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ABSTRACT 
This contribution considers the Cramer-Rao bound (CRB) 
related to estimating the synchronization parameters (carrier 
phase, carrier frequency and time delay) of a noisy linearly 
modulated signal with random data symbols. We explore various 
scenarios, involving the estimation of a subset of the parameters 
while the other parameters are either considered as nuisance 
parameters or a priori known to the receiver. In addition, some 
results related to the CRB for coded transmission will be 
presented. 

 
1. INTRODUCTION 

The Cramer-Rao bound (CRB) is a lower bound on the error 
variance of any unbiased estimate, and as such serves as a useful 
benchmark for practical estimators [1]. In many cases, the 
statistics of the observation depend not only on the vector 
parameter to be estimated, but also on a nuisance vector 
parameter we do not want to estimate. The presence of this 
nuisance parameter makes the analytical computation of the CRB 
very hard, if not impossible.  

In order to avoid the computational complexity caused by the 
nuisance parameters, a modified CRB (MCRB) has been derived 
in [2,3]. In [4] the high SNR limit of the CRB for the estimation 
of a scalar parameter has been evaluated analytically. 

The true CRB for estimating the time delay and its low-SNR 
limit have been derived for PAM, PSK and QAM constellations 
in [5] and [6,7], respectively. The CRB related to carrier 
phase/frequency estimation, from matched filter output samples 
taken at correct decision instants, has been investigated in [8,9] 
(true CRB for BPSK, QPSK and QAM) and in [7,10] (low-SNR 
limit for PSK, QAM and PAM). 

In this paper we further investigate the true CRBs for the 
estimation of the synchronization parameters (carrier phase θ, 
carrier frequency F and time delay τ) from a noisy PSK, PAM or 
QAM signal. Section 3 deals with the estimation of F (with known 
τ) or τ (with known F), either jointly with θ (i.e., scenario (i)) or 
irrespective of θ (i.e., scenario (ii)), assuming uncoded 
transmission. In section 4 we consider the estimation of θ (with 
known F and τ), assuming convolutional encoding.  

 
 
 

2. PROBLEM FORMULATION 
Let us consider the complex baseband representation r(t) of a 

noisy linearly modulated signal : 
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where a = (a-K, ... aK) is a vector of L = 2K+1 symbols (E[|ak|
2] = 

1); h(t) is a real-valued unit-energy square-root Nyquist pulse; F is 
the carrier frequency offset; θ is the carrier phase at t = 0; τ is the 
time delay; T is the symbol interval; w(t) is complex-valued zero-
mean Gaussian noise with independent real and imaginary parts, 
each having a normalized power spectral density of N0/2Es, with 
Es and N0 denoting the symbol energy and the noise power 
spectral density, respectively. The data symbols are either 
uncoded (section 3) or convolutionally encoded (section 4). 

Suppose that one is able to produce from an observation 
vector r an unbiased estimate û  of a deterministic vector 
parameter u. Then the estimation error variance is lower bounded 
by the Cramer-Rao bound (CRB) [1]: 

)(])ˆ[( 2 ur iii CRBuuE ≥− , where CRBi(u) is the i-th diagonal 
element of the inverse of the Fisher information matrix J(u). The 
(i,j)-th element of J(u) is given by 
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Note that J(u) is a symmetrical matrix. The probability density 
p(r;u) of r, corresponding to a given value of u, is called the 
likelihood function of u, while ln(p(r;u)) is the log-likelihood 
function of u. The expectation Er[.] in (3) is with respect to 
p(r;u).  

When the observation r depends not only on the parameter u 
to be estimated but also on a nuisance vector parameter v, the 
likelihood function of u is obtained by averaging the joint 
likelihood function p(r|v;u) of the vector (u,v) over the a priori 
distribution of the nuisance parameter : );( urp  = 

)];|([ uvrv pE . 
For all scenarios considered, the joint likelihood function 

p(r|v;u) is, within a factor not depending on (u,v), given by 



 

 

( )( )∏
−=

θ−








−=

K

Kk
k

j
kk

s aexa
N
E

p
2*

0
Re2exp);|( uvr  (3) 

with ∫ −−−= dtkTthFtjtrxk )()2exp()( τπ . The log-

likelihood function ln(p(r;u)) resulting from (3) is given by 
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Computation of the CRB requires the substitution of (4) into (2), 
and the evaluation of the various expectations included in (4) and 
(2). 

As the evaluation of the expectations involved in J(u) and 
p(r;u) is quite tedious, a simpler lower bound, called the modified 
CRB (MCRB), has been derived in [2,3], 

i.e., )()(])ˆ[( 2 uur iiii MCRBCRBuuE ≥≥− . The MCRB for 
phase, frequency and timing estimation, is given by [2,3] 
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where )(tg&&  represents twice the differentiation of the transmit 

pulse g(t) with ∫
+∞

∞−
+= dwwthwhtg )()()( . The MCRBs (5) are 

valid for the joint estimation of an arbitrary subset of the 
synchronization parameters (ranging from only one parameter to 
all three parameters), with the remaining unknown synchronization 
parameters considered as nuisance parameters (assuming large 
L); this holds for uncoded as well as for coded transmission. For 
large L, it can also be shown that for high SNR (Es/N0 → ∞) the 
CRBs related to all scenarios considered converge to the MCRBs 
(5) [4].  

Also, a closed-form expression can be derived for the low-
SNR limit (i.e. Es/N0 → 0) of the CRB, which we call the 
asymptotic CRB (ACRB) [6,7,10].  

 
3. UNCODED TRANSMISSION 

3.1 CRB related to estimation of F or τ  

Let us define u1 = w2 = F and u2 = w1 = τ. Taking in (4) 
u=(un, θ)  and v = a, the log-likelihood function related to the 
joint estimation of un and θ (i.e., scenario (i)), is given by 
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where {αm} is the constellation alphabet and xk is computed with 
wn = 0. Taking in (4) u=un and v = (a,θ), the log-likelihood 
function ln(p(r|un)) related to the estimation of un irrespective of θ 
(i.e., scenario (ii)) is given by 
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Substituting (6) or (7) into (2) finally yields CRBF
(i) and CRBτ

(i), 
or CRBF

(ii) and CRBτ
(ii), where the superscript and subscript refer 

to the scenario and the parameter to be estimated, respectively. 

For scenario (i) we obtain 0, =θnuJ , which indicates that there is 

no coupling between θ and the parameter to be estimated. 
Consequently, the corresponding CRBs are the same as if θ were 
known.  
 
3.2 Numerical results and discussion 

We have obtained numerical results by a combination of an 
analytical approach and computer simulation. 

In Figs. 1-2 and Figs. 3-4 the ratios CRB/MCRB are plotted 
for both the estimation of F or τ  jointly with and irrespective of 
θ??, for different lengths L of the observation interval. Figs. 1 and 3 
assume BPSK modulation, but are also representative for other 
real-valued symbols (PAM); Figs. 2 and 4 assume QPSK 
modulation, but are also representative for other complex-valued 
symbols (PSK, QAM). The transmit pulse is a square-root cosine 
rolloff pulse. The behavior of the various curves is as follows.     
• For small (large) SNR, the CRBs converge to the 

corresponding ACRBs (to the MCRBs).  
• For complex-valued symbols, the ACRBs are essentially the 

same irrespective of whether F or τ is estimated jointly with or 
independently of θ. However, for real-valued symbols, the 
ACRBs corresponding to scenarios (i) and (ii) are much 
different from each other. 

• It follows from the numerical results that CRBu
(ii) > CRBu

(i), 
for u=F as well as for u=τ. This indicates that estimating u 
jointly with θ (scenario (i)) is potentially more accurate than 
estimating u irrespective of θ (scenario (ii)). Indeed, as u and θ 
are uncoupled, the joint estimation of u and θ yields the same 
CRB as estimating u when θ is a priori known, and obviously 
this CRB is smaller than the one resulting from scenario (ii).  

• For u = F, the shape of the transmit pulse has no effect on 
CRBF

(i) and CRBF
(ii) at moderate and high SNR. In Fig. 1 this is 

illustrated for BPSK. We have verified that this observation 
holds for other constellations as well. This is in contrast with 
CRBτ

(i) and CRBτ
(ii) which strongly depend on the shape of the 

transmit pulse (Figs. 3-4). 
• The ratio CRBu

(ii)/MCRB at SNR values of practical interest 
decreases with L, whereas the ratio CRBu

(i)/MCRB does not 
depend on L (for CRBτ: this holds only for LT much longer 
than the duration of )(tg& ). For given Es/N0, increasing L 
makes CRBu

(ii) approach CRBu
(i), and hence reduces the 

penalty, caused by treating θ as a nuisance parameter. The ratio 
CRB(i)/MCRB being independent of L indicates that the 
penalty, caused by treating the data symbols as nuisance 
parameters, cannot be reduced by increasing the observation 
interval.  

• The difference between CRBτ
(i)

 and CRBτ
?(ii?) is much smaller 

than the difference between CRBF
(i) and CRBF

(ii). 
• In Figs. 2 and 4 the dashed lines correspond to the CRB 

related to 8PSK, for L = 101. They illustrate that the CRBs at 
moderate and high Es/N0 increase with increasing constellation 
size. 
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Fig. 1: CRB for frequency estimation from uncoded BPSK 

symbols
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Fig. 2: CRB for frequency estimation from uncoded QPSK 
symbols 
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Fig. 3: CRB for timing estimation from uncoded BPSK symbols 
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Fig. 4: CRB for timing estimation from uncoded QPSK symbols  



 

 

4. CODED TRANSMISSION  

4.1 CRB related to estimation of θ 

Taking u = θ, v = a and F = τ = 0, we have evaluated (4), 
assuming that a is a sequence of convolutionally encoded 
symbols. Denoting by ξ the set of legitimate coded sequences of 
length L, we have used Pr[a = c] = M-rL for c∈ξ and Pr[a = c] = 
0 otherwise, with r and M denoting the rate of the code and the 
constellation size, respectively.  
 
4.2 Numerical results and discussion 

In Fig. 5 we consider rate r = ½ and r = ¼ maximum free 
distance convolutional codes with n = 2, 4, 16 and 64 states [11]. 
The 2- or 4-bit output of the encoder is mapped on to one or two 
QPSK symbols. The transmit pulse is a square-root Nyquist 
pulse. To make abstraction of any edge effect we assume that 
transmitted sequences are long and can start or end in any state 
with the same probability 1/n. The result for uncoded 
transmission is also displayed. 

Our results show that the ratio CRB/MCRB for SNR 
below/above a certain cross-over value SNRx(r) increases/ 
decreases when the number of states increases. Decreasing the 
code rate reduces SNRx, and hence enlarges the SNR region in 
which the ratio CRB/MCRB decreases with n. For small SNR, 
the CRB is considerably smaller for coded transmission than for 
uncoded transmission. This indicates that estimating θ from 
coded data is potentially more accurate than estimating θ from 
non-coded data; the accuracy increases as the coding gain 
becomes larger. 

For very large Es/N0 the CRB converges to the MCRB. For 
very small Es/N0 the CRB converges to the corresponding ACRB 
which can be computed in a similar way as for uncoded 
transmission.  
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Fig. 5: CRB for phase estimation from symbols taken from a 
QPSK constellation according to a convolutional encoding rule 

5. CONCLUSIONS AND REMARKS 
In this contribution we have considered the CRB related to the 

estimation of the carrier phase, the carrier frequency and the time 
delay of a noisy linearly modulated waveform. Let us summarize 
the results for uncoded transmission. In contrast to CRBτ, CRBF 
is essentially unaffected by the pulse shape at practical values of 
SNR.. For moderate SNR, the CRB increases with increasing 
constellation size. Frequency/timing estimation irrespective of the 
carrier phase yields a larger CRB than does joint frequency/timing 
and phase estimation. For given SNR, the penalty of the former 
strategy with respect to the latter decreases with increasing 
observation interval. For CRBF, compared to CRBτ, considerably 
longer observation intervals are required to make the penalty very 
small. We also investigated the behavior of the true CRB for 
phase estimation in the presence of coding. Our results indicate 
that, for practical values of SNR, estimating the phase from 
coded data is potentially more accurate than estimating it from 
non-coded data. This effect is more pronounced as the coding 
gain gets larger.  
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