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In small-lot, multi-product, multi-level assembly systems, kitting (or accumu- 
lating) components required for assembly plays a crucial role in determining system 
performance, especially when the system operates in a stochastic environment. This 
paper analyzes the kitting process of a stochastic assembly system, treating it as 
an assembly-like queue. If components arrive according to Poisson processes, we 
show that the output stream departing the kitting operation is a Markov renewal 
process. The distribution of time between kit completions is also derived. Under 
the special condition of identical component arrival streams having the same 
Poisson parameter, we show that the output stream of kits approximates a Poisson 
process with parameter equal to that of the input stream. This approximately 
decouples assembly from kitting, allowing the assembly operation to be analyzed 
separately. 

Keywords: Kitting, assembly, Markov renewal process, double-ended queue. 

I. Introduction 

Traditionally, material flow analysis in assembly systems has been based on 
the assumption that the system operates deterministically. In recent years, attention 
has been directed to a more realistic analysis of  assembly systems, explicitly treating 
the stochastic events that influence operations. An  important  aspect of  assembly 
operations is kitting (or accumulating) required components  and releasing the kit 
to initiate assembly. Due to the stochastic nature of  component  availability, 
stock-outs often occur in component  inventories, thereby disrupting kitting and, 
consequently, assembly schedules. The goal of  this paper is to better understand 
the kitting process in a stochastic assembly system, which we treat as an 
assembly-like queue. 

This paper models the kitting process of  an assembly system as a Markov 
renewal process, assuming that component  arrival streams follow independent 
Poisson distributions. The assembly system is assumed to have a structure similar 
to that described in Hopp and Simon [7] and is shown in figure 1. 

P1 and P2 are machines that process components  (to prepare them for 
assembly) and P3 is the assembly machine. 11 and 12 are the buffers for com- 
ponents, I0 is the buffer for kits, and 13 is the buffer for the end-product.  P1 and 
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Fig. 1. Stochastic assembly system. 

P2 work independently, withdraw raw materials from their respective pools of 
unlimited supply, and deliver processed components to buffers 11 and 12, respec- 
tively. A component arriving at buffer I 1 (12) is immediately kitted with a part 
from buffer 12 (I1) if one is available, and a "kit" is said to be composed. If a kit 
cannot be composed, the processed part is held in buffer I1 (12) to await the arrival 
of a "matching" part at buffer 12 (I0. Once composed, a kit matching components 
from 11 and 12 is sent immediately to I0 and the kit is considered to be one arrival at 
I0. If the arriving kit finds I0 empty and P3 idle, it is immediately placed in the 
assembly machine P3- Otherwise, the kit is held in buffer I0. 

We assume that buffers of components have limited capacity and that each 
component is processed according to an exponential distribution (before kitting) 
to prepare it for assembly. When P3 completes an assembly, it withdraws a kit 
(i.e. two matched components) from I0, whenever available, then assembles 
another end product and delivers it to buffer 13. If a kit is not available in I0 
when P3 completes an assembly, it remains idle until a completed kit arrives. 
Demands for end products arrive at 13; each demand is assumed to be for a 
lot of unit size and is satisfied immediately if stock is available. Unsatisfied 
demands are backordered, causing the inventory position at 13 to take on 
negative values. 

Our primary result is to show that the output stream departing the kitting 
operation is a Markov renewal process. In the special case in which component 
arrival streams have the same Poisson parameter, we are able to show that the 
output stream approximates a Poisson process with parameter the same as that 
of the arrival streams. 

Regarding the modus operandi of the assembly system, Harrison [6] showed 
that a sufficient condition for stability of operations of such systems is that com- 
ponent buffer sizes be finite. For a system with finite buffers, we show that, in the 
long run, the probability of observing inventory position j at I1 (12) depends on 
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the inventory position j. Also, considering the special case of component arrival 
streams with the same Poisson parameter, we show that the kit completion process 
well approximates a Poisson process when the component buffers are large enough, 
permitting the kitting and assembly operation to be decoupled so that downstream 
operations can be analyzed separately. 

Stochastic assembly systems are often studied as assembly-like queues. 
Harrison [6] showed that an assembly system with input streams that are indepen- 
dent renewal processes and with no inventory capacity limitations for any 
stream are unstable. He also showed that, under these conditions, the limiting 
distribution of the time that parts wait for assembly converges to a defective 
distribution. 

Since we assume that two components are required to compose a kit, the 
queues of components form a double-ended queue [5, 8]. A double-ended queue 
can be best described by the well known taxi-cab problem where taxis and 
passengers form two different queues. A customer waits in its queue and leaves it 
as soon as a taxi is available; taxis wait in queue for customers and leave when a 
customer is available. The two queues are interdependent and their combination 
is known as a double-ended queue where it is known that the related queueing 
process is a random walk on { . . . ,  -2 ,  -1 ,0 ,  1, 2 , . . .}  and is transient or null unless 
the queues are bounded. The kitting process under study can be considered as a 
double-ended queue of the type examined by Kashyap and Chaudhury [9]. They 
showed that each queue length distribution is independent of occupancy when 
arrival rates to the double-ended queue are equal. They also derived the distribu- 
tion of waiting times in double-ended queues but made no attempt to analyze its 
output process. 

Bhat [2] incorporated limited buffer capacities in assembly like queues and 
derived expressions for the stationary probability vector of the queue length. 
Latouche [10] considered assembly systems with Poisson procurement processes 
and exponential processing times and derived conditions required for stability. 
Assembly networks that represent one-time production (for example, space- 
shuttle, aircraft prototype, etc.) are analyzed by Saboo and Wilhelm [11] and 
Wilhelm et al. [13]. 

The output processes from queues operating according to various disciplines 
are reviewed by Disney and Konig [4] in detail. They describe the characteristics of 
the output processes resulting from GI/D/s, M/M/s, M/GI/1/L, M/Ek/1/L, 
M/GI/c~, GI/GI/1/L and GI/M/1/L systems. Apparently, the output process 
of a double-ended queue has not been studied previously, In this paper we analyze 
such a process as a part of our study of the kitting process. 

We have organized this paper in five sections. The fundamentals and perti- 
nent assumptions are presented in section 2. Section 3 relates the formulation of 
a Markov renewal process which describes the kitting operation. The model is 
evaluated in section 4 by determining the state transition matrix P, the time- 
stationary probability vector i-I, and the distribution of time between kit 
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completions, which is shown to be approximately Poisson under certain conditions. 
Practical implications of analytical results are described and conclusions are 
presented in section 5. 

2. Fundamentals 

The structure of the assembly system under analysis is presented in figure 1. A 
little thought indicates that it is not possible for both buffers I1 and I2 to have 
positive stock levels at the same time. An arrival which increases the stock level 
of one of the buffers to a positive value creates a "virtual backorder" at the other 
buffer. At any time t (t > 0), the inventory position "M" (defined as the number 
of parts on hand plus on order minus the number on back order) on one buffer is 
associated with inventory position " - M "  in the other, and equality holds only 
when the inventory position is zero (0) for both buffers I1 and I2. The inventory 
positions at I1 and I2 may thus be viewed as "mirror images" of one another, a 
special structure which we exploit to analyze the kitting process. 

Since the purpose of this paper is to characterize the kitting process, we 
study the stream of arrivals to Io (i.e., the output of the kitting process) in the 
following sections and ignore the process downstream of I o. We present a 
thorough analysis of the downstream assembly system in a companion paper 
(Sore and Wilhelm [12]). 

Our model, which is based on the structure described in this section, relies 
upon three fundamental assumptions: 

(i) Processing times at the part processing machines, P1 and P2, are independent, 
identically distributed, non-negative exponential random variables with rates 
~1 and #2, respectively. 

(ii) The capacities of buffers I1 and I2 are bounded from above by K1 and K2, 
respectively, representing practical limitations on buffer space, and, accord- 
ing to Harrison [6], allowing the system to reach a steady state. No capacity 
restriction is imposed on Io. 

(iii) P1 (P2) prepares parts exclusively for I 1 (I2). However, when I 1 (I2) is fitted to 
capacity K 1 (K2), additional arrivals are not processed in the system under 
analysis (e.g., they may be processed and assembled by a subcontractor). 

In the following sections we formulate the model and analyze it as a Markov 
renewal process. 

3. Formulation of  a Markov renewal process 

The inventory positions at I 1 and 12 change with the arrival and departure of 
components to and from the respective buffers. We define the mirror image process 
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Fig. 2. Mirror image process and output process. 

(X, T) as a marked point process, which characterizes the inventory positions or 
states at the arrival and departure epochs. The sample path diagram of the mirror 
image process is presented in figure 2. 

Thus, 

in which, 

(x,  r )  = {xm, rm:  m e rq ,  

Xm = {lXm, 2Xm}, 

T m =  time of mth state change epoch, 

1X m = inventory position at buffer I1 at time Tin, 

2Xrn = inventory position at buffer I2 at time Tin. 

Due to the mirror image property of the inventory positions at I1 and I2, 
at any random time Tin, 1X m = lx  m implies 2X m = --lXm; or, equivalently, 2X m = 

2x m implies 1X m = - 2 x  m. Hence, it is obvious that the Mirror Image Process 
may be analyzed by viewing the inventory position just at Il (or, equivalently, 
just at I2). 
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Whenever matching components are available at buffers I 1 and I2, a kit is 
composed (instantaneously) and sent to I0. These departure epochs (occurring 
simultaneously from both I1 and I2) and the corresponding inventory position at 
I1 describe another marked point process which we define as the output process. 
By observing the inventory at I1, it is apparent that a particular subset of the epochs 
{ Tm : m C N}, marked by a decrease in the positive inventory position or an increase 
in the negative inventory position, constitutes kit completion as well as state change 
epochs in the output process. 

These output  epochs are a sub-sequence of the sequence { T m : m  E N}, 
defined as T = {T n : n E N} with 0 = T0 _< T1 __~ 7-2 __~ 7-3 <~_ . - -  such that for 
w E f~, To(W) = To(w) = 1, Tn(w) = Tk(w), n >_ 1, in which k = 
min{m C N :n _< ~ffm= 1 l{llxj_ll>l~l}(Co)} and l{x}( ')  is an indicator function. 
Define Dn+l = ~-,+1 -7-n as the time between successive departures, n and n + 1. 
For n E N, the random variable Dn : ft --+ R + represents the length of the nth 
inter-departure interval. Then 7-n+1 = ~-n + D n + l ,  n E N, defines the time of the 
(n + 1)th departure. The set T = {In : n C N} defines the output time process. 

For each n E N, define the random variable Zn : f~ ~ E as the inventory posi- 
tion at the buffer I1 or the system state of the output process immediately after the 
nth departure epoch ~-n" The set Z = {Zn : n E N} defines the output state process, 
and the joint random variables {Z, r} = {Zn, In :n  c N} define the output pro- 
cess. Here, Dn depends on the present state Z n and the next state Zn+ 1. However, 
given these states, Dn is independent of previous Dk and Zk for k = 1 , . . . ,  n - 1, 
indicating that the output process {Z,  T} is a Markov renewal process on the state 
space E. Since a Markov renewal process is completely characterized by its semi- 
Markov kernel Q(i,j ,  t), we study this kernel in the following subsection. 

DETERMINATION OF THE SEMI-MARKOV KERNEL Q(i,j, t) 

as  

The semi-Markov kernel of the output process {Z,  T} may be expressed 

Q(i,j ,  t) = Pr{Zn+l =J,  7-n+l -- Tn < t l Z .  = i}. 

For convenience, the semi-Markov kernel is expressed in the Laplace trans- 
form domain as L{Q(i , j ,  d t ) } =  O{i,j ,  ds}. 

The Laplace transform of (d/dt )Pr{Zn+l  =J ,  7-n+l --Tn --< t lZ~ = i}, 
expressed as L[dP{Zn+ 1 =- j ,  Tn+ 1 - - T  n < tlZn = i}], can be shown to have five 
different forms, depending upon inventory positions at epochs zn and 7-n+1. We 
describe the five cases below. 

Case L The starting (i.e., at 7-n) inventory position is non-negative and it does 
not reach the positive boundary K1 before the time of the next departure (i.e., at 

In+0. 
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Certain combinat ions  of  i and j define case I: 

(i) 0 < i _ K I - 1 ,  i -  l < j <_ K 1 -  2, and 

(ii) i = 0, 0 < j _< K1 - 2. 

Then,  

dP{Zn+l = j ,  Tn+ 1 -- T n _~ tlZ. = i} = e-Ult(lzlt)J-i+l ( j - i +  1)! #2 e-mr dr" (1) 

Since we are looking at two consecutive kit complet ion epochs, rn and rn+ 1, at 
which inventory posit ions at I1 are i and j respectively, j - i + 1 components  mus t  
have arrived at 11 before any arrival at 12. 

In Laplace t ransform form, 

L[dP{Zn+I = j ,  rn+l - T n __<~ t lZn = i}] 

~(~11) ( # 1 ) J - e + 2 (  #1 §  )j-i+2 
#1 § #2 \#1 + #2 + s (2) 

The other four cases follow similarly. 

Case II. 
(i) - K 2 + l  < i < 0 ,  - / s  and 

(ii) i = 0, - K  2 + 2 < j < 0. 

L[dP{Zn+ l = J , ' i , + l  - "In <~ t lZn = i}] 

__ ( ~ 1 ) (  ~2 ~ ' - ' / 1 + 2 [  #1 §  ][/,-,i,+2 
- + ( 3 )  

Case III. 
0 < i < K I - 1 ,  j = K , -  1. 

L[dP{Zn+I = K1 - 1,"In+l - "In ~-~ tlz. = i}] 

#1 § ~2 ,] [#2 + s J I~1 + #2 + s (4) 

Case IV. 
- K 2 +  1 < i < 0 ,  j = -K2 + 1. 

L[de{Zn+l  = - g  2 § 1,"In+ 1 -"In <~ tlZn = i}] 
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Case V. 
i = 0 ,  j = 0 .  

L [ d P { Z n + I  = O,7-n+l -- 7-n <-- tlZ, = 0}] 

_ 2#1 #2 [. #1+#2  ]2 
+ l (6) 

The interval Tn+ 1 - - T  n includes an initial period which has an exponential 
distribution with rate #1 + #2. Using Bernoulli probabilities #1/(#1 + #2) and 
#2/(#1 +#2)  and convolving with the distribution of the remainder of the 
interval, we get the above result. 

Combining equations (2) through (6), we obtain the semi-Markov kernel 
Q ( i , j ,  t),  which is expressed in Laplace transform form and is presented as 
equation (7) in table 1. The state transition matrix P of the underlying Markov 
chain Z embedded at time % is obtained by setting s = 0 in equation (7) and is 
presented as equation (8) in table 2. An analysis of the output process {Z, 7-} is 
presented in the following section. 

4. Analysis 

In this section, we analyze the output  process {Z, r} deriving the following: 

(i) the stationary probability vector II of the underlying Markov chain Z, 
and 

(ii) the distribution of time between kit completions. 

The vector H indicates the time-stationary probably distribution of the 
inventory position at I1, observed at a randomly selected kit completion epoch. 

DETERMINATION OF STATIONARY PROBABILITY VECTOR H 

Clearly, the output process {Z,7-} = {Zn,  T n : n  E N} is an irreducible, 
nonnull, recurrent, and persistent Markov renewal process for K1, K2 < c~; under 
these conditions, it possesses a stationary distribution defined as H [3]. Note that 
the process {Z, r} will be recurrent null, if/s and K2 are infinite. The stationary 
probability vector H of the underlying Markov chain is obtained from the set of 
equations expressed in the matrix form 

II = liP. 
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Using equation (14) for P, the balance equations can be expressed for specific states 
- K  2 + l < j < K l - l a s  

H(0) = 1](-1)p(1 - u) + II(0)2u(1 - u) + II(1)(1/p)u, (9) 

H(K1 - 1) = pH(K 1 - 2), (10) 

I I ( -K2  + 1) = ( 1 / p ) I I ( - K  2 + 2 ) ,  (11) 

II( j)  = H(O)(1/p)u (j+2) + H(1)(1/p)u (j+l) + II(2)(1/p)v j 

+...+(1/p)II(j+l), j =  1 , 2 , . . . , K 2 - 2 ,  (12) 

II( j )  = II(0)p(1 - u) (-j+2) + II(1)p(1 - u) (-j+~) + H(2)p(1 - v) (-j) 

+ . . . + p ( 1 - u ) H ( - j + l ) ,  j = - i , - 2 , . . . , - K  2 + 2 ,  (13) 

in which 

p = /s /." -~- #1/(]-/,1 -t'- #2)"  

In addition, we have the normalizing expression 

Z I I ( j )  = 1. ( 1 4 )  

J 

The solution to equations (9)-(14) can be expressed as 

n(o) = ( p -  1)(ul + #2) 
#2(p/1 _ p_K2 ) , (15) 

II( j )  = upJlI(O), j = 1 ,2 , . . .  ,/s - 1, (16) 

H(j)  = (1 - u)pJlI(O), j = - 1 , - 2 , . . . , - K 2  + 1. (17) 

It may be observed that II( j) ,  the stationary probability of positive (negative) stock 
in buffer 11 observed at a kit completion time, depends on the stock position, j .  

DISTRIBUTION OF TIME BETWEEN KIT COMPLETIONS, Dn 

To determine the distribution of time between kit completions, we con- 
centrate on analyzing the output time process r = {Tn : n C N}, which specifies the 
arrival stream (of kits) to buffer I0. 

Considering the stationary distribution II of  the underlying Markov chain Z 
and for t E I~ +, the distribution of  time between two consecutive kit completions is 
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P{~-n+l -'rn <- t} = IIQ(i,j ,  t)U, 

given by 

in which U is a column vector with all elements equal to 1. 
Expressing equation (18) in Laplace transform form we obtain: 

L[dP(%+ 1 - -r, < t)] = IIQ(i, j, ds) U. 

(18) 

(19) 

Substituting the values of 17 and Q(i, j, ds) from equations (15) to (17) and (7) into 
equation (19), 

+ L[dP(~-n+~ -~-. _< t)] = m + s 
-K2+ l ] 

(1 - u)pJ17(O) 
j = - I  

+ ( ~ ; s )  [n(0 ) K1-2 q .2 + i=~1 uyn(0) ] 

(20) - ). 
\#1 +#2 + s  

It is apparent that if equation (20) is inverted (i.e., to be the time domain), the 
distribution of the time between kit completions, Dn+l, would be the weighted 
sum of three exponential distributions with rates #l, #2 and #1 + #2. 

A SPECIAL CASE WITH /z I = #2 = # 

This section specializes the case in which component processing times at 
machines P1 and P2 are independent exponential random variables with the same 
rates (i.e., #1 = #2 = # ) .  In practice, this situation may occur when components 
are obtained from independent suppliers with identical (and independent) lead 
time distributions. Also, the same situation may occur during "in-house" produc- 
tion where the machines employed, P1 and P2, are identical (and independent). In 
the following sub-sections we show that the distribution of time between kit 
completions, Dn, can be approximated by independent and identically distributed 
exponential random variables. 

A P P R O X I M A T I O N  OF Dn BY T H E  E X P O N E N T I A L  D I S T R I B U T I O N  

Making appropriate changes in equations (7) and (8) to accommodate the 
special case, the semi-Markov kernel, Q(i, j, t), Laplace transform form and the 
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transition probability matrix P of the underlying Markov chain Z may be expressed 
by equations (21) and (22) which are presented in tables 3 and 4, respectively. 

The stationary probabilities of this Markov chain are given by 

2 
H(0) - /s + K2' (23) 

1 
II(j) - K1 + K2' Vj # 0. (24) 

These results have striking similarities - but at the same time, important 
differences - with those obtained by Bhat [1] for the limiting distribution of the 
population in the finite buffer of a double-ended queue. 

The distribution of time between kit completions, D~, can be expressed in 
Laplace transform form as 

L[dP(Tn - Tn- 1 <-- t)] = IIQ(i,  j ,  ds) U, (25) 

in which U is a column vector with each element equal to 1. Substituting equations 
(21), (22), (23) and (24), equation (25) specializes to 

L[dP(-r, - "rn_ 1 -< t)] = # 1 - K1 +/s 2# + s 

Clearly, for large values of Ka +/s the distribution of time between kit 
completions, D~, is approximately exponential with rate #. The value of K1 + K2 
necessary to allow this approximation can be determined as a function of the 
degree of approximation desired. The e-approximate distribution of Dn is 

= # (27)  HQ(i,  j ,  ds) U = L[dP(T n - ~-n-1 -< t)] # + s '  

which is the Laplace transform of an exponential distribution with rate #. 

APPROXIMATE INDEPENDENCE OF D n 

In this section, we discuss the independence of m consecutive random 
variables Dn, n = 1 ,2 , . . . ,  m. We show that for sufficiently large K1 +/22, the m 
consecutive random variables Dn, n = 1 ,2 , . . . ,  m, become independent to within 
an error of e. 

This independence holds if the joint distribution of the m consecutive random 
variables D~ equals the product of the m marginal distributions of the random 
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variables D n. Statistical independence should hold for m ~ oe, but this limiting case 
is not easily evaluated. 

To establish the approximation, we must show (writing Q(i, j, ds) = Q(ds)), 

IIQ(dsl)Q(ds2)Q(ds3) . . . Q(dsm) U 
= {IIQ(dsl) U} {IIQ(ds2) U}{IIQ(ds3) U}... {IIQ(dsm) U}. (28) 

The left hand side of equation (28) is 

IIQ(dsl)Q(ds2)Q(ds3) .. . Q(dsm) U 

m 
K I + K 2  i=2 # + 

... a Iz ) • [b(~la)K2+ (~a)K=+ + ( ~ a ) 3 +  ( ~ )  i=21~I( #+s i  

+ ( ~ a ) a + . . . + ( ~ a ) K ' + b ( ~ a )  gl] 

i=1 

x [ b ( ~ a )  K2 

K1-[-K2 i=1 ~ i=2 

... + 
( ~ a )  3 1 

i=2 # 

+ ( ~ a ) 3 + . . . + b ( ~ a ) K ' l ) .  (29) 

By making K 1 + K2 sufficiently large, the right hand side of equation (29) can 
be approximated by (I-[m_ 1 (#/(# + si)), the product of the Laplace transform of the 
m marginal distributions of the random variables Dn for n E N. Hence, equation 
(28) holds for sufficiently large/(1 + K2, indicating that the random variables Dn, 
n = 1, . . . ,  m, are independent. The required value of/(1 + K2 depends upon the 
degree of approximation desired. 

The implications of equations (27) and (29) lead to the following theorem. 

THEOREM 1 

The arrival process of kits at buffer I0 can be approximated by a Poisson 
process with rate #, the degree of approximation depending on the value of 
K1 +/(2. [] 
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DEGREE OF APPROXIMATION: AN EXAMPLE 

To illustrate the relationship between the degree of approximation of the 
arrival rate at I0 and the buffer capacities K1 (/s we consider the following 
example with equal buffer capacities/s =/s = K and equal Poisson arrival rates 
#1 = #2 = # at buffers 11 and 12, respectively. 

Using equation (26), the density function of the time between kit completions, 
Dn, may be expressed in Laplace transform form as: 

- g  s " 
(30) 

Inverting to the time domain, the density function of Dn is obtained as 

# 2# 
f ( t )  = # e - U t + ~ e  -~t K e-2ut' t_>0. (31) 

We define an error term e(t), expressed as the absolute difference between the 
exponential density and the actual density of Dn: 

e(t) = # -2#t  12e - (32) 

Using equation (31), graphs off( t )  are plotted for # = 1 and K = 2, 5 and 10 
against time t _> 0 in figure 3. It is observed from figure 3 that the density of D n 
rapidly approaches an exponential density as K increases. The graph of e(t) against 
K, plotted for # = 1 and t = 0.2, is presented in figure 4, which also indicates that 
the error term e(t) approaches zero rapidly as K increases. 

Using equation (32), it is easily seen that for Vt, t > 0, 12e -2ut - e-~tl < 1. 
Hence for a given e > 0 and for any arrival rate #, we can find a K such that 

# ~ .  
K -  

Therefore, the inventory capacity required to effect the desired approxima- 
tion can be easily determined knowing the component arrival rate. 

5. Discussion and conclusion 

We have proven conditions for which the inter-arrival times of kits arriving to 
assembly are approximately independent and identically distributed exponential 
random variables. If components arrive at I 1 and 12 according to independent 
and identical Poisson arrival streams and if/s + K2 is sufficiently large, the output 
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stream from kitting approximates a Poisson process. The practical importance of 
this result is that the assembly process downstream of the kitting operation can 
be decoupled from kitting for further analysis. The required conditions (for 
decoupling) are not restrictive and may, in fact, hold in actual applications. 

It is also interesting to note that the long-term probability distribution of 
inventory position j at 11 (I2), observed at kit completion epochs, depends on the 
inventory position j. If arrival rates to I1 and 12 are equal (i.e., #1 = #2 = #), all 
the inventory positions except zero become equally likely with probability that is 
inversely proportional to the total inventory capacity (K1 + K2). The incidence of 
observing both buffers empty is twice as likely as observing a positive (negative) 
stock position at either of the buffers. 

Harrison [6] showed that a sufficient condition for an assembly-like queue to 
reach steady state is that buffer capacities must be bounded from above. We have 
shown that the total buffer capacity, K1 + K2, must be "sufficiently large" to obtain 
a Poisson approximation of  the output  stream of  kits. However, from the example 
in section 4, we find that K1 + K2 need not  be impractically large to achieve an 
approximate Poisson output  stream; the value of K 1 + K 2 being dependent upon 
the degree of approximation desired. Since the arrival process at assembly machine 
P3 may be approximated by a Poisson distribution, the downstream assembly 
system can be approximated by the much studied M / G / 1  queue. 
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