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Abstract - This contribution considers the Cramer-Rao bound 
(CRB) related to phase-independent carrier frequency 
estimation from a noisy PSK signal. Instead of estimating the 
frequency jointly with the carrier phase, we treat the phase as a 
nuisance parameter. Ideal symbol timing is assumed. Both cases 
of known data (training sequence) and random data are 
considered. We show that frequency estimation irrespective of 
the carrier phase yields a larger CRB than does joint frequency 
and phase estimation; the penalty resulting from the former 
strategy vanishes with increasing observation interval. 

I. INTRODUCTION 

The Cramer-Rao bound (CRB) is a lower bound on the 
error variance of any unbiased estimate, and as such serves as 
a useful benchmark for practical estimators [1]. The CRB is 
formulated in terms of the likelihood function of the scalar 
parameter to be estimated. In many cases, the statistics of the 
observation depend not only on the parameter to be estimated, 
but also on a number of nuisance parameters we do not want 
to estimate. The presence of the nuisance parameters makes 
the analytical computation of the CRB very hard, if not 
impossible.  

In order to avoid the computational complexity caused by 
the nuisance parameters, a modified CRB (MCRB) has been 
derived in [2]. The MCRB is much simpler to evaluate than 
the CRB, but is in general looser than the CRB. In [3], the 
high-SNR limit of the CRB has been evaluated analytically, 
and has been shown to coincide with the MCRB when 
estimating the delay, the frequency offset or the carrier phase 
of a linearly modulated waveform.  

The true Cramer-Rao bound related to joint carrier phase 
and frequency estimation (with the random data symbols 
considered as nuisance parameters) has been derived for 
BPSK and QPSK in [4] and for QAM in [5]. In [6], the low-
SNR limit of the CRB for carrier phase and frequency 
estimation, has been obtained analytically for M-PSK, M-
QAM and M-PAM. 

In this contribution we investigate the true CRB related to 
frequency estimation irrespective of the carrier phase: the 
carrier phase is included in the nuisance parameter vector. 
The data symbols are either known (training sequence) or 
random, and taken from an M-PSK constellation. The low-
SNR limit of the corresponding CRB is presented as well. As 

in [4-6], timing is assumed to be known. Results are presented 
for several transmitted sequence lengths and various PSK 
constellations, and compared with the true CRB related to 
joint phase and frequency estimation, as derived in [4]. One of 
the main conclusions is that frequency estimation irrespective 
of the carrier phase exhibits a performance penalty as 
compared to joint frequency and phase estimation; this 
penalty decreases with increasing observation interval. 

II. PROBLEM FORMULATION 

Consider a linearly modulated signal, obtained by applying 
a data symbol sequence to a square-root Nyquist transmit 
filter, that is transmitted over an additive Gaussian noise 
(AWGN) channel. The resulting noisy signal is applied to a 
receiver filter, matched to the transmit filter. The receiver 
filter output signal is sampled at the decision instants, which 
yields the observation vector r = (r-K , …, rK), with 
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In (1), a = (a-K, ... aK) is a vector of L = 2K+1 M-PSK 
symbols (|ak|2= 1); F is the carrier frequency offset; θ is the 
carrier phase at k = 0; T is the symbol interval; {wk} is a 
sequence of independent zero-mean complex-valued Gaussian 
random variables, with independent real and imaginary parts 
that each have variance equal to ½; finally, ε = (Es/N0)1/2, with 
Es and N0 denoting the symbol energy and the noise power 
spectral density, respectively. Depending on the scenario to be 
considered, the M-PSK symbols are either a priori known to 
the receiver (training sequence), or they are statistically 
independent and uniformly distributed over the M-PSK 
constellation (random data). 

Suppose that one is able to produce from the observation 
vector r an unbiased estimate F̂ of the carrier frequency offset 
F. Then the estimation error variance is lower bounded by the 
Cramer-Rao bound (CRB) [1]: FCRBFFE ≥− ])ˆ[( 2
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 The probability density p(r;F) of r, corresponding to a 
given value of F, is called the likelihood function of F, while 



ln(p(r;F)) is the log-likelihood function of F. The expectation 
Er[.] in (2) is with respect to p(r;F).  

When the observation r depends not only on the frequency 
offset F to be estimated but also on a nuisance vector 
parameter v, the likelihood function of F is obtained by 
averaging the joint likelihood function p(r|v;F) of the vector 
(v,F) over the a priori distribution of the nuisance parameter : 

)];|([);( FpEFp vrr v= . In the context of this paper, v = θ 
or v = (a, θ), depending on whether the data symbols are 
known or random. 

From (1) it follows that the joint likelihood function 
p(r|v;F) is, within a factor not depending on (v,F), given by 
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The log-likelihood function ln(p(r;F)) resulting from (3) is 
given by 
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Computation of the CRB requires the substitution of (6) 
into (2), and the evaluation of the various expectations 
included in (6) and (2). 

As the evaluation of the expectations involved in CRBF and 
p(r;F) is quite tedious, a simpler lower bound, called the 
modified CRB (MCRB), has been derived in [2], i.e., 

FF MCRBCRBFFE ≥≥− ])ˆ[( 2
r . The MCRB for frequency 

estimation, is given by [2] 
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where L = 2K+1 denotes the number of symbols transmitted 
within the observation interval. In [3] it has been shown that 
for high SNR (i.e., Es/N0 → ∞) the CRB for frequency 
estimation converges to the MCRB given by (7).  

Also, a closed-form expression can be derived for the low-
SNR limit (i.e. Es/N0 → 0) of the CRB, which we call the 
asymptotic CRB (ACRB). In [6] this has been accomplished 
for the joint estimation of F and θ (but not for the estimation 
of F irrespective of θ) based on random data:  
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The two superscripts in (8) and in the subsequent equations 
related to the CRBs refer to the estimation of the frequency 
offset jointly with (J) or irrespective of (I) the carrier phase 
and to the receiver’s knowledge about the data symbols (ra: 
random, kn: known). The ACRBF

(J),ra (8) is proportional to 
(ES/N0)-M and to L-3.  

It is easily shown that when the data are not random but a 
priori known at the receiver side the parameters F and θ are 
decoupled (JθF = 0). The resulting CRB(J),kn=ACRB(J),kn is 
nothing but the MCRBF given by (7). 

In this paper we compute the CRB corresponding to the 
estimation of F irrespective of the carrier phase, and present 
the expression for the corresponding ACRB.  

III. EVALUATION OF THE TRUE CRB 

A. Random data symbols 

Taking in (6) v = (a, θ), the log-likelihood function 
ln(p(r;F)) is (within an arbitrary constant) given by 
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and {α0, α1, ...,αΜ−1} is the set of PSK constellation points. 
Differentiation of (9) yields 
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As the variable F in (5) corresponds to the actual frequency 
offset, the quantity kr

(
can be decomposed as 
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where {N(k)} is a sequence of zero-mean complex Gaussian 
random variables, with [ ] mkmNkNE −= δ)()( * . As 
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 are periodic in θ 
with period equal to 2π, there is no need to include a carrier 
phase in the first term of (16).   

Taking (12) into account, we derive from (2): 
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and E[.] denotes averaging over the data symbols and the 
noise. The variables kr

(
 and mr

(
 involved in (18) represent two 

statistically independent quantities (k≠m).  

For low SNR, (17) converges to the corresponding ACRB. 
The computation of this ACRB is very similar to the 
derivation of the ACRB(J),ra in [6]. Expanding the exponential 
functions in (2) into a Taylor series, averaging each resulting 
term with respect to the data symbols and the carrier phase, 
and keeping only the relevant terms that correspond to the 
smallest powers of  ε, we obtain  

( )( )
2

22
2

0

2

2
),( 1

)1(2

!13

T
LL

N
E

M
ACRB

M
s

raI
F

−








−
=

π

 (20) 

where L= 2K+1 and M represents the number of constellation 
points. The ACRB (20) is proportional to (Es/N0)-2M and to   
L-4. 

B. Known data symbols 

When the transmitted data symbols are known at the 
receiver, the nuisance parameter is given by v = θ; and no 
averaging over the data is required. Equation (17) remains 

valid (with the superscript ra substituted by kn), provided we 
remove in (19) the summations over the constellation points 
and replace αi by the actual symbol ak. 

The corresponding low-SNR limit can again be obtained as 
in [6]. We obtain 
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which is proportional to (Es/N0)-2 and to L-4.  

IV. NUMERICAL RESULTS AND DISCUSSION 

As no further analytical simplification of (17) seems 
possible, we have to resort to numerical computation. This 
involves numerical integration with respect to θ in (19), and 
replacing the statistical expectations in (18) by arithmetical 
averages over a number of computer-generated vectors r

(
. 

A. Known data symbols 

In the case of known data symbols, the CRBF
 resulting from 

the joint estimation of F and θ equals MCRBF. Hence, for any 
other scenario the ratio CRB/MCRB is a measure of the 
penalty occurred by not knowing the data symbols and/or not 
estimating θ jointly with F. 

Fig. 1 shows the ratio CRB/MCRB related to the estimation 
of F independently of θ, along with the corresponding 
ACRB/MCRB. These results do not depend on the 
constellation size. For small (large) SNR, the CRBs converge 
to the corresponding ACRB (to the MCRB). Increasing the 
observation interval from L1 to L2 shifts the curve of 
CRB/MCRB to the left by an amount of 10log(L2/L1) dB; 
hence the value of Es/N0 at which the CRB comes close to the 
MCRB is shifted by the same amount. Note that for SNR 
values of practical interest, CRB/MCRB is close to 1, even 
for a moderate length of the observation interval. Hence, the 
penalty, caused by treating the carrier phase as a nuisance 
parameter, can be safely ignored in practice. 

B. Random data symbols 

It follows from (8) and (20) that the ACRB corresponding 
to the joint estimation of F and θ and the ACRB 
corresponding to the estimation of F irrespective of θ are 
much different. 

Fig. 2 shows the ratios CRB/MCRB and the corresponding 
ACRB/MCRB, for BPSK and QPSK, and for both joint 
estimation of F and θ and estimation of F irrespective of θ.  
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Fig. 1. CRB and ACRB related to frequency estimation irrespective of the 

carrier phase (I), based on known data. 

The behavior of the various curves is as follows:     

• For small (large) SNR, the CRBs converge to the 
corresponding ACRBs (to the MCRB). 

• For a given constellation size, the joint estimation of F and 
θ yields the smaller CRBF. This indicates that estimating F 
jointly with θ is potentially more accurate than estimating F 
irrespective of θ. Indeed, it follows from [4-5] that  F and θ 
are uncoupled, so that the joint estimation of F and θ yields 
the same CRBF as estimating F when θ is a priori known. 
Therefore, raJ

FCRB ),( is smaller than raI
FCRB ),( . For given 

Es/N0, both the CRB(J),ra and the CRB(I),ra increase with 
increasing M. This indicates that frequency estimation 
becomes more difficult for larger constellations. This effect 
is more pronounced for the estimation of F irrespective of θ 
(with ACRB being proportional to (Es/N0)-2M), than for joint 
estimation of F and θ (with ACRB being proportional to 
(Es/N0)-M). 

• When Es/N0 is sufficiently large, the CRBs for both 
scenarios (I) and (J) converge to the MCRB. The value of 
Es/N0 at which the CRB comes close to the MCRB 
increases with the number M of constellation points, but is 
independent of the considered scenario.  
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Fig. 2. Comparison of CRB and ACRB related to joint phase and frequency 
estimation (J) and frequency estimation irrespective of the carrier phase (I). 

 

C. Effect of observation interval (random data) 

Fig. 3 shows the ratios CRB/MCRB and the corresponding 
ACRB/MCRB for different lengths L of the observation 
interval, assuming random QPSK modulation (we have 
verified that the same behaviour applies to other M-PSK 
constellations).  

Note that MCRB from (7) is proportional to L-3. For 
moderate and small SNR, the ratio CRB(I),ra/MCRB decreases 
with L, whereas the ratio CRB(J),ra/MCRB does not depend on 
L. This is consistent with the observation that the ACRB(I),ra 
(ACRB(J),ra) is proportional to L-4 (to L-3), so that 
ACRB(I),ra/MCRB (ACRB(J),ra/MCRB) is proportional to L-1 
(independent of L). For given Es/N0, increasing L makes 
CRB(I),ra approach CRB(J),ra, and hence reduces the penalty, 
caused by treating θ as a nuisance parameter; for given L this 
penalty is larger than in the case of known data symbols. The 
ratio CRB(J),ra/MCRB being independent of L indicates that 
the penalty, caused by treating the data symbols as nuisance 
parameters, cannot be reduced by increasing the observation 
interval.  
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Fig. 3.  Effect of the observation interval on the CRB and ACRB related to 

joint phase and frequency estimation (J) and frequency estimation 
irrespective of the carrier phase (I). 

V. CONCLUSIONS AND REMARKS 

In this contribution, we have considered the CRB(I) related 
to the frequency estimation irrespective of the carrier phase of 
a noisy linearly modulated signal with either known or 
random data symbols. We have compared our results to the 
CRB(J) related to joint phase and frequency estimation, 
derived in [4-5]. The numerical evaluation of the CRB(I) 
requires numerical integration, and the approximation of each 
statistical expectation by an arithmetical average. These 
averages and numerical integration depend on Es/N0, on the 
constellation size and on the transmitted sequence length.  

Frequency estimation irrespective of the carrier phase 
yields a larger CRB than does joint frequency and phase 
estimation. This implies that the latter strategy is potentially 
the better one. For given SNR, the penalty of the former 
strategy with respect to the latter decreases with increasing 
observation interval. When the data symbols are known, this 
penalty can be neglected for practical values of SNR, even for 
moderate observation intervals. In the case of random data 
symbols, considerably longer observation intervals are 
required to make the penalty very small. 

For small and moderate Es/N0, the CRBs that assume 
random data symbols increase with increasing constellation 
size. This effect is strongest when the frequency is estimated 
irrespective of the carrier phase. 

The observations {rk} from (2) denote the matched filter 
output samples taken at the decision instants. Strictly 
speaking, the expression (2) is not correct, because it ignores 
the reduction of the useful signal component and the 
introduction of ISI, both caused by the received signal being 
ill-centered (because of the frequency offset F) with respect to 
the receiver filter. Hence, the observation model (2) is valid 
only for small frequency offsets (say, |FT| < 0.05). When the 
frequency offset is so large that (2) is no longer accurate, one 
should consider as the observation the received complex 
baseband signal r(t), given by: 
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where h(t) is a real-valued unit-energy square-root Nyquist 
pulse and w(t) is complex-valued zero-mean Gaussian noise 
with independent real and imaginary parts, each having a 
normalized power spectral density of 1/2. The behavior of the 
true CRB for frequency estimation based on the observation 
model (22) is a topic for further research. 
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