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Abstract 

This paper models a single-stage, single-product, stochastic assembly system, operating according to an Materials 
Requirements Planning controlled (MRP) ordering philosophy. It deals explicitly with the underlying stochastic process that 
describes the end-product inventory position, enabling production lead times to be treated as independent and generally 
distributed random variables. The inventory position process is identified as a Markov renewal process, and this structure is 
exploited to determine system performance measures such as average inventory level, average backorder level, and the 
probability distribution of the end-product inventory position. An example, which demonstrates the type of analysis possible, 
focuses on quantifying the effect of kitting on the availability of end-products. 0 1998 Elsevier Science B.V. 

Keywords: Manufacturing; Modeling; Material requirements planning (MRPJ control; Kitting in assembly; End-product inventory position; 
Markov renewal process 

1. Introduction 

The traditional view of Materials Requirements Planning (MRP), which commonly implements the ‘push’ 
philosophy of material flow management, is based on the assumption that the production system operates 
deterministically. System operations are usually planned for a series of discrete time intervals known as time 
buckets, and order release quantities are planned, depending on forecasted demands (Orlicky [14]). The 
deterministic assumption seems unrealistic, since, in general, production takes place in a stochastic environment 
and demand for end-products is seldomly completely predictable. 

The purpose of this paper is to model a single-stage, single-product, MRP-controlled (a term coined by 
Buzacott and Shantikumar [5]) production/inventory system in which processing time and demand are 
stochastic. The objectives are to analyze the underlying stochastic process that describes the inventory position 
and to obtain various system performance measures, lending insight into MRP-control. In particular, we 
demonstrate use of the model to study assembly operations, quantitatively describing the effects of the kitting 
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process on end-product inventory position. MRP is most relevant to assembly systems, yet no prior models lend 
insight into the MRP control of such a system. 

The (generic) system that we model is composed of production center P and end-product inventory I as 
shown in Fig. I. The production center consists of machines P,, . . . , P,,, each of which processes a different type 
of part, and machine M, which assembles one part of each type into each end-product. An inventory-replenish- 
ment order for a lot of end-products requires lots of part types 1,. ,n to be produced on machines P,, . . , P,,, 
respectively. Completed parts are accumulated in a kit, and, when all part types are ready, the completed kit is 
transferred to machine M where the parts are assembled. Customers for end-products arrive randomly at 
inventory I. Each demands one end-product, which is supplied immediately if stock is available. Unsatisfied 
demands are backordered. 

In the deterministic MRP environment, inventory position (i.e., the number of end-products on hand plus on 
order minus the number on backorder) is checked at fixed time intervals and replenishment orders for required 
quantities are placed at these times. Our model is based on an analog of this practice, resulting in a specialized 
ordering strategy for the stochastic environment. Inventory position is checked at the instant a replenishment 
order arrives at I and an order for one lot of end-products is placed on P if replenishment is necessary to assure 
future (expected) safety stock. The rationale behind this ordering strategy is that the single-stage production 
facility can start processing an order only after it finishes the previous one. An order is not placed while the 
facility is producing, since such an order would just wait in queue. This ordering strategy allows use of the latest 
possible information about the end-product inventory position and the order quantity is determined accordingly, 
invoking the key look-ahead characteristic of MRP control. 

In the deterministic MRP environment, a replenishment order is assumed to arrive after a constant lead time. 
In the stochastic case, we model replenishment (i.e., production) lead times as independent and generally 
distributed (G.I.) random variables. 

If the criterion that assures future (expected) safety stock is satisfied when the inventory position is checked, 
a replenishment order is not placed. However, the inventory position is checked again after a random duration. 
This is the stochastic analog of the practice used in the deterministic environment in which, if no order is placed 
in some period, the inventory position is checked again after a deterministic duration. Whenever inventory 
position is checked in the stochastic case, the look-ahead feature assures future (expected) safety stock levels. 

This stochastic production/inventory system can be viewed as a double-ended queue analogous to a taxi cab 
queue in which customers arrive at random to pick up cabs (i.e., end-products) at one end and empty cabs (i.e., 
replenishment orders) return at random to the other end. 

Few stochastic models of MRP-controlled production/inventory systems appear in the literature because 
such systems present difficult challenges to analysis. A single-stage production facility serving the demand for a 
single product was first studied by Gavish and Graves [I I], who assumed a constant production rate. In a 
companion paper, Gavish and Graves [12] considered an arbitrary distribution for production time and Poisson 
demand for the end-product, and they developed a continuous review policy to minimize expected 
production/inventory cost. However, their approach does not incorporate MRP control for production; rather, it 
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Fig. 1. Single-stage production/inventory system. 
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follows an (R, r) policy. In other MRP-related research, Yano [20] devised a method to optimize planned lead 
times in serial production systems and others (e.g., Chang [6], Wijngaard and Wortman [IS]) studied the roles of 
safety stock and safety lead time. 

A two-stage production/inventory system, operating according to a base stock policy, was studied by Zipkin 
[21]. By assuming that production times at both stages are exponentially distributed and that demand follows a 
Poisson process, he was able to analyze the system as a simple Markov process. He obtained several 
performance measures, including the average inventory level and the average number of backorders for the 
end-product. 

In recent years, researchers have devoted much attention to studying pull systems (e.g., Deleersnyder et al. 
[8]; Zipkin [21], Di Mascolo et al. [9]> and to comparing the operating philosophies of MRP with those of 
kanban-controlled, pull production systems (e.g., Spearman and Zazanis [ 161). Buzacott [2] modeled a 
kanban-controlled production system with stochastic demand and stochastic processing times as a linked 
queueing network, deriving various performance measures: delivery performance, inventory levels, and number 
of kanbans. He also showed that a conventional MRP system can be approximated by a kanban-controlled 
production system if the triggering of kanbans is effected by forecasted instead of actual demand. 

In related work, Buzacott and Shanthikumar [4] generalized MRP and other control mechanisms to manage 
material flow in manufacturing systems consisting of multiple cells. Buzacott et al. [3] compared the service 
levels that can be attained in finished goods inventory by using either MRP or base stock control in serial 
production systems. Their model of system dynamics led to an approximation scheme that compared favorably 
with simulated performance. 

Buzacott and Shantikumar [5] presented a model that is, perhaps, the most faithful representation of current 
MRP control. They analyzed the use of safety stock and safety lead time in a single-stage, MRP-controlled 
production/inventory system with stochastic demand, stochastic processing times, and limited production 
capacity. They modeled the effects of master scheduling, which may, in principle, be used to reduce or eliminate 
demand variability over the lead time, concluding that safety stock is more robust and that safety time is 
preferable only when lead time demand can be forecasted accurately. 

A production facility with a single processor producing multiple products was studied by Altiok and Shiue 
[I]. Assuming Poisson demand, arbitrarily distributed processing and set-up times, and backorders, they were 
able to determine various performance measures including average inventory level, average backorder level, and 
the probability distribution of backorders. They identified that a single-product system reduces to an M/G/l 
type queueing problem, which we discuss further later. 

The main differences between our analysis of the MRP controlled production/inventory system and prior 
studies are: (I) we address assembly operations, (2) we deal explicitly with the underlying stochastic process 
that describes kit and end-product inventory positions, (3) we allow production lead times to be G.I., and (4) we 
incorporate stochastic reorder timing to correspond with the assumed stochastic environment. We identify the 
inventory position process to be a Markov renewal process and exploit this structure to determine system 
performance measures such as average inventory level, average backorder level, and the probability distribution 
of the end-product inventory position. We give an example to demonstrate the type of analysis possible, 
focusing on quantifying the effect of kitting on the availability of end-products. To our knowledge, this 
approach to analyzing the MRP system is novel. 

The body of this paper is organized in five sections. Section 2 describes the model of a single-stage 
MRP-controlled assembly system and the replenishment order placement strategy. The stochastic process 
underlying the inventory position process is identified as a Markov renewal process in Section 3. The model is 
analyzed in Section 4 by obtaining measures of the inventory position process: the Palm probability vector u, 
observed at replenishment order arrival times, and the stationary probability vector, 77, observed at arbitrary 
times. The stationary probability vector of the end-product inventory position, f, is also determined. Using the 
performance measures of the assembly system obtained in Section 4, the effect of kitting on MRP-controlled 
assembly is described through an example in Section 5. Finally, the conclusion is presented in Section 6. 
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2. Model description 

Fig. 1 depicts a system in which production facility P produces end-products and sends them to end-product 
inventory 1. We assume that demands occur for one end-product at a time according to the Poisson process. We 
note that, in practice, it is possible for an MRP system to ‘freeze’ requirements over a certain future duration 
with the goal of reducing uncertainty in demand. However, customers might still cancel orders or request later 
due dates, and the profit incentive would discourage a company from refusing a new order with a short lead 
time if it could be produced with available capacity, Thus, uncertainties exist in any case, so we follow the lead 
of most related studies (see the literature review) and invoke the Poisson assumption. 

Within the production facility, machines P,, Pz, _ . . , P,, each withdraw raw materials from an infinite pool 
and prepare parts required for assembly. As soon as a kit of parts required to produce one batch of end-products 
is composed, it is sent immediately to machine M for assembly. After assembly, the batch of end-products is 
sent immediately to inventory 1. 

The inventory position is observed at an instant when a replenishment order arrives at 1. Depending on the 
inventory position immediately after the arrival of a replenishment order, the quantity of the next order to be 
placed on P is determined. We agree, a priori, that an order will be placed, either for quantity Q or for nothing 
at all, depending on the inventory position at that time. This ordering strategy has been used for deterministic 
assembly systems (Vollman et al. [22]) in which replenishment order lead time is assumed to be constant. In 
deterministic MRP, when an order is released for quantity Q, it arrives after a constant lead time L. In our case, 
we consider this lead time to be a random variable. Again, in deterministic MRP, when no order is placed in 
some period (i.e., the order release quantity is zero), the projected available balance is checked at the end of a 
time bucket of deterministic duration, and a new order release quantity is determined. In modeling stochastic 
MRP, when the order release quantity is zero, we observe the system again after a random lead time. 

Various MRP lot-sizing techniques are available in the literature; for example, lot-for-lot, Economic Ordering 
Quantity (EOQ), Part Period Balancing (PPB) rule, and Least Unit Cost (LUC) rule (Nahmias [ 131). In this 
paper we assume that order quantity Q is the Economic Ordering Quantity. However, no attempt has been made 
to obtain the optimum batch size, since stochastic optimization is beyond the scope of this study. 

To describe the ordering philosophy, we first define the following notation: 

s = safety stock; 
Q = Economic Ordering Quantity; 

2 
= instant of the mth replenishment order arrival; 

Rm, 

= inventory position at T, (prior to a replenishment order arrival); 
= replenishment order quantity arriving at time T,,, (either 0 or Q); 

A = mean rate of the Poisson demand process. 

After an order for Q items is placed, the production center P takes random time L, to produce the lot, and 
the replenishment order arrives at time r,,,+ ,, a time duration of L, after TV. If no order is placed at time TV 
(i.e., replenishment quantity R,, , = O), the inventory position is checked again at time T,+ ,, after random time 
duration L, following TV, to determine if an order should be placed at that time. The random variables L, and 
L, are G.I. distributed with distribution functions @( .> and 9( .>, respectively. 

At time TV an order is placed, either for Q or 0 end-products, assuring that the expected safety stock that will 
exist when the replenishment order (of lot size R,, ,> arrives at time TV + , will be at least S. For practical 
purposes, we assume that E[ LPI 2 E[ LR]. If the order quantity is Q, the following inequality must be satisfied 
to assure an expected safety stock of s end-products at time T,,,+ ,: 

X,+R,-hE[L,]>s, 
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in which E[ &,I = the expected duration of the random lead time L,. Rearranging, the criterion becomes 

X,+R,>K,, 

in which K, = s + AE[ LQ]. If the order quantity is zero, the following inequality must be satisfied to assure an 
expected safety stock of s end-products at time TV+ ,: 

X,,, + R, - AE[ LR] - hE[ LQ] 2 S, 

in which E[ LR] = the expected duration of the random lead time L,. Note that hE[ LQ] must be included, since, 
if R, = 0, the earliest expected time that a replenishment order of quantity Q might arrive is T,,, + L, + L,. 
Rearranging, the criterion becomes 

X,,,iR,zK, 

in which K = s + AE[ Le] + AE[ LR]. Since K 2 K,, the event of placing an order when inventory position 
reaches K contains the event of placing an order when inventory position reaches K,. The ordering strategy 
which we propose to represent MRP control can be summarized by: 

if K-X,,, - R, > 0, order Q, (1) 

if K - X, - R, < 0, order 0. (2) 

When the inventory position at time TV is less than the pre-specified value K, the quantity Q is ordered. 
Otherwise, no order is placed at time 7,. 

In a deterministic MRP environment, the system is observed at fixed time intervals and replenishment orders 
for required quantities are placed at these times. In the stochastic environment, we propose to observe the 
system at random times T,,, : m E f’V. The decision setting the order quantity R,, , at T, is made considering the 
expected inventory level at time T,,,+ ,, and, thus, represents the look ahead feature of a deterministic MRP 
system. In the next section, we identify the underlying stochastic structure of this production/inventory system. 

3. The inventory position process 

In this MRP-controlled system, the inventory positions at I change at the epochs at which replenishment 
orders arrive and also at the epochs at which end-products are demanded. To identify the underlying stochastic 
structure, we observe the system only at the epochs at which replenishment orders arrive at I, and we model the 
system state as a marked point process. 

A realization, o, of the marked point process is described by the sequence w = ( jz,,,, t, : m E N) in which 
Y,,, E E and t,,, E lF!+. t, is the time at which the mth replenishment order arrives at I and indicates the mth 
state change epoch. The vector X, is the two-tuple (x,,,,r,,,> with state space c--x, K + Q - I] X [Q,O], in 
which x,,, indicates the inventory position at t, and r, is the replenishment order quantity that arrives at time 
f rn’ 

Let the set of all such realizations w be denoted by a. The system state marked point process can be 
represented by the probability space (.f2,a(C!),P) where a(0) is a a-algebra on 0, and P is a probability 
measure on V( a>. We follow the treatment by Disney and Kiessler [IO] of marked point processes and assume 
that for each realization, w, the number of ordered pairs (Z,,t,) in E X B is finite where B is a bounded set in 
[Wf. Define ma_ppings T, : 0 --, lRf and j;,,, : fl+ E (where E is a countable set), as -r,( w> = t,, X,( WI= x,. 
We describe X, as a two-tuple (X,, R,) where X,(w) = x,, R,(w) = r,,,. The stochastic process ( ??,T) = 

i&J,, 7, :m E N) is defined as the Inventory Position Process and the set (X,T) = (X,, R, : m E N} is 
defined as the Inventory Position State Process, 

In what follows, we denote x, and x, f,, the inventory positions at two consecutive instances T, and T,,, + , , 
as i, and j, respectively, since it is conventional to represent the semi-Markov kernel as Q(i,j,t>, in which i 
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and j are two consecutive states. Similarly, we denote r, and r,,,+, as i, and j,, respectively. Next, we 
establish that (x,7) is a Markov renewal process. 

Theorem 1. The inventory position process ( x,7) = { X,, R,, rm : tn E N) is a Markou renewal process on the 
state space E. 

It is straightforward to show that the Markov renewal properties are satisfied, and the proof is, therefore, 
omitted. Corollary 1, an important implication of Theorem 1, identifies the underlying Markov chain of the 
inventory position process. 

Corollary 1. The inventory position state process % forms a Markov chain on the state space E with one-step 
transition probability matrix P. The elements of the mutrix P are given by 

P(i,j) = lim Q(i,j,t), Vi,jE E. 
I-+X 

The inuentory position process (x,7) is analyzed in the next section. 

4. Analysis 

We first derive the semi-Markov kernel, Q<i,j, t), of the Markov renewal process (x,7). Subsequently, using 
Q<i,j,t>, the ergodic distribution of the underlying Markov chain of the (X,7) process is obtained. Finally, we 
derive a semi-regenerative process describing the end-product inventory position and obtain the stationary 
distribution of the end-product inventory position observed at arbitrary times. The reader who is not interested in 
this mathematical detail can observe the resulting models at the end of the section and their application in 
Section 5. 

4.1. Semi-Markov kernel Qfi,j,t) 

The semi-Markov kernel of the inventory position process (2,~) is expressed as 

Q(i,j,t)=P{X,+,=jx, R,+,=j,,7,+1-7,1tlX,,R,} 

= 
/ { ‘P R,, I =j,IX,=i,, R,=i,}P{X,,,+,=j,lX,=i,, R,=iR, 
0 

(3) 

(4) 

7 m+ I -7m=~}dP{T,+,-7,~~IR,+,=jR}. 

For all i, j E E, it follows from the structure of the problem that 

PI&?l+ I =jR)Xm=iX, R,=i,) =l for jR=Q, i,<K-Q, lR =Q, 

or jR=O, K-Q<i,lK- 1, iR=Q, 

or jR=Q, i,<K, i, = 0, 

or jR = 0, K<i,<K+Q- 1, i,=O, 
= 0. otherwise. 
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For a given time interval u, considering Poisson demand for the end-product, it follows that 

P{Xm+ I =jxIX,,,=ix, R =i,, 7 m+1- Tm = u} 

,-Au(Au)il+Q-ir 
ix 5 ix + Q, 

= 
i,= Q 

m 
(i,+Q-i,>! 

for 
r,E (-=,K- l] 

eaAU( hu)i”-i” for j, I i,, 

= (ix--j,)! 

i, = 0 

ixE( -x,K+Q-1] 

= 0, otherwise. 

(5) 

The time between the arrivals of two successive replenishment orders CT,+, - T,,,), depends on the time 
required by P to process lot size j,. It follows that for all i,j I E, t E lR+ and m E N 

p{rln+ I -T,,,suIR,,,+,=jR) = @W if j,=Q, 

= q(u) if j,=O. (6) 

Substituting (4), (9, and (6) in (3), we obtain the semi-Markov kernel 

Q(i,j,t) = /’ e-hu(hu)“+Q-” d,+(u), 

o (i,+Q-j,)! 
F; f: Q, 
X 

ft+ Q 

Q(i,j,t) =~ ‘-(*o’er’;‘:’ dd,(u), ~=e~ i,=O’ 
.I x . jx51x, i,CK, 

Q(i,j,f)=/‘e~A~~(Au)‘*ivird~(u), i;yi,, 
o (i,+Q-j,)! 

>IELi IK_l 
X 7 

Q(i,i.r)=/de-(*~(hr);‘~“d~(u) :;yi >;p’d,+Q_l 
x x . x ’ X 

Q( i,j,t) = 0, otherwise. 

4.2. Stationary distribution of the underlying Markov chain 

The ergodic distribution of the inventory position at order placement epochs can be obtained from the 
semi-Markov kernel Q<i,j,t> of the (X.7) process. To accomplish this, we partition the state space into 

(Y= (iEE:i,= Q) and p=(i~E:i,=O}, 
(7) 

in which a represents the set of all states that triggers an order quantity of Q, and p represents the set of all 
states that trigger an order quantity of 0. Thus, cy and /3 partition the state space E into mutually exclusive, 
collectively exhaustive subsets: (Y U p = E and (Y 17 /3 = 0. Moreover, since E is countable, we are able to 
partition the semi-Markov kernel Q<i, j,t>: 

Q(r) = 
Q,,(f) Qa,W 

Qp&> I Q,&) * 
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The one-step transition probability matrix of the inventory position process at replenishment order arrival 
epochs can be determined by taking the limit as r --, x, that is, 

P( i,j) = lim Q( i,j,t), 
t-+x 

in which P is the one-step transition probability matrix of the underlying Markov chain. We also define 

Q,,= ;ty Q,,(r>v 

Qap = ,$ Qa,O)~ 
Q,,= !LJ Q,aW. 

Qap = ,'iy Qp,&). 
Then, P can be written as 

Let 

v(j) = ,fl,mx P[ X, =jx, R, =j,]. 

Using the identity V= UP, and partitioning u as v = [rra ~~1, the equations for the stationary distribution of the 
underlying Markov chain can be written as 

in which, 

7r0={T0(j):jE[K- 1,-x)), 

nF={nP(j):j%[K-Q+l,-=)} 

and 

nb_( j) = ,Il_mx P( X, =j, R,,, = Q), 

rrP(j)= lim P{X,,,=j, R,=O). 
Ill -a x 

Also, 

Qna=PIX,+,=i,,R,+,=QIX,=iZ,R,=Q] 

K-Q-l 

K-Q-2 

= 
-‘Q 

-Q-l 

-cc 

K-l . . 2 1 0 -I -2 . . . --r 

OK OK- I . a3 a2 aI a0 a-, . . 

aK . a4 u3 a2 al a, . . 

‘K . a4 O3 a2 a, . . 

. . . . 

UK UK-, . . . 

UK UK-1 . . 

. . 

. . 

. . 

(8) 
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dd(t), I= --x ,_.., -2,- I.0 ,.._, K 

Q,B=PIX,+,=j,,R,+,=QIX,=i,,R,=O] 

K+Q-I Kfl K K-l 

K-Q 
K-Q+1 

= K-Q+2 

K-l 

b, h-1 
b, b,-, 

b, b,-, b,-2 

b, b,:, : : b,-;+, h-p 

in which, 

x e-y /qK-’ 
b,=jo (K_l), d+(t), I= --r ,..., -2,-I,0 ,..., K. 

Q,,=P[X,+,=j,,,R,+,=OIX,=i,,R,=Q] 

2 I 0 -I -2 --r 

b, b, b,, b-1 b-2 

b, b,, b-, b-2 b-3 

b,, b-, b-2 b-3 b-4 

K- 1 

K-2 

= 
0 

-1 

-* 

in which 

b-b,, b-, b-b-, 

K-l . . 2 1 0 -1 -2 . . . --3t 

UK aK-1 . a3 a2 aI QO a_, . . . 

aK . a4 a3 a2 aI a, . . . 

aK . a4 a3 a2 a, . . . 

. . . . . 

OK UK_, . . . 

UK aK_, . . . 

. . . 

. . . 

. . . 

d&(t), I= --r ,..., -2,- I.0 . . . . K 

K 
K+l 

= K+2 

K+& I 

b, h-1 
b, b-1 b,-2 

b, b;_, : : bK_;+, b,:p b-p+, b 

in which 

r fp( At)K-’ 
b,=jo (K_l)! dJl(t), I= --x: ,... v--2,- l,O,...,K. 

K+Q-1 K+1 K K-l 2 I 0 -I -2 . --x 

b, h-1 b, 4 b,, b-, b-2 

b, b,, b_, b-2 b-3 

b,, b_, b-2 b-, b-4 

Q b-Q-1 

(9) 

(‘0) 
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Now, let 

and note that 

rc = rcI.1 + TP.1’ 

q3 = %.2 + 4.2. 

Eqs. (12)-( 17) are evaluated using Eqs. (LX)-(1 I>; results are presented in Table 1. 
Now, define geometric transforms 

K-I 

q?(z) = c %(i)Z’* 
.;= --x 

K+Q-I 

n,(z) = c q(j)zj. 

,= --x 

Substituting the values of na(j> and rP(j) from Table 1 into (18), we get 
K-l K-/ 

II,(z)= c ~ui+,{~~(K-Q-i)+~~(K-i)}zJ=[A(z)/zK-Q][~~(z)-~,*(z)] 

j=-z ,=I 

+[4WK][~,.d4 -I,‘] 

and, substituting into (191, we obtain 

$(z> = [B(z)/z K-Q]nJz) + [B(z)/tK]Jlp*(z), 
in which 

K-l 

n,*(z) = c ~,(_gZ’, 

j=K-Q 

K+Q-1 

Z&‘(t)= C vP(j)z’. 
j=K 

Substituting Eq. (20) in Eq. (19). it follows that 

K(z) = [ +)/(zK- z~A(z))][(~(z)/z~)--][z~~,*(z)+~,~(z)], 

in which 

A(z) = f a,~‘, 
,= --x 

B(z) = 5 b,z’. 
j= --X 

(12) 
(‘3) 
(14) 
(‘5) 

(‘6) 
(‘7) 

(‘8) 

(‘9) 

(20) 

(2’) 

Thevaluesoftheconstants T~(K-Q>, T~(K-Q+ l),...,n-a,(K- 1)and ?T~(K), r-(K+ l),...,n;,(K+ 
Q - 1) can be found such that n,(z) + II,,< z) becomes a p.g.f. using Takagi’s [17] approach. Define 

n(j)=Lin%P{X,=j} 
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__ 
I I -7 

<kkkkQ 
VI VI VI vl VI VI 
Y’-.‘Y’Y’,“-, 
vvvvvv 
888888 
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and 
.j=K+Q-I 

n(z)= c 7r(i)zj. 
j--x 

Then, note that 

IQ)=II,(z) +L$(z). (22) 

We substitute Eqs. (20) and (21) in Eq. (22) and obtain the p.g.f. of the stationary distribution of the 
end-product inventory position observed at the order placement points. 

4.3. Stationary distribution at arbitrary times 

To obtain the stationary distribution of the end-product inventory position at arbitrary times, we formulate a 
semi-regenerative process to describe the inventory position. The next proposition establishes the fact that the 
inventory position process is a semi-regenerative process. 

Proposition 1. The end-product inventory position, Z,, observed at any time t, t E !&2+, forms a stochastic 
process Z = (Z, : t E [w +) and is semi-regenerative. 

Proof. We use the definition of semi-regenerative process by Cinlar [7] to establish the result. The function 
t -+ z,(w) is right continuous and for almost all o has left hand limits. There exists an embedded Markov 
renewal process (E, r) which satisfies the following: 

(i) 7= (7, : m E N} is a set of stopping times for Z since, for each m E N, c= X,, 
(ii) for each m E N, 2,,, is determined by (Z, ; u I T,,,), 
(iii) from Markov renewal property of (x,7), for each m E N, n L t,, 0 < t, I t2 I . . . I t,, and positive 

function f defined on E”, 

E;[f(Z,“,+,,...,ZTN+,” IZu:UI7,1 =Ej[f(zf,,...,Z,n)] on X,=j. 

Since the process (2,~) satisfies the semi-regenerative property, it is a semi-regenerative process. 0 

Assuming that the underlying Markov chain of the (x,7) process is irreducible, aperiodic, recurrent with 
invariant measure 7r and m(k) = E[T, I%= z] and suppose that rrm = C-, E ,rr(k)m(k) < r, (Cinlar [7]), 

,I$ f,( 7, A) = ,I:; P( J?, E A 1 f. = ‘) 

or 

(IiT f,(X,=j)= ~~,(i)~xp(~=jl,,>t,%=;)P{r,>tlX,=IJdt, 
I 

in which lim,,, P,( x, =j>, for all i,j E E, is the joint stationary distribution of inventory position X and 
reordering quantity R, observed at arbitrary times. 

Partitioning the state space in (Y and p as in (7), and defining 

,‘ir P(X, = 7) = ?$) 

and 
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we can write 
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in which 

r~( j) = ,‘iy R( X, =j, R, = Q), 

vp(j) = lim P(X,=j, R,=O). 
t-x 

Note that 

(23) 

(24) 

G,,( i,j) = i ( 
xP X,=j, R,=Qlq>t, X,=i, R,=Q]P{T,>~IX,=~, R,=Q}dt, 

0 

GBp( i,j) = 
/ 1 

=P X,=j, R,=01~~>t, X,=i, Ro=O}P{~,>rIX,=i, R,=O)dt, 
0 

‘&( I’,j) = 
/ 1 

=P X, = j, R, = Q 17, > t, X, = i, R, = O}P(T, > f 1 X0 = i, R, = O)dt, 
0 

G+(i,j) = jdrP{X,=j, R,=Ol T,>r,XO=i,Ro=Q)P{T,>r~Xo=i,Ro=Q]dr. 

At the first regeneration time T, > r, R, equals R, due to the semi-regenerative structure of Z = (Z, : r E b!+}. 
Hence, the conditional probabilities P{ R, = Q 1 R, = 0) and P{ R, = 0 ( R, = Q), which appear in G,a and Ga,, 
are both 0, and it follows that 

Gas = GPU = 0. 

G,,(i, j) and GPP(i, j) can be represented as follows: 

G,,(i,j) = I 
x ,_A(( qi+P-J 

0 (i+Q-j)! 
[l -c#~(r)]dr for i<K-Q, j<i+Q 

r ,-~r(~~)i+Q-i 

= 
/ o (i+Q-j)! 

[l -t,b(r)]dr for K-QIisK- 1, j<i+Q, 

K+Q-I . . K+l K K-l . . 1 0 -1 . . 

-Q-l 
-Q 

-Q+l 

G,,= . 

K-Q-l 

K-Q 
K-Q+1 

K-l 

dK 
dK-, 

CK 
d K-l 

CK CK-I 

cK cK-l ’ 

CK CK-I cK-2 ’ 

. . . 

. . . 

CK-1 . . ‘2 Cl CO c-1 

. . d, d,, de, d-2 

. . do d-, d-2 d-3 

d,:,. 
. . . 
. . . d-p+, . . 

(25) 
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in which 

-+(t)]dt, I= --z ,..., -2,- I,0 ,..., K, 

c+=l, (K-l)! 
= e-A’(Ar)K-’ [l - $(r)] dr, I= --3t,...,- 2,- 1,0 ,..., K, 

q&j) = 

= 

-I 
0 
1 

GDP = . 

K-I 
K 

K+ 1 

Kk 

/ 
xe-A’(Ar)‘-‘[l-$(f)]dr fori<K,j<i 

0 (i-j)! 

I 

r e-,b(Ar);-i 

0 (i-j)! 
[I-$(r)]dr forKIiSK+Q-l,jli, 

K+Q-I . . K+l K K-l . . I 0 -1 . . 

CK 

dK dK-1 
dK dK-, . 

. . . 

d, . ’ . dKip. 

cK 

CK cK- I 

. . . 

. . . . 

CK-] . . c2 Cl 
. 4 do 

. . . do d-1 

. . . . 

. . . . 

. . . . d-Q+, 

CK 

‘K-I 

cK-2 

CO 

d-1 

d_ 2 

‘K-I 

c-1 

d-2 

d-3 

in which 

c, = 
/ 

xe-A’(Ar)K-‘[l -+(r)]dr, 
o (K-l)! 

1= --r ,..., -2,- I,0 ,..., K, 

d/=l (K-l)! 
xe~“‘(hr)K-‘[~-~(r)]d~, I= --tc ,..., -2,- I,0 ,..., K. 

The vector of the stationary probabilities of the end-product inventory position, observed at arbitrary times, is 
represented by 

f=WWW. 

From Eqs. (23) and (241, it follows that 

f(j) = !i$YX,=j) 

= v,(j) + s(j) foreach j~t+A. 
(27) 
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Using Eqs. (23), (25) and (26) in Eq. (27), we can show that 

i=Q-1 
f(j) = +9(i)]+ c d,_;[q,(K-Q+i)+rB(K+i)] 

i=o 
for -x<jlK- 1 

Defining the p.g.f of the end-product inventory distribution as 

K+Q-I 

F(z)= C f(j)Zj 
j--x 

and substituting Eq. (28) in (29), in can be shown that 

F(z) = --&(z)/A(z)l~a(z) + [D(z)/B(z>lII,(z)], 
in which 

A(z)= f ajz'= c zj/ 
x eeA’( At) K-j 

;= --r js -Z 0 (K-j)! 
d+(r) = /exe-*(‘-z)rd$(r), 

(29) 

(30) 

qz)= j_t cjzj= 5 z~~xe(^;(~~)~~‘[l-~(r)]dr=~xe~*~J~i~r(l-~(~)]d~~ 
--x js -X 

D(Z)= f djZj=j~~xZj/O 
x ,-‘I( At) K-j 

[l-~(t)ldr=~~e-A(i-T”[l-~(f)]df. 
jx --x (K-j)! (3’) 

To evaluate F(z), we must find rrm = C ts ,rr(k)m(k) and proceed as follows. Dividing the state spaces 
ascribed to (Y and /3, we get 

in which 

rra(j) = lim P{ X, =j, R, = Q}, 
rn-9 * 

?$(j)= lim P{X,,,=j, R,=O}, 
t?l+x 

m,(j) = E[T, I X0 =j, R, = Q] , 
ma(j)=E[r, IX,=j, R,=O]. 

(32) 
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Substituting the values of na(j) and nD( j) from Table I in (32), it can be shown that 

rm=LQ+(b-LQ) 

[ 

K-l K+Q- I 

C To(i)+ C 
;=K-Q j=K 

in which we used the relation 

lim n(z) = Ii; (n,(z) + n,f3(z))’ I. 
:fI 

Substituting n-m in Eq. (30), we obtain the expression for F(z). All the moments of f(j) may be obtained by 
successive differentiation of F(z) with respect to z and evaluating the derivative as z -+ I. 

5. Assembly operations: The effect of kitting on end-product inventory position 

In this section, we demonstrate the application of our model to investigate the effect of kitting in an 
assembly/inventory system with MRP-control. Kitting is a crucial process by which part flows are coordinated 
to initiate assembly; its effect on system performance has not been well described but the process has been 
studied under several conditions. 

Som et al. [I51 modeled a system in which part types are fed by an infinite pool, processed independently by 
different machines according to exponential distributions, then moved to buffers. When a matched set of parts is 
available in the buffers, a kit is composed, and it transits to a buffer ahead of an assembly machine, which 
processes according to an exponential distribution. They showed that the output process of this system can, 
under certain conditions, be approximated by an exponential distribution. These results allow the assembly 
portion of a system to be decomposed from downstream operations, for example, a finished goods inventory. 
However, this decomposition requires rather restrictive assumptions. In this paper, we allow processing times to 
be G.I., and it does not appear possible to decompose the system in a similar manner to determine the 
distribution of time between completions of assembly operations (i.e., the distribution of arrivals to finished 
goods inventory). 

In an earlier study, Wilhelm and Wang [19] modeled a system that produces to order, kitting parts delivered 
by vendors. Assuming that part delivery times are jointly normally distributed, they gave empirical evidence that 
kit completion times can be approximated by a normal distribution with parameters determined by a procedure 
they described. Such a ‘recursion’ model is able to deal with time-dependent operations, but not the steady state 
operations addressed in this paper. Furthermore, this paper gives exact results rather than approximations. 

The objective of this section is to identify how the end-product inventory position is related quantitatively to 
the number of part types required to compose a kit for producing each batch of end-products. The assembly 
system operates exactly as described in Section 1. We assume that n different types of components are needed 
to assemble one end-product. Raw materials for each part type are withdrawn from an infinite pool, and a 
random amount of time is required to process each part. When the MRP control system places a production 
order for quantity Q, raw materials are withdrawn, and the part production processes start, each producing a lot 
large enough to produce Q end-products (an end-product may require more than 1 part of each type). When all 
the parts required for assembly have been processed, a kit is said to be composed and transits immediately to the 
assembly station. Let 

Xi = time to produce a lot of the ith part to assemble Q end-products. 

V = time required to assemble end-products of lot size Q at machine M. 

The lead time to compose a kit 

Z=max[X;:i= l,...,n], 
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and the total lead time to produce a lot of Q end-products, defined previously as L,, can be defined in more 
detail to reflect kitting as 

L,=Z+V=max,{X,) +V. 

For the period when no order is placed (i.e., the order quantity is 0), the lead time is L,, since there is no kitting 
associated with such an order. 

We present a numerical example based on the following assumptions: 

0 the distribution function of the random variable Xi is Oi(t) = 1 - e-PI’ that the corresponding density 
function is dOi = pie-“<‘; 

0 the distribution function of the random variable L,, the time to assemble a lot size of Q end-products from a 
kit, is p(t) = 1 - e-j“, so that the corresponding density function is dp(t) = pee“‘; 

0 the distribution function of the random variable L,, the time to produce 0 end-products, is q(t) = 1 - e-“‘, 
so that the corresponding density function is dq(t) = ve-“‘; 

0 the distribution function of the time between demands for end-products is t(t) = 1 - e-“, so that the 
corresponding density function is d t(t) = Ae-“‘. 

The distribution function of the kitting time, Z, described as X(r), is obtained as follows: 

x(t) = ,fi @At) 

= ,fi(I -evfil’). 

The distribution function Q(r) of the lead time required to produce Q end-products from raw materials, 
including the kitting operation, is obtained, using * as the convolution operator, as follows: 

@b(f) =x * p(t). 

Part processing times and the assembly time on machine M are assumed to be exponentially distributed, 
since it is convenient to work with both the maximum and convolution operators when the related distributions 
are exponential. We emphasize, however, that our procedure is not restricted to dealing only with exponential 
distributions. 

0’ . I 
! 2 3 

Numbat ol Componenta n4 
5 

Fig. 2. Average inventory position vs. number of components. 
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Table 2 

Long-run average end-product inventory position 

Number of part types in a kit n I 
Average inventory level I 52 

2 3 4 5 
47 36 15 4 

For the following specific cases, we considered p = 8, A = 10, v = 4, Q = 5, K = 6, five different values of 
II (I, 2, 3, 4, and 5) and corresponding p, = 5, P, = 4, ,uj = 6, p4 = 5.5, and I.+ = 4.5. Considering a 
particular case with n = 2, we elaborate some key steps to derive an expression for the average inventory level. 
For 12 = 2, the density function of the time to compose a kit is 

= ,$(I -empa’) 

= ] _ e-P,’ _ e-P2r + e-(Pl+P2)r 

the distribution function of kitting plus assembly time is 

Q(t) = x*p(t) 

= 
/ 

V(l - ,r,cY-r, _ e- fi?(!‘-I) + ,-(Pl+~~X?-r))~e-~‘dt 

Z-Z lo-e-“- [ ~/~-~,)][e-PB’-e-@‘] 

- [ p/( I_L - pZ)] [eCP? - eWp’] - [ p/( p - p, - p*)] [e-(fil+PZ)’ - e-‘*‘I. 

Substituting Q(t), d@(r), V(f) and d*(r) in Eq. (31), we obtain the values for A(z), B(z), C(z), and 
D(z). Then, substituting the values of A(z), B(z), C(z) and D(z) into Eq. (301, we get the value of F(Z). The 
long-term average inventory position is obtained by taking the first derivative of F(z) with respect to z and 
evaluating it as z + 1. Similar derivations were used to determine the long-term average inventory position for 
n = I, 3, 4, and 5 (Fig. 21, but the values of A(z), B(z), C(z), and D(z) are rather intricate and are, therefore, 
not presented in this paper. 

Table 2 quantifies the average end-product inventory position in the long run as a function of the number of 
different part types required in a kit. As expected, as the number of part types required to assemble an 
end-product increases, the average end-product inventory position decreases (assuming that the same order size 
Q is used for each value of n). The difference in average inventory position for the cases n = 1 and 2 is 
relatively minor, indicating that when the end-product is assembled from a kit consisting of either one or two 
part types, the effect of kitting is not significant. However, the inventory position decreases sharply for II = 4 
and 5, indicating that the kitting of several types of parts does affect the average inventory position significantly. 
It may be noted that optimal batch size, Q' , may be different for each value of n (1, 2, 3, 4, and 5) and that 
optimal values of the average inventory levels may, thus, be different from those shown. However, no attempt 
has been made to obtain the optimal lot size Q in this analysis, since doing so is beyond the scope of this paper. 

6. Conclusion 

This paper analyzes underlying stochastic processes, describing operation of a single-stage, single-product 
assembly system that operates in an MRP-controlled environment. In particular, a model is developed, allowing 
production times to be treated as general, independent random variables. 
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The Palm probability distribution of the end-product inventory position observed at replenishment order 
arrival times, rr, is different from the ergodic distribution of the end-product inventory position observed at 
arbitrary times, f. This result is as anticipated, since the lead times for replenishment order arrivals are assumed 
to be G.I. distributed random variables. It is also observed that the capacity of the buffer I must be bounded 
from above by (finite) K for any ergodic distribution of the end-product inventory position to exist. In the limit 
as K -+ x, the long-term probability reduces to the trivia1 solution, zero. The probability generating function 
(p.g.f), F(z), of the distribution of the end-product inventory position, f(j), must equal unity in the limit as 
z --, x. 

The effect of kitting on the average end-product inventory position is quantified as a means of describing 
some operating characteristics of stochastic assembly systems operating under MRP control. As the number of 
part types in a kit increases, the average end-product inventory position decreases rapidly, indicating poor 
coordination of material flow due to the longer lead time required to compose kits. 

This paper considers a single-stage, single-product MRP-controlled assembly system. Logical extensions that 
could be undertaken by future research would be to address multi-stage and/or multi-product MRP-control. 
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