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ABSTRACT  

This contribution considers carrier phase recovery in 
turbo receivers. We point out that the resulting Cramer-Rao 
bound (CRB) is close to its high signal-to-noise ratio (SNR) 
asymptote, even at the typical low operating SNR of turbo 
systems. We show that ‘code-unaware’ phase estimators 
are unable to perform closely to the CRB at the normal 
operating SNR of powerful codes. The advantage of ‘code-
aware’ carrier recovery is illustrated with examples of 
existing phase estimation techniques applied to a turbo-
coded 4-PSK system. Comparison with the CRB reveals 
that the ‘code-aware’ soft decision-directed phase estimator 
presented in [1] performs very close to the CRB. 
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INTRODUCTION 

The impressive performance of turbo receivers 
implicitly assumes coherent detection, i.e. the carrier 
reference must be recovered accurately before data 
detection. Synchronization of turbo receivers yet is a very 
challenging task since such systems usually operate at 
extremely low SNR values. The development of accurate 
carrier phase estimation techniques has therefore recently 
received a lot of attention in the technical literature. A 
common approach to judge the performance of such 
parameter estimators consists in comparing their resulting 
mean-square error with the Cramer-Rao bound (CRB), 
which is a fundamental lower bound on the error variance 
of unbiased estimators [2]. In order to avoid the 
computational complexity related to the true CRB, a 
modified CRB (MCRB) has been derived in [3]. The 
MCRB is much simpler to evaluate than the CRB, but is in 
general looser (i.e. lower) than the CRB, especially at low 
SNR. In [4], the CRBuncoded for carrier phase estimation 
from uncoded data symbols has been obtained. In [5], the 
CRB for carrier phase estimation from coded data has been 
expressed in terms of the marginal a posteriori probabilities 
(APPs) of the coded symbols, allowing the numerical 
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evaluation of the bound for a wide range of coded systems, 
including schemes with iterative detection (turbo schemes).  

This contribution further examines the CRB for carrier 
phase recovery in turbo receivers, and compares the bound 
to the performance of actual synchronizers. We point out 
that at the normal operating SNR of turbo receivers, carrier 
phase estimation should exploit the encoding properties in 
order to achieve an MSE that is close to the CRB. 

CODED SYSTEM IN THE PRESENCE OF A 
CARRIER PHASE OFFSET 

We consider the observation vector r =(r-K, …, rK) with 
 

( ) kkk wjar += θε exp  (1) 
 

In (1), a=(a-K,…,aK) is a vector of L = 2K+1 data symbols 
taken from an M-PSK, M-QAM or M-PAM constellation 
(E[|ak|2]=1) according to a combination of an encoding rule 
and a mapping rule. The vector w=(w-K,…,wK) consists of 
independent identically distributed zero-mean complex 
Gaussian noise variables, with independent real and 
imaginary parts each having a variance of ½. The parameter 
θ represents the deterministic but unknown carrier phase. 
Finally, ε = (Es/N0)1/2, with Es and N0 the energy per coded 
symbol and the noise power spectral density, respectively.  

TRUE AND MODIFIED CRB 

Suppose that one is able to produce from the 

observation vector r an unbiased estimate θ̂  of the carrier 
phase θ. Then the estimation error variance is lower 

bounded by the CRB: θθθ CRBE ≥− ])ˆ[( 2
r , where CRBθ  

is given by [2]  
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The probability density p(r;θ) of r, corresponding to a 
given value of θ, is called the likelihood function of θ. The 
expectation Er[.] in (2) is with respect to p(r;θ). Since the 
observation r depends not only on the parameter θ to be 
estimated but also on the nuisance vector a of data symbols, 



 

p(r;θ) is  obtained by averaging the likelihood function 
p(r|a;θ) of the vector (θ,a) over the a priori distribution of 
the nuisance parameter vector a, i.e. ( ) ( )[ ]θθ ;; arr a pEp = .  

The presence of the nuisance data symbols makes the 
evaluation of the likelihood function of θ and of the 
corresponding CRB (2) quite tedious (in particular for 
coded data sequences). An alternative lower bound, the 
modified CRB (MCRB), has been proposed in [3] 
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The MCRB for carrier phase estimation is easily evaluated 
analytically, in spite of the presence of the nuisance data 
symbols a. One obtains: MCRBθ=N0/2LEs. Since the 
computation of the MCRB makes no specific assumptions 
regarding the correlation between the data symbols, this 
result is valid for uncoded as well as for coded 
transmission, regardless of the encoding rule. However, the 
reduced computational effort of the MCRB as compared to 
the true CRB goes at the cost of degraded tightness, i.e., the 
MCRB is in general looser then the CRB: 

θθθθ MCRBCRBE ≥≥− ])ˆ[( 2
r . In [6], it has been shown 

that the high-SNR limit of the CRB coincides with the 
MCRB. Though the MCRB is a good approximation of the 
true bound for higher SNR, it departs significantly from the 
CRB at low SNR [4]. To analyze and design carrier phase 
estimators operating at low SNR it is therefore important to 
know and understand the behavior of the ratio CRB/MCRB. 
In [5], we have expressed the CRB for carrier phase 
estimation from a noisy linearly modulated signal with 
encoded data symbols as  

 

( )( ) ( )∑∑
−=

−

=

−==
K

Kk

M

m

j
kmmk erAp

d
d 1

0

*Im];|Pr[2;ln θαθαεθ
θ

rr  (5) 

 
where ];|Pr[ θα rmkA =  is the a posteriori probability 

(APP) of the k-th coded symbol, (α0, α1, ...,αΜ−1) denotes 
the set of constellation points, and r is given by (1). 
Substitution of (5) into (2) allows the numerical evaluation 
of the CRB for turbo receivers by means of computer 
simulation. The fact that for turbo receivers the APPs 
needed in (5) are obtained through iterations makes the 
computation of the CRB quite computationally intensive. 

Note that (5) reduces to (4) when 1]|Pr[ == θ;aA kk r . 
This indicates that CRB converges to MCRB provided that 
the ratios R(r,k,αm)= ];|Pr[/];|Pr[ θθα rr kkmk aAA ==  

are likely to be much smaller than 1 for all km a≠α . The 

probability that the random variable R(r,k,αm) exceeds y 
for at least one constellation point km a≠α  is given by 
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where ξ denotes the set of legitimate coded sequences of 
length L. We assume that ]Pr[a =M-rL for a∈ξ and ]Pr[a =0 

otherwise, where the quantities r and M denote the rate of 
the code and the number of constellation points, 
respectively. With y=1, Eq(6) is nothing but the symbol 
error rate (SER) resulting from an optimal maximum a 
posteriori probability (MAP) symbol decoder [7]. This 
establishes a relation between the convergence of the CRB 
to the MCRB and the SER of the code. This relation is 
illustrated in Fig.1. The ratio CRB/MCRB for carrier phase 
estimation based on the observation of L=2K+1 symbols 
(the right ordinate) and the SER corresponding to perfect 
synchronization and MAP decoding (the left ordinate, solid 
lines) are presented as a function of Es/N0 per coded 
symbol. The following scenarios are considered: (i) 
uncoded  (U) transmission, (ii) a memory order 4 turbo (T) 
code with interleaver size I and overall rate r, and (iii) a rate 
½ LDPC code with block length 1000. We observe that, for 
large Es/N0, the CRB converges to the MCRB; this is 
consistent with [6]. When Es/N0 decreases, a critical value 
(Es/N0)crit is reached where the CRB starts to diverge from 
the MCRB. Fig.1 shows that this critical value corresponds 
to a SER of about 10-3. Hence, as far as the CRB for carrier 
phase estimation is concerned, transmission at a SER of 
less than 10-3 is nearly equivalent to transmitting a sequence 
of known training symbols. At the normal operating SNR 
of digital communication systems , the CRB is therefore 
very well approximated by the MCRB. Finally, it may be 
useful to note that, for small constellations like 2-PSK and 
4-PSK, SER≈BER (see also Fig.1, with BER in dashed 
line). The bit error rate (BER) is a more important code 
performance parameter than the SER, and is therefore more 
often available in technical literature.  

PHASE ESTIMATOR PERFORMANCE 

In this section we consider the mean square error (MSE) 
resulting from some existing phase estimators operating on 
the rate ½ turbo-encoded 4-PSK scheme from the previous 
section. This MSE is compared to the CRB for both coded 
and uncoded transmission. The real part of the kth 
transmitted symbol corresponds to the kth information bit 
(ik) and the imaginary part corresponds to the kth parity bit 
(pk) alternately originating from encoder 1 (enc1) and 
encoder 2 (enc2). We assume a phase offset θ of 0.2 rad. 



 

The Viterbi and Viterbi (V&V) estimator 

With the traditional Viterbi and Viterbi (V&V) estimator, 
phase estimates are obtained as [8] 
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We take X=2, since it is indicated in [8] that for QPSK 
signals, the monomial |rk|2 is nearly optimal.  

The decision-directed (DD) estimator 

Decision-directed (DD) phase estimation can be carried out 
iteratively as shown in (8) 
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where dk

(i-1) is the decision regarding the coded symbol ak 
based upon a previous phase estimate θ(i−1).  Hence, the 
phase estimate is refined at each iteration. Depending on 
the way the decisions dk

(i) are obtained, we distinguish 
between hard  DD (hDD) estimation, tentative DD (tDD) 
estimation, and soft DD (sDD) estimation. In classical hDD 
estimation the symbol decision dk

(i) result from applying the 
rotated sample rkexp(-jθ(i)) to a hard symbol-by-symbol 
decision device that does not take the code properties into 
account: dk

(i) is the constellation point that is closest to 
rkexp(-jθ(i)). A tDD estimator does take the code properties 
into account by extracting hard decisions from the decoder 
during the decoding process of the sequence {rkexp(-jθ(i))}. 
When the quantities dk

(i) in (8) are replaced with 
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with [ ](i),|Pr θα rnka = denoting the symbol APPs, the 

resulting phase estimate is referred to as sDD [1], and )( i
skd  

are called soft decisions.  
Taking into account that the turbo decoder is an iterative 

process itself, and that a standard turbo decoder provides 
soft information regarding the information bits only, there 
are different strategies to implement tDD and sDD 
estimators. We will consider the following strategies:  
• tDD : In order to reduce the computational complexity, 
only one turbo decoding operation is performed for each 
synchronizer iteration. The hard decisions of the 
information bits (ik) are based on the value of the APPs, 
provided by the turbo decoder. The hard decision of the 
parity bits (pk) is obtained as in the hDD case.  

• sDD(i): Only 1 turbo iteration is performed at each 
iteration of the sDD phase estimator. The APPs of the 
coded symbols are computed as the product of the APPs of 
the corresponding information bit ik (APP provided by the 
turbo decoder) and parity bit pk (APP computed as if parity 
bit is uncoded). 
• sDD(ii): Only 1 turbo iteration is performed at each 
iteration of the sDD phase estimator. The APPs of the 
coded symbols (instead of the information bits only) are 
computed by a slightly modified turbo decoder (we assume 
ik and pk statistically independent if pk originates from enc2, 
which is a good approximation for large interleavers; when 
pk originates from enc1, the correct dependence of ik and pk 
is taken into account). 

Zhang and Burr (Z&B) estimator 

In [9], Zhang & Burr propose an iterative ad hoc phase 
estimator (Z&B) related to maximum likelihood estimation 
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where )(i
skd  are soft decisions given by (9) and computed as 

in sDD(ii). The secant method enables to find the value that 
maximizes (10).   

Numerical results and discussion 

The phase estimators described above can be divided 
into two categories: ‘code-aware’ (tDD, sDD, Z&B) and 
‘code-unaware’ (V&V, hDD) estimators. The first category 
exploits code properties in the phase estimation process, 
while the second category does not. The MSE of ‘code-
unaware’ phase detectors for coded transmission is 
essentially the same as for uncoded transmission. 
CRBuncoded therefore lower bounds the MSE resulting from 
any ‘code-unaware’ phase synchronizer, regardless of the 
underlying encoding rule. As the CRB for a powerful code, 
evaluated at the normal operating SNR, is considerably 
smaller than CRBuncoded, ‘code-aware’ phase estimators are 
potentially more accurate than ‘code-unaware’ phase 
estimators. Moreover, the ratio CRBuncoded/CRB indicates to 
what extent synchronizer performance can be improved by 
making clever use of the code structure.  

The MSE resulting from the V&V, hDD, tDD, sDD and 
Z&B estimators are shown in Fig.2 as a function of Es/N0 
per coded symbol. The iterative synchronizers are iterated 
until the phase estimate has negligible bias in the range 
Es/N0 ≥ 0dB. The initial phase estimate was set to zero. The 
estimator performance apparently reflects the degree of 
exploiting the encoding rule during the estimation process. 
In order of increasing estimation accuracy we observe: 
• The V&V and hDD estimator, which are ‘code-unaware’. 
Their performance is lower bounded by CRBuncoded > CRB. 



 

• The tDD estimator, which uses hard symbol decisions 
and therefore loses a great part of the available information. 
• The sDD(i) estimator, which exploits the code 
properties only partially as the APPs of the parity bits are 
calculated without taking into account the code trellis.  
• The Z&B estimator, whose derivation was based on the 
simplifying but incorrect assumption that the transmitted 
data symbols are statistically independent. 
• The sDD(ii) estimator, which performs closely to the 
CRB, in spite of making only one turbo iteration per 
iteration of the synchronizer.   

CONCLUSIONS 

This contribution compares the CRB for carrier phase 
estimation in coded systems against the MCRB, CRBuncoded 
and the performance of existing phase estimators. 
Assuming the normal operating SNR of codes with a 
significant coding gain (say, such that SER < 10-3) we have 
shown that CRB ≈ MCRB << CRBuncoded. Furthermore, 
CRBuncoded has been shown to lower bound the performance 
of ‘code-unaware’ synchronizers, which make no use of the 
code structure. This implies that in order to approach 
optimal performance, estimators should make clever use of 
the code properties in the phase estimation process. The 
phase estimator presented in [1], which is ‘code-aware’, 
has been shown to operate very closely to the CRB. 
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Fig.1: Relation between CRB/MCRB and SER (BER) 
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Fig.2: Estimator MSE compared against CRB 


