the structure given in
(11.1) and theorem 11.1

o0 o
Xg = Z X, B, = Xq Z R"B,
n=0 n=0

which proves the first equation. In order that x = (x; : k£ € Ny) be a proba-
bility distribution, we further need

o0 o
1= x1=x0) Rfl=xo(I-R) 'l
k=0 k=0

which is the second equation. Since P is irreducible, there is at most one
stationary distribution of X'. Since the two equations in the statement and the
relation in theorem 11.1 yield a solution to x = x P, the vector X is uniquely
determined.

O

After verifying that B[R] = 1« (as an exercise), we immediately obtain

Corollary 11.5 The stationary probability vector xg of X is explicitly given
as
xg = (a(I — R)™'1)'a

3. Ergodicity of the Embedded Markov Chain

In the previous section we have derived the form of the stationary distribution
in case of positive recurrence of the embedded Markov chain X'. Now we
want to derive the conditions for positive recurrence, also called the ergodicity
conditions for X

First a remark is due regarding irreducibility of X. If a; = 0 for some phase
1 < 7 < m, then for all matrices Bj, the ith column vanishes, and X" is not
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irreducible. However, all statements concerning existence and uniqueness of a
stationary distribution hold as if the chain X were irreducible. This is due to
remark 2.26, which was to be proven as an exercise in chapter 2.

Since in case of positive recurrence the structure of the stationary distribution
x is largely determined by R, it seems natural to search for some property of
R to yield the ergodicity condition. This can be found in the second equation
in theorem 11.4.

Theorem 11.6 The embedded Markov chain X is positive recurrent if and
only if (I — R) is invertible.

Proof: Define the vector v = ) >° / R"1, which may have infinite entries.
According to theorem 11.2 the value v; indicates the expected return time to
level zero given that Xy = (0,4). By theorem 2.32 (with F’ being the states of
the level zero), the chain X is positive recurrent if and only if v is entry—wise
finite. This is equivalent to convergence of the series > oo R" = (I — R)~ 1.
O

Although the above stability condition is the first that comes into mind if we
regard the structure of the stationary distribution x, it may be difficult to check
this condition if there are eigenvalues of R with modulus close to one. Seen
from a more general perspective, we would expect the queue to be stable if and
only if the classical condition, namely that the mean service time be less than
the mean inter—arrival time, holds. That this is indeed the case can be shown
for the GI/PH/1 queue, too. However, to this aim we first need to trans-
late the classical condition to an equivalent condition in terms of the system
parameters.

We have denoted the distribution function of the inter—arrival times by H and
its mean by E(H ). According to corollary 9.9, the mean service time is given
by E(S) = —aZ~'1. Then the classical stability condition may be stated as

—aT 1 ]

PTTRm) T
Now define the matrix A := > >° / A,, which contains the transition proba-
bilities for the phase process at times of arrivals, given that the server is busy.
Clearly A is stochastic. Note further that A is irreducible, due to the phase—
type service process without superfluous phases. Let 7w denote the stationary
vector for A, satisfying 1A = w. If we define further D := T" + na, then we
can state

Lemma 11.7 The vector m satisfies mD = (.
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Proof: By definition of A and theorem 10.8 we obtain

_WOC — N — OoeD-t
= ;)An /0 ;;Pn(t)dﬂ(t) /O dH (t)

[e%S) o0 tn
= — D" dH (t
Jo T

Clearly this equation holds if 7D = 0. Since the matrix A is irreducible and
therefore the vector 7 uniquely determined, the statement follows.
0

Theorem 11.8 The classical stability condition p < 1 is equivalent to the
condition

ka-Ak1>1
k=1

Proof: The definition of the A, yields

Ty kAl :/ m> k- Py(t) 1dH(t)
k=1 0 k=1

Here the expression within the integral is the expected number of service com-
pletions in time ¢ given that the service process is started in phase distribution
m. Since the sequence of service completions under the regime of a busy server
is a PH renewal process, corollary 10.11 yields
> oo
T ke Apl= / E.(N;) dH(t) = 70 - E(H)
k=1 0

Now the expression for 7 in corollary 10.11 implies

o0
™= — (aTll)l/ aeltndt = — (aTﬁll)i1
0

Thus we obtain
= 1
Ty ke Agl== (11.2)
k=1 P
which completes the proof.
O

The above condition postulates that under the stationary phase regime the mean
number of service completions between two arrivals is greater than one. It
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is as intuitive as the classical stability condition and can be verified almost
immediately once the system parameters are given. Now we will show that
this condition implies positive recurrence of the embedded Markov chain X'

We write A = > | A, as usual, and denote by & = (@i, .. ., Gp,) the column
vector of components a; = » jeE Yoo g nAy; for 1 < 4 < m. In order to
apply the criteria of theorem 2.33 to the chain X we first construct a non-
negative solution v of

I-A)v=a—-(1/p1 (11.3)

Lemma 11.9 The system (11.3) possesses solutions of the form v + r1 with
r € R, where v is any finite separate solution and {r1 : r € R} represents
the set of all solutions of the homogeneous system. In particular, it is always
possible to find a solution v that is non-negative.

Proof: Since A is non-negative and stochastic, A — I represents the generator
of some Markov process and, consequently, has rank m — 1. The stationary
vector of that process is 7 (since 7A = 7).

An inhomogeneous system M v = d of m linear equations with m unknowns,
whose characteristic matrix M is of rank k£ < m, possesses a solution if and
only if the vector of the right-hand side is orthogonal to all solution vectors
w = (w1, ..., wy) of the adjoint homogeneous system wM = 0. In our case
the rank is m — 1, and any solution of the adjoint system is some multiple of
7. Checking the condition of orthogonality, we see that

m(a—(1/p)1 —WZTLA l—f:

because of (11.2). Therefore, the system (11.3) possesses a finite solution
v = (v1,...,0n). The general solution is the sum of a separate solution and
a solution of the homogeneous system. Since, obviously, the homogeneous
system has as solutions all multiples of 1 = (1,1,...,1)T, the general non—
homogeneous solution is v 4 7 - 1, for arbitrary r € R.

O

Theorem 11.10 The embedded Markov chain X is positive recurrent if p < 1.

Proof: Applying Lemma 11.9, let v = (v1,...,v,,) be some non-negative
bounded solution of equation (11.3). Using this solution, define the finite func-
tion

. s+wv; for seN, 1<j5<m
f(s,5) = { J J (11.4)

0 for s=0,1<j57<m ’
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such that for r > 0,

ZPT’L s,]f S ] Zprzs,j S — + Z r,z,s,] Vj — V4

(5,5) 7]) s>1;7<m
:_TZBrz]"i_ZZAan l_n +ZZATHJUJ Vi
j=1n=0 Jj=1n=0

Since Y7L, > nAp;; < oo, the sums Y070, Y 5° nAy; tend to zero as
r tends to infinity. Hence

ZB’"”_Z Z rApi; — 0 as 1 — 00

j=1n=r+1

If p < 1, then equation (11.3) yields

rlgglo Zpr,i;s,jf(saj)*f(ﬁi) < 122”147@;@4-@1—;
(o7

j=1n=0
1

=1-- < 0,
p

implying that there exist an 7o € N and an € > 0, such that for p < 1

L(r,i) = Z Prisi- f(s,9) — f(ryi) < —e forallr >, i <m.
(s.9)

Define a finite subset F' C Ny x F of states as
F={(r,i):r<rg,i <m}. (11.5)

Since for 7 = 0 the expression > 7", Ag;;;(1 + ;) is positive (bearing in
mind that v; > 0 for all j), this set F is not empty. Since L(r,i) < —¢
for (r,i) ¢ F,and 0 < f(s,j) < oo forall s € Npand 1 < j < m, the
prerequisites of theorem 2.33 are satisfied, i. e. the chain is positive recurrent.
O

4. Asymptotic Distribution of the System Process

If the stability condition p < 1 is satisfied, we have seen in the previous two
sections how to derive the stationary distribution x of the embedded Markov
chain at arrival instants. Now we want to use this in order to obtain an expres-
sion for the asymptotic distribution of the system process Q = (Q; : t > 0).
Here )y = (n,j) states that there are n users in the system (including the
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server) and the phase of the service is j at time ¢. If there are no users in the
system, there is no service either. This is denoted by Q; = (0,0).

To obtain the asymptotic distribution of Q is a simple matter if we conceive the
system process as a semi-regenerative process in the same way as we already
did in the analysis of the GI/M/1 queue. If 7 = (T, : n € N) denotes the
sequence of arrival instants and X = (X, : n € N) is defined as in section 1,
then the independence of the arrival process from the rest of the system yields

G 1), (ng) (8) = P(Tny1 = Ty < 8| Xy = (K, 1), X1 = (n, ) = H(¢)

independently of k,n € Ny and ¢, j < m. The standard assumption E(H) > 0
on the distribution function H implies that 7;, — oo P-almost certainly as
n — oo. Hence (X, 7) is a Markov renewal chain and Q is semi-regenerative.

In order to employ theorem 7.15 for the calculation of the asymptotic distri-
bution of the system process Q, we already have determined the stationary
distribution ¥ = x of X" in section 2. It remains to derive the vector m of the
mean time between Markov renewal points as well as the function K (t) de-
scribing the behaviour of the system process between Markov renewal points.
The vector m is obtained in a straightforward manner as

M = E(Ty| X0 = (n,i)) = E(H) (11.6)

independently of n € Ny and ¢ < m, since the arrival process does not depend
on the state of the system. Thus the vector m is constant. The function K ()
is given by the values K(j, ;) () (t) = P(Th > t,Q; = (n,7)|Xo = (k,1)).
Exploiting the independence of arrival process and service and abbreviating
He(t) :==1— H(t), we obtain

HE(t) * Prt1-nii5(1), 1<n<k+1
Ky gy () = § HO ) - 2opZpra 22551 Pras(), - (n,5) = (0,0)
0, n>k+1

forallt > 0, k,n € Ng,and 4, j < m.

Denote the asymptotic distribution of the system process by the block vector
y = (yn : n € Ny). For n € N the blocks y,, = (yni : 1 < i < m) are defined
by yni = limy_oc P(Q: = (n,4)). The asymptotic probability of the system
being idle is denoted by yo = yoo = lim;— P(Q: = (0,0)). Now theorem
7.15 yields

Corollary 11.11 If the stability condition p < 1 holds, then the asymptotic
distribution of the system process Q = (Qq : t > 0) for the GI/PH/I queue is
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given by
Al Xk W(k+1=n)e;, n>1
Ynj = 0o 00
A D k0 Xk 2o Y(R) 1, n=2>0

with the following notations. H denotes the inter—arrival time distribution,
and H(t) :== 1 — H(t) its complement. \ := 1/E(H ) denotes the asymptotic
arrival rate. The vector x = xP contains the stationary distribution of the
embedded Markov chain X at arrival instants, and the matrices Py(t) are
given as in corollary 10.6 with A = (T, nc, 0,0, . ..). Finally we denoted

b(k) = OOO HE(t)Py(t) dt

forall k € Ny.

In the remainder of this section we shall find simpler expressions for y. Be-
cause of theorem 11.1, we first obtain

oo h—1
Vo =\- Zxk Z () 1=X-x0> Y RFp(n)1
h k=0

k=0  h=k+1 =1 k=

=\-x (I—R*lz I—RMy(h)1

“ax (/ HE(t)(1 — Ry(t)1) dt — ZR%())

= A-xo(I =R -E(H) =X xo(I —R)™! Z RMp(h) 1

Corollary 11.5 yields xo(I — R)~'1 = 1. Denoting U[R] := Y32, Ry (h)
and using \ - E(H) = 1, we can write

yo=1-X-xo(I — R)"'U[R]1 (11.7)
For n € N the same arguments yield
Yo =\ i xp h(k+1—n)=\-xoR" 'U[R] (11.8)
k=n—1
Lemma 11.12 The matrix V[R) is given by
VR =(R-Rla—-1)T"!
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Proof: Differentiating equation (10.1) for the PH (o, T') renewal process yields
Pit)=Py(t) T  and  P.(t)=Py(t) T+ Py_1(t) na  (11.9)

for all n € N. From theorem 11.3 we know the relation R = >~  R"A,,.
For every n € Ny we obtain by partial integration

Ay = / () dH (1) = — / " pa() dHE()

0 4]
—— PUOH O+ [ PR d
= 0ol +(n) T+ (1 — dno) - (n — 1) na

where §,,0 denotes the Kronecker function. Multiplying by R™ and summing
up over all n € Ny yields

R=I1+4+VY[R|T + R Y[R] na (11.10)
Multiplying by 1 we obtain
(I -R)1=(I—-R) Y[Ry

By theorem 11.4, the matrix (I — R) is invertible in case of positive recurrence.
Hence ¥[R]n = 1, which yields after substitution in (11.10)

U[R|T=R-Rla—1

The statement follows now by invertibility of 7.
O

Theorem 11.13 The asymptotic distribution'y of Q is given by
yo=1—p and yn,=X\ xo(R" (I —1la)— R T
foralln € N.

Proof: Substituting the expression of lemma 11.12 in equation (11.7) yields
yo=1-Xxo(—(I-R)""Rla—1) T7'1
=1-A-(aI-R)"1)"" (a«(I-R)""R1+1) (—aT '1)
because of corollary 11.5. Writing 1 = a(I — R)~'(I — R)1 we obtain
yo=1-X-(—aT'1)=1-p

Regarding y,, withn € N, the statement follows immediately after substitution
of the same expression for ¥[R] into formula (11.8).
g
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Notes

A classical treatment of the GI/PH/1 queue is given in Neuts [65], who presents
a proof for the necessity of the stability condition, too. Different proofs for the
ergodicity conditions can be found in Asmussen [5] as well as in Meyn and
Tweedie [59].

Tweedie [83] has shown how to generalize the matrix—geometric solution for
GI/M/1 - type matrices towards operator—geometric solutions for GI/M/1 - type
matrices with a general phase space.

Exercise 11.1 Verify that for the PH service time distribution being an expo-
nential one, all results coincide with the results obtained for the GI/M/1 queue.

Exercise 11.2 For corollary 11.5, show that B[R] = 1a.

Exercise 11.3 Show that the mean number of arrivals during a busy period is
given by a(I — R) '1.

Exercise 11.4 Show that the stationary mean number of users in the system
prior to arrivals is given by

Ny =x0(I —R)?1 -1
Exercise 11.5 Verify equations (11.9).

Exercise 11.6 Show that the asymptotic mean number of users in the system
is given by B -
N = pN, — Mxo(I — R)"'T™"1

with IV, as defined in exercise 11.4.



Chapter 12

THE BMAP/G/1 QUEUE

Let (N, J) denote a BMAP with characterizing matrices A = (D,, : n € Np),
each matrix D,, being of dimension m & N. This shall model the arrival
stream into the queue. The distribution function of the service time shall be
denoted by H and satisfy 0 < E(H) < oo. The service discipline is FCFS.
Let @ = (Q: : t > 0) denote the system process comprising the phase of the
arrival process. Thus, Q; = (n, i) means that there are n users in the system
at time ¢ and the arrival process has phase J; = i. The state space of Q is
E:NO X {1,...,m}.

As the analysis of the GI/PH/1 queue was similar to that of the GI/M/1 queue,
we will find many similarities between the BMAP/G/1 and the M/G/1 queueing
systems. To begin with, we will first construct an embedded Markov chain at
the times of service completions. Define T := 0 and 7}, as the time of the
nth service completion. Write 7 = (T}, : n € Ny). Let X,, := Qr, for all
n € Ny and assume that at time zero there are no users in the system. The 7,
are stopping times for Q and by definition X, is a deterministic function of
Q1, - The assumption 0 < E(H) implies 7;, — oo for n — oo.

At the time instances immediately after service completions we know that the
current service (if there is one) has just begun, and we need only to remember
the current system state in order to predict the system state immediately after
the next service completion. This implies that ¥ = (X, : n € Ny) is a Markov
chain. The same property of the queue yields condition (7.5). Hence Q is
a semi-regenerative process with embedded Markov renewal chain (X', 7).
Note that this time (as opposed to the embedded chain for the M/G/1 queue)
the Markov chain is two—dimensional with state space £ = Ng x {1,...,m}.
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1. The Embedded Markov Chain

Define the matrices ~
A, = / Po(t) dH(#) (12.1)
0

and

n+1 00 00
B, = Z/ eDO'uDk, du / Py (t) dH(t) (12.2)
k=10 0

for all n € Ny, with P, (¢) denoting the transition probability matrices that the
BMAP counts n arrivals in time ¢ (see corollary 10.6). The matrix A,, contains
the probabilities that within a service time n users have arrived. Hence we can
describe some of the transition probabilities for the Markov chain X by

P(X1 = (I +n,5)|Xo = (1,7) = Ant1,

independently of [ > 1 and for all n > —1 and ¢,j < m. The matrix B,
contains the probabilities that first a batch of 1 < k£ < n + 1 users arrives and
then n+1—k additional users arrive within a service time. This situation occurs
whenever a service completion leaves the queueing system empty. Therefore
we can write

P(X1 = (n,7)|Xo = (0,4)) = By

foralln > 0 and 7, 7 < m. In summary we obtain for the transition probability
matrix of X the block structure

By Bi B
Ay A A
p_ |0 A4 A

0 0 A

A matrix of this structure is said to be of M/G/1 type, which underlines the
similarity to the embedded Markov chain of the M/G/1 queue. Again we will
call the first dimension n of a state (n, 7) the level, and the second dimension 4
the phase. With respect to the levels, the Markov chain X is called skip—free
to the left, since in one transition the level can be reduced only by one.

Simplifying the expression (12.2) and using definition (12.1) yields the relation

By=-Dg')  Dip1An-k (12.3)
k=0

between the sequences (A,,) and (B,,), which reduces the computation of the
matrices B, to a prior computation of the sequence (A,,).
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2. The Matrix G

Define 7, as the number of steps until the chain X reaches level n for the first
time. Further define

Gr(i,j) =P(r, =k, X, = (n,j)| Xo = (n+1,7))

for all £k > 1 and 4,5 < m. The spatial homogeneity of P implies that this
definition is independent of n > 0. Define the matrices G of dimension
m x m by their entries G(i, j) for i, j < m, and G := > "~ | Gj. Thus the
entry G (i, 7) denotes the probability that under the condition that we start in a
level n +1 > 1 and in phase ¢, we reach the level n for the first time in state j.

Theorem 12.1 If the Markov chain X is recurrent, then G is stochastic.

Proof: If GG is not stochastic, then there is a phase ¢ such that

k=1 j=1

Because the transition matrix P is skip—free to the left, this means that the
function f;; as defined by (2.5) satisfies f(,11),(n,5) < 1 forall n € Np and
1<j<m

n?j

By definition of the matrices A,, and B,,, the Markov chain X is irreducible.
Then X’ is recurrent by definition if f, , = 1 for some state x € F. According
to equation (2.6), f; = 1 can only hold for a state x € F if f; , = 1 holds for

all states =,y € E. Hence it follows that X is transient if GG is not stochastic.
O

Theorem 12.2 The matrix G satisfies the fixed point equation
oo
G=) A.G"
n=0

Proof: First we introduce the auxiliary matrices GLT] with entries

G0, j) =P(rn =k, Xp = (n,5)| Xo = (n+7,0))  (12.4)

forall k,r > 1and ¢, j < m. Again, the spatial homogeneity of P implies that

this definition is independent of n > 0. By definition G/[,j} = Gy forall k > 1.

Because P is skip—free to the left, we have GE:] = 0 for £ < r. Summing up
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over the number [ of steps until the chain & reaches the next lower level for
the first time, we obtain

k—1
ay =Y GG (12.5)
=1

for all k,» > 1. Further define Glrl = chzl GE:] for all » > 1. Now we obtain

A=3"Yad =6 Y &) =aar!
k=1 1=1 =1 k=1+1

k—1

which implies GI"l = G” because of GI') = G. Summing up over the level
reached by X after the first step we finally obtain

G = A+ i A,GIM = i A, G"

n=1 n=0

which was to be proven.
0

Theorem 12.3 The matrix G can be computed by the recursion
k—1
Gl = A() and Gk = Z AngZEl
n=1

with G = (0,G1,Ga,...) and the convolutional powers of G as defined on
page 190.

Proof: The first equality follows from the definition of G1. For the second
one, a first passage argument yields

k—1
Gr=> A.G,

n=1

with GE:L] as defined in (12.4). Thus it remains to show that GE:L] = G, for all
k > n € N. This relation holds by definition for n = 1 and all £ > 1. For
n + 1 the induction step follows from equation (12.5).

O

3. Stationary Distribution at Service Completions

Using the matrix G from the previous section, we are now ready to derive a
recursive scheme for the stationary probability vector x = xP of P. We write
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x = (x5, : n € Np), with x,, = (zp; : 1 <4 < m) containing the stationary
probabilities for level n.

Theorem 12.4 [f X is positive recurrent, then the vectors X,, satisfy the recur-

sion
n—1
Xy = (Xan + Z XkAn—',-lk) (I— 1211)71

k=1
for all n > 1, with the definitions

B, = Z BpGF™ and A, = ZAka_"
k=n k=n
Jorn > 0.

Proof: For n > 1 we consider the Markov chain X'¥" embedded in X at times
of visits to the set ' = {(k,7) : 0 < k < n,i < m} of states, which is
equal to levels zero through n. By the definition of GI"! and due to the relation
Gl'l = G" (see the proof of theorem 12.2), the transition probability matrix P,
of X can be written as

By Bi By .-+ By, 1 By
Ao Ar Ay 0 Apr Ap
0 Ay Ay -+ Ap 2 Ap
o --- 0 Ay A As
O --- 0 0 Ao A
By theorem 2.29 we know that the vectors Xq, . . ., X,, are proportional to the

vectors yo, ..., yn Withy = (yo,...,yn) satisfying y = yP,. Hence we
obtain in particular for the nth column

n
Xn = X0Bp + ) X Ansion (12.6)
k=1

According to theorem 12.1 we know that ( is stochastic, and thus

A1 =D AGF 1 =) Al =1- Al
k=1 k=1

Due to corollary 10.7 and definition (12.1), all row sums of the matrix Ag are
strictly positive. This implies that all row sums of A; are strictly less than one,
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and thus 7 — A; is invertible by Gershgorin’s circle theorem (see corollary
15.11). Therefore, we can transform the relation (12.6) to

n—1
Xp = (XOBn + Z chAn+1k> (I - A])_l

k=1

which is the statement.
O

With the above recursion it remains to determine the vector xq in order to
obtain the stationary distribution at service completions. A simple expression
for this will be obtained as a by—product of the next section.

4. Asymptotic Distribution of the System Process

By means of the stationary distribution x of the embedded Markov chain X
at service completions we can determine the asymptotic distribution y of the
queue’s system process via theorem 7.15. In order to apply this, we need to
obtain the product xm, with m denoting the column vector with entries

mn,i = E(Tl‘XO = (n,z))

Theorem 12.5 The asymptotic mean time between two service completions is
given by
xm = E(H) —xqD, '1

Proof: For n > 0 we have m,,; = E(H ), since the service does not depend on
the phase of the arrival process. In order to determine the values my ;, define
7 :=min{t > 0 : pri(Q:) > 0) as the time until the first arrival. Since the
arrival process is independent of the rest of the queue, equation (10.2) can be
applied to yield E(7]| X, = (0,4)) = —e; Dy '1, with e; denoting the ith row
base vector. Hence we obtain

mo; = E(1|Xo = (0,7)) + E(H) = E(H) — ¢;Dy "1

Now the product xm is given by

Xm = Z <Z TniE(H) + zoi(E(H) — eiDo_ll)> = E(H) — xoDy'1
i=1 \n=1

which was to be proven.
0
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In a stationary regime, we expect that the intensities of the flow into and out of
a queueing system equal each other. The asymptotic mean arrival rate is com-
pletely determined by the parameters of the BMAP and was derived in theorem
10.10as A = 7Y 7 | kDj1, with 7 denoting the stationary phase distribution.
The latter is determined by 7D = 0, with D = »"2 , D}, denoting the gen-
erator of the phase process. The intensity of the flow out of the system can be
measured in terms of the mean time between two service completions, since
every user leaves the system immediately after its service is finished. Thus we
would expect that in under a stationary regime A = 1/xm holds. This shall be
proven next in

Theorem 12.6 The asymptotic mean time between service completions equals
the inverse of the asymptotic mean arrival rate:

E(H) —xoDy'1 = X"

Proof: Since the arrival process is independent from the rest of the queue,
A (E(H) —x9Dy'1) = X - xm is the asymptotic mean number of arrivals
between two service completions, according to theorem 12.5. We need to show
A-xm = 1. Using the stationary distribution x of the embedded Markov chain
X at service completion times, we recognize the following representations:

The number
oo o
Af1::j£:Xn§£:kAk1
k=1

n=1

indicates the mean number of arrivals between two service completions for the
case that the prior service completion does not leave the queue empty. The
number

o
My = —x¢Dy" Z kD1
k=1

signifies the mean batch size of the first arrival after the prior service comple-
tion leaves the system empty. Finally,

[o§] o0
<N&2=<—X0[%;1§E:l)k§£:kAkl
k=1 k=1

represents the mean number of arrivals during the following service time. Thus
we can write My + My + Mz = X - xm and it suffices to show that this sum
equals one. To this aim we take a look at the defining equation x = xP.
Analogously to the argument before equation (8.16) for the M/G/1 queue, this
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can be written as
X1A0 = Xo(I - Bo)
X2A0 = Xo([ — BO — Bl) —+ Xl(I — Ag — Al)
X3A0 = X()(I — Bg — By — BQ) —|—X1(I — AO — A1 — Ag)
+X2(I — Ao — A])

Here the nth equation is equivalent to
n—1 n—1 n—l
x, A0 = Xq (B — ZBk> —I—ZXZ (A — ZAk>
k=0 =1 k=0
+x0(I — B) le (I — A)

with A = 3> /A, and B = ) 2 B,. We first multiply each equation
by 1 from the right, then we add up all equations. Employing the relations
B — Zz;é Bp =32, Brand A — Zz;é Ap =302, Aj, we obtain

an (A ZAk>1—XOZnB 1+anZkAk+11
n=1

Because of Y p° | kApy1 =D poq kAL—> 5oy A and A1 = 1 this simplifies
to -
1—x01 :X()Zanl—i-Ml (12.7)
n=1
Using B,, = —DO_1 ZZI% Dy Ani1-k (see equation (12.3)), the first term on
the right is evaluated as
00 n+1

X0 ZTLB 1= _XOD() Z ZDkAn+1 k]-
= —xgDy ZDk > 41—k + (k—1)An 41
n=k—1

= M3 - XQDal Z(k} - 1)Dk ZAnl
k=1 n=0

= M3 + M, —i—XoDalZDkl
k=1
= M3+ My — xg1
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where the last equality holds because of Y »- ; Dy = (D — Dy) and D1 = 0.
This and (12.7) yield the statement.
0

Let yp; = limy_ooc P(Q; = (n,7)) forn € Ny and 1 < i < m denote the
asymptotic probabilities of the system process (). Further define the vectors
Yo = (Ynis- .-, Ynm) for all n € Ny and the sequence y = (y, : n € Np).
Define the m x m matrices K ¥"/(#) by their entries

Kz[fn} (t) = P(Tl > t, Qt = <n7])|XO = (k7l))

for all ¢ > 0 and k,n € Ny. Then the asymptotic distribution y of the sys-
tem process can be expressed in terms of the stationary distribution x of the
embedded Markov chain &X' via theorem 7.15. As a first result we obtain

Theorem 12.7 The asymptotic probability vector of an empty system is given
by
Yo = —AxoDy"!

and has total mass yol =1 — p, withp = X -E(H).

Proof: For n = 0 the matrices K*™(t) are zero if k > 0, since during the
time between service completions the number of users in the system cannot
decrease. The remaining matrices [0 (t) are given by

K101y = Py(t) = ePot
for all ¢ > 0, according to corollary 10.7. Theorem 7.15 now yields

1 0
Yo = —Xg ePot dt:)\-xo(fDal)
X1m 0

which is the first statement. The second one follows from this representation
of yo and theorem 12.6.
O

Now we will derive a simple expression for the vector xg. To this aim we take
a look at the Markov chain X° embedded in X’ at visits to the level zero. The
state space of this chain is {(0,4) : 1 < i < m}, which is isomorphic to the
phase space {1, ..., m} of the BMAP. From theorem 2.29 we know that x is
proportional to, i.e. a scalar multiplicative of, the stationary probability vector
of X, First we determine the transition probability matrix K for X0, which is
of dimension m x m. From the definition of GI"l and the relation GI"l = G”
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we see by a first passage argument and then by equation (12.3) that

oo o0 n
K=Y ByG"=-Dy" Y > Dpy1An 1G"
n=0 n=0 k=0

_ _Dal ZDk-i-l Z An—k’,Gnika _ _Dal Z Dk+1Gk+1
k=0 n=k k=0

o
= D! ZDka — Dy | =1—-D,'D[G]
k=0

with D[G] = >3, DxG*. In order to find an expression for the vector
k = kK, we first need the following representation of the matrix G:

Lemma 12.8 The matrix G can be expressed by
G = / Pl (1)
0
In particular, the invariant probability vector g = gG satisfies gD|G] = 0.

Proof: The matrix G contains the probabilities of phase transitions between a
service completion that does not leave the system empty and the first consecu-
tive service completion which leaves the system with one user less than at the
beginning. During the time between these two service completions the queue
is never empty, which means that this time interval is a finite sum of (randomly
many) service times.

Phase transitions depend on the arrival process only, since this is independent
of the rest of the queue. Thus it does not matter for G which is the service dis-
cipline, as long as the time between the above mentioned service completions
remains the same.

The stated expression for G results if we regard the phase process under the
following service discipline. Whenever a new user arrives, it is immediately
admitted to the server. The current service is interrupted and the user in service
goes to the head of the queue. As soon as a service is completed, the service
of the user at the head of the queue is resumed, i.e. none of the work is lost.

Thus the time that a user spends in the server still equals exactly its service
time. The server is not idle between the above mentioned service completions
and finally, since the arrival process is independent from the service, the num-
ber of arriving users does not change under the new service discipline.

Under the new service discipline, the user that is in service at the beginning of
the time interval concerning GG will also be in service when this time interval
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ends, since all users arriving later will be served earlier. If there are no arrivals
during the service time of this user, then phase transitions are governed by the
rate matrix Dy. If there is a first (batch) arrival, occuring with rate matrix D,
then the phase upon reentering the same level again (when the first user re-
sumes its service) will change according to the rate matrix D,,G" = D, G".
Thus the generator for the phase process, if we regard only the lowest level of
the first user in service, is given by D[G] = > °  D,G". Since the com-
plete time that the first user spends in the server is exactly its service time, the
expression for G follows.

The second statement g D[G] = 0 for the stationary probability vector g = gG
follows immediatlely from the obtained representation for G.
O

Remark 12.9 The service discipline that was involved in the above proof is
called LCFS (last come first served) discipline with preemptive resume regu-
lation.

Theorem 12.10 The stationary probabilities that the chain X is in level zero
can be expressed by
1—p
=———gD
X0 b\ g0

and the asymptotic probability vector of an empty system is given by

yo=(1-p)-g

Proof: The expression K = I — Dy 'D[G] along with lemma 12.8 yields
that K = ¢ - (—gDy) with some constant ¢’. Theorem 2.29 now states that a
representation xg = ¢ - (—gDg) holds with some constant c. By theorem 12.7
this implies

1—p:y01:)\~c-gD0D0_11:)\-c
and thus ¢ = (1 — p)/\. This proves the first statement. The second statement

now is a consequence of theorem 12.7.
O

Theorem 12.11 The asymptotic probability vectors y,, for n > 1 are given by
the recursion

n

Yo = > (oD + Ax) /Oo(l — H(t)) Py x(t) dt
k=1 0
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Proof: An application of theorem 7.15, along with theorems 12.5 and 12.6,
yields

Yn =X X / K¥Fnl(t) dt (12.8)
k=0 0

as between service completions the number of users in the system can only
increase. For kK = 0 and n > 1 we obtain

K[On](t) _ /ot eDo.uzn:Dl (1—H(t—u)) P, i(t —u) du
=1

while for k£, n > 0 we have
EPrl(t) = (1= H()) - o)

In both expressions the independence between arrival process and current ser-
vice is used. Employing them in (12.8) yields

n oo gt
yn—/\-XQZ/O/ 0eDO'“Dl-(1—H(t—u))~Pn,l(t—u)dudt
1=1 Jt=0Ju=

n 00
+X- Zxk/ (1—H(t)) - Py_j(t) dt
k=1 70
The integral in the first line equals

/ eDO-uDl/ (1 —H(t*u))Pn—l(t_u) dt du
u=0 t=u

[ee] oo
— / ePov du D, / (1—H(t))P, 4(t) dt
u=0 t=0
[e.e]
o) / (1= H()Poy(t) dt
=0
If we plug this back into the above expression for y,, and use yo = —AxoD, !,
we obtain the statement.
O

5. Stability Conditions

As in the previous chapter on the GI/PH/1 queue we will show various stability
conditions to be equivalent. Define A = "> ; A,,. Then A = (ai;)ij<m 1S
the transition matrix for the phase component of the embedded Markov chain
X under the condition that the queue is not empty. More exactly, we have

P(pra(X1) = j|Xo = (n,1)) = aij
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for all n > 1. Denote the stationary probability vector of A by 7 = 7A.
Further denote the generator of the phase process .JJ by D = Y | D,,. Com-
pletely analogously to the proof of lemma 11.7 one can show (as an exercise)
that the vector 7 satisfies 7D = 0.

Theorem 12.12 Denote the mean service time by E(H) and the asymptotic
mean arrival rate of the BMAP by A\ = 7> >° | nD,,1. Then

p=XA-E(H _WZ’I’LA]_

Proof: Simply using the definition of A,, yields

ﬂ'inAnl = ﬂ'in/oc P,(t) dH(t)1 = /OOEW(Nt) dH (t)
n=1 n=1 0

Q

where E.(N;) is the expected number of arrivals during time ¢ if the BMAP
starts with a phase distribution 7. By theorem 10.10 we have E,(N;) = A - ¢
and hence

Ty nA,l= A-/ tdH(t) = X-E(H)
n=1 0

which is the statement.
O

Theorem 12.13 If the stability condition p < 1 holds, then the embedded
Markov chain X is positive recurrent.

Proof: Asinlemma 11.9 we can find a non—negative solution x to the equation
system
(I-Ax=a—pl (12.9)

witha; := > . p > 02  ndyy;jfori € E. Define the function f(s, j) = s+,
for s € Ngand 1 < 7 < m. Then for » > 0 we obtain

m oo
Zp(r,i),(s,j)f(saj) - f(?",i) = ZZAVL,U : (T —1+4+n +x]’) — T =
(s,3)

7=1n=0
m oo m oo
=r—1 —i—ZZTLAn;ij +ZZA,W‘]‘(E]‘ —r—x;
j=1n=1 7j=1n=0

m oo
ZZnAnzy +p—a;—1=p—-1<0
j=1n=1
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For the exceptional set F' = {(0,7) : 1 < i < m} we obtain

m oo m oo
ZPOZ 7])]03] :ZZan§ij+zan§ijxj

(5,5) j=1n=1 j=1n=0

which is finite by assumption. Thus the conditions of theorem 2.33 are satis-
fied, which proves the statement.
O

Notes

The first complete analysis of the BMAP/G/1 queue has appeared in a paper by
Ramaswami [71]. In this paper the BMAP was used with its older, more com-
plicated notation under the name N—process. A special case of the BMAP/G/1
queue, namely the MAP/G/1 queue without batch arrivals, has been analyzed
in Lucantoni et al. [56] using the current notation. The recursion scheme for
the stationary probability vectors at service completion times has been intro-
duced by Ramaswami [72]. An outline of Ramaswami’s analysis using the
new notations, along with some new results (namely lemma 12.8 and theorem
12.10), are presented in Lucantoni [54]. The use of a matrix convolutional cal-
culus for the determination of the matrix G has been presented in Baum [9].
A general discussion of M/G/1 type matrices and their use in queueing theory
is presented in Neuts [66], including necessary conditions for the stability of
the queue. A variant of the MAP/G/1 queue with LCFS service discipline is
analyzed in Breuer [20]. For a historical overview of the developments that led
to the BMAP and matrix—analytical methods see Lucantoni [55].

A different proof of theorem 12.6 can be found in Ramaswami [71]. In Neuts
[66] a computation of the matrix G is proposed via the fixed point equation
of theorem 12.2. A more elaborate version of the proof for lemma 12.8 can
be found in Lucantoni and Neuts [57], while the idea for this proof has been
presented in an earlier form of notation by Machihara [58]. A more elementary
proof is given in Lucantoni [54]. Another recursion scheme for the asymptotic
distribution y is presented in Takine [82].

Exercise 12.1 Prove mD = 0 for the stationary distribution 7 = 7wA.
Exercise 12.2 Show the existence of a solution x to equation (12.9).

Exercise 12.3 Define the z—transforms X (z) := > / x,2" of the stationary
probability vector at service completions, as well as A(z) := Y ° ; A,2", and



The BMAP/G/I Queue 227
B(z) =Y 02 Bpz" for |z| < 1.

(a) Show that
B(2) = —z 'Dy ' (D(2) — Do)A(2)

(b) Use the result above and x = x P to show that

X (2)(2I — A(2)) = —xoD, ' D(2) A(2)

Exercise 12.4 Use exercise 10.2 to show that
o0
Z Pn(t)Zn _ eD(z)-t
n=0

Exercise 12.5 Show that D(z) is invertible for 0 < z < 1.

Exercise 12.6 Define ¢(n) := [°(1 — H(t))P,(t)dt for all n € Ny and
U(z) :=> 0", (n)z". Show that

Exercise 12.7 Define the z—transform Y (z) := Y > | y,2" of the asymptotic
probability vector. Show that

Y(z) = {AX(Z) (2=1)-D(z)7!, 0<z<1

, z=1

Hint: Start by transforming Y (z) — y( and use exercise 12.6.






Chapter 13

DISCRETE TIME APPROACHES

1. Discrete Phase-Type Distributions

Analogous to the definition of PH distributions in continuous time, we will
define discrete PH distributions in terms of Markov chains with one absorbing
state. Let X' denote a Markov chain with finite state space £ = {0,...,m}
and a transition matrix structured as

=5 7)

Denote the initial distribution of X’ by the row vector & = (g, ), where « is
of dimension m. The structure of P shows that state 0 is absorbing. All other
states shall be transient. Let

Z =min{n € Ny : X,, =0}

denote the time until absorption in state 0. Define p,, := P(Z = n) for all
n € Np. The distribution p = (p, : n € Ny) of Z is called a discrete
phase—type distribution, or shortly discrete PH distribution. We also write
Z ~ PHy(a, T). The number m of transient states is called the order of p. A
transient state is called phase.

An immediate first observationis 7 = 1—T'1, with 1 denoting a column vector
with all entries being one. Further the definition yields

p=PZ=0))=ay=1-0al (13.1)

This explains the notation PH;(a, T'). Knowledge of « and T is sufficient to
determine & and 1 and hence completely specify the distribution of Z. There-
fore we call the pair («, T") the characterization of a discrete PH distribution.
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Theorem 13.1 Let Z denote a random variable which has a discrete phase—
type distribution with characterization (o, T'). Then

P(Z =n)=al" n and P(Z<n)=1-aT"1

foralln € N.

Proof: The structure of P leads to the observation

w1 0
P <1T"1 "

for n € Ny, which can be verified by induction on n. Together with (13.1) this
yields the second statement. The first one is now obtained as

P(Z=n)=P(Z<n)—P(Z<n-1)=al"'1-aT"1
=aT" '(1-1T1)

which completes the proof because of n =1 — T'1.
O

By corollary 2.15 we know that invertibility of I — T is equivalent to the pos-
tulate that the states 1, ..., m be transient. The same arguments as in the con-
tinuous case (see theorem 9.3) serve to show that

Lemma 13.2 A PH;(«, T) distribution is non—defective if and only if the ma-
trix I —T' is invertible. Then the expected number FE;; of visits to state j before
absorption, given that the Markov chain X starts in state 1, is F;; = (I—T)Z»_jl.
As already stated in the definition, we shall always assume that 1,...,m are
transient states, i.e. that I — T is invertible. The following examples show the
high versatility of the introduced class of distributions.

Example 13.3 Let p = (p, : n € N) denote a geometric distribution with
parameter ¢, i.e. p, = (1 — q)¢" ! for all n € N. Then p has a discrete PH
representation with order m = 1, &« = 1, and T' = ¢. The exit vector is given

byn=1-—gq.

Example 13.4 A generalization of the geometric distribution is the negative
binomial distribution. For parameters N € N, the number of successes sought,
and ¢ €]0, 1[, the probability of success, a distribution p is negative binomial
if p, = (Nt?*l)qN(l —q)" N forall n > N. The value p, is the probability
of observing n trials until the Nth success. For the special case N = 1 we

obtain the geometric distribution.
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The distribution p has a discrete PH representation with order m = N, initial
phase distribution &« = e; = (1,0, ...,0), and T given by the entries

l—q, i=7]
Ti; =4 ¢ j=i1+1<N
0, else

The exit vectoris = (0,...,0,¢)7.

Example 13.5 Any discrete distribution p with finite support, i.e. p, = 0
for n > m with some m € N, has a discrete PH representation. We write

p = (po, - -, Pm)- Then there are two possibilities for such a representation.
One is called the remaining time representation. Here we set @ = p,
Tii-1 = 1for1 < i < m, and T;; = 0 otherwise. This implies an exit

vector n = (1,0,...,0).

The other is called the elapsed time representation. For this we set ag = py,
a=(1-pp,0,...,0)and

.- Ji—p/d — 3ok, j=i+l1<m
Y 0, else

This time we have an exit vector 1 = (M, Mm—1,1) with entries deter-
mined by i = pi/(1 = 323" pi)-

The z—transform of a discrete phase—type distribution p is given by

oo oo o
p*(z) = anz” =g+ Z al™" 'z =ag+ 2 -« Z(zT)"_ln
n=0 n=1

n=1

= ag + za(l — 2T) 1y (13.2)

for |z| < 1. This expression yields the factorial moments for a random variable
Z ~ PHi(a,T), namely

E(Z-(Z—1)-...-(Z—k+1)) =kla(I - T)*T" 11 (13.3)

for all kK € N. This formula is obtained by differentiating (13.2) k times with
respect to z and evaluating at z = 1. In particular, the mean time to absorption
is given by

E(Z)=a(-T) "1 (13.4)

Another expression for this will be derived in corollary 13.6.
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2. BMAPs in Discrete Time

Like the discrete time version of phase—type distributions, we can define batch
Markovian arrival processes in discrete time, too. Let ) = (N, J) denote a
Markov chain with state space

E:Ngx{l,...,m}

where m € N is some finite number. For a state (n, ) we call the first dimen-
sion n the level and the second dimension ¢ the phase. Let 0 denote the matrix
with all entries being zero. If the transition matrix of ) has a block structure

Dy D1 Dy Ds
0 Dy D1 Dy
0 0 Dy Dy

P =

and D := Y > | D, is irreducible, then ) is called a discrete batch Markov-
ian arrival process or shortly discrete BMAP. The Markov chain determined
by the transition matrix D is called the phase process of ).

Like the continuous time analogue, we want to use discrete BMAPs as a model
for arrival streams. Thus we always assume that Dy is strictly substochastic,
i.e. there is an index n € N with D,, # 0. Then ) is clearly transient and does
not have a stationary distribution.

The Toeplitz structure of P implies that the transition probabilities
P(Y1 = (n+k,j)[Yo = (n,9)) = Di(i, j) = P(Y1 = (K, )[Yo = (0,4))

are homogeneous in the first dimension of the state space. Hence the n—step
transition probabilities are determined by the values

Priij(n) :=P(Yn = (k,5)[Yo = (0,7))

Define the m x m matrices Py(n) := (P, j(n))ij<m and the sequences
P(n) := (Px(n) : k € Ny) of matrices. By definition

P(0) = (1,0,0,...)

with I denoting the m x m identity matrix. Define convolutions of matrix
sequences as in section 4. Further write A = (D,, : n € Ny). Then clearly
P(1) = A, and we can show that

P(n) = A™
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for all n € N by the induction step

k k
i=0 1=0

which holds for all £ € Ny. The z—transform of P(n) is given by

Pr(z) = iPk(n)zk = i ARk = (i Dkzk>
k=0 k=0 k=0

for all n € N. Hence the expectation matrix of the number of arrivals within n
time slots is

o0
=n-D-Y kDj
1 k=1

Let m = 7w D denote the stationary distribution of the phase process. Then the
expected number of arrivals within n time slots given that ) starts with phase
distribution 7 is obtained as

2=

Ex(Nn) =n-mY» kDl (13.5)
k=1

foralln € N.

Consider now a discrete phase-type distribution with characterization («, T').
As usual, define the exit vector by n := 1 — T'1. A special class of discrete
BMAPs arises if we set Dy := T, D1 := na and D,, := 0 for n > 2. This is
called a discrete PH renewal process or shortly a P H; renewal process. For
the stationary phase distribution 7 = wD with D = T'na, expression (13.5)
specifies to E;(Ny,) = n - 7y for all n € N. Now the same argument as for
corollary 10.12 holds. The described BMAP is a renewal process (in contin-
uous time, denoted by N) with initial delay X, ~ PHy(m,T) and renewal
intervals X,, ~ PHy(a,T'). The elementary renewal theorem 6.12 states that

BN BN ] El(N,) 1
Jlim t _tg?oTT_nIE& n E(Xy)

Thus we obtain another expression for the mean of a discrete phase—type dis-
tributed random variable (cf. corollary 13.6).

Corollary 13.6 For a PH;(«, T') distributed random variable X the expec-
tation is given by B(X) = (7n) !, where 1 = (T + na) is the stationary
phase distribution.
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3. Blockwise Skip—Free Markov Chains

In chapters 11 and 12 we have analyzed Markov chains of a blockwise Hessen-
berg structure, i.e. they were blockwise skip—free in one direction. For each of
them we have developed an own method of finding the stationary distribution.
Both methods employed matrices of central importance for the formulation of
the stationary distribution. In the former case it was an expectation matrix
called R, in the latter case a stochastic matrix called G.

For the special case that a Markov chain is blockwise skip—free in both direc-
tions, we can hope to combine both approaches and thus obtain more results.
This shall be pursued in this section. We further will see that this kind of
Markov chains can be used as the basic tool for analyzing queues in discrete
time.

An irreducible transition matrix structured as

B C
D A, A
P= Ay Ay Ag

As A1 Ao

with matrices B, C, D, and A; having dimensions n X n, n X m, m X n,
and m x m, respectively, is called blockwise skip—free. This matrix defines a
Markov chain X with state space

E={0,i):1<i<n}U{(n,j):neN1<j<m}

with n, m € N. The first dimension of a state is called level, the second phase.
The special case n = m = 1 is called a skip—free Markov chain (cf. section
2 for the continuous time analogue).

The matrix P satisfies the conditions of blockwise Hessenberg structure in both
directions. Hence the approaches for analyzing the embedded Markov chains
in chapters 11 and 12 apply both. The only difference to be considered are the
matrices B, C', and D at the boundary.

As in section 2 we can define a rate matrix R which satisfies
R= Ay + RA, + R*A,

according to theorem 11.3. Theorem 11.1 tells us that if there is a stationary
distribution x = (x,, : n € Np) for X, then it satisfies the relation

Xnt+1 = Xp R or x, = xR 1 (13.6)
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for all n € N. On the other hand we can define a matrix (G as in section 2 by
G = Ay + A1G + AyG?

due to theorem 12.2. According to theorem 12.1 we know that G is stochastic
if X is recurrent.

Equation (13.6) reduces the problem of finding a stationary distribution x for
P to the determination of xg and x;. To this aim, we consider the Markov
chain X'’ restricted to the subset

F={0,i):1<i<n}U{(l,j):1<j<m}

of the state space F. Because P is blockwise skip—free, states in level O do not
communicate with states in ' = F'\ F. Hence transitions from F' to F° and
back must go via level 1. Thus we arrive at a transition matrix

r (B C
P= (D U
for X', where only the lower right—hand entry remains to be determined. The

matrix U contains all probabilities to go from level 1 back to level 1 in a finite
number of steps without entering level 0.

Clearly the probabilities for one step are contained in A, whence we obtain
U = A; + U’. The respective probabilities for more than one step (which are
contained in U’) must consider visits to the set £ in all but the last step. The
blockwise skip—free structure of P implies that the first step must go from level
1 to level 2, for which the transition probabilities are contained in Ay. Then we
need the probabilities to go from level 2 back to level 1 in a finite number of
steps. By definition these are contained in the matrix G (see section 2). Hence
we obtain

U=A+ AG
and thus have determined P¥" completely.

Theorem 2.29 states that positive recurrence of X implies positive recurrence
of X¥. Hence P admits a stationary distribution x" = (x{",x!") as the
solution of the linear equation system

(xg.x1) = (x) B +x1' D, x)C +x{U)

Define ¢ := x5'1 + x{"(I — R)~'1. Then theorem 2.29 yields that

Xg = cflxg, X| = cfle, Xpt1 = X1 R"
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for all n € N is the stationary distribution of X. In fact, we can verify
anl =x0l +x1 ZR”I —c'xf1+xl'I-R) 1) =1
n=0 n=0

and theorem 2.29 states that (xg, x1) and (x}, x{) differ by a constant multi-
ple only.

Define A := Ag+ A + As. Since P is irreducible and stochastic, so is A, and
thus there is a stationary distribution 7 = 7w A. By theorems 11.10 and 11.8 we
know that X is positive recurrent if the condition

TA11+2-71A1 > 1
holds. Using the definition of A we obtain
1=7mA1 =7Apl + 1A;1 + 1A51
which yields the equivalent condition
mApl < mAs1 (13.7)

for positive recurrence of X

4. The PH/PH/1 Queue in Discrete Time

As an application we shall analyze the PH/PH/1 queue in discrete time. Inter—
arrival times as well as service times are iid and have a discrete phase—type
distribution, named A and B respectively. The former has characterization
(ar, T') of order n, the latter (3, 5) of order m. We set g = Sy = 0 in order
to avoid batch arrivals and instantaneous services. Denote the exit vectors by
n=1—T1land(=1-S51.

Note that by example 13.5, the discrete time GI/G/1 queue is a special case
of the PH/PH/1 queue if inter—arrival and service time distributions have finite
support. By example 13.3, the M/M/1 queue in discrete time as examined in
section 6 is a special case, too.

For any time index n € Ny, define the random variables V,, as the number of
users in the system, K, as the phase for the inter—arrival time, and J,, as the
phase for the service time. Then the system process Q = ((N,,, Ky, Jp,) : n €
Np) is a Markov chain with state space

E={0,k):1<k<n}U{(nk,j):neN1<k<n,1<j<m}
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and transition matrix

B C
D A, A
P Ay Ay Ag
Ay A, Ag
where
B=T, C = (na)® G, D=T®(¢
Ag=na)®@ 8, A1 =TS+ (na)®((B), Ar=T®& (¢B)

Here the composition ® represents the Kronecker product, which is defined in
the pretext of theorem 9.13. The matrices B, C, D, and A; are of dimensions
nxn,nxnm,nmxn,and nm X nm, respectively. We see that P is blockwise
skip—free which allows us to use results from the preceding section.

Define A := Ay + A1 + As and let 1 = A denote the stationary distribution
for A. Using exercices 13.4 and 13.5, we obtain

A=) @S+T® S+ (na) @ (CB) +T & ((B)

=ma+T)®S+ (na+T)® (¢H) (13.8)
= (T +na)® (S +(0) (13.9)

This yields
T=0ao" ®p* (13.10)

with a* = o*(T + no) and §* = B*(S + (). Condition (13.7) for positive
recurrence of () specifies to

(" ®f7) (na®S)1 < (a"® %) (T®(P)1
< a'nal-F*S1 <a™T1-5°((H)1 (13.11)
= a'n f1-¢)<a’(1-n) B¢
— a'n<pB%¢

By corollary 13.6 this is equivalent to

E(B) < E(A)

which is our usual condition that the mean service time is strictly smaller than
the mean inter—arrival time.
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Notes

Discrete PH distributions have been introduced in Neuts [62, 65]. For an early
application and discrete time MAPs see Alfa and Neuts [4]. A text book pre-
sentation can be found in Latouche and Ramaswami [52]. Discrete phase—type
distributions with infinitely many phases are introduced in Shi and Liu [79].
The analysis of the GI/G/1 queue in discrete time is taken from Alfa and Li [3]
and Alfa [2]. An overview on further results is given in Alfa [1].

Exercise 13.1 Prove lemma 13.2.

Exercise 13.2 Verify the remaining and elapsed time representations intro-
duced in example 13.5.

Exercise 13.3 Prove formula (13.3) for the factorial moments of a discrete
phase—type distribution.

Exercise 13.4 For matrices A, B, and C' of appropriate dimensions, prove the
distributive laws

A@C+B@C=(A+B)&C
A@B+A®C=A® (B+C)

for the Kronecker product, and verify equalities (13.8) and (13.9).

Exercise 13.5 For matrices A, B, C, and D of appropriate dimensions, prove
the associative law

(A® B)(C ® D) = AC ® BD

for the Kronecker product, and verify formula (13.10) and the equivalence
(13.11).

Exercise 13.6 Analogous to an interrupted Poisson process (IPP), we define
an interrupted Bernoulli process. There are two phases (numbered 1 for ”on”
and O for ”off”). In every time slot there is a probability p to switch from phase
0 to phase 1 and a probability ¢ to switch back. In phase 1 there is a probability
r of observing one arrival in a time slot. Give an exact definition in terms of a
transition matrix for a discrete MAP. Note the difference to the IPP due to the
possibility of phase change and arrival occuring in the same time slot.



Chapter 14

SPATIAL MARKOVIAN ARRIVAL PROCESSES

With respect to queueing theory we have, for several times, pointed to the
application area of telecommunication networks. In fact, during the last two
decades the analysis of complex systems of that type has become the most
significant issue in applied queueing theory. Modern communication facilities
represent articles of daily use, and are outfit accessories of pedestrians, car
drivers, pilots, and nearly all people who need the contact to other people or
to data processing devices. Mobility and spatial distribution are characteristic
features of these systems. The installation of mobile communication networks
(that started in a technically useful form as early as in 1982') is accompanied in
many cases by a partition of a geographic region into cells covering the whole
area. Customers of such networks get active randomly in time, and are moving
around in and across the cells, eventually stopping their activities (vanishing
as network users) after having been serviced by the providing company.

Transferred into the language of queueing theory we are confronted thereby
with a new type of arrival process and a new species of customers, namely
processes that put their arriving elements (customers) onto certain locations,
and customers who start moving immediately after appearing at a location.
Arrival processes of that kind are characterized by a random behavior in time
and space.

In previous chapters we have stepped through various queueing models until
reaching types “beyond the exponential”, and we saw that Markovian arrival
processes (MAPs) belong to the most versatile tools for describing the dy-
namics of modern computer networks (and related configurations). What we

The Advanced Mobile Phone System (AMPS), developed by Bell Laboratories, USA.
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are now about to do is a generalization of these processes to spatial arrival
processes.

1.  Arrivals in Space

The Markovian arrival processes (IV;, J;);>0 considered so far had state space
No x E, where E = {1,..., m} represented the phase space, NV; a counting
variable, and (J;);>0 a time-homogeneous Markov process. Nothing was said
about ’where” an arrival occurs, or what kind of additional information we can
assign to the “customers” or ”jobs” that arrive according to a MAP.

The properties of Ny that we needed for an adequate description of the counting
variable N; may be seen as to be the following:

(i) We can measure (count) the “jobs” that arrivals bring into the system
(whatever the latter is),

(ii) we can add sets of ’jobs” that arrived, i.e. the number of ”jobs” that sev-
eral (possibly not subsequent) arrival events produce is the sum of all indi-
vidual arrival sets, and

(iii) (V¢)¢>0 is an increment process with respect to the portions that arrivals
add to the system, i.e., for & C Ny with A = ) a;,and K C J, we
have

a;co

P((Ns+t)Js+t) c Ax K | Ng=mn,Js = l) =
P((Ns+t,J3+t) S (A—n) x K | Ns = 0, JS = Z)

This somewhat artificially looking description attains its meaning next when
we are going to generalize the concept of a MAP by adding information to the
arriving elements (e.g. jobs). In more general terms, namely, a MAP can be
regarded as a two-dimensional Markovian jump process (V¢, J;)¢>0 with state
space U x F, where F represents the phase process, and U has the following
properties:

1 There is a o-algebra/ such that (U, /) is a measurable space with {u} € U
for any v € U.
2 (U, +) forms a semi-group with neutral element o.

3 FrAcUKcJ,andA—u={velU:v+ue A},

P((Ns+t, Js+t) € AX K | Ny =u,Js =1) =
P((Nyyp, Jort) € (A —u) x K) | Ny = 0, J, = ).
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In fact, any MAP can be regarded as a so-called Markov-additive jump process,
being defined in general terms as follows. Let U denote a set with properties 1
-3,and F C Nj.

Definition 14.1 A two-dimensional process (Y%, J;):>0 on a state space U x
E is called a Markov-additive jump process if (i) (Y%, J;)i>0 is a Markov
process, and (ii) for s, ¢ > 0, the conditional distribution of (Y — Y, Js4+t),
given (Y, Js), depends only on J;.

It is easy to see that, for any Markov-additive jump process (Y%, J;):>0, the
(phase) component (J;);>o forms a Markov jump process and (Y;);>0 has
conditionally independent increments. That is, given the states of J;, for
0 < v < n, the random variables

}/tl _}/b? }/tg_}/tp 7)/%“_1/%

n—1

are conditionally independent for known Jy, J¢,, ..., J;

n

Let us now consider Markovian arrival processes in which an arrival event
means the appearance of customers at specific locations, or simply the ap-
pearance of points in some space X. We may speak of localizable arrivals in
this case, and of a spatial arrival process. The term “spatial” requires some
explanation. Being accustomed to think in terms of the Euclidian space, usu-
ally everybody takes for granted properties of the space X that have particular
mathematical significance. Such properties are (among others)

(i) Xis a metric space with metric d : X x X — Ry.
(ii) Any Cauchy sequence {x,} in X is convergent.?

(iii) X contains a countable dense subset.

A space with these properties is called a Polish space. Since (ii) means com-
pleteness, and (iii) separability, a Polish space can be defined more precisely as
a complete separable metric space (X, d). In such a space any compact subset
is closed, and any isolated point constitutes a closed subset. This is the type
of space we take as a basis, i.e. when speaking of localizable arrivals. Accord-
ingly, when using the notion of a spatial arrival process we shall constantly
refer to arrivals in a Polish space.

2 A sequence satisfying d(zn, Tm) — 0 as m,n — oc.



242 AN INTRODUCTION TO QUEUEING THEORY

The appearance of (finitely many) points in X can mathematically be inter-
preted as the occurrence of some certain (finite) counting measure v. This
is due to the fact that counting measures are the primary ingredients of point
fields. Let B(X) denote the Borel o-algebra of (X, d), and p a locally finite
measure on 3(X), i.e. a measure with the property that for each x € X there
is some open vicinity U(z) such that u(U) < oco. Assume that p has the
following regularity property:

w(A) =sup{u(K): K C A, K compact} forany A € B(X).

Then u is called a Radon measure, and if the range of y is Ny, it is called a
(Radon) counting measure. Any counting measure defines what we may call
a point field in X. We know that arrival events in a Markovian arrival process
(MAP) occur randomly in time. In a similar way, when assuming that each
arrival specifies a set of points (or, in case, a single point) in space, we should
naturally propose that these points are located randomly in the space. A spatial
MAP, hence, produces random point fields in a space X over time.

What is the precise mathematical description of a random point field? Let V
denote the family of all counting measures, and let, for each subset S € B(X),
V,(S) be the set of all measures p with (S) = n. The o-algebra V that is
generated by the family

M= {Vn(S) :n €Ny, 8 e B(X)}

(of sets of measures) defines V as a measurable space (V, V) of counting mea-
sures over the Polish space (X, d). The o-algebra V is rich enough to allow the
distinction of single measures, i.e. every singleton {;} in V is measurable.?
The answer to our above question is easy now: Given some probability space
(©, A,P), a random point field is nothing else than a measurable mapping
F:Q—V.

Obviously, the family V of counting measures over (X, d) forms a semi-group
with respect to addition, where the sum p + v of measures is defined as the
measure (u + v)(S) = u(S) + v(S) for all S € B(X). The neutral element o
is the measure that assigns zero points to any subset S € B(X). We introduce
the following notation: Let A, B € V; then

A—v = {peV:iu+veA}
u+B = {u+veV:ve B},
A-B = {peV:u+BcCA}L

3This is due to the fact that a locally finite measure 4 on (X, d) is determined already by its values u({x})
on the singletons z in X.
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From these properties it is easy to deduce that V can well be used as the state
space of the counting variable of some Markov-additive jump process. As that
it is an arrival process for measures. More precisely, we introduce what we call
an SMAP for short.

Definition 14.2 A homogeneous Markov-additive jump process (Y, Ji)i>0
with state space V x E, where (V, V) is a measurable space of counting mea-
sures over a Polish space (X, d), is called a spatial Markovian arrival process
or SMAP.

Each jump in an SMAP (Y3, J;)¢>0 is to be interpreted as the arrival of some
point field in X (corresponding to a finite measure v over X) together with some
certain phase transition i — j (i,j € E). Y; is the random variable describing
the very point field that is created by superposition of all those locally finite
counting measures that arrived under the SMAP up to time ¢.

For A C V and K C J, the probabilities
P(Y} cA J;eK | Yo =o0,Jy :i) ::pt(O,z’;A X K)

define what is usually called the transition kernel of the process. Accordingly,
we call

d

@P(Yt €A J e K|Yy=0,Jo=1)=:¢q0,i; A X K)

the transition rate kernel of the SMAP (here we propose A x K # {(0,1)}).
Using this notation we define, for each subset S € B(X), the subset specific

transition kernels

Pt(n; S) = (Pt(n,z'j; S))i,jEE = (pt(O,i;Vn(S) X {]}))z,]EE (14.1)

as well as the subset specific transition rate kernels

Dy (8S) = (Dn;i5(9))ijer = (9(0,4 Vi (S) x {j}))ijep- (14.2)

Now we are in the position to define a correlated family of subset specific spa-
tial BMAPs by counting, in any fixed subset S € B(X), the points that occur
within S according to the arrivals under the SMAP (Y%, J;)¢>0. Since a batch
Markovian arrival process, as a Markov process, is completely determined by
its generator, it suffices to specify a generator G(S) for any measurable subset
S of X. This is done by setting

Dy(S)  Da(S)
O Dy(S
GO =1 o O Do) ... | (14.3)
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The assertion that G(.5) is a generator matrix with
o
Y>> Dnij(S)=0 VieE
n=0jer
is justified by the following lemma.
Lemma 14.3 For every S € B(X), the sum Y > Dn(S) = D forms the

generator matrix of the phase process (Ji)i>0 of the SMAP (Y:, J¢)¢>0, inde-
pendently of S.

Proof: Excluding transitions of the form (0,7) — (o0, 7) we have, for j # i,

ZDn,zj(S) = Zq X{]})
n=0 n=0
- 077’ U V {]})
n€eNg
= 4 ( 0,1) U Vi x{]})
n€Np

d . .
= @P(Jt —j|Jo=1) =Dy

On the other hand, for j = 1,

Y Duii(S) = Di(S) =~ Dij(5)
n=0

JF

= _ZZDR’”(S) = —ZDij = Dy,

j#i n=0 #i

and hence, >, D,,(S) = D, independently from the choice of S € X.
([

The BMAP (N.(S5), J;i)¢>0 with generator matrix G(S) is called a spatial
BMAP over the subset S € B(X), or SBMAP over S for short.

Notice, that a common BMAP as introduced in chapter 10 can be seen as an
SMAP over a single point X = {z} with time-homogeneous phase process.
If E = {1}, then (Y;);>0 is a space-time Poisson process with general spatial
distribution. Such Poisson processes have been considered by Serfozo [77] and
Breuer [21].
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2.  Properties of Spatial MAPs

We call an SMAP regular, if 3, » 404 Dniij(5) = —Do;i(S) > 0, and
stable if —Dy.;;(S) < oo for any S € B(X), i.e. an SMAP is stable if the
total arrival rate connected with any phase transition is finite. We assume reg-
ularity and stability throughout. Let us ask for the phase depending probabil-
ities P;(k; S) that k customers have arrived until time epoch ¢ in some subset
S € B(X). Since, for fixed S, we can proceed as in case of a common BMAP,
we immediately obtain

Pk ) = (291) =S Ty
n=0 """

where
A9 =G(S), for k>0.

As a consequence, the counting variables N;(.S) satisfy
P(Ni(S) =n,Ji = j | No(S) =0, Jo = i) = Pi(n,ij; S). (14.4)

We also have P,(0;S) = ePo(5) as before, and Py(n;S) = (e*25))
Written in block matrix form, P;(S) reads

n'

eDo(5) 1 (S*A(S)qt)1 ( *A(S )
O eDo(S)-t ( )
Py(S) = 1) 19) Do(S) t

Justified by our result )", D,,(S) = D, the phase process (.J; : t > 0) is the
same for any SBMAP over S € B(X) and plays the same role as in case of a
common BMAP. Hence, the form of the transition matrix P of (J; : ¢ > 0)
remains unchanged as P = e,

Facing this and the above statements it is obvious that nearly all properties of
a common BMAP reappear as those of an SMAP when considering only one
fixed subset S € B(X).

There are two points, but, that have to be emphasized when dealing with an
SMAP:

1 We have to determine also joint distributions of points in different subsets
Sy,v=1,..., K, for any given family {51, ..., Sk} C B(X) in order to
fully define a spatial arrival process (and to allow realistic applications of
the theory).
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2 There is a need for recipies for defining the random point fields that occur
according to arrivals under the SMAP.

Addressing the first point, consider a family of measurable subsets S1, ..., Sk
in the Polish space X. The joint distribution of points in such a family that
accumulated due to arrivals under the SMAP can be determined as follows.
Let the sets S1,...,Sk € B(X) be disjoint*, and set S = (S1,...,5k),
n = (nqy,...,ng). We use the notation
Va(S) = {veV:v(Sy) =nk, 1<k<K},
Py(n,i,5;8) = p(t;i,Va(S) x {j}),
D(n,i,j;8) = q(i,Va(S) x {j}),
Pf(n S) == (Pt(naiaj;s))i,jEEa
( ) = (D(nvivj;s))i,_jEEa
(S) = {Pt(n:/ S)}nENé(v
A(S) = {D(@:S)}yens.

Then, due to conditional independence of increments, the Chapman-Komogorov
equations hold exactly as in the case of a common BMAP, i.e. written in con-
volutional form,

Pt+T(S) = Pt(S) * PT(S)

By subtracting P;(S) on both sides and forming the differential quotient, we
obtain the Chapman-Kolmogorov differential equations:

d
Similar to the case of one-dimensional Markov processes as seen in chapter
10, the solution of these equations takes the (convolutional) exponential form:

P(S) = 21 pm;S) = i " (A(S))
k=0

Thus, the expressions for joint distributions of customer populations in disjoint
subsets formally resemble those of a one-dimensional BMAP. The correspond-
ing expressions for the SMAP with respect to one single subset S € B(X) are
obtained from the results for K = 1.

Addressing now the second point, one possible method to specify the types of
the random point fields occurring as arrivals under an SMAP is the following.

“It should be obvious that there is no loss of generality by that assumption, since intersections may be
treated as separate subsets.
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Start with some common BMAP that is given in form of its phase process
(J¢ : t > 0) and its rate matrices D,, = (Dy,.i;); je - Then define a family

S = {¢pij:i,j € E}

of probability measures over the Polish space (X, d), such that, for any S €
B(X), ¢;(S) represents the probability that an arriving batch in coincidence
with a phase transition from ¢ to j is located in .S. To be more concrete, let
pi(n, j) denote the probability that the BMAP, upon changing its phase from i
to j, creates a batch of size n > 0. Then we define

pi(0,5:8) = pi(0,5)+ Y pi(n, ;X\ S) forall j #i.

n=1

In this notation p;(n, j; S) is the probability that a batch of size n is located
in .S in coincidence with a phase transfer from i to j. Let, as usual, V; be the
random number of jobs arrived until ¢ according to the BMAP, and ~; be the
total instantaneous transition rate when the phase is i, i.e.

Vi = Z Z Dy + ZDn;iia 1€ F.
n=0 jekE n=1
i
The BMAP (Vy, J¢)i>0 is completely described by its rate matrices, and so
would be our spatial MAP if its rate matrices were given in turn. The latter,
now, can be easily realized for each S € B(X) by setting

Doui(S) = —v (1 - ZPi(nJ;X\S)) )
n=1

Do,ij(S) = 7ipi(0,5;8) for j #i,
Dy.ii(S) = nipi(n,j;S) for n>1.

These matrices define the generator of the SBMAP over S and thereby the
process itself. The family ® of probability measures ¢;; over X determines
where to locate a batch, and the size of any batch arriving under the BMAP
specifies the number of points at that very location. This is for sure a somewhat
restrictive specification of the random point fields (each by intuition may be
seen as to be a superposition of points at one location), but since the locations
themselves vary according to the measures ¢;; the method works in practice.

Another method may consist in assigning, to each pair (i,j) € E x E some
positive integrable fuction &;; : X — R™, such that each S € B(X) contains a
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random number N (.S) of points with probability
i (5)" —iy(9)
n! ’

where
05(8) = [ gla)da.
JSs

This leads us to some simple type of a random Poisson field with mean ;;(5)
for any S € B(X). The connection to SMAP arrivals is given by setting

Sﬁij(S)neﬂ%(S)

n!
pi0,5:8) = e #S) for j#£i,
pi(o,i;S) = 0.

pi(n,j;8) = for n > 1,

Let the total transition rate -y; out of some state (v, ) for an SMAP be given.
Then, assuming £ = {1,...,m},

Dn,z](s) = ’yipi(nvj;s) for (nvj)#(ovl)
Doii(S) = —vyi(m—e #i9),

where ; is some finite positive constant for every ¢ € F.

Comments on the modelling of customer motion.

It is easy to see that we can describe the movement of customers by time de-
pendent mappings of the Polish space (X, d) into itself. A customer in a mobile
communication system, for example, who is located at time ¢( at a point x(tg)
when requesting a call, may move from x(t¢) to y = x(¢;) during a time in-
terval (to, t1]. That way, if he is active for, say, 7' time units, he follows some
curve {x(s) : s € [to,to + T} through the landscape and then vanishes from
the system — from the point of view of the telecommunication provider — due
to call completion. In our models the “landscape” is part of the Polish space
(X, d), and the curve relates the points x(¢) to the user’s starting point x(#g)
according to some rule Y : x(tg) — x(tg + ) = x(t) for 0 < ¢ < T If we
know the parameters x(t() (the arrival location), T" (the service time duration),
and T (the rule for the displacement after ¢ time units) for each user, we can
decide at any time whether or not there is an active user in the system at some
arbitrary location y. The system would be a queueing system in space and
time. For its analytical description a pecularity has to be taken into account:
In reality, the point mappings Y : x(to) — x(to + t) are resembling random
walks in most cases since human customers normally behave individually and
the curves they follow are random in general, and completely different. One
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way to cope with this problem is to prescribe probabilities for the displace-
ment of customers with respect to their arrival locations and arrival times. A
much more simple approach is based on the assumption of deterministic mo-
tion where the (Y : ¢ > 0) form a given topological group of mappings. In
fact, this restriction is not that serious as it may seem at a first glance. On
the one side, in many practical situations one is faced with the task to model
the impact of movements that take place along streets or railway lines, such
that there are streams of uniformly moving individuals or cars or trains subject
to the same deterministic law. On the other side, the superposition of sev-
eral (finitely many) streams of that type may well mirror an average behaviour
of customers in more complex configurations. Such superpositions, although
causing additional analytical complexity, can be handled in principle without
problems. Let us shortly indicate how to determine time dependent probabili-
ties for the spatial distribution of customers (users of some facility, jobs, etc.)
in a space-time queueing system.

We assume that there is a service process defined that reflects the treatment of
the customers up to their disappearance out of the system. Let R = (T : X —
X, t > 0) be an abelian topological group with the topology O = {Y; : s €
O, O open in (X, d)}. Then the following holds.

1 Given any neighbourhood W of T; o T, there are neighbourhoods U and
Vsuchthat U oV C W.

2 For any neighbourhood V' of Y, ! there is some neighbourhood U with
Ul ={Y':",eU}CV.
We write T4, s for T; o T, and assume that any customer starts moving im-
mediately after arriving at location x according to the law
Ts(x) =x(s), se€(0,7T], (14.5)
where T’ is the time he spends in the system. The set
Ts[S]={y="s(x):x€S}, s>0

is called the displacement set of S for any S € B(X). Similarly, the set

T_s[S]={x:Ts(x) €S}, s>0

is called the source set of S with respect to Y[S]. Note that T _([S] =
(Y5)~'[S] due to proposed group property. Given a spatial Markovian arrival
process as mentioned above, we are able to compute the probability matrices
P,(S) describing the phase depending numbers of arrivals up to time ¢ for any
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subset S € B(X). A customer is called (5,¢)-resident if, after his arrival
somewhere in X at a time u < ¢, his service (that started at u) continues to go
on beyond ¢, and his location at time ¢ is in S € B(X). The random number
of (S, t)-resident customers observed at time u < t is denoted by N, +(.5),
such that N;(S) = N;+(S) represents the number of all those customers who
are located in .S at time ¢. Assume that there is a possibility to determine the
probabilities

Qriij(u,t;.8) =P(Nyt(S) =71, Ju =7 | Not(S)=0,Jy =1)

that define the distribution of the random variables N;(S) in case that cus-
tomers do not move.’ Then, if movements are allowed and happen according to
the law (14.5), the corresponding distribution for V;(S) is obtained by merely
replacing S in Q5 (u,t;.S) by its source set T_;,_,)[S] and performing the
same computation.

Notes

A first definition of a spatial batch Markovian arrival processes based on the
construction of probability mass functions in the Euclidean space traces back
to Baum [10]. Subsequent treatments and generalizations are due to Baum and
Kalashnikov [11], and Breuer [21]. In [21] a type of spatial process has been
investigated (among others) that is classified as a space-time Poisson process
with general spatial distribution. This type has been considered also by Ser-
fozo in [77]. An important application area of spatial BMAPs and correspond-
ing queueing models is the performance analysis of todays telecommunication
systems. The handling of customer motion during service in such systems has
been treated by Baum and Kalashnikov [12, 13], and Baum and Sztrik [14].

Exercise 14.1 Let the subset specific rate matrices of an SMAP be given by

Dn,z](s) = 'Yipi(najSS) for (n7])7£(0>z)
DO;ii(S> = 7 (1—Zp¢(n,i;X\S)>,

where p;(n, j; S) is determined as the probability for the event that an arrival
under a common BMAP occurs in S together with a phase transition ¢« — j,
pi(n, j; S) being defined with means of a family

S ={¢;:i,j € E}

STechniques for the computation of the Qryij(u,t; S) are presented, for example, in [13].
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of probability measures over the Polish space (X, d) as mentioned in the text
above.

The particular arrival rates \;(.S) into .S must be dependent upon the choice of
subset S € B(X). The spatial BMAP that is generated with respect to the fixed
chosen subset S can be expressed, for (n,j) # (0,4), by its rates \;(S) and
routing probabilities m;(n, j; ) according to D,,.;;(S) = Xi(S) - mi(n, j;5),
where 7;(n, j; S) is the probability that n customers arrive in S together with
a phase transition from ¢ to 5. Show, that

N(S) = (1 = Zm(n,i;X\s) ,

n=1
- _ pl(nu]S) . .
Wi(na]as) - 1—2720:1]?@(71,2';X\S) for (na]) 75(072)

Exercise 14.2 Consider the second version of an SMAP realization given in
the text above, where each point field that occurs together with a phase transi-
tion i — j is a Poisson point field with mean ;;. Show that, forany S € B(X),
©ij(S) = E[N(S)], where N (.S) is the random variable describing the number
of points in S.







Chapter 15

APPENDIX

1. Conditional Expectations and Probabilities

Let (2, A, P) denote a probability space and (.S, B) a measurable space. A
random variable is a measurable mapping X : {2 — .S, which means that
X~1(B) € Aforall B € B. In other words, X is a random variable if and
only if X~!(B) C A. In stochastic models, a random variable usually gives
information on a certain phenomenon, e.g. the number of users in a queue at
some specific time.

Consider any real-valued random variable X : (2, 4) — (R, B), B denoting
the Borel o—algebra on R, which is integrable or non-negative. While the
random variable X itself yields the full information, a rather small piece of
information on X is given by its expectation

E(X):= / X dP
0
The conditional expectation is a concept that yields a degree of information
which lies between the full information X and its expectation E(X).

To motivate the definition, we first observe that the distribution PX = Po X 1
of X is a measure on the sub-o—algebra X ! (B) of A, i.e. in order to compute
P(XEB):PX(B):/ dP

JX-1(B)

we need to evaluate the measure P on sets

A=X1'Bex (B cA
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On the other hand, the expectation E(X) is an evaluation of P on the set 2 =
X 1(S) only. Thus we can say that the expectation employs P only on the
trivial o—algebra {(), 2}, while X itself employs P on the o—algebra X *(B)
generated by X.

Now we take any sub—o—algebra C C A. According to the Radon—-Nikodym
theorem there is a random variable Xg : Q — S with X 1(B) = C and

/XOdP:/XdP (15.1)
C C

for all C' € C. This we call the conditional expectation of X under C and
write

E(X|C) := X

A conditional expectation is P—almost certainly uniquely determined by (15.1).
Typical special cases and examples are

Example 15.1 For C = {(), 2}, the conditional expectation equals the expec-
tation, i.e. E(X|C) = E(X). For any o—algebra C with X !(B) C C we obtain
E(X|C) = X.

Example 15.2 Let / denote any index set and (Y; : i € I) a family of random
variables. For the o—algebra C = o(|J;.; Y; ' (B)) generated by (Y; : i € I),
we write

E(X|Y;:ieI):=E(X|C)

By definition we obtain for a o—algebra C C .4, random variables X and Y/,
and real numbers « and 3
E(aX + BY|C) = aE(X|C) + SE(Y|C)
For o—algebras C; C Co C A we obtain
E(E(X|C2)[C1) = E(E(X|C1)|C2) = E(X]Cy) (15.2)

Let C; and Ca denote sub—o—algebras of A, C := ¢(C; U Cq), and X an inte-
grable random variable. If o(X ~1(B) U C;) and Cy are independent, then

E(X|C) =E(X]|C)
If X and Y are integrable random variables and X ~*(B) C C, then

E(XY|C) = X - E(Y|C) (15.3)
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Conditional probabilities are special cases of conditional expectations. Define
the indicator function of a measurable set A € A by

1, z€A
la(z) = {0 v A

Such a function is a random variable, since
121(6) ={0,A,A°,Q} C A

with A¢ := Q \ A denoting the complement of the set A. Let C denote a
sub—o—algebra of .A. The conditional expectation of 14 is called conditional
probability of A. We write

P(A[C) = E(14[C)
Immediate properties of conditional probabilities are
0< P(AIC) <1, P(0|c) =0, P(QIC) =1

A C Ay — P(A1’C) < P(A2|C)

all of which hold P-almost certainly. For a sequence (A,, : n € N) of disjoint
measurable sets, i.e. 4, € Aforalln € Nand A, N A; = () fori # j, we

obtain
P ( U 4n c) ZP (An|C)
n=1 n=

P-almost certainly. Let X : (2, A4) — (R, B) denote a non—negative or inte-

grable random variable and Y : (2, ) — (@, A") a random variable. Then
there is a measurable function g : (2, A") — (R, B) with
E(X]Y)=goY

This is PY —almost certainly determined by

/gdPY—/ X dP
/ Y_l(A’)

for all A’ € A’. Then we can define the conditional probability of X given
Y = yas g(y). We write

E(X|Y =y) :=g(y)

forall y € V.
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2. Extension Theorems

Throughout this book, our basic stochastic tools are either sequences of ran-
dom variables (such as Markov chains or Markov renewal chains) or even un-
countable families of random variables (such as Markov processes, renewal
processes, or semi—regenerative processes). It is essential for our models that
these random variables are dependent, and in fact we define them in terms of
conditional probabilities, i.e. via their dependence structure.

It is then an immediate question whether a probability measure [P exists that
satisfies all the postulates in the definition of a stochastic sequence or process.
This question is vital as it concerns the very existence of the tools we are using.

2.1 Stochastic chains

Let (S, B) denote a measurable space, y a probability measure on (S, B), and
P,, n € N, stochastic kernels on (S,B). The latter means that for every
neN, P, :S x B —|0,1] is a function that satisfies

(K1) For every = € S, P,(x,.) is a probability measure on (.S, 53).

(K2) For every A € B3, the function P, (., A) is B-measurable.

Define S as the set of all sequences x = (z,, : n € Ny) with z,, € S for all
n € Np. A subset of S having the form

Copomp(A) ={z € 8% : (x,,...,2p,) € A}

with k € N,n; < ... < np € Ny, and A € B*, is called cylinder (with
coordinates ni, ..., nx and base A). The set C of all cylinders in S forms an
algebra of sets. Define B°° := ¢(C) as the minimal o—algebra containing C.

Now we can state the extension theorem for sequences of random variables,
which is proven in Gikhman and Skorokhod [37], section I1.4.

Theorem 15.3 There is a probability measure P on (S°°, B>) satisfying

P(Co,.. k(Ao x ... x Ag)) = /

d,u(ﬁo) / P] (.To, dCL‘]) e
Ag Ay

/ Py1(xp—2,dxp_1) Pp(rp—1,Ar) (15.4)
A1

forall k € Ny, Aqg,...,Ar € B. The measure P is uniquely determined by the
system (15.4) of equations.

The first part of the theorem above justifies our definitions of Markov chains
and Markov renewal chains. The second part states in particular that a Markov
chain is uniquely determined by its initial distribution and its transition matrix.
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Based on this result, we may define a stochastic chain with state space S as a
sequence (X, : n € Ny) of S—valued random variables which are distributed
according to a probability measure P on (5°°, B>).

2.2  Stochastic processes

Let S denote a Polish (i.e. a complete separable metric) space, and B the Borel
o—algebra on S. Define (2 as the set of all functions f : Ra' — 5. In order to
construct an appropriate c—algebra on {2, we again start from the cylinder sets

Ciytr(A) ={f € Q: (f(tr), ..., f(t)) € A}

forkeN,t;1 <...<tp € Rg, and A € B*. Denote the set of all cylinders in
Q2 by C. Again, C forms an algebra of sets and we can define A := ¢(C) as the
minimal o—algebra containing C.

Let M = {4, .1, : k€ Notq, ...t € RUJ“} denote a family of probability
distributions with
(Cl)Forall k € N, t1,...,t; € R}, and A € B

Kttt (A X S) = Mty ty (A)
(C2) For all k € N and permutations 7 : {1,...,k} — {1,...,k}

Mﬂ(tl,...,tk)(ﬂ-(A)> = My, bk (A)

Then the family M is called compatible.

Remark 15.4 Condition (C1) ensures that the distributions are consistent with
each other, while condition (C2) is merely notational.

The following extension theorem by Kolmogorov is proven in Gikhman and
Skorokhod [39], section 3.2.

Theorem 15.5 Let {jut, .4, = k € Nyty,... .t € Ra“} denote a compati-

ble family of probability measures. Then there is a probability measure P on
(Q, A) with

PH{feQ:(f(t1),...,f(tr)) € A}) = pey,.. 1, (A) (15.5)

forallk € N, t1,...,t, € R}, and A € B*. The measure P is uniquely
determined by the system (15.5) of equations.

Based on this, we define a stochastic process with Polish state space .S as a
family X = (X; : t € R) of S-valued random variables which are dis-
tributed according to a probability measure P on (2,.4). An element w €
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is an arbitrary function w : RBL — S. Itis also called a path of X. If we
want to state that the support of P consists of a special class of functions (say
right—continuous ones), then we say that X is a stochastic process with right—
continuous paths. The above family M of probability measures is called the
set of finite—dimensional marginal distributions for X.

Due to theorem 15.5 a Markov process is uniquely defined by its initial dis-
tribution and the family of transition probabilities, since they determine all
finite—dimensional marginal distributions. Further our constructions of Markov
processes, renewal processes, and semi—Markov processes yield compatible
sets of finite—dimensional marginal distributions, hence by theorem 15.5 a
probability measure PP for the respective process.

3. Transforms

In several parts of the present book, it is essential to argue via transforms of
distributions. The necessary background for these shall be presented shortly in
this section. For discrete distributions on Ny we will introduce z—transforms,
while for distributions on R(J{ the Laplace—Stieltjes transform will be useful.

3.1 z-transforms

Let X denote a Ny—valued random variable with distribution A = (a,, : n €
Np), i.e. P(X = n) = a, for all n € Ny. Then the power series

A*(z) =) anz" (15.6)
n=0

converges absolutely for z € C with |z| < 1 and is analytic in this region. We
note that A*(z) = E(zX). If A(2) is a given power series for a distribution
(an : m € Np), then the probabilities a,, can be derived as

1 d"
an = A(z)

~nl dzn

2=0

for all n € Np. Thus the mapping between discrete distributions on Ny and
the power series in (15.6) is bijective, and we may call A*(z) the (uniquely
determined) z—transform of X (also: of the distribution A).

Example 15.6 For a Dirac distribution on k € Ny with

1, n=k
an =
0, n#k
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we obtain A*(2) = 2.

Example 15.7 Let A denote the geometric distribution with some parameter
p €]0, 1], i.e.

anp = (1—p)p"
for all n € Ny. The z—transform of A is given by

* — n . n 1_p
A = (1=p) Y op"s" = T
n=0

forall |z] < 1.

A very useful feature is the behaviour of the z—transform with respect to the
convolution of two distributions. Let A = (a,, : n € Ng) and B = (b, : n €
Np) denote two distributions on Ny. The convolution C' = A % B of A and B
is defined as the distribution C' = (¢, : n € Ny) with

n
Cn = E agbp—k
k=0

for all n € Ny. For the z—transform of C' we obtain

o [o.¢] n o o<
C*(z) = g it = E g apbp_p2" = g apz” g by 2"k
n=0 n=0 k=0 n=0 n=~k

= A*(z) - B*(2)
for all |z] < 1.

This means that the z—transform of a convolution A * B equals the product
A*(z) - B*(z) of the z—transform of A and B. In terms of random variables
we have the following representation: Let X and Y denote two independent
No—valued random variables. Then the z—transform of the sum X + Y equals
the product of the z—transforms of X and Y, i.e.

E (zX+Y) =E (zX) ‘£ (zY)

forall |z| < 1.

3.2 Laplace-Stieltjes transforms

Let X denote an Rg—valued random variable with distribution function F'. The
Laplace-Stieltjes transform (LST) of X (or: of F') is defined by

F*(s):= /Ooc e *ldF(t) = E (e *¥)
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for all s € C with Re(s) > 0. The LST uniquely determines its underlying
distribution.

Example 15.8 Let X be exponentially distributed with parameter J, i.e. X has
the distribution function F'(t) = 1—e~* with Lebesgue density f(t) = Ae .
Then

o0 A
F*(s) = / e She M dt =
0 S+ A

for Re(s) > 0.

Example 15.9 For the Dirac distribution 6, on = € RaL we obtain

5% (s) = / e StdF(t)  with F(t):{(l)’ iix
0 ’ =T

and hence
oy(s) =e

for Re(s) > 0.

Like the z—transform, the LST is very useful for dealing with convolutions.
Let X and Y denote two independent Rar —valued random variables. Then the
LST of the sum X + Y equals the product of the LSTs of X and Y, i.e.

E (e—s(X+Y)> —-F (e_SX) ‘E (e—sY)

for all s € C with Re(s) > 0.

Notes

For more on z-transforms see e.g. Juri [43], or the collection of results in
Kleinrock [50], appendix 1. For Laplace—Stieltjes transforms see chapter XIII
in Feller [35] or again Kleinrock [50], appendix I.

4. Gershgorin’s Circle Theorem

An important theorem to find bounds for the eigenvalues of a matrix has been
developed by Gershgorin in 1938. For ease of reference it shall be presented
in this section. Let A = (a;;)i j<m denote a square matrix of dimension m
with entries a;; € C. The following theorem is called Gershgorin’s circle
theorem.
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Theorem 15.10 All eigenvalues of the matrix A lie in the union C := | J!" | C;
of the circles

C;, = ZECI‘Z—GZ'ASZ‘GM‘
ki

Proof: Let () denote an eigenvector to the eigenvalue ), of A, i.e. Az(*) =
A, z). This implies

m
S apa) = Al (15.7)
k=1
for all # < m. Since an eigenvector is determined only up to a scalar multi-
plicative, we can assume without loss of generality that there is a component

xl(ou) = max ‘x(-y)‘ =1
1<j<m

of the vector (). Now (15.7) yields for 7 = i the relation

v 14
Z ai07kxl(€ )= (Av — Qigio) 337(:0) = Ay — Gig iy
k#io

which implies by the triangle inequality

Ay — ai07i0| < Z ‘ai(17/€| ’ ‘m](:)‘ < Z ‘aimk‘

k#io k?éio
Since every eigenvalue satisfies at least one such inequality, the proof is com-
plete.
U

Corollary 15.11 If A is diagonally dominated, i.e. if
il > |a]
ki
holds for all 1 < ¢ < m, then the matrix A is invertible.

Proof: The strict inequality of the assumption implies that a;; # 0 for all
1 < m. Applying theorem 15.10 yields a restriction

Al > Jais| = lasi = Al > Jaii] = Y |ai| >0
ki
for every eigenvalue A\ of A. Therefore the matrix A has no eigenvalue zero

and thus is invertible.
O
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Delayed regenerative process, 143
Delayed renewal reward process, 132
Departure rate, 52

Detailed balance equation, 64

Directly Riemann integrable, 120
Discrete batch Markovian arrival process, 230
Discrete BMAP, 230

Discrete PH renewal process, 231
Discrete phase—type distribution, 227
Discrete random walk, 10

Doubly stochastic Poisson process, 187
Elapsed time representation, 229
Elementary Renewal Theorem, 117
Embedded Markov chain, 37
Embedded Markov renewal chain, 136
Engset distribution, 59

Environment process, 187

Ergodicity condition, 202

Erlang distribution, 172

Erlang’s delay formula, 56

Erlang’s loss formula, 57

Excess life, 122

EXxit vector, 169

Expectation, 251

Failure rate, 106

Finite—dimensional marginal distributions, 44, 256

First return time, 139

First visit, 15

Forward process, 64

Foster’s criterion, 28

Generalized Erlang distribution, 172
Generator matrix, 40

Geometric process, 130
Gershgorin’s circle theorem, 258
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GI/M/1 queue, 145 Non-defective, 170

GI/M/1 type matrix, 197 Null recurrent, 21

GI/PH/1 queue, 195 Open network, 62

Global balance, 64 Order, 169, 227

Holding time, 37 Ordinary renewal process, 111
Homogeneous, 9, 136 Path, 256

Hyper—exponential distribution, 173 Period, 119
Hypo—exponential distribution, 172 PH distribution, 169
Indicator function, 253 PH renewal process, 183
Infinitesimal transition rate, 40 Phase equilibrium, 191

Initial distribution, 11, 44, 169 Phase process, 190, 196, 230
Insensitivity property, 84 Phase, 169, 196, 212, 227, 230, 232
Intensity, 38, 145 Phase—type distribution, 169
Inter—arrival time, 4 Poisson process, 37-38
Interrupted Bernoulli process, 236 Polish space, 239

Interrupted PH renewal process, 187 Pollaczek—Khinchin mean value formula, 164
Invariant, 151 Positive recurrent, 21, 44

IPP, 187 Potential matrix, 17
Irreducible, 14, 44, 137 Probability flux, 64

Kendall notation, 4 Product form (PF-) networks, 63
Kernel, 254 Pure jump process, 37

Key Renewal Theorem, 120 Queue, 4

Kolmogorov forward and backward equations, 41 Queueing network, 61
Kronecker product, 179 Queueing system, 4
Kronecker sum, 179 Radon measure, 240
Laplace—Stieltjes transform, 174, 257 Random point field, 240
Lattice, 119 Random variable, 251

Level, 196, 212, 230, 232 Rate conservation law, 162
Load, 31, 51, 150 Rate matrix, 198

Loss system, 168 Rate of flow, 64

Lower Hessenberg matrix, 155 Rate, 114

LST, 174 Recurrent, 17, 44, 137

M/G/1 queue, 153 Reducible, 14

M/G/1 type, 212 Regeneration cycle, 133
M/G/k queue, 133 Regeneration property, 133
M/M/c/c+K queue, 167 Regeneration time, 133
Machine repair problem, 59 Regenerative process, 133
MAP, 185 Regular, 46

Markov chain, 9 Reliability theory, 59, 107
Markov process, 37 Remaining time representation, 229
Markov property, 9, 39 Renewal equation, 115
Markov routing, 77 Renewal function, 114
Markov—modulated Poisson process, 187 Renewal interval, 111
Markov-additive jump process, 239 Renewal process, 111
Markovian Arrival Process, 185 Renewal reward process, 128
Markovian queues, 49 Renewal time, 111

Matrix convolution, 138 Residual life time, 122
Matrix exponential function, 169 Reversed process, 64
Matrix—geometric distribution, 198 Reversible, 66

Mean arrival rate, 192 Reward, 128

Mean recurrence time, 140 Routing matrix, 61
Memoryless property, 29, 38 Routing probabilities, 61
Minimal subinvariant measure, 151 Semi—-Markov process, 136
Mixed network, 62 Semi-regenerative process, 141
MMPP, 187 Separable networks, 63
Moment, 171 Service discipline, 4

N-process, 193 Service times, 4
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Skip—free Markov chain, 232
Skip—free Markov process, 52
Skip—free to the left, 155, 212
Skip—free to the right, 147, 197
SMAP, 241

Spatial arrival process, 239

Spatial Markovian arrival process, 241
Stability condition, 32, 150, 156, 197
Stable, 243

State space, 9, 37

State transition graph, 41

State, 37

Station balance, 73

Stationary distribution, 18
Stationary increments, 125
Stationary measure, 18

Stationary renewal process, 125-126
Stationary, 18, 44

Stochastic chain, 9, 255

Stochastic flow, 45

Stochastic matrix, 11

Stochastic process, 255

Stopping time, 12, 133

Strong Markov property, 12

Sub-stochastic distribution functions, 137

Subinvariant, 151

Superfluous, 174

Superposition, 47, 188

System capacity, 4

System process, 5

Taboo probabilities, 151, 198
Tandem queue, 106

Time until absorption, 169

Total number of visits, 16

Total reward, 128

Transient distributions, 138
Transient, 17, 44, 137
Transition matrix, 9

Transition probabilities, 39
Transition probability matrix, 40
Transition probability, 9
Transitions with arrivals, 184
Transitions without arrivals, 184
Upper Hessenberg matrix, 147
Versatile Markovian point process, 193
Version, 11, 44

Waiting time paradox, 127
Wald’s Lemma, 117
Z~transform, 256
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