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In small-lot, multi-product, multi-level assembly systems, kitting (or accumu-
lating) components required for assembly plays a crucial role in determining system
performance, especially when the system operates in a stochastic environment. This
paper analyzes the kitting process of a stochastic assembly system, treating it as
an assembly-like queue. If components arrive according to Poisson processes, we
show that the output stream departing the kitting operation is a Markov renewal
process. The distribution of time between kit completions is also derived. Under
the special condition of identical component arrival streams having the same
Poisson parameter, we show that the output stream of kits approximates a Poisson
process with parameter equal to that of the input stream. This approximately
decouples assembly from kitting, allowing the assembly operation to be analyzed
separately.
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1, Introduction

Traditionally, material flow analysis in assembly systems has been based on
the assumption that the system operates deterministically. In recent years, attention
has been directed to a more realistic analysis of assembly systems, explicitly treating
the stochastic events that influence operations. An important aspect of assembly
operations is kitting (or accumulating) required components and releasing the kit
to initiate assembly. Due to the stochastic nature of component availability,
stock-outs often occur in component inventories, thereby disrupting kitting and,
consequently, assembly schedules. The goal of this paper is to better understand
the kitting process in a stochastic assembly system, which we treat as an
assembly-like queue.

This paper models the kitting process of an assembly system as a Markov
renewal process, assuming that component arrival streams follow independent
Poisson distributions. The assembly system is assumed to have a structure similar
to that described in Hopp and Simon [7] and is shown in figure 1.

P; and P, are machines that process components (to prepare them for
assembly) and P; is the assembly machine. I; and I, are the buffers for com-
ponents, I, is the buffer for kits, and I5 is the buffer for the end-product. P; and
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Fig. 1. Stochastic assembly system.

P, work independently, withdraw raw materials from their respective pools of
unlimited supply, and deliver processed components to buffers I; and I,, respec-
tively. A component arriving at buffer I, (I,) is immediately kitted with a part
from buffer I, (I,) if one is available, and a “kit” is said to be composed. If a kit
cannot be composed, the processed part is held in buffer I; (I,) to await the arrival
of a “matching” part at buffer I, (I;). Once composed, a kit matching components
from I; and I, is sent immediately to I and the kit is considered to be one arrival at
Ip. If the arriving kit finds I, empty and Pj idle, it is immediately placed in the
assembly machine P;. Otherwise, the kit is held in buffer I, _

: We assume that buffers of components have limited capacity and that each
component is processed according to an exponential distribution (before kitting)
to prepare it for assembly. When P; completes an assembly, it withdraws a kit
(ie. two matched components) from I;, whenever available, then assembles
another end product and delivers it to buffer I;. If a kit is not available in Iy
when P3 completes an assembly, it remains idle until a completed kit arrives.
Demands for end products arrive at I3; each demand is assumed to be for a
lot of unit size and is satisfied immediately if stock is available. Unsatisfied
demands are backordered, causing the inventory position at I; to take on
negative values.

Our primary result is to show that the output stream departing the kitting
operation is a Markov renewal process. In the special case in which component
arrival streams have the same Poisson parameter, we are able to show that the
output stream approximates a Poisson process with parameter the same as that
of the arrival streams.

Regarding the modus operandi of the assembly system, Harrison [6] showed
that a sufficient condition for stability of operations of such systems is that com-
ponent buffer sizes be finite. For a system with finite buffers, we show that, in the
long run, the probability of observing inventory position j at I; (I,) depends on
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the inventory position j. Also, considering the special case of component arrival
streams with the same Poisson parameter, we show that the kit completion process
well approximates a Poisson process when the component buffers are large enough,
permitting the kitting and assembly operation to be decoupled so that downstream
operations can be analyzed separately.

Stochastic assembly systems are often studied as assembly-like queues.
Harrison [6] showed that an assembly system with input streams that are indepen-
dent renewal processes and with no inventory capacity limitations for any
stream are unstable. He also showed that, under these conditions, the limiting
distribution of the time that parts wait for assembly converges to a defective
distribution. :

~ Since We assume that two components are required to compose a kit, the
queues of components form a double-ended queue [5, 8]. A double-ended queue
can be best described by the well known taxi-cab problem where taxis and
passengers form two different queues. A customer waits in its queue and leaves it
as soon as a taxi is available; taxis wait in queue for customers and leave when a
customer is available. The two queues are interdependent and their combination
is known as a double-ended queue where it is known that the related queueing
process is a random walk on {...,-2,-1,0,1,2,...} and is transient or null unless
the queues are bounded. The kitting process under study can be considered as a
double-ended queue of the type examined by Kashyap and Chaudhury [9]. They
showed that each queue length distribution is independent of occupancy when
arrival rates to the double-ended queue are equal. They also derived the distribu-
tion of waiting times in double-ended queues but made no attempt to analyze its
output process.

Bhat [2] incorporated limited buffer capacities in assembly like queues and
derived expressions for the stationary probability vector of the queue length.
Latouche [10] considered assembly systems with Poisson procurement processes
and exponential processing times and derived conditions required for stability.
Assembly networks that represent one-time production (for example, space-
shuttle, aircraft prototype, etc.) are analyzed by Saboo and Wilhelm [11] and
Wilhelm et al. [13]. v

The output processes from queues operating according to various disciplines
are reviewed by Disney and Konig [4] in detail. They describe the characteristics of
the output processes resulting from GI/D/s, M/M/s, M/GI/1/L, M/E/1/L,
M /Gl /oo, GI/GI/1/L and GI/M/1/L systems. Apparently, the output process
of a double-ended queue has not been studied previously. In this paper we analyze
such a process as a part of our study of the kitting process.

We have organized this paper in five sections. The fundamentals and perti-
nent assumptions are presented in section 2. Section 3 relates the formulation of
a Markov renewal process which describes the kitting operation. The model is
evaluated in section 4 by determining the state transition matrix P, the time-
stationary probability vector II, and the distribution of time between kit
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completions, which is shown to be approximately Poisson under certain conditions.
Practical implications of analytical results are described and conclusions are
presented in section 5.

2. Fundaméntals

. The structure of the assembly system under analysis is presented in figure 1. A
little thought indicates that it is not possible for both buffers I, and I, to have
positive stock levels at the same time. An arrival which increases the stock level
of one of the buffers to a positive value creates a “virtual backorder” at the other
buffer. At any time ¢ (¢ > 0), the inventory position “M” (defined as the number
of parts on hand plus on order minus the number on back order) on one buffer is
associated with inventory position “~M” in the other, and equality holds only
when the inventory position is zero (0) for both buffers I} and I,. The inventory
positions at I; and I, may thus be viewed as “mirror images” of one another, a
special structure which we exploit to analyze the kitting process.

Since the purpose of this paper is to characterize the kitting process, we
study the stream of arrivals to I (i.e., the output of the kitting process) in the
following sections and ignore the process downstream of Ip. We present a
thorough analysis of the downstream assembly system in a companion paper
(Som and Wilhelm [12]).

: Our model, which is based on the structure described in this section, relies
upon three fundamental assumptions:

(1)  Processing times at the part processing machines, P, and P,, are independent,
identically distributed, non-negative exponential random variables with rates
1 and py, respectively.

(i)  The capacities of buffers I; and I, are bounded from above by K; and K,,
respectively, representing practical limitations on buffer space, and, accord-
ing to Harrison [6], allowing the system to reach a steady state. No capacity
restriction is imposed on Ij,.

(i) P, (P,) prepares parts exclusively for I; (I,). However, when I; (Ip) 1s fitted to
capacity K; (Kj), additional arrivals are not processed in the system under
analysis (e.g., they may be processed and assembled by a subcontractor).

In the following sections we formulate the model and analyze it as a Markov
renewal process.

3. Formulation of a Markov renewal process

The inventory positions at I; and I, change with the arrival and departure of
components to and from the respective buffers. We define the mirror image process
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Fig. 2. Mirror image process and output process.

(X, T) as a marked point process, which characterizes the inventory positions or
states at the arrival and departure epochs. The sample path diagram of the mirror -
image process is presented in figure 2.

Thus,

(X,7T) = {Xm, Tin : m € N},
in which,
X = {le1 2Xm}’
T,, = time of mth state change epoch,

Ix,, = inventory position at buffer I, at time T,

2y, = inventory position at buffer I, at time T,

Due to the mirror image property of the inventory positions at I; and I,
at any random time T, X,, = 'x,, implies 2y = —!x,,; or, equivalently, %X, =
%x,, implies 'X,, = —2x,,. Hence, it is obvious that the Mirror Image Process
may be analyzed by viewing the inventory position just at I; (or, equivalently,

just at I,).
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_ Whenever matching components are available at buffers I, and I,, a kit is
composed (instantaneously) and sent to I,. These departure epochs (occurring
simultaneously from both I; and I,) and the corresponding inventory position at
1, describe another marked point process which we define as the output process.
By observing the inventory at I, it is apparent that a particular subset of the epochs
{T,, : m € N}, marked by a decrease in the positive inventory position or an increase
in the negative inventory position, constitutes kit completion as well as state change
epochs in the output process.

These output epochs are a sub-sequence of the sequence {T},:m € N},
defined as 7={n,:neN} with 0=1<m < <m<... such that for
we), nw=Tw=1 nw=T"Tw), =n>1, in which k=
min{meN:n<3 71 0% > %1 (W)} and Ipx( ) is an indicator function.
Define D, = 7,1 — 7, as the time between successive departures, n and 7 + 1.
For n € N, the random variable D, : Q — R™ represents the length of the nth
inter-departure interval. Then 7,1 =7, + D, ., n € N, defines the time of the
(n+ 1)th departure. The set 7 = {7, : n € N} defines the output time process.

For each n € N, define the random variable Z,, : ) — E as the inventory posi-
tion at the buffer I; or the system state of the output process immediately after the
nth departure epoch 7,. The set Z = {Z, : n € N} defines the output state process,
and the joint random variables {Z,7} = {Z,, 7, : n € N} define the output pro-
cess. Here, D, depends on the present state Z, and the next state Z, 1. However,
given these states, D, is independent of previous D and Zyfork=1,...,n—1,
indicating that the output process {Z,} is a Markov renewal process on the state
space E. Since a Markov renewal process is completely characterized by its semi-
Markov kernel Q(i,/, t), we study this kernel in the following subsection.

DETERMINATION OF THE SEMI-MARKOV KERNEL 0(i,, 1)

The semi-Markov kernel of the output process {Z,7} may be expressed
as

Qi) 1) = Pr{iZyy1 =jyTag1 —Tw St Z, = i}.

For convenience, the semi-Markov kernel is expressed in the Laplace trans-
form domain as L{Q(i,j,d?)} = 0{i,j,ds}. .

The Laplace transform of (d/dO)Pr{Z,.|=j, 11— T < t|Z, =i},
expressed as L[dP{Z,,, =j,7,41 — T, < t|Z, =i}], can be shown to have five
different forms, depending upon inventory positions at epochs 7, and Tl We
describe the five cases below.

Case I. The starting (i.e., at 7,) inventory position is non-negative and it does
not reach the positive boundary K; before the time of the next departure (i.e., at

Tn+1)~
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Certain combinations of i and j define case I
@ O0<i<K—-1, i—-1<j<K —2,and
G i=0, 0<j< K -2

Then,

e‘—”lt(“it)j—i-'_l
G—i+ D)

Since we are looking at two consecutive kit completion epochs, 7;, and 7, , ¢, at
which inventory positions at I; are i and j respectively, j — i + 1 components must
have arrived at I; before any arrival at I,.

In Laplace transform form,

AP{Zp1 =)y Tar1 — T S H|Z, =1} = pp e~ de. (1)

LAP{Zys1 =) Tas1 = Ty < 1|2, = 1}]

_ (&)( L1 )j—H—Z( u1+#2 )j—i+2 (2)
M1/ \M1 + 2 Pyt iy + 8

The other four cases follow similarly.

Case I1.
1) -K+1<i<0, -K)+2<j<i+1,and
g i=0, -K+2<j<0.
L[dP{ZtH—l =), Tadl — T S tlzn = l}]
:(H_l_>( Lo )V'"'i'+2LM1+#z }lil—lil+2 o)
Ho J \Hy + g 1+ +s
Case II1,

0<i<Ki-1, j=K —-1.
L[dP.{Zn+1 =K1 —1L,m—m < t| Z, = i}]

B
p + o 2 +8] [p1+pptS
Case IV.

-K+1<Li<0, j=-K,+1

L[dP{Zn+1 = "*Kz -+ 1,Tn+1 - Tn < tlZn = l}]

,=( ) )KZHLM ]Lﬂl"‘ﬂz ]K2+i (5)
M1+ 1+8] [+ pp+ 8
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Case V.
' i=0, j=0.
L{dP{Zﬁ-é-l =0,Ty41— T < tIZn = 0}]

_ 2y LN1+M2 ]2
(1 + pa)? s +pp+s

(6)

The interval 7, — 7, includes an initial period which has an exponential

distribution with rate p; 4 u,. Using Bernoulli probabilities p;/(y; + ) and
o/ (1 + i) and convolving with the distribution of the remainder of the
interval, we get the above result.
; Combining equations (2) through (6), we obtain the semi-Markov kernel
Q(i, j,t), which is expressed in Laplace transform form and is presented as
equation (7) in table 1. The state transition matrix P of the underlying Markov
chain Z embedded at time 7, is obtained by setting s = 0 in equation (7) and is
presented as equation (8) in table 2. An analysis of the output process {Z, 7} is
presented in the following section.

4.  Analysis

In this section, we analyze the output process {Z, T} deriving the following;

(i)  the stationary probability vector II of the underlying Markov chain Z,
and

(i)  the distribution of time between kit completions.

The vector II indicates the time-stationary probably distribution of the
inventory position at I;, observed at a randomly selected kit completion epoch.

DETERMINATION OF STATIONARY PROBABILITY VECTOR TI

Clearly, the output process {Z,7} ={Z,,7,:n €N} is an irreducible,
nonnull, recurrent, and persistent Markov renewal process for K, K, < co; under
these conditions, it possesses a stationary distribution defined as II [3]. Note that
the process {Z, 7} will be recurrent null, if X; and K, are infinite. The stationary
probability vector II of the underlying Markov chain is obtained from the set of
equations expressed in the matrix form

II =1IP.
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Using equation (14) for P, the balance equations can be expressed for specific states
-K+1<j<K;-1as

I1(0) = TI(—1)p(1 — v) + I1(0)2v(1 — v) + TI(1)(1/p)v, (9)
(K — 1) = plI(K; - 2), (10)
I(-K; +1) = (1/p)I(— K3 + 2), (11)

I1(j) = 1(0)(1/p)p+2 + (1) (1/p) YV + TI(2)(1/ )/
+o QG+, j=1,2,...,K -2, (12)

1(j) = I(0)p(1 — )72 + T(1)p(1 ~ )+ +T(2)p(1 ~ )
+ o+ p(1 =)I(—j+1), j=-1,-2,...,—-K;, +2, (13)
in which
p=p/ta, v=p/(m+ )
In addition, we have the normalizing expression

Sng) =1 (14)

The solution to equations (9)—(14) can be expressed as

11(0) = (p = 1) (11 + 12)

(oS — pRe) | (15)
II(j) = vp’'T1(0), J=12.. K -1, (16)
H(_])=(1-—V)pj].—.[(0), J=—17”237—K2+1 (]7)

It may be observed that I1( ), the stationary probability of positive (negative) stock
in buffer I; observed at a kit completion time, depends on the stock position, j.

DISTRIBUTION OF TIME BETWEEN KIT COMPLETIONS, D,

To determine the distribution of time between kit completions, we con-
centrate on analyzing the output time process T = {7, : n € N}, which specifies the
arrival stream (of kits) to buffer I,

Considering the stationary distribution II of the underlying Markov chain Z
and for ¢ € R™, the distribution of time between two consecutive kit completions is
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given by
P{Tn+l — T < t} = IIQ(Z)Ja Z)Ua (18)

in which U is a column vector with all elements equal to 1.
Expressing equation (18) in Laplace transform form we obtain:

LIaP(ryy =7, < )] = TIQ(, J, ds)U. o 19)

Substituting the values of IT and Q(7, j, ds) from equations (15) to (17) and (7) into
equation (19),

~K+1
L{dP(ry41 =7, < )] = (;1%_—) o)+ 3, (1~ u)pr(O)}
=
Ko =
+ (MH) I1(0) + ; vp H(O)J
P+ o
103 0

It is apparent that if equation (20) is inverted (i.e., to be the time domain), the
distribution of the time between kit completions, D, i, would be the weighted
sum of three exponential distributions with rates p;, t and pg + p,.

A SPECIAL CASE WITH p =y = p

This section specializes the case in which component processing times at
machines P; and P, are independent exponential random variables with the same
rates (i.e., p4; = pp = p). In practice, this situation may occur when components
are obtained from independent suppliers with identical (and independent) lead
time distributions. Also, the same situation may occur during “in-house” produc-
tion where the machines employed, P; and P,, are identical (and independent). In
the following sub-sections we show that the distribution of time between kit
completions, D,, can be approximated by independent and identically distributed
exponential random variables.

APPROXIMATION OF D, BY THE EXPONENTIAL DISTRIBUTION

Making appropriate changes in equations (7) and (8) to accommodate the
special case, the semi-Markov kernel, Q(i, j, ), Laplace transform form and the
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transition probability matrix P of the underlying Markov chain Z may be expressed
by equations (21) and (22) which are presented in tables 3 and 4, respectively.
The stationary probabilities of this Markov chain are given by

2

TI(0) = ———, 23

(). a2 (23)
| |

H.:: - 3 V. 0- 24

) 1K lj # (24)

These results have striking similarities — but at the same time, important
differences — with those obtained by Bhat [1] for the limiting distribution of the
population in the finite buffer of a double-ended queue.

The distribution of tirhe between kit completions, D,, can be expressed in
Laplace transform form as

LIdP(r, — T,y < 1)) = TIQ(, j,ds)U, (25)

in which U is a column vector with each element equal to 1. Substituting equations
(21), (22), (23) and (24), equation (25) specializes to

LIaP(m =11 < 0] = (Nis) [l - (Kl J2er> (%15)} (26)

Clearly, for large values of Kj + K,, the distribution of time between kit
completions, D,, is approximately exponential with rate u. The value of Kj + K,
necessary to allow this approximation can be determined as a function of the
degree of approximation desired. The e-approximate distribution of D, is

Q0 j,ds)U = LjdP(r, = 7y < )] = -, 27)

which is the Laplace transform of an exponential distribution with rate p.
APPROXIMATE INDEPENDENCE OF D,

In this section, we discuss the independence of m consecutive random
variables D,, n=1,2,...,m. We show that for sufficiently large K; + K5, the m
consecutive random variables D,, n=1,2,...,m, become independent to within
an error of e.

This independence holds if the joint distribution of the » consecutive random
variables D, equals the product of the m marginal distributions of the random
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variables D,,. Statistical independence should hold for m — oo, but this limiting case
is not easﬂy evaluated.

To establish the approximation, we must show (writing Q(i, j, ds) = Q(ds)),

IIQ(ds;)Q(ds)Q(ds3) ... O(ds,,) U
= {1Q(ds ) UHIIQ(ds,) UHIIQ(ds3) U} ... {IQ(ds,,) U}. (28)

The left hand side of equation (28) is

11Q0(ds;)Q(ds;)Q(dss) ... O(ds,) U

2 2 A @
~H + [1
IL+S, K1+K2 K1+K2i=2 W+ 8;

X [b(%a)m + (%a)Kz + ...+ (%a)3+ (%)az]i (,uisi)

By making K; + K, sufficiently large, the right hand side of equation (29) can
be approximated by (J[iZ; (1/ (& =+ 5;)), the product of the Laplace transform of the
m marginal distributions of the random variables D, for n € N. Hence, equation
(28) holds for sufficiently large K; + K;, indicating that the random variables D,
n=1,...,m, are independent. The required value of X, + K, depends upon the
degree of approximation desired.

The implications of equations (27) and (29) lead to the following theorem.

THEOREM 1

The arrival process of kits at buffer Iy can be approximated by a Poisson
process with rate u, the degree of approximation depending on the value of
K + K. O
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DEGREE OF APPROXIMATION: AN EXAMPLE

To illustrate the relationship between the degree of approximation of the
arrival rate at Iy and the buffer capacities K; (X)), we consider the following
example with equal buffer capacities K; = K, = K and equal Poisson arrival rates
i1 = o = p at buffers I; and I,, respectively.

Using equation (26), the density function of the time between kit completions,
D,, may be expressed in Laplace transform form as:

= (%) -2 () (5%) 0

Inverting to the time domain, the density function of D, is obtained as

» 2
f() =pe™ +% e™H — —I—g e t>0. (31)

We define an error term e(t), expressed as the absolute difference between the
exponential density and the actual density of D,:

e(t) = % |27 — gH), (32)

Using equation (31), graphs of f(¢) are plotted for y = 1 and K = 2, 5and 10
against time 7 > 0 in figure 3. It is observed from figure 3 that the density of D,
rapidly approaches an exponential density as K increases. The graph of e(f) against
K, plotted for p = 1 and ¢ = 0.2, is presented in figure 4, which also indicates that
the error term e(¢) approaches zero rapidly as K increases.

Using equation (32), it is easily seen that for Vz,7> 0, (2™ — ™| < 1.
Hence for a given ¢ > 0 and for any arrival rate u, we can find a K such that

7
—< e
K=
Therefore, the inventory capacity required to effect the desired approxima-
tion can be easily determined knowing the component arrival rate.
5. Discussion and conclusion
We have proven conditions for which the inter-arrival times of kits arriving to
assembly are approximately independent and identically distributed exponential

random variables. If components arrive at I; and I, according to independent
and identical Poisson arrival streams and if K; + K, is sufficiently large, the output
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DENSITY - f(t)
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Fig. 3. Density comparison.

Deviation e{t)
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Capacity K

Fig. 4. Absolute deviation vs. bigger capacity.
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stream from kitting approximates a Poisson process. The practical importance of
this result is that the assembly process downstream of the kitting operation can
be decoupled from kitting for further analysis. The required conditions (for
decoupling) are not restrictive and may, in fact, hold in actual applications.

It is also interesting to note that the long-term probability distribution of
inventory position j at I; (I,), observed at kit completion epochs, depends on the
inventory position j. If arrival rates to I; and I, are equal (i.e., 4 = pu, = ), all
the inventory positions except zero become equally likely with probability that is
inversely proportional to the total inventory capacity (K; + K;). The incidence of
observing both buffers empty is twice as likely as observing a positive (negative)
stock position at either of the buffers.

Harrison [6] showed that a sufficient condition for an assembly-like queue to
reach steady state is that buffer capacities must be bounded from above. We have
shown that the total buffer capacity, X; + K,, must be “sufficiently large” to obtain
a Poisson approximation of the output stream of kits. However, from the example
in section 4, we find that K; + K, need not be impractically large to achieve an
approximate Poisson output stream; the value of K; + K, being dependent upon
the degree of approximation desired. Since the arrival process at assembly machine
P; may be approximated by a Poisson distribution, the downstream assembly
system can be approximated by the much studied M/G/1 queue.
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Abstract

Kitting (accumulating components required for an assembly) plays a crucial role in determining the perfor-
mance of a small-lot, multi-product, multi-level manufacturing system. In this paper, we analyze the kitting
process as of a stochastic assembly system by treating it as an assembly-like queue. Specifically, we inves-
tigate the dynamics involved in a simple kitting process where two independent input streams feed into an .
assembly process. Unlike previous studies in this domain, we relax the assumption of finite buffer capacity
constraint on the input buffers, and still show that the system remains stable under fairly mild conditions. It
is expected that the findings of this study will provide manufacturing system designers with wider variety of
control parameters to choose from in evaluating the system performance under a much broader set of control B
policies, which would lead to minimizing the associated costs.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of assembly operations plays a crucial role in improving the overall system performance - -
in small-lot, multi-product, multi-level manufacturing operations, especially when the system operates
under a stochastic environment [1,2]. According to Chen and Wilhelm [3] assembly operations form -
a significant portion of the overall product cycle time (hence the total manufacturing cost) in many
industries including semiconductor manufacturing. Funk [4] reports that assembly operations comprise
of up to 40% of total manufacturing cost in the electronics industry. Therefore, efficient control and
management of assembly operations is crucial in reducing the cycle time of the final product.
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" Conventionally, analysis of assembly operations has been based on the assumption that the sys-
tem operates deterministically. A more realistic analysis hinges on the recognition of the stochastic
glements (i.e., random arrival and random service times) that influence the system. Component avail-
gb_ghty at the various buffers (and consequently, the delivery schedules) is significantly affected by
these -stochastic elements. The goal of this paper is to understand and evaluate the implications of
kitting operations on the performance measures of assembly systems that operate under stochastic
conditions. , :
cc.Successful management of kitting operations increases the productivity of any assembly process
[5]: In the electronics manufacturing industry, efficient kitting mechanisms simplify material flow and
provide for better shop floor control [6]. Kitting operations are also studied at the level of production
strategies such as MRP and JIT systems; where production is managed by either a push or a pull
mechanism [7]. In such cases, efficient control of the kitting operations found to play an important
role in lowering work in process (WIP) inventory and hence decreasing the operational cost. Re-
searchers at the center for quick response manufacturing at the University of Wisconsin-Madison
have been working on examining and comparing the analytical performance of push and pull pro-
duction control strategies [8,9]. Their approximation models favors JIT (pull/Kanban) over MRP
(push)-type production strategies.

\ iAnother domain that witnesses widespread use of kitting operations is the subcontracting practice in
supply chain management [10], where subcontractors supply the individual components and services
for the various products to the prime manufacturer and the manufacturer assembles the kits. One
such application environment is found in the various US department-of-defense (DoD) aircraft repair
depots (such as the Oklahoma City Air Logistics Center OC-ALC). In the shop floor lingo at the
depots, a kit is an actual collection of parts needed to assemble an asset (such as a helicopter engine)
to.completion. Typically, these parts, which could either be manufactured internally or supplied
by external contractors, are gathered in an assembly methodology to aid production. Given that
kitting-type operations are commonly found in these environments, a central problem here is efficient
control of the kit assembly process that optimizes the delivery of these kits based upon the actual
upstream demand for these kits. One such recent initiative titled “lean value chain (LVC) for critical
parts procurement” sponsored by the Air Force Wright Laboratory’s Manufacturing Technology
Directorate involved developing solutions that enable coordinated response to anticipated and known
critical part problems [11,12]. A critical part is defined as any part whose anticipated or actual lack
of availability will prevent on-time completion of the weapon system. Critical parts are often the
result of ill-defined (or lack thereof) of control policies that dictate their delivery to the kitting
process (historically, within the OC-ALC facilities such as the GE Rotor shop, there was little
or no control policies for the parts ordering and procurement processes). The focus of the LVC
project was to reengineer the processes of linking production with material/component procurement
with the current effort being focused on developing and incorporating analytically driven control
policies. '

In a related ongoing research effort, Leung and Kamath [13] analyze a single-stage assem-
bly system where two components are assembled into a single product via a kitting operation.
Each component has its own finite buffer for temporary storage while waiting for its counter-
part. When a pair of components is available, the components move into the assembly station,
which has its own input buffer. They develop a model to approximately calculate performance
measures, such as mean system time and mean queue length, when the component arrival
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MACHINES e

Fig. 1. The structure of the assembly system under investigation.

processes are Poisson and the assembly time follows a general distribution. In Kamath and Leung
[14], this single-stage building block is used in the context of a production network to test the
usefulness of the approximation developed. Chang and Chen [15] also looked at tandem queues as
assembly-like queues in order to develop control policies that would increase the system performance.
measures.

In this paper, we investigate a simple kitting process with two input streams for an assembly
system with the aim of understanding the dynamics involved. We assume that the arrival streams
feeding the kitting process have state-dependent arrival intensities. The assembly system has a similar
structure as modeled in [7,16], and is shown in Fig. 1.

In Fig. 1, M, and M, are machines processing parts P, and P,, and M3 assembles these machined
components. I; and I, are the buffers for the machined components, I, is the buffer for the kitted
component and /5 is the buffer for the assembled component. Machines M; and M, are assumed to
operate independently. They withdraw raw materials from their respective pools of infinite capacity
and supply machined components to the buffers /; and I, respectively. A component arriving at
buffer I; (I;) is immediately kitted with a part from buffer 7, ({)), if one is available, and a kit is
supposed to be ready for assembly operation at machine M. If the kit cannot be composed, the
machined part is held in the buffer [; (J;), and awaits the arrival of a “matching” part from I, (I;).
Once composed, the kit of matching components from /; and I, is sent to /; and the kit is considered
to have arrived at Iy (Fig. 2).

For exponential service times at M; and M, and finite buffer capacities at 7; and I,, Som et al.
[16] characterize the occupancy distribution at I; and I, at kit departure epochs. Completed kits
are shown to arrive at I according to a Markov-renewal process. Also, when machines M; and
M, have identical processing rates, and buffer capacities at /; and I, are large enough, they show .
that the arrival of completed kits to I is well approximated by a Poisson process. This leads to the
decoupling of the kitting operations from assembly, and hence to an easy analysis of the downstream
assembly operations.

Stochastic assembly systems are often studied as assembly like queues [17,18]. Many followed '
the same approach in developing approximations for computing the performance measures of
complex assembly operations [19,20]. Harrison [18] in a primarily theoretical study, established
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Fig. 2. Rate diagram for the kitting process.

Vin

Stablhty conditions for an assembly queue w1th renewal and mutually independent arrival streams.
He showed that a sufficient and necessary condition for the queue to be stable is for the com-
anent buffers at /; and I, to be finite. Thus, when there are no limitations on the inventory
leyels the buffer sizes at /; and I, blow up, even when the arrival intensities (processing rates
for M, and M,) are the same. This can be intuitively explained by visualizing the queueing phe-
flomena in the context of a double-ended queue [21]. A double-ended queue can best be described
as. the classical taxicab problem where taxies and passengers form two mutually separate queues
[22] A customer waits in the customer queue until a taxi is available, and taxies wait in the taxi
queue until a customer is available. The two queues are interdependent and their combination. is
k_nown as a double-ended queue. The underlying queueing process maps into a random walk on
{ —2,—1,0,1,2,...}, which is transient or recurrent null except when the queues are bounded.
Hence most of the analysis of assembly queues and kitting operations incorporates the finite buffer
size ‘assumption. A more realistic approach is to view the machine processing rates as control
parameters which dictate the performance measures of the system. The finite buffer capacities case
18 a specific policy for setting the control parameters which guarantees stability, but it need not
be the optimal policy. The assumption of finite buffer capacity to ensure stability could be fairly
restrictive. This is particularly true since in this case the system remains stable under fairly mod-
erate conditions, allowing the system to be evaluated under a much broader set of control policies.
ThlS approach offers system designers with a wider variety of control parameters to choose from
to minimize the associated costs. In this paper, we evaluate the system when the arrival rates (or
the machine processing rates) to J; and I, are controlled as a function of the buffer sizes at I
and I, respectively. The service times of machines M; and M, are assumed to be exponential,
and dependent on the buffer sizes at I; and I, respectively. Under these conditions in the next -
sectlon we characterize the probability laws for buffer sizes at I; and I, and establish conditions
for system stability. Then we derive the waiting time distributions for kits arriving at I. We also
show that waiting times degenerate to exponential waiting times under the conditions assumed by
Som et al. [16].

The remainder of the paper is organized as follows. Section 2 presents the definitions, theorems
and proofs of our approach. A simple numerical cost structure example is provided in Section 3.
Section 4 concludes the paper by presenting the results and implications of our study.
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2. Definitions and main results

Let Ai(n1):m > 0 and Ja(mz):n; > 0 be the processing rate of machines M; and M,, and respec-
tively, where n; and n, are the number of machined components waiting at corresponding buffers /;
and L. This is a generic characterization; for example, the special case for finite buffers of &, and
ky at I} and I,, respectively, and constant and identical machine processing times at M, and M, can .-
be defined by the following conditions:

ll(n)z/l, O<n<k1

=0, n>k1'

an)=4 0<n<h
=0, n>kh.

In order to establish conditions on the control functions A;(n;):n#; = 0 and 22(ny):ny = 0 which
enable system stability, we characterize the probability laws of the number in system and establish
the waiting time for the completed kits arriving at I, as a function of the processing rate at the
machines M; and M,. We show that when the inventory capacities at /; and I, are unlimited, the.
system is stable for very mild conditions on the control functions. Studying the behavior of the. .
inventory levels at /; and I, and the departure rate as a function of the control parameters is,
useful in the selection of these parameters. We arrive at these stability conditions by first developing .
characterizations for a finite capacity system, and then developing the unlimited buffer size case as
a limiting case of the finite capacity system.

Theorem 1. Following the previous research [2,6,16,17], we let the service times of machines M,
and M, be exponentially distributed with parameters 1,(n1), and Aa(my), where ny and n, are the
number of machined components at buffers I and I, respectively. The permissible queue sizes in

both stations are ky and ky, respectively. Let 700,05 700,15 - « +» TL0,kp> U1, 0 - - - » Thy 0 D€ the Steady-state
probabilities for the system states and let
i+ {/11(0)+/11(0)/11(1) MOAMDALE) | /11(0)---/11(/61*1)}
B 42(0) 45(0) 25(0) 23(0)
+ [/12(0) n 20)471) | 20)a(D)22) | (0)... ok — 1)]
41(0) 23(0) 43(0) 22(0)
Then,
ool
0,0 - L:
_ Ja(ky —1)...2,(0)
0,k = I s
AP(0)L

Ik —1)...24(0)
Ty ,0 = T i
0L

b
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ko—n
o,n = A (0) 70,k
/12(]62 - 1) ‘e }.2(7’1)

BT
w0 ke — 1) Ja(n)

for 0 <n <k,

Ty 0 fOl’ O<n<k.

Proof. Let the state space for this assembly process be described as a two-tuple (n1,n,), where n,
and n, correspond to the number of parts in the buffers 7; and 7, respectively. The kitting process
is such that if n; > O(n; > 0) then n, = 0(n; = 0). Assuming an infinitesimal kitting time, (i.e., a
part arriving at either buffer is immediately kitted with a part from the complementary buffer), we
have if n; > 0, it follows that n, = 0 and vice versa.

- The balance equation for state (k;,0) gives

i ___4(0)
AT e - 1)

Similarly,

Tk ,0-

U () B
T b - DA ~2)

and in general for 0 <n <k it follows that

2571(0)

7,0 =~ 1
0 = O — 1) da(n) 0 (1)
and
251(0)
= . 2
BT RO K @
By symmetry, we also have for 0 <n <k
277(0)
o = T 3
O Dy — 1) .. Ja(n) ® 3)
and ’
220y
70,0 = 00,y -
| 00 Tl — 1).. . Jp(0) "
Equating the two expressions for m o, we get
_20) Aok — 1)...22(0) @

"ok = 80y Tl — 1) 4a(0)
Substituting (3) in (2) we get

_ 75'(0) Ap(n—1)...2(0)
n = 127(0) Ta(ks — 1)... 21(0) "0 )
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The normalizing equation for this system is
(g0 + Ty —1,0 + Tky—2,0 + Ty —3,0 + -+ + 71, 0)
+ (70,5, + T0,kp—1 + T0,ky—2 + T k=3 + + - + To,1) + To,0 = 1.

Substituting for all the probabilities in terms of 7y, o, using Egs. (1) and (5) in the above equation,

we have
[ W0 | =10y 2b=1(0) ]
1+{),1(k1-—-1)+ O R CED )
. 28(0) Aolly — 1)...22(0) | 25(0) Jolly —2)...25(0) 1
.0 20y Ak —1)...24(0) * 2271(0) Ak — 1)...41(0) '

B0 J2(0)
Tt 700) Il - 1>...Al(0>}

After employing Eq. (2), the expression for 7o follows as mgo = 1/L, where L is as defined
above. 0O

Next, we extend the finite capacity case to infinite buffers and derive some sufficient conditions
for stability. For stability, we check conditions under which mp o > 0. This is equivalent to checking
the condition that the series in the denominator of the expression for mp converges. The following
theorem states the stability conditions for the control function of the kitting process. :

Theorem 2. If limy_,o0 A1(k) < 4,(0) and limy_,o Ap(k) < A1(0) then the system is stable.

Proof. The queue is stable iff the series

m {11(0) 21(0)2:(1)  41(0)A4(DA1(2) A(0)... 1k — 1) L ]
AZ(O) ],%(0) 13(0) /'leq(o)
22(0) | A42(0)42(1) | 42(0)42(1)4(2) 2200)... Aoy — 1) converges.
lzl(O) 70) 0 . o ‘.. }

The series above has all positive terms. A sufficient condition for the above series to converge is
that both of the following series converge.
4(0)  AOA4A)  AOAMALER) | -

b o T T R0 7(0) ’

and
200) |, 5(0h(1) | W0)aMh@)
72(0) T 2(0) J3(0) '

Let the kth term in the first series be a; and the kth term in the second series be b;. Series 1
converges if, limg_,o0 apr1/a; < 1. Similarly, Series 2 converges if limy—yoo bry1/br < 1. We have,

1+




s .
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limy s o0 @41/ = liMgyo0 41(k)/22(0) < 1 = limy 00 Ai(k) < J5(0) and

i b L Aa(k)
e kll}rgo bk _kl—l—)nt;lo 11(0)

<1 = lim A4(k) < 1,(0),
k—r00
thus proving the theorem. [

Based upon this result, it is evident that system stability is guaranteed under mild conditions on
the control functions. Intuitively, the above result states that the system is guaranteed stability as
long as the control functions (k) and A1(k) which represents the tendency to drift towards (0, co)
and (00,0), respectively, are finally dominated by 1;(0) and A,(0) (which represent the tendency of
the system to pull back to the state (0,0)), respectively.

Next we establish the waiting time distribution for kits arriving at buffer Z,. Let 11,1,,T3,... be
the times of completion of successive kits. Let X7, X5, X3, ... be the queue sizes. Then Som et al. [16]
show that when the maximum permissible buffer sizes &, and k, are finite (X, T,) form a Markov
renewal process. They develop expressions for P{T,.; — T, <t} and show that it approximates an
exponential distribution as &; and %, become infinitely large. We use the result in Theorem 1 under
the more general assumptions of infinite buffer capacity and controlled arrival rates to characterize
the waiting time distributions for kits arriving at ;.

Theorem 3. Let N; be the number of kits completed up until time t. Let E be the state space for
the process i.e, E={(k,0),...,(0,0),...,(0,k)}. Let Ty,41 —t = Wy,1. Then the distribution of
the waiting time Wy, at steady state is given by

lim P{ WN,+1 < y} ::A(l — 6_12(0)}’) + B(l _ e-—-/h(O)y)
—r 00

+(1—4-B)1 - e-—il(o)y)(l _ e—lz(O)y)

where
oo o0
A= Z Mo and B= 0o, -
n=] n=1
Proof.
Case (a):

tl_i)m P{Wn,+1 < y/state of system = (k,0), k > 0}

o0
= P{arrival at station I, before time y units/state of system = (k,0), k > 0}
1 — o)y

Case (b):

| tl_i)m P{Wn,41 < y/state of system = (0,k), £ > 0}
0. @]

= P{arrival at station I; before time y units/state of system = (0,k), k£ >0}

— 1 — e—hO)y
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Case (c):
tl_l_)tglo P{Wy,+1 < y/state of system = (0,0)}
= P{arrival at station I; &, before time y units/state of system = (0,0)}
=(1 - e—/h(o)y)(l _ e—lz(o),V)_

Let

oo (o]
A= Z Tn0, and B= Z 0, n-
n=1

n=1

Then, my,0 =1 — 4 — B, and we have,
lim P{Wy,41 < y} =A(1 —e™2O%) 1 B(1 — e~h0)
[Ardee]
+(1 =4 —B)(1 — e HOr)(1 — =R, (6)

Next, we derive the joint distribution of two successive kit completions times from an arbitrary - .
time . O '

Theorem 4. Let T1,T5,T3,... be the times of completion of successive kits. Let N, be the number
of kits completed up until time t. Let the buffer sizes be finite at ky and k, respectively. Let E be
the state space for the process i.e., E = {(k1,0),...,(0,0),...,(0,k2)}. Then the joint distribution
of the waiting time and the next inter-departure time is given by

tl_ijgoP{TMH =t < Y, T2 — T S ya}
:'—A/(l — e~ 4O )1 — e—lz(o)yz) + B/(l — e~ (O )1 — e—ll(o)n)

)L](O) =0 _ a—h(0)n
+m’0{?»1(0)+/12(0)(1 e me

mj)%(ﬁ%fﬁi (1 — RO (1 — =20 )(] — g=HO )]
o [11(0§1i0,12(0) (1 — e~ HOWIY(] — g=HOM)(] _ g=Or)
+ Z—(_.%z—-—(i-%_z—(—o—) (1 — e 11Oy — =4O )}
N Zﬁ% (1 — = HOW (] — RO )(] — g~ | .
w B0 mhomyg ROy gm0

21(0) + 22(0)
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where

ki k2
= E Tno and B = E T, -
n=1 n=1

Proof. We can write the above expression as

P{Ty41—t < y1, Ty42 — Th+1 < ya2}

=Z7ZiP{TN,+1 =t <y, Ty — TN,—H < yo/state at ¢ = i}
ick

=Z7ZiP{TM+2 = In < y2/Tneer — ¢ < y1}P{Tw41 — t < yi/state at ¢ =i}

i€E
Case (a) (Xy, = (k,0), k> 1):
P{Tn2 ~ Th1 € y2/Ty1 — t < yy, state at ¢ =i} = (1 — e~2O),
Case (b) (Xy, =(0,k), k> 1):
P{Tn2 = Tor1 < y2/Th1 — t < 31, state at £ =i} = (1 —e M On),
Case (¢) (Xy, = (1, 0)):

P{TNH_Q — T4y < yZ/TN,-I-l — 1<y, State at = l}

_*“i@-)——— — e~ 200 _..._ﬂ(.)_)_, a0 =AYy
BZOESZ0 RPN O A0 LR S

Case (d) (Xy, = (0, 1)):

P{TNI.,_Q ~ Ty < y2/TM+1 —{ < y;, state at Z‘Zi}

__ 4(0) MO\ ama(0)p2 42(0) kO
ST+ R T e e gy (.

Case (e) (Xy, = (0,0)):

P'{TNl_i_Q — In41 < yZ/TNz+1 —t <y, state at £t = l}

_ A9 )2 42(0) (0,
TR0+ 20 T T Ty e

(8)

)

(10)

(11)

(12)

(13)

Substituting Eqs. (9) and (13) in Eq. (8) and using Theorem 3, we obtain the desired result.
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Theorem 3 can be used to estimate expected remaining waiting times. Theorem 4 can be used to
study the correlations structure of the kit completion process. Based upon Theorem 4, the following.- -
corollary states that the waiting times are independent under the assumption of A;(n)=7A(n)=A. O..

Corollary. When both buffer capacities are infinite and A(n) = Ay(n) =4 for all n, then the above...
Jjoint distribution reduces to a product of two exponentially distributed intervals.

Proof. Let ky = k; = k. Then, n; = 1/(2k + 1) Vi € E. The right-hand side in Eq. (7) as given 1n
Theorem 4, reduces to

2%-2 1 TR
<2k+1+2k+1>(1 e =)

2k 1 [(1 —}»J’l )(1 — e—lyz)z + (1 _ e—lyx )2(1 . e._lyz)]

+ Elélﬁ (1—e ™)1 —e™2)2 — e —e™),

If we let k — oo, we have lim;_yoo P{Twn2— T1 < Y2, Tvr1 —t < y1}=(1—e ) (1—e"42). O

In the next section, we use simple numerical examples to gain further insights and select control
parameters for minimizing overall system costs.

3. Numerical example

Based upon the results of the previous sections it is evident that system stability is guaranteed -
under reasonably mild conditions on the control functions. This poses the system designer with the ™
following question: given a particular cost structure (such as the inventory holding cost, delivery
rate requirements), from the class of control functions satisfying the stability criterion, what is the
‘optimal’ function for the processing rates? Consider the following set that defines sequence- tuples ’
that satisfy the stability criterion:

J— . —_ o0 —_ (o) 1 I B
§ = {(a, mya; =120, @ = [ar,]20 and m a;, < ago; im ags < a0}

Any element of the set (a;, a;) €S is an admissible control policy. Then the overall cost function
f can be generically defined in terms of the control policy and the cost parameters as

cost function = f((a;, ar), cost parameters),

and the optimal control policy (aj, a;) satisfies

* *
a;, a, )= ai, a cost parameters
1@, a) =, min _f(@as), cost p )

Intuitively it can be reasoned that there exists no particular control function that minimizes total™
cost over all cost structures. In other words, the nature of the control function would be dependent
on particular cost structure that is present in the application domain. Also, the set of control policies:
that are admissible in a domain would be dictated by the capacities of the machines producing
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the individual components (machines M; and M,). Then the set of admissible control policies are
restricted to

o0 o0 : :
i, i )aj =\a;nl 20, ar =lar, 152, and  lim a;, < apg: limar, < a:n:
{( k) k) j. [j,n]n._Oa k [k,n]n__() " j.n k,Osn k,n 7,05
b

sup[aledy < Amaxs SUP[arA]2p < Mox

where AL, and A2, are the upper limits for production capacities at machines M; and M,, respec-
éiyely. A closed-form analytical solution to the problem defined above is difficult, and is the focus
pf our ongoing research investigation. Nevertheless, we can leverage the research results from the
previous sections to develop simple, yet practical, control strategies (which although not rigorous,
they offer some level of control on the operational costs). We show a sample numerical exercise
that illustrates the application of the theoretical results. Consider three specific classes of control
ﬁ;nctions for processing rates at the machines that satisfy the stability criterion.

1
(1) = a0 = 0) = 2= o ()3 721, n 30,

G <l> , n>0,
(2) ajp=ap,=M(n)=lh(n)= n

Cz, n=20
n
C (1 ——], 0<n<M,
() Gjn=apy=M(n)=lo(n) =4 M ) D
0 otherwise.

All of these control functions belong to a specific control function type that can be tuned in
terms of parameters (we can call this the control function parameter). For example, the first control
function type is a geometric control function, in which by modifying the parameter r, different
production intensities (and different cost performances) can be achieved. A simple formulation for
the cost function would incorporates a tradeoff between the lateness cost of assembled kits (cost that
is proportional to the waiting time for completed kits) and the holding cost of components at the
individual buffers. The lateness cost reduces when the inter-departure times of successive assemblies
have a lower mean (kits are generated at a higher rate). If we tend to have a high number of parts
in the buffers (higher holding costs), then we tend to move away from the situation in which both
buffers are starved, which reduces the mean of the inter-departure times. Inherent in the notion of
a lateness cost is the assumption of an infinite demand of assembled kits at the downstream buffer
Iy. Let

Cy = Holding cost of a part in buffer I, or L.

C; = Lateness cost of an assembled part.

I = Total number of parts in buffers 7; and L.

W = Remaining waiting time of an assembled kit.

TC = Total cost.
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Cost for Geometric Processing Rates

Fig. 3. Cost values for geometric processing rates with C, =0.5 and C; = 5.

Table 1
Total cost at different cost combinations for three machine processing rates
Control policies Policy 1, Policy 2, Policy 3,
Cr=05,C =35, Cpr=05,C =35, Cyn=05,C =35,
Co =1, optimal 7 Ci=1,C=1 Gy =1,M =10,000
Cost 11.683 11.621 12.863

Then, define the total system costs as
TC = GE[] + GE[W],

E[I] is the expected number of components at buffers /; and I, and is defined as
(o]

E[I1=) iPI =i).
i=0
The results from Theorem 1 can be used to compute P(/ =i). Similarly, if f(y) is the density
corresponding to the distribution in Theorem 3, then the expected remaining waiting time E[W] of
an assembled kit is defined as follows:

E[W] = /0 V() d.

For a particular combination of C,(=0.5) and C;(=5), and parameter Cy =1, Fig. 3 shows the.
values for 7C as a function of » (achieving an optimal cost value of 11.683). The entries in
Table 1 compare this optimal 7C value with the second (for C; = 1,C, = 1) and the third (for
C;=1,M=10,000) control policies. We can see that the second processing rate (where the processing
rate equals the reciprocal of the number of parts in the buffer) performs the best.

Although the above analysis makes simplifying assumptions and employs a primitive cost structure,
it serves to illustrate the relevance of using machine processing rate functions as control parameters
in improving the performance of assembly operations.
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4 - Conclusions

. In this paper, we characterize probability laws for queue sizes at buffers for a kitting process.
We derive the distribution of remaining waiting time for kits feeding the downstream process. We
show that queue sizes at the component buffers are stable under very mild conditions for the control
functlons This is in contrast to previous research, which analyses kitting systems of finite component
buffer capacities, where the finite buffer sizes are imposed to ensure stability. This offers system
designers a wide variety of control functions to choose from so as to have the flexibility to minimize
cost given the cost structure at hand.
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Abstract

We consider an assembly system with exponential service times, and derive bounds for its
average throughput and inventories. We also present an easily computed approximation for
the throughput, and compare it to an existing approximation.

Keywords: Assembly-like queues, bounds, approximations.

1. Introduction

Assembly-like queues arise in many practical situations, including assembly
lines in production plants (e.g. automobiles), mixing operations in chemical
industries and data flow through computer systems (Dennis [6]). Despite their
applicability, the literature on assembly-like queues is scarce, largely due to their
analytical intractability. '

In this paper we consider assembly-like queues with random service times.
Such systems have been studied in the literature (Lipper and Sengupta [14]) and
their randomness arises due to variability in processing times, especially in those
processes in which randomness is inherent — for example, balancing of automo-
bile shafts (Monden [15]). Randommess would also be a natural assumption in the
case of dataflow models of computer systems mentioned above.

In a predominantly theoretical study, Harrison [9] considered an assembly-like
queue whose input processes are independent renewal processes and with no
restriction on the queue size of customers of each type. Under these assumptions,
Harrison showed that the waiting time process does not converge in distribution
to a non-defective limit. Latouche [13] showed that an assembly system with two
Poisson arrivals and exponential service times, where the arrival rates depend on
the excess of customers of one type over the other in such a way that the excess is
bounded, is stable. Further, he indicated a matrix geometric technique based on
the work of Neuts [16] for computing the stationary probability vector. Bonomi

© J.C. Baltzer A.G. Scientific Publishing Company
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[4] treated a similar system with more than two inputs, and gave an approximate
procedure for computing throughput and mean queue lengths.

Bhat [3] analyzed finite capacity assembly-like queues, with emphasis on
deriving the response time distributions assuming that the steady state probabili-
ties are available. He did not address the computational aspects of obtaining the
steady state probabilities. Lipper and Sengupta [14] considered a model which is
essentially that studied here, and gave an approximate method for computing the
throughput and mean inventory. In this model, each input process is Poisson with
finite waiting space, and service times are exponential. This is a more realistic
model of assembly systems than the “bounded excess” model of Latouche.

Although this model of assembly systems is clearly a Markov process, it
generally requires a large state space and the ‘curse of dimensionality’ prevents us
from obtaining analytical solutions in the case of reasonably large buffer sizes. In
the absence of exact solutions, approximate methods and analytical bounds are
the other alternatives for computing performance measures. The approximate
method of Lipper and Sengupta provides one approach. However, because it is
algorithmic in nature, their approach is not simple. It also does not provide error
bounds. In this paper, we present some analytical bounds for throughput and
inventory and also present an approximate solution very different from that of
Lipper and Sengupta. Our approximate method is much easier to implement, and
in some instances works better when compared to Lipper and Sengupta’s for
throughput. But our method is restricted to systems with two input sources, while
Lipper and Sengupta’s method works for more general systems. Their method
also gives superior results for inventory.

2. Model description

The basic model of an assembly-like queueing system is depicted in fig. 1.
Machines IM, and IM, are the input machines and AM is the assembly machine.
We model the finite buffer space through bins. Machines IM; and IM, work to
fill the bins, which then travel to AM where they are emptied. The empty bins
travel back to machines IM; and IM, respectively. Travel times are considered to
be negligible.

For machine IM; to function it must have at least one empty bin in front of it.
Machine IM, operates likewise. The bins of the two types do not mix — a full bin
that came from machine IM, returns to machine IM,; when it is emptied. For
machine AM to function, there must be at least one full bin in buffer B, (i.e. from
machine IM,) and at least one full bin in buffer B,. Thus, this model also depicts
a “pull” or “kanban” inventory control system.

Each bin may carry one or many components. For the assembly operation,we
may need two components of one kind and one of the other, and here we assume
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o« supply
— IM_I

oo demand
AM e

to supply

—— IM2

Fig. 1.

that the size of the bin is suitably scaled that exactly one bin of each type of
components is used for assembly.

We have made the implicit assumption that a full bin remains at machine AM
until the machine AM completes its operation on the contents of that bin.
Alternatively we could assume that a bin is released as soon as machine AM
starts operation on its contents (i.e., the contents of the bin is transferred to the
machine and the bin is freed). But this can be shown to be equivalent to the
previous model with one additional bin in each buffer. Hence, there is no need to
analyze this model separately. .

For the purpose of analysis, we now make the assumption that the service
times are independent exponential random variables, with rates A;, A, and u for
machines IM,;, IM, and AM, respectively. Let N;(z) be the number of bins in
buffer B, waiting for service from machine AM at time ¢ and let N,(z) be those in
B, waiting for machine AM. Define a state (n;, n,) to mean that N,(¢) = n, and
N,(#) = n,. Let the total number of bins in buffer B, be K; and that in B, be K.
These are referred to as the buffer sizes or capacities.

The parameters A, A,, p, K; and K, completely describe this model. The
performance measures we are concerned with are the steady state mean through-
put 8, and the steady state average inventory in each buffer, denoted .#; and .%,.
@ is defined to be the mean number of service completions of machine AM in
unit time in steady state (actually, the mean steady state throughput of machines
IM;, IM, and AM are all equal). #; is defined to be the steady state mean queue
length of bins in buffer B, waiting for service at machine AM. %, is similarly
defined. In all the discussion to follow, we assume steady state operating
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conditions. So mean throughput stands for the steady state mean throughput and
likewise for mean inventories.

To facilitate our discussion we make use of the following notation: {A/u/1/K}
stands for an M/M /1 /K queue with inter-arrival and service time rates given by
A and p respectively. 8{A/n/1/K}, #{N/p/1/K} and po{A/u/1/K} stand
for the mean throughput, mean queue length and empty probability of
{N/p/1/K} respectively. {A\/A,/u/K,/K,} stands for the assembly system
described above, and @{A,/A,/p/IK,/K,}, F{A/N/u/K/K,} and
F{A/N,/u/K /K, } stand for the mean throughput and the mean inventories
of {A/A,/u/K,/K,} respectively (where there is no ambiguity, these are
sometimes abbreviated as 8, 4, and .%,).

Letting p = A/p, from Gross and Harris [8] we have

0{\/p/1/K} = {(l_(l*p)/(l‘f”{“))u if p# 1

(K/(K+1))p if p=1
p[1— (K+1)p* + Kp**']

I\ /Ky =0 /[(1=p)(1— )] ifp#1
K/2 ifp=1

(1—p)/(1—p*") if p=#1

po{A/u/l/K}={1/(K+1) ifp=1.

3. Equivalence of the assembly system to a transfer line

The first result we present is that the assembly system depicted in fig. 1 is
equivalent (the nature of the equivalence is stated in theorem 1) to a transfer line
of tandem queues with blocking. This equivalence is of practical interest because

_considerable effort has been devoted to the analysis of tandem queues (see Altiok
[1], Buzacott [5], Gershwin and Schick [7], Hatcher [10], Hillier and Boling [11]
and Hunt [12]).

Consider the three machine transfer line with finite buffers between the
machines shown in fig. 2. Machine IM; works as long as there is an empty bin in
buffer B;. For machine AM’ to function, there must be a full bin in buffer B;

== E=
o) supply co Gemand
— MYy B'l v B M5 e
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and an empty bin in buffer B;. Machine IM} works as long as there is a full bin
in B;. We define the number of bins in B; and B; to be K; and K, respectively,
the service times at IM;, IM3 and AM’ to be independent exponential random
variables with rates A;, A, and p, respectively, Ny (z) to be the number of full
bins in buffer B] and N, (¢) to be the number of empty bins in buffer B; at time
t. Clearly this represents an ordinary three machine transfer line with two finite
buffers in between the machines.

THEOREM 1
The process { N/ (¢), N, (¢); t> 0} is stochastically equivalent to the process
{ Ny(2), Ny(#); t > 0} described above in section 3.

Proof

Their equivalence can be seen by starting both the processes with the same
initial state, and using the same sample path in both processes. The fact that the
machines have exponential service times is not used here. As long as the
successive service times at machines IM; and IM; are the same, IM, and IM} are
the same, and AM and AM’ are the same, this equivalence holds. O

As a by-product, we see that the throughputs of both the assembly system and
the transfer line are the same. Also the average steady state inventory in Bj is
given by .#;, and that in B, is given by K, —.%,.

A version of this equivalence, where the processing times are deterministic but
machines are subject to failure, is given in Ammar [2].

- Xan
oo supply
R
o demand
—
»
Zan
o supply
——————p

Fig. 3.
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4. Upper bound for throughput

Let { F;/F,/G/K,/K,} denote an assembly system shown in fig. 3, where the
successive service times of IM; are independent and identically distributed
random variables (iid rv’s) with cumulative distribution function (cdf) F;, service
times of IM, are iid rv’s with cdf F,, service times of AM are iid rv’s with cdf G,
buffer B, has a capacity of K; bins and B, has K, bins. F;, F, and G need not
be exponential distributions. Let 8{ F,/F,/G/K,/K,} denote the steady state
average throughput of { F,/F,/G/K,/K,}. In the following, we use <™ to
mean “stochastically less than”, as defined in Ross [17].

LEMMA 1
F, <" F,=0{F,/F/G/K\/K,} > 0{ F,/F,/G/K,/K,}.

Proo
W]; generate the successive service times at IM ,, IM,, IM, and AM as follows:
§al7 §a27 '§a3a §a4’ .o~ B
Sfb]ﬁ '§b2> §b3> §b49 .~ By
-'§21’ §22» §23= §24> .o~ B
7,1, T Ty, ... ~ G

where § and S’}m are generated by choosing (71, 0, 173, (74, ... to be indepen-
dent random variables uniformly distributed in [0, 1], and taking S..=FE(U)
and S,m F 1(U ) (see fig. 4). Clearly S ~ F, and S,,,1 F,. Furthermore, since
F, <™ F,, it follows that

S..<S,, forall n. (1)

A

. F,(x)

ey

an bn
Fig. 4.
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Let the successive service completion times of IM_, IM, and AM of the system
{F,/F,/G/K,/K,} be denoted by (see fig. 3)
}?alﬂ XaZ? XaS? }?a47
Yah YaZ’ Ya3’ Yz.14:

A A A
Zal’ Za2’ a3 Za4’

respectively, and those of IM,, IM, and AM of the system { F,/F,/G/K,/K,}
be denoted by

Xbla Xb2= Xb37 Xb4’
Ybb sz’ YbS’ Yb4’
Zbla sz’ ZbS’ Zb4a .-
respectively. Assuming that both systems start with all empty bins, we have

Xal =S”\al (2)
Aan+1:)?an+§an+1 fOI'l n<K1 1 (2’)
Aan+1=max{}?an= 2an+1~K1}+‘§an+l forn>K1 (2’/)
1= Sn | (3)
Aan+1=i}an+§2n+1 f0r1<n<K2——1 (3,)
Y’\:Jn-l-l:max{i}ana ‘ZAan+1—K2}+§2n+1 for n> K, (37)
"2an+1=ma‘x{2an’ Xan-ﬂ-l’ ?an+1} + j\;ﬂ-l for n 2= 1 (4)

for ( F,/F,/G/K,/K,}, and

Xbl = §b1 (5)
Xy sz = Ko+ Synia forl<n<K, -1 (5")
Ryne1= max{)?bn> 2bn+1—Kl} + St for n> K, (5")
j}bl = §21 (6)
Ypni1= You+ So i1 forl<n<K;-1 (6")
Ybn+1=max{}'}bns ZAbn+1—K;} +’§2n+l for n>K2 (6,/)
an+1 =max{2bn= an+1a j}bn+1} + f:z+1 forn>1 ' (7)

for {F,/F,/G/K,/K;}.
Suppose that for some positive integer m, we have

Xom < Xom (8)
o < Yo (9)
am < bm* ’ (10)
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Clearly it holds for m = 1. By egs. (2), (2'), (2”), (5), (5"), (5”), (8) and (1), it
follows that X, .1 < Xp,,.1. Likewise Y, . < Y},,,;. These two inequalities,
together with egs. (4), (7) and (10) yield Z,,,, 1 < Z; 41-

Thus we have shown by induction that for all » > 1, we have

Zcm < an .

Since n/AZ?a,, converges to 0{ F,/F,/G/K,/K,} with probability one, and like-
wise n/Z,, converges to 8{ F,/F,/G/K,/K,}, the lemma is proved. O

COROLLARY 1
AosAy=0{A /A /u/K /K, } <O{Ny /Ny /0/K /K, }

Proof

Let F, be an exponential distribution with rate A,, and F, an exponential
distribution with rate A,, A, <A, = F, <™ F,, and hence the conclusion follows
from lemma 1. O

COROLLARY 2
O{ A /Ay/p/K /Ky <O{A/p/1/K,)

Proof

{A/p/1/K;} is the same as {A,/00/u/K,/K,}. If F, is an exponential
distribution with rate A;, and G an exponential distribution with rate p, the latter
may also be written as { F/;/1/G/K,/K,} where I is the unit step function at
zero. F <™ I for any cdf F of a positive random variable, 8{ F,/F,/G/K /K, } =
8{F,/F,/G/K,/K,} by symmetry, and hence the conclusion follows from lemma
1. O :

LEMMA 2
As p increases to oo, 8{A;/A,/p/K,/K,} increases monotonically to
{A/A/1/K + Ky ).

Proof
Proof is analogous to the proof of lemma 1 and corollary 2. O

From corollary 2 and lemma 2, we have that §{A;/A,/u/K,/K,} is always
bounded as follows:

O{N\ /Ny /u/K /Ky } <O{N/p/1/K}
O{N\/Ny/0/K /Ky } <O0{Ny/p/1/K, )
O{A/No/u/K /Ky } <O{N/Ny/1/K + K, b

Therefore we have the following theorem.
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THEOREM 2
O{A /A /u/K,/K,)} <8, where

O =min{0{A,/u/1/K:}, 0{N/1/1/K, }, 0{A /X, /1/K + K, )} O

Also from corollary 2 and lemma 2, we see that asymptotically, as A; = oo or
as A, — oo or as p — oo, the upper bound becomes tight. So if we have any one
of A;, A, or p large compared to the others, this upper bound will be fairly close
to the actual throughput.

Notice that even if the machines in the assembly system had general service
times instead of exponentially distributed service times, we could derive an upper
bound to the throughput analogous to that in theorem 2. However, for computing
the upper bound, we would need the throughput of a GI/G/1/K queue.

5. Lower bound for throughput

We now derive two different lower bounds on throughput. First we need the
following result. Recall that N,(¢) represents the number of full bins in buffer B,
of the assembly system. Let N; be the number of full bins in B, of the assembly
system in the steady state.

LEMMA 3
P(N,=0) <po{ M/p/1/K;)

Proof

Define T;(¢) to be the time during [0, ] when N,(¢) is equal to zero. Let T;(¢)
be the time during [0, ¢] that the queue {A,/pn/1/K,} is empty. By an argument
similar to the one in the proof of lemma 1, we can show that {77(7)} is
stochastically less than {7;;(z)}. Since

T, (t
P(N,=0) = lim —15—2
=0
and
. Ty(t)
po{M/p/1/K } = lim ===,

the lemma follows. [1
This lemma leads directly to our first lower bound.

LEMMA 4
01 = pll — po{ M/1/1/K1} — pof A/B/1/K5 ] < 0 >\1/>\2/#/K1/K2}
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Proof

0{7\1/>\2/H/K1/K2}=#(1'fP(N1 0 or N, =0))
>p(l-P(N = 0) — P(N,=0))

>p(l- Po{kl/ﬂ/l/K]} —2o{Ao/0/1/K,})

by the previous lemma. O

Notice that as A; — 0, fy,; increases monotonically to §{\;/p/1/K,} and as
A, = 0, By, increases monotonically to 6{A;/u/1/K;}, so the bound is tight
for large A, or A,. However, as u— 00, 6 = — o0, which implies that this
bound will perform poorly for the case where p> A, A\,. However, if the
assembly operation is the bottleneck, we will have u < A;, A,. Hence, this bound
may be useful in practice.
~ Next, we derive another lower bound on throughput by considéring an assem-
bly system in which each machine processes k bins and shuts off until the other
machines have also completed & bins, where

o |0l )

(lx] is defined to be the largest integer less than or equal to x.) After each
machine completes k bins, the process is repeated. If we start with k full bins in
each buffer in front of machine AM, K, —k bins in front of machine IM,,
K, —k bins in front of machine IM,, then processing k& bins at each machine
returns the system to this same state. The throughput of this system is a lower
bound on 8{A,/A,/p/K;/K,} and is given by

k
0 = »
2" E[max{Erlang(},, k), Erlang(),, k), Erlang(g, k)}]

where Erlang(A, k) is a random variable which is the sum of & independent
exponential random variables each with rate A.

LEMMA 5
Oy < O{Ay/Ny/0/K /K,

Proof

The throughput of the new system is easily found using the renewal reward
process of Ross [17] to be 6,. That this throughput i1s a lower bound to the
throughput of the original assembly system is shown by an argument analogous
to the proof of lemma 1. O

01, can be computed iteratively, as outlined in appendix A. (In the case of an
assembly system with general service times instead of exponentially distributed



W.J. Hopp, J.T. Simon / Assembly-like queues 147

service times, we could derive a similar lower bound for the throughput. However,
instead of the iterative computation given in appendix A, we would have to
compute the appropriate convolutions of distributions.) We have thus proven the
following theorem.

THEOREM 3
0{ A /No/1/K /Ky } > Oy, where 0y, = max{ 8y, 0,,}. O

HEURISTIC LOWER BOUND FOR THROUGHPUT

We now give an approximate method for computing throughput that, while not
a demonstrable lower bound, virtually always underestimates throughput. We will
make use of this “heuristic lower bound” to give a simple approximation of
throughput.

To motivate the heuristic lower bound, consider two separate transfer lines as
shown in fig. 5. Let N;(¢) be the number of full bins in buffer B, at time 7 and
N,(#) that in B,. The machines IM;, IM,, AM, and AM, are exponential servers
with rates A, A,, p and u respectively. The buffer size of B, is K, and that of B,
s K,.

It is clear that if machine AM, is deactivated whenever N,(¢) = 0 and machine
AM, is deactivated whenever N,(z)=0, and the sample path of successive
service times for AM,, and AM,, are the same, we again have { Ny(¢), N,(2); ¢ > 0)
to be the same Markov process as we had earlier in the assembly system.
Suppose, however, that transfer line b operates without any influence from the
transfer line a, but machine AM,, is deactivated whenever N,(z) =0. We let 4,

Line a
® StEply o damand
—_— ]M1 Bl PMa A
Line b
o Supply o demand
—_— M, L B, RY
.
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represent the throughput of line a under these conditions and 6, represent the
throughput of line b when line a operates independent of line b and AM, is
deactivated whenever N,(t) =0. We can demonstrate that these throughputs
represent lower bounds on the actual throughput.

LEMMA 6
0. <0{A/N\/u/K /K, }
0, <0{A/N\,/p/K\ /K, }

Proof ,
The proof follows from a similar argument to that given in the proof of lemma
1. O :

Unfortunately, computing 6, and @, is essentially as difficult as computing
{A/N,/n/Ki/K,}, so these bounds are not of practical use. To develop an
easily computable approximation to these bounds, further suppose that the effect
of slowing down of line a due to N,(¢) being zero in line b is captured by
reducing the service rate of AM, by a factor of P(N,=0)=p,{A,/pn/1/K,} (in
the steady state). To the extent that this is true, an approximation to 6§, is given
by 8{X/p[l = po{A./0/1/K,}1/1/K,}. Hence, this approximation should serve
as a lower bound on the actual throughput, 8{A,/A,/n/K,/K,}. Extensive
computations, summarized in section & show that it does indeed consistently
underestimate the throughput. Additionally, this approximation is very simple to
compute. We simply compute py{A,/p/1/K,} (using standard results for the
M/M/1/K queue), set p’ = p[l — po{A,/p/1/K,}], and then compute
0{\,/p' /1/K;)} (again using the standard M/M/1/K queue results).

We define a heuristic lower bound for the throughput to be the larger of the
approximations 4, and ,:

O, = max{ 0 { A /n[1 = po{No/b/1/K;}] /1/K ),
6{N2/n[1 = po{M/p/1/K1}] /1/Ks } )
As A = o0, O T 0{N./1/1/K,}. Likewise, as A, — oo, Oy 10{A/p/1/
K,}. 8 and 6y, also exhibited the same behavior, so for large values of A; or A,
the bounds are all tight. But as p—e, 6y, tmax{0{\ /\,/1/K,},

6{N\,/\/1/K,}}. In this case, 6, would be closer to §{A;/A,/un/K,/K,} than
other bounds. .

6. Upper bound on inventory

Any lower bound on the throughput yields an upper bound on the inventory.
We state this as our next lemma. Clearly it is not an efficient upper bound.
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LEMMA 7
For any lower bound 8, on 6{A,/\,/p/K,/K,},

0
FU{M/A/ /K /Ky ) < K — _}:11*1

: 6
F{M/As/u/Ky /Ky <Ky — ff.

Proof

Recall that N, represents the number of full bins in buffer B, of the assembly

system in the steady state. Throughput of the assembly system, being also the
throughput of the input machine IM;, can be written as

0{M\/No/0/K /K, ) =M1 - P(N; = K7)].

It follows that P(N; # K;) =1~ P(N, = K;) > 8, /\,. Now
K,
jl{}\l/A2/M/K1/K2} = E nP(N,=n)

n=1

<K P(Ny=K;) + (K, —1)P(N, #K,)
<Ky = 0p/A;.
The second inequality follows analogously to this one. [T

7. Lower bound on inventory

Similar to the upper bound on the inventories, any upper bound on the
throughput gives us a lower bound on inventory.

LEMMA 8
For any upper bound 8, on 0{A,/A,/pn/K,/K,},

b,
A A/ /K /K ) > (1 - '}f‘)Kl = 1a

0,
A A/ /K /K > ( - _Ub‘)KzEjlbza

A,
Proof
As in lemma 7, O0{A/A,/u/K;/K,} =\][l1— P(N,=K,)]. If O, >
0{\/N./n/K,/K,}, we have

P(N;=K;)>1—0,/A,.
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Now,
K

AN/ u/K /Ky ) = Z nP(Ny = n)

n=1
> K, P(N,=K,)
> Ky (1 - 05/A1).
The second inequality follows analogously. O

Our next bound compares the inventory of the assembly system to that of a
corresponding transfer line.

LEMMA 9
A AN/ /K /K 2 I (N /u/1 /K =y,
I M/ N/ /K /Ky } 2 I N/ 1/ 1/ K} = Iy,

Proof
The proof of this lemma is analogous to the proof of lemma 1. O

LEMMA 10
Consider an assembly system with parameters A;, A,, K; and K,, with p = oo.
Let the mean inventories for this system be ;. and J,.. Then

FUM/N/1/K /Ky ) 2 I, and SH{ A /A, /u/K /Ky } 2 Py,

Proof
Again this is proved using arguments similar to those used in the proof of
lemma 1. O

Computation of £, ;. and #},, are given in appendix B.
The preceding three lemmas yield the following lower bound for the invento-
ries in the assembly system.

THEOREM 4
F{A/ N /u/K /K ) 2 max{ Py sy Fivie )
I M /No/p/K /K } 2 max{ Faas F2ns Fivac) - O

Heuristic upper bound for inventory
Mimicking the heuristic for lower bound on throughput, we can derive the
following heuristic for inventory in each buffer of the assembly system:

F hubt =-ﬁ{>\1/ﬁ“[1 ”"Po{hz/ﬂ/l/Kz}]/l/Kl}
jhub2=j{>\2/lu'[1 —pO{Al/fJ‘/l/Kl}]/l/KZ}'
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While this approximation tends to overestimate inventory, it does not do so
consistently — there are cases where Jy,; <.%{\, /N/u/K /K, ) or Sy, <

Ho{ }‘1/A2/F'/K1/K2}'

8. Computational results

From extensive computations, we found that the average of ,, and @, gives
a good approximation to 8{A,/A,/n/K,/K,}. A sample of computational
results for the approximation to the throughput is presented in table 1. In this
table, 6, is the actual throughput of the assembly system, computed by consider-
ing the assembly system to be a Markov process and calculating its steady state
probability distribution. §y;, stands for the approximate value for the throughput
as computed by Lipper and Sengupta [14], and 0, stands for the approximate
value we are suggesting, i.e. 0,,, = (0, + 8,,)/2.

From table 1 it is apparent that our approximation does better than the
approximation given in Lipper and Sengupta [14] in some instances. Our ap-
proach also yields bounds, since 8, is a guaranteed upper bound and @y, seems
to consistently underestimate the throughput (at least in all the computations we
have done). In addition, our approximation is computationally very simple, which
allows it to be used in routines to optimize the system performarnce with respect
to variable system parameters. The closed form expressions given here are
potentially useful as the basis for determining optimal buffer sizes.

However, as pointed out earlier, our method works only for two inputs,
whereas the approach of Lipper and Sengupta can handle more than two inputs
to the assembly machine. Further work is needed to develop simple closed-form
approximations for the case with more than two inputs and to refine the bounds
and heuristics for average inventories.

Appendix A
COMPUTING 6,

To compute 8y,, we need to compute E[max{Erlang(A;, n), Erlang(A,, n),
Erlang(ys, n)}], where the three random variables are mutually independent.

Define X,,, m=1,2,3... to be independent and exponentially distributed
random variables, each with parameter A,. Similarly define ¥, to be independent
and exponentially distributed random variables with parameter A,, and Z, to be
independent and exponentially distributed random variables with parameter p.
Let

i J k
X0 = Z X, YWD = Z Y,, 7k — Z Z,.

m=1 m=1 m=1]
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Also define T(i, j, k) = E[max{ X, Y, Z*)}]. Using this definition, our
aim is to compute T(n, n, n).
If i>0, j>0and k> 0, by conditioning on min{ X;, Y;, Z;}, we can write
1 Ay
+
A,

T(i, j, k)= MT(i—l, j, k)

T(z j—1, k) + T(i, j, k—1).

®
Ay+A,+p

Extending this to the general case, we can write
1 Ay
(i, J, k) I{z>0;>0k>0}{>\ +}\2+M+7\ FA,+

A, p .
m—z——"T(l -1, k)+mT(1, J» k—l)}

T(i -1, j, k)

+1 { LS
{i>0,j>0,k=0} A1+}\2 >\l+>\2

A,
. T(i, j—1, 0)}

+1 { L, M
{i>0,j=0,k>0} Al_'_” A1+H'

T(l—l Js O)

+

T(i~1,0, k)

-+

B0k
>\I_HLT(I,O, k 1)}

+1 { L, N (0, j—1, k)
(i=0,j>0,k>0}‘>\2+” A, + b » J )

4 -
+ >\2+p,T(O’ J, k 1)}
1
11> 0,/-0.k=0) -,)q +T(i-1,0, O)}
1 .
+I{i=0,j>0,k=0]{'5\"; + 10, j—1, 0)}
1

+I{i=0’j=0’k>0}{y, +T(O O k“"]_)}

Given that 7(0,0,0)=0, T(1,0,0)=1/A,, T(0,1,0)=1/A, and T(0, 0, 1)
=1/p, we can compute any 7(i, j, k) iteratively. Thus we can compute
T(n, n, n).
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Appendix B
COMPUTING £, AND 4y,

We are given an assembly system {A;/A,/u/K;/K,} with p= oo. Clearly
Ny(z) and N,(¢) cannot both be non-zero at the same time. Hence we can denote
the state (N,(¢), N,(¢)) using a single variable N(¢), where

N(t) >0 N(2)=N(t), Ny(¢t)=0
N(t)<0e N(2) =0, Ny(¢) = —N(t) and
N(1) =0 N,(1) = Ny(1) =0.

\‘ Thus we have a Markov process { N(¢); ¢ > 0} on the state space { —K,, K, +
L....,-1,0,1,...,K,—1, K;}. Its steady state probabilities {7(k); k=
—K,,..., K;} are given by

m(k)=7(0)p*

where

K, -1
p=A1/A,;, and 7(0) = [ 2 Pk} .

k=—-K,
Now
K, p(l—de])b—.KlpK]-'_l(l_p) lfp¢1
Fio1e = 2 kW(k)= (1‘9)2
k=l K (K, +1)/2 if p=1.

P12 18 obtained from the above expression by replacing K; by K, and p by
o=1/p. =
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