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Abstract - In this paper we derive the Cramer-Rao bound
(CRB) for joint estimation of carrier phase, carrier frequency
and timing from a noisy linearly modulated signal with coded
data symbols. We obtain a closed-form expression for the CRB in
terms of the marginal a posteriori probabilities of the coded
symbols, allowing efficient numerical evaluation of the bound.
We find that at low SNR, the CRB for coded transmission is
considerably smaller than the CRB for uncoded transmission.
We show that practical synchronizersthat make clever use of the
code propertiesyield amean-squar e estimation error that isclose
tothe CRB for coded transmission.

. INTRODUCTION

A common approach to judge the performance of parameter
estimators consists of comparing their resulting mean-square
estimation error (MSEE) to the Cramer-Rao bound (CRB),
which is a fundamental lower bound on the error variance of
unbiased estimators [1]. In order to avoid the computational
complexity related to the true CRB, amodified CRB (MCRB)
has been derived in [2] and [3]. The MCRB is much simpler to
evaluate than the true CRB, but isin general looser (i.e. lower)
than the CRB, especialy at lower SNR. The CRB for the
estimation of the carrier phase, the carrier frequency and the
timing delay from uncoded data symbols has been obtained in
[4}-[7]. In [8], the CRB for carrier phase estimation from
coded data has been expressed in terms of the margina a
posteriori probabilities (APPs) of the coded symbols, allowing
the numerical evaluation of the bound for a wide range of
coded systems, including schemes with iterative detection.

In this contribution we consider the CRB for joint carrier
phase, carrier frequency offset and timing recovery in coded
systems. The bound is compared to (i) the MCRB, (ii) the
CRB for uncoded transmission and (iii) the performance of
practical synchronizers.

Il. PROBLEM FORMULATION

Let us consider the complex baseband representation r(t) of
anoisy linearly modulated signal :

K
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where a=(a, ... &) is a vector of L=2K+1 symbols taken

from an M-PSK, M-QAM or M-PAM constellation according
to a combination of an encoding rule and a mapping rule; h(t)
is a real -valued unit-energy square-root Nyquist pulse; t isthe
time delay, q is the carrier phase at t=0, F is the carrier
frequency offset; T is the symbol interval; w(t) is complex
valued zero-mean Gaussian noise with independent real and
imaginary parts, each having a normalized power spectral
density of No/(2E), with Es and N, denoting the symbol
energy and the noise power spectral density, respectively.

Suppose that one is able to produce from an observation
vector r an unbiased estimate U of a deterministic vector
parameter u. Then the estimation error variance is lower
bounded by the CRB [1]: E [({, - u,)?*]® CRB, (u), where
CRB;(u) is the ith diagonal element of the inverse of the
Fisher information matrix (FIM) J(u). The (i,j)-th element of
J(u) isgiven by
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Note that J(u) is a symmetrical matrix. When the element
J;j(u)=0, the parameters u and y are said to be decoupled. The
probability density p(r;u) of r, corresponding to a given value
of u, is called the likelihood function of u, while In(p( ;u)) is
the log-ikelihood function of u. The expectation E[.] in (2) is
with respect to p(r;u). When the observation r depends not
only on the parameter u to be estimated but also on a nuisance
vector parameter v, the likelihood function of u is obtained by
averaging the likelihood function p(r|v;u) of the vector (u,v)
over the a priori distribution of the nuisance parameter:

p(r;u) =E,[p(r | v;u)]. We refer to p(r|vu) as the joint
likelihood function, as p(r|vu) is relevant to the joint
estimation of u and v.

As the evaluation of the expectations involved in J(u) and
p(r;u) is quite tedious, a simpler lower bound, called the
modified CRB (MCRB), has been derived in [2] and [3]. The
MCRB for joint carrier phase, carrier frequency offset and

timing estimation, corresponding to r(t) from (1), is given by
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where

C,=T? dﬁ(t))z dt (6)

The MCRB is much simpler to evaluate than the true CRB,
but is in general looser than the CRB, i.e,

E.[(G - u)?]® CRB(u)® MCRB(u). In [9], the high-SNR
limit of the true CRB related to the estimation of a scalar

parameter has been evaluated analytically and has been shown
to coincide with the MCRB from (3)-(5).

IIl. EVALUATION OF THE CRB

A CRBinterms of the marginal APPs of the coded symbols

With u=(q,Ft) and v=a, the joint likelihood function
p(rla;q,Ft) is, within a factor not depending on (,Ft,a),
given by

K
p(rlaa F.t) = O Fla.Z(a F.t)) 7

k=-K

where
0
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In (7), r is a vector representation of the signal r(t) from (1),
and 7, (q,F,t) =z (F,t)e 19 , where z, (F, t) isdefined as

2 (F,t) =g 12PPir(h(t - KT~ t )dt (9)

Hence, Z, isafunction of (q,F,t), whereas z dependsonly on
(F, t). For the log-likelihood function In(p(r;q,F,t)) we obtain

aM;-1
In¢ & Pla=c]p(r |c;a,F, t)‘
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Inp(r;q F,t) = (10)

where p(r|ci,q,F,t) is given by (7) and i enumerates all M-
symbol sequencesa of length L. Differentiation of (10) yields
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Made use of Bayes' rulg, i.e.,
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and of (7), (11) is transformed into
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Eq [] and E, [.] refer to averaging over Prfa=g |r;q,Ft]
and Pr[a =a,|r;q,Ft], respectively, (ao, as, ...,au-1) denotes
the set of constellation points, Z=[Z « , ..., Z«]', and the
subscript ¢ denotes differentiation with respect to u, i.e,
Zik :%(ik) with (ugu,,Us3)=(q,Ft). No approximation is
involved i4n obtaining (13). Substitution of (13) into (2) yields
an exact expression of the FIM in terms of the marginal APPs

Pr[ak = am|r;q,F,t] of the coded data symbols.

Taking (13) into account, the elements J, of the FIM from
(2) can be represented as

2 K M1 é?elH(a A, 7, ,E)J U
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where E[.] denotes averaging over the quantities z, Z and

“z'(-'kz , whose statistics do not depend upon (g,F,t). Taking into
account the Gaussian nature of the noise components in 7
and z,, wewere able to perform analytically the averaging in
(15) over Z['kl and —Zl-,kz , conditionedon Z (asin[7]). Further

evaluation of (15) then requires numerical averaging only over
Z . The latter can be easily evaluated by numerical integration
or Monte Carlo simulation over Z={ 7 }={a+ny}, where

{a} are data symbols taken from the constellation according



to the combination of the encoding rule and the mapping rule
and {nc} are independent zero-mean complex Gaussian hoise
variables with variance equal to No/Es.

We obtain that J,, J, and Js are functions of the parameter
t. Thisimplies that the CRB depends on the exact value of the
unknown but deterministic time delay t T [-T/2, T/2] that is
being estimated. However, under the usual assumption that the
observation interval is much longer than the symbol duration
(L>>1), this dependence can be safely ignored; this is
confirmed by the numerical results (not reported here) for
different values of t. A similar quastindependence (on t) of
the MCRB was pointed out in [3]. Inversion of the FIM (15)
finally yields the CRB.

B. Evaluation of the marginal APPs of the coded symbols
In principle, any marginal APP Pr[ak = am|r;q] can be
obtained as a summation of joint APPs Prla=c;|r;q], which in

turn can be computed from (12). However, the computational
complexity of this procedure increases exponentially with the
sequence length L.

For codes that are described by means of a trellis, the
marginal APPs can be determined directly by means of the
Bahl-Cocke-Jelinek-Raviv (BCJR) agorithm [10]. As its
computational complexity grows only linearly with the
number of states and with the sequence length L, the BCJR
agorithm is the appropriate tool for margind APP
computation in case of linear block codes, convolutional codes
and trellis codes, provided that the number of states is
manageable.

When the coded symbol sequence results from the (serial or
parallel) concatenation of two encoders that are separated by
an interleaver (such as turbo codes [11]), the underlying
overal trellis has a number of states that grows exponentially
with the interleaver size. However, when the encoders
themselves are described by a small trellis, the marginal APPs
are computed by means of iterated application of the BCJR
algorithm to the individual trellises, with exchange of extrinsic
information between the BCJR algorithms at each iteration
(the same computation is carried out when performing iterated
turbo decoding instead of the too complex MAP symbol
decoding). When the coded bits (conditioned on r and (,F.t))
can be considered as independent (which is a reasonable
assumption when the interleaver size is large), this iterative
procedure yields the correct marginal APPs when reaching the
steady state [12]. This approach is easily exended to other
systems that use iterative decoding.

IV. NUMERICAL RESULTS AND DISCUSSION

Simulation results are obtained for the observation of
L=1001 QPSK turbo-encoded symbols. The transmit pulseisa
square-root cosine roll-off pulse with an excess bandwidth of
either 20% or 100%. The turbo encoder consists of the parallel
concatenation of two identical recursive systematic rate 1/2
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convolutional codes with generator polynomias (37)g and
(21)g, through a pseudo random interleaver of length L; the
output of the turbo encoder is punctured to obtain an overall
rate of 1/2, and Gray mapped onto the QPSK constellation.

Our results indicate that the CRB for joint phase, frequency
and timing estimation is essentially the same as the CRB for
the estimation of a single parameter assuming the other
parameters to be a priori known. There is almost no coupling
between the parameters g, F and t, meaning that (at least for
small errors) the inaccuracy in one parameter estimate does
not impact the estimation of the other parameters.

In Fig. 1 we have plotted the ratio CRB/MCRB as a
function of E/Ng per coded symbol (solid curves). The result
for uncoded transmission (UC) is also displayed (dashed
curves). The considered EJ/Ng-range covers the normal
operating range of the turbo receiver (1dB 2dB). We observe
that the CRB is considerably smaller for coded transmission
than for uncoded transmission. This indicates that it is
potentially more accurate to estimate the synchronizer
parameters from coded data than from uncoded data. As the
mean square estimated error (MSEE) of synchronizers that do
not exploit the code properties in the estimation process
(‘code-unaware’ synchronizers) is lower bounded by the CRB
for uncoded transmission (which we denote as CRBuncoded),
‘code-aware’ synchronizers are potentially more accurate than
‘code-unaware’  synchronizers. The ratio CRBuncoded/CRB
indicates to what extent synchronizer performance can be
improved by making clever use of the code structure. At high
SNR the CRB convergesto the MCRB.

V. ACTUAL ESTIMATOR PERFORMANCE

In this section we consider the MSEE resulting from some
joint phase and frequency estimators operating on the rate %2
turbo-encoded QPSK scheme from the previous section. The
MSEE is compared to the CRB and the CRByncoded- The joint
estimation of carrier phase and frequency is only marginally
affected by a small timing estimation error (because (g,F) and
t are essentially decoupled); therefore we have determined the
mean square phase and frequency error assuming the timing to
be known. Two scenarios are considered: A) carrier
synchronization independent of turbo decoding and B) joint
carrier synchronization and turbo decoding. The latter
approach will be referred to as turbo synchronization in the
sequel. For both scenarios, the MSEE for phase (Fig. 2) and
frequency (Fig. 3) estimation was obtained as a function of the
SNR. An observation of L=1001 (i.e. block size of the code)
unknown data symbols was considered. A preamble of N
known pilot symbols (PS) may be added at the beginning of
each block to aid synchronization. A minimum of 10000 trials
has been run; at each trial a new phase offset q and a new
frequency offset FT are taken from a uniform distribution over
[-p,A and [-0.1,0.1], respectively. The phase error is measured
modulo 2p and supported in the interval [-p,p], except for the
Non-Data-Aided (NDA) estimator. The phase error of the



NDA estimator was measured modulo p/2, i.e. in the interval
[-p/4, pl4], as the NDA estimator for QPSK gives a 4fold
phase ambiguity.

A Carrier synchronization independent of turbo decoding

For the synchronization scenario A, we implement the
conventional NDA carrier synchronization scheme proposed in
[13] for operation at very low values of E/Ny. Thisalgorithm
was originally developed for uncoded sequences and does not
exploit the code structure; as a result its performance is lower
bounded by the CRB,coded (With CRByncoged 2 CRB).

The dashed curve in Figs. 2 and 3 corresponds to the M SEE
for carrier phase and frequency estimation, respectively, as
obtained with the NDA estimator. We observe that, with the
chosen parameter val ues, the NDA estimator does not function
properly at the normal (low) operating SNR of the code (1dB-
2dB). The SNR threshold for frequency estimation from an
observation of L=1001 symbols (see [14]) is located at about
3.5 dB. For E/Ng? 3.5 dB, the algorithm achieves near optimal
CRByncoded performance, but for EJ/Ny<3.5 dB, the
performance dramatically deteriorates across a narrow SNR
interval.

The SNR threshold can be decreased by increasing the
observation length L [14] (in [13], L=8192). However, if
enlarging the observation interval is not an option, the
combined Data-Aided (DA) and NDA frequency estimation
approach proposed in [15] may be applied to soften the
threshold. This approach consists of a two stage coarsefine
search. The DA estimator is used to coarsely locate the
frequency offset, and then the more accurate NDA estimator
attempts to improve the estimate within the uncertainty of the
coarse estimator. After frequency and phase correction, the
samples of the preamble are compared to the original pilot
symbols and, if necessary, an extra multiple of p/2 is
compensated for. In Figs. 2 and 3, the square markersillustrate
the MSEE for carrier phase and frequency, respectively, as
obtained with thisDA -NDA estimator assuming the initial DA
estimate is based on the observation of N preamble symbols.
Results are displayed for N=128 and N=256. A threshold is
still evident, but the performance below the SNR threshold
degrades less rapidly. The more PS are used, the more the
threshold softens. Relatively large preambles are required for
the DA-NDA estimator to performs closely to the CRByncoded
e.g. with N=256 the overhead N/(N+L) equal s about 20%.

B. Joint carrier synchronization and turbo-decoding

For the turbo synchronization scenario B, we implement the
joint carrier synchronization and turbo-decoding scheme
proposed in [16], which we further refer to as soft-Decision
Directed (sDD) estimator. As motivated in [16], it involves a
practical implementation of the maximum likelihood (ML)
estimator by means of the expectation-maximization (EM)
algorithm. This algorithm converges iteratively to the ML
estimate provided that the initial estimate is sufficiently
accurate [17]. In our simulations we assume that the sDD
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estimator is initialized with a DA estimate obtained from a
preamble of N consecutive PS, or with a combined DA-NDA
estimate as described in subsection V.A. We will refer to these
synchronization schemes as DA-sDD and DA-NDA-sDD,
respectively. We assume that the PS are strictly used for the
DA initialization, and that the (NDA-)sDD algorithm uses
only the L coded symbols, so that the CRB derived in section
Il isindeed avalid lower bound on the overall performance of
the agorithms. The synchronization process is completely
integrated into the turbo detection system; at every turbo-
decoder iteration, one EM iteration is performed. The sDD
estimator takes advantage of the code properties; therefore its
performance is lower bounded by, and should be compared to,
the new CRB for coded transmission. The curves marked with
trianglesin Figs. 2 and 3 show the M SEE for carrier phase and
frequency, respectively, as obtained with the DA -sDD
estimator after 10 iterations of the turbo decoder/estimator and
for N=256 and N=512 preamble symbols. With N=512, the
DA-sDD estimator performs very closely to the new CRB.
However, the resulting overhead of about 34% is often not
acceptable. For N=256, the DA -sDD estimator performs worse
than the DA-NDA estimator, except at high SNR (>4.5 dB).
The curves marked with circles in Figs. 2 and 3 show the
MSEE for carrier phase and frequency, respectively, as
obtained with the DA -NDA-sDD estimator after 10 iterations
of the turbo decoder/estimator and for N=128 and N=256
preamble symbols. Our results show that the DA -NDA -sDD
estimator provides a considerable improvement over the DA-
NDA estimator within the useful SNR range of the code, and
meets the new CRB for coded transmission at values of SNR
larger than about 1.5 dB for N=256 (about 20% overhead) and
2 dB for N=128 (about 11% overhead). This indicates the
importance of an accurateinitial estimate.

For the sake of completeness, we mention that a more
sophisticated distribution of the PS across the burst may
reduce the number of PS required to obtain a certain DA
estimation accuracy, thereby increasng the spectral efficiency
of the transmission system [15],[18].

VI. CONCLUSION

This contribution compares the CRB for joint carrier phase,
carrier frequency offset and timing delay estimation in coded
systems against the MCRB for transmission of a sequence of
known training symbols and the CRByncgeq fOr uncoded
transmission. We have found that the synchronizer parameters
are essentially decoupled. This implies that (at least for small
errors) the estimation inaccuracy for one parameter does not
impact the estimation of the other parameters. It was shown
that, at the normal operating SNR of the code, the CRB is
much less than the CRByoded- The CRBneoded IS @ lower
bound on the performance of synchronizers that make no use
of the code structure. This implies that in order to approach
optimal performance, estimators should make clever use of the
code properties during the estimation process. The advantage



of code-aware carrier recovery was illustrated with examples
of joint carrier phase and frequency estimation techniques
available in the literature. The turbo synchronizer presented in

(18],

which is code-aware and performs joint carrier

synchronization and turbo detection, has been shown to
operate very closely to the CRB provided that a sufficiently
accurate initial estimate is available. For timing recovery, no
performance results have been presented. However, it has
been shown in [19] that applying the turbo synchronization
approach to timing estimation results in a very low MSEE,
which is close to the new CRB for timing estimation from
section I11.
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