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Abstract Efficient transport of materials between the stages of the produc-
tion process is key to minimizing production costs. Kitting — the collection
of the necessary parts for assembly into a specific container prior to arriv-
ing at an assembly unit — is an attempt at achieving eflicient transport and
thus reducing these costs. In this paper we discuss the performance of kitting
operations, treating it as a Continuous Time Markov Chain. Specially, the
impact of interruptions in the production of parts is investigated. To this end,
parts arrive in accordance with an Interrupted Poisson Process, interruptions
modelling the downtimes during the production.

Our analysis heavily relies on the use of sparse matrix techniques. Results
show that this technique is a valuable queuing theoretic numerical approach
for estimating the performance of a kitting process in terms of both solution
speed and accuracy.

Keywords Kitting process - Continuous Time Markov Chain - Sparse
matrix - Production interruptions - GMRES

1 Introduction

Nowadays manufacturing systems are often composed of multiple in-house
fabrication units (Medbo 2003). The semi-finished products stemming from
these units are the input materials for other fabrication units or for assembly
lines. Hence, efficient transport of materials between the different stages of
the production process is a key issue for overall production cost minimization.
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Kitting is a particular strategy for supplying materials to an assembly line.
Instead of delivering parts in containers of equal parts, kitting collects the
necessary parts into a specific container, referred to as kit, prior to arriving
at an assembly unit (Bozer and McGinnis 1992; Som et al 1994; Bryznér and
Johansson 1995; Medbo 2003; Ramachandran and Delen 2005; Ramakrishnan
and Krishnamurthy 2008).

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the as-
sembly stations and increased quality of the product. Although kitting is a
non-value adding activity, its application can reduce the overall materials han-
dling time (Ramakrishnan and Krishnamurthy 2008). Indeed activities such as
selecting and gripping parts are made more efficient. Furthermore, the whole
operator walking time is drastically reduced and in some cases eliminated due
to the fact that the kits of components are brought as a whole to the assembly
station (Johansson and Johansson 1990). The advantages mentioned above do
not come for free since the kitting operation itself also incurs additional costs
such as the time and effort for planning the allocation of the parts into kits and
the kit preparation itself. Moreover, the introduction of a kitting operation in
a production process involves a major investment. Therefore it is important to
analyse the performance of kitting in a production environment prior to the
actual introduction of this operation.

In literature, most authors consider a kitting process as a queuing system
with stochastic part arrivals and kit assembly. Hopp and Simon (1989) devel-
oped a model for a kitting process with exponentially distributed processing
times for kits and Poisson arrivals. They define an accurate boundary for the
capacity of the buffer. However, the model is limited to processes with two
basic components. Som et al (1994) consider a kitting process as a delivery
system for assembly that is mainly based on the model of Hopp and Simon.
The latest assumes a finite-buffer-capacity. Of course a buffer has always a
finite capacity. However, if the capacity is large enough, we can have a good
approximation of a process with a finite capacity on the basis of a model with
unlimited capacity. This means that there is always enough space for upcom-
ing parts which simplifies the analysis. Unfortunately, the assumption of an
infinite buffer is not valid for kitting processes. If the capacity is assumed to
be infinite, then the model will degrade to an unstable stochastic model. This
was demonstrated by Latouche (1981) that studied waiting lines with paired
customers. We can consider his analysis as an abstraction of a kitting process
with two types of parts. Furthermore, in the article "Assembly-like queues',
Harrison (1973) confirms that, to ensure stability in the operations of a kitting
process, it is necessary to impose a restriction on the size of the buffer. Under
this assumption, the probability to have a certain long-term stock position is
equal and independent of the current stock position.

In this work, we develop a Markov Modulated Chain to model interruptions
of the production in the parts of a kitting process. The parts arrive accord-
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ing to an Interrupted Poisson Process and the processing times for kits are
exponentially distributed. We use the iterative method GMRES to solve the
linear equations. The body of this paper is organized in five sections. Section
2 describes the model of a production interrupted kitting process. In section 3,
we define the kitting process as a CTMC satisfying the Chapman-Kolmogorov
equation. The sparse matrix techniques is also explained in this section. Section
4 discusses numerical examples. Finally, a conclusion is presented in section 5.

2 Model description

A general kitting process is showed in figure 1. Each of the two types of parts
are necessary to compose one kit, such that kitting blocks when one of the
buffers is empty. We assume that the capacity of the two part inventories
is respectively equivalent to C7 and Cs. when a part entering the system
encounters a full buffer, we speak of loss of parts. We consider also that on
average one kit per unit time can be made so that the processing intensity
1; equals one in every queuing state i. Concerning part arrivals, they arrive
in accordance with an Interrupted Poisson Process (abbreviated as IPP). In
the queuing analysis, an IPP is a stochastic process in which two states are
possible and which one of the two has an intensity equal to zero. This process
is divided into two periods, namely the active and inactive period (Heyman
and Sobel 1982). We start with an active period and during this interval there
are components arriving according to a Poisson process with intensity A}. The
length of this period is exponentially distributed with mean a~'. At the end
of an active period begins a period of inactivity in which components do not
arrive, the length is exponentially distributed with mean S~'. At the end of
this period begins another new active period and so on. All active and inactive
periods are i.i.d. The parameter « () describes the intensity to go from an
active (inactive) to an inactive (active) period in an infinitesimal time interval.

Alternatively, this process can also be characterized by the parameters o
and k defined as follows: 8

K3

i + B

The symbol o is the fraction of the time that the process is in an active
state. We call this parameter the active rate. The symbol , which we call the
switch-over time is equal to the sum of the average length of the active and
the inactive period:

g; =

1 1
R; = — —_—
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Finally, we determine the workload A; on the basis of the equation:
)\i = 0)\;k

This means that the product of the arrival intensity in the active period
A; with the active rate o is equal to the workload );.
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Fig. 1 Kitting process

3 Analysis

First, we describe the transition rate diagram of our kitting model. Then,
we define this model satisfying the Chapman-Kolmogorov equation, thence
we can calculate the stationary probability vector. Finally, we explain the
methodology used in MATLAB to develop numerical results.

3.1 A Continuous Time Markov Chain

Figure 2 shows a fragment of the transition rate diagram of our kitting model in
state (i, j, k). The two first values placed in the circles represent respectively
the number of parts in buffer 1 and 2 where 0 < 7 < C; and 0 < 5 < (.
Two independent input streams arrive at the buffers at intensity A, and Ay x
respectively and wait there till they are collected into a kit. A kit is composed
of the two parts and is processed at intensity pg. The last value k stands for
the queuing state. Depending on whether the production of parts is subject
to interruptions or not, the arrival intensity A has a different value. If for
example part 2 is not produced during a certain period of time, then Ay, = 0.

In the following, we model the process as a Continuous Time Markov Chain.
We define a stochastic process X () as a Markov chain with continuous time
parameter where s,¢,u > 0 and all non-negative integer values ¢, j and r belong
to the discrete state space X. It is true that:

P[X(t) = j|X(s) = i, X(u) = 1,u < s < t] = P[X(t) = j|X(s) = i.

This definition is based on the Markov-property. A stochastic process has
the Markov-property if the conditional probability distribution of future states
of the process depend only upon the present state. Suppose now that:

pij (s, t) = P[X(t) = j|X(s) =1,

where ¢t > s.

We assume that our Markov chain is homogeneous. A chain is homoge-
neous if all transition functions pij(s,t) depend only on the difference (¢t — s)
and are independent of the absolute epochs s and ¢. Transition functions
give the probability that a situation will occur given a current state. Among
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Fig. 2 Fragment of the transition rate diagram for state (4, j, k)

other books, the "Discrete Event Systems" book written by Cassandras and
Lafortune (2008) demonstrates on the basis of the law of total probabil-
ity P[A] = £;P[A|P[B;].P[B;] that transition functions satisfy the Chapman-
Kolmogorov equation:

pij(t —s) = pij(u —s).pi;(t — ),

knowing that s < u < t.

The Chapman-Kolmogorov equation is an identity relating the joint prob-
ability distributions of different sets of coordinates on a stochastic process.
The equation allows us to define the generator matrix Q . This matrix is
the continuous case of the transition matrix. It gives us the probability to go
from one state to another in an infinitesimal time interval (t — s = At — 0).
The multiplication of the matrix Q with the stationary probability vector 7
equals zero. The elements of this vector are steady state probabilities i.e. the
probability that a certain state occurs when the chain has reached equilibrium.
On the basis of this information we calculate performance measures for the
kitting process.
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3.2 Methodology: the sparse matrix techniques

Queuing models for kitting processes are rather complicated. Since two queues
are involved (one for each part in the kit) and can whether be in a productive
or unproductive state of the parts, the state space of the associated Markov
chain is inherently multidimensional. Multidimensionality leads to huge state
spaces; this is the state space explosion problem. A second complication is
more intricate, as mentioned above, the infinite-buffer-capacity assumption is
not applicable for kitting processes. If the capacity is assumed infinite, the
model degrades to an unstable stochastic model in which some or all of the
queues have an unlimited number of parts available all the time with a positive
probability.

Consequently, the multidimensionality of the state space and the inappli-
cability of the infinite-buffer assumption yield Markov chains with a finite but
very large state space. However, the number of possible state transitions from
any specific state is limited. This means that most of the entries in the gen-
erator matrix are zero; the matrix is sparse. In contrast to matrix-analytic
methods, sparse matrix techniques have hardly been used in queuing theory.
Using sparse matrices and their associated specialized algorithms resulted in
less memory consumption and processing times, compared to standard algo-
rithms. The reason is that the complexity is smaller for sparse than for dense
matrices. In the model where both parts are subject to production interrup-
tions, the number of elements of the generator matrix for C; = Cs = 100 is
408042. By considering this matrix as sparse, only 3 * 40804 elements need to
be stored. Indeed, the storage of the matrix requires less memory because only
the non-zero elements are kept.

The method used to solve linear equations of sparse matrices is the iterative
method GMRES (Generalized Minimum Residual). Direct methods are not
applied because they are too slow or even unusable for large sparse-matrices.
The GMRES method approximates the exact solution A.x = b by the vector
xneK, in a Krylov subspace K,, that minimizes the norm of the residual A.x,, —
b. Since every subspace is contained in the next subspace, the residual decreases
monotonically. However, the major drawback to GMRES is that the amount of
work and storage required per iteration rises linearly with the iteration count.
The cost of the iterations grow like O(n?), where n is the iteration number.
The usual way to overcome this limitation is by restarting the iteration. After
a chosen number of iterations m, the accumulated data are cleared and the
intermediate results are used as the initial data for the next m iterations.
This procedure is repeated until convergence is achieved. The difficulty is in
choosing an appropriate value for m. If m is too small, GMRES may be slow to
converge, or fail to converge entirely. A value of m that is larger than necessary
involves excessive work and uses more storage. Saad and Schultz (1986) have
proven several useful results. In particular, they show that if the coefficient
matrix A is real and nearly positive definite, then a "reasonable" value for
m may be selected. The method stagnates and convergence takes place at
the m!" step. To generate the numerical examples below we used a value for
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m equal to 140. Another important parameter to be defined is the initial
vector. It is standard programmed as a zero vector. A first improvement is to
consider the vector as equiproportional. Even if this assumption is incorrect, it
accelerates the calculations. This is because the sum of the state probabilities
equals one. When a plot is created where the capacity of the buffers vary,
then the previous calculated probability vector could be used. In case the
initial vector is adapted, it would be more accurate than an equiproportional
vector. The reason is that when the capacity of the buffers is subject to little
changes, there is a high chance that the state probabilities almost remain the
same. However, the determination of this vector is time consuming because
the increase in C7 has a different effect on the to be calculated vector than a
larger Cy. Furthermore, the accuracy of the steady state probability vector was
not improved as expected. Further research needs to be done. On the other
side, when varying the workload, there is no need to adapt the calculated
vector because it is independent of the value given to the workload. As with
varying capacity, there is also a high chance that the state probabilities have
the same value when the workload is increasingly changing. In terms of speed,
the outcome was clearly better than when varying capacities. Indeed, the time
required for constructing numerical examples was reduced by a factor of 10.

4 Numerical results

In this section, we present some numerical examples in order to evaluate the
effect of production interruptions on the performance of a kitting process.
Three models are illustrated. The first model considers both parts arriving
according to a Poisson process with an arrival intensity A* equal to 0,8. In
the second model part 1 is subject to production downtimes and its arrival is
therefore modelled as an Interrupted Poisson Process. In 40 percent of the time,
part 1 arrive with intensity A* equal to 2. The third model represents a kitting
process where both components are subject to production interruptions. The
two Interrupted Poisson Processes are independent and equal. The numerical
examples showed assume a time length « equal to ten and a workload A equal
to 0, 8. The workload, i.e. the average arrival intensity over the productive and
unproductive period, must be the same for both components. If this is not the
case and the buffers are sufficiently large, then the buffer with the highest
workload is almost always full. The system can then be considered as a queue
with just one buffer, the one that is always full.

Figure 3 represents the loss probability according to different levels of the
buffer capacities for each model. Important to mention is that because we
assume that the buffers have the same workload, the average loss probability
calculated for both buffers together equals that for the buffers separately. A
first observation is that the probability decreases as the capacities increase
and that for the three models. Less components are lost when the buffers are
sufficiently large so that more kits can be processed. Therefore the difference
between the models diminishes as the capacity increases. Secondly,the values



8 Eline De Cuypere, Dieter Fiems

for the third model are higher than that for the first model. As expected, the
performance of a process subject to production interruptions is worse than a
process without. When the arrival process is modelled as a Poisson Process,
such as the first model, the probability that the buffer is full and the loss
probability are equal. This equality is a consequence of the PASTA-property.
Thanks to the memoryless property of the Poisson process, the stochastic
properties of parts on the arrival times are the same than that on random
times. On the other hand, these two probabilities are not equal for an arrival
process modelled as an IPP. Indeed, the average loss probability has greater
values than the probability that the buffer is full.

Figure 4 show the probability that buffer 1 and 2 are full for the three
models together. We can notice that downtimes in the production of part 1
have a greater impact on buffer 2 than on its own buffer. It also appears that
adding production interruptions at part 2 doesn’t have a significant impact on
its own buffer but does on the other buffer. The lines for the second and third
model are almost identical in the second subfigure, which is not the case in
the first subfigure.

Now, instead of varying the capacity we assume different workload values
for both parts. In figure 6 the mean in buffer 1 for the model where both
parts are subject to production downtimes is represented. The mean starts
to increase significantly as the workload is greater than 0, 8. Indeed, as the
processing intensity p equals one, we are close to a situation of overload, i.e.
% is equal or greater than one. This effect is amplified as C is increasing. In
a model that is not subjected to production interruptions and the workload
approximately equals 1,8, the mean in buffer 1 aims at being equal to its
buffer capacity. Here, this equality is not reached yet due to the production
downtimes of the parts. This means that when the load is sufficiently high

depending on the modelled arrival process, the buffer will be full.

Finally, figure 5 and 6 represent the probability that one of the buffers is
empty and the loss probability on a logarithmic scale. These two probabilities
are related as the probability loss rate PLR equals:

M+ A —2xTP
A1+ A2

PLR =

where TP = p* (1 — K1) equals the throughput and K the probability that
one of the buffers is empty. In figure 5, when the workload is smaller than
one, there is no difference in value for different buffer capacity levels. However
when the workload is greater than one, the higher the workload and buffer
capacity, the higher the value of the probability that one of the buffers is
empty. Concerning the loss probability represented in figure 6, it has a higher
value when the workload is small and the buffer capacity is high. As the
workload increases, the value of the buffer capacities becomes irrelevant.
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5 Conclusion

In this paper, we investigate the impact of production inefficiencies of the parts
on a kitting process with two queue lines using performance measures. We show
that the buffer sizes need to be large enough to catch production inefficiencies.
Furthermore, the numerical examples we present lead us to believe that the
two part buffers are correlated. When part 1 suffers of inefficiencies, buffer
2 will have a higher probability to be full than buffer 1. Indeed, production
downtimes of one component mainly affects the behaviour of the buffer of
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the other component. As most of the entries in the generator matrix have
a value equal to zero, we apply sparse matrix techniques. To determine the
unknowns of the system, we used the method GMRES (Generalized Minimum
Residual). The solution is not exact but performs well in terms of solution
speed and accuracy. We can establish that the sparse matrix techniques are
a valuable queuing theoretic numerical approach to estimate the performance
of the kitting process.

Queuing models for determining the performance of kitting processes are
currently insufficiently studied. Consequently, there is room for further re-
search. First, the assumptions made could be gradually alleviated or removed.
We restrict ourselves to two components, while the process could easily be ex-
panded to multiple components. The selected performance measures are also
rather limited and only focused on part buffers. Furthermore, to better ap-
proximate the reality, additional factors that affect the performance of the
process should be taken into account. When companies start to implement
kitting activities in their production process, in addition to the performance,
the cost of the kitting process is relevant.
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