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Abstract— This paper introduces a log-domain decoding
scheme for LDPC codes over GF (q). While this scheme is
mathematically equivalent to the conventional sum-product
decoder, log-domain decoding has advantages in terms of
implementation, computational complexity and numerical sta-
bility. Further, a suboptimal variant of the log-domain decod-
ing algorithm is proposed, yielding a lower computational
complexity. The proposed algorithms and the sum-product
algorithm are compared both in terms of simulated BER
performance and computational complexity.

I. INTRODUCTION

Regular low-density parity-check (LDPC) codes were
introduced by Gallager in [1], along with several message
passing decoding algorithms. It has recently been shown
that regular binary LDPC codes, when decoded using the
sum-product algorithm (SPA), approach the capacity of
the AWGN channel [2]. Conventional LDPC codes were
extended in two ways. On the one hand, by removing
certain constraints on the parity check matrix, so-called
irregular LDPC codes were shown to outperform regular
LDPC codes [3]. On the other hand, by allowing coding
and decoding to take place in higher order Galois fields,
better codes could be constructed [4]. Such codes also have
superior performance in the presence of burst errors [5]. In
[6], it was shown that the best performing LDPC codes
(in terms of bit error rate (BER) vs. signal-to-noise ratio
(SNR)) are irregular non-binary LDPC codes.

The direct implementation of the decoding algorithm
for binary codes in the probability domain (i.e., the SPA)
has several drawbacks as compared to an implementation,
denoted here by log-SPA, based on log-likelihood ratios
(LLR): the direct implementation is more sensitive to
quantization effects and requires more quantization levels
than when using LLRs [7], [8]. The SPA requires message
multiplications, whereas the log-SPA implementation uses
message additions. The latter is more efficient in fixed point
implementations, as fixed point multiplications can take
up many clock cycles compared to additions. Additions in
the SPA are replaced by the Jacobi logarithm [9] which
can be approximated by a very simple function, resulting
in the max-log-SPA. Finally, the log-SPA implementation
requires no normalization step [4]. A fortiori, SPA decoding
over more general Galois fields suffers from the very same

drawbacks. We note that a log-domain approach for non-
binary turbo codes was investigated in [10].

In this contribution we derive the log-SPA decoding
scheme for general non-binary LDPC codes based on
LLRs. This algorithm is mathematically equivalent to the
original decoding algorithm. Additionally, we investigate
the performance degradation of a suboptimal variant (max-
log-SPA) through computer simulations. Comparisons of
the computational complexity and memory requirements of
the various algorithms are carried out.

II. LDPC CODES AND BELIEF PROPAGATION

A. Encoding

LDPC codes are linear block codes. They are defined
by a very sparse parity check matrix in a finite Galois field
GF (q). This matrix H consists of M mutually independent
rows and N columns. From H, a systematic N ×K (with
K = N − M ) generator matrix GT can be constructed
such that the rows of H generate the null-space of GT ,
i.e. HGT = 0. In this contribution we consider irregular
LDPC codes over binary extension fields: GF

(
q = 2b

)
,

although the proposed algorithm can be applied to more
general fields. A block of Kb bits is converted to a sequence
of K GF

(
2b
)

elements according to some mapping, ϕ :
(GF (2))b → GF

(
2b
)
. The obtained information word,

b ∈ (GF (2b))K , is encoded using the generator matrix,
resulting in a codeword c ∈ C, with C denoting the set of
codewords. Clearly, C is a linear subset of

(
GF

(
2b
))N

. In
matrix notation, this means:

c = GTb.

It can easily be shown that

c ∈ C ⇔ (s .=)Hc = 0. (1)

The elements of s and c are referred to as the checks and
variables, respectively. If a given check is zero, the partici-
pating variables satisfy that particular check. The codeword
is now mapped to a signalling constellation, Ω, resulting
in a vector t. We will assume BPSK signalling, although
extensions to higher order constellations are straightforward
[11]. Thus, ψ : GF (q) → Ωb, with Ω = {−1,+1} such
that ψ (ck) =

[
tkb, . . . , t(k+1)b−1

]T
and ti ∈ Ω.
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Fig. 1. part of a factor graph for an LDPC code over GF (q)

When the vector t is transmitted over an AWGN channel,
it is corrupted by noise, yielding a received vector, x:

x = t + n

with n a real vector of independent white gaussian noise
samples with power σ2 = N0/ (2EbK/N) where Eb/N0

is the SNR per information bit and K/N is the code rate.

B. Decoding

Although there exists a general class of decoding algo-
rithms for LDPC codes, known as message-passing algo-
rithms, we focus on the sum-product algorithm (SPA)[12].
This algorithm is based on a factor graph representation
of the sparse parity check matrix [13]. Given some H,
the corresponding factor graph Γ consists of N variable
nodes, associated with the N variables, and M check nodes,
associated with the M checks. When Hm,n �= 0, variable
n is checked by check m. Hence, in Γ, check node m and
variable node n are connected. This is shown in Fig. 1.
Each node can be seen as a binary-valued function. For
instance, the value of the function corresponding to check
node m is 1 iff the adjacent variables satisfy that check,
i.e., when the check sm = 0. The function corresponding
to variable node n assures consistency between different
check nodes (hence the notation "=" in the variable nodes
in Fig. 1). Consequently, the graph Γ can be seen binary-
valued function fΓ (c): it evaluates to 1 iff all the checks
are satisfied, i.e., c ∈ C.

The joint probability density function (pdf) of c and x
can be written as

p (c,x) ∝ p (x| c) p (c)
∝ p (x| c) fΓ (c)

=
∏
n

px (cn) fΓ (c)

with px (cn) = p
(
xnb, . . . , xb(n+1)+1

∣∣ cn). Hence, p (c,x)
can be represented by the factor graph in Fig. 1. We are
interested in computing the a posteriori pdf of the variable
p (cn|x). This can done efficiently using the sum-product
algorithm by passing messages (pdfs) over the edges of the
factor graph. The details of this algorithm are described

in [13]. For LDPC codes, the message passing algorithms
consists of the following steps:

1) Initialization step: variable nodes are initialized with
the belief of the corresponding variable, based solely
on the received vector x.

2) Tentative decoding: variable node n computes, based
on all the information it has available (i.e., from the
channel vector x and messages from adjacent check
nodes), the most likely value of variable n, ĉn. If
the decoded word satisfies all checks (Hĉ = 0), the
decoding algorithm is halted.

3) Horizontal step: a message (denoted by L (m← n))
is passed from variable node n to check node m,
expressing the belief of the n-th variable, given all the
information from all connected check nodes, except
check node m itself.

4) Vertical step: each check node m sends a message
(denoted by L (m→ n)) to adjacent variable node n,
reflecting the belief of the n-th variable, given all the
information from the channel and all variable nodes
connected to check node m, except variable node n
itself. Go to step (2).

A decoding failure is declared if after a fixed number of
iterations no valid codeword has been produced in step 2.
The vague terms “belief” and “information” in the sum-
product algorithm are expressed in terms of probabilities.
When we use LLRs instead of probabilities, we end up with
a log-domain version of the sum-product algorithm. In the
next sections we will describe how this decoding algorithm
may be expressed elegantly in the log-domain.

III. LOG-LIKELIHOOD ALGEBRA OVER BINARY

EXTENSION FIELDS

In this section we describe how probabilities of opera-
tions on random variables (RV) in GF (q) can be converted
to operations on the corresponding LLRs of the same
RV. Computational complexity of these operations will be
measured with the number of message operations (i.e.,
real-valued additions, multiplications, etc.). We assume that
results of additions, multiplications, etc. of elements in
GF (q) are stored in a look-up table. This only requires
a few small tables of size q2. We denote the Galois
field GF (q) without the zero element by GF0 (q) =
{α1, . . . , αq−1}. We first introduce the notion of a LLR
vector (LLRV) of v, a RV over GF (q):

L (v1) = [L (v1 = α1) . . . L (v1 = αq−1)]
T

where

L (v = αi) = ln
P (v = αi)
P (v = 0)

.

with P (v = αi) denoting the probability that v takes on
the value αi. Suppose we are given the LLRV of v1 and v2
(abbreviated by L1 and L2, respectively) and two elements
in GF0 (q): A1 and A2. In Appendix A we show that

L (A1v1 +A2v2) = � (L1,L2, A1, A2) (2)
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+ * max∗

SPA(H) (3u− 4)Mq (q − 1) (3u− 4)Mq2 0
SPA(V) uM (q − 1) Mtuq 0

log-SPA(H) 2 (3u− 4)M (q − 1)2 0 2 (3u− 4)M (q − 1)2

log-SPA(V) uM (t− 1) (q − 1) 0 0

TABLE I

NUMBER OF OPERATIONS ON MESSAGES PER ITERATION OF SPA AND LOG-SPA DECODING FOR (H)ORIZONTAL AND (V)ERTICAL STEP

where � (L1,L2, A1, A2) is a simple extension of the box-
plus operator introduced in [14] for GF (2): L (v1 + v2) =
L (v1) � L (v1). This latter expression, as well as (2), can
be expressed in terms of the Jacobi logarithm:

max∗ (x1, x2)
.= ln (ex1 + ex2) . (3)

It can easily be seen that max∗ (x1, x2, x3) =
max∗ (max∗ (x1, x2) , x3), so � (L1,L2, A1, A2)
can be computed recursively. The computation of
L (A1v1 +A2v2) requires 2 (q − 1)2 message additions
and 2 (q − 1)2 max∗ operations. Note that max∗ can be
expressed as

max∗ (x1, x2) = max (x1, x2) + ln
(
1 + e−|x1−x2|

)
.

Consequently, max∗ requires a maximization, corrected by
a term (ln (1 + ·)). The correction term may be stored, with-
out any performance loss, in a small look-up table as a func-
tion of |x1 − x2| [9]. Hence, an efficient implementation of
max∗ can be realized by one comparison, two message ad-
ditions and one table look-up. Note that a probability-based
computation of the distribution of (A1v1 +A2v2) requires
q (q − 1) additions and q2 multiplications on messages.

IV. LOG-SPA DECODING OF LDPC CODES

With each check node (m, 1 ≤ m ≤ M ) and variable
node (n, 1 ≤ n ≤ N ) we associate two kinds of messages:

• LLRV messages from check node m to variable node
n: L (m→ n), representing the LLRV of the n-th
variable, given the LLRV of all variables checked by
the m-th check, except the n-th variable itself.

• LLRV messages from variable node n to check node
m: L (m← n), representing the LLRV of the n-
th variable, given the LLRV of all checks involving
variable n, except check m itself.

We further denote by M (n), the set of check nodes
connected to variable node n. Similarly, we denote by
N (m) the set of variable nodes connected to check node
m. For each check node m, we order N (m): nm,0 <
nm,1 < . . . < nm,end−1.

(1) Demapping and initialization : First, we determine
the LLRV corresponding to variable node n, according to
the channel model. We refer again to the Appendix (section
B) for more details. It turns out that for BPSK signalling
the i-th component is given by

Lch (cn)i =
∑

j:ψ−1(αi)j=+1

2xnb+j
σ2

. (4)

We now initialize, for 1 ≤ n ≤ N and 1 ≤ m ≤ M such
that Hm,n �= 0, the LLRV messages as follows

L (m← n) = Lch (cn)
L (m→ n) = 0.

(2) Tentative decoding: We now compute the a posteriori
LLRV for each variable, denoted by Lpost (cn), 1 ≤ n ≤
N :

Lpost (cn) = Lch (cn) +
∑

j∈M(n)

L (j → n) . (5)

From this LLRV we can easily determine the most likely
value of the n-th variable. We then verify the M checks
according to (1). If all checks are satisfied, we stop decod-
ing.

(3) Horizontal step: The message from variable node n
to check node m is simply given by (for 1 ≤ n ≤ N and
m ∈M (n)):

L (m← n) = Lch (cn) +
∑

j∈M(n)\m
L (j → n) . (6)

(4) Vertical step: For each check node m and ad-
jacent variable node nm,k, we introduce new RVs in
GF (q): σm,nm,l

=
∑
j≤lHm,nm,j

cnm,j
and ρm,nm,l

=∑
j≥lHm,nm,j

cnm,j
. Following a line of reasoning similar

to [4], it can easily be shown that the distributions of
σm,nm,l

and ρm,nm,l
can be computed recursively accord-

ing to:

{
L
(
σm,nm,l

)
= L

(
σm,nm,l−1 +Hm,nm,l

cnm,l

)
L
(
ρm,nm,l

)
= L

(
ρm,nm,l+1 +Hm,nm,l

cnm,l

)
where the LLRV of cnm,l

is given by L (m← nm,l). The
message from check node m to variable node nm,k is then
given by (for 1 ≤ m ≤M , n ∈ N (m)):

L (m→ nm,k) =

L
(
H−1
m,nm,k

σm,nm,k−1 +H−1
m,nm,k

ρm,nm,k+1

)
. (7)
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These LLRV can all be computed efficiently by means
of the box-plus operator (2). The messages (7) are used
to update the posteriori LLRV (5). The vertical step is the
most time-consuming step in the decoding algorithm.

V. COMPUTATIONAL COMPLEXITY AND BER
PERFORMANCE

In this section we compare three decoding algorithms
for LDPC codes over GF (q): the SPA algorithm from [4],
the log-SPA algorithm as described above, and the reduced
complexity max-log-SPA algorithm. In the latter, max∗ ()
is approximated by max ().

Fig. 2 shows the BER performance for a rate 1/2 LDPC
code from [15] over GF (8) with N = 204. The decoding
process is halted after a maximum of 100 iterations. As
expected, the log-SPA algorithm yields the same BER
performance as the conventional SPA algorithm. The max-
log-SPA version suffers a performance penalty of about 0.5
dB, which is similar to turbo-coded systems [16]. It should
be noted that for all algorithms and all SNRs, all errors were
detected errors (i.e., the maximum number of decoding
iterations was reached and no codeword was found).

When comparing complexity, we first observe that the
memory requirement for all three decoding algorithms is
roughly the same: decoding in the log-domain results in
a reduction of a factor q/ (q − 1) in storage. In Table I
we compare the computational complexity of the decoding
algorithms for the horizontal (H) and the vertical step (V).
We have determined the number of message additions,
multiplications and max∗ operations. The total number of
operations is determined by the field size (q), the number
of variable nodes (N ), the number of check nodes (M ), the
mean column weight of H (t ≥ 2) and the mean row weight
of H (u ≥ 2). Note that each max∗ () operation corre-
sponds to one max () operation, two additions and one table
look-up. When using the reduced complexity max-log-SPA
algorithm, max∗ () may simply be replaced by max () in
Table I to determine the number of computations. The
SPA and log-SPA algorithm both require the same order of
message additions (O (q2Mu

)
per iteration). When imple-

mented on a fixed point architecture, the former algorithm
also needs O (q2Mu

)
computationally intensive fixed point

multiplications per iteration. The latter algorithm avoids
multiplications but uses O (q2Mu

)
much less demanding

max∗ operations per iteration. Therefore, the log-SPA
algorithm has the smaller computational complexity in a
fixed point architecture. We note that in [5] a decoding
algorithm for high-rate codes using fast fourier transforms
(FFT) was proposed of O (Mqu (log2 q + u)). However,
this FFT-based algorithm did not operate on LLRs, and it
is not suitable for low-rate codes.

VI. CONCLUSIONS AND REMARKS

In this contribution we have introduced a log-domain
version of the sum-product decoding algorithm (SPA) for
LDPC codes over GF (q). A log-domain implementation
has several advantages as far as practical implementation
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Fig. 2. BER performance for an LDPC code over GF (8)

is concerned. We have compared the BER performance
and computational complexity of the SPA, the log-domain
version (log-SPA) and a sub-optimal implementation (max-
log-SPA). As log-domain SPA and SPA are mathematically
equivalent, they have identical BER performance. This
has been confirmed by computer simulations. Max-log-
SPA gives rise to a small BER degradation (about 0.5
dB). As the log-SPA requires no message multiplications,
it may constitute a considerable saving in computational
complexity as compared to the SPA.
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APPENDIX

A. Log-likelihood algebra

Suppose v1 and v2 are RVs in GF (q); A1 and A2

are elements in GF0 (q). Given the LLRV of v1 and v2,
abbreviated by L1 and L2 respectively, we now determine
L (A1v1 +A2v2). Its i-th component is given by, with
Lk (x) .= L (vk = x), k = 1, 2:

L (A1v1 +A2v2)i

= ln
P (A1v1 +A2v2 = αi)
P (A1v1 +A2v2 = 0)

= ln

∑
x∈GF (q) P (v1 = x)P

(
v2 = A−1

2 (αi + xA1)
)

∑
x∈GF (q) P (v1 = x)P

(
v2 = A−1

2 A1x
)

= ln

∑
x∈GF (q)

P (v1=x)P(v2=A−1
2 (αi+xA2))

P (v1=0)P (v2=0)

1 +
∑
x∈GF0(q)

P (v1=x)P(v2=A−1
2 A1x)

P (v1=0)P (v2=0)

.

This can be re-written using L1 and L2:
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L (A1v1 +A2v2)i

= ln

(
eL1(A−1

1 αi) + eL2(A−1
2 αi)

+
∑

x∈GF0(q)\{αiA
−1
1 }

eL1(x)+L2(A−1
2 (αi+xA1))

)

− ln


1 +

∑
x∈GF0(q)

eL1(x)+L2(A−1
2 A1x)




.= � (L1,L2, A1, A2)i .

B. Soft demapping

We determine the i-th component of the LLRV corre-
sponding to the n-th variable for an AWGN channel and
BPSK signalling. These messages are the LLR equivalent
of the probabilities px (cn) = p

(
xnb, . . . , xb(n+1)+1

∣∣ c) in
the factor graph from Fig. 1:

Lch (cn)i

= ln
P (x |cn = αi )
P (x |cn = 0)

= ln
P
(
x
∣∣ψ (tnb, tnb+1, . . . , t(n+1)b−1

)
= αi

)
P
(
x
∣∣ψ (tnb, tnb+1, . . . , t(n+1)b−1

)
= 0

)
〈AWGN channel〉

= ln

∏
j P
(
xnb+j

∣∣∣tnb+j =
(
ψ−1 (αi)

)
j

)
∏
j P
(
xnb+j

∣∣∣tnb+j = (ψ−1 (0))j
)

= ln
∏

j:(ψ−1(αi))j=+1

P (xnb+j |tnb+j = +1)
P (xnb+j |tnb+j = −1)

=
∑

j:(ψ−1(αi))j=+1

2xnb+j
σ2

.
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