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Kitting process in a stochastic assembly system
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In small-lot, multi-product, multi-level assembly systems, kitting (or accumu-
lating) compononts required for assembly plays a crucial role in determining system
performance, especially when the system operates in a stochastic environment. This
paper analyzes the kitting process of a stochastic assembly system, treating it as
an assembly-like queue. If components arrive according to Poisson processes, wê
show that the output stream departing the kitting operation is a Markov renewal
process. The distribution of time between kit completions is also derived. Under
the special condition of identical component arrival streams having the same
Poisson parameter, we show that the output stream of kits approximates a Poisson
process with parameter equal to that of the input streanr. This approximately
decouples assembly from kitting, allowing the asssmbly operation to be analyzed
separately.

Keywords: Kitting, assembly, Markov renewal process, double-ended queue.

l, Introduction

Traditionally, material flow analysis in assembly systems has been based on
the assumption that the system opeïates deterrninistically. In recent years, attention
has been directed to a more realistic analysis of assembly systems, explicitly treating
the stochastic events that influence operations. An important aspect of assembly
operations is kitting (or accumulating) required components and releasing the kit
to initiate assembly. Due to the stochastic nature of cornponent availability,
stock-outs often occur in component inlentories, thereby disrupting kitting and,
consequently, assembly schedules. The goal of this paper is to better understand
the kitting process in a stochastic assembly system, which \rye treat as an
assembly-like queue.

This paper models the kitting process of an assembly system as a Markov
rene\ryal process, assuming that component arrival streams follow independent
Poisson distributions. The assembly system is assumed to have a structure similar
to that described in Hopp and Simon [7] and is shown in figure 1.

P1 and P2 are machines that process components (to prepare them for
assembly) and P3 is the assembly machine. 11 and Iz are the buffers for com-
ponents, Ie is the buffer for kits, and 13 is the buffer for the end-product. Pr and
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Fig. l. Stochastic assembly system.

P2 work independently, withdraw raw materials from their respective pools of
unlimited supply, and deliver processed components to buffers 11 and 12, rêspec-
tively. A component arriving at buffer 11 (I2) is irnmediately kitted with a part
from buffer Iz Gr) if one is available, and a "kit" is said to be composed. If a kit
cannot be composed, the processed part is held in buffer 11 (Ij to await the arrival
of a oomatching" part at buffer 12 ([1). Once composed, a kit matching components
from 11 and 12 is sent immediately to h and the kit is considered to be one arrival at
I0. If the arriving kit finds 16 empty and P3 idle, it is immediately placed in the
assembly machine P3. otherwise, the kit is held in buffer r0.

\tr/e assume that buffers of components have limited capacity and that each
component is processed according to an exponential distribution (before kitting)
to prepare it for assembly. ïVhen P3 completes an assembly, it withdraws a kit
(i.e. two matched components) from h, whenever available, then assembles
another end product and delivers it to buffer 13. If a kit is not available in Is
when P3 completes an assembly, it remains idle until a completed kit arrives.
Demands for end products arrive at Il; each demand is assumed to be for a
lot of unit size and is satisfied immediately if stock is available. Unsatisfled
denrands are backordered, causing the inventory position at 13 to take on
negative values.

Our primary result is to show that the output stream departing the kitting
operation is a Markov renewal process. In the special case in which component
arrival streams have the same Poisson parameter, we are able to show that the
output streatn approximates a Poisson process with parameter the same as that
of the arrival streams,

, Regarding the modus operandi of the assembly system, Harrison [6] showed
that a sufficient condition for stability of operations of such systems is that com-
ponent buffer sizes be finite. For a system with finite buffers, we show that, in the
long run, the probability of observing inventory position j at \ (I2) depends on
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the inventory position 7. Also, considering the special case of component arrival
streams with the same Poisson parameter, we show that the kit completion process
well approximates a Poisson process when the component buffers are large enough,
permitting the kitting and assembly operation to be decoupled so that downstream
operations can be analyzed separately.

Stochastic assembly systems aÍe often studied as assembly-like queues.
Harrison [6] showed that an assembly system with input streams that are indepen-
dent rene\ryal processes and with no inventory capacity limitations for any
stream are unstable. He also showed that, under these conditions, the limiting
distribution of the time that parts wait for assembly converges to a defective
distribution.

Since ive assume that two components are required to compose a kit, the
queues of components form a double-ended queue [5, 8]. A double-ended queue
can be best described by the well known taxi-cab problem where taxis and
passengers form two different queues. A customer waits in its queue and leaves it
as soon as a taxi is available; taxis wait in queue for customers and leave when a
customer is available. The two queues are interdependent and their combination
is known as a double-ended queue where it is known that the related queueing
process is a random walk on {...,-2,-1,0, 1,2,.. .} and is transient or null unless
the queues are bounded. The kitting process under study can be considered as a
double-ended gueue of the type examined by Kashyap and Chaudhury [9]. They
showed that each queue length distribution is independent of occupancy when
arrival rates to the double-ended queue are equal. They also derived the distribu-
tion of waiting times in double-ended queues but made no attempt to analyze its
output process.

Bhat [2] incorporated limited buffer capacities in assembly like queues and
derived expressions for the stationary probability vector of the queue length.
Latouche [10] considered assembly systems with Poisson procurement processes
and exponential processing times and derived conditions required for stability.
Assembly networks that represent one-time production (for example, space-
shuttle, aircraft prototype, etc.) are analyzed by Saboo and Wilhelm t11] and
\Milhelm et al. tl3l.

The output processes from queues operating according to various disciplines
are reviewed by Disney and Konig [a] in detail. They describe the characteristics of
the output processes resulting from GIlDfs, Mf Iuífs, MlGIlllL, MIE*lllL,
MlGIloo, Gf IGI/L/L and GI/MlllL systems.Apparently, the output process
of a double-ended queue has not been studied previously. In this paper we analyze
such a process as a paft of our study of the kitting process.

IVe have organized this paper in five sections. The fundamentals and perti-
nont assumptions are presented in secti on 2. Section 3 relates the formulation of
a Markov renewal process which describes the kitting operation, The model is
evaluated in section 4 by determining the state transition matrix P, the time-
stationary probability vector II, and the distribution of time between kit
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completions, which is shown to be approximately Poisson under certain conditions.
Practical implications of analytical results are described and conclusions are
presented in section 5.

2. Fundamentals

The structure of the assembly system under analysis is presented in figure 1. A
little thought indicates that it is not possible for both buffers 11 and t2 to have
positive stock levels at the same time. An arrival which increases the stock level
of one of the buffers to a positive value creates a "virtual backordero' at the other
buffer. At any time t (t > 0), the inventory positi on " M" (defined as the number
of parts on hand plus on order rninus the number on back order) on one buffer is
associated with inventory position (6 - Mn in the other, and equality holds only
when the inventory position is zero (0) for both buffers 11 and Ir, Th* inventory
positions at 11 and 12 ma! thus be viewed as 'omirror images" of one another, a
special structure which we exploit to analyze the kitting process.

Since the purpose of this paper is to characte rirn the kitting process, \rye
study the stream of arrivals to 16 (i.e., the output of the kitting process) in the
following sections and ignore the process downstream of I0. We present a
thorough analysis of the downstream assembly system in a companion paper
(Som and Wilhelm t12l).

Our model, which is based on the structure described in this section, relies
upon three fundamental assumptions:

(i) Processing times at the part processing machines, P1 and P2, rtÊindependent,
identically distributed, non-negative exponential random variables with rates
p1 and /-r2, f€spectively.

(ii) The capacities of buffers 11 and ï2 are bounded from above by & and K2,
respectively, representing practical limitations on buffer space, and, accord-
ing to Harrison [6], allowing the system to reach a steady state. No capacity
restriction is imposed on 16.

(iii) Pr (Pz) prepares parts exclusively for Ir (IJ. However, when Ir (Iz) is fitted to
capacity Kt (K), additional arrivals are not processed in the system under
analysis (e.9., they may be processed and assembled by a subcontractor).

In the following sections we formulate the model and analyze it as a Markov
renerval process.

3. Formulation of a Markov renewal process

The inventory positions at 11 and 12 change with the arrival and departure of
components to and from the respective buffers. ïVe define the mirror image process
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Fig. 2. Mirror image proce$s and output process.

(X, T) as a marked point process, which characterizes the inventory positions or
states at the arrival and departure epochs. The sample path diagram of the mirror
image process is presented in figure 2.

Thus,

(X , f ) :  {X * ,7 *  i  t ?  €  N } ,

in which,

X*:  { |X* , 'X* I ,
T*: tirne of ruth state change epoch,

'X*: inventory position at buffer 11 at time flr,
tX*: inventory position at buffer T2 at ttrne T*,

Due to the mirror Tnage property of the inventory positions at 11 and 12,
at'any random time T*, tX*: I x* implies 'X* : -'**t or, equivalently, 2X*:
'** implies tX*: *'**. Hence, it is obvious that the Mirror Image Process
may be analyzed by viewing the inventory position just at 11 (or, equivalently,
just at ï2).
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Whenever matching components arc available at buffers 11 and lz, a kit is
composed (instantaneously) and sent to 16. These departure epochs (occurring
simultaneously from both 11 and Ij and the corresponding inventory position at
11 describe another marked point process which we define as the output process.
By observing the inventory at 11, it is apparent that a particular subset of the epochs
{T* : m €. N}, marked by a decrease in the positive inventory position or an increase
in the negative inventory position, constitutes kit completion as well as state change
epochs in the output process.

These output epochs are a sub-sequence of the sequence {T*: ru € N[],
de f l ned  as  r - - { r r r r ?€NU w i t h  0 : r o  l r r l r z l r t
k ,€O,  ro@)-70(r . r )  -1 ,  rn(w)-T*(w) ,  n}_ l ,  in  which k-
mi1{ru € N :n1T,ï=r 1{l'xr_r1>lr4l}(r)} and 11x1(.) is an indicator function.
Define Dn+r: rn+r - Tn àó the tíóe between successive departures, n and n* l.
For r € N, the random variable Dn : O -r IR+ represents the length of the nth
inter-departure interval. Then Tn+r - rn * Dn+t, ru € N, defines the time of the
(n + l)th departure. The set r : {rn : n € N[] defines the output time process.

For each n € N, define the random variable Z, : f) -* E as the inventory posi-
tion at the buffer 11 or the system state of the output proce.ss immediately after the
nth departure epoch rn. The set Z : {Zn: n € N} defines the output state process,
and the joint random variables {Z,rI : {Zn,rn i n € N[] define the output pro-
cess. Here, Dn depends on the present state Zn and the next state Zn+1. However,
given these states, D, is independent of previous Dp and Zp for k - 1,... ,ft - l,
indicating that the output process {Z,r} is a Markov renewal process on the state
space E. Since a Markov rene\ryal process is completely characterized by its semi-
Markov kernel QU,j,r), we study this kernel in the following subsection.

DETERMINATION OF THE SEMr-MARKOV KERNEL g\,j,t)

The semi-Markov kernel of the autput pracess {Z, r} may be expressed
AS

Q(i , j , t )  :  Pr {Zn*r :  j , rn+t  -  rn  í  t lZn:  i } .

For convenience, the semi-Markov kernel is expressed in the Laplace trans-
form domain as L{QU,j dr)} - 8{i, j, dr}.

The Laplace transform of (dldt)Pr{Zn+r : j,rn+L - rn í Í | Zn : i},
expressed as LldP{Z"+l : j,rn+L - rn S Íl Zn: i}), can be shown to have five
different forms, depending upon inventory positions at epochs rn and rn+r. We
describe the five cases below.

Cbse I. The starting (i.e., at ro) inventory position is non-negative and ít does
not Íeach the positive boundary Kl before the time of the next departure (i.e., at
rn+r) '
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C€rtain combinations of i andi define case I:

( r )  0 < i < K r - 1 ,  i - 1 < , 1  1 K r - 2 , a l ' d
( i i )  i : 0 ,  0 < j < & - 2 .

Then,

dP{zna1 :itrn+r - rn1 tlz,: ry :"-!"' '04t)l -i*' we-ht dt. (1)
( / - t + l ) l  r ' -

Since we are looking at two consecutive kit completion epochsn r, alid rn'1, at
which inventory positions at Il are i and j respectively, j - i * 1 components must
have arrived at 11 before any arrival at 12.

\_, In Laplace transform form,

LIdP{Z"+r : j,rn+t - rn 3 tlzn : i}l

The other four cases follow similarly.

Case IL
( i )  - fh+ I  <  i  (  0 ,  -K2+2 < j  <  i *  1 ,  and
( i r )  i : 0 ,  - K 2 + 2 < / < 0 .

L[dP{Zr+l  _ j , rn+r -  rn < Í l  Z":  i } ]

: (u) í+)u'-t{+zl t"t-t 'r -l u'-t4+2. 
(3)

\pz/ \ l . r r  + t tz/  Wt* t tz*sJ

Case III.
a s i s K l - 1 ,  j - K r - 1 .

LldP{Zr+r : K1 - ttrn+r - rn < tlZr: i}l

{ Lr,, \ K, -,| pz_l| pr t-tk. .l  ̂  -'. 
(4):  

\ ; r ,  1  wz*s j  Lpr  * tz*s j

Case IV.
.' 

:;í r2..1 : -:l I, rn +, * rn s t t z. : i'l
: (- pr 

) "'*' I 
p,-ll p' t p'-l *'*'. 

(5)
\p r  +  t tz /  Wr*  s l  Lpr  * t tz*s l
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V.
j : 0 , J : 0 .

LldP{Zr+t :  A,rn+r -  rn S t l  Zn:0}1

_ 2h pz l_p, + tt, 1'- M l A + p ' ? + s l  ' (6)

The interval rn+! - rn includes an initial period which has an exponential
distribution with rate h * pz. Using Bernoulli probabilities nlfur + p) and
pzlfur * ltz) and convolving with the distribution of the remainder of the
interval, wê get the above result.' 

Combining equations (2) through (6), we obtain the semi-Markov kernel
8U, j,t), which is expressed in Laplace transform form and is presented as
equation (7) in table l. The state transition matrix P of the underlying Markov
chain Z erctbedded at time rn is obtained by setting s - 0 in equation (7) and is
presented as equation (8) in table 2. An analysis of the output process {2, r} is
presented in the following section.

4, Analysis

In this section, we analyze the output process {Z, r} deriving the following:

(i) the stationary probability vector tI of the underlying Markov chain Z,
and

(ii) the distribution of time between kit completions.

The vector II indicates the time-stationary probably distribution of the
inventory position at 11, observed at a randomly selected kit completion epoch.

DETERMINATION OF STATIONARY PROBABILITY VECTOR ÏI

Clearly, the output process {2,* : {Zn,rn : n € N} is an irred.ucible,
nonnull, recurrent, and persistent Markov renerfr/al process for Kt,Kz ( m; under
these conditions, it possesses a stationary distribution defined as II [3]. Note that
the process {Z,r} will be recurrent null, if Kt and K2arc infinite. The stationary
probability vector fI of the underlying Markov chain is obtained from the set of
eqïrations expressed in the matrix form

fI - fIP.



P. Som et al.fKittrng process 481

Using equation (la) for P, the balance equations can be expressed for specific states
- K 2 + 1 < j S & - 1 a s

r(0) - r(- l)p(r - r)+ II(0)2u(1 - u) +rI(1)(1 1 à",

i lu) : rr(0) (tlàru+z) + r( t)(tlàru+t) * r(2) (11à"i

+ . . .  +  ( t l à n u  +  1 ) ,  i  -  1 , 2 , . . . , K 2 - 2 ,

rU) - n(0)p(l - fiFi+z) +r(1)p(r -r)(-'r+t) * nQ)p(r -u1?i)

+ . . , +  p ( l  - u ) t I ( i + 1 ) ,  i  -  - 1 , - 2 , . . . , - K z * 2 ,  ( 1 3 )

in which

p _ nl pz, r,t : Ftl0q + p,).

In addition, we have the normalizing expression

i l (K l  -1 )  :pT I (&-2 ) ,

i l(-K2 + 1) - (l ldn?Kz +2),

5-n(;) : l.
?

The solution to equations (9)-(14) can be expressed as

r(0) - ( p -  l ) ( p r  +p2 )
pz(f' - p-K') '

IIU) - uptrl(O), j  :  l r 2 r  " ' r K t  -  1 ,

I Iu) - (1 - f lpinQ), j  - -1,-2,. .,,  -K2+ 1,

(e)

( 10)

( 1  1 )

(12)

(14)

(15)

(16)

(17)

It may be observed that Iï("1'), the stationary probability of positive (negative) stock
in buffer 11 observed at a kit completion time, depends on the stock positi on, j.

DISTRIBUTION OF TIME BETÏVEEN KIT COMPLETIONS, D"

To determine the distribution of time between kit completions, we con-
cefrrtrate on analyzing the output time process r: {rn, r? € N[], which specifies the
arrival stream (of kits) to buffer 16.

Considering the stationary distribution fI of the underlying Markov chain Z
and for Í € R+, the distribution of time between two consecutive kit completions is
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given by

P{rn+t - rn < t} - ÍTQ(i, j,t)U ,

in which u is a column vector with all elements equal to 1
Expressing equation (18) in Laplace transform form we obtain:

LldP(r,+1 - ro 1r)] : nQU, j,ds)U.

(18)

( 1e)

(20)

Substituting the values of fI and QU,j,fu) from equations (15) ro (17) and (7) into
equation (19),

Ltdp(r,+,- rnlr)l : (*) p,r, . 
i, '(,-,10,tr(0)]

+ (  t ,  )
\Pz *  s  /

- r (o)( f f i )

I  K t - z  I

In,o, 
-,-4 uplrr(o).J

It is apparent that if equation (20) is inverted (i.e., to be the time domain), the
distribution of the time between kit completions , Dn+1, would be the weighted
sum of three exponential distributions with rates Fr, Fz and Ft * ltz.

A SPECIAL CASE WITH PT : F2: F

This section specializes the case in which component processing times at
machines P1 and P2 arc independent exponential random variables with the same
rates (i.e., Fr : tte - li,). In practice, this situation may occur when components
are obtained from independent suppliers with identical (and independent) lead
time distributions. Also, the same situation may occur during "in-house" produc-
tion where the machines employed, P1 and P2, &ïE identical (and independent). In
the following sub-sections we show that the distribution of time between kit
conrpletions, Dn, can be approximated by independent and identically distributed
exponential random variables.

APPROXIMATION OF DN BY THE EXPONENTIAL DISTRIBUTION

Making approprtate changes in equations (7) and (S) to accommodate the
special case, the semi-Markov kernel, QU, j,t), Laplace transform form and the
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transition probability matrix P of the underlytng Markov chain Z may be expressed
by equations (21) and (22) which are presented in tables 3 and 4, respectively.

The stationary probabilities of this Markov chain are given by

485

rr(0) :

n(,r): v i  t0.

(23)

(24)

Kr * Kz'

1
Kr + Kz'

These results have striking similarities - but at the same time, important
differences - with those obtained by Bhat [1] for the limiting distribution of the
population in the finite buffer of a double-ended queue.

The distribution of tirre between kit completions, D* can be expressed in
Laplace transform form as

LldP(r , - rn-r  í  l ) l  :nQU,i ,ds)U, (2s)

in which U is a column vector with each element equal to 1. Substituting equations
Ql), (22), Q3) and Q4), equation (25) specializes to

L l d P ( r , - r n - r < r ) l  : ( - . P .  
\ l  /  2  \ /  ' s  \ l

'J  \p+r lL ' -( , f f iJ( .4ïJ l  Q6)

Clearly, for large values of K1 * Kr, the distribution of time between kit
completions, D* is approximately exponential with rate pr. The value of Kt * Kz
necessary to allow this approximation can be determined as a function of the
degree of approximation desired. The e-approximate distribution of Dn is

TIQU,I,ds) U - LldP(r"-rn-r S /)l --
Í r t s '

(27)

which is the Laplace transform of an exponential distribution with rate p.

APPROXTMATE INDEPENDENCE OF DN

In this section, we discuss the independence of m consecutive random
variables Dr, lt: 1,2,. . . , m. We show that for sufficiently large Kt * K2, the m
cogsecutive random variables Dn, n: I,2,.,. rm, become independent to within
an error of e.

This independence holds if the joint distribution of the m consecutive random
variables Dn equals the product of the m matginal distributions of the random
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variables Dn. Statistical independence should hold for n -+ oo, but this limiting case
is not easily evaluated.

To establish the approximation, we must show (vniting Q(i, j,ds) = €(ds)),

n0(asr)0(asz)A(dr3) . . . Q@s^)u
: {Il0(drr)u}{r9(drr)u}{ri0(dr3)u}... {IIQ(ds,)u}. (28)

The left hand side of equation (28) is

n9(dsr)0(dsz)0(dss) . . . Q@s^)U

- f r l  t ,  \ f  2 1  ,  i ( - : - \= il \r, + r, ) lt 
- r, + xrl+ x, + rgfï r, * r,,

x vFi".(;r'+ +(i,)'. (;),fr(#)
L \ . /

/ l  \ 3  / l  \ r '  -  / l  \& l. (.;, * * (;, .,(;, l
=r(,f;)-#",(gffil g(É)
" f,(+,f+ + (;,i.(;),g(#)

L \ . , /

/ t  \ 3  r r  t& t \* \ t ' )+ . . .+u \2" )  l )  
(2e)

By making K1 1 K2 suffciently large, the right hand side of equation (29) can
be approximatedby [I!=rful(f, + ri)), the product of the Laplace transform of the
m marytrnal distributions of the random variables Dn for n € N, Hence, equation
(28) holds for sufrciently large K1 * Kz, indicating that the random variables Dn,
n: 1,. , . ,/nt aÍe independent. The required value of & * Kz depends upon the
degree of approximation desired.

The implications of equations (27) and (29) lead to the following theorem.

THEOREM 1

' 
The arrival process of kits at bufler Ie can be approximated by a Poisson

process witl rate p, the degree of approximation depending on the value of
&* Kl tr
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DEGREE OF APPROXIMATION: AN EXAMPLE
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To illustrate the relationship between the degree of approximation of the
arrival rate at 16 and the buffer capacities & (ft), we consider the following
example with equal buffer capacities Kr : Kz : K and equal Poisson arrival rates
pl : pe - p at buffers 11 and 12, respectively.

Using equation (26), the density function of the time between kit completions,
D, may be expressed in Laplace transform form as:

f ( " \ : (  p  \ - 1 í - r ,  \ /  s  \J  \ - '  
\p+s/  r  \p+r- l  ( .2 , * ,1 '  (30)

Invertiug to the time domain, the density function of D, is obtained as

tt. , 1.u
f(t) - 11s-u'+r*e-w -ï"-"u', t > 0. (31)

We define an error term e(t), expressed as the absolute difference between the
exponential density and tle actual density of Dn:

e(fl - ft1ze-zt't 
- e-tt''|. Qz)

Using equation (31), graphs of/(l) are plotted for p - I and K - 2, 5 and l0
against time , > 0 in figure 3. It is observed from flgure 3 that the density of Dn
rapidly approaches an exponential density as K increases. The graph of e(t) against
K, plotted for p - I and t - 0.2, is presented in figure 4, which also indicates that

\* the error term e(l) approaches zero rapidly as K increases.
Using equation (32), it is easily seen that for Vt,/ )0,126-2N -e-p'l S l.

Hence for a given e > 0 aud for any arrival rate /r, we can find a K such that

Therefore, the inventory capacity required to effect the desired approxima-
tion can be easily determined knowing the component arrival rate.

5, Discussion and conclusion

We have proven conditions for which the inter-arrival times of kits arriving to
assembly are approximately independent and identically distributed exponential
random variables. If components arrive at 11 and 12 according to independent
and identical Poisson affival streams and if Kl * Kz is sufficiently large, the output

f ts '
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Fig. 3. Density comparison.

2 4 6 8 1 2 1 6 2 0 2 4 3 0 3 6 4 0
Capacity K

Fig. 4. Absolute deviation vs. bigger capacity.
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stream from kitting approximates a Poisson process. The practical importance of
this result is that the assembly process downstream of the kitting operation can
be decoupled from kitting for further analysis. The required conditions (for
decoupling) are not restrictive and ffiày, in fact, hold in actual applications.

It is also interesting to note that the long-terrr probability distribution of
inventory positionT at 11 (I), observed at kit completion epochs, depends on the
inventory position j. If arrival rates to 11 and 12 àïe equal (i.e., Fr : F2: p,), all
the inventory positions except zero become equally likely with probability that is
inversely proportional to the total inventory capacity (Kr + Kz).The incidence of
observing both buffers empty is twice as likely as observing a positive (negative)
stock position at either of the buffers.

Harrison [6J showed that a sufficient condition for an assembly-like queue to
reach steady state is that buffer capacrties must be bounded from above. We have
shown that the total buffer capacity, Kt * K2, trntst be "sufficiently large" to obtain
a Poisson approximation of the output stream of kits. However, from the example
in secti on 4, we flnd that Kr + K2 need not be impractically large to achieve an
approximate Poisson output stream; the value of Kl + K2 being dependent upon
the degree of approximation desired. Since the arrival process at assembly machine
P3 may be approximated by a Poisson distribution, the downstream assembly
system can be approximated by the much studied M lcll queue.
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