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Abstract

This paper discusses analytic solution methods for queueing models with multiple wait-
ing lines. The methods are briefly illustrated, using key models like the 2 × 2 switch, the
shortest queue and the cyclic polling system.

AMS subject classification: 60K25, 90B22.
Keywords and phrases: multiple waiting lines, analytic methods.

1 Introduction

This paper reviews analytic solution methods for queueing models with multiple waiting lines.
The models under consideration represent isolated service centers; we do not consider networks
of queues. We basically distinguish between two classes of models.
Class I: Customers arrive at a service center with several queues, each with one server. The
customers choose a server according to some mechanism (e.g., shortest queue or shortest work-
load) or divide their work among several servers (e.g., fork-join).
Class II: Customers of several types arrive at a service center with one or more servers. The
server or servers choose a customer for service according to some static (e.g., preemptive re-
sume) or dynamic (e.g., polling) priority rule.
While not all queueing models with multiple waiting lines are naturally classified as belonging
to Class I (passive servers; customers choose a queue) or Class II (active servers; servers choose
a customer), this classification does help to bring some structure in the large family of queueing
models with multiple waiting lines.

Our aim in this paper is to give the reader insight into which methods are available for the
analysis of queueing models with multiple waiting lines. These queueing models often give
rise to Markov processes with an N -dimensional state space that is the set of lattice points with
integer-valued, nonnegative coordinates. The methods for solving the equilibrium equations of
such Markov processes may also be divided into two groups.
Complex-function methods: These methods aim at solving the functional equation for the gen-
erating function of the equilibrium distribution.
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Direct methods: Their aim is to solve directly (i.e., without resorting to transforms) the equilib-
rium equations.
We emphasize the main ideas behind the methods, and their strengths and limitations. We also
point out some relations between the various methods. While our orientation is methodological,
we do pay much attention to a few particular queueing models. These are relatively simple but
important models, that are used as vehicle to illustrate and compare various methods.

We already mentioned that not all queueing models with multiple waiting lines will fit into
our classification. One of these are the interesting queueing models with simultaneous resource
possession. For these models an important new product-form result has been established by
Berezner et al. [16] which shows that at least in some simple situations they have an exact
explicit solution.

The paper is organized in the following way. In Section 2 we discuss three direct methods
(the compensation method, the precedence-relation method and the power-series algorithm) and
two methods from complex-function theory (the boundary value method and the uniformization
method). They are discussed for two basic models of Class I: the 2 × 2 switch and the short-
est queue. In Section 3 we consider models of Class II. Some of the above-mentioned meth-
ods also apply to those models; we also discuss some other methods from complex-function
theory. Most analytically tractable queueing models are special examples of particular, often
two-dimensional, Markov processes or random walks. Section 4 considers a few classes of
two-dimensional random walks that allow an exact analysis.

2 Customers choose a queue

2.1 Introduction

In this section we consider two basic queueing models where arriving customers choose a wait-
ing line, viz. the 2 × 2 switch and the shortest queue model. We expose and compare several
techniques that have been used to analyse these models. We end the section with a brief dis-
cussion of the fork-join queue, a queueing model in which each job consists of various subjobs
who each choose a different queue.

2.2 The 2 × 2 switch

Among the queueing models with multiple waiting lines, the 2 × 2 switch may be the simplest
non-trivial model. It is therefore most suitable for exposing and comparing various analytic
solution techniques. In the present subsection we shall discuss three such techniques, viz.:
(i) the compensation method, (i i) the boundary value method, and (i i i) the uniformization
method. But first we describe the model.

Switches are important elements of communication networks. A 2 × 2 clocked buffered
switch is a switch with 2 input and 2 output ports. Such a switch is modeled as a discrete-time
queueing system with 2 parallel servers and 2 types of arriving jobs (see Figure 1). The number
of arriving jobs of type i in a time unit (= clock cycle) is one with probability ri and zero with
probability 1 − ri , i = 1, 2. Jobs always arrive at the beginning of a time unit and once a job of
type i has arrived, it joins the queue at server j with probability ti, j , ti, j > 0 for j = 1, 2 and
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ti,1 + ti,2 = 1. Jobs that have arrived at the beginning of a time unit are immediately candidates
for service. A server serves exactly one job per time unit, if at least one is present. For each
server, the average number of arriving jobs per time unit is assumed to be less than one, i.e.

r1t1, j + r2t2, j < 1, j = 1, 2. (2.1)

This assumption guarantees the ergodicity of the system. By (2.1), the case r1 = r2 = 1 must
be excluded.
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Figure 1: The 2 × 2 switch.

We are interested in the two-dimensional queue-length process, which is a Markov chain.
The service discipline is irrelevant; we may assume it to be First-Come-First-Served. The
Markov chain has states (m, n), where m and n denote the numbers of waiting jobs at server 1
and server 2 at the beginning of a time unit. For a state (m, n) in the interior of the state space,
we only have one-step transitions to the neighbouring states (m + m ′, n + n′) with m ′, n′ ∈
{−1, 0, 1} and m ′ + n′ ≤ 0. The corresponding one-step transition probabilities qm′,n′ are equal
to:

q1,−1 = r1r2t1,1t2,1, q0,0 = r1r2(t1,1t2,2 + t1,2t2,1),
q0,−1 = r1(1 − r2)t1,1 + r2(1 − r1)t2,1, q−1,1 = r1r2t1,2t2,2,
q−1,0 = r1(1 − r2)t1,2 + r2(1 − r1)t2,2, q−1,−1 = (1 − r1)(1 − r2).

Each transition probability for the states at the boundaries can be written as a sum of the proba-
bilities qm′,n′. In Figure 2 all one-step transition probabilities, except the ones for the transitions
from a state to itself, are illustrated.

The bivariate queue-length distribution {pm,n} is characterized as the unique non-negative
normalized solution of the equilibrium equations:

qpm,n = q1,−1 pm−1,n+1 + q−1,1 pm+1,n−1 + q0,−1 pm,n+1

+ q−1,0 pm+1,n + q−1,−1 pm+1,n+1, m > 0, n > 0, (2.2)

(q − q0,−1)pm,0 = q1,−1 pm−1,1 + q1,−1 pm−1,0 + q0,−1 pm,1

+ (q−1,0 + q−1,−1)pm+1,0 + q−1,−1 pm+1,1, m > 0, n = 0, (2.3)

(q − q−1,0)p0,n = q−1,1 p1,n−1 + q−1,1 p0,n−1 + q−1,0 p1,n

+ (q0,−1 + q−1,−1)p0,n+1 + q−1,−1 p1,n+1, m = 0, n > 0, (2.4)

(q1,−1 + q−1,1)p0,0 = (q−1,0 + q−1,−1)p1,0 + (q0,−1 + q−1,−1)p0,1

+ q−1,−1 p1,1, m = 0, n = 0, (2.5)
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Figure 2: The one-step transition probabilities.

where
q := q1,−1 + q−1,1 + q0,−1 + q−1,0 + q−1,−1. (2.6)

We now describe three methods to solve these equations.

Method 1: The compensation method
This method yields an explicit expression, without transforms, for the equilibrium distribution.
It is not only successful for this model, but in [9] it has been shown to work for the class
of two-dimensional nearest-neighbor random walks (i.e., with unit steps only) for which in
the interior of the state space no one-step transitions are allowed to the North, North-East
and East, and also for some special cases not contained in this class (see [8, 6]). Clearly, the
present random walk is an element in this class (see Figure 2). It is a special one, because the
transition probabilities on the boundaries are ‘projections’ of the transition probabilities in the
interior states. This property leads to several simplifications in the analysis. But the essential
characteristics in the analysis are still maintained and therefore the problem is most suitable to
demonstrate the compensation method.

The compensation method attempts to solve the equilibrium equations by a linear combi-
nation of product forms. This is achieved by first characterizing a sufficiently rich basis of
product-form solutions satisfying the equilibrium equations in the interior of the state space.
Subsequently this basis is used to construct a linear combination that also satisfies the equa-
tions for the boundary states. A similar method is of course well known in the theory of dif-
ferential and difference equations (cf. the separation of variables method [73]) where the basis
usually contains countably many elements, all of which are used to construct the solution. In
the present model, however, the basis contains uncountably many elements. Therefore a proce-
dure is needed to select the appropriate elements. This procedure is based on a compensation
argument (which explains the name of the method): after introducing the first term, countably
many terms are subsequently added so as to alternatingly compensate for the error on one of
the two boundaries. The main steps in the analysis will be briefly outlined below (see [28] for
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more details on the 2 × 2 switch case).

Step 1: Characterize the set of product forms αmβn satisfying the equilibrium equations in the
interior of the state space, i.e., the equations (2.2). Substitution of the product form into (2.2)
and division by common powers yields a quadratic equation in α and β:

qαβ = q1,−1β
2 + q−1,1α

2 + q0,−1αβ
2 + q−1,0α

2β + q−1,−1α
2β2 . (2.7)

Because later in the analysis the solution has to be normalized, the factors α and β are required
to satisfy 0 < |α| < 1 and 0 < |β| < 1. The points on the curve (2.7) inside this region
characterize a continuum of product forms satisfying the inner equations (see Figure 3).

1 α

1

β

••

•

α 0α 1

β0

β1

Figure 3: Curve (2.7) in the positive quadrant, generating the sequence α0, β0, α1, β1, . . .

Step 2: Construct a linear combination of elements in this rich basis, which is a formal solution
to the equilibrium equations. Here the word formal is used to indicate that (at this stage) we
do not bother about the convergence of the solution. This aspect will be taken care of later.
The construction of a linear combination starts with a suitable initial term. This is a basis
solution αm

0 β
n
0 that also satisfies the equilibrium equations on one of the two boundaries, i.e.,

the equations (2.3) or (2.4). Later we will explain why a special starting solution is needed. In
the general case in [9] one finds at least one and at most four initial terms. Here there exist two
initial terms: one for the horizontal boundary and another for the vertical boundary. Both terms
can be explicitly calculated. The first one is given by

(α0, β0) = (
q1,−1

q−1,1 + q−1,0 + q−1,−1
,

q−1,1α
2
0

q1,−1 + q0,−1α0 + q−1,−1α
2
0

) ; (2.8)

the term (α̃0, β̃0) for the vertical boundary is symmetrical. Let us consider the initial term
c0α

m
0 β

n
0 for the horizontal boundary, where c0 is a (arbitrary) nonnull constant. This term

violates the equilibrium equations (2.4) on the vertical boundary. To compensate for this error
we add a term d1α

mβn with α and β satisfying (2.7) such that the sum of the two terms satisfies
the equilibrium equations in all states on the vertical boundary. This immediately implies that
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we are forced to take β = β0 and thus α has to be the companion root of α0 of Equation (2.7)
with β = β0. This companion root is denoted by α1. Substitution of the sum of the two terms
into (2.3) and division by common powers then yields a single equation for d1, the solution of
which is given by

d1 = −1 − α1

1 − α0
c0. (2.9)

The sum c0α
m
0 β

n
0 + d1α

m
1 β

n
0 satisfies the equilibrium equations for the interior and the vertical

boundary. However, the new term d1α
m
1 β

n
0 violates the horizontal boundary. To compensate

for this error we add again a term c1α
mβn . This step is symmetrical to the one for the vertical

boundary: we now have to take α = α1 and β = β1 where β1 is the companion root of β0 of
Equation (2.7) with α = α1. For the coefficient c1 we obtain, similar to (2.9),

c1 = −1 − β1

1 − β0
d1. (2.10)

But the third term violates the vertical boundary conditions, so we add again a compensation
term and so on. We keep on adding terms so as to alternatingly satisfy the two boundary
conditions. This results in the following infinite sum of terms:

xm,n = ︸ ︷︷ ︸
V

H︷ ︸︸ ︷
c0α

m
0 β

n
0 +

H︷ ︸︸ ︷
d1α

m
1 β

n
0 + ︸ ︷︷ ︸

V

c1α
m
1 β

n
1 +

H︷ ︸︸ ︷
d2α

m
2 β

n
1 + c2α

m
2 β

n
2 + · · · (2.11)

The construction is such that each term in (2.11) satisfies the equilibrium equations in the inte-
rior of the state space, the sum of two terms with the same α satisfies the horizontal boundary
conditions (H ) and the sum of two terms with the same β satisfies the vertical boundary condi-
tions (V ). Hence xm,n satisfies all equilibrium equations. The coefficients ci and di in the sum
(2.11) satisfy (cf. (2.9)–(2.10))

di+1 = −1 − αi+1

1 − αi
ci , ci+1 = −1 − βi+1

1 − βi
di+1, i = 0, 1, 2, . . . ,

from which we immediately obtain

di+1 = −(1 − αi+1)(1 − βi )

(1 − α0)(1 − β0)
c0, ci+1 = (1 − βi+1)(1 − αi+1)

(1 − β0)(1 − α0)
c0.

Hence, by choosing c0 = (1 − α0)(1 − β0), we get simple expressions for the coefficients
ci and di , resulting in the following elegant expression for xm,n as an alternating sum of two-
dimensional geometric distributions:

xm,n =
∞∑

i=0

(1 − βi )β
n
i [(1 − αi )α

m
i − (1 − αi+1)α

m
i+1]. (2.12)

This completes the construction of the formal solution xm,n. In the same way we can construct a
formal solution x̃m,n by starting with the basis solution (α̃0, β̃0) satisfying the vertical boundary
conditions. In (2.12) above we then have to replace αi by α̃i and βi by β̃i ; in the completely
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symmetric case these equal βi and αi , respectively.

Step 3: Prove that the two formal solutions converge. In the general case in [9] it is shown that
the formal solutions absolutely converge in all states, except in a (possibly empty) neighbor-
hood of the origin. It is important to note that the requirement of convergence of the formal
solutions is responsible for the exclusion of one-step transitions to the North, North-East and
East and the need of suitable initial terms. In the present model x(m, n) and x̃(m, n) converge
everywhere, except in (0, 0). Hence they satisfy the equilibrium equations in all states, except
in (0, 0), (1, 0) and (0, 1).

Step 4: Determine the equilibrium probabilities by taking the linear combination p(m, n) =
cx(m, n)+ c̃x̃(m, n) in all states, except in the origin. The unknowns p(0, 0), c and c̃ are then
determined from the normalization equation and the equilibrium equations in (1, 0) and (0, 1).
Here we may omit the one in (0, 0), because the equilibrium equations are dependent. In the
present model the coefficients can be solved explicitly, namely c = c̃ = 1. So the equilibrium
probabilities can be simply expressed as:

pm,n = xm,n + x̃m,n, m ≥ 0, n ≥ 0,m + n > 0. (2.13)

Clearly, from this result we can derive similar expressions for performance characteristics such
as, e.g., the mean queue lengths and the correlation between the queue lengths.

The compensation method clearly has its limitations. The most important one is that tran-
sitions to the North, North-East and East are forbidden in the case of two-dimensional nearest-
neighbor random walks. The conditions become even more severe for the extension to higher
dimensional random walks (see [81]). The strong feature of the method, however, is that it
helps in finding such conditions for getting explicit solutions and that it provides constructive
methods for obtaining the explicit solutions in case the conditions are satisfied.

Method 2: The boundary value method
Complex-function methods aim at solving the equilibrium equations by introducing the gen-
erating function of the equilibrium distribution and studying the functional equations that it
should satisfy. Usually, those functional equations present formidable difficulties. For a class
of two-dimensional random walks and queueing problems, however, techniques have been de-
veloped which reduce those functional equations to standard Riemann(-Hilbert) boundary value
problems and to singular integral equations for complex-valued functions. The general theory is
exposed in the monograph [47] and surveyed in [38]. Jaffe [87] has applied this ‘boundary value
method’ to the (symmetric) 2×2 clocked buffered switch. Below we outline his approach; later
in this section we point out some differences and similarities with the compensation method. In
the symmetric case we write r1 = r2 = p, 0 < p < 1, while t1,1 = t1,2 = t2,1 = t2,2 = 1

2 .
Step 1: The set-up. We introduce the generating function

f (x, y) :=
∞∑

m=0

∞∑
n=0

pm,nxm yn, |x | ≤ 1, |y| ≤ 1. (2.14)

It follows from (2.2)-(2.5) that f (x, y) satisfies the following functional equation: For |x | ≤ 1,
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|y| ≤ 1,

(xy − r(x, y)) f (x, y) = (y − 1)r(x, 0) f (x, 0)+ (x − 1)r(0, y) f (0, y)

+ (x − 1)(y − 1)r(0, 0) f (0, 0), (2.15)

where
r(x, y) := (1 − p + p

2
(x + y))2. (2.16)

The distribution {pm,n} is completely determined by (2.15), the normalizing condition f (1, 1) =
1, and the fact that the probability generating function f (x, y) should be regular for |x | < 1,
continuous for |x | ≤ 1 for all |y| ≤ 1, and similarly with x and y interchanged. In the sequel,
we denote the interior of these unit circles by D, and their closure by D̄.

Step 2: Analysis of ‘the kernel’. The boundedness of f (x, y) implies that the right-hand side of
(2.15) should be zero for all those (x, y) on the complex curve S = {(x, y) : xy − r(x, y) = 0},
that lie in D̄2. These zeros of the kernel xy − r(x, y) offer a large choice. It suffices to choose
an appropriate set; by analytic continuation, other zero-tuples of the kernel may be constructed.
In this symmetric case, it is natural to consider those (x, y) on S with y = x̄ . This is an ellipse
E = {x : |x |2 = r(x, x̄), x ∈ D̄}.

Step 3: Formulation of a boundary value problem. For the present example this proceeds as
follows. Introduce for |x | ≤ 1, |x | �= 1,

g(x) := r(x, 0) f (x, 0)

x − 1
+ 1

2
r(0, 0) f (0, 0) = r(0, x) f (0, x)

x − 1
+ 1

2
r(0, 0) f (0, 0). (2.17)

Then the boundedness of f (x, y) in D̄2, combined with the fact that g(·) has a simple pole at
1, implies that

g(x)+ g(x̄) = 2Re g(x) = 0, x ∈ E\{1}, (2.18)

lim
x→1

(x − 1)g(x) = 1 − p. (2.19)

We now have a boundary value problem: Determine a function g(x) that is analytic inside the
ellipse E , that has a simple pole at 1, and that satisfies (2.18) on the ellipse (on the boundary).
Let φ, with inverse ψ , be the conformal mapping of the unit disk onto the region bounded by E ,
with normalization conditions φ(0) = p/(1+ p), φ(1) = 1. Define h(w) := g(φ(w)). We then
obtain a relatively simple ‘Riemann-Hilbert boundary value problem with a pole’, cf. Section
I.3.3 of [47], for h(.) on the unit circle D (actually, it is a Dirichlet problem with a pole):

Re h(w) = 0, w ∈ D\{1}, (2.20)

lim
w→1

(w − 1)h(w) = 1 − p

φ′(1)
, (2.21)

with h(.) analytic on D, continuous on D̄\{1}. The solution of this boundary value problem is

h(w) = 1

2

1 − p

φ′(1)
w + 1

w − 1
, w ∈ D, (2.22)
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which determines g(x) = h(ψ(x))= 1
2

1−p
φ′(1)

ψ(x)+1
ψ(x)−1 inside the ellipse E ; the conformal mapping

ψ(x) is explicitly expressed in the Jacobi elliptic (sin am or sn) function. Substitution in (2.15)
and analytic continuation finally yields f (x, y), for |x | ≤ 1, |y| ≤ 1:

f (x, y) = (1 − p)ψ ′(1) (x − 1)(y − 1)

(ψ(x)− 1)(ψ(y)− 1)

ψ(x)ψ(y)− 1

xy − r(x, y)
. (2.23)

Remark 2.1 The boundary value method may also be applied to the asymmetric 2 × 2 clocked
buffered switch. In fact, it can even be applied to a much more general class of two-dimensional
random walks and queueing models; see Subsection 4.3.

Method 3: The uniformization method
The ‘uniformization method’ is a complex-function method that has been applied by Kingman
[91] and Flatto and McKean [68] to the symmetric shortest queue, and by Jaffe [87] to the
symmetric 2 × 2 clocked buffered switch. It has been applied by Cohen to both the symmet-
ric [43] and asymmetric [44] 2 × 2 clocked buffered switch and for the symmetric [42] and
asymmetric [45] shortest queue. The global idea of the uniformization method is as follows.
Firstly, as in the above-described boundary value method, the generating function f (x, y) of
the two-dimensional equilibrium distribution is introduced, and the equilibrium equations for
the distribution lead to a functional equation for f (x, y). The relatively simple form of the
kernel K (x, y) (=xy − r(x, y) in the case of the 2 × 2 switch) allows the following approach.
K (x, y) = 0 defines an algebraic curve, which can be uniformized in a convenient way. In-
troduce a uniformizing variable p, writing x = x(p) and y = y(p). Consider f (x(p), 0) and
f (0, y(p)). They are shown to be analytic functions of p in certain p-regions; in addition,
for all p with |x(p)| ≤ 1, |y(p)| ≤ 1, for which K (x(p), y(p)) = 0, the boundedness of
f (x(p), y(p)) results in a relation between f (x(p), 0) and f (0, y(p)). This relation is used
to continue f (x(p), 0) and f (0, y(p)) meromorphically into the plane 0 < |p| < ∞. For the
2×2 switch as well as the shortest queue, the generating functions f (x, 0) and f (0, y) turn out
to be meromorphic, i.e., all their singularities are isolated poles. Starting with a certain pole,
one may find another pole that is linked to it via the fact that together they make the kernel zero,
etc., ad infinitum (in much the same way as, in the compensation method, each boundary con-
dition gives rise to yet another product-form term in an infinite sum; the reader will realize that
taking generating functions of xm,n in (2.12) results in terms 1

1−αi x
1

1−βi y , with poles x = 1/αi ,
y = 1/βi ).

We discuss the determination of the poles, and also the zeros, in some more detail for the
case of the symmetric 2 × 2 clocked buffered switch.

Step 1: The poles. As observed above, for all those zero-tuples (x, y) of the kernel xy − r(x, y)
that lie inside D̄2, we should have

g(x)+ g(y) = r(x, 0) f (x, 0)

x − 1
+ r(0, y) f (0, y)

1 − y
+ r(0, 0) f (0, 0) = 0. (2.24)

Since xy − r(x, y) is a biquadratic form in x and y, it is easily seen that it has, for each fixed
x , two zeros y1(x) and y2(x) with the property that |y1(x)| < |x | < |y2(x)| for |x | ≥ 1,
x �= 1; analogously for x1(y) and x2(y). Cohen [43] equates −r(x, 0) f (x, 0)/(x − 1) to
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r(0, y2(x)) f (0, y2(x))/(1−y2(x))+r(0, 0) f (0, 0), via (2.24), and uses this to continue f (x, 0)
analytically outside the unit circle; similarly for f (0, y). The only points where these functions
are not analytic are the simple poles y+

n respectively x+
n , n = 1, 2, . . . . With x+

0 = y+
0 := 1

(remember that g(x) has a simple pole in x = 1!), we have y+
1 := y2(x

+
0 ) = (2 − p)2/p2,

y+
n := y2(x

+
n−1) = x+

n = x2(y
+
n−1), n = 1, 2, . . . . Note that y+

n = x+
n due to the complete

symmetry of the model under consideration.

Step 2: The zeros. After having thus shown that f (x, 0) has a unique analytic continuation in
|x | ≥ 1, except for x = x+

n , n = 1, 2, . . . , where it has simple poles, Cohen [43] also determines
all zeros of f (x, 0) (this is a rare case in which all zeros can be determined explicitly). He
observes that r(x, 0) has only one zero x = x−

0 = 2 − 2/a, and this zero has multiplicity
two. Introducing y−

1 := y2(x
−
0 ), x−

n = x2(y
−
n−1) = y−

n = y2(x
−
n−1), n = 1, 2, . . . , it follows

from g(x) = −g(y2(x)) and g(y) = −g(x2(y)) that f (x, 0) (and, symmetrically, f (0, x)) has
zeros of multiplicity two at x = x−

2n, n = 1, 2, . . . (and r(x,0) f (x,0)
1−x + r(0, 0) f (0, 0) has zeros

of multiplicity two at x = x−
2n−1, n = 1, 2, . . . ). The zeros and poles do not have a finite

accumulation point. It is shown that f (x, 0) is a meromorphic function, that is given by:

f (x, 0) = 1 − p

(1 − p/2)2

∏∞
n=1(1 − 1

x+
n
)

∏∞
n=1(1 − x

x+
n
)

∏∞
n=1(1 − x

x−
2n
)2

∏∞
n=1(1 − 1

x−
2n
)2
. (2.25)

Finally, an expression for f (x, y) follows from (2.15). Cohen [43] shows that it is the unique
solution.

Some relations between the above-mentioned methods are indicated in [28]. Below we sum-
marize them. From an analytic point of view, both function-theoretic methods are for the
present model of similar complexity (compared with the shortest queue problem and similar
two-dimensional problems, one might say: of similar simplicity). They lead to different repre-
sentations of the two-dimensional queue-length generating function. From a numerical point of
view these representations can be exploited to obtain, e.g., queue length moments; the explicit
representations in (2.25) and the one obtained by the compensation method are very suitable for
numerical calculations.

It is interesting to compare the compact expression (2.23) for f (x, y) at y = 0, as supplied
by the boundary value method, with the infinite-product expression in (2.25). In the boundary
value method, g(x) has poles at the zeros of ψ(x) − 1 = 0. The normalization condition
φ(1) = 1 for the conformal mapping implies ψ(1) = 1, so that x +

0 = 1 is again found to be
a pole of g(·). The periodic nature of the Jacobian elliptic function ψ(.) subsequently leads to
(again) the sequence of poles x+

1 , x+
2 , . . . .

Let us also compare (2.25) with the expressions (2.12) and (2.13) as obtained by the compen-
sation method. In the completely symmetric case, x̃m,n is obtained from xm,n by interchanging
αi and βi . Taking its generating function yields

f (x, y) = p0,0 +
∞∑

i=0

1 − βi

1 − βi y
[(1 − αi )αi x

1 − αi x
− (1 − αi+1)αi+1x

1 − αi+1x
− (αi − αi+1)βi y]

+
∞∑

i=0

1 − βi

1 − βi x
[(1 − αi )αi y

1 − αi y
− (1 − αi+1)αi+1y

1 − αi+1y
− (αi − αi+1)βi x]. (2.26)
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Observe that this generating function is a meromorphic function in x for all y and also in
y for all x , with simple poles at 1/αi and at 1/βi , i = 0, 1, .... It can be verified that the
sequence {1/α0, 1/β0, 1/α1, 1/β1, ...} corresponds to the sequence {x+

1 , x+
2 , . . . }. Finding, in

the compensation method, pairs (αi , βi ) that satisfy (2.2) (i.e., finding terms αm
i β

n
i that satisfy

the equilibrium equations in the interior of the state space) corresponds to finding pairs (x, y)
that satisfy xy − r(x, y) = 0; and for such pairs, we have (x, y) = ( 1

αi
, 1
βi
). Similarly, trying

to satisfy the relation g(x)+ g(y(x)) = 0 for zero-tuples of the kernel corresponds to trying to
satisfy equilibrium equations on the boundaries as well as in the interior. In the compensation
method each time a new term is added, to compensate an error on one of the boundaries; in the
function-theoretic method based on meromorphic functions, this is translated into adding a new
pole x+

n to compensate a pole x+
n−1 in g(x)+ g(y(x)) (or g(x(y))+ g(y)).

2.3 The shortest queue

One of the most important multiserver models is the shortest queue. In this model there are two
or more parallel servers, each with their own queue. Customers arrive according to a Poisson
process. An arriving customer chooses the shortest queue. The service times are exponentially
distributed. Many solution techniques have been developed and applied to this problem. In fact,
the three methods discussed in the previous subsection also work for the shortest queue with
two servers. For an application of the first method we refer to [7, 8]; for the second method to
Fayolle and Iasnogorodski [62, 86] (who, in their respective PhD theses, reduce the problem to
a generalized Riemann-Hilbert problem) and to [47]; and for the third one to [91, 68, 42, 45]. In
the last two papers it is shown that the bivariate queue-length generating function is meromor-
phic in each of its variables, and the zeros and poles of the bivariate queue-length generating
function (GF) are determined, yielding a relatively simple expression for this GF. But these
methods only work for two queues. In this section we discuss two other methods, viz.: (i) the
precedence relation method and (i i) the power-series algorithm (PSA). The strength of these
methods is that they are not restricted to two queues, but apply equally well to more than two
queues. A weak point, however, is that method (i) produces no exact results, but bounds, and
that the theoretical foundation of method (i i) is still incomplete.

Method 1: The precedence relation method
This method has been developed in [82, 83]. It is a systematic approach to the construction of
bounds for the average cost in Markov chains. In particular, the method is useful for generating
bounds for relevant performance characteristics in Markovian systems. Usually, these char-
acteristics can be expressed as the average cost for some appropriately chosen cost function.
Below we explain how the method leads to bounds for the mean sojourn time in the shortest
queue problem. To keep the presentation simple we consider the case of two identical servers.

The shortest queue model can be represented by a continuous-time Markov process with
states m̄ = (m1,m2) where m1 and m2 are the length of the shortest and longest queue, respec-
tively (so m1 ≤ m2). If we take as cost function the total number of customers in the system, so
c(m̄) = m1 + m2, then the average cost g yields the mean number of customers in the system,
and by Little’s law, the mean sojourn time.

Step 1: Convert the continuous-time Markov process into a discrete-time Markov chain.
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This proceeds straight-forwardly by uniformizing the transition rates. Let λ and µ denote the
arrival rate and service rate, respectively. In the states (0,m2) with m2 > 0 and (0, 0) we
introduce fictitious one-step transitions from the state to itself with rate µ and 2µ, respectively
(see Figure 4). This implies that in each state the transition rates add up to λ + 2µ, where
without loss of generality we may take λ + 2µ = 1. Hence we can interpret λ and µ as
transition probabilities and the corresponding Markov chain has the same distribution as the
original Markov process. If we take c(m̄) as cost per period, then it also has the same average
cost. From here on we consider the Markov chain.

m 2

m 1

g

g g

g g g

g g g g

g g g g g

g g g g g g

g g g g g g g

λ
2µ

λ

µ

µ

λµ

µ 2µ
λ

Figure 4: One-step transition rate diagram for the shortest queue system.

Step 2: Identify precedence relations. The precedence relation method systematically constructs
modifications of the Markov chain, which produce bounds for the average cost. First one should
try to identify precedences between states. We say that m̄ has precedence over n̄, or is more
attractive than n̄, if vt(m̄) ≤ vt(n̄) for all t ≥ 0. Here vt (m̄) denotes the expected cost in the first
t periods when starting in state m̄. Based on these precedences it appears to be easy to construct
modifications yielding bounds. Of course one should aim for bounds that are easy to compute.

For the present model it is intuitively clear that state m̄ = (m 1,m2) is more attractive than
its neighbours (m1 + 1,m2), (m1,m2 + 1) and (m1 − 1,m2 + 1), provided these neighbours
are in the state space. This means that it is preferable to have less customers in the system and
to have more balance in queue lengths. The precedences are shown in Figure 5. They can be
proved by induction over t . It is important to note that (i) the proof of the induction step can be
translated to a standard transportation problem (which may be useful in more complex models),
and (i i) the precedences depend on the choice of the cost function c.
Step 3: Construction of bounds. We now consider a modification of the original Markov chain
by redirecting in some states m̄ = (m1,m2) one or more transitions. Redirecting a transition
from (m1,m2) to (n1, n2) to another state (ñ1, ñ2), say, means that the new transition probability
to (n1, n2) is zero and the one to (ñ1, ñ2) is increased by the original transition probability from
(m1,m2) to (n1, n2). We assume that the modified chain has only one recurrent subchain and
that its equilibrium distribution exists. The cost per period is not altered and the average cost
is denoted by g̃. The following result is crucial for the construction of bounds. If the modified
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Figure 5: Precedence relations for the shortest queue model with one-period cost c(m̄) = m1 +
m2. Each arrow points to a more attractive state.

chain is obtained by redirecting to more (less) attractive states, then it holds for all t that the
expected t-period cost vector in the modified chain is less (greater) than the one in the original
chain. This can be proved by induction and it directly implies that g̃ ≤ (≥) g.

Hence, from the precedences in Figure 5 it is easy to construct models producing upper or
lower bounds for g. Two such modifications are shown in Figure 6. In model (a) transitions are
redirected to more attractive states, so this model gives a lower bound for g. The interpretation
of the redirections is that one customer is allowed to jockey from the longest to the shortest
queue as soon as the difference between the queue lengths exceeds a threshold T . Figure 6
shows model (a) for T = 3. In model (b) transitions are redirected to less attractive states, so
this model yields an upper bound. Its interpretation is that when the departure of a customer
would lead to a difference in queue lengths greater than T , then its departure is blocked and the
customer is taken into service once more. In both models the state space is a semi-infinite strip,
the size of which is controlled by a threshold parameter T . They can be solved very efficiently
by using the matrix geometric method of Neuts [115], see also Section 4.2. In fact, the rate
matrix can be obtained explicitly in the two models (cf. [118]). It will be clear that the larger T
the more accurate the bounds will be, but also the more effort it takes to compute them. Note
that the two models exploit the property that most of the probability mass in the shortest queue
model is concentrated around the diagonal of the state space. So the bounds will already be
tight for small values of T . Based on the precedences it is possible to construct a number of
other models producing bounds. They cover the ones studied in [10, 48, 74, 119, 134].

The idea to construct bounds on the basis of precedences has been used for a number of
specific models, see e.g. [3, 84, 2, 55, 56, 57, 58, 59]. The precedence relation method can be
seen as an attempt to unify the approaches in these references.

Method 2: The power series algorithm
The power-series algorithm (PSA) is a numerical-analytic method for analyzing certain Markov
processes. The main idea of the PSA is to consider the steady-state distribution of the Markov
process as a function of a system parameter. In the shortest queue model, this system parameter
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Figure 6: Two modifications for the shortest queue model. The dashed arrows denote the origi-
nal transitions and the solid arrows the redirected ones.

could, e.g., be the traffic load ρ, normalized such that the system is ergodic for ρ ∈ [0, 1).
The steady-state queue length probabilities are clearly functions of ρ. Assume that these prob-
abilities are analytic functions of ρ when traffic is light, so that they are determined by the
coefficients of the power-series expansion in ρ around ρ = 0. Substitute these power-series
expansions in the balance and normalization equations of the Markov process. This results in
equalities of analytic functions. Analytic functions are only equal if all coefficients of their
power-series expansions are identical. We thus obtain equations that enable the recursive calcu-
lation of these coefficients.

Let us briefly outline this procedure for the shortest queue model of s ≥ 2 identical servers;
for details regarding the application of the PSA to the shortest queue, see [20, 22]. Denote the
steady-state distribution of the queue-length vector N̄ at the s queues by p(ρ; n̄), with ρ ∈ [0, 1)
the work load per server. Let ē j be the vector with zero entries except for a one at the j -th
position, j = 1, . . . , s, and let I (·) denote an indicator function. Furthermore, P(C = j | N̄)
denotes the probability that an arbitrary arriving customer chooses the j -th server, given the
queue-length vector; if several queues are shortest, then that customer will choose among those
queues according to the weight function P(C = j |N̄). The balance equations for the state
probabilities are:

[ρ +
s∑

j=1

I (n j > 0)

s
]p(ρ; n̄) =

s∑
j=1

1

s
p(ρ; n̄ + ē j )+

+ρ
s∑

j=1

I (n j > 0)p(ρ; n̄ − ē j )P(C = j |N̄ = n̄ − ē j ). (2.27)

Now introduce

p(ρ; n̄) = ρn1+···+ns

∞∑
k=0

ρka(k; n̄). (2.28)
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The idea is, that the p(ρ; n̄) are analytic functions of the traffic load ρ for small values of ρ, and
that in fact the limit for ρ ↓ 0 of ρ−(n1+···+ns) p(ρ; n̄) will exist. Substituting (2.28) into (2.27)
and equating the coefficients of corresponding powers of ρ in the resulting equations yields the
following equations: For k = 0, 1, . . . ,

s∑
j=1

I (n j > 0)

s
a(k; n̄) = −

s∑
j=1

I (n j > 0)

s
I (k > 0)a(k − 1; n̄)

+
s∑

j=1

1

s
I (k > 0)a(k − 1; n̄ + ē j )

+
s∑

j=1

I (n j > 0)a(k; n̄ − ē j )P(C = j |N̄ = n̄ − ē j ). (2.29)

The left-hand side of (2.29) vanishes when n̄ = 0̄. In addition we have from the normalization
equation:

a(k; 0̄) = −
∑

· · ·
∑

0<n1+···+ns≤k
a(k − n1 − · · · − ns; n̄), k = 1, 2, . . . . (2.30)

To obtain the coefficients of p(ρ; n̄) up to ρM , proceed from k = 0 to M: Start from a(0; 0̄) =
1; determine a(k; 0̄) from (2.30), and then calculate a(k; n̄) recursively from (2.29) for increas-
ing values of

∑
ni up to

∑
ni = M − k (cf. [20]).

However, the power-series expansion of p(ρ; n̄) as functions of ρ is not convergent on the
whole interval 0 < ρ < 1 for this model. To enlarge the convergence radius of the power-series
expansion we can use the conformal mapping θ = 1+G

1+Gρ ρ (with G ≥ 0) that maps (0, 1) onto
itself and introduce

p(ρ(θ); n̄) = θn1+···+ns

∞∑
k=0

θ kb(k; n̄). (2.31)

Substitution of (2.31) into (2.27) and equating the coefficients of corresponding powers of θ
again yields a set of equations from which the coefficients can be solved recursively. The power
series (2.31) now has a larger radius of convergence than the original one (2.28), i.e., it con-
verges for values of ρ(θ) for which (2.28) diverges.

The principal idea of the PSA is originally due to Benes̃ [15], p. 295 ff. It was independently
rediscovered by Hooghiemstra, Keane and Van de Ree [78], who applied it to the model of cou-
pled processors with exponential service times (see also Section 3.5). In [14], the coefficients
of the expansion are obtained explicitly for the symmetric two-queue coupled processor case.
In a series of papers, Blanc and his colleagues greatly extended the applicability of the PSA
(see the survey [23]). One of the key contributions of Blanc [21] was the introduction of the
epsilon algorithm which strongly improved the convergence properties of the PSA. Koole [98]
showed that the PSA can be applied to any Markov process with a single recurrent class. Van
den Hout and Blanc [80, 79] extended the applicability of the PSA to networks of queues with a
multi-queue Markovian arrival process, Markovian service process and Markovian routing. In
his PhD thesis, Van den Hout [79] takes the viewpoint that the PSA not only can be viewed as
a light-traffic method, but also as a homotopy method: He transforms particular, well-chosen,
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transition rates of the original Markov process with a parameter γ , such that for γ = 1 the orig-
inal process reappears and the transformed process for γ near 0 is easy to analyze. Knowledge
about the transformed process near 0 may then be used to solve the problem at γ = 1. He also
strengthened the theoretical foundation of the PSA by proving for a wide class of models that
the steady-state probabilities of the transformed process are, indeed, analytic functions of the
transformation parameter γ at γ = 0. Furthermore, he developed some ideas on using the PSA
to calculate the transient distribution of a continuous-time Markov process.

The major advantage of the PSA is its flexibility: apart from the Markovian assumption,
it does not require much structure. It also does not require sophisticated numerical methods,
apart from extrapolation methods like the epsilon algorithm to make the PSA applicable for
intermediate and even heavy traffic. Disadvantages of the PSA are: (i) it suffers from the curse
of dimensionality (because it directly depends on the balance equations); (i i) no useful error
bounds exist sofar; (i i i) it is sensitive to extreme parameter values.

Remark 2.2 The MacLaurin approach of Gong and Hu [75] for the G I/G/1 queue and of Zhu
and Li [135] for the Markov-modulated G/G/1 queue is another light-traffic approach, that is
somewhat similar to the PSA. These authors derive power-series expansions of the moments of
the sojourn and waiting time from the Lindley recursion equation. In this respect, a useful re-
sult of Hu [85] should be mentioned; he has proven certain performance measures of G I/G/1
queues to be analytic at zero as a function of the arrival rate, when the interarrival time distribu-
tion can be expanded as a MacLaurin series over [0,∞). Blaszczyszyn, Frey and Schmidt [24]
and Baccelli and Schmidt [13] also use a light-traffic approach to analyze Markov-modulated
multiserver queues and Poisson-driven (max,+)-linear structures, respectively. The latter sys-
tems can model non-Markovian stochastic Petri nets in the class of event graphs. Examples
include fork-join networks and synchronized queueing networks, and Kanban manufacturing
networks.

Other approaches to the shortest-queue problem
Knessl et al. [95] develop a scheme to obtain approximations for the joint queue length dis-
tribution, valid when one of the queue lengths is large. Foschini and Salz [69] use a heavy
traffic diffusion approximation. Gertsbakh [74] and Rao and Posner [119] apply the matrix-
geometric method, and Zhao and Grassmann [133] propose an algorithm based on the results
of [68]. Halfin [77] obtains bounds by using linear programming techniques, and Nelson and
Philips [112] present mean response time approximations for the case of K queues and gen-
eral interarrival and service time distributions, assuming in their approximation method that the
various queue lengths can differ by at most one (see also [111]). Lui et al. [103, 104] develop
approximations for a generalization of the shortest queue model, viz. shortest expected delay
routing of customers to servers with different working speeds.

Remark 2.3 The ordinary M/G/2 queue basically is a 2-queue model where the customers are
assigned to the queue with the smallest workload instead of the shortest queue. Using a Wiener-
Hopf decomposition, Cohen [33] presents an exact analysis of the two-dimensional workload
process of this M/G/2 queue, for the case in which the service times have a rational LST. Knessl
et al. [96] present an asymptotic analysis for general service times. Formal asymptotic ap-
proximations are constructed for the two-dimensional workload process, treating separately the
asymptotic limits of heavy traffic, light traffic and large buffer contents.

16



2.4 The fork-join queue

The fork-join queue is a simple model for a parallel processing system. It consists of c parallel
servers, each with their own queue. Each arriving job consists of c subjobs, who each join
a different queue (the fork node). A job is completed when all its subjobs have completed
service (the join node). Clearly the queues in this model are dependent due to the coupled
arrivals. This model frequently arises in the context of computer systems, production systems
and maintenance systems.

An exact analysis is possible for c = 2 and Poisson arrivals. The model with heterogeneous
exponential servers has been studied by Flatto and Hahn [67]. The generating function for the
queue lengths is found by using a uniformization technique (expressing two complex variables
as analytic functions of one and the same variable) and from this asymptotic expressions for the
equilibrium probabilities are obtained. Their generating function is shown to be a meromorphic
function on a 2-sheeted Riemann surface. Wright [130] generalizes the result of [67] by also
allowing jobs consisting of one subjob to join the system. A completely different approach to
obtain asymptotic results has been used by Shwartz and Weiss [122] (see also the afterword in
[130]). It is based on large deviations and time reversibility. Baccelli [11] solves the model
with general, but exchangeable, service times by using complex-function theory methods. In
his PhD thesis, De Klein [92] analyses the model with general service times. He applies and
compares two methods, viz. the boundary value method (see Subsection 2.2) and the singular
integral equation technique. The latter technique has been initiated by Eisenberg [60] and it
concerns the reduction of the functional equation for the generating function to a Fredholm
integral equation. For the model with more than two servers no exact analytical results are
available in the literature. In this case, bounds and approximations have been developed, see
e.g. [12, 113, 114].

3 Servers choose a customer

3.1 Introduction

In this section we consider queues with multiple waiting lines, where the server or servers
choose a customer for service according to some priority rule. In polling systems the prior-
ity is changing dynamically; these systems are considered in Subsection 3.2. Systems with
fixed (static) priority are studied in Subsection 3.3. The ‘priority for the longer queue’ disci-
pline is briefly considered in Subsection 3.4. An important mechanism to introduce priorities
in integrated-services networks with heterogeneous Quality-of-Service requirements is Gener-
alized Processor Sharing; it is the topic of Subsection 3.5.

While some of these models may, in particular cases, be analyzed by direct methods like the
power-series algorithm, the methodological emphasis in this chapter is on complex-function
methods.

3.2 Polling systems

The performance analysis of computer-communication and production systems often gives rise
to single-server multi-queue models. The characteristic feature of these so-called polling mod-
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els is that a single server is moving between a number of queues (which possibly requires
some switchover time), implying that the priority of the queues is dynamically (e.g., cyclically)
changing. Many applications of polling models can be found in [76, 102, 127]. In [126, 128]
extensive and updated bibliographies of polling studies are given.

In a cyclic polling model, the joint queue length process at polling instants (i.e. time points
at which the server starts a visit at a queue) can under some conditions on the service disciplines
at the queues be represented by a multi-type branching process with immigration [120]. In the
case of polling models with switchover times, it turns out that we are dealing with a multi-type
branching process with immigration in each state, whereas in the case of polling models without
switchover times we are dealing with a multi-type branching process with immigration only
in state zero. The theory of such branching processes then provides necessary and sufficient
ergodicity conditions, and, using an iterative method, it gives an explicit expression for the
generating function of the joint queue length process at polling instants.

Let us describe the polling model, the required conditions on the service disciplines at the
queues and the iterative method in some more detail. A single server S visits n infinite-buffer
queues Q1, . . . , Qn in cyclic order. When S moves from Qi to Qi+1 this requires a switchover
time with distribution function Si (·) with mean σi and Laplace-Stieltjes transform σi (·). Cus-
tomers arrive at Qi according to a Poisson process with rate λi . The service times of customers
at Qi have distribution function Bi (·) with mean βi and Laplace-Stieltjes transform βi (·). The
service discipline at each queue should satisfy the following ‘branching’ property:

Property 1 If S arrives at Qi to find ki customers there, then during the course of the server’s
visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random pop-
ulation having probability generating function h i (z1, . . . , zn), which can be any n-dimensional
probability generating function.

For example, in the case of the well-known gated and exhaustive service disciplines, Prop-
erty 1 is satisfied with hi (z1, . . . , zn) = βi (

∑n
j=1 λ j (1−z j)) and hi (z1, . . . , zn) = ηi (

∑
j �=i λ j (1−

z j )), respectively, where ηi (·) is the Laplace-Stieltjes transform of the length of the busy period
of the ’corresponding’ isolated M/G/1 queue of Qi . Unfortunately, the branching property
does not hold for several important service disciplines, like those that put a limit on the time of
a server visit or the number of services during a server visit.

From now on we use the notation z = (z1, . . . , zn) and we denote by V (z) the generating
function of the joint queue length vector at polling instants of a fixed queue, say Q 1. Under the
branching property we can prove that

V (z) = V ( f (z))g(z). (3.1)

Here, the function f (z), defined by

f (z) := ( f1(z), . . . , fn(z))

with
fi (z) := hi (z1, . . . , zi , fi+1(z), . . . , fn(z)),

represents the offspring generating function. The function g(z), defined by

g(z) =
n∏

i=1

σi (

i∑
j=1

λ j (1 − z j )+
N∑

j=i+1

λ j (1 − f j (z))),
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represents the immigration generating function in the branching process.
Iteration of equation (3.1) yields

V (z) =
∞∏

k=0

g( f (k)(z)), (3.2)

where the iterates f (k)(z) are defined by

f (0)(z) = z,

f (k)(z) = f ( f (k−1)(z)).

The infinite product in (3.2) is convergent when the ergodicity condition is fulfilled.
In the case of zero switchover times we have, instead of Equation (3.1), that

V (z) = V ( f (z))− π0(1 − g(z)). (3.3)

Here the offspring generating function f (·) is defined as before, π0 is the probability of an
empty system and the immigration generating function g(·) is now given by

g(z) =
N∑

j=1

λ j

λ
z j , or g(z) =

N∑
j=1

λ j

λ
f j (z),

depending on the behaviour of the server when the system becomes empty. The first expression
corresponds to the situation where, when the system becomes empty, the server makes a full
cycle and subsequently stops right before Q1 (see [25]). The second one corresponds to the
situation where in an empty system the server immediately stops right behind Q 1 (see [120]).
Iteration of Equation (3.3) yields

V (z) = 1 − π0

∞∑
k=0

[1 − g( f (k)(z))]. (3.4)

The infinite sum in (3.4) is convergent when the ergodicity condition is fulfilled.
As mentioned before, the branching property does not hold for several important service

disciplines, like those that put a limit on the time of a server visit or the number of services
during one server visit. In exceptional two-queue cases of the latter class, the joint queue length
distribution can be determined by using the theory of Riemann-Hilbert boundary value problems
[27, 46, 47, 100]. A pioneering paper in this area was that of Eisenberg [60], transforming a
two-queue polling problem into a Fredholm integral equation.

Numerical approaches
Leung [101] has developed a numerical procedure, based on the fast Fourier transform, that
enables one in principle to determine polling performance measures with any required accu-
racy. The power series algorithm is also applicable to a large class of polling models (see Blanc
[21]). An essential difficulty of both numerical techniques is their large computational com-
plexity. Choudhury and Whitt [30] have shown that probability distributions and moments of
performance measures for many polling models can be effectively computed by numerically
inverting generating functions and Laplace-Stieltjes transforms. The computational complexity
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of their approach is much lower than that of the approaches of Leung and Blanc. However,
the method of Choudhury and Whitt does not readily extend to models that do not satisfy the
branching property.

If switchover times are zero, work conservation leads to a conservation law, an exact ex-
pression for a particular weighted sum of mean waiting times [93]. If switchover times are
non-zero, a principle of work decomposition [26, 27] gives rise to a pseudo-conservation law
which is again an exact expression for a particular weighted sum of mean waiting times. This
can provide a useful check for the accuracy of simulations, numerical calculations and approx-
imations, as well as providing the basis for further approximations.

3.3 Fixed priorities

An important queueing model is the single server queue with k classes of customers, that arrive
according to independent Poisson processes and have fixed priorities. The non-preemptive and
preemptive-resume priority disciplines have in particular been analyzed in considerable detail.
A classical reference is the book of Jaiswal [89]; see also the discussions in [34, 94, 129].
Jaiswal discusses, a.o., generating functions of joint queue length distributions. He heavily uses
the concept of completion time, viz., the time from the start of a service of a particular class
until the server is available to serve the next customer of that same class. The completion time
concept allows a unified study of several priority disciplines. Another important observation
in single server priority queues is that it often suffices to study k = 2 classes, temporarily
aggregating all lower (higher) classes into a single class.
In the present study we focus on the challenging problem of multiserver priority queues. Both
interarrival and service times are now assumed to be exponentially distributed. In most studies
that have considered multiserver queues with nonpreemptive priority, the restrictive assumption
has been made that all mean service times are equal. Cohen [32] derived the joint queue length
distribution under this assumption, for the case k = 2. Cobham [31] derived the mean waiting
times under the same assumption, for general k, while Davis [52] and Kella and Yechiali [90]
obtained the waiting time transform of each class. Gail et al. [70] discarded the assumption of
equal service means. They obtained, for k = 2 classes and an arbitrary number m of servers,
the steady-state bivariate generating function of a convenient two-dimensional Markov process
that is immediately related to the queue length process. We sketch their approach and refer to
[70] for the (very involved) analytic details. The generating function equations corresponding
to the equilibrium equations take the form

A(z, w)G(z, w) = B(z, w)F(w)+ C(z, w)K . (3.5)

G, F are unknown vector valued analytic functions, K is a vector of unknown constants, and
A, B,C are known (m +1)×(m +1) matrices with polynomial entries. Gail et al. then identify
the m + 1 zeros zi (w) of det A(z, w) for given |w| ≤ 1, with the property |zi (w)| ≤ 1. Since
the GF G(z, w) should be bounded in |z| ≤ 1, |w| ≤ 1, this yields a matrix equation

M(w)F(w) = N (w)K , (3.6)

where M(w) is known. This is a set of (m + 1)2 equations, at most m + 1 of which are in-
dependent. A careful study of the zeros of det M(w) inside the unit circle, instigated by the

20



boundedness of the GF F(w) inside the unit circle, yields a set of equations from which K can
be determined. F(w) then follows from (3.6) and finally G(z, w) from (3.5).
Gail et al. [71] have used a similar approach, with a similar state-space representation, to de-
termine the bivariate queue-length GF in the preemptive resume case (again there are m servers
and 2 classes).

3.4 Priority for the longest queue

The queueing model with priority for the longest queue is in a sense dual to the shortest queue
model. It is also similar, in the sense that both systems employ a mechanism that tends to equal-
ize the queue lengths. Cohen [37] solves the 2-queue model with server priority for the longest
queue. He uses a translation into a Riemann boundary value problem of a type that was not
studied earlier in a queueing context. In Van Houtum et al. [84] the precedence relation method
(see Subsection 2.3) is used to obtain lower and upper bounds for the model with exponential
service times and an arbitrary number of queues. The exponential longest queue model with
two queues has also been studied by Flatto [66] in the case that the longest queue policy is ap-
plied preemptively (i.e. service to a customer in a given queue is interrupted whenever the other
queue becomes larger). He uses a generating-function approach. He argues that the longest
queue model is easier than the shortest queue model, in the sense that in the former one f (0, y)
does not appear in the basic functional equation, and that it is a rational function of y.

3.5 Generalized Processor Sharing

In the design of high-speed networks, an increasingly important issue is the provision of Quality-
of-Service (QoS) guarantees. A key problem is the study of scheduling disciplines to be em-
ployed at network switches. Ideally, these scheduling disciplines should protect sessions from
the possibly bad behavior of other sessions, but also exploit statistical multiplexing gain. One
design paradigm for such scheduling disciplines is the Generalized Processor Sharing (GPS)
discipline. GPS-based scheduling algorithms like Weighted Fair Queueing have emerged as
an important mechanism for accommodating heterogeneous QoS requirements in integrated-
services networks.
GPS operates as follows. Consider N sources (sessions) sharing a link of unit rate. There
are weights φ1, . . . , φN associated with each of these sources, with

∑N
i=1 φi = 1. If all the

sources are backlogged at time t , i.e., the buffer content of each source is positive at time t , then
source i is served at rate φi , i = 1, . . . , N . But if some of the sources are not backlogged, then
the excess capacity is redistributed among the backlogged sources according to their respective
weights. GPS has the following two properties: (i) it is work-conserving, serving at the full link
rate whenever at least one source is backlogged; (i i) it guarantees minimum rate φi to source i
whenever it is backlogged.
Generally speaking, the stochastic analysis of the GPS discipline is prohibitively difficult. How-
ever, the case N = 2 allows, for several variants, a quite detailed analysis. Konheim, Meilijson
and Melkman [97] determine the joint queue length distribution in the completely symmetric
case of independent Poisson arrival processes and exponential service times (with the same
rates at each queue) and φ1 = φ2 = 1/2. They employ a uniformization technique. The cou-
pled processor model, as it was called by the above-mentioned authors, has been a most fruitful
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model from the viewpoint of methodology. In a pioneering paper, Fayolle and Iasnogorodski
[63] have shown that the functional equation for the two-dimensional generating function of the
joint queue length distribution in the asymmetrical coupled processors may be transformed into
a Riemann-Hilbert boundary value problem. This allowed the application of powerful results
from the theory of boundary value problems. Cohen and Boxma [47] have presented a system-
atic and detailed study of that new technique. In many cases, their approach allowed general
service time distributions. One of these cases is the coupled processor model; in [47] it is ex-
actly analyzed for the case of generally distributed service times. The service speed of server i
is ri when the other server is also busy, and r ∗

i when the other server is idle (r∗
1 = r∗

2 = r1 + r2

gives GPS). The topic of interest in Chapter III.3 of [47] is the LST φ(s1, s2) of the joint work-
load distribution at both servers. A parametrisation technique yields a suitable set of zeros
(s1, s2) = (δ1(w), δ2(w)) of the kernel, leading to a Wiener-Hopf problem with boundary
(line of discontinuity) Re w = 0.
The question naturally arises whether the boundary value technique can be extended to queueing
models with a higher-dimensional state space. Cohen [35, 36] obtains partial results for 3 cou-
pled processors, while he also derives a large collection of interesting results for entrance times
and entrance points of homogeneous N -dimensional random walks [39]. We are not aware of
other such higher-dimensional results. For the same coupled-processor model (not necessarily
completely symmetric, and with an arbitrary number N ≥ 2 of queues), Hooghiemstra, Keane
and Van de Ree [78] have developed the Power Series Algorithm (PSA; see Section 2.3).
For the general GPS scheduling discipline with an arbitrary number of sources, there seems to
be little hope of obtaining explicit expressions for queue length or workload distributions. It
is already quite an accomplishment to derive useful bounds on backlog (workload) and delay.
Parekh and Gallager [116, 117] study GPS in which the arriving traffic conforms to Cruz’s lin-
ear bounded arrival processes [49, 50]. They obtain worst-case deterministic upper bounds on
backlog and delay for each session. Thus hard guarantees can be given for networks employing
GPS scheduling. Zhang et al. [132] model the source session traffic as an exponentially bounded
burstiness process (a notion introduced in [131]), and derive statistical bounds on backlog and
delay for each session. Other important contributions to the performance analysis of GPS are
based on a large deviations approach: see Bertsimas et al. [18], Dupuis and Ramanan [54], and
Massoulié [106].

4 Various two-dimensional random walks

4.1 Introduction

In this section we discuss two classes of Markov processes that naturally arise in queueing
models with multiple waiting lines, and for which a detailed analysis is possible. Subsec-
tion 4.2 considers Markov processes on a semi-infinite strip. Three methods for determining
the equilibrium probabilities are briefly described. Subsection 4.3 is concerned with tractable
two-dimensional random walks on the lattice in the first quadrant. Some methods that were
discussed in the previous sections also apply to these Markov processes. As indicated before,
the power-series algorithm can be applied to any Markov process with a single recurrent class
but has some restrictions regarding its theoretical foundation and suffers from the curse of di-
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mensionality; the compensation method applies under restrictions on the one-step transition
rates.

4.2 Markov processes on a semi-infinite strip

Many queueing systems can be modelled by a Markov process, the state space of which is given
by a semi-infinite strip of states (m, n) where m ranges from 0 to s and n from 0 to ∞. In these
systems, typically m denotes the state of the service facility or of the arrival process, and n
denotes the number of jobs waiting in the system. m and n could also denote the number of
type-1 and type-2 customers, the waiting room for type-1 customers being finite. Often, there is
a threshold N , such that the transition rates out of state (m, n) do not depend on n when n ≥ N .

The equilibrium probabilities pm,n can be determined using three alternative methods. They
are briefly described below. A comparison of the three methods can be found in the survey pa-
per by Mitrani [107].

Method 1: The matrix-geometric method
In this approach the row vectors of equilibrium probabilities p̄n = (p0,n, p1,n, . . . , ps,n) are
expressed as

p̄n = p̄N Rn−N , n ≥ N , (4.1)

where the so-called rate matrix R is the minimal nonnegative solution of a nonlinear matrix
equation; see Neuts’ book [115]. For the special class of quasi-birth-and-death processes, i.e.,
processes where for each state (m, n) outgoing transtions are restricted to states (k, l) with
|l −n| ≤ 1, Ramaswami and Latouche [99] have developed a highly efficient algorithm to solve
the matrix equation for the rate matrix R.

Method 2: The generating function method
This approach uses generating functions to solve the set of equilibrium equations. By introduc-
ing the vector generating function ḡ(z) = (g0(z), g1(z), . . . , gs(z)) where

gm(z) =
∞∑

n=N

p(m, n)zn,

the equilibrium equations can be transformed to a matrix equation for ḡ(z) of the form

ḡ(z)A(z) = b̄(z).

The vector b̄(z) involves a number of unknown boundary probabilities. These probabilities are
determined by exploiting the zeros of the determinant of the matrix A(z) inside or on the unit
circle. The generating function approach is, for example, used by Mitrani and Avi-Itzhak [108]
to analyse the M/M/s queue with service interruptions.

Method 3: The spectral expansion method
This method is based on reducing the equilibrium equations to a vector difference equation
with constant coefficients, the solution of which can be expressed in terms of eigenvalues and
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eigenvectors of the associated characteristic polynomial; see Mitrani and Mitra [109]. This
gives

p̄n =
s∑

i=0

Ci ȳi xn−N
i , n ≥ N , (4.2)

where the geometric factors xi are the s + 1 eigenvalues inside the unit circle, the vectors ȳi

are the corresponding eigenvectors and the coefficients Ci follow from the boundary equations
and the normalization equation. The difficult step in this approach is the computation of the
eigenvalues, which are the s + 1 roots inside the unit circle of a determinantal equation. A
direct approach of finding these roots is inefficient for large s and therefore not recommended.
However, in special cases, particular properties may be exploited to simplify the eigenvalue
problem, see e.g. Elwalid et al. [61]. For a class of systems with rates linear in m or s − m,
Adan and Resing [5] showed that the roots can be determined very efficiently. They use a
generating function technique to reduce the single equation for the s + 1 roots inside the unit
circle to s + 1 equations for a single root in the interval (−1, 1). This considerably simplifies
the determination of the roots, also because the computations can now be restricted to the real
domain. Queueing models included in this class of systems are, e.g., the multi-server queue
with Poisson arrivals and E2, H2 or C2 distributed service times (see [121, 123, 124, 17]), the
M/M/s queue with service interruptions (see [108]), the

∑
I P P/M/1 queue (see [61]) and a

multi-server queue with locking (see [4]).

Remark 4.1 Result (4.2) may be linked to the (modified) matrix-geometric representation (4.1)
of the equilibrium distribution. Clearly, when R is diagonalizable, the factors xm in the form
(4.2) are the eigenvalues of R and the row vectors ym are the associated row eigenvectors (cf.
Daigle and Lucantoni [51]).

Remark 4.2 De Smit [125] surveys the application of matrix Wiener-Hopf factorizations to the
analysis of waiting times in multidimensional queues. The class of models that this method
can handle shows considerable overlap with the class which can be solved by matrix-geometric
methods. One of De Smit’s key examples is a semi-Markov queue. Dukhovny [53] also consid-
ers semi-Markov queues. He surveys the application of vector Riemann-Hilbert boundary value
problems to the analysis of queue lengths in multidimensional queues.

4.3 Markov processes on the lattice in the first quadrant

An interesting class of two-dimensional random walks on the lattice in the first quadrant has
been studied by Fayolle, King and Mitrani [65]. They assume that there exist positive integers
N1 and N2, such that the transition rates out of state (n1, n2) do not depend on n1 for n1 ≥ N1

and not on n2 for n2 ≥ N2. One example is an M/M/1 queue with two classes of customers
and a restricted processor sharing discipline: Up to N1 jobs of class 1 and up to N2 jobs of class
2 are allowed to share the processor at any time, and the remaining jobs must wait. Fayolle et
al. [65] reduce the determination of the bivariate generating function to the problem of solving
a Riemann-Hilbert boundary value problem on a circle.

A quite general class of two-dimensional random walks on the lattice in the first quadrant
has been analysed in [47], where the solution is again obtained via transformation to a bound-
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ary value problem. One-step transitions to the West, South-West and South can only go to the
nearest neighbour, but one-step transitions in other directions may be more general. The func-
tional equation for the unknown generating function f (x, y) of its equilibrium solution is of the
following type: For |x | ≤ 1, |y| ≤ 1,

K (x, y) f (x, y) = A10(x, y) f (x, 0)+ A01(x, y) f (0, y)+ A00(x, y) f (0, 0)+ B(x, y). (4.3)

The kernel K (x, y) contains all the information concerning the structure of the random walk in
the interior of its state space. The boundedness of the probability generating function f (x, y)
for |x | ≤ 1, |y| ≤ 1 again leads to an inspection of the zeros of the kernel, K (x, y), in this
product of unit circles. For each of those zeros, the righthand side of (4.3) should be zero. Fur-
thermore, f (x, 0) should be analytic in x for |x | < 1 and continuous in x for |x | ≤ 1, similarly
for f (0, y). The structure of the problem of determining f (x, 0) and f (0, y) that satisfy these
conditions resembles that of a Riemann-type boundary value problem: The determination of
analytic functions in prescribed domains, these functions moreover satisfying a linear relation.
In [47] the above problem is indeed transformed into a Riemann-type boundary value problem.
Using the extensive theory of Riemann-type boundary value problems [72, 110], the above-
described two-dimensional random walk is in principle solved. The solution does involve the
determination of some conformal mappings, that can be accomplished via the solution of sin-
gular integral equations. In most cases, this requires numerical analysis. The above-sketched
approach is surveyed in much more detail in [38]. From a numerical point of view, an inter-
esting approach is also the transformation of the functional equation into a Fredholm integral
equation [38]; standard techniques are available to solve such an integral equation numerically
(cf. [92]).

Various matters simplify when one restricts oneself, within the class of random walks on the
lattice in the first quadrant, to the subclass of nearest-neighbour random walks (only transitions
to immediate neighbours may occur). In that case, the kernel K (x, y) is a biquadratic function
of x and y. A pioneering study of such random walks is the one of Malyshev [105]. Together
with Fayolle and Iasnogorodski, [64], he has recently developed a new analytic approach for
nearest-neighbour random walks in the quarter plane. Like in the above approach, they consider
the (elliptic) curve K (x, y) = 0. A key idea of them is to use Galois automorphisms on this al-
gebraic curve. They prove that the unknown functions f (x, 0) and f (0, y), while in general not
being meromorphic functions, can be ‘lifted’ as meromorphic functions onto the ‘universal cov-
ering’ of some Riemann surface that corresponds to the algebraic curve K (x, y) = 0 (see also
[67, 130]). Cohen has made several important contributions to the theory of nearest-neighbour
random walks. In the monograph [39], he extensively discusses ergodicity conditions, entrance
times into the boundaries, and entrance points. He relates the zero-tuples of the kernel to the
distributions of the entrance times into the boundary points of the state space, by a very elegant
identity. When only a few one-step transitions are allowed in a nearest-neighbour random walk,
further simplifications may occur.

Cohen [40] considers the semi-homogeneous nearest-neighbour random walk without tran-
sitions to the East, North-East and East. This is the class of random walks studied in [1] via
the compensation method. Cohen proves that the bivariate generating function of the station-
ary distribution of such two-dimensional random walks in the first quadrant can be represented
by meromorphic functions. Subsequently he exposes the construction of those meromorphic
functions; this construction is based on the iterative calculation of poles and their residues.
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Examples are discussed in [42, 43, 44, 45], cf. Subsection 2.2. Cohen [40] observes that the
bivariate generating function for this class of random walks may also be obtained using the
boundary value method, even when one-step transitions to the North, East and North-East are
allowed; but he remarks that when such transitions are excluded, then the construction of the
meromorphic function via the iterative calculation of poles and residues is simpler because it
avoids the explicit calculation of a conformal mapping.

In [41] Cohen considers a nearest-neighbour random walk with transitions to the South-
West, North and East. The generating functions f (x, 0) and f (0, y) are here not meromorphic
functions. However, the bivariate generating function f (x, y) is shown to be a fairly simple
algebraic function that can be explicitly determined. Cohen uses the uniformization technique
of Flatto and Hahn [67] and Wright [130], who study a fork-join queue, cf. Subsection 2.4. The
underlying model of this random walk study actually is a queueing model with one server, two
Poisson classes of customers and ‘paired services’: As soon as a service has been completed, a
new service is started if there are customers present. In general, a couple of customers of dif-
ferent type is simultaneously served (after which they leave simultaneously). If only customers
of one type are present after a service completion, then one customer of that type is served. If a
service leaves the system empty, then the server starts serving as soon as a customer has arrived.
Cohen [41] assumed exponential service time distributions. Blanc [19] allows a general service
time distribution, that is the same in each of the above cases. He obtains several performance
measures, including the joint queue-length distribution at service completion epochs and at an
arbitrary time. He accomplishes this by formulating the problem as a Riemann-Hilbert or a
Hilbert boundary value problem. Its solution requires a conformal mapping that in general can-
not be obtained explicitly and must be determined numerically.

Acknowledgment. The authors are indebted to Professor J.W. Cohen for some very interesting
discussions. The survey paper [29] has provided some useful input for the present paper. It
focuses less on the analytic methods, but it considers a broader range of models that are rele-
vant for the performance analysis of parallel and distributed systems; in addition, it discusses
optimization aspects.
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