INT. J. PROD. RES., 1993, voL. 31, No. 12, 2835-2856

An evaluation of heuristics for allocating components to Kkits in small-
lot, multi-echelon assembly systems

J. F. CHENt and W. E. WILHELM1§

The kitting problem in multi-echelon assembly systems is to allocate on-hand
stock and anticipated future deliveries to kits to minimize total cost, consisting of
job earliness, job tardiness, and in-process holding costs. This paper describes the
kitting problem and compares the performance of three heuristics, two that are
commonly used in industry and a new one, to resolve it. Computational
experience demonstrates that the new heuristic outperforms the others, finding
the optimal solution in 16 of 24 test problems and averaging just 0-6% above the
optimum for the 24 problems. It is expected that the new heuristic will find
application in large-scale problems encountered in industry. Solutions will
facilitate time-managed flow control, prescribing kitting decisions that promote
cost-effective performance to schedule.

1. Introduction

Before assembly operations begin, small-lot assembly systems commonly gather
all required components in a kit, then ‘launch’ (i.e. ‘release’) it to initiate production.
Operating according to the logic of material requirements planning (MRP), each
subassembly is assigned a due date to be kitted, planning adequate time to complete
the end-product by its due date. The entire assembly schedule thus relies upon the
ability to compose each kit on its due date. This is often impossible, however,
because there may not be sufficient stock on hand to meet scheduled requirements.
Even though MRP sets vendor due dates to support the assembly schedule,
unexpected events affect deliveries, disrupting kitting operations and, therefore, the
assembly schedule.

This problem is particularly prevalent in the electronics industry. For example,
each circuit card may require several hundred components, so that a kit for a lot of
circuit cards may require several thousand components of various types. Some
components, such as integrated circuits, may be subject to yield loss; others, to
transportation delays from offshore vendors. Safety stocks might be used to hedge
against these problems, but the high cost of electronic components makes this an
unattractive alternative.

In multi-echelon assembly systems, kits may require components from vendors
as well as subassemblies produced upstream. Thus, a disruption at one echelon may
readily propagate to other echelons, affecting the co-ordinated flow of materials and
the assembly schedule. For example, consider the three-echelon system of subas-
semblies depicted in Fig. 1. At the top echelon, circuit cards are assembled from
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Figure 1. A three-echelon binary assembly tree.

vendor-supplied components. The circuit cards are then assembled into subassemb-
lies which are, in turn, assembled into an end-product such as a computer. A Kitting
delay at any echelon can affect material flow, increasing the cost of in-process
inventories (e.g. some circuit cards may have to wait for the completion of others
that are used in the same subassembly) and leading to poor schedule performance.

The kitting problem in multi-echelon assembly systems requires on-hand stock
and promised deliveries to be allocated to Kkits to minimize total cost, including job
earliness, job tardiness, and the cost of holding in-process inventories, which may
result from poor co-ordination of material flows. Part availabilities present import-
ant limitations that must be observed. In addition, shop capacities must be
considered so that bottlenecks are not created by kitting an inappropriate set of
subassemblies. The primary decision to be made is the day on which each kit is to be
composed (we assume that each completed kit is immediately launched into
production).

The purpose of this paper is to evaluate the efficacy of three heuristics in resolving
the kitting problem for multi-echelon, small-lot assembly systems. More specifically.
research objectives are (1) a new heuristic which exploits problem structure to
prescribe solutions, and (2) empirical evaluation of the new heuristic in comparison
with two methods commonly used to make kitting decisions in industry.

The kitting problem is prevalent in industry, but has been the focus of relatively
little research. The most closely related study is by Wilhelm and Chen (1990) who
formulated the problem and devised an optimizing approach employing Lagrangian
relaxation. Their Lagrangian problem is decomposable into subproblems related to
independent jobs. They incorporated several pre-processing steps, an efficient
dynamic programming algorithm to resolve the subproblems, dominance properties
to enhance efficiency, and a specialized branching rule in their branch and bound
algorithm. They showed that this approach outperforms OSL, a standard mathema-
tical programming package, on a set of 24 test problems. While this optimizing
approach was successful in application to a set of problems of modest size, it is
expected that heuristic methods are needed to deal with truly large-scale problems
found in some industries. This paper addresses that need.

Other studies are less closely related, but we review several below to indicate the
directions that they have taken. The release (i.e. launch) of jobs into a job shop
(Irastorza and Deane 1974, Roderick 1990) and into manufacturing cells (Gershwin
et al. 1984, Han and McGinnis 1988) has been studied, but no prior research has
addressed kitting in multi-echelon assembly. OPT (Goldradt 1980) apparently
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prescribes kitting decisions, but little can be said about this procedure, since it is a
proprietary computer code.

Each job might be viewed as a project; and each subassembly as an activity. Thus,
the kitting problem could be interpreted as a resource-constrained, multi-project
scheduling problem. The literature on project scheduling (Hax and Candea 1983)
deals with resource constraints either by focusing on project duration or on the total
cost of multiple projects. In the latter case, resources are treated (Slowinski 1981) as
doubly constrained with availability limited each period and over the life of a
project, non-storable but available in limited quantities each time period, or storable
items which may be consumed over the life of a project. However, none of these
treatments accommodates ‘parts’ which are delivered over the duration of the
horizon and which can be held for use in later periods. Thus, heuristics devised for
project scheduling are not directly applicable to the kitting problem.

Research on the kitting problem is justified, because of the importance of
assembly operations, which comprise some 40% of total manufacturing cost (Funk
1986). One prime application area, the electronics industry, accounts for 15% of the
US gross national product (US Department of Commerce 1990). Thus, there is
ample opportunity to achieve industrial benefits from such research.

This paper is organized in four sections. Fundamental concepts are discussed in
the first section, including the context of kitting, the model formulated by Wilhelm
and Chen (1990), and the two heuristics (H2 and H3) commonly used in industry.
The new heuristic (H1) is detailed in the second section. Computational evaluation is
described in the third section, and conclusions are given in the final section.

2. Fundamentals

This section describes the kitting problem in some detail. The basic structure of
the decision environment is discussed in the first subsection, and a mathematical
model is presented in the second subsection to provide an explicit statement of the
problem. Finally, the two heuristics used in industry are described. Notation is
defined as it is presented in the text and is summarized in the appendix for reader
convenience.

2.1. Structure of the environment

This subsection describes the kitting problem in the context of small-lot, multi-
echelon, multi-product assembly systems. The presentation deals with information
related to jobs, the structure of each job, subassemblies and part relationships, shop
operations, the kitting schedule, and part availabilities.

Jobs. The goal is to assemble a set of jobs, J. Each job, jeJ, represents a
customer order that requires a single end-product. The due date of job j is denoted y ;
(7;20); and its lot size, Q; (Q;2 1). A kit for subassembly if must, therefore, contain
a sufficient number of components to assemble N; final assemblies. A number of
customer orders may require the same end-product, but each is modelled individu-
ally to allow flexibility in the kitting schedule.

Job structure. The bill of materials for each job may be described by an assembly
tree in which each node has at most one successor (denoted by the set K(i,j)). Each
node represents a subassembly. PATH(m,ij) is the set of nodes in the path from
node m to node i (inclusive) for job j. Node ij is in echelon e;; (e;;=|PATH(,1,))).
M(ij) [A(iy)] is the set of immediate [all] predecessors of node i. Job j is composed of
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the set of nodes I(j) where I(j)= {ilie{1j}UA(1,j)} (i.e. I(j) is the set of nodes for job
j consisting of node 1/ and all of its predecessors).

Subassembly and part relationships. The final assembly of each job is completed at
echelon 1. SE(e, j) denotes the set of subassemblies of job j in echelone (fore=1, ...,
E;). We assume that subassemblies in echelon E; are composed exclusively of parts
supplied from vendors. Subassembly i in echelon e;; < E;, is composed of subassemb-
lies meM(i,j) and requires quantity g;;, of part p, where g;;, reflects the total
requirements of order quantity Q;.

Shop operations. Subassembly i is assembled in shop s;;. We denote the set of all
subassemblies of job j that are assembled in shop s by SS(s, /).

The capacity of shop s (s=1, ..., S) is measured in terms of the number of kits
that can be launched into it each day, R, This measure appears to be acceptable,
since small-lot production involves many lots, none of which dominate the process-
ing capability of an entire shop. More detailed measures of capacity (involving, for
example, the number of lots in process or the processing time requirements of each
lot) could be incorporated at the cost of making the model somewhat more difficult
to resolve.

The planned lead time of subassembly i in shop s;; is denoted o,;. This planned
lead time is (assumed to be) an integer number of days that can be estimated by
simulation, queueing models, or methods used to determine planned lead times for
MRP systems.

The kitting schedule. It is assumed that the kitting policy for each day over the
horizon d=1, ..., D is to be prescribed and that each completed kit is immediately
launched into production. Using binary decision variables X;j,

Xi=1if subassembly i on job j is kitted on day d; 0 otherwise

the day on which subassembly 7 is kitted is
D
Z dXijd
=1
Precedence relationships are invoked by
D D
Y dXiju2 Y dXput o, for meM(i)
d=1 d=1

in which g,,; is the planned lead time for subassembly mj. Operation mj completes on
day

D
Y dXpjat Omi—1
d=1

so that subassembly mj could be kitted for subassembly ij on the following day,
according to our convention for accounting time.

Part availability. The traditional inventory classification scheme identifies A, B,
and C classes of items (e.g. Hax and Candea 1984). We consider a new class, A%,
which designates parts (e.g. integrated circuits) that are likely to disrupt planned
schedules. Representing technological capabilities, it is assumed that each 4" part is
assembled by only one of the S shops. Kitting schedules are prescribed only for the
set P of A* parts, since only 4™ parts require this additional management attention.
However, the cost of holding a subassembly, say ij, as in-process inventory should
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include the cost of constituent A*, A, B, and C parts as well as the total contributed
value built into all subassemblies meM(i,j).

The quantity of part p {p|peP} on hand, n,,, is known when the kitting policy is
prescribed. Vendors have promised to deliver quantity n,, of part p on day 4, and
these parts may be kitted starting on day d+ 1. Thus, the cumulative number of part
p available for use through day d is

d—1
Ny=Y n, ford=1,..,D
t=0

and the total to be available over the horizon, N5, must be sufficient to complete all
scheduled jobs.

3. The model

This subsection describes the model of the kitting problem formulated by
Wilhelm and Chen (1990). First, the objective function is discussed.

The objective is to minimize total cost which consists of job earliness, job
tardiness, and subassembly holding cost. Cost parameters H, 7 Job earliness cost/
day, and T, job tardiness cost/day, penalize performance that deviates from
schedule, while H;;, the cost/day of holding subassembly ij, penalizes poor material
flow co-ordination from one echelon to the next.

H,; reflects the contributed value added by each subassembly operation, and the
value of the parts required by subassembly ij. This holding cost is assessed for each
day that subassembly ij must wait to be kitted to produce subassembly keK(i,j). H 1j
is the cost of holding a finished end-product until its due date.

If assembly 1;is kitted on day d=y;—0,;+ 1, job j would be completed on its due
day y;. Thus, earliness is incurred if 1/ is kitted on day d<y j—0;;+1, and the cost of
earliness is

H,;max{0,y;—o;;+ 1 —d} (D

Tardiness is incurred if assembly 1; is kitted on day d>7y;—0;;+1, and the cost of
tardiness is

T;max{0,d—(y;—o;;+1)} (2)

The cost of holding subassembly mjeM(i,j), given that subassembly jj is kitted on
day d is

d—omj
Hmj[d_ Z (t+amj)ijt] (3)
t=1
and the cost of holding subassembly ijje4(1y) if it is kitted on day d is
D
H,.J-I: Y Xy —(d+ aij):l for keK (i) 4)
t=d+ao;j

in which the bracketed term in expression (3) [(4)] defines the number of days over
which subassembly mj [ij] is held. The cost of holding subassembly ij over the
planned lead time, o;; is not included, since this cost is incurred regardless of the
kitting schedule. Objective function coefficients C;{(d), which incorporate job earli-
ness, job tardiness, and in-process holding costs, may be determined using equations
(1)-(4) (Wilhelm and Chen 1990).

Copyright © 2001. All Rights Reserved.



2840 J. F. Chen and W. E. Wilhelm
The kitting problem may be formulated as

Problem P,: Minimize

D
Zy=) Y Y Cifd)Xia ©)
jed iel(yd=1
Subject to:
Y Xjuu<Ry ford=1,...D s=1,...§ (6)
jeJ ieSS(s,))
d
Z Y ZqijpxijtSdi ford=1,...,D—1; peP (N
jed iel(y =1
D
Y Y 2 4upXi=Nwp  forpeP ®)
j iel(pt=1
D D
Y (d+6,)Xpa< Y dXiyu  for jel; iel(j); meM(ij) 9)
d=1 d=1
D
Y Xju=1 for jeJ; iel(j) (10)
d=1
X;=0o0r1l for jeJ; iel(j); d=1,...,D (n

The objective as noted in relation (5) is to minimize the total cost. Shop capacities,
which limit the number of kits that can be launched each day, are imposed by
constraint (6). Inequality (7) assures that the kitting schedule observes part availabi-
lities, so that no more than N,,—the cumulative number of parts on hand initially
and planned for delivery on days 1, ..., d—1—can be used in kits composed through
day d. Constraint (8) assures that part deliveries satisfy all requirements over the
horizon of D days. Inequality (9) invokes precedence relationships, so that all
predecessors meM(ij) must be assembled before subassembly ij can be Kkitted.
Constraint (10) ensures that each subassembly is kitted exactly once during the
planning horizon, and (11) requires decision variables to be binary integers.

In a related study, Fisher (1972, 1973) used Lagrangian relaxation to resolve a
scheduling problem which did not incorporate resource availability constraints of
the form in constraint (7). He defined decision variables y;,= 1 if schedule g is used
for job j, and 0 otherwise, so schedules were generated ‘offline’ rather than by the
model as done in problem P,.

3.1. Two heuristics used in industry

One heuristic commonly used in industry ‘dedicates’ on-hand stock to specific
kits; the other requires Kits to ‘compete’ daily until all required parts are available.
In both heuristics, each kit is assigned a ‘due day’ on which it becomes a candidate
for the allocation of parts. In general, the due day of a kit is determined by the due
day of its associated end-product. Thus, each kit has a priority based on its due day
and, perhaps, other business considerations according to which it is allocated parts.
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In the ‘dedicate’ heuristic, H2, on-hand parts are allocated (i.e. dedicated) to the
priority kit. A partially completed kit (i.e. the dedicated parts that are on-hand)
must wait for future deliveries of missing components from vendors or upstream
production/assembly operations.

In the ‘compete’ heuristic, H3, parts are allocated to a kit only when all the parts
required by the kit are on hand, so that a kit must compete daily until it finds all
required components in stock. When two kits compete for the same parts, the
priority kit has a competitive advantage to be assigned parts that are on hand.

In actual operations, partially completed kits may be launched into production
to initiate assembly operations. However, this practice incurs additional costs (future
deliveries must be specially handled to ‘catch up’ with the kit) and should be
discouraged, particularly in the automated assembly environment. Thus, we assume
that no partial kits are launched into assembly.

4. Heuristic H1

Since constraints (6) and (10) form an assignment problem, P, could be viewed
as an assignment problem with side constraints (APSC). Since the APSC is known to
be NP-hard (Mazzola and Neebe 1986), the kitting problem is NP-hard; that is, only
exponential time optimizing algorithms are known for this class of problems. Thus,
when dealing with a large instance, in the worst case, it is not possible to obtain an
optimal solution in a reasonable time.

A linear programming (LP) approximation approach might be applied in this
situation. However, it is expected that when part availability constraints are very
‘dense’ (i.e. each constraint contains many decision variables and each decision
variable appears in many constraints), many of the decision variables may have
fractional values in an LP relaxation. Thus, to obtain a feasible integer solution, it is
likely that a rounding procedure would have to be applied over and over again,
resulting in computational inefficiency. A heuristic which is not based on LP thus
appears to be an attractive means of prescribing good solutions for large instances of
the kitting problems that might be found in some industries. In order to develop a
good heuristic for the kitting problem, four goals must be sought simultaneously: (1)
a good kitting sequence for jobs; (2) low job tardiness costs; (3) low job earliness
costs; and (4) low subassembly holding costs. Since each job may have unique cost
parameters and planned lead times, kitting jobs according to earliest-due-date-first
may not result in a solution of high quality. In our new heuristic, H1, we use a
procedure to determine job kitting sequence. In the first |J| passes, jobs are scheduled
in increasing order of slack. The slack of job j is defined as

SLAj=7;+ | —maXjesp, ) Y G,
ajePATH(mj,1j)

J

in which the maximum operator defines the longest series of planned lead times to
complete the end-product among all subassemblies in echelon E - In terms of MRP,
this term gives the planned lead time for job j. Subassemblies of a selected job are
then sequenced according to earliest due day, IDUE(ij), first:

IDUEG))=y;+1- ¥ o,

ajePATH(ij,1j)

in which the summation gives the planned lead time for subassembly ii. Each pass
determines ORDER()), the sequence position in the final schedule, for the job j with
the lowest potential tardiness cost (ORDER(j)=1, ..., [J]).
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To achieve goal (2), subassemblies should be kitted as early as possible. However,
this may result in high job earliness and/or subassembly holding costs, which may be
incurred when a subassembly is completed and there are not enough parts to kit its
immediate successor, and thus conflicts with goals (3) and (4). So, each time all
subassemblies of a job are scheduled, the kitting times for all subassemblies of that
job are right shifted in time (i.e. postponed) to avoid holding costs.

To summarize, heuristic H1 schedules jobs one-at-a-time. In each of the first |J]
passes, jobs are scheduled in increasing order of slack, SLA;, and ORDER(j) of one
job, j, in the final sequence is determined. Each subassembly of each job is assigned a
due day, IDUE(,j). Subassemblies of a selected job are then sequenced with the
carliest IDUE(,j) first. After all subassemblies of a selected job are scheduled, the
kitting days for all subassemblies of that selected job are right shifted in time to
reduce holding costs. The remaining jobs are rescheduled again and ORDER(j) of
another job, j, is fixed at the next iteration. The same procedure iterates until
ORDER(j) is determined for each job jeJ. Then, the kitting days of all subassemblies
are determined in the (JJ|+ th pass, scheduling job j according to ORDER()).
Heuristic H1 is detailed in the next subsection. Then, the computational complexity
of H1 is analysed. This section concludes with a numerical example that demon-
strates H1.

4.1. The HI procedure

The heuristic determines KIT(i,j), the scheduled kitting day for subassembly ij.
Before presenting H1, we define several additional elements of notation. POSITION
(=, ..., 1) is a counter that identifies how many sequence positions remain to be
considered. FINAL is a code set to 0 for the first |J| passes, then to 1 for the final
pass which prescribes the kitting schedule (i.e. KIT(,j) for all i and j). IT, and II,
are subsets of J, the set of jobs. TC; the tardiness cost of sequencing job j to
complete on day D, is defined as

TCj=’I}max[0,D+01j—yj— 1]

First, we present H1 in succinct algorithmic form, then we describe each step from
an intuitive perspective.

Step 0. Initialization
0-A. Set I, =II,=J, POSITION=J|, FINAL=0

0-B. For each jeJ,

set IDUE(L,j)=y;+1—0y; SLA;=7y;+1
— MK jeSS(E;, j) LajePATH(mj, 1)) Oajs and for each ijeA(1,j) set IDUE(,))
=IDUE(k,j)— 0, in which kjeK(i, /).

Step 1. Schedule all jobs in set II,
1-A. If FINAL=0, select /*=argminp, {SLA;}
breaking ties by selecting the one with the smallest order quantity first.
Otherwise, select j* =argmin ., {ORDER())}.

1-B. Select subassembly i* as the one with the earliest IDUE(i,j*) (.e. i*
—argming s {IDUE(, j*)}).
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Break ties by selecting subassembly i* =argmin, ., {H;}.

Set KIT(i*,j*) as early as possible without violating constraints (6)—(9).
(Update the right-hand sides of constraints (6)-(9) every time a kitting
schedule for a subassembly is determined.)

1-C. Select subassembly i* as the one with the latest KIT (i,j*) [i.e. i*
=argmaX,» {KIT (i, /*)}].
Break ties by selecting i* as the subassembly i* =argmax,., {H,p}.
1-C-1. For *=1
If KIT(i*,j*) <IDUE(*,j*), set KIT(i*,j*) as close to (but

not later than) IDUE(*,j*) as possible, observing (6)—(9).
Otherwise, KIT(i*,*) is not changed. Go to step 1-D.

1-C-2. For i*>1
If KIT@*j*)<KIT(k,j*)—0u 5 in which keK(i*,j), set
KIT(i*, j*) as close to (but not later than) [KIT(k, J¥) =0 ]
as possible, observing (6)—(9). Otherwise, KIT(i* j*) is not
changed. Go to step 1-D.
1-D. Set IT,«IT, — {;j*}. If IT, #90, go to step 1.
Otherwise, (IT; =), set D=max,{KIT(1,j)}.

1-E. If FINAL=0, go to step 2.
Otherwise (FINAL=1), stop.

Step 2. Determine the ORDER of job j+ for final scheduling

2-A. For jeIl,, calculate TC;= T;max[0,D+g,;—y;—1].

2-B. Let j+ =argmin;q, {TC;}.
Break ties by setting j+ =argmax., {IDUE(1,})}.
Break any second tie by designating j+ =argmin g, {Q;}.
Update IT,«I1,—{j+}.
Set ORDER(j+)=POSITION, and decrement
POSITION«—POSITION —1.

2-C. If POSITION>1, set I1, =11, and go to step 1.
Otherwise (POSITION =1), go to step 3.

Step 3. Determine final schedule

Set j+ =the index of the remaining job in set I1,, ORDER(j+)=1, II,=J,
FINAL=1, re-initialize constraints (6)(9), and go to step 1.

To begin, I1;, I1,, POSITION, and FINAL are initialized (step 0-A). Subassem-
bly due day and job slack are calculated in step 0-B. In step 1-A, a job is selected to
determine its kitting schedule. In each of the first |J| passes, the unscheduled job with
the smallest slack SLA; is selected first. In the (|J|{+ 1)th pass, job j is selected
according to ORDER(j), which is determined during the first |J| passes.
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After selecting a job [j*€Il,] to schedule in step 1-A, the procedure proposes a
feasible (i.e. relative to constraints (6)—~9)) kitting schedule for all subassemblies of
job j* (step 1-B). The subassembly i* with the earliest IDUE(i,j) amongst all
subassemblies of job j* is scheduled first. A tie is broken by giving priority to the
subassembly with the smallest in-process holding cost/day. The kitting schedule of i*
is set on the earliest day feasible with respect to constraints (6)~(9). In step 1-C,
kitting schedules for all subassemblies of job Jj* are refined, if possible, to reduce in-
process holding cost. The subassembly i* with the latest kitting day, KIT(i*,/*), is
rescheduled first. KIT(1*,;*) is rescheduled to be as close as possible to y; (step
1-C-1) and KIT(1*,j*), i*+#1, is rescheduled to be as close as possible to the day
when its immediate successor requires it [i.e. KIT(k,j*)— 0. ;] (step 1-C-2). In step
1-D, T1, is updated. If all jobs have been scheduled, the kitting horizon, D, relative to
all jobs in IT,, is determined. Otherwise, another job is selected to schedule. If the
final schedule has been obtained (i.e. in the (|J[+ 1)th pass), HI terminates in step 1-
E. Otherwise, the procedure progresses to step 2 to determine ORDER(j) of another
job jeJ.

In step 2-A, the total tardiness cost for each job is calculated based on the
assumption that it is kitted on day D. The job j+ which will incur the smallest
tardiness cost if it is kitted on day D is selected to determine ORDER(j +) (step 2-B).
The ORDER(j+) of job j+ is set to the current value of POSITION. If ORDER())
of all jobs (except one job) has not been determined, IT, is updated and HI returns
to step 1. Otherwise, POSITION is set to 1 and the procedure progresses to step 3.

In step 3, ORDER(j+) of job j+, the one that has not been determined in the
first |J|—1 passes, is set to 1. FINAL is set to 1 and H1 returns to step 1 for the
|J+ 1|th pass to determine the final schedule. After the final schedules for all
subassemblies have been determined, H1 terminates in step 1-D. The upper bound
on the optimal objective value of problem P, Z,, may then be obtained according to
KIT(,j) for all i and j.

4.2. Complexity of heuristic H1
The complexity of H1 is analysed as follows:

Step 1

1-A: The job with the smallest slack [or POSI TION] is selected first. This takes
0(J|log(|J])) time.

1-B: 0

1-C: Subassembly i* with the earliest IDUE(i,j) is chosen first. Hence, the
complexity of step 1-C is O(max; [1(7)| log(l1(/)])).

1-D: Subassembly * with the latest KIT(i,j) is selected first. This takes
O(max; |1()] log(1(/)])) time.

1-E: 0

Hence, the complexity of step 1 is
O(max{|J|max [[I(/)| log(I()D], 1/ 1og(JD})-

Step 2
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p d Ny P d N P d Ny
1 1 0 3 5 7 S 9 22
1 2 0 3 6 11 5 10 22
| 3 0 3 7 11 6 1 14
1 4 7 3 8 11 6 2 14
1 5 7 3 9 11 6 3 14
| 6 7 3 10 11 6 4 26
1 7 7 4 1 10 6 5 26
1 8 11 4 2 16 6 6 26
1 9 11 4 3 16 6 7 26
1 10 11 4 4 24 6 8 26
2 1 0 4 5 24 6 9 26
2 2 0 4 6 24 6 10 26
2 3 0 4 7 24 7 1 10
2 4 7 4 8 24 7 2 10
2 S 7 4 9 24 7 3 10
2 6 7 4 10 24 7 4 14
2 7 7 5 1 10 7 5 14
2 8 11 5 2 10 7 6 22
2 9 11 5 3 22 7 7 22
2 10 11 S 4 22 7 8 22
3 1 0 5 S 22 7 9 22
3 2 0 5 6 22 7 10 22
3 3 0 5 7 22

3 4 7 5 8 22

Table 1. Part delivery schedule for the numerical example.

2-A: 0

2-B: The job with the smallest TC; is determined. This takes O(|J|) time.

2-C: 0

Hence, the complexity of step 2 is O(lJ]) and the procedure takes

O(max{max;|I(;)| log(lI(})), |J| log(lJ])}) time for one pass. Since this heuristic
procedure requires |J|+ 1 passes, the complexity of H1 is

0(J1 max{|J| max; |1(j)| log(II(/)]), |J|log(J])}).

4.3. A numerical example

A numerical example is presented in this subsection to demonstrate heuristic H|.
Part delivery schedules are given in Table 1. Consider three, three-echelon, binary
(ie. |M(,j)|=2 for all jeJ and icl(j)\SE(E #/)) networks. Initially, the kitting
horizon is set at D=9. Values of parameters qij, for each A™ part, H;;, and o;; are
given in Table 2. Table 3 lists values of parameters T; and y; for each job jeJ.

Calculations are itemized below. The reader may best follow this presentation by
reading it in parallel with the statement of the heuristic procedure.

Step 0
0-A. IT, =11,={1,2,3}, POSITION =3, FINAL=0 ,

0-B. SLA, =1, SLA,=4, SLA,=2,
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J i P Gijp Hij O
1 1 1 5 18 i
1 2 2 S 8 1
1 3 3 5 9 1
1 4 4 10 4 3
1 5 5 10 3 2
1 6 6 10 4 3
1 7 7 10 4 3
2 1 1 4 19 1
2 2 2 4 9 1
2 3 3 4 9 1
2 4 4 8 4 3
2 5 5 8 4 3
2 6 6 12 S 3
2 7 7 8 3 2
3 1 1 2 10 1
3 2 2 2 4 1
3 3 3 2 5 1
3 4 4 6 2 2
3 5 5 4 1 1
3 6 6 4 3 2
3 7 7 4 1 1

Table 2. Subassembly parameters for the numerical example.

j T; Y;
1 90 5
2 95 8
3 50 5

Table 3. Job parameters for the numerical example.

IDUE(1,1)=5, IDUE(2,1)=4, IDUE(3,1)=4, IDUE(@4,1)=1, IDUE(S,])
—2. IDUE(6.1)=1, IDUE(7,1)=1, IDUE(1,2)=8, IDUEQ22)=7,
IDUE32)=7,  IDUE@2)=4,  IDUE(5.2)=4,  IDUE(62)=4,
IDUE(12)=S,  IDUE(13)=5,  IDUEQ3)=4,  IDUE(33)=4,
IDUE(4,3)=2, IDUE(5,3)=3, IDUE(6,3)=2, IDUE(7,3)=3.

Step 1

1-A. (FINAL=0) j*=1

I-B. KIT(1,)=1, KIT(6,)=1, KIT (41)=1, KIT(5,)=1, KIT 2.1)=4,
KIT (3,1)=4, KIT (1,1)=5.

I-C. KIT (1,1)=6, KIT(3,1)=5, KIT (2,1)=5, KIT (1,)=2, KIT (41)=2,
KIT (6,1)=2, KIT (5,1)=3.
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1-D. I, ={2,3}

1-A. j*=3

I-B. KIT(4,3)=2, KIT(63)=1, KIT(53)=1, KIT(1,3)=4, KIT(2,3)=4,
KIT(3,3)=5, KIT(1,1)=6.

I-C. KIT(1,3)=6, KIT(3,3)=5, KIT(23)=5 KIT(1,3)=4, KIT(43)=3,
KIT(6,3)=3, KIT(5,3)=4.

1-D. I, ={2}
1-A. j*=2

I-B. KIT(52)=1, KIT(42)=4, KIT(62)=4, KIT(1,2)=6, KIT(32)=S3,
KIT(2,2)=8, KIT(1,2)=9.

I-C. KIT(1,)=9, KIT(2,2)=8, KIT(32)=8, KIT(7,2)=6, KIT(62)=5,
KIT(42)=5, KIT(52)=5.

1-D. I, =0, D=9

Step 2
2-A. TC;=9009+1—-1-5)=360, TC,=95, TC;=200
2-B. j+=2
2-C. ORDER(2)=3, POSITION=2
2-D. IT,={1,3}
Step 1
1-A. (FINAL=0) j*=1

I-B. KIT(7,))=1, KIT(6,1)=1, KIT@41)=1, KIT(S,1)=1, KIT(2,1)=4,
KIT(3,1)=4, KIT(1,1)=5.

I-C. KIT(1,)=6, KIT(3,1)=5 KIT(2,1)=5 KIT(7,1)=2, KIT(4,1)=2.
KIT(6,1)=2, KIT(5,1)=3.

1-D. M, ={3}
1-A. j*=3

I-B. KIT(43)=2, KIT(6,3)=1, KIT(53)=1, KIT(13)=4, KIT(2,3)=4,
KIT(3,3)=5, KIT(1,1)=6.

1-C. KIT(1,3)=6, KIT(3,3)=5, KIT(2,3)=5, KIT(73)=4, KIT(4,3)=3,
KIT(6,3)=3, KIT(5,3)=4.

1-D. I, =0, D=6

Step 2
2-A. TC;=90(6+1—1-5)=90, TC;=50
2-B. j+=3
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2-C. ORDER(3)=2, POSITION =1
2-D. TI,={1}

Step 3
ORDER()=1, 1, ={1,2,3}, FINAL=1

Step 1
1-A. (FINAL=1) j*=

I-B. KIT(7.1)=1, KIT(®6,1)=1, KIT@)=1, KITG.H=1, KIT2,1)=4,
KIT(3,1)=4, KIT(1,1)=5.

1.C. KIT(L,)=6, KIT(3.1)=5, KIT2,)=5, KIT(7,)=2, KIT(4.1)=2,
KIT(6,1)=2, KIT(5,1)=3.

1-D. I, ={2,3}
1-A. j*=3

1-B. KIT@4,3)=2, KIT(6,3)=1, KIT(53)=1, KIT(71.3)=4, KIT(2,3)=4,
KIT(3.3)=5, KIT(1,1)=6.

1-C. KIT(13)=6, KIT(3.3)=5, KIT(23)=5, KIT(73)=4, KIT(4.3)=3,
KIT(6,3)=3, KIT(5,3)=4.

1-D. T, = {2}
I-A. j*=2

I-B. KIT(5.2)=1, KIT@42)=4, KIT(62)=4, KIT(1.2)=6, KIT(3,2)=8,
KIT(2,2)=8, KIT(1,2)=9.

1-C. KIT(1,2)=9, KIT(2,2)=8, KIT(3,2)=8, KIT(7,2)=6, KIT(6,2)=5,
KIT(4,2)=5, KIT(52)=5.

1-D. I1,=0. D=9

1-E. (FINAL=1) STOP, bounds are given by the current values of D and
KIT(,j).

In the next section, the runtime and solution quality of H1 are compared with those
of H2 and H3.

5. Computational evaluation

In this section, a set of test problems is used to evaluate the computational
characteristics of the heuristics. All of the experiments were performed on an
IBM 3090 running the MVS-ESA operating system. The Lagrangian approach of
Wilhelm and Chen (1990) was used to obtain optimal solutions, providing a basis of
comparison to evaluate the quality of solutions prescribed by the heuristics. The
matrix generators and heuristics were coded in FORTRAN.

5.1. Test problems
The test problems used by Wilhelm and Chen (1990) were used to evaluate the
heuristics. Although generated randomly, they were designed to study the effects of
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five factors: (1) number of jobs, |J|; (2) number of echelons, E; (3) number of parts in
class A*, |P|; (4) number of different part types in class A* required by all
subassemblies; and (5) part delivery time distribution. The magnitudes of |J| and |@|
affect the size of the problem, and the magnitude of E reflects the assembly structure.
The number of each different part type in the 4* class required by a subassembly
dictates the density of constraints (7) and (8). The part delivery time distribution
influences the kitting horizon D, affecting the number of constraints and variables in
problem P,

Based on these factors, 24 test problems were defined as noted in Table 4. The
pattern by which levels of the five factors were set for each problem is apparent so
the interested reader can easily identify a pair of problems which differ by a change
of one factor to assess its impact on runtime and solution quality.

Given levels of the five factors which define these 24 problems, Table 4 indicates
the number of binary decision variables and constraints involved in each problem P,
formulation. These problems are not large in terms of the parameters which describe
their practical contexts, but they do represent rather large binary integer problems.

Factors Problem size
PDP
Problem dist.

number |} E |P| DS number NC NV
1 6 3 56 1 1 890 588
2 10 3 56 1 1 897 910
3 6 3 56 3 1 890 588
4 10 3 56 3 1 897 910
5 6 3 112 2 1 1660 588
6 10 3 112 2 1 1625 910
7 6 3 112 4 1 1688 588
8 10 3 112 4 1 1625 910
9 13 2 56 1 1 681 429
10 20 2 56 1 1 727 660
11 13 2 56 3 1 703 429
12 20 2 56 3 1 738 660
I3 13 2 112 2 1 1231 429
14 20 2 112 2 1 1332 660
15 13 2 112 4 1 1308 429
16 20 2 112 4 I 1343 660
17 6 3 56 1 2 1064 714
18 6 3 56 3 2 1064 714
19 6 3 112 2 2 1999 714
20 6 3 112 4 2 2033 714
21 13 2 56 1 2 849 546
22 13 2 56 3 2 877 546
23 13 2 112 2 2 1549 546
24 13 2 112 4 2 1647 546

DS, distribution set to generate the number of different A* part types required by each
subassembly (Table 6); PDP dist. number, part delivery perturbation distribution number
(Tables 7 and 8); NC, number of constraints in Py; NV, number of binary variables in P,

Table 4. Problem parameters and sizes.
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Echelon e
Problems with Total number of A parts 1 2 3
E=2 56 20 36
E=2 112 36 76
E=3 56 8 16 32
E=3 112 16 32 64
Table 5. Number of A* parts used at each echelon.
Distribution for Distribution for
Problem numbers Distribution set ieSE(E,)) i¢SE(E,J)
1,2,9, 10, 17, 21 DS 1 U[5,6] U[3,4]
5, 6,13, 14,19, 23 DS 2 U[10,12] U[6,8]
3,4, 11, 12, 18, 22 DS 3 U[6,8] U[3,6]
7, 8, 15, 16, 20, 24 DS 4 Ul12,16] U[6,10]

Table 6. The number of different part types from the A* class required by each
subassembly.

So that each test could be easily duplicated, each involved a binary assembly tree
in which each node (other than those in echelon E) had two immediate predecessors.
This structure does not limit interpretation of test results, since any assembly tree
can be recast into the binary form. Jobs are described either by an E= 2oran E=3
echelon binary network so that |I(j)| is 3 or 7, respectively. For simplicity, we
assumed that subassemblies in level e would be assembled in shop s=e so that S=E.

The number of jobs was either 6 or 10 in the three-echelon problems and either
13 or 20 in the two-echelon problems. The number of parts in class A*, |P|, was
either 56 or 112: the number of A* parts assembled in each echelon is given in Table
5.

Four unique discrete uniform distributions were used to generate the number of
different part types in class A™ required by all subassemblies (factor 4) as indicated
in Table 6. The fifth factor involved setting the promised delivery day for the parts
required by each subassembly by perturbing the planned delivery time. Discrete
uniform distributions used as the two levels of this factor are given in Tables 7 and 8.

Since holding costs incorporate the cost of 4, B, and C (inventory) classes of
parts, the number of parts required by each subassembly was generated randomly
from discrete uniform distributions:

Echelon A Parts B Parts C Parts
ieSE(E,j) U120,26] U[30,36] U[40,46]
i¢SE(E, ) U[6,8] U[10,12] U[14,16].

Customer order quantity, Q;, was generated randomly from the discrete uniform
distribution given in Table 9. Parameters R, 0;;, and y;; were defined as noted in
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Table 10. H;; values used are given in Table 11, and tardiness penalty T;=5H,; for all
JeJ (§/day) was used.

5.2. Test results

Computational results are reported in this subsection; runtimes and solution
values for heuristics HI to H3 are given in Table 12. In general, runtime increases
with the number of jobs (compare problems 3 and 4) and the delays of part deliveries
(¢.g. compare problems 1 and 17), since they extend the kitting horizon and thus
increase the size of the problem. Hence, this indicates, as expected, that problems of
large size are more difficult to solve. Runtime is also influenced by the number of 4+
parts required by subassemblies. Roughly speaking, the more 4 * parts required by
subassemblies, the more CPU time is required to solve the problem (e.g. compare
problems 5 and 6), indicating that problems with denser constraints are more
‘difficult’ to solve, as expected.

H1 obtained optimal solution values for 17 of the 24 test problems with all
solution times <0-231s. H2 provided a better solution value than H1 in only one
problem (i.e. problem 21), as did H3 (problem 22). In all test problems, H3 required
less runtime than did H1 and H2. However, overall, H3 did not prescribe solutions
of the quality of those prescribed by H1 and H2.

The reason that H1 did not perform best in problems 21 and 22 may be because
parts that were supposed to be assigned to subassemblies of two (or more) jobs with
small order quantities were used by subassemblies of a job with a large order
quantity. According to step 2 of HI, a job with a large order quantity may be
scheduled earlier than a job with a small order quantity, provided they have the
same due day. Kitting subassemblies of a job with a large order quantity may result
in kitting delays of the subassemblies of other jobs with small order quantities.
Furthermore, this situation may result in higher tardiness costs. In a sense, H1
allows subassemblies of a job with a large order quantity to ‘steal’ parts from the
subassemblies of other jobs with small order quantities. Since this situation results in
higher tardiness costs, H1 could be refined to explicitly deal with it if the application
warranted such changes.

Delivery
distribution 1 day early on time 1 day late 2 days late
Probability 03 0-4 0-2 0-1

Table 7. Part delivery perturbation distribution 1 for test problems 1-16.

Days early Days tardy
Delivery
distribution 1 0 1 2 3 4 5
Probability 0-1 0-4 0-1 0-1 0-1 0-1 01

Table 8. Part delivery perturbation distribution 2 for test problems 17-24.
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Order quantity Q; 20 30 40 50 60
Probability 0-2 0-2 0-2 0-2 0-2
Table 9. Customer order quantity distribution.
Shop capacity Ry, =[|J|/4]1+3 if s=1
=[JI/2]+3 if s=2
=\J|+3 if s=3
Sojourn time o;; =4 days if ijieSE(E)
=3 days if ijeSE(E—1y)
=2 days if ijeSE(E —2.)
Due day 7;; = MAX,pjesp (k. j) | i jepaTHOm 1. Ojf — | +slack time generated from
U[0.,4]

=longest total sojourn time for operation series on job j+ slack time
generated from U[0,4]

Table 10. Parameters Ry, o6,;, and y;.

Table 13 shows the relative performance of the three heuristics. On average, Hl
provided solutions that were within 0-6% of the optimal solutions. The value of a
solution from H1 was 3-4% better than that from H2 and 10-7% better than that
from H3 on average.

H1 performed extremely well for the part delivery time distribution in Table 7,
prescribing optimal solutions for 13 of 16 problems (i.e. problems 1-16), but did not
perform quite as well for the part delivery time distribution in Table 8. In this case,
H1 prescribed optimal solution values for four of eight problems (i.e. problems 17—
24). According to Table 8, part deliveries can be up to 5 days late compared with 3
days for the distribution in Table 7. Part delivery delays may create more competi-
tion for available parts. Hence, these tests may indicate that optimal solution values
are more difficult to obtain by Hl when problems involve more competition for
parts. Although H1 did not perform as well when the part delivery time distribution
in Table 8 was used, it still performed better than did H2 and H3 in this case, on
average.

6. Summary and conclusions

This paper deals with the kitting problem encountered in multi-echelon, multi-
product assembly systems. This problem is prevalent in industry but has not been
researched extensively.

A new heuristic procedure, which is not based on LP approximation, is presented
in this paper. The average performance of the heuristic is compared empirically with
two heuristics commonly applied in industry, namely, ‘dedicate’ (H2) and ‘compete’
(H3). Since H1 is shown to run in polynomial time in the worst case and since it
outperforms heuristics H2 and H3 on average, it could be used by any optimizing
approach which requires initial upper bounds on the horizon, D, and on the optimal
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value of the objective function of problem P,, Z,. In addition, it appears to be well

suited for direct application to large-scale industrial problems.

A set of 24 test problems was devised to evaluate the computational character-
istics of the heuristics. Heuristic H1 obtained optimal solution values for 17 of the 24
test problems with solution times under 0-231s (on average). H2 provided a better
solution value than did HI in only one problem, as did H3. On average, Hl

Holding cost

Subassembly i

1

2 3

4

5 6

7

H;; $/day for problems with E=3
H;; $/day for problems with E=2

0-44 016

0-16

0-055 0-055 0-055 0-055

0-16 0-055 0-055

Table 11.

Cost parameters H,;.

Heuristic H1

Heuristic H2

Heuristic H3

Optimal
solution Solution Solution Solution
Problem value value value value
number  v(OPT) v(H1)  Runtime v(H2)  Runtime v(H3) Runtime
1 894-5 *894-5 0-038 929-7 0-050 1198-0 0-023
2 1567-0 *1567-0 0-079 1617-3 0-078 1954-3 0-030
3 979-0 *979-0 0-043 1001-7 0-052 10042 0-023
4 1567-0 *1567-0 0-093 1621-6 0-079 17717 0-031
5 979-0 *979-0 0-060 986-4 0-085 12327 0-026
6 1482-5 *1482-5 0-121 1501-4 0132 17199 0-036
7 979-0 *979-0 0-070 996-5 0-092 998-6 0-028
8 1401-0 *1401-0 0-145 1453-5 0-144 1653-1 0-040
9 690-0 696-0 0-060 7139 0-049 7149 0-022
10 984-0 *984-0 0120 1014-2 0-070 1015-2 0-028
11 567-0 573-0 0-066 6349 0-052 6349 0-023
12 981-0 1011-0 0-147 1078-0 0-076 1085-8 0-030
13 676-5 *676-5 0-102 692-8 0-083 6928 0-027
14 11430 *1143-0 0215 1166-4 0-129 1169-6 0-036
15 696-0 *696-0 0-120 725-8 0-093 752-8 0-028
16 1047-0 *1047-0 0-231 1092-8 0-141 1070-4 0-039
17 22785 *2378-5 0-056 23795 0-077 2639-3 0-028
18 2319-5 *2319'5 0-065 2485-7 0-095 2671-9 0-031
19 2447-5 *2447-5 0-100 24682 0-158 2720-8 0-042
20 24040 24475 0-117 2466-6 0-180 29203 0-043
21 1740-0 17910 0-076 1786-2+  0-053 2009-8 0-024
22 1548-0 1590-0 0-084 1698-0 0-059 1588-8%  0-025
23 1684-5 *1684-5 0-132 1742-2 0-097 17581 0-031
24 1746-0 1789-5 0-156 1790-8 0-104 1810-0 0-033

*H1 obtained the optimal solution value.

1 H2 obtained better solution value than HI.

1 H3 obtained better solution than value H1.

v(*) Objective function value for solution procedure *.

Table 12. Comparisons of heuristic procedures.
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Problem number v(H1)/v(OPT) v(H2)/v(OPT) v(H3)/v(OPT)
1 1-000 1-039 1-339
2 1-000 1-032 1-247
3 1-000 1-023 1-026
4 1-000 1-035 1-131
5 1-000 1-008 1-259
6 1-000 1-013 1-160
7 1-000 1-018 1-:020
8 1-000 1-037 1-180
9 1-009 1-035 1-036

10 1-000 1-031 1-032
11 1-011 1-120 1-120
12 1-031 1-100 1-107
13 1-000 1-024 1-024
14 1-000 1-020 1023
15 1-000 1-043 1-082
16 1-000 1-044 1-022
17 1-000 1-044 1-158
18 1-000 1-072 1-152
19 1-000 1-008 11112
20 1-018 1-026 1-215
21 1-029 1-027 1-155
22 1-027 1-097 1-026
23 1-000 1-034 1-044
24 1-:025 1-026 1-037
Average 1-:006 1-040 1-113

o(*) Objective function value for solution procedure *.

Table 13. Relative performance of heuristics.

prescribed solutions that were within 0-6% of the optimal solutions. The value of a
solution from H1 was 3-4% better than that from H2 and 10-7% better than that of
H3 (on average). These percentages are not large, but they would represent
significant cost savings in actual industrial applications.

The new heuristic would promote material flow co-ordination throughout a
multi-echelon assembly system, providing a balance between the cost of in-process
inventory and schedule performance, and prescribing the allocation of parts to
achieve cost-effective schedule performance while promoting shop efficiency. Time-
managed flow control would result, co-ordinating material flow throughout the
multi-echelon system to achieve cost-effective due date performance.
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Appendix. Notation

Indices

d =1, ..., D index for days in the planning horizon

i =1, ..., I{(j) index for subassemblies composing job ;
J € J a job (customer order)
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=1, ..., E; index of echelons in the structure of job j
=1, ..., S index for shops
€ Pan A* part

N e o

Cost parameters

Cif(d) =total cost incurred by kitting subassembly ij on day d
H =holding cost/day for subassembly ij [icI(j)] in lot size Q;
T =tardiness cost/day for job j

J

ij

Decision variables
Xiia =1 if subassembly ij is kitted on day &: 0 otherwise

Job information

I()) =set of subassemblies comprising job j
J =set of jobs
Q; =lot size of job j
SE(e,j) =set of subassemblies of job j in echelon e
Vi =due day of job j
Part information
Mpo =number of part p on hand when the kitting policy is set
Ty =number of part p with delivery promised on day d=1, ..., D—1
N4 =cumulative number of part p available through day

d—1

d= Y n, ford=1,...,D

t=0

P =set of 4" parts

Shop information
Ry =capacity of shop s on day d (i.e. the number of kits that can be
launched into shop s on day d)

Subassembly information

A(L)) =set of all predecessors of subassembly ij

e;; =echelon of subassembly i

53 =the shop in which subassembly ij is processed

K(i,)) =set comprised of the immediate successor of subassembly ij

M(i,j) =set of immediate predecessors of subassembly jj

PATH(m, i, j)=the set of nodes on the path from node mj to node ij (inclusive)

Gijp = quantity of part p required by subassembly ij to assemble lot size 0;

$5(s,)) ={ils;j=s}: set of subassemblies of job j processed in shop s

oy =planned lead time to produce subassembly 7/, an integer number of
days

Notation used by H1

FINAL =0 for the first |J| passes, then 1 for the last pass which prescribes the
kitting schedule

IDUE(,j)  =y;+1—=Z,;cparnqj1j S.;=due day for kitting subassembly if
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KIT(i,j) =the kitting day for subassembly ij scheduled by heuristic H1

POSITION =a counter identifying how many sequence positions remain to be
considered=1{J|, ..., 1

SLA; =74+ 1 =MaX,cspE,.j) Zajepar Hmj,1j5aj = slack of job j

1C; —tardiness cost of sequencing job j to complete on day D

=T;max[0,D+a,;—7;,— 1]
I1, and fI, =subsets of J
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