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Abstract

Assemblydike queues model assembly operations where separate input processes
deliver different types of component (customer) and the service station assembles
(serves) these input requests only when the correct mix of components (customers)
is present at the input. In this work, we develop an effective approximate analytical
solution for an assembly-ike queueing system with N (V > 2) classes of customers
forming N independent Poisson arrival streams with rates { }‘i}i =1,...,N The arrival
of a class of customers is “turned off” whenever the number of customers of that
class in the system exceeds the number for any of the other classes by a certain
amount. The approximation is based on the decomposition of the original N input
stream stage into a cascade of N —1 two-input stream stages. This allows one to
refer to the theory of paired customer systems as a foundation of the analysis,
and makes the problem computationally tractable. Performance measures such as
server utilization, throughput, average delays, etc., can then be easily computed.
For illustrative purposes, the theory and techniques presented are applied to the
approximate analysis of a system with ¥ = 3. Numerical examples show that the
approximation is very accurate over a wide range of parameters of interest.

Keywords
Queueing theory, synchronization, assembly-like queues, decomposition, approxi-
mation.
1. Introduction
Assembly-like queues model assembly operations often found in manufacturing

systems, and can be pictorially represented as shown in fig. 1. Such operations consist
of N different input processes and a service station. Each input process delivers a
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different type of component (customer) and the service station assembles (serves)
these input requests only when the correct mix of components (customers) is present
at the input.

Arrival Processes

1\2\ /N'

v

Assembled Products
Fig. 1. Representation of an assembly operation.

A similar type of mechanism, involving synchronization between different
arrival processes, can be encountered in a variety of contexts, not exclusively relating
to manufacturing systems. Relevant examples can be found among the numerous
synchronization mechanisms typical of a computing, communication, or manufactur-
ing system environment.

Despite the importance of such situations, there is a limited literature on the
subject of mathematical modeling of assembly-like operations, because of the difficulty
in analyzing such systems. Harrison [1] studies assembly-like queues with the assump-
tion that N (V = 2) classes of customers arrive according to N mutually independent
renewal processes. He proves that such queueing systems, where no arrival control
strategy is present, are inherently unstable. Latouche [2] analyzes particular assembly-
like queues with & = 2 and shows that imposing a control mechanism, which is a
function of the excess (i.e. the difference) between the queue lengths for the two
classes of customers, can make the system stable. The analytical solution for the
equilibrium probability distribution of the system is shown to be matrix-geometric.
Neuts [3] and Ramaswami [4] treat some generalizations of Latouche’s work to the
case of input streams that are phase-type processes and to the general service time case,
respectively. :

It is worth noting that a special case of the problem solved by Latouche,
obtained by assuming deterministically zero service times, is known as the “taxi
problem”, and is treated by Srivastava and Kashyap [6]. The case of finite buffers
was first considered by Bhat [7], who considers the & =2 case with a small buffer
size, and by Lipper and Sengupta [8], who give approximations for systems with
N classes of customers and Poisson arrivals with the same rate, and an arrival is blocked
and lost if the buffer is full. Baccelli and Massey [9] treat networks of queues ob-
tained by combining series and fork-join networks, obtaining bounds on the moments
of the total delay to traverse such networks.
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In this work, we develop an effective approximate analytical solution for an
assembly-like queueing system with N (V > 2) classes of customers forming N inde-
pendent Poisson arrival streams with rates {)x,.}i=1 ..... - The arrival control mechan-
ism adopted is a generalization of the one introduced by Latouche to the case of
N classes. The approximation is based on the decomposition of the original NV input
stream stage into a cascade of N — 1 two-input stream stages. This allows reference to
the theory of paired customer systems as a foundation of the analysis, and makes the
problem computationally tractable.

Sections 2 and 3 are devoted to the problem statement and to the general
description of the approximate approach. In sect. 4, we briefly review Latouche’s
treatment of the NV = 2 case. An extension of this theory to the case of a system with
a Poisson and a Markov Modulated Poisson input stream is presented in sect. 5. The
output processes for the systems considered in sects. 4 and 5 are shown in sect. 6 to
be generalized N-processes [5]. Section 7 discusses the approximation of a generalized
N-process by a Markov Modulated Process. Finally, for illustrative purposes, the
theory and techniques presented in sects. 3—7 are applied to the approximate analysis
of a system with N = 3. The description and results of such analysis are considered
in sect. 8, while the last section discusses feasible extensions and conclusions of this
work.

2. Problem statement

Let m(#), k =1,2,. .., N, be the number of customers of class k in the system
at time 7. The state of the system can be represented by the vector (ng(f), e; (1),
j=1,2,... N—1),with

() = j=§r,u:r.l.,Nn"(t)
e].(t) = n].(z‘) - nN(t) j=1...,N

Also, let
ey = e].k(t) = n].(t) - n () = e].(t) - ek(t) ik =1,2,...,N.

The function e].k(r) is called the excess between class j and class & customers.

For each class j, the arrival stream is assumed to form an independent Poisson
process with parameters depending on the excess between class j and each of the
remaining classes. Such a dependency is formulated as follows:

>\].=)\].(e].1,...,el.N) i=1...,N

A,
j

I

0 if maxe,=J, J >0,j=1,... N
cgi j ]

i
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In our treatment we will consider the case A;(e;,, . . ., ;) = const (j)= A; if

m'flxe].l.<J]., j=1,2,...,N

1

This is the simplest possible control law of this kind that can be considered. Although
more sophisticated strategies could be analyzed, we will restrict ourselves to this case
for the sake of clarity of exposition.

The time taken to serve an N-plet of customers, one for each class, has exponen-
tial distribution with parameter u. Service can begin only when at least one customer
per class is requesting service. The cases where different numbers of customers per
class are required may be handled by appropriate scaling.

3. An approximation

The assembly system described above can be conceptually viewed as shown in
fig. 2. Here we explicitly decompose the assembly process into a synchronization

o 1O—
A, —— -

Fig. 2. A conceptual view of an assembly-like system.

phase and a service phase. An output is offered to the server as soon as a customer in
each class is present at the input, and the server operates on such a group of customers
as in a regular single-class queue. The synchronization phase can, in turn, be considered
as the result of a cascade of N — 1 stages, each of which operates an elementary syn-
chronization, as shown in fig. 3. An elementary synchronizer produces an output as
soon as the second component of a pair arrives at the input.

o>
2 oo

Fig. 3. Decomposition of the synchronization phase.
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We will approach the problem using the decomposition suggested in fig. 3. The
output for each stage, discussed in sect. 6, is naturally approximated by a two-state
Markov Modulated Process (MMP). This process is characterized by two Poisson
arrival rates A; and A, corresponding to the two possible system states. The system
moves between the states as a Markov process with rates r; and r,, as shown in fig. 4.

h

?\]-: arrival rate when in state j; e rate out of state j.

Fig. 4. The two-state Markov Modulated Process.

The MMP has already been successfully used as an approximation [10] because of its
simplicity and sufficient flexibility. As we will discuss in sect. 4, the matrix-geometric
solution for the paired customer system with Poisson arrival streams [2] can be readily
extended to provide a solution for the case when one of the arrival streams is an MMP.
Thus, after the output streams of every paired synchronizer is approximated by an
MMP, we can treat analytically every stage in our decomposition. Whenever only
global parameters such as throughput and utilization are of interest, we just need to
compute the equilibrium distribution for the excess at each stage, determining the
complete matrix-geometric solution only at the final stage. The former computation
can be performed very quickly by using a recursive procedure proposed by Chandy
etal [11].

The major challenge to be faced taking this approach relates to the fact that
the control mechanism we are considering implies the presence of feedback loops
from successive stages. Taking this feedback into account explicitly and exactly is
equivalent to solving the problem in its full dimensionality, which is a prohibitive
task. To avoid such a “curse of dimensionality”, we first open the feedback loop by
neglecting the influence of the later stages on the previous ones. We approximately
compensate by (a) relabeling, without loss of generality, the input streams so that
A < A, < L. < Ay, and (b) using an iterative procedure of the fixed point type.

Since the feedback loop is active only when the excess for a certain stage is
positive in the direction of the arrival stream from previous stages and large, with
respect to the imposed bounds, we expect (a) to drastically decrease the probability of
active feedback whenever the arrival rates are not approximately equal. The residual
feedback influence is then compensated by using an iterative procedure which suitably
adjusts the bounds to a point of equilibrium. A more detailed treatment of this tech-
nique is given in sect. 8, where we illustrate the case N = 3.
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A queue with paired customers and Poisson arrivals

In this section, we briefly review the analysis presented by Latouche [2],
which plays a fundamental role in our discussion. We consider here the assembly-like
system introduced in sect. 2 in the case N = 2.

The state of the system is represented by (n(?), e(?)), where n(¢)
= min(n, (¢), n,(¢)) is the number of pairs and e(?) = n,(f) —n,(¢) is the excess. The
model can be described as a continuous-time Markov chain on the state space (i, j),
i>0,-J, <j<J, withinfinitesimal generator Q given by

[—AIO AO
A2 1
e=1 4

-

where all entries are square matrices of order (J, + J, + 1). Each row in the block-
partitioned matrix @ corresponds to a different value of i = 0. The matrices 4,,, 4,,

A,, A, are given by:

=4y

column j = 0

0
A, (5 AY) Ay
0 (=2, —1,) A,
(-, =7,) N
0 -\,
—ul, A, =l (3)

2)
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columnj=0

K A, i
O .
. A
A, = 0 0 0 (4)
A, '
0
A, 0

I is the identity matrix of order (J; + J, + 1). The structure of Q suggests that the
steady-state probability vector x associated with Q has a matrix-geometric structure
[3],ie.x = (xq, x,,...),with x;a (J; +J, + 1)-dimensional row vector and

x, =x,R, i=1,2,..., (5)

i

where R is the maximal non-negative solution of the matrix equation
A, + RA; + R*4, =0 6)

such that its spectral radius is smaller than one (sp(R) < 1). R can be computed by
the recursion

R ., =C, +R:C, forn>0, )

n+1
where C, =—A4,A4;", C, ==A, A7' . Note that 4, is proved to be nonsingular [2].

An interesting and powerful accuracy check on the computation of the matrix R is
given by the relation

Re =y '4,e, (8)

where e is the unit column vector.
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5. A more general queue with paired customers

In this section, we consider a queue with paired customers characterized by
a Poisson arrival stream and an MMP arrival stream. This extension is important since
we will later see that the output processes of the cascaded synchronizers can be
effectively approximated by MMP processes. This case is slightly more general than
the one studied by Latouche and has not been treated in the literature. We show that,
even in this case, the system still has a matrix-geometric equilibrium distribution.

The presence of two states in the MMP doubles the number of states neces-
sary to describe the system we are considering. For each value of the excess and of
min(n,(¢), n,(¢)) we have two possible values for the state of the MMP. We can
thus consider the state of our system to be the triplet (e(z), n(¢), s(¢)), with
e(t) = n (t) —n,(t), n(t) = min(n, (t), n,(t)), and s(¢r) = state of the MMP at time ¢.
We decide to order the states as follows:

(-7,,0,0)...(,,0,0),(-/,,0,1)...(J,,0,1),

(=7,,1,0)...(J,1,0),(=J,,1,1)...(J,, 1, 1),

With this particular ordering, the infinitesimal generator Q* for the continuous-
parameter Markov chain describing the system is, again, given as

- -
A Ay
0
* * *
A, A, Ag
et = ©
L O A

with all the entries being matrices of order 2(J, + J, + 1). Again, each row in the
block-partitioned matrix @* corresponds to a different value of 7 (7).
The matrices A}, Ay, A}, A} are given by eq. (10).
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AT = A}y —ul*, A = ul*, (11)

where I* is now the identity matrix of order 2(J, +J, + 1)

B | -
0 A, :
. - |
A |
|
0 0 0 | 0
) I
A |
. |
|
!
*
AO - )\3 0 | (12)
: 0 Ay
‘ .
| .
| >\2
0 | 0 0 0
| A
| .
f
= | . .
f )\3 0 -

The solution for the equilibrium distribution for the system under consideration is
thus matrix-geometric and the treatment presented in sect. 3 easily extends to this case
with respect to the matrices A5, A}, AT, A .

6. The synchronizer output process

In this section, we investigate the output process for the class of paired
customer systems discussed above, when the service time is deterministically equal to
zero. We call a system of this kind a synchronizer. First, we introduce the basic ideas
by discussing the case of Poisson arrival streams with rates A, , A, . The case of Poisson
and MMP input streams will follow as an immediate consequence.

For the Poisson paired customer system, the output will be a stream of pairs.
In the case of a synchronizer, at each instant at least one of the queues must be empty.
A pair is produced whenever there is an arrival in the class whose queue is empty,
except for the case when both queues are empty. We can describe this phenomenon by
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Fig. 5. State transition diagram for P-P synchronizer output process.

using a state transition diagram as shown in fig. 5. We distinguish a set of regular states
R =1{-J,,...,0,...J,},and aset of instantaneous states I = {B.fz"' .B,, A, .. 'AJI} )
The regular states describe the value of the excess at the input of the system, while the
instantaneous states are states that are visited with zero sojourn time upon arrival of
customers that can form a pair. This implies that for every transition through an
instantaneous state, a pair is produced at the output.

Let Q be the infinitesimal generator for the continuous-time Markov chain
describing the transitions with respect to the regular states (i.e. the presence of the
instantaneous states is disregarded). The matrix Q is given by

_>\1 >\1 .
N (FA—N) N

0 = . (13)

)\2 - 7\2
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Fig. 6. State transition diagram for P-MMP synchronizer output process.

where we have ordered the states from —J, to J;.

At every (i, j) transition involving the visit to an instantaneous state there
is an arrival (i.e. an output from the synchronizer) with probability one. The point
process obtained in this way is a particular case of a Generalized N-process (GNP). A
thorough treatment for this versatile class of processes can be found in [4] and [5].

Let us now consider the case of a synchronizer with a Poisson process of
rate A3 and an independent MMP with parameters A, 5\2, r1, ¥a as input processes.
The control bounds are J3 and Jy,, respectively. It is immediately seen from the state
transition description in fig. 6 that, again, the output process from the synchronizer is
a GNP described by the matrix Q given by eq. (14), where the ordering for the states
is obvious and Q is a square matrix with dimension 2(Jy, + J3 + 1).
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7. The MMP approximation

‘The output process for the synchronizer with Poisson arrivals displays basically
two phases, or stages, corresponding to positive and negative values for the excess,
respectively, and a special state in between, corresponding to zero excess. It seems
thus natural to approximate such a generalized N-process (GNP) by the MMP de-
scribed in fig. 4. The generalization to the case where the arrival streams are Poisson
and MMP is straightforward. As a consequence, every paired synchronizer of the
decomposition we consider will have either Poisson input streams or a Poisson and
an MMP input stream.

The MMP model has four parameters that will be chosen to match the expected
value m, the variance v, the third moment u;, and the time constant 7, of the GNP.
From [10] we can express the above quantities for the MMP in terms of the four
parameters A, , ,, 7, and r, as follows:

ANyt A

MMP _
m =
Fotr,
rir (A = A,)?
pMMP . 172071 T2/
(r1+r2)2
33 53
uMMP - At A
’ rtr
mMp . __1 MMP o1
T = r tyde = 15
! ,,Mmpf (Odr = 7= (15)
0

where rMMP(1) is the covariance function of the arrival rate for the MMP. We use
superscripts to distinguish between quantities relating to the different processes.

We need to express similar quantities for the GNP, in terms of the parameters
A, ALy, L Letw=[a(=Jy), ... ,71(0), ..., m(J;)] be the row vector of equili-
brium probabilities for the state of the GNP. Let O be its infinitesimal generator.

Let A be the (J; +J, + 1)-dimensional diagonal matrix of Poisson intensities

A= 0 (16)
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Then the kth moment (k = 1, 2, 3) for the arrival rate is given by

-1 J;

pONP =k S w() + A 2 () (17)
j==J, j=1

which allows us to determine m P v P and P. The covariance function can
> “’3
be eXpressed as

rONP(r) = mA [e% ~ 1n] AL, | (18)
with 1=[1,...,1]7, the unit vector of dimension (J, +J, + 1).
To determine TCGNP we need to integrate »ONF(r). This problem is non-trivial

since @ is singular as well as 17. We follow here a procedure suggested in [12] and
[13]. Let

A= I €% - 1m)ds, (19)
0
then

0 ] €% - 1mdr = f §eQ dr = 04 (20)
0 0

since Q 17 = 0. Integrating, we have

~

e9"]” = 04, (In-1) = 0A. (21)
Also,

17 f €% - 1m)dr = 114
0
[(lﬂeét~1ﬂ)dt = 174
0

I(lﬂ—lﬂ’)dt = 174,
0

since by definition of 7, 17 0t = 17, Thus,
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174 = 0. (22)

Now adding (21) and (22), we obtain

(ln=I) = QA + 1nd, and A = (Q + 1m) ! (An=1),

since (Q + 1m) can be shown to be non-singular [13]. The matrix O + 17) plays the

role of a pseudo-inverse for the singular matrix Q. We can now determine TCGNP as

;GNP (
C

VGNP) TAQ+ 1m)t (In—=1) Al (23)

We can obtain the MMP parameters as follows, where are right-hand side
quantities refer to the GNP:

R T
A+ P r(1+m)

ry =

No=mo+Aoln, X, =m - v, (24)

where

Uy = 3my—m®

8 —
n=1+=5[0~+n+8], and § = 372

2

8. Numerical results for N =3

In this section, we discuss in detail the case N = 3. Following the procedure
outlined in sect. 3, we look at the assembly-like system with N = 3 as a cascade of
two synchronizers followed by a simple exponential server station (fig. 7). The
customers queueing for such a station are triplets of customers, one for each of the
three input classes.

pe— S
e

Fig. 7. Decomposition for & = 3.
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The original Poisson arrival streams are labeled, without loss of generality, such
that A, << A, < A;. At the elementary synchronizers inputs, one or the other queue
will always be empty. We are interested in determining the following parameters:

(a) Expectedexcess at the second synchronizer,ie. E(ey) = E(ny —min(ny, n,)).
(b) System utilization p;.

According to the procedure outlined in sect. 3, we proceed as follows:

Step 0:
Step 1:

Step 2:

Step 3.

Step 4:

Step 5:

SetJ,=J, i=1,2.

Determine the invariant distribution for the excess at the first syn-
chronizer. This computation is equivalent to the computation of the
invariant distribution for a birth and death process between the states
—J andJ

Determine )\1, 5\2, ry, 1, the parameters of the MMP approximation
for the output of the first synchronizer. (See sect. 7.)

Determine the limiting distribution of the excess at the second
synchronizer Tr(eH) The control parameters are, in this ‘case,
J = min (J 1» J5) and J;. This computation can be efficiently per-
formed by a recursive technique described by Chandy [11].

If J, < < J- rE(eH(f jz)*)_l i =1, 2, proceed with step 5. Other-
wise let J =J; -1, i=1,2, and go to step 1. Here, the notation
eH(Jl, A ) is used to stress the fact that e is determined when Iy
and J, are the bounds for the first synchronizer. Also, the procedure
will always terminate since [_E(eII(Jl’ J ) ) 1 is a non-increasing
function of both J1 and J

Determine the matrix-geometric solution for the paired customer
system with MMP and Poisson arrival streams corresponding to the
second synchronizer and the service process. Compute interesting
performance measures.

Note that the iteration through steps 1 —4 implements the basic compensation
for the decoupling between the two synchronizers.

To validate the performance of the approximation procedure we used
a SIMSCRIPT II simulation of the original model. In figs. 8—9 and table 1 we show
some of the results in a graphic and tabulated form.

We expect that whenever the original system is weakly coupled, the approxi-
mation should work well, even without the compensation in step 4. This is the case
when the arrival rates are not balanced. When the system is strongly coupled, the
approximation relies on the compensation mechanism.

In fact, from our experience, we feel that compensation is only necessary
in a narrow range of values for the arrival rates. In particular, such a range R is
approximately characterized by
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Fig. 9. Analytical approximation and simulation results versus
A, /A, for system utilization, p,. (J; =J, =J5 =10, A, =2,
H=A5).
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Table 1

Numerical results. (J; =J, =J; =10, A, = A, u=2;)

W Simul. Approx. FError % Simul. Approx.  Error %

Elep E(ep) Elep Ps P, P,
1.0 - 2.1750 - 2.0759 4.8 0.9333 0.91233 2.3
1.05 — 3.8560 - 3.5328 9.0 0.8963 0.88983 0.7
1.1 —5.0416 - 4.5538 106 0.8581 0.85636 0.2
1.2 ~6.4796 -6.13 5.7 0.7957 0.79077 0.6
1.3 —7.4624 — 7.1364 4.5 0.7370 0.73186 0.8
1.5 —8.3201 - 8.1696 1.9 0.6390 0.63481 0.6
2.0 - 9.1221 - 9.0560 0.7 0.4776 0.47613 0.3

Table 2

Numerical results for arrival rates in region R. (J, =J, =J, =10, %, =, = =0.1)

A Iny Simul. Approx. Error % Simul. Approx. Error %

E(eﬂ) E(EH) E(eﬂ) P3 P3 P3
1.0 - 2.1750 - 2.07 4.8 0.9333 0.91233 2.3
1.01 —2.6244 —2.3899 10.0 0.9325 0.91490 1.9
1.02 —3.0524 — 26929 133 0.9324 0.91509 1.8
1.03 —3.2355 —2.9845 8.3 0.9384 0.91743 2.2
1.05 — 3.8560 —3.5328 9.0 0.9459 0.92389 2.3
1.07 — 43612 —38672 129 0.9473 0.93224 1.6
1.1 - 5.0416 —4.5538 106 0.9508 0.93624 1.5

Table 3

Numerical results for different values of the control bounds. (A,

=x, =A, =p=0.1)

J, =J,=J, Simul. Approx. Error % Simul. Approx. Error %
Elep) Efep) E(ep) Ps Ps Ps
5 —1.1425 —1.1170 2.7 0.8664 0.83852 3.3
10 - 2.1750 —2.0759 4.8 0.9333 0.91233 2.3
15 —3.4459 -3.0373 13.5 0.9503 0.93915 1.1
20 ~4.4109 - 3.9955 10.5 0.9655 0.95313 1.2
25 - 5.2759 —4.9629 6.2 0.9730 0.96532 0.8

307
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R={2N 00 0 <A, <2y <Ap #0002},

The results show how, for arrival rates outside the range R, the approximation per-
forms better and better as A 5/ X\, increases.

Table 2 presents a comparison between approximation and simulation for
values of the arrival rates inside the set R. There is a clear trend toward better approxi-
mations as A5 /A, increases, i.e. as the system becomes less strongly coupled. The
worst approximation for the expected excess at the second synchronizer gives an
error of about 13%. The system utilization is always well approximated and, again,
the error decreases as Ay /A, increases. The approximation error seems also to be
decreasing with increasing J,, J,, and J;, as described in table 3. In this case, there
should be a decreasing influence of the control mechanism with increasing values for
the bounds.

The approximation is expected to become worse as N becomes larger. How-
ever, since the main cause of error is due to the decoupling of successive stages in the
decomposition, while the MMP approximation is quite precise, we still expect a good
performance” of the procedure (10% error or less) whenever the arrival rates are not
approximately equal.

9. Conclusion

In this work we presented an approximation for assembly-like systems with N
(N > 2) Poisson arrival streams based on the idea of decomposition. Also, as by-
products of this investigation, we obtained an analytical solution for the case N = 2,
and one of the arrival streams is a two-state Markov Modulated process. The study
presented in this document lends itself to numerous extensions. In particular, more
general control mechanisms than the one considered can be analyzed, as discussed in
[2] for the case of the paired customer system. Also, more general service time distri-
butions can be treated. All the generalizations for the case of the paired customer
system considered in [3] can in fact be adopted here.
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