
1

Offset Mismatch Calibration for TI-ADCs in
High-Speed OFDM Systems

Vo-Trung-Dung Huynh, Nele Noels, Heidi Steendam
Department of Telecommunications and Information Processing, Ghent University

{votrungdung.huynh, nele.noels, heidi.steendam}@telin.ugent.be

Abstract—Time-interleaved analog-to-digital converters (TI-
ADCs) are widely used for multi-Gigabit orthogonal frequency
division multiplexing (OFDM) based systems because of their
attractive high sampling rate and high resolution. However, when
not perfectly calibrated, mismatches such as offset mismatch,
gain mismatch and timing mismatch between parallel sub-ADCs
can significantly degrade the system performance. In this paper,
we focus on offset mismatch. We analyze two calibration tech-
niques for the offset mismatch, based on the least-squares (LS)
and linear minimum mean-squared error (LMMSE) algorithms
assuming an AWGN channel. The simulation results show that
our method is capable of improving the BER performance. As
expected, the LMMSE estimator outperforms the LS estimator.
However, at large offset mismatch levels or low noise level, both
estimators converge. In this paper, we derive the condition on
the mismatch level for convergence between the two estimators.

Index Terms—OFDM, TI-ADC, offset mismatch, least-squares,
linear minimum mean-squared error, mean-squared error, cali-
bration.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
recently received increased attention for multi-Gigabit fiber-
optic communication systems due to its effectiveness in pro-
viding high bandwidth capability and eliminating inter-symbol
interference [1]. To allow for the high data rates required for
such OFDM systems, an extremely high-sampling-rate analog-
to-digital converter (ADC), placed in front of the baseband
digital signal processing (DSP) unit, is required. However,
such high-sampling-rate ADCs are not fabricated because of
the physical constraints of the current technology [2]. A low
cost alternative to these hardware restrictions is the time-
interleaved ADC (TI-ADC), which is shown in Fig. 1 [3].
The lth parallel lower sampling-rate ADC slicer of a TI-ADC
samples the signal at instants CKl, l = 0, 1, ..., L− 1, where
L is the number of sub-ADCs, and the sampling instants are
equidistantly shifted in time with as spacing the ideal sampling
time Ts. In this way, the overall sampling rate of the TI-
ADC is L times larger than the sampling rate 1

LTs
of each

sub-ADC. However, mismatches between the sub-ADCs in a
TI-ADC degrade the system performance if not calibrated.
One of the major mismatches is offset mismatch, which is
caused by the differences in the comparators’ input-referred
offsets [4]. Without calibration, offset mismatch can cause
an error floor in the bit error rate (BER) performance of the
OFDM system [5]. In [6], the authors introduced an objective
function to estimate the offset mismatch and then eliminate
its effect in the digital domain. However, their approach needs
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Fig. 1. Block diagram of a TI-ADC.

a large number of OFDM symbols. In [7], the decorrelation
least-mean-square (LMS) algorithm and the recursive-least-
square (RLS) algorithm were proposed to calibrate the offset
mismatch. However, these techniques require the presence of
comb-type pilot tones in the OFDM signal. In this paper,
we propose two simple offset-mismatch calibration methods
based on the least-squares (LS) and the linear minimum mean-
square-error (LMMSE) principles, using less OFDM symbols
than [6], without employing pilot tones. The effectiveness of
our proposed methods is confirmed by simulation results in
terms of the BER performance. We show that the LS estimator
is able to remove the offset mismatch and the corresponding
error floor in the BER performance. However, the LS estimator
comes with a 3 dB penalty in the BER performance because of
the noise enhancement. The more complex LMMSE estimator,
on the other hand, suffers less from noise enhancement,
although the LMMSE estimator converges to the LS estimator
for low noise level or high offset mismatch levels. In this
paper, we investigate the threshold levels for the noise and the
offset mismatch at which both estimators converge.

The paper is organized as follows. In Section II, we describe
the model of an OFDM system employing a TI-ADC suffering
from offset mismatch. An analysis of the proposed methods is
given in Section III. In section IV, we validate the capability
of the proposed calibration methods by simulation, and we
also derive the threshold for the offset mismatch level, causing
convergence of the LS and LMMSE estimator. Finally, our
conclusion is given in Section V.
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Fig. 2. Block diagram of an OFDM system with a TI-ADC at receiver.

II. SYSTEM MODEL

Fig. 2 shows a block diagram of an OFDM system em-
ploying a TI-ADC at the receiver. Let us define the vector Λ,
which consists of P blocks X(p), p = 0, 1, ..., P − 1, as the
input of the inverse discrete Fourier transform (IDFT). Each
block X(p) contains N complex-valued symbols, i.e., X(p) =(
X
[
−N

2

](p)
, X

[
−N

2 + 1
](p)

, ..., X
[
N
2 − 1

](p))T

, where the
superscript T denotes transpose, which are taken from an
M -ary phase shift keying (PSK) or quadrature amplitude
modulation (QAM) constellation. The IDFT unit converts the
frequency-domain blocks X(p) to the time-domain samples
s[k]

(p), given by1:

s[k]
(p)

= 1√
N

N
2 −1∑

a=−N
2

X[a]
(p)

e−j2π ak
N ,

k = −N
2 ,−

N
2 + 1, ..., N

2 − 1, p = 0, 1, ..., P − 1.
(1)

Before transmission through the channel, the time-domain
samples are converted to an analog signal by a digital-to-
analog converter (DAC) and a transmit filter is used to elimi-
nate the transmitted signal’s images produced by the DAC. As
we want to focus on offset mismatch calibration, we assume
an AWGN channel, and the transmit and receive filters are
matched.

After passing the receive filter, the received waveform is
sampled at Nyquist rate by a TI-ADC consisting of L parallel
sub-ADCs. The TI-ADC is assumed to have sufficiently high
resolution such that the quantization noise can be neglected
[8]. Assuming the TI-ADC is affected by offset mismatch only
and using the model of a TI-ADC introduced in [9], the output
of the TI-ADC can be written as:

r[m](p) = s[k]
(p)

+ do(m+Np)|L + w[m](p),
,m = −N

2 ,−
N
2 + 1, ..., N

2 − 1,
(2)

where r[m](p) denotes the mth sample of the pth OFDM
block, do(m+Np)|L is the offset of the sub-ADC, x|y denotes

1In practice, a guard interval is inserted in the time-domain to counteract the
effect of the dispersive channel. However, as an AWGN channel is considered
in this paper, we omit the guard interval.

the modulo operation of x with respect to y, and w[m](p) is the
AWGN noise sample with zero mean and variance σ2

w = N0

2
per in-phase/quadrature dimension, with N0 the noise power
spectral density. The received samples are then applied to the
DFT unit. In order to analyze our calibration approach, we
write the output of the DFT unit of the pth OFDM block as:

R
(p)
DFT = X(p) + Fe(p) +W(p), (3)

where X(p) is the vector of the transmitted symbols, W(p)

is the AWGN noise vector in frequency domain, e(p) is the
offset mismatch vector given by:(

e(p)
)
m

= do(m+Np)|L ,m = −N

2
,−N

2
+ 1, ...,

N

2
− 1,

(4)
and F is the N ×N DFT matrix defined as:

(F)n,m = 1√
N
e−j2π nm

N ,

n,m = −N
2 ,−

N
2 + 1, ..., N

2 − 1.
(5)

In the next section, we will analyze the proposed calibration
methods to estimate the offset mismatch vector e(p) and
compensate the offset mismatch error in the frequency domain.

III. OFFSET MISMATCH CALIBRATION

In the following, we assume the ratio N
L between the

IDFT/DFT size and the number of sub-ADCs is an integer
value. It is shown in [5] that when the DFT/IDFT size
N is a multiple of the number L of sub-ADCs, the offset
mismatch error only has an effect on the sub-carriers with
index equal to a multiple of N

L , while the other sub-carriers
are not affected2. In that case, the contribution from the offset
mismatch, i.e., do(m+Np)|L and e(p), becomes independent of
the block index p. Hence, the number of affected sub-carriers
per OFDM block equals the number L of sub-ADCs. Fig.
3 illustrates the block diagram of the proposed calibration
technique. The first OFDM symbol is used as a preamble in
which no data is transmitted at the sub-carriers with indices
iNL , i = −L

2 ,−
L
2 +1, ..., L

2 −1, i.e., the affected sub-carriers.
Extracting those sub-carriers at the output of the DFT in the
first OFDM symbol, we obtain the offset mismatch vector E(0)

in the frequency domain:

E(0) = F1e1 +W
(0)
1 , (6)

where the superscript (0) denotes the first OFDM symbol,(
E(0)

)
i
=

(
R

(0)
DFT

)
iN
L

, W(0)
1 is the AWGN noise vector, e1

is the offset vector defined as:

(e1)l = dol, l = 0, 1, ..., L− 1, (7)

and F1 is a L× L matrix given by:

(F1)i,l =
√
N
L e−j2π il

L ,

i = −L
2 ,−

L
2 + 1, ..., L

2 − 1, l = 0, 1, ..., L− 1.
(8)

The estimate Ê of F1e1 is saved in the register, and is
used to compensate the first OFDM symbol and the following

2When the ratio N
L

is not an integer value, all sub-carriers are affected by
the offset mismatch.
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Fig. 3. Block diagram of the proposed calibration approach.

OFDM symbols by subtraction in the frequency domain, as
shown in Fig. 3. Hence, in order to estimate the contribution
from the offset mismatch, we use only one OFDM symbol. In
the following, we consider the LS and LMMSE approaches to
obtain the estimate Ê.
• Least-Squares Estimation: The LS estimate ÊLS of of

F1e1 equals [10]:

ÊLS = E(0). (9)

The mean-square error (MSE) of the LS estimate equals

MSELS = E

{∥∥∥F1e1 − ÊLS

∥∥∥2} = σ2
w, (10)

where E {.} denotes averaging over the noise distribution.
Taking into account that the noise samples W

(0)
1 [l] on the

different sub-carriers are independent and have the same vari-
ance σ2

w, the estimate ÊLS [l] will be gaussian distributed with
variance σ2

w, which is independent of the sub-carrier index.
As a result, in the successive OFDM blocks, the calibration
removes the offset mismatch contribution on the affected sub-
carriers, but at the same time adds an additional AWGN term
with variance σ2

w to the sub-carriers with indices iNL , i.e.,
R

(p)
DFT

comp,i N
L

= X
(p)

iN
L

+W
(p)

1,iN
L

−W
(0)

1,iN
L

, implying the noise

level will be doubled. Consequently, we expect that, although
the effect of the offset mismatch is compensated for, the BER
of the affected sub-carriers will suffer from a 3 dB loss in
terms of the SNR.
• Linear Minimum Mean-Squared-Error Estimation: To

reduce the 3 dB loss introduced by the noise enhancement in
the LS estimator, the LMMSE estimator uses a weight matrix
such that the MSE is minimized. As a result, the LMMSE
estimate is given by [10]:

ÊLMMSE = R
(
R+ σ2

wI
)−1

E(0), (11)

where R is the auto-correlation matrix of F1e1, i.e., R =
E
{
F1e1e

H
1 FH

1

}
, and I is the identity matrix. The MSE of

the LMMSE estimate equals:

MSELMMSE = E

{∥∥∥F1e1 − ÊLMMSE

∥∥∥2}
= 1

LTrace
{
R

(
I−

(
R+ σ2

wI
)−1

R
)}

=
σ2
w

L

L−1∑
l=0

λl

λl+σ2
w

,

(12)
where λl are the eigenvalues of the auto-correlation ma-
trix R. As R is a positive (semi-) definite matrix, λl ≥

0. Taking into account that
L−1∑
l=0

λl = Trace {R} =

L−1∑
l=0

E
{
|e1 [l]|2

}
=

L−1∑
l=0

E
{
|dol|2

}
, it follows that the mag-

nitude of the eigenvalues depends on the level of the offset
mismatch. When the level of the offset mismatch is small,
i.e., when λl ≪ σ2

w, the MSE in (12) can be approximated by

MSELMMSE ≈ 1
L

L−1∑
l=0

λl ≈ 1
L

L−1∑
l=0

E
{
|dol|2

}
≪ MSELS .

Hence, the LMMSE estimator will outperform the LS es-
timator. Similarly, when the offset mismatch level is large,
i.e., when λl ≫ σ2

w, the MSE in (12) is approximated by
MSELMMSE ≈ σ2

w = MSELS , i.e., the LMMSE estimator
converges to the LS estimator for large values of the offset
mismatch or low values of the noise level.

IV. NUMERICAL RESULTS

In this section, we validate our proposed methods in terms of
the MSE performance and the BER performance. The param-
eters for the simulations are summarized in Table I. The offset
values are uniformly chosen in the interval

[
−α

√
Es, α

√
Es

]
,

where Es is the transmitted energy of a data symbol, and α is
the level of the offset mismatch. In this paper, we express the
level of the offset mismatch in percentage, i.e., α% = α

100 ,
with respect to the amplitude level

√
Es, and the signal-to-

noise ratio SNR is defined as SNR = Eb

N0
= Eb

2σ2
w

, where
Eb =

Es

log2M
.

TABLE I
SIMULATION PARAMETERS

Parameters Reference values
FFT size 2048

Data carriers 1705
Modulation (M -QAM) 16-QAM
Number of sub-ADCs 8

First, to examine the efficiency of the proposed calibration
methods, we observe the scatter diagram at the receiver
without offset mismatch and with 10% mismatch, and the
scatter diagram before and after offset mismatch compensation
using the LS and LMMSE estimators for SNR = 17 dB.
From Fig. 4, it can be seen that without calibration, the
offset mismatch causes data-independent points in the scatter
diagram, while these data-independent points have vanished
after compensation, for both the LS and LMMSE estimators.
Hence, we expect that the proposed calibration methods are
able to dissolve the error floor caused by the offset mismatch in
the BER performance. Further, we observe that, as expected,
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Fig. 4. Scatter diagram for 16-QAM at SNR = 17 dB: (a) Without mismatch. (b) 10% mismatch, (c) After compensation: LS estimator-10% mismatch, (d)
After compensation: LMMSE estimator-10% mismatch.

the size of the clouds around the constellation points after
compensation is larger for the LS estimator, as the noise level
is doubled as compared to the case without offset mismatch.
The size of the clouds in the case of the LMMSE estimator
is smaller and comparable to the ”no mismatch” case.

Next, we consider the MSE performance of the LS and
LMMSE estimators. As expected, the MSE of the LS estimator
is constant, i.e., MSE = σ2

w, while the MSE of the LMMSE
estimator increases as a function of the mismatch level α,
and converges to that of the LS estimator. The level α at
which both estimators converge, reduces when the noise level
σ2
w reduces, or when the energy per symbol Es increases.

This can be explained as follows. The eigenvalues λl of
the auto-correlation matrix R are proportional to α2Es, as
L−1∑
l=0

λl =
L−1∑
l=0

E
{
|dol|2

}
= Lα2Es

3 . In the previous section,

we have shown that, when λl ≫ σ2
w, the LMMSE estimator

converges to the LS estimator. Let us define γσ2
w as the

threshold level at which convergence occurs, with γ ≫ 1.

Hence, when
L−1∑
l=0

λl = Lα2Es

3 ≫ Lγσ2
w, the LMMSE

estimator will have the same performance as the LS estimator.

Rewriting this inequality, we obtain:

γ ≤ α2Es

3σ2
w

=
2

3
α2 · SNR · log2M. (13)

Inspecting Fig. 5, we find that γ = 100 will result in converge.
From the inequality (13), we obtain a threshold on the noise
level, for given mismatch level α, or a threshold on the
mismatch level α, for given noise level or SNR level. Further,
(13) illustrates that, when SNR ≥ 150

α2·log2M
, the LMMSE

estimator will be close to the LS estimator in terms of the
BER performance.

Fig. 6 presents the ideal, un-calibrated and calibrated BER
curves for 10% and 100% mismatch. When the offset mis-
match is not compensated, we see it causes an error floor in
the BER performance. Both the LS estimator and the LMMSE
estimator are able to eliminate this error floor for all cases.
Moreover, as expected, the LS estimator causes a 3 dB loss
in the BER performance. Further, from (13), we can expect
that the BER of the LMMSE estimator is close to that of
the LS estimator for SNR ≥ 15.74 dB for 100% mismatch.
This threshold can be observed in the figure. In the 10%
mismatch case, it follows from (13) that convergence between
the two estimators will occur when SNR ≥ 35.74 dB. As the
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Fig. 5. MSE performance of the LS estimator and the LMMSE estimator:
(a) Es = 1, (b) Es = 2.

corresponding BER is very small at this SNR, it follows that
for practical situations, the LMMSE estimator will outperform
the LS estimator for low to moderate mismatch levels. Hence,
(13) is useful in predicting the performance of the LMMSE
estimator. When the SNR is larger than this threshold, the
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Fig. 6. The ideal, un-calibrated and calibrated BER curves for 16-QAM.

LS estimator is preferred, as it has a lower complexity than
the LMMSE estimator. However, below this threshold, the
LMMSE estimator is selected as it has a better performance.

V. CONCLUSIONS

In this paper, we proposed two simple offset-mismatch
calibration methods for a TI-ADC, based on the LS and
LMMSE approaches, in a high-speed OFDM system assuming
an AWGN channel. Our results show that the proposed meth-
ods can completely eliminate the error floor caused by offset
mismatch without the need of pilots and only one OFDM
symbol is required to estimate the offset mismatch. The LS
estimator-based calibration causes a 3 dB BER performance
degradation, but the calibration based on the LMMSE esti-
mator is able to improve the BER performance. Although the
LMMSE estimator will converge to the LS estimator in terms
of the MSE and BER performances for large offset mismatch
level values or low noise level, we show in this paper that
for low to moderate mismatch levels, the LMMSE estimator
gives good results at practical values of the SNR, causing a
moderate BER penalty.
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