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Abstract
In small-lot, multi-product, multi-level assembly systems, kitting (or accumulating) components required
for assembly plays a crucial role in determining system performance, especially when the system operates
in a stochastic environment. This paper analyzes the kitting process of a stochastic assembly system,
treating it as an assembly-like queue. If components arrive according to Poisson processes, we show that
the output stream departing the kitting operation is a Markov renewal process. The distribution of time
between kit completions is also derived. Under the special condition of identical component arrival streams
having the same Poisson parameter, we show that the output stream of kits approximates a Poisson process
with parameter equal to that of the input stream. This approximately decouples assembly from kitting,
allowing the assembly operation to be analyzed separatdy. We also show that, in the long run, all

inventory positions are equally likely and independent of the actual inventory position.
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1 I ntroduction

Traditionally, material flow analysis in assembly systems has been based on the assumption that

the system operates deterministically. In recent years, attention has been directed to a more redlistic



analysis of assembly systems, explicitly treating the stochastic events that influence operations. An
important aspect of assembly operations is kitting (or accumulating) required components and releasing
the kit to initiate assembly. Due to the stochastic nature of component availability, stock-outs often occur
in component inventories, thereby disrupting kitting and, consequently, assembly schedules. The goal of
this paper is to better understand the kitting process in a stochastic assembly system, which we treat as an
assembly-like queue.

This paper modes the kitting process of an assembly system as a Markov renewal process,
assuming that component arrival streams follow independent Poisson distributions. The assembly system is

assumed to have a structure similar to that described in Hopp and Simon [7] and is shown in Figure 1.

Figure 1.

P1 and P, are machines that process components (to prepare them for assembly) and Ps is the
assembly machine. 11 and I, are the buffers for components, lo is the buffer for kits, and I3 is the buffer for
the end-product. P: and P> work independently, withdraw raw materials from their respective pools of
unlimited supply, and deliver processed components to buffers 11 and I, respectively . A component
arriving at buffer 11 (I2) isimmediately kitted with a part from buffer 1> (1) if oneis available, and a "kit" is
said to be composed. If a kit cannot be composed, the processed part is held in buffer 13(l2) to await the
arrival of a"matching” part at buffer 1>(I1) . Once composed, a kit of matching components from |1 and I
is sent immediately to 1o and the kit is considered to be one arrival at lo. If the arriving kit finds lo empty
and Pz idle, it isimmediately placed in the assembly machine Ps. Otherwise, the kit is held in buffer lo.

We assume that buffers of components have limited capacity and that each component is processed
according to an exponential distribution (before kitting) to prepareit for assembly . When Pz completes an

assembly, it withdraws a kit (i.e. two matched components) from lo, whenever available, then assembles



another end product and ddlivers it to buffer Is. If a kit is not available in lo when Ps completes an
assembly, it remains idle until a completed kit arrives. Demands for end products arrive at I3; each demand
is assumed to be for a lot of unit size and is satisfied immediately if stock is available. Unsatisfied
demands are backordered, causing the inventory position at |3 to take on negative values.

Our primary result is to show that the output stream departing the kitting operation is a Markov
renewal process. In the special case in which component arrival streams have the same Poisson parameter,

we are able to show that the output stream approximates a Poisson process with parameter the same as
that of the arrival streams.

Regarding the modus operandi of the assembly system, Harrison [6] showed that a sufficient
condition for stability of operations of such systemsis that component buffer sizes be finite. For a system
with finite buffers, we show that, in the long run, probabilities of observing different inventory positions at
11 (I2) are all equally likely and are independent of any particular inventory position. Also, considering the
special case of component arrival streams with the same Poisson parameter, we show that the kit
completion process well approximates a Poisson process when the component buffers are large enough,
permitting the kitting and assembly operation to be decoupled so that downstream operations can be
analyzed separately.

Stochastic assembly systems are often studied as assembly-like queues. Harrison [6] showed that
an assembly system with input streams that are independent renewal processes and with no inventory
capacity limitations for any stream are unstable. He also showed that, under these conditions, the limiting
distribution of the time that parts wait for assembly converges to a defective distribution.

Since we assume that two components are required to compose a kit, the queues of components
form a double-ended queue [5], [8]. A double-ended queue can be best described by the well known taxi-

cab problem where taxis and passengers form two different queues. A customer waits in its queue and



leaves it as soon as a taxi is available; taxis wait in queue for customers and leave when a customer is
available. The two queues are interdependent and their combination is known as a double-ended queue
where it is known that the related queueing process is a random walk on {.., -2, -1, 0, 1, 2, ..} and is
transient or null unless the queues are bounded. The kitting process under study can be considered as a
double-ended queue of the type examined by Kashyap and Chaudhury [9]. They showed that each queue
length distribution is independent of occupancy when arrival rates to the double-ended queue are equal.
They also derived the distribution of waiting times in double-ended queues but made no attempt to analyze
its output process.

Bhat [2] incorporated limited buffer capacities in assembly like queues and derived expressions for
the stationary probability vector of the queue length. Latouche [10] considered assembly systems with
Poisson procurement processes and exponerntial processing times and derived conditions required for stability.
Assambly networks that represent one-time production (for example space-shuttle, aircraft prototype, c.) are
analyzed by Saboo and Wilhdm [11] and Wilhdm et al[13].

The output processes from queues operating according to various disciplines are reviewed by Disney and
Konig [4] in detail. They describe the characteristics of the output processes resulting from GI/D/s, M/M/s,
M/GI/UL, M/IEJUL, M/GI¥¢, GI/GI/I/L and GI/M/1/L systems. Apparently, the output process of a double-
ended queue has not been studied previoudy. In this paper we analyze such a process as a part of our study of
thekitting process.

We have organized this paper in five sections. The fundamentals and pertinent assumptions are
presented in Section 2. Section 3 relates the formulation of a Markov renewal process which describes the kitting
operation. The modd is evaluated in Section 4 by determining the state transition matrix P, the time-stationary
probability vector ?, and the distribution of time between kit completions, which is shown to be approximately

Poisson under certain conditions. Practical implications of analytical results are described and conclusions are



presented in Section 5.

2. Fundamentals

The structure of the assembly system under analysis is presented in Figure 1. A little thought indicates
that it is not possible for both buffers 11 and 12 to have positive stock leves at the sametime. An arrival which
increases the stock level of one of the buffersto a positive value creates a "virtual backorder” at the other buffer.
At any timet (t > 0), the inventory position "M'(defined as the number of parts on hand plus on order minus the
number on back order) in one buffer is associated with inventory position *-M" in the other, and equality holds
only when the inventory position is zero(0) for both buffers I1 and I..  The inventory positions at 11 and 1> may
thus be viewed as "mirror images' of one ancther, a special structure which we exploit to analyze the kitting
process.

Since the purpose of this paper isto characterize the kitting process, we study the stream of arrivalsto lo
(i.e, the output of the kitting process) in the following sections and ignore the process downstream of lo. We
present athorough analysis of the downstream assembly system in a companion paper (Som and Wilhdm [12]).

Our modd, which is based on the Structure described in this section, rdies upon three fundamental
assumptions:
@) processing times at the part processing machines, P and P, are independent, identically distributed, non-
negative exponential random variables with rates H1 and Hz, respectively.
(i) the capacities of buffers |1 and I> are bounded from above by Ki and K>, respectivey, representing
practical limitations on buffer space, and, according to Harrison [6], allowing the system to reach a steady state.
No capacity restriction isimpaosead on lo.
(iii) P1 (P2) prepares parts exclusivdy for 11 (I2). However, when 11(12) isfilled to capacity K1 (K>), additional

arrivals are not processad in the system under analysis (eg., they may be processed and assambled by a



subcontractor).

In the following sections we formulate the modd and analyze it asaMarkov renewal process.

3. Formulation of a Markov renewal process

Theinventory positions at 11 and I change with the arrival and departure of components to and
from the respective buffers. We define the mirror image process (X, T) as a marked point process, which
characterizes the inventory positions or states at the arrival and departure epochs. The sample path diagram of

themirror image processis presented in Figure 2.

Figure 2.

Thus, (X, T)={Xm, Tm:m N}
inwhich, X = { Kim, X}
Tm = time of m-th state change epoch.
X m = inventory position at buffer |1 at time T,
*Xm = inventory position at buffer I, at time Tm.
Due to the mirror image property of the inventory positions at 11 and I, at any random time Tn, Xm =
Xm implies “Xm = - xm; or, equivalently, “Xm = Xm implies Xm = -Xm. Hence, it is obvious that the Mirror
Image Process may be analyzed by viewing theinventory position just at 11 (or, equivalently, just at 1.).

Whenever matching components are available at buffers 1, and I, a kit is composed
(instantaneoudly) and sent to lo. These departure epochs (occurring smultaneously from both Iy and 12) and the
corresponding inventory position at 11 describe another marked point process which we define as the output
process. By obsarving the inventory position at |y, it is apparent that a particular subset of the epochs {Tm :

mi N}, marked by a decrease in the positive inventory position or an increase in the negative inventory position,



congtitutes kit completion as well as state change epochs in the output process.

These output epochs are a sub-sequence of the sequence{ Tm : mi N}, defined as

t={t,:nl N} withO=togt gtogtsg. . suchthatfor ?] Ot o(?)=To(?)=0, tn(?)=T?),n2 1,in
which, k=min{ml N:n£3§ ',-n:ll{ |1XJ_]J>|1XJ_|}(W )1} and 1;x3(.) is anindicator function. DefineDni =t m1-14
as the time between successive departures, nand n+1. For n N, the random variable Dy : O@ R' represents the
length of the n-th inter-departureinterval. Thent 1 =t o + Dreg, N N, defines thetime of the (n+1)-th departure.
Thesatt ={t,:n N} definestheoutput time process.

For each ni N, define the random variable Z,: O® E as the inventory position at the buffer 11 or the
system state of the output process immediately after the nth departureepoch t . Thesst Z={ Z,: ni N }
defines the output state process, and the joint random variables{ Z, t } ={ Z,, tn: nl N } define the output
process. Here, D, depends on the present dtate Z, and the next state Zn1. However, given these states, D is
independent of previous Dk and Zx for k=1,....n-1, indicating that the output process{Z,t } is a Markov renewal
process on the state space E. Since a Markov renewal process is completdy characterized by its semi-Markov

kernd Q(i, j, t), we study this kernd in the following sub-section.

DETERMINATION OF THE SEMI-MARKOV KERNEL Q(i,j,t)
The semi-Markov kernd of the output process{Z,t } may be expressed as

QG J, ) =Pr{Zni=j,taa-tnEt|Zn=1}.

For convenience, the semi-Markov kernd is expressad in the Laplace transform domain as L{ Q(i, j, dt)}

=Q{i, ], ds}.



The Laplace transform of %ZPr{Znﬂ:j,t mi-tnEt]|Za=i}, expressed asL[dP{Zw1=j,t -t n £

t | Zn =1i}], can be shown to have five different forms,

depending upon inventory positions at epochst  andt 1. We describe the five cases below.

Casel. Thegarting (i.e, at t ) inventory position is non-negative and it does not reach the positive boundary K
before thetime of the next departure (i.e, at t n1).

Certain combinations of i and j define Casel:

()  0<igKsyl, i-1£j £ Ki-2, and
i) =0, 04 £ Ki-2.
Then,

e™(mf)™

dP{Zw1 =], tma-tnEt]Zo=i} = m, e ™dt 3. (1)

-1+1)!

Since we are looking at two consecutive kit completion gpochs, t  and t 1.1, a which inventory positions
at 11 arei and | respectivey, j-i+1 components must have arrived at 11 beforeany arrival at |2.
In Laplace transform form,

LIAP{Zw1 =], t ma-TnEt|Za=i}] =

. L j-it2 Li-it2
Oee 0] & m+ 0]
e m g Emrm 0y @
eMgem+mg em+tmt+Sy
The other four casesfollow similarly.
Casell.(i) -K2+1 £1 <0, -K2+2 £ £i+1, and
i)y =0 K42 £ <0.
L[AP{Zwi=],t -t nEt]|Za=i}] =
sam, 62 m, g2 m+m, it
— 6g——=—y 7 )

&m, gdm+m, 5 &M+ m,+ s



Caselll. 0£i£Ki-1, =K1

L[P{Zm1 =K1, ta-tn£t|Za=i}] =

e m 8 ém 06 m+m U
+ 8@ ué h 9 (4)
Em+ Am,+ Sgam + m + Sg
eMm™Mg  eMTSgem ™ Mm,™ Sg
Ca=selV. -KA+1£i £0, j=-Ko+ 1.
L[dP{Zn1=-Ko#1, t -t £t | Za=i}]=
2 (.jK2+i é l:lé + l:IK2+i
gmz+ 10emlgemlmZ:11. (5)
CULRRLLY em+ Sgemt m+ S

CaseV.i =0, j=0.
L[dP{Zw1=0,t w1-tn£1]|Za=0}] =

2,8 MM g ©)
(m+m,)"  em+m+sg

Theinterval t ni1 - U, includes an initial period which has an exponentia distribution with rate My + Ho.
Using Bernoulli probabilities Hy/(H1 + H2) and H2/(M1 + H2) and convolving with the distribution of the remainder
of theinterval, we get the above result.

Combining eguations (2) through (6), we obtain the semi-Markov kernd Q(i, j, t), which is expressed in
Laplace transform form and is presented as equation (7) in Table 1. The dtate trangtion matrix P of the
underlying Markov chain Z embedded at time't , is obtained by setting s = 0 in equation (7) and is presented as

equation (8) in Table2. Ananaysis of the output process{Z,! } is presented in the following section.

Tablel.

10



Table2.

4. Analysis
In this section, we analyze the output process{Z,t }, deriving the following:
(@) the stationary probability vector ? of the underlying Markov chain Z, and
(i) the digtribution of time between kit completions.
The vector ? indicates the time-stationary probability distribution of the inventory position at |y,

observed at a randomly sdected kit completion epoch.

DETERMINATION OF STATIONARY PROBABILITY VECTOR ?

Clearly, the output process {Z,t } ={Z, t n: nl N} is anirreducible, nonnull, recurrent, and persistent
Markov renewal process for K1, K2 <¥; under these conditions, it possesses a Sationary distribution defined as ?
[3]. Note that the process {Z,t } will be recurrent null, if K1 and K: are infinite. The stationary probability
vector ? of the underlying Markov chain Z is obtained from the set of equations expressed in the matrix form

?7=?P
Using equation (14) for P, the balance equations can be expressed for specific Sates

-KAlE£jEKr-las

?(0) = ?(-1)?(1v) + ?(0)2v (1-v) + ?(1)(1/?)v ©)
?2(Kr-1) = ?(K1-2) (10)
?(Kz+1) = 2(-K2+2) (12)

2(3j) = )W) + 22V + 22NV + .+ (U?)?(+1)
i=1.2,..... K2 (12)

2(3j) = 2(0)?(1-v)5*? + 2(1)?(1-V)TV + 2(2)?(1-V)D + ..+ ?(1V)?(+1)

11



j=-1, -2, KoH2. (13)
inwhich, ? = Hy/Hy, V= Hy/(H1+ Hy).
In addition, we have the normalizing expression

a;la ?3) = 1. (149
The solution to equations(9)-(14) can be expressed as

P(O)=— "M g
mK,+ mK;

P(j)= — g6 j=12,..., Kl
mK,+ MK,

P()= — M 47 j=-1-2,..., -Kotl.
mK,+ mK,
It may be observed that ?(j), the stationary probability of positive(negative) stock in buffer |1 observed at a kit

completion time, is a constant independent of j, the stock position.

DISTRIBUTION OF TIME BETWEEN KIT COMPLETIONS, Dy

To determine the distribution of time between kit completions, we concentrate on analyzing the output
timeprocesst ={t ,:nj N}, which specifiesthe arrival stream (of kits) to buffer lo.

Considering the stationary distribution ? of the underlying Markov chain Z and for tf R”, the distribution
of time between two consecutive kit compldionsis given by

P{toa-th£ =2 QL j, ) U (18)
inwhich U isa column vector with all dements equal to 1.

Expressing equation (18) in Laplace transform form we obtain:

L[dP(t m1-th £8] =7 Q(, j, ds) U. (19

Substituting the values of ? and Q(j, j, ds) from equations(15) to (17) and (7) into equation (19),

12

(15)

(16)

(17)



L[OP(t na-t o £)] = ¢ ®m 0¢ Kem+m, qs o+ gemz 0¢ Kam* m, (119
em+ Szelez+ MK mz+5ﬂele2+ MK
& m+m, o}
- 2(0) 220 (20)
gmﬁ m+* Sy

It is apparent that if equation (20) is inverted (i.e, to the time domain), the distribution of the time between kit

completions, Dn+1, would be the weighted sum of three exponential distributions with rates 1y, K2 and Hi+Ho.

A SPECIAL CASE WITH INFINITE BUFFER CAPACITY
We consider a specia case in which the capacity of one buffer (aither |1 or 12) approaches infinity while

the other buffer capacity isfinite

Without loss of generality, consder K1 ® ¥, Ko< ¥ and &21® 0; it can be easily seen from

K1

equation (20) that

L[AP( ma-tngE t)] = —2 22
m+s
Similarly, withKa® ¥, K1 <¥ and ﬁ23® 0,

K2

L[OP(t -t o g )] = — 1524,
m+s
In this case we obsarve that the distribution of the time between kit completions is asymptaticaly
exponential and is identically the same as the distribution of the time between component arrivals at the finite

buffer.

A SPECIAL CASEWITHH = H=H
This section speciaizes the case in which component processing times at machines P1 and P> are
independent exponential random variables with the samerates (i.e, H1 = Ho=H). In practice, this Situation may

occur when components are obtained from independent suppliers with identical (and indegpendent) lead time

13



distributions. Also, the same situation may occur during “in-house" production where the machines employed, P.
and P, are identical (and independent). In the following sub-sections we show that the distribution of time
between kit completions, Dn, can be approximated by independent and identically distributed exponential random

variables.

APPROXIMATION OF D, BY THE EXPONENTIAL DISTRIBUTION
Making appropriate changes in equations (7) and (8) to accommodate the special case, the semi-Markov
kernd, Q(i, j, t), in Laplace transform form and the transition probability matrix P of the underlying Markov

chain Z may be expressed by equations (21) and (22) which are presented in Tables 3 and 4, respectively.

Table3.

Table4.

The stationary probabilities of this Markov chain are given by

?00) = 2 (23)
Kit K2
1
?(j) = 26 " j10 (24)
Kit K2

These results have striking smilarities - but at the same time, important differences - with those obtained
by Bhat[1] for thelimiting distribution of the population in thefinite buffer of a double-ended queue.
The distribution of time between kit completions, Dy, can be expressed in Laplace transform form as
L[dP(t -t £8] =7 Q(, j, ds) U (25)
in which U is a column vector with each dement equal to 1. Substituting equations (21), (22), (23) and (24),

equation (25) specidizesto

14



LIdP(t n-t i £1)] =27 (26)
Clearly, for large values of K1 + Ky, the distribution of time between kit completions, Dn, is
approximately exponential with rate M. The value of K1 + K2 necessary to alow this approximation can be

determined as a function of the degree of approximation desired. The€-approximate distribution of Dy is
I) . . —_ _ m
2Q(,j,d) U=L[dP{t n-t i gt)] = —— 28, (27)
m+s

which is the Laplace transform of an exponential distribution with rate 1.

APPROXIMATE INDEPENDENCE OF Dy

In this section, we discuss the independence of m consecutive random variables D, n=1,2,....m. We
show that for sufficiently large K1 + K>, the m consecutive random variables D, n=1,2.....m, become independent
towithin an error of €.

This indegpendence holds if the joint distribution of the m consecutive random variables D equals the
product of the m marginal distributions of the random variables Dn. Statistical independence should hold for m
® ¥, but thislimiting caseis not easily evaluated.

To establish the approximation, we must show (writing Q(i, j, ds) = Q(ds)),
?Q(ds)Q(d%)Q(d).... Q(dsn)U

={?Q(ds)UH ?Q(d=) UK ?Q(dsy) U} ..{ ?Q(dlsm) U} . (29)

Theleft hand side of eguation (28) is

Laem 0é 2 U 2 R2eaem6o
?Q(ds)Q(d9)Q(d%)....Q(AsU = =al- 20 + s
(RIRIAE)... Al 98”‘*’&@81 Kit Kol K1+K298m+3iﬂ

€ 1 ., .1 1. 5.,1, Raemo 1 ., i I IV
xa(=a)+(=a)+...+(=a)+(=)a S (=aYy+...+(=a)"+b(=a)™y
‘fe-b(z) (2) (2) (2)93m+si,2,(2) (2) (2)3

30
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é D 0
x@b(ia)K2+ ..... +(3a)3+(3)a c m Lay
2 2 275 &

e i=2
(29)

By making K1 + K2 sufficiently large, theright hand side of equation (29) can be
L e o]
approximated by O ¢ T =32, the product of the Laplace transform of the m marginal
i—1eMts g
distributions of the random variables Dy for nf N. Hence, equation (28) holds for sufficiently large K1 + Kz,

indicating that the random variables D, n = 1,...,m, are independent. The required value of K1 + K2 depends
upon the degree of approximation desired.

Theimplications of equations (27) and (29) lead to the following theorem.

THEOREM 1
Thearrival process of kits at buffer 1o can be approximated by a Poisson process with rate K, the degree

of approximation depending on the value of K1+K>. 1l

DEGREE OF APPROXIMATION: AN EXAMPLE

To illustrate the rdationship between the degree of approximation of the arrival rate at lo and the buffer
capacities K1 (K2), we condder the following example with equal buffer capacities K1 = K> = K and equal
Poisson arrival rates My = Mz = H at buffers 1 and Iz, respectively.

Using equation (26), the dengity function of the time between kit completions, D, may be expressed in

Laplacetransform form as:

&2mOo laemoe s 0O

9= Emrsy K Sm+spe2m+ sy

33. (30)
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Inverting to the time domain, the density function of Dy, is obtained as

f(t) = me™+ r_I:e-m -z?me-zm 34,13 0. (31)

We define an error term g(t), expressed as the absolute difference between the exponential

density and the actual density of Dy
m
&) = K |2¢™-¢™|35. (32)

Using equation (31), graphs of f(t) are plotted for H=1 and K=2, 5 and 10 against timet 3 O in Figure 3.
It is observed from Figure 3 that the density of D, rapidly approaches an exponential density asK increases. The

graph of gt) againgt K, plotted for H=1 and t=0.2, is presented in Figure 4, which aso indicates that the error

term g(t) approaches zero(0) rapidly as K increases.

Figure3.

Figure 4.

Using equation (32), it is easily seen that for " t, t>0, | 2g?™-e™|36 £ 1. Hence, for a given €>0

and for any arrival rate M, we can find aK such that
Marge.
K

Therefore, the inventory capacity required to effect the desired approximation can be easily determined

knowing the component arrival rate

5. Discussion and conclusion

17



We have proven conditions for which the inter-arrival times of kits arriving to assambly are
approximatdy independent and identically distributed exponential random variables. If components arrive at 11
and I, according to independent and identical Poisson arrival streams and if Ky + K> is sufficiently large, the
output stream from kitting approximates a Poisson process.  The practical importance of this result is that the
assambly process downstream of the kitting operation can be decoupled from kitting for further analysis. The
required conditions (for decoupling) are not restrictive and may, in fact, hold in actual applications.

It is aso interesting to note that the long-term probability distribution of inventory positions at 11 (12),
observed at kit completion epochs, is indegpendent of the actua inventory positions (positive or negative). Our
result also indicates that all the positive (negative) inventory positions are equaly likdy with probability that is
proportional to therate M1 (M), of Poisson arrivals. If arrival ratesto 11 and |2 areequal (i.e, M1 = H2 =H) , al the
inventory positions except zero become equally likdy with probability that is inversdy proportional to the total
inventory capacity (K1 + K2). The incidence of observing both buffers empty is twice as likdy as obsarving a
positive (negative) stock position at ether of the buffers.

Harrison [6] showed that a sufficient condition for an assembly-like queue to reach steady state is that
buffer capacities must be bounded from above  We have shown that the total buffer capacity, K1 + Kz, must be
"sufficiently large" to obtain a Poisson approximation of the output stream of kits. However, from the examplein
section 4, wefind that Ky + K2 need not be impractically large to achieve an approximate Poisson output stream;
the value of K1 + K2 beng dependent upon the degree of approximetion desired. Since the arrival process at
assembly machine Ps may be approximated by a Poisson distribution, the downstream assembly system can be

approximated by the much studied M/G/1 queue
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