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A b s t r a c t - - A n  interrupted Poisson process has two states, on-state and off-state. In the on- 
state, Poisson arrivals occur, and on the other hand, there are no arrivals in the off-state. As the 
variation becomes larger, the arrival process is changed to a more complex interrupted Poisson process 
generated by embedding new off-states in each on-state. In such a way, recursively embedding off- 
states in on-states and taking a limit, a fractal s tructure can be found in the on-off structure. We 
name the arrival process fractal Poisson process and study it. The interarrival time density has a 
heavy tail. In addition, we study queueing models with the fractal Poisson arrivals. Even if the 
utilization is very low, the waiting time is very long. (~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - V a r i a t i o n ,  n th generation interrupted Poisson process, GI /M/1  queue, Fractal Pois- 
son process. 

1. I N T R O D U C T I O N  

The in te r rupted  Poisson process ( IPP)  was in t roduced as an overflow process in circuit  switch 

networks by Kuczura  [1]. The  interarr ival  t ime of the  I P P  is more variable  [2] t han  the one for 

a Poisson process for the  fixed mean interarr ival  t ime. In packet communica t ion  networks, we 
can also find the  packet s t reams which have more variable one than  Poisson one. The  packet 
s t reams which originate from terminal  equipments  with some regular i ty  become ones tha t  have 
some var ia t ion due to various factors as going forward in the  networks. I t  is well known tha t  the 

regular s t reams are t ransformed into the  Poisson s t reams and then to the I P P  s treams.  

In the  in te r rup ted  Poisson process(IPP)  [1], on-s ta te  periods and off-state per iods  a l te rna te ly  
occur. Being an on-sta te ,  Poisson arrivals occur with some rate.  On the other  hand,  there  are no 
ar , ivals  during any off-state period. Poisson arrivals which are uniformly d i s t r ibu ted  on t ime axis 

in a Poisson process are driven into on-s ta te  periods which have finite intervals.  The  I P P  s t reams 
have larger var ia t ion than  Poisson streams.  W h a t  is the t ransformat ion  mechanism from the 
Poisson s t reams to the  I P P  s t reams? We can consider tha t  this  mechanism occurs because off- 
s ta te  per iods  p reempt  over a Poisson process with some rate. If the  p reempt ion  ra te  is constant  

on the  t ime axis, then an on-s ta te  per iod length follows an exponent ia l  d is t r ibut ion.  In addit ion,  

if the  off-state per iod length also follows an exponent ia l  one, then the on-off process is an original 

IPP  proposed by Kuczura  [1]. We call this  IPP  ':the first generat ion IPP" .  The  Poisson process 

considered here would be called "the 0 th generat ion IPP" .  Note t ha t  the  longer off-state per iod 
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implies the  larger variat ion.  As a result,  the  Poisson arrival  ra te  during on-s ta tes  increases. We 
know tha t ,  as a packet  s t ream goes forward in the  network, the  var ia t ion increases. We can 

expect  t ha t  the  new generat ion I P P  will appear .  

It is na tu ra l  to consider tha t  the  same mechanism, in which off-state per iods  p reempt  over 
a Poisson process, occurs in on-s ta te  periods themselves of the  first generat ion IPP.  Tha t  is, 
new off-state periods p reempt  over the  on-state .  The  mean length of an off-state per iod newly 
generated,  of course, is shor ter  than  the mean off-state per iod length of the  first generat ion IPP. 
Suppose t ha t  the  la t te r  is M t imes larger for some integer M than  the former. We call the  process 

"second generat ion IPP" .  In this  IPP,  a per iod which corresponds to  an on-s ta te  per iod of the  
first generat ion I P P  has an on-off s t ructure.  If we magnify the  per iod with  this  on-off s t ructure  M 
times, then we find the first generat ion IPP. When  the same mechanism occurs during an on-s ta te  

per iod of the  second generat ion IPP,  the  th i rd  generat ion I P P  will appear .  If this  mechanism is 

recursively repeated  n t imes, then  we will be able to find the  n th generat ion IPP.  I t  should be 

noted t ha t  the  interarr ival  t ime of the  (n + 1) th generat ion IPP  is more variable than  the one of 

the r~ th generat ion IPP.  Taking a l imit  of n to infinity, the  on-off s t ruc ture  has self-similarity. We 

call the  process "fractal Poisson process". Under some condit ion,  the  interarr ival  t imes  follow the 
d is t r ibut ion  with  a heavy tail.  Taqqu et al. [3] s tudy  an on-off process in which both on-per iod 
length and off-period length have heavy tails. Our  fractal  Poisson process is renewable and it is 
convenient to deal with. 

In Section 3, we s tudy  a G I / M / 1  queue with the  n th generat ion I P P  input.  In the  G I / M / 1  

theory, the  generalized ut i l izat ion [4] is the  most impor tan t  factor. Tha t  generalized util ization/3~ 

of the n th generat ion input  queue becomes larger, as n increases, and finally converges to 1. 

2 .  n th  G E N E R A T I O N  I P P  A N D  F R A C T A L  

P O I S S O N  P R O C E S S  A S  I T S  L I M I T  

Consider  an in te r rup ted  Poisson process ( IPP) .  The I P P  has two states ,  on-s ta te  and off-state, 

in which the two s ta te  periods a l te rna te ly  occur. During an on-s ta te  period,  homogeneous Poisson 
arrivals with ra te  AI occur and no arrivals occur during an off-state period.  The  on-s ta te  period 
length and off-state per iod length follow exponent ia l  d is t r ibut ions  with means ~/-1 and w~-i  

respectively. We call this IPP  "first generat ion IPP" .  We consider t ha t  the  I P P  is a process in 
which off-states p reempt  with ra te  "y over a Poisson process with the  ra te  A. Since we fix the  mean 

interarr ival  t imes for the  Poisson process and IPP,  the  arrival rate  A1 is greater  than  the rate  A. 

Tha t  is, when the Poisson process is t ransformed to the  IPP,  the  var ia t ions of interarr ival  t imes 

become larger. The  off-state per iod length densi ty  function and on-s ta te  one are, respectively, 
given by 

a l ( x , ~ l )  = ~ , e  - ~ ' x  (1) 

and 

b~(z)  = 7e  - ~ .  (2) 

Furthermore ,  when the variat ion becomes larger, what  happens? The  off-state per iod length will 
become larger from w~-I to ~o 21. At  the  same t ime,  new preempt ions  of off-states occur in each 

on-s ta te  per iod of the  first generat ion IPP. We suppose tha t  the ra te  of p reempt ions  is M'y and 
the mean new off-state per iod length is (MaJ2) -1.  Then,  the off-state and on-s ta te  per iod length 

densi ty functions are, respectively, given by 

a2(z, w2) = klal (x, w2) + k2Mw2e - M ~ ,  kl + k2 = 1, (3) 
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and 
b2(x) = M'Te -M'Y*. (4) 

We call this  IPP  "second generat ion IPP" .  If we magnify, M times,  an on-off s ta te  per iod of 

the  second generat ion IPP  embedded  in an on-s ta te  per iod of the first generat ion IPP,  we can 

find the first generat ion IPP  itself there. Equat ion (3) shows t ha t  an off-state per iod of the  first 

generat ion I P P  appears  with probabi l i ty  kl and a new off-state per iod with  the  mean length 
(Mw2)-i appears  with probabi l i ty  k2. Hereafter,  we set M = 2 and kl = k2 = 1/2 for simplicity. 

We apply  the  same mechanism to the  second generat ion IPP. Then,  we have 

and 

l {a2(x, w3) + 22wae -2=~ax } aa(x, wa) = -~ (5) 

b 3 ( x )  = 22"~e -2=~. (6) 

If we recursively repeat  the  same mechanism, we have the following n th generat ion IPP:  

an(X, Wn) = -~l {an-i(X,Wn) + 2n-lwne -2 . . . .  ~,.z} (7) 

and 
bn(x) = 2"-l"/e -2"- '~. 

Taking a l imit  to oc for n, we have a fractal  Poisson process. 

THEOREM 1. 

(8) 

An off-state period length density function for the n th generation IPP is given by 

n-1 (1)n-i (~)n-1 
an(X, Wn) = E 2~wne - 2 '  . . . .  + w~e  ...... . (9) 

i = 1  

PROOF. When  n = 1, we have 
al(x, wi) = wle . . . .  �9 (10) 

V~rhen n = k, we assume tha t  

k-1 k - i  

i=l 
q'hcn, we have 

k-1 
2"~wke-2k"kx + ( 1 ) wke  - ~ k z  . (11) 

1 
ak+l(z~O3k+l) = ~ (ak (x~oJk+l) ~- 2kojkq.-le-2kWk+lx) . 

Subs t i tu t ing  (11), we have 

k k+l - i  
a k + , ( X , w k + , ) : E ( 1 )  

i = 1  

Since 

(12) 

TWk+le-2 ,~+lx + wk+le-,~k+,x. (13) | 

n ,  

E ( 1 )  + : 1  

i = 1  

(14) 

in (9), an(x, Wn) is a hyperexponent ia l  densi ty  function. 
Now, we fix the  mean interarr ival  t ime for the rt th generat ion I P P  (n = 0, 1 , . . .  ). In par t icular ,  

when n - 0, the process is Poisson with the ra te  A. If An is the  arr ival  ra te  in an on-s ta te  period 

for the  n th generat ion IPP,  then we have 

~nE[bn] - ~, ( i5)  
E[aq + E[bn] 



202 F. MACHIHARA 

where Elan] and E[bn] are the  mean off-state per iod length and the mean on-s ta te  length, re- 
spectively. Then,  we have 

E[an]= lwn-- (2)  n-zn+12 (16) 

and 

Equat ion  (16) can be obta ined  as 

1 
E[bn] = 2~_1 ~. (17) 

(1 nn-1 2i (1)n-1 1 

{ ( ~ ) n  (1)n--1 } = 1  (~ -1 )+  
w.O n 

1 ( 1 ) ' ~ - i n + l  
wn 2 

Equat ion  (17) is obvious. 

Hence, from 

An/2n-l'T An 
---- (18) (1/wn) (1/2) n-1 ((n + 1)/2) + 1/2n-1"y 1 + (n + 1)7/2wn' 

we ha,re 
(n + 1>'] 

An = A  1+ ~wn 7"  (19) 

Now, we will s tudy  an interarr ival  t ime probabi l i ty  densi ty flmction fn(x, wn) of the  n th gen- 

erat ion IPP.  The  Laplace t ransform (LT) f~(S, Wn) of fn(X, Wn) is given by 

An 2n -- 1 ,-,/ 
f ;(s ,w~) = s + 2~- i0 '  + A~ + s +  2~-17  + ) . f ; (s ,  n), (20) 

where a~(s,wn) is the  LT of an(X, Wn). 
We can assure tha t  the  mean interarr ival  t ime of the n th generat ion I P P  is equal to A- 1. Tha t  

is, since 
d_F(s,~n) _ I 

d8  n s=0+ 2n-- 10' -]- An 
(21) 

2n-1~ ( d * ~=~ d-f'(*,~n) / ,  
-~ 2 n - 1 7 + A  n - "-~s an(s'wn) ds n s=0+/  

we have from (16) 

2~-i~+An ~ f~(s, 2~_i ~+An wn 2 
(22) 

Therefore, from (19) we obtain 

d . I ( (n+i)7~ _ i (2a) 
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The variance of interarrival times 

v . =  
d2 2 

-d~s2fn(s'COn) s=O+ -- (~ )  (24) 

can be obtained by the following manner: differentiating (20) twice and substi tuting s = 0+, we 
h av e 

d2 . : 2 2n--17 ( 1 )  
7~=211(=,~=)==o + (2=_~7+~=) = +2(2=_~7+~=) 2 E(a=)+ 

Since 

it is satisfied tha t  

(1 

2n-I  7 

2'~-17 + An 
( ff--~a,~(s) ~E(an) d2 * + + iTfn(S'~n) ] 

~ Is=O+ s=O+/ 

(25) 

d2 "-1 ( ~ )  "-'` 1 E - -  ( ~ )  " - I  1 
T s  2as(=) = (2'w~)~ + - -  

s=O+ ~=1 ~21 

co~,' 

(26) 

= 
2=-17 + A= d S J f i ( s ' w = )  s=O+ = ( 2n-17 + An) 2 1 + E(an) 4- 

2n-L) ' I ( I )  = 1 2 ] 
2~-17+ x= ~ + E(an) , 

(27) 

where E(a=) is given in (16). Now, we have 

= [ 
= An(2n-17 + )~n) 1 + 

~n-l,y A + 2E(an) ] 
(28) 

In (28), we have for some constant c 

lim 
T~-iE(an) 

= ~ < ~ .  (29) 

In the second term of the right-hand-side of (28), we have 

M wl 2M~I 
(30) 

Since, in (19), 
(n + 1)7" ~ 

is satisfied, we obtain 
n + l  

Now, we get an important  result. Tha t  is, if the sequence {wn, n = 0, 1 . . . .  } satisfies that  

(31) 

lim (n  + l)w= = O, n --+oo 
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for example,  if, for ~ > 0 and 02 > 0, 

oJ 
02n = (1 + r  

then 
lim A~02 2 = O. 

Tha t  means tha t  
d2 "*'s02"1 lira -~j](~( , n) = oc 

or the variance V~ is infinite. The  interarr ival  t ime dis t r ibut ion  has a heavy tail .  

We will next  consider the  interarr ival  t ime densi ty functions themselves. 

satisfied tha t  

Here, 

and 

THEOREM 2. 

equation 

(32) 

(33) 

Prom (20), it is 

.Xn/(s + 2n-l"/-{- )~n) 
f n ( s ' 0 2 n )  = I - -  (2n-l~f/(S A- 9n-1"/ + An)) a*(s,02n) 

(34) 

n-1 

i=1 
(35) 

,~( ,)  = (, + 02,~) ~ 2 ' 0 2 n - -  + 02~n(~). (a6) 
S + 2 i 0 2 n  i=1 

Spectra - ( ' )  i = 1,. , n + l  off~(s,02~), thatis ,  roots of  the (n + l )th polynomial - - ( ~  i 1 �9 " 

z~(s) : (~ + 2~-~v + ~ )  (~ + 02.)x,~(~) - 2~-by~(~)  : 0 

arc  real  and simple, and each of them is in the following interval: 

-~I~) c (--02n, 0), 

i :  2 , . . . , n ,  

PROOF. The  (n + 1) th polynomial  zn (s) is continuous and the  following inequali t ies are satisfied: 

z~(o) > 0 

and 
( -1 ) i zn  ( - T - ' 0 2 n )  > 0, i = 1 , . . . , n .  

Then,  z,~(s) = 0 has one root  at  least in each of n + 1 intervals ( - 0 % - 2 n - 1 0 2 n )  , (-2'~-102n, 

- 2 n - 2 w n ) ,  (--2n-202n, --2n-a02n), . . . ,  (--4Wn, -202n), (--2Wn, --COn), and ( - w n ,  0). Since zn(s) = 0 
has n + 1 roots,  so there  exists jus t  one root  in each interval.  II 

Theorem 2 ment ions  tha t  f~(s ,  02n) can be wri t ten  as 

~n(S + 02n)Xn(S). 
fr*(8,02n) : n+li~ (S j- O~ n,) 

/:1 

(37) 
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The Laplace inversion of (37) gives 

fn(x, co~) 

] 
i=1 

_O~(n)X 
Here, all the  coefficients of e ~ for j = 1 . . . , n  + 1 are positive. 
function fn(X, wn) is hyperexponent ia l  and complete ly  monotone.  

(38) 

The  probabi l i ty  density" 

3. A G I / M / 1  Q U E U E  
W I T H  n th  G E N E R A T I O N  IPP  I N P U T S  

In this section, we s tudy  a G I / M / 1  queue with rt TM generat ion I P P  input.  Suppose tha t  the 
interarr ival  t ime probabi l i ty  densi ty function is given by fn(x, cOn) and further  tha t  the service 

t ime d is t r ibut ion  is exponent ia l  wi th  ra te  #. For example,  in packet  communica t ion  networks, 
a terminal  equipment  which receives packets can be model led as a GI/M/1 queue with n th 

generat ion IPP  input.  Here, customers  correspond to packets.  Let t ing  Xn denote  the  number 
of customers  in the  sys tem as seen by the rt th arrival,  it is easy to see tha t  the  process {X,~; 
n = 1 , 2 , . . .  } is an imbedded Markov chain. The  t rans i t ion  probabi l i ty  Pzj for this  Markov chain 

is given by 

0 ~ ( ~ ) J  
p~,i+l_j= e -~*~: j! f,~(x,wn)dx, j = 0 , 1 , . . . , i ,  (39) 

and 

(40) 

(41) 

k : 1 , 2 , . . . ,  (42) 

j ~  ~ (,x)k 
Pi'~ E e-"~ k! f~(x, co,~)dx, i = 0 , 1 , 2  . . . . .  

k = i + l  

The s ta t ionary  probabi l i t ies  7rk, k = O, 1 , . . .  can be as the  unique solution of 

7r k = ~ T r i P i k  , k = 0 , 1 , . . . .  
i=0  

Equat ions  (41) reduce to 

oo oo 

~k Z '~ f c_.~ r~x~,+,-~ -~ ~ 7 ~ : ~ ! f n ( X , c o n ) d x ,  
i = k - 1  J O 

and oo 

Z ' ~  = 1. (431 
k=O 

When the mean interarr ival  t ime is greater  than  the mean service t ime # -1 ,  t ha t  is, p < 1, the 

s ta t ionary  probabi l i ty  rrk is geometr ical ly d i s t r ibu ted  and can be wr i t ten  as 

7rk = (1 - fln)fl~ k (44) 

for some constant  fin. Subs t i tu t ion  into (42) leads to 

fo ~~ (#x)i+lk;,f~(x,w,~) fkn ---- fli e-"a: (i + 1 - 
i=k-1  

/o = e - . X f l k - 1  (fl'~l~Z) i + l - k  (45) 
n ~=k-1 - ( : T Y - ~ ' .  f,~(x, co~)dx 

jO ~ 
= e-"XZ~-l~z"**xf ,~(x,  co,~) d:,: 
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or 

~n = e - " ( ' - ~ ' J ~ f ~ ( z ,  w,~) dz = f2 (# (1  - 3~),  wn). (46) 

If the  u t i l i za t ion  p < 1, t h e n  (46) has a un ique  so lu t ion  in (0, 1). T h a t  is because  t h a t  we have 

1 = f ~ ( 0 + , a ~ ) ,  

d f ~ ( . ( 1  - s ) , ~ ) l ~ = , _  = . A  - 1  > 1, 
ds 

f*(p ,w, , )  > O, 

and  
d 2 

~s2 f n ( # ( 1  - s) ,wn) > 0, for every s E (0, 1). 

The  f/~ is a general ized ut i l iza t ion.  In  par t icu lar ,  t he  i n p u t  process is Poisson;  it is satisfied t ha t  
~ = p. We have the  following theorem for the  n th gene ra t ion  I P P  i npu t  queue.  

THEOREM 3. When we let ~n denote the generalized utilization for the n th generation input 

queue, GI ( fn (x ,w ,~) ) /M(#) /1 ,  n = 0, 1 , . . . ,  it is satisfied that 

0 < ~0( = p) < ~1 < " ' "  < 1. (47) 

In addition, if it can be written for r > 0 and w that 

Wn = (1 + e ) - ~ w ,  

then 
l im /3,~ = 1. 

n ~ c ~  

PROOF. Let Xn (n  = 1 , 2 , . . .  ) denote  nonnega t ive  r a n d o m  variables  for t i le d i s t r i bu t ion  

F,~(x,~n) = fn(t ,w,~)dt.  

From tile def ini t ion of the  n th genera t ion  IPP,  X n + l  is more  var iable  t h a n  Xn ,  t h a t  is, 

/7 /7 (1 - Fn(X, w n ) ) d x  < (1 - Fn+l(X, Wn+l))dx,  

for all a > O. In  addi t ion ,  the  means  are fixed, t h a t  is, 

/7 /7 x -1 = E ( X n )  = (1 - F n ( x , ~ . ) ) d x  = (1 - F . + l ( X , ~ n + l ) ) d x  = E ( X . + I ) .  

Then ,  for all convex func t ion  h, we have [2] 

E[h(X~)]  < E[h(X~+I)] .  

Since e -sx (0 _< s < oo) is a convex funct ion,  we have 

E (e-sx. , )  < 

T h a t  means  t h a t  

f~ (#(1  - s) ,w~) < f * + l ( # ( 1  - s),w,~+l), 

(48) 
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for all s e (0, 1). Thus, we have 

Now, we assume that 

Since in (19) we have 

it follows that  when c < 1, 

lim 2n_l  7 -- n - -+OO 

From (20), we have 

~n < ]~n+l,  • = O, 1 . . . . .  

lim / 3 n = p <  1. 
n - - - * o o  

(n + 1)"y~ 
An:A 1 +  ~w: ] '  

--- ~oolim A(2~117+ - - - -  

f~(S,COr~) = 8/2n_1,.,/ -'F 1 + ,~n/2n-l"/  

Taking a limit to oo for n, we have 

Setting s = #(1 - 3), we have 

2,~_17 = 0. 

+ 1 
S / 2 n - l ' / q -  1 q- An/2n-l"/g~(s'  COn)fr*~(S' COn). 

f~o(s, oaoo) = a*oo(s,woo)f~(s,woo).  

/5 = a~o(p(1 - 3), cooo)~. 

This means that 

a * ( # ( 1  - ~),cooc) = 1. 

This is contradictory, because the interarrival t ime is stochastically larger than  the off-period 

length, tha t  is, 

1 > f~c(s ,w~)  > a*~(s,co~), 

for a n y s > _ 0 .  

On the other hand, when e >_ 1, we have in (20) 

1 2 n- a ~/A~ 
f:(s,~.) + 

s /An  + 2 n - ' 7 / A n  + 1 s /An + 2n--l'T/)~ n -~- 1 an\s'a)nj3nks'cOn)" 

Taking a limit to oc for n, 

f ~ ( s , w ~ )  = 1. 

This contradicts/3 < 1. | 

Theorem 3 mentions that,  as the generation n changes, tile waiting t ime becomes larger stochas- 

tically [2]. Even if the uti l ization p is low enough, the waiting t ime is t remendously large for 

sufficiently large n of the generation. In this situation, suppose that  we get a new machine which 

can deal with sent packets at the speed twice compared with an older one. However, the waiting 

times still remain long. It is meaningless to replace the old machine with the new one. Our 

fi'actal Poisson process offers a serious problem on performance. 

4. C O N C L U S I O N S  

We have studied n th generation interrupted Poisson process. The larger n implies the larger 

variation of interarrival times. Taking a limit of n to oc, the interarrival t ime distr ibution has a 

heavy tail. We have named a fractal Poisson process for it. We have studied a G I / M / 1  queue 

with the fractal Poisson process input  and have shown that  the waiting t ime diverges. 
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