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Abstract Efficient transport of materials between the stages of the produc-
tion process is key in the minimization of production costs. The kitting pro-
cess is an attempt at achieving efficient transport and thus reducing costs. In
this paper we discuss the performance of kitting operations in a stochastic
assembly system, treating it as an assembly-like queue model. Specially, the
impact of production interruptions in the subparts is investigated. To model
downtimes, the subparts arrive according to an Interrupted Poisson Process
instead of a Poisson Process. The queuing analysis focuses on the calculation
of performance measures to compare the models with and without production
interruptions.

Unlike previous studies in this domain, we use sparse matrix techniques to
define matrices and solve linear equations. Results show that this technique is a
valuable queuing theoretic numerical approach for estimating the performance
of a kitting process in terms of solution speed and accuracy.

Keywords Kitting process · Assembly-like queue · Continuous Time Markov
Chain · Sparse method · Production interruptions · Performance measures

1 Introduction

Nowadays customers put a lot of pressure on the market to afford customized
products. This result in the handling of a large number of components in the
production systems. The problem of keeping many and varied components is
met by applying kitting.
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Nowadays manufacturing systems are often composed of multiple in-house
fabrication units [Medbo(2003)]. The semi-finished products stemming from
these units are the input materials for other fabrication units or for assembly
lines. Hence, efficient transport of materials between the different stages of
the production process is a key issue for overall production cost minimization.
Therefore the Kitting method was introduced.
Kitting is a particular strategy for supplying materials to an assembly line.
Instead of delivering parts at the assembly line in containers of equal parts,
in kitting the necessary parts are collected into a specific container, referred
to as kit, prior to arriving at an assembly unit [Bozer and McGinnis(1992),
Bryznr and Johansson(1995),Medbo(2003),Ramakrishnan and Krishnamurthy(2008),
Ramachandran and Delen(2005),Som et al(1994)Som, Wilhelm, and Disney].

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the assem-
bly stations and increased quality of the product [Ramakrishnan and Krishnamurthy(2008)].
The advantages above do not come for free since the kitting operation itself also
incurs additional costs. There are mostly the time and effort for the additional
planning of the parts allocation into kits and the kit preparation itself. A stor-
age space will also be essential to store the already prepared kits. Although
kitting is a non-value adding activity, its application can reduce the overall
materials handling time [Ramakrishnan and Krishnamurthy(2008)]. However,
the introduction of a kitting operation in a production process involves a ma-
jor investment. Therefore it is important to analyse the performance of kitting
in a production environment prior to the actual introduction of this operation.

The concept of uncertainty being central in queuing theory, a queuing the-
oretic approach is used in order to assess the performance of a kitting process
under uncertainty of inventory replenishments and/or product demand. Of-
ten, neither the product demand nor the inventory replenishment can be fully
controlled such that Kitting processes are preferably modelled as stochastic
processes. To gain a more realistic insight on the performance of a kitting pro-
cess in a production environment, temporary interruptions in the production
of subparts are taken into account. In this article, special attention will be
given to the used queuing analysis technique.

2 Model description

Most authors consider a kitting process as a queuing system in a stochastic
environment.

Hopp and Simon (1989) have developed a model that is often used to an-
alyze the performance of an assembly line[Hopp and Simon(1989)]. In their
article ”Bounds and Heuristics for Assembly-like queues” a model with expo-
nentially distributed processing times and between arrival times distributed
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according to a Poisson process is described. Out of their model, they deduce
boundaries for the capacity of the buffers. This model is mainly based on
the model of Lipper and Sengupta (1986)[Lipper and Sengupta(1986)]. The
method of Hopp and Simon is easier to implement and the definition of an
optimal upper limit of capacity is more accurate, but it is limited to processes
with two basic components. The method of Lipper and Sengupta on the other
hand, can be applied to more general systems.

Som, Wilhelm, and Disney (1994) consider a kitting process as a delivery
system for assembly that is mainly based on the model of Hopp and Simon.
An important similarity with our models is the assumption of a finite-buffer-
capacity. Of course a buffer has always a finite capacity. However, if the ca-
pacity is large enough, we can have a good approximation of a process with
a finite capacity on the basis of a model with unlimited capacity. This means
that there is always enough room for upcoming parts which simplifies the anal-
ysis. Unfortunately, the assumption of an infinite buffer is not valid for kitting
processes. If the capacity is assumed to be infinite, then the model will degrade
to an unstable stochastic model. This was demonstrated by Latouche (1981)
that studied waiting lines with paired customers. We can consider his analysis
as an abstraction of a kitting process with two types of parts[Latouche(1981)].
Furthermore, in the article ”Assembly-like queues”, Harrison (1973) confirms
that, to ensure stability in the operations of a kitting process, it is necessary
to impose a restriction on the size of the buffer. Under this assumption, the
probability to have a certain long-term stock position is equal and independent
of the current stock position. We assume that the buffer capacity of the two
components is respectively equivalent to C1 and C2.

In this article, three mathematical queuing models are defined and analyzed
to assess the impact of production interruptions on the performance of kitting.
In the first model displayed in figure 1, both components arrive according
to a Poisson Process with for both parts a same arrival intensity λ. Two
independent input streams arrive at part inventories and wait there till they are
collected into a kit. Each component is processed according to an exponential
distribution (before kitting) to prepare it for assembly and as mentioned above,
we assume a finite buffer capacity for the components. The danger exists that
components are denied because the buffers are full, we speak of loss. So when
a component is present in the process and the buffer is full, this component is
lost.

In the first extensive model, parts of type 1 are subject to interruptions in
the production. To model these production breaks, the components arrive ac-
cording to an Interrupted Poisson Process, abbreviated as IPP. In the queuing
analysis, an IPP is a stochastic process in which two states are possible and
which one of the two has an intensity equal to zero. This process is divided into
two periods, namely the active and inactive period (Heyman and Sobel, 1982).
We start with an active period and during this interval there are components
arriving according to a Poisson process with intensity ?*. The length of this
period is exponentially distributed with mean α−1. At the end of an active
period begins a period of inactivity in which components do not arrive, the



4 Eline De Cuypere, Dieter Fiems

          buffer 2

          buffer 1 μ

kitbuffer

Fig. 1 Basic Model

AAN

      

UIT

Fig. 2 First Extensive Model

AAN

      

UIT

= 1

AAN

      

UIT

Fig. 3 Second Extensive Model

length is exponentially distributed with mean β−1. At the end of this period
begins another new active period and so on. All active and inactive periods
are i.i.d. The parameter α (β) describes the intensity to go from an active
(inactive) to an inactive (active) period in an infinitesimal time interval.

Finally, in the second extensive model, both part 1 and part 2 suffer from
production cuts. The arrival processes are identical and independent of each
other. The two Interrupted Poisson processes have the same intensity a and .
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In the following section, the kitting process is defined as a (Continuous
Time) Markov Chain.

3 Formulation of a Continuous Time Markov Chain

The kitting process modelled as a Markov Chain allows us to determine the
probability that a certain state e.g. the number of components in the two part
inventories, occurs. Thereafter, this gives us the ability to calculate perfor-
mance measures such as the average buffer occupancy. Under the Markovian
assumptions, we discuss the steps to calculate the performance measures of
the process.

3.1 Generator Matrix

We define a stochastic process X(t) as a Markov chain with continuous time
parameter where s, t, u ≥ 0 and all non-negative integer values i, j and r belong
to the discrete state space X. It is true that:

P[X(t) = j|X(s) = 1,X(u) = r,u ≤ s < t] = P[X(t) = j|X(s) = 1].

This definition is based on the Markov property. Suppose now that:

pij ≡ P[X(t) = j|X(s) = i],

where t ≥ s.

We assume that our Markov chain is homogeneous. A chain is homogeneous
if all transition functions pij(s, t) depend solely on the difference (t−s) and are
independent of the absolute epochs s and t. Transition functions give the prob-
ability that a situation will occur given a current state. Among others in the
book ”Discrete Event Systems” written by Cassandras and Lafortune (2008)
[Cassandras and Lafortune(2008)] transition functions satisfy the Chapman-
Kolmogorov equation.
We prove this by first applying the law of total probability: P[A] = ΣiP[A|P[Bi].P[Bi].
We consider [X(u) = r] for s ≤ u ≤ t when the conditional probability of the
event [X(t) = j|X(s) = i] :

3.2 Stationaire waarschijnlijkheidsvector

The symbol π is similar to the stationary probability vector. This collects
vector all stationary state probabilities, i.e. the probabilities that a certain
condition occurs when the chain has reached equilibrium. If the time param-
eter goes to infinity, then its derivative equals zero. The vector is no longer
dependent on its elements and converge to a fixed value.

π.Q = 0The multiplication of the stationary probability vector with its generator matrix is equal to zero. We use this formula to calculate the performance measures. Note that this equation, the vector only a factor after states. The normalization condition listed as a dot product and explained in section [sub: Stationary probability vector], allows this factor. In the next chapter we apply the various steps to identify performance measures to monitor the basic kittingmodel. In the next section, the followed methodology to display numerical examples of performance measures for the different models is explained. References
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