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Abstract—We demonstrate analytically that the contribution
of cooperation in improving the accuracy of distributed network
localization has a fundamentally structural nature, rather then
statistical as widely believed. To this end we first introduce
a new approach to build Fisher Information Matrices (FIMs),
in which the individual contribution of each cooperative pair
of nodes is captured explicitly by a corresponding information
vector. The approach offers new insight onto the structure of
FIMs, enabling us to easily account for both anchor and node
location uncertainties in assessing lower bounds on localization
errors. Using this construction it is surprisingly found that in the
presence of node location uncertainty and regardless of ranging
error variances or network size, the Fisher information matrix
(FIM) terms corresponding to the information added by node-
to-node cooperation nearly vanish. In other words, the analysis
reveals that the key contribution of cooperation in network
localization is not to add statistical node-to-node information (in
the Fisher sense), but rather to provide a structure over which
information is better exploited.

I. INTRODUCTION

It has long been of common knowledge that cooperation is
advantageous as a means to improve the accuracy of network
localization systems [1]–[4]. However, despite the abundance
of empirical evidence on the latter, and a good amount of
analytical work on the analysis of the fundamental errors
achievable by localization systems [5]–[7], little is known
about the actual nature of the gains reaped by cooperation
in a distributed setting. Indeed, to the best of our knowledge
no analytical results exists that are applicable to distributed
localization systems.

What distinguishes the distributed case from others is the
following. In a centralized system, all the information is
gathered at a common point and processed jointly in order to
derive estimates for the location of all nodes simultaneously.
Consequently, the only errors the estimators are subject to
are extrinsic, that is, the errors of the (typically geometric)
input provided, such as distance and angle of arrival (AoA)
estimates. In contrast, distributed systems must rely on the
successive exchange both of geometric input and previous
location estimates amongst nodes, such that the fundamental
limits of the centralized and distributed are bound to differ.

In lack of a clear understanding of the nature of the coopera-
tive advantage in the distributed setting, a heuristic notion that
cooperation improves performance by increasing the amount
of available information (in a Fisher sense) – which is indeed
true in the centralized case, but as shall be here demonstrated
not so in the distributed setting – is only natural to arise.

Indeed, resting partly on such intuitive notion, and in view
of the challenge in exploiting less accurate information (e.g.,
originating from links in non line-of-sight (NLOS) conditions)
in practical algorithms, various techniques have been proposed
to censor or select input data based precisely and mostly on
the comparison of their statistical characteristics [8]–[10].

In this article, we demonstrate that contrary to such common
understanding, the contribution of cooperation in improving
the accuracy of distributed network localization systems is
fundamentally structural, rather then statistical.

II. FISHER INFORMATION MATRICES AND
INFORMATION VECTORS

A. Notation and Definitions

Consider a network of K devices, out of which nT are
“target” nodes (hereafter simply referred to as nodes) of
unknown locations, and nA are anchors, assumed to have
known positions, possibly subject to errors.

Throughout the article we will use the subscript n exclu-
sively to denote nodes, and k to denote either nodes or anchors.
Following this convention, let θn and θk respectively denote
η-dimensional row vectors with the coordinates of a node and
a node/anchor, and consider the functional mapping

g(θn|θk) : Rη −→ R. (1)

For any given pair (n, k), the function g(θn|θk) corresponds
to a measure that captures the distinction (or dissimilarity)
between the node n and the node/anchor k. Consequently, we
shall refer to g(·|·) as the dissimilarity function.

In the context of network localization, the output of g(·|·)
may be either geometric – e.g., Euclidean distances [11] or
angle information [12] [13] – or any other measurable physical
parameter such as receive signal strength [14] [15], time of
arrival [16] [17] [18], etc. Furthermore, each pair (k, n) can
in principle have multiple variation functions. For the sake
of simplicity, however, we will assume hereafter (without a
fundamental loss of generality) that a single dissimilarity is
collected for each pair (k, n).

A given dissimilarity function outputs the true value of the
dissimilarity in question. Such dissimilarity is, however, mea-
sured subject to errors of statistics modelled by an associated
probability density function (PDF), namely,

pkn(rkn; g(θn|θk)). (2)



Notice that g(·|·) defines the type of each input rkn used
for localization purposes, while the densities pkn describe the
variation of its observation at a specific pair, due to various
random effects such as noise, mobility, etc. We shall therefore
refer to pkn as the variation function.

B. Information Vectors

Define the vector θ , [θ1, · · · ,θnT ] including the coordi-
nate of all the targets in the network. Under the aforementioned
assumptions, there are in total1 N , nT

2 (2K−nT−1) distinct
and independent dissimilarities to be used in the localization
problem, which are represented by the vector of variables
r , [r21, · · · , rK1, r32, · · · , r3K , · · · , rnTK ].

Let us assume that the vector θ can be estimated by an
unbiased estimator. Under the independence assumption, the
associated Fisher information matrix (FIM) can be obtained
from the following likelihood function

L(r|θ) =

nT∏
n=1

K∏
k=n+1

pkn(rkn; g(θn|θk)), (3)

yielding

Fθ , E
[
∇θ ln (L(r|θ))∇T

θ ln (L(r|θ))
]
, (4)

where E[ · ] denotes the expectation over the distribution of
the input and ∇θ is the gradient operator along the vector θ.

It is well-known [19] that the covariance matrix correspond-
ing to the unbiased estimates θ̂ is bounded by the Cramèr-Rao
lower bound (CRLB)

Ωθ , E
[
( θ̂ − θ)( θ̂ − θ)T

]
� F−1

θ (5)

where the symbol � denotes positive-semidefinite inequality
and −1 denotes inverse (or pseudo-inverse).

Let us now introduce the following result about Fθ.

Lemma 1 (Sum-product Formulation of FIM).
Consider the unbiased estimation of θ from the input vector r
with associated dissimilarity functions g(θn|θk) and variation
functions pkn(rkn; g(θn|θk)), where n = {1, · · · , nT} and
k = {1, · · · ,K}. Define the information vector related to
each independent input rkn as

vkn ,
∂g(θn|θk)

∂θ

√
Fkn (6)

where Fkn is the Fisher information of each rkn, given by

Fkn , E

[(∂ ln pkn(rkn; g(θn|θk))

∂g(θ)

)2
]
. (7)

Then Fθ can be conveniently obtained from the sum of
information vector products

F =

nT∑
n=1

K∑
k=n+1

vknvT
kn. (8)

1Dissimilarities amongst anchors are considered to be constant and there-
fore are not included.

Proof: By definition – see equation (4) – we can rewrite

Fθ = E

∑
kn

∑
ij

Ukn(rkn|θ)UT
ij(rij |θ)

 , (9)

where Ukn(rkn|θ) is known as the score function [20] of the
random variables rkn, defined by

Ukn(rkn|θ) , ∇θ ln (pkn(rkn; g(θn|θk))) . (10)

For an unbiased estimator, it is known [20] that the score
functions have zero mean:

Ed̃kn
[Ukn(rkn|θ))] = 0. (11)

Using (11) into (9) and exploiting the independence between
the input variables rkn, it follows that

Fθ =
∑
kn

E
[
Ukn(rkn|θ)UT

kn(rkn|θ)
]

+
∑
kn,ij
kn 6=ij

E[Ukn(rkn|θ)]Ed̃ij
[
UT
ij(rij |θ)

]
,

=
∑
kn

E
[
Ukn(rkn|θ)UT

kn(rkn|θ)
]
. (12)

Using the chain rule we now rewrite the score function as

Ukn(rkn|θ)=
∂ ln pkn(rkn; g(θn|θk))

∂g(θn|θk)

∂g(θn|θk)

∂θ
. (13)

Substituting equation (6) and (13) into equation (12) yields

Fθ =
∑
nk

∂g(θ)

∂θ
E

[(∂ ln pkn(rkn; g(θn|θk))

∂g(θ)

)2
]
∂g(θ)

∂θ

T

=

nT∑
n=1

K∑
k=n+1

vknvT
kn, (14)

which concludes the proof after defining the quantities in
equations (6) and (7).

Notice that this formulation of the FIM is a contribution in
its own right as it elucidates the effect of each independent
input variable, in addition to being fully general on the input,
in the sense that both g(θn|θk) and pkn(rkn; g(θn|θk)) are
arbitrary, except for independence. In the next section we shall
however go a step further and show how the gain in insight
provided by Lemma 1 can be exploited to achieve a better
understanding of the fundamental nature of cooperation in the
context of network localization.

III. COOPERATION AND UNCERTAINTY IN
DISTANCE-BASED NETWORK LOCALIZATION

A. Underlying Framework and Assumptions

For the sake of illustration let us focus our analysis of
cooperation in network localization on the particular – and
predominant [11] [21] – case of distance-based approaches.
In this case the dissimilarity function becomes

g(θn|θk) = ‖θk − θn‖ = dkn. (15)



Furthermore, in the interest of obtaining expressions that
capture not only the variations incurred when measuring the
distances dkn, but also possible uncertainties on the location
of anchors, we define the augmented (full network) coordinate
vector

Θ , [θ1, . . . ,θnT ,θnT+1 , . . . ,θK ]T, (16)

such that the corresponding information vectors are given by

vkn =
∂‖θk − θn‖

∂Θ

√
Fkn = (17)

[
01×η·(n−1),u

T
kn,01×η·(k−n−1),−uT

kn,01×η·(K−k)

]T
,

for n ≤ nT,

[01×η·K ]
T
, for n > nT.

where

ukn ,
∂‖θk − θn‖

∂θn

√
Fkn. (18)

Equation (17) reveals the inherently sparse nature of the
information vectors, which in light of Lemma 1 suggests that
the corresponding FIM has a very rich structure. In order to
evaluate such information vectors and FIM, however, specific
underlying conditions must be specified.

For the sake of convenience, let us therefore limit ourselves
(without fundamental loss of generality) to a two-dimensional
scenario (η = 2), such that θn , [xn, yn] and θk , [xk, yk],
which yields

ukn =
1

dkn
[xk − xn, yk − yn]

T√
Fkn. (19)

Furthermore, let us adopt the ranging model proposed in
[18], which captures the fact that the accuracy of distance
estimates obtained over a wireless channel depends, beyond a
certain distance d0, on the nominal distance themselves due
to the unequal power with which signals are received. In this
case, ranging errors can be modelled as normally-distributed
variates with mean dkn and variance

σ2
kn =

(
dkn
d0

)α
·σ2

0 , (20)

where σ2
0 is the variance at d0 and with path-loss factor α ≥ 0.

In light of equation (15), the Fisher information associated
with such a model can be shown to be given by [18]

Fkn =
1

σ2
kn

(
1 +

α2 σ2
0

2 dα0
dα−2
kn

)
. (21)

Using the models described above, and by force of Lemma
1, the FIM of the entire network without a priory knowledge
on anchor location uncertainty can be constructed as

FΘ =

K−1∑
n=1

K∑
k=n+1

vknvT
kn. (22)

B. Anchor Location Uncertainties

Let us assume that anchor location errors are independent
and relatively small compared to deployment dimensions and
ranging errors. In this case, anchor location uncertainty can be
described by the block-diagonal covariance matrix

Σ = diag(ΣnT+1, · · · ,ΣK), (23)

where each Σk, nT+1 ≤ k ≤ K is an η-by-η location error
covariance matrix corresponding to a distinct anchor.

Under this assumption, the FIM associated with the estimate
of Θ in presence of such anchor location uncertainty can be
approximated – using the Bayesian rule – by

F∗
Θ ≈ FΘ + FΣ, (24)

where
FΣ =

[
0ηnT×ηnT 0ηnT×ηK
0Kη×ηnT Σ−1

]
. (25)

Exploiting the structure of the information vectors described
in equation (17), and using Lemma 1 as per equation (22), it
can be shown that

FΘ =

[
A1 −BT

−B C

]
︸ ︷︷ ︸

node to anchor

+

[
A2 0
0 0

]
︸ ︷︷ ︸

node to node

, (26)

with

A1 , diag

 K∑
k=nT+1

uk1u
T
k1, · · · ,

K∑
k=nT+1

uknTu
T
knT

 , (27)

C , diag

(
nT∑
n=1

unT+1nuT
nT+1n, · · · ,

nT∑
n=1

uKnuT
Kn

)
, (28)

BT,

 unT+11u
T
nT+11 unT+21u

T
nT+21 . . . uK1u

T
K1

...
...

. . .
...

unT+1nTu
T
nT+1nT unT+2nTu

T
nT+2nT . . . uKnTu

T
KnT

,
(29)

and

A2,



nT∑
k>1

uk1u
T
k1 −u21u

T
21 . . . −unT1u

T
nT1

−u21u
T
21 u21u

T
21+

nT∑
k>2

uk1u
T
k1 . . . −unT2u

T
nT2

...
...

. . .
...

−unT1u
T
nT1 −unT2u

T
nT2 . . .

nT−1∑
k=1

unTku
T
nTk


,

(30)
where it is seen that no indices above nT can be found in A2.

Out of the above matrix, one is however typically interested
in the errors on the estimates of node location 2, i.e., θ. The
FIM associated with θ but accounting for anchor location
uncertainty can be obtained from F∗

Θ by taking its ηnT×ηnT
Schur complement, namely

F∗
θ = (A1 + A2)−BT (Σ−1 + C

)−1
B. (31)

2This is because although anchors may be subject to location uncertainty,
their positions are fixed and not repeatedly estimated as is the case of other
nodes.



Besides the FIM itself, the inverse of F∗
θ is of interest, as

per equation (5). That can certainly be obtained numerically
from equation (31), but in order to retain analytical insight let
us consider the following pair of equalities

tr (F∗
θ) =

ηnT∑
i=1

λi , T and tr
(
F∗

θ
−1
)

=

ηnT∑
i=1

1

λi
, (32)

from which one can obtain

1

T

ηnT∑
i=1

λi = 1→
ηnT∑
i=1

λi
T

= 1→
ηnT∑
i=1

λi
′

= 1, (33)

ηnT∑
i=1

1

λi
′ ≥ (ηnT)2 →

ηnT∑
i=1

1

λi
≥ (ηnT)2

T
, (34)

where we have used the geometric-arithmetic mean inequality.
Using the relations in (32) and (34) we finally obtain

tr(F∗
θ
−1)

ηnT
≥ ηnT

tr(F∗
θ)
, (35)

which holds as an equality if and only if λi = λj for ∀i, j.
From inequality (35) one concludes that in networks where

all localization errors are similar – which tends to be the
case in cooperative systems – the average CRLB can be well
approximated by ηnT/tr (F∗

θ), such that the trace of the FIM
itself is of great relevance.

Thanks to the structure revealed in equations (27) through
(31), we obtain

tr (F∗
θ) =

nT∑
n=1

K∑
k=nT+1

uknuT
kn︸ ︷︷ ︸

node to anchor

+ 2

nT−1∑
n=1

nT∑
k=n+1

uknuT
kn︸ ︷︷ ︸

node to node

−
nT∑
n=1

K∑
k=nT+1

uknuT
kn

(
Σk

−1 +

nT∑
i=1

uknuT
kn

)−1

uknuT
kn,︸ ︷︷ ︸

anchor uncertainty (36)
where we highlight the contributions of different structural
components of the network.

Let us now turn our attention to the effect of the uncertainty
of node locations themselves onto the cooperation that takes
place in network localization.

C. Node Location Uncertainty

Notice that the FIM derived in equation (31) makes use
only of the error distributions of measured distances, apart
from the covariances of anchor location estimates. This implies
that the corresponding CRLB applies only to centralized
distance-based algorithms, in which location estimates of all
nodes is obtained simultaneously, without relying on any prior
information on the nodes’ positions.

In distributed cooperative algorithms, on the other hand,
nodes repeatedly exchange both ranging information and their
own location estimates [1]–[3]. This indicates that the ultimate
performance of such schemes must also dependent on the
uncertainty on the exchanged node location estimates, which
in turn are lower bounded by the CRLB and so on.

. ✓n .

. ✓k .

. �x:k .

. �y:k .

. dkn
.

?

Fig. 1. Illustration of ranging process in the presence of node location
uncertainty.

In other words, the fundamental performance limit of coop-
erative network localization systems can only be truly captured
by the iterated posterior CRLB [22]. The problem with such
an approach, however, is that only numerical results can
be expressed, such that direct insight on the nature of the
cooperation is hard to to be obtained.
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Performance of Cooperative Network Localization: Impact of Noise

(10m2 scenario with nT = 12 target nodes, nA = 4 anchor nodes and α = 1.8)
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Fig. 2. Impact of node location uncertainty on the CRLB of cooperative
network localization, as a function of reference ranging estimation errors.
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Performance of Cooperative Network Localization: Impact of Network Size

(10m2 scenario with nA = 4 anchor nodes and α = 1.8)
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Fig. 3. Impact of node location uncertainty on the CRLB of cooperative
network localization, as a function of the network size.



In order to circumvent this problem, let us assume that the
node location uncertainty is relatively small compared to the
ranging errors. Let also σ2

x:k and σ2
y:k be the variances of

the location estimate errors of the node at θk, along the x
and y dimensions, respectively, such that the combined error
variance along an unknown direction can be approximated by
the quantity σ2

d:k = 1
2 (σ2

x:k + σ2
y:k), as illustrated in Figure

1. Between a pair of nodes n and k, with k ≤ nT, one can
then consider that this additional uncertainty is transferred to
the estimates of dkn. Proceeding in this manner, the trace of
F∗

θ described in equation (36) and consequently the right hand
side of inequality (35) can be evaluated iteratively. The results
of such iteration are shown in Figures 2 and 3.

From these plots it can be appreciated that after only a
few iterations, and regardless of either the reference ranging
error variance σ2

0 or the number of cooperating nodes nT, the
lower bound on the CRLB gradually grows and converges
approximately to the dashed curves shown in Figures 2 and
3, which are obtaining by evaluating the right hand side of
inequality (35) using a minorized version of tr (F∗

θ), namely

tr (F∗
θ) =

nT∑
n=1

K∑
k=nT+1

uknuT
kn︸ ︷︷ ︸

node to anchor

−
nT∑
n=1

K∑
k=nT+1

uknuT
kn

(
Σk

−1 +

nT∑
i=1

uknuT
kn

)−1

uknuT
kn,︸ ︷︷ ︸

anchor uncertainty (37)

which differs from equation (36) only in that the term related
the cooperation amongst nodes has been removed.

In other words, the analysis indicates that the informational
component of the cooperation has fundamentally no impact
onto the achievable performance of cooperative network local-
ization systems. The advantage of cooperative approaches over
non-cooperative alternatives has, however, been repeatedly
and convincingly demonstrated through the development and
comparison of multiple algorithms [8], [23]–[25], and no
argument to the contrary is made here.

We do emphasise, however, that previous efforts to obtain
CRLB (see for instance [1] and [5], as well as references
thereby) for distributed cooperative network localization sys-
tems failed to account for the uncertainty of node locations
in the estimation process, which explains the typically loose
comparison between analytical and empirical results. To elab-
orate, as briefly mentioned earlier, the result of such omission
is that the derived bounds actually represent the achievable
errors of centralized approaches, in which the location of all
nodes are computed simultaneously without requiring iterative
distribution of previous location estimates amongst nodes
themselves.
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