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Abstract—An interrupted Poisson process has two states, on-state and off-state. In the on-
state, Poisson arrivals occur, and on the other hand, there are no arrivals in the off-state. As the
variation becomes larger, the arrival process is changed to a more complex interrupted Poisson process
generated by embedding new off-states in each on-state. In such a way, recursively embedding off-
states in on-states and taking a limit, a fractal structure can be found in the on-off structure. We
name the arrival process fractal Poisson process and study it. The interarrival time density has a
heavy tail. In addition, we study queueing models with the fractal Poisson arrivals. Even if the
utilization is very low, the waiting time is very long. © 2006 Elsevier Ltd. All rights reserved.

Keywords—Variation, nth generation interrupted Poisson process, GI/M/1 queue, Fractal Pois-
SOn process.

1. INTRODUCTION

The interrupted Poisson process (IPP) was introduced as an overflow process in circuit switch
networks by Kuczura [1]. The interarrival time of the IPP is more variable 2] than the one for
a Poisson process for the fixed mean interarrival time. In packet communication networks, we
can also find the packet streams which have more variable one than Poisson one. The packet
streams which originate from terminal equipments with some regularity become ones that have
some variation due to various factors as going forward in the networks. It is well known that the
regular streams are transformed into the Poisson streams and then to the IPP streams.

In the interrupted Poisson process(IPP) [1], on-state periods and off-state periods alternately
occur. Being an on-state, Poisson arrivals occur with some rate. On the other hand, there are no
arrivals during any off-state period. Poisson arrivals which are uniformly distributed on time axis
in a Poisson process are driven into on-state periods which have finite intervals. The IPP streams
have larger variation than Poisson streams. What is the transformation mechanism from the
Poisson streams to the IPP streams? We can consider that this mechanism occurs because off-
state periods preempt over a Poisson process with some rate. If the preemption rate is constant
on the time axis, then an on-state period length follows an exponential distribution. In addition,
if the off-state period length also follows an exponential one, then the on-off process is an original
IPP proposed by Kuczura [1]. We call this IPP “the first generation IPP”. The Poisson process
considered here would be called “the 0! generation IPP”. Note that the longer off-state period
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implies the larger variation. As a result, the Poisson arrival rate during on-states increases. We
know that, as a packet stream goes forward in the network, the variation increases. We can
expect that the new generation IPP will appear.

It is natural to consider that the same mechanism, in which off-state periods preempt over
a Poisson process, occurs in on-state periods themselves of the first generation IPP. That is,
new off-state periods preempt over the on-state. The mean length of an off-state period newly
generated, of course, is shorter than the mean off-state period length of the first generation IPP.
Suppose that the latter is M times larger for some integer M than the former. We call the process
“second generation IPP”. In this IPP, a period which corresponds to an on-state period of the
first generation IPP has an on-off structure. If we magnify the period with this on-off structure M
times, then we find the first generation IPP. When the same mechanism occurs during an on-state
period of the second generation IPP, the third generation IPP will appear. If this mechanism is
recursively repeated n times, then we will be able to find the n*® generation IPP. It should be
noted that the interarrival time of the (n + 1)t" generation IPP is more variable than the one of
the n'* generation IPP. Taking a limit of n to infinity, the on-off structure has self-similarity. We
call the process “fractal Poisson process”. Under some condition, the interarrival times follow the
distribution with a heavy tail. Taqqu et al. [3] study an on-off process in which both on-period
length and off-period length have heavy tails. Our fractal Poisson process is renewable and it is
convenient to deal with.

In Section 3, we study a GI/M/1 queue with the n'" generation IPP input. In the GI/M/1
theory, the generalized utilization [4] is the most important factor. That generalized utilization 3,
of the n*" generation input queue becomes larger, as n increases, and finally converges to 1.

2. nth GENERATION IPP AND FRACTAL
POISSON PROCESS AS ITS LIMIT

Consider an interrupted Poisson process (IPP). The IPP has two states, on-state and off-state,
in which the two state periods alternately occur. During an on-state period, homogeneous Poisson
arrivals with rate A\; occur and no arrivals occur during an off-state period. The on-state period
length and off-state period length follow exponential distributions with means y~! and wi’,
respectively. We call this IPP “first generation IPP”. We consider that the IPP is a process in
which off-states preempt with rate vy over a Poisson process with the rate A. Since we fix the mean
interarrival times for the Poisson process and IPP, the arrival rate A; is greater than the rate A
That is, when the Poisson process is transformed to the IPP, the variations of interarrival times
become larger. The off-state period length density function and on-state one are, respectively,
given by

al(z,w)) = we”“1* (1)

and

bi(z) = ye . (2)

Furthermore, when the variation becomes larger, what happens? The off-state period length will
become larger from wl_l to wz_l. At the same time, new preemptions of off-states occur in each
on-state period of the first generation IPP. We suppose that the rate of preemptions is M~ and
the mean new off-state period length is (Mw,)~'. Then, the off-state and on-state period length
density functions are, respectively, given by

az(z,we) = kray(z,wy) + kzMWQE—Mw”, ki + ko =1, (3)
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and
bo(x) = Mye M7=, (4)

We call this IPP “second generation IPP”. If we magnify, M times, an on-off state period of

the second generation IPP embedded in an on-state period of the first generation IPP, we can

find the first generation IPP itself there. Equation (3) shows that an off-state period of the first

generation IPP appears with probability k£; and a new off-state period with the mean length

(Mw,)~" appears with probability ky. Hereafter, we set M = 2 and k; = ko = 1/2 for simplicity.
We apply the same mechanism to the second generation IPP. Then, we have

1
ag(r,w3) = 5 {ag(l‘,UJg) + 22W36_22w3x} (5)

and .
ba(z) = 2%ye~2 2. (6)

th

If we recursively repeat the same mechanism, we have the following n*" generation IPP:

1 n—
an(z,wn) = 3 {an—l(m,wn) + 2"_1wne"2 1wuz} 7
and
n—1
bp(z) = 2" tye=2" 7 ", (8)

Taking a limit to oo for n, we have a fractal Poisson process.

THEOREM 1. An off-state period length density function for the nt* generation IPP is given by

n—1 1 n—i ) 1 n—1
an(z,wy) = Z <§> Qwpe” 2 wnT 4 (§> wpe~ T (9)
i=1

PROOF. When n = 1, we have

a1(z,wy) = we” 1", (10)
When n = k, we assume that
kol i\ k=i ‘ 1\ F-t
CLk(.’L’,wk) = (§> 21wk6—2 WkT (§> wre” kT, (11)
=1
Then, we have
1 gk,
g1 (T, Wet1) = 3 (ak (z,wi41) + Pwyre? ““m) . (12)
Substituting (11), we have
1\ k=i ) 1\ F
k+1(T,Wks1) = Z (§> Qlwg 1”2 WRHT 4 <§> Wig1€ EHE, (13) m

i=1

Since . _ .
n— 1 n—1 1 n—
- Z = 4
>(3) +G) - a9
i=1

in (9), an(z,wn) is a hyperexponential density function.

Now, we fix the mean interarrival time for the nt! generation IPP (n = 0,1,...). In particular,
when n = 0, the process is Poisson with the rate A. If A, is the arrival rate in an on-state period
for the n*t generation IPP, then we have

A Elby]

Elan + Elbn] ~ 1s)
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where Efa,] and E[b,] are the mean off-state period length and the mean on-state length, re-
spectively. Then, we have

n—1
Elan) = i <%) n; L (16)
and )
Elb,] = Qn_—l_,y (17)

Equation (16) can be obtained as

nn—1 i n-1
1 2¢ 1 1
E nt =\ 5 - — J—
[an] (2) = 2'wy + <2) Wwn
] 1 n 1 n—1
~;{(§) -0+ () }
1 /1\"'n+1
" wn \2 2
Equation (17) is obvious.
Hence, from
An/27 71y 3 An (1)
(1/w) (1/2)" N ((n+1)/2) + 1/27=1y 1+ (n+1)7/2w,’
we have
AH:A(1+M1>. (19)
2wy,

Now, we will study an interarrival time probability density function f,(z,wy) of the n"' gen-
eration IPP. The Laplace transform (LT) f2(s,wn) of fn(z,wy) is given by

)\n 4 271_1’7
s+2n~ly + X, s+ 27 iy 4 X,

fals,wn) = az{(s,wn) fr(s,wn), (20}

where a},(s,wy) is the LT of a,(z,wy).

We can assure that the mean interarrival time of the ntb

generation IPP is equal to A™!. That
is, since
1

d .
Tgheen)| = mny

ds

s=0+
(21)

an—ly d ,
ﬁxwrx(‘a%“%>_

we have from (16)

1 on-ly /1 lnt1
=———[1+ 5 (22
s=0+ 2n—17+ /\n ( Wn <2> 2 ( )

271—1,7 d .
- <1 - m) gfn(&wn)

Therefore, from (19) we obtain
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1 2
-{~ 24
5=0+ <>\> 20

can be obtained by the following manner: differentiating (20) twice and substituting s = 0+, we

The variance of interarrival times

d2
Vo = d—sifn (37 wn)

have P2 .
2 2"ty 1
— I n = 2 E n -
ds? n(s,w )s=0+ (2n=1y + A,)2 + (27 1y + Ap)2 ( (2n) + A)
(25)
2y d? 2 d?
P — - olUn _E — b n .
+2n_17+/\n <d82a (S) oo+ + )\ (a'n) + d$2fn(s w ) s04
Since . .
d? —/1\"" 1 1\""" 1
E?an(S) s = 2_4: <§> (ziwn)z + (5) w—%
= (26)
_ (1)1
S \2/) w?’
it is satisfied that
2n—ly d? 2 1
S S R PR 1+ 27y [ E(a,
(- gy aafiten ooy = @00 et (B 5]
(27)
on—ly 1\" 1 2
g [(3) 2§80
where E(ay) is given in (16). Now, we have
d? 2 1
—— [ ($,wn = 14+ 2"y [ Ea,) + ~
ds? nlsw )s=0+ An(277 1y + An) [ * ’y( (an)+ A)]
(28)
Iy T/AIN™ 1 2
+ )\n [(5) w—%'i—xE(u,n) .
In (28), we have for some constant ¢
n—1
lim 2 2n) o (29)
n—o0 ATI

In the second term of the right-hand-side of (28), we have

21y (l)n 1 _ 7 (30)

An 2 w—% 2Aw2

Since, in (19),
1
A, = A <1 T &%ﬁ)

is satisfied, we obtain

!
An? = A <w§ Lot wn> . (31)

Now, we get an important result. That is, if the sequence {w,, n = 0,1,...} satisfies that

lim (n + L)w, =0,

n—oo
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for example, if, for £ > 0 and w > 0,

= w
(14
then
lim A w2 = 0. (32)
n—oG
That means that
< 33
l. —_— ® , —_
Jim = fa (s, wn) e (33)

or the variance V, is infinite. The interarrival time distribution has a heavy tail.
We will next consider the interarrival time density functions themselves. From (20), it is

satisfied that
An/(s + 2"y + )

fals,wn) = 1—(2n-1y/ (s 4+ 271y + \,)) ax (s, wn)
(34)
_ An (8 + wp)za(s)
T (5 + 27 Iy + M) F wn)Ta(s) — 20 Ly, (s)
Here,
n—1
Zn(s) = H (5 + 2'wn) (35)
=1
and
n—1 1 n—1 :rn(s) 1 n-—1
n = n Y 2 Y a ndn .
Yn(s) (s+w);<2> “’"s+21wn+<2) Wnn(s) (36)
THEOREM 2. Spectra —aﬁ"), i=1,...,n+1 of fi(s,wn), that is, roots of the (n+1)* polynomial
equation

zn(s) = (s + 2771y 4+ An) (s + wn)Ta(s) — 2" Iy (s) =0
are real and simple, and each of them is in the following interval:

—a{™ € (—wn,0),

—afn) € (—Qi—lwn, —Qi‘zwn) , 1=2,...,1m,

—a;ﬂﬁl € (—oo, —2"’1wn) .

PrOOF. The (n+ 1) polynomial 2, (s) is continuous and the following inequalities are satisfied:
z,(0) >0

and
(=1)'zn (=27 'wp) >0, i=1,...,n
Then, 2z,(s) = 0 has one root at least in each of n + 1 intervals (—oo, —2""lw,), (—2" 1w,
—277 200, (=27 2w, =27 3w, - (—dwn, ~2wn), (— 2wy, —wy), and (—wy,, 0). Since z,(s) =0
has n + 1 roots, so there exists just one root in each interval. ]

Theorem 2 mentions that f}(s,wn) can be written as

. An(s +wn)Tn(s)
£2(s,wn) = Tnfl_M

1 (s + a,@)

=1
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The Laplace inversion of (37) gives

nt+l A, ( (n) + wn) Tn (—agn)) -
- x

falzwn) = — e"% T (38)
=1 H (_a;n)+a§n))
i=l
1#)

(n)
Here, all the coefficients of e™® ¥ for § = 1,...,n + 1 are positive. The probability density

function fp(z,w,) is hyperexponential and completely monotone.

3. A GI/M/1 QUEUE
WITH n** GENERATION IPP INPUTS

In this section, we study a GI/M/1 queue with n'" generation IPP input. Suppose that the
interarrival time probability density function is given by f,(z,wy) and further that the service
time distribution is exponential with rate u. For example, in packet communication networks,
a terminal equipment which receives packets can be modelled as a GI/M/1 queue with n*"
generation IPP input. Here, customers correspond to packets. Letting X, denote the number
of customers in the system as seen by the n'® arrival, it is easy to see that the process {X,;
n=1,2,...} is an imbedded Markov chain. The transition probability p;; for this Markov chain
is given by

% x)’ . .
p‘i,‘H—l—j :/ e_ux%fn(win)dmv J =011,---77's (39)
0 !
and - i
0o )
Pio = / Z e'“z%fn(x,wn) dz, 1=0,1.2,.... (40)
0 k=it ;
The stationary probabilities g, £k = 0,1,... can be as the unique solution of
oo
=Y mpk, k=01, .. (41)

Equations (41) reduce to

1+1 k
] e , , =1,2,..., 42
ijvr/ s dz, (42)
and -
> me=1 (43)
k=0

When the mean interarrival time is greater than the mean service time p~!, that is, p < 1, the
stationary probability 7y is geometrically distributed and can be written as

me = (1= Bn)Bk (44)

for some constant 3,. Substitution into (42) leads to

)H—l—k

i [ un (uz
fi Zﬂ/ e#mfn(z,wn)

i=k—1

B o o o (ﬂnﬂx)i+l_k 45
_/0 e he gk liglmﬂl(z,wn)dr (45)

o0
:/ e_“zﬁ,’i—leﬁ"“zfn(x,wn)dx
0
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or

" /Oo e_u(l_ﬁn)xfn(win) dr = f7 ({1 — Bn), wn).
4]

(46)

If the utilization p < 1, then (46) has a unique solution in (0,1). That is because that we have

1= f7(0+,w,),

Frip(l = 8),wn)l oy = pA7 > 1,

f:(Uv wn) > 0!

4
ds

and

d2
@f,‘:(p(l - §),wn) >0, for every s € (0,1).

The 3, is a generalized utilization. In particular, the input process is Poisson; it is satisfied that

B, = p. We have the following theorem for the nt" generation IPP input queue.

THEOREM 3. When we let 8, denote the generalized utilization for the n'* generation input

queue, GI(fn(z,w,))/M(p}/1, n=0,1,..., it is satisfied that
0<Bo(=p)<Br<--- <1
In addition, if it can be written for € > 0 and w that
wp =(14¢€) "W,

then
lim 8, =1.

n—oc

Proor. Let X,, (n=1,2,...) denote nonnegative random variables for the distribution

F(z,wn) = /x fu(t,wn)dt.
0

th

From the definition of the n*"* generation IPP, X, is more variable than X, that is,

/ﬂL&Ma%»M</mu-aﬂmwmoMm

for all @ > 0. In addition, the means are fixed, that is,

AL =EB(X,) = /000(1 — Fo(z,wp))dx = /000(1 — Foi1(z,wns1)) dz = E(Xq41).

Then, for all convex function h, we have [2]
Eh(Xa)) < Elh(Xns1)].
Since ¢7%% (0 < s < 00) is a convex function, we have
E (e7%) < E (%)

That means that
f;(ﬂ(l —8),wn) < f1:+1(/14(1 —8),Wnt1)s

(47)
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for all s € (0,1). Thus, we have
:Bn<,8n+1, n=0,1,,...

Now, we assume that
lim 8, =0/ <1.
n—oc

= (14 2200

2w,

Since in (19) we have

it follows that when ¢ < 1,

From (20), we have

An/27 1y N 1
s/2n 1y + 14+ A, /2n 1y s/2n—ly 4+ 1+ A, /27 Ly

Taking a limit to oo for n, we have

f;:(s’wn) =

ar (8, wn) fr(s,wn).

foo(8,woo) = a5 (8, Weo) Foo (8 Woo)-

Setting s = u(1 — ), we have

B = a5 (u(1 — B),weo)B-
This means that

a5 (1l = B),wos) = 1.
This is contradictory, because the interarrival time is stochastically larger than the off-period
length, that is,

12> f2(8,wee) > an (8, Woo),

for any s > 0.
On the other hand, when ¢ > 1, we have in (20)

1 Qn_l'Y/)\n . .
S//\TL + 2‘”—17/)\11 +1 + S/)\n =+ 2”‘—17/An + lan(svwn)fn(s,wn).

Taking a limit to oo for n,

fa(s:wn) =

fo(s,wee) = 1.
This contradicts 8 < 1. |

Theorem 3 mentions that, as the generation n changes, the waiting time becomes larger stochas-
tically [2]. Even if the utilization p is low enough, the waiting time is tremendously large for
sufficiently large n of the generation. In this situation, suppose that we get a new machine which
can deal with sent packets at the speed twice compared with an older one. However, the waiting
times still remain long. It is meaningless to replace the old machine with the new one. Our
fractal Poisson process offers a serious problem on performance.

4. CONCLUSIONS

We have studied nt" generation interrupted Poisson process. The larger n implies the larger
variation of interarrival times. Taking a limit of n to oo, the interarrival time distribution has a
heavy tail. We have named a fractal Poisson process for it. We have studied a GI/M/1 queue
with the fractal Poisson process input and have shown that the waiting time diverges.
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