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Abstract

In this paper, we present a theoretical framework for code-aided synchronization and

channel estimation for multi-carrier (MC) systems. Our endeavor is to exploit all available

information from the received signal for the estimation of the unknown parameters. By

means of the Expectation-Maximization (EM) formalism, we will show how soft informa-

tion of the coded symbols computed by the detector can be combined with pilot symbols

in a systematic and efficient manner in order to improve the overall system performance.

The resulting code-aided algorithm comes with a negligible increase in processing demands

compared to its data-aided counterpart, since the synchronizer and estimator can be em-

bedded in the iterative ’turbo’ detector. For sake of simplicity, we develop our estimation

framework for a simple orthogonal frequency division multiplexing (OFDM) transceiver.

As far as the estimation is concerned, extension to other multi-carrier set-ups using more

advanced detectors is conceptually very straightforward. Computer simulations show that

the proposed algorithm outperforms the conventional data-aided estimation algorithms.

Index terms: OFDM, synchronization, turbo estimation, turbo synchronization
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1 Introduction

Orthogonal frequency division multiplexing (OFDM) is put forward as the obvious modulation

scheme for current and next-generation wireless and wireline communications [1,2]. Its capabil-

ity to accommodate high data rate transmissions on frequency selective channels while allowing

for a simple equalization, makes it a very promising technology.

On the other hand, OFDM-based transmission systems are very sensitive to synchronization

errors [3, 4]. Accurate timing and frequency synchronization is required to maintain orthogo-

nality among subcarriers and to avoid inter-symbol-interference (ISI). Additionally, the channel

impulse response (CIR) must be known to coherently detect the data per subcarrier. When we

consider the massive amount of research devoted to these problems (see e.g. [4–13] and refer-

ences therein), it becomes clear that synchronization and channel estimation are critical issues.

The conventional estimation techniques are either data-aided (i.e., exploiting training symbols

in the time- or frequency domain) [5–10] or blind (e.g., exploiting the presence of the cyclic

prefix) [11–13].

With the advent of powerful error-correcting codes (the likes of turbo-codes), these conven-

tional techniques cannot always be applied successfully. Powerful codes lead to a combination

of low BER at low SNR: a challenging starting point to perform estimation. At these low SNRs,

blind techniques are completely unreliable. On the other hand, data-aided algorithms require

an unreasonable amount of power and bandwidth to be reserved for training. This has spurred

several research groups to consider ’code-aided ’ or ’code-aware’ estimation algorithms. These

algorithms iterate between data detection and estimation, thus improving both the estimates of

synchronization parameters and CIR, while simultaneously performing increasingly reliable data

detection. Such techniques are often inspired by the turbo-principle [14] or the Expectation-

Maximization (EM) algorithm [15,16]. In [17], an EM-based semi-blind technique is described

that performs code-aided estimation of the CIR per Multi-Carrier (MC) symbol. The same

idea was applied in the frequency domain in [18] for a multi-antenna, multi-user system. The

EM algorithm was again considered in [19] for estimation of the CIR for a time-varying MIMO-

OFDM scenario. Finally, [20] proposes an ad-hoc code-aided channel estimator for time-varying

OFDM systems. The reader will note that code-aided estimation of synchronization parameters

has received little interest.

In the current paper, we address code-aided frequency synchronization, frame synchroniza-

tion and channel estimation for multi-carrier communication schemes. Our analysis is carried

out for a plain single-user multi-carrier communication scheme. Nevertheless, as we will elab-

orate upon, the actual configuration is of marginal importance as far as the estimation is
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concerned. The proposed estimator can easily be extended to other multi-carrier set-ups.

We compare a Bayesian estimation approach based on the Maximum A Posteriori (MAP)

principle with a non-Bayesian estimation approach based on the Maximum Likelihood (ML)

principle. We resort to the EM algorithm to exploit information from the pilot symbols and

coded data symbols in a systematic fashion.

This paper is organized as follows. The system model is presented in section 2, including

a brief description of the detector. We continue with a brief description of ML, MAP and EM

estimation algorithms in section 3. Then we apply these algorithms to the problem at hand

and derive an EM-based estimator, paying special attention to issues related to computational

complexity. Numerical results are provided in section 5 before we draw conclusions in section

6.

2 OFDM system model

2.1 Transmitter

To develop our code-aided estimation framework, we consider the simple transmitter scheme

depicted in Fig. 1. We assemble a (turbo-)encoder, block-interleaver and symbol mapper to set

up a so-called Bit-Interleaved Coded Modulation (BICM) scheme. The BICM scheme trans-

forms Nb information bits b0, . . . , bNb−1 into Nd coded symbols which belong to a unit-energy

2q-point constellation Ω. The coded symbol sequence, denoted a = [a0, . . . , aNd−1]
T , is mul-

tiplexed with Nt pilots symbols. The p-th element dp of the overall block of pilot and data

symbols d =
[
p0, . . . , pNt−1,a

T

]T
, is mapped to the carrier npwhere 0 ≤ np ≤ N − 1 with

N = Nt + Na. This operation is known as frequency interleaving. We end up with a block

of N interleaved symbols which is applied to an N -point Inverse Discrete Fourier Transform1

(IDFT). A ν-point cyclic prefix (CP) is pre-appended, resulting in N + ν time-domain samples

[s−ν , . . . , s−1, s0, . . . , sN−1]
T where sm = sm+N , for m = −ν, . . . ,−1. Hence, the length of the

time-domain sequence is equal to NT = N + ν. We can write the m-th time-domain sample

(m = −ν, . . . , N − 1) as

sm =

√
Es

N + ν

N−1∑

p=0

dpe
j2πnpm/N (1)

where Es denotes the average energy per symbol dp. Note that by construction, each OFDM

symbol encompasses a single codeword. We further define the OFDM symbol period T and the

1Obviously, the DFT and IDFT operations are implemented through a Fast Fourier Transform.
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notation meaning

m time-domain index: −ν ≤ m < N

p data symbol index (for a given OFDM symbol): 0 ≤ p < N

ξ EM iteration index:ξ ≥ 1

Table 1: Notations

sampling period Ts = T/NT . Finally, the signal is shaped with a normalized transmit filter and

transmitted over the channel.

2.2 Receiver

The transmitted signal propagates through a channel with overall Channel Impulse Response

(CIR) hch (t). This CIR incorporates the transmit filter, physical propagation channel and

receive filter (e.g., a filter matched to the transmitter pulse). We assume a quasi-static block-

fading channel that remains constant during each burst but can vary independently from burst

to burst. The CIR is assumed to have a delay spread no greater than LTs: hch (t) = 0 for t < 0

and for t ≥ LTs. Additionally, the signal arrives with a certain delay τ and is affected by a

CFO fo and is corrupted by thermal noise. The propagation delay τ belongs to some interval

[0, τmax], while the CFO depends on the speed of the transmitter and any possible mismatch

between the transmit and receive oscillators. We assume the carrier frequency offset (CFO)

to be small, compared to the bandwidth of the receiver’s matched filter. Hence, the received

signal is given by

r (t) = s (t) + w (t) (2)

where w(t) is the baseband representation of the Additive White Gaussian Noise (AWGN) with

power spectral density N0/2 per real dimension. In (2), the signal s(t) is given by

s (t) =
N−1∑

m=−ν

smhch (t − mTs − τ) ej2πfot. (3)

The receiver is fully digital and samples the received signal r (t) at a rate 1/Ts resulting in a

sequence of samples r (lTs), l = −ν, . . . , +∞. Let us define the normalized CFO F = foTsN .

Following [5], we break up τ as

τ = ∆Ts − δTs (4)
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with ∆ ∈ {0, 1, . . . , ∆max
.
= ⌈τmax/Ts⌉} and δ ∈ [0, 1[. Defining h (t) = hch (t + δTs), we can

express the samples r (lTs) as a function of h (t) as

r (lTs) =
N−1∑

m=−ν

smh (lTs − mTs − ∆Ts) ej2πF l/N + w (lTs) . (5)

Since T = NT Ts is a multiple of Ts, the channel is fully characterized by the vector

h = [h (0) , h (Ts) , . . . , h ((L − 1)Ts)]
T . (6)

The channel taps are assumed to be gaussian distributed with L×L covariance matrix Ch. When

ν ≥ L − 1, no interference between successive MC symbols occurs. As ∆ ∈ {0, 1, . . . , ∆max},

samples taken prior to t = −νTs and later than t = (T + (∆max + L − ν − 2)Ts) do not depend

on the current frame. Hence, the following sequence of NT +∆max +L−1 time-domain samples

is sufficient for data detection and estimation:

r = [r (−νTs) , . . . , r (T + (∆max + L − ν − 2)Ts)]
T . (7)

The ultimate goal of the receiver is to recover the transmitted information bits b. In order

to do so, knowledge of the delay shift ∆, the (normalized) CFO F and the channel taps h is

required.

The conceptual block diagram of the receiver is shown in Fig. 2. The receiver employs an

estimation algorithm (e.g., by exploiting the pilot symbols [p0, . . . , pNt−1]
T ) to obtain estimates

(
∆̂, F̂ , ĥ

)
for the timing offset ∆, the CFO F and the channel taps h. After synchronization,

the CP is stripped and the remaining samples applied to a DFT. The output of the DFT at

subcarrier np is given by

zp =
1√
N

N−1∑

l=0

r
(
∆̂Ts + lTs

)
ej2πlnp/Ne−j2πF̂(∆̂+l). (8)

The detector assumes that the channel and synchronization parameters are perfectly known and

equal to their estimated values. By equalization of the samples {zp+Nt
}p=0,...,Na−1, we create a

decision variable for ap:

yp = αp+Nt
zp+Nt

(9)

= apµp + vp (10)

where αp is the coefficient of the one-tap equalizer at subcarrier np. Based on (10), the receiver
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is able to compute the likelihood p(yp|ap) of each transmitted symbol. These likelihoods are

fed to a block that performs soft demodulation and decoding, operating according to the turbo

principle [21, 22]. For our purposes, this block is considered as a black box that computes a

posteriori probabilities (APPs), possibly in an iterative fashion. Upon completion, the APPs

of bm (i.e, p
(
bm

∣∣∣r, ĥ, ∆̂, F̂
)
) m = 0, . . . , Nb − 1 are used to make final decisions on the in-

formation bits. At the same time, this block also computes the APPs of the coded symbols

p
(
am

∣∣∣r, ĥ, ∆̂, F̂
)
. Note that, while we considered a specific OFDM configuration, the estima-

tion framework that we are about to develop can be applied to any detection scheme as long as

a soft-decoding algorithm is available.

3 Estimation algorithms

It is clear that the detector described in the previous section requires the estimates of the

delay/frame shift2 ∆, the CFO F and the channel taps h. The estimation should be carried

out without knowledge of the transmitted symbols. Hence, for the estimation purpose, the

unknown symbols are nuisance parameters. In this section we introduce the basic algorithms

that allow us to tackle this estimation problem. We start off with the standard ML and MAP

estimators, and end with the introduction of the (Bayesian) EM algorithm.

3.1 ML and MAP estimation

We consider two possible techniques to compute the estimates of one or more unknown param-

eters: ML or MAP estimation. Computing the MAP or ML estimates entails two - at first sight

simple - steps. In the first step, the cost functions p (r |θ ) (ML) or p (θ|r) (MAP) are determined

and evaluated. In the second step, these functions are maximized with respect to the unknown

parameters. Depending on the situation, both steps can be cumbersome. As we consider the

estimation of a parameter(set) θ from an observation r in the presence of a (discrete) nuisance

parameter s, these two steps lead up to the following estimates

θ̂ML = arg max
θ

∑

s

p (r |θ, s) p (s |θ ) (11)

θ̂MAP = arg max
θ

∑

s

p (r, θ |s) p (s) (12)

When dealing with a large or unstructured parameter space, the (multidimensional) maximiza-

tion (second step) is often difficult. This problem, can be alleviated using signal decomposition

2In correspondence with technical literature, we will name the process of determining ∆ frame synchroniza-

tion.
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methods [23]. Only too often, however, the nuisance parameters itself form the major source

of concern. When the nuisance parameter space is extensive, the summation involved in the

evaluation of (11) or (12) tends to be intractable. To circumvent this problem, we will resort

to the iterative expectation-maximization (EM) algorithm.

3.2 EM estimation

The Expectation-Maximization (EM) algorithm is a method that iteratively solves the ML (11)

or MAP (12) problem [15]. We will describe the MAP version of the EM algorithm (also known

as the Bayesian EM algorithm) [24, 25]. We will point out where the ML solution differs from

the MAP solution.

In accordance with the EM formalism, we define the complete data z, which is related to

the observation r through some mapping r = g (z). The EM algorithm starts from an initial

estimate of θ (say, θ̂ (0)) and iteratively computes new estimates. At iteration ξ, the EM

algorithm consists of two steps: given the current estimate θ̂ (ξ), we first take the expectation

of the log-likelihood function of the complete data, given the observation r and the current

estimate of θ:

E-step: Q
(
θ| θ̂ (ξ)

)
= Ez

[
log p (z, θ)

∣∣∣r; θ̂ (ξ)
]
. (13)

Note that log p (z, θ) should be replaced with log p (z |θ ) to obtain the ML solution. When z is

well-chosen, evaluation of (13) is fairly simple compared to the computations required in (11)

or (12). In the second step, we maximize Q
(
θ| θ̂ (ξ)

)
with respect to θ to find a new estimate:

M-step: θ̂ (ξ + 1) = arg max
θ

{
Q

(
θ| θ̂ (ξ)

)}
. (14)

Convergence of the EM algorithm is guaranteed in a sense that subsequent estimates have a

non-decreasing a posteriori probability:

p
(
θ̂ (ξ + 1) |r

)
≥ p

(
θ̂ (ξ) |r

)
(15)

for ξ ≥ 0. In the ML version of the EM algorithm, the a posteriori probabilities in (15) are

replaced with likelihoods. Any value θ̂ for which θ̂ = arg maxθ Q
(
θ| θ̂

)
is called a solution of

the EM algorithm. One of these solutions is the MAP (or ML) estimate. In order to achieve

convergence to the true MAP (or ML) estimate, a good initial estimate of θ is required [25].
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4 Code-aided Channel estimation and synchronization

In this section, we will derive the ML and MAP estimators for the code-aided estimation problem

at hand. Consistent with the notations from previous section, we consider the estimation

parameters θ = [h, ∆, F ], the observation r = r and the nuisance parameters s = s. As the

direct computation of the ML and MAP estimates turns out to be infeasible, we propose a new

EM based estimator.

4.1 ML and MAP estimation

In order to derive the ML or MAP cost functions, we rewrite the observation model in a more

convenient form. We start from the observation r = [r (−νTs) , . . . , r (T + (∆max + L − ν − 2)Ts)]
T

from (7). Note that the length of this vector is independent of ∆. We introduce the vector s

of length (NT + 2L − 2) constructed by concatenating all time-domain samples, padded with

L − 1 zeros at the beginning and end of the vector, leading to

s
.
=

[
01×(L−1) s−ν . . . sN−1 . . . 01×(L−1)

]
(16)

where 0X×Y is an X ×Y matrix consisting of all zeros. Note that s depends solely on the pilot

symbols and coded symbols d.

Let us now define the (NT + L − 1) × L Toeplitz matrix S as follows: the n-th row of S is

obtained by time-reversing the n-th until the (n + L − 1)-th sample of s. For instance, the first

row is given by
[
s−ν ,01×(L−1)

]
, the second row by

[
s−ν+1, s−ν ,01×(L−2)

]
and so forth. Note

that we can write S as the sum of two Toeplitz matrices of size (NT + L − 1)×L: S = SP +SA,

where SP contains only the pilot symbols and SA contains only the data symbols.

Finally, we define an (NT + ∆max + L − 1) × L matrix S∆ as

S∆ =




0∆×L

S

0(∆max−∆+L−1)×L




. (17)

These transformations enable us to write the following simple relationship between r, S∆ and

h:

r = FS∆h + w (18)

where F is a diagonal matrix with Fkk = ej2πFk/N , k = −ν, . . . , NT + ∆max + L − ν − 2 and

the vector w embeds the zero-mean AWGN with variance σ2
n per real dimension. Note that
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by substituting S = SP + SA into (17), we can break up S∆ = S∆,P + S∆,A. Based on the

observation model (18), we can easily derive the ML and MAP cost functions.

The ML estimate of the delay shift and channel taps is obtained by maximizing the log-

likelihood function

[
∆̂ML, F̂ML, ĥML

]
= arg max

∆,F,h
{log p (r |∆, F,h)} (19)

where

p (r |∆, F,h) ∝
∑

s

p (r |∆, F,h, s) p (s) (20)

and

p (r |∆, F,h, s) ∝ exp

(
− 1

2σ2
n

‖r − FS∆h‖2
)

. (21)

The MAP estimate, on the other hand, is given by

[
∆̂MAP , F̂MAP , ĥMAP

]
= arg max

∆,F,h
{log p (r, ∆, F,h)} ,

= arg max
∆,F,h

{log p (r |∆, F,h) + log p (h)} . (22)

We assume a conjugate prior [26] distribution of the channel taps. In this present case, the

conjugate prior is a gaussian distribution

p (h) ∝ exp
(
−h

HC−1
h

h

)
. (23)

Note that in general the frequency offset F and delay ∆ are uniformly distributed and impart

no additional prior information.

As we already anticipated, the ML or MAP estimates cannot be recovered from (19) or (22)

with reasonable complexity due to the presence of nuisance parameters. The summation in (20)

requires the evaluation of (21) over all 2Nb possible codewords, which unfortunately turns out

to be infeasible. It is obvious that the summation in (20) would disappear if the unknown data

was ignored and only pilot symbols where applied for estimation purpose. However, in the low

SNR regimes where current state-of-the-art coding schemes prosper, too many pilot symbols

are required to acquire reliable estimates. As this results in a significant loss in terms of power

and bandwidth, there is great interest in developing algorithms that are also able to exploit

the unknown data symbols for estimation purpose. In the following section, we adopt the EM

algorithm introduced in section 3.2.
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4.2 EM estimation

For the practical implementation of the EM algorithm, we will restrict ourselves again to the

MAP scenario. The ML solution is touched upon at the end of this paragraph. Let us take as

complete data z = [r, s]. In that case, since s and θ are independent:

log p (z, θ) = log p (r, θ| s) + log p (s) (24)

so that (13) becomes

Q
(
θ| θ̂ (ξ)

)
∝ Es

[
log p (r, θ| s)| r, θ̂ (ξ)

]
, (25)

where we ignored terms that do not depend on θ. From (21) and (22) we have

log p (r, θ| s) ∝ − 1

2σ2
n

h
H
S

H
∆S∆h +

1

σ2
n

ℜ
(
r
H
FS∆h

)
− h

HC−1
h

h (26)

so that

Q
(
θ| θ̂ (ξ)

)
= −h

H
( ˜
SH

∆S∆ + 2σ2
nC−1

h

)
h + 2ℜ

(
r
H
F S̃∆h

)
(27)

where, due to the linearity of the expectation operator, S̃∆ = Es

[
S∆| r, θ̂ (ξ)

]
is obtained

by replacing each entry sm with the corresponding a posteriori expectation E
[
sm| r, θ̂ (ξ)

]
.

Similarly, ˜
SH

∆S∆ = Es

[
S

H
∆S∆

∣∣∣ r, θ̂ (ξ)
]

is obtained by replacing the entries sm (sm′)∗ with

E
[
sm (sm′)∗| r, θ̂ (ξ)

]
. Equation (1) tells us that

sm =

√
Es

N + ν

N−1∑

p=0

dpe
j2πnpm/N (28)

so that

E
[
sm| r, θ̂ (ξ)

]
=

√
Es

N + ν

N−1∑

p=0

E
[
dp| r, θ̂ (ξ)

]
ej2πnpm/N . (29)

From section 2, we know that the detector computes the APPs of the coded symbols p
(
dp

∣∣∣r, θ̂ (ξ)
)
.

The a posteriori expectation E
[
dp| r, θ̂ (ξ)

]
is obtained as

E
[
dp| r, θ̂ (ξ)

]
=

∑

ω∈Ω

ω × p
(
dp = ω

∣∣∣r, θ̂ (ξ)
)

(30)

which can be interpreted as a soft symbol decision: it is a weighted average of all possible

constellation points. Note that if dp corresponds to a pilot symbol, (30) is replaced by the

actual value of this pilot symbol. As E
[
sm (sm′)∗

∣∣∣r, θ̂ (ξ)
]

is a function of E
[
dp

(
dp′

)
∗
∣∣∣r, θ̂ (ξ)

]
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it cannot be computed exactly based solely on the (marginal) APPs. However, thanks to the

presence of the interleaver, the coded symbols can be assumed to be essentially uncorrelated so

that

E
[
dp

(
dp′

)
∗
∣∣∣r, θ̂ (ξ)

]
≈ E

[
dp

∣∣∣r, θ̂ (ξ)
]
E

[(
dp′

)
∗
∣∣∣r, θ̂ (ξ)

]
(31)

when p′ 6= p. Additionally, if we extend the previous relation to p = p′, the computation of

˜
SH

∆S∆ can further be simplified as

˜
SH

∆S∆ ≈ S̃
H
∆S̃∆. (32)

Finally, the updated estimates of the delay shift, the CFO and the channel taps are given by

[
∆̂ (ξ + 1) , F̂ (ξ + 1)

]
= arg max

∆,F

{
ℜ

(
r
H
F S̃∆

(
S̃HS + 2σ2

nC−1
h

)
−1

S̃
H
∆F

H
r

)}
. (33)

and

ĥ (ξ + 1) =
(
S̃HS + 2σ2

nC−1
h

)
−1

S̃
H
∆̂(ξ+1)

F̂(ξ + 1)H
r (34)

where S̃HS = Es

[
S

H
S

∣∣∣ r, θ̂ (ξ)
]
. Making use of the approximation (32), this leads to a very

elegant interpretation: the EM-based algorithms are formally obtained by replacing in the

corresponding DA algorithms, pilot symbols with a posteriori symbol expectations.

Note that the 2-dimensional maximization in (33) can be reduced to two 1-dimensional

maximizations when the CFO is small [5]. Therefore, the low-complexity update rules for the

timing and the CFO are

[
∆̂ (ξ + 1)

]
= arg max

∆

{
ℜ

(
r
H
F̂ (ξ) S̃∆

(
S̃HS + 2σ2

nC−1
h

)
−1

S̃
H
∆F̂

H (ξ) r

)}
(35)

and

[
F̂ (ξ + 1)

]
= arg max

F

{
ℜ

(
r
H
F S̃∆̂(ξ+1),

(
S̃HS + 2σ2

nC−1
h

)
−1

S̃
H
∆̂(ξ+1),

F
H

r

)}
. (36)

Note that ML estimation is obtained by replacing log p (r, θ| s) with log p (r| θ, s) in (25). This

boils down to setting C−1
h

= 0 in equations (33)-(36).
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computation complexity

S̃∆ O (N log2 N)

S̃HS O (NT L)

update of ∆̂ O (NT L∆max)

update of ĥ O (NT L)

Table 2: Computational complexity, assuming S̃HS is a diagonal matrix. We have omitted the
complexity related to updating F̂ as it depends on the specific numerical technique used to
solve (36).

4.3 Implementation aspects

The proposed EM estimator can be modified in several ways:

1. The inversion of the matrix S̃HS in (33)-(34) can be simplified when the symbol sequence

is sufficiently long, such that S̃HS can be approximated by a diagonal matrix. A detailed

view of the computational complexity in the general case is given in Table 2. Observe

that the total computational cost is dominated by the ∆-update.

2. When the estimates of ∆ and F are sufficiently accurate and no further updates are

required, all computations (with the exception of (34)) can take place in the frequency-

domain.

3. In case the delay ∆ and the CFO F are perfectly known, the code-aided estimation

algorithm of the channel impulse response can take place completely in the frequency

domain, thus avoiding FFT operations at each EM iteration. This requires a specific

frequency-domain observation model [27]. This is not pursued in the current paper.

Even with these complexity-reducing modifications, the complexity of the EM-based estimator

may still be unacceptably high: let us denote by TEM the time (in seconds) to compute the

cost-function (27) and perform a single update to the estimates of F , ∆ and h and by Tdetect

the time to detect the data, given an estimate3 of F , ∆ and h. When IEM EM iterations are

performed, the total computation time is roughly Ttot = IEMTEM + (IEM + 1)Tdetect, so that

the overhead related to estimation is given by

OEM =
Ttot − Tdetect

Tdetect
= IEM

(
1 +

TEM

Tdetect

)

which is (at least) an IEM -fold complexity increase as compared to a conventional system

with (non-iterative) estimation followed by data detection (corresponding to an overhead of

3Hence, Tdetect represents the processing time for a perfectly synchronized detector with perfect channel

knowledge.
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0). Currently, many state-of-the-art detectors or decoders operate according to some iterative

procedure. Each iteration within the detector may correspond for instance to a demapping

iteration or decoding iteration or both. In either way, we may write Tdetect = IDTD, where ID

is the number of iterations performed within the detector, and TD the time to perform a single

iteration. We now perform the following modifications: for each EM iteration, we perform

I∗D < ID iterations within the detector, but we maintain state information4 from one iteration

to the next. This is known as embedded estimation [28]. In this case the total computation

time is roughly Ttot = IEMTEM +(IEM + 1) I∗DTD. Suppose we perform roughly IEM = ID − 1

EM iterations, then the overhead related to EM estimation is now

OEM =
IEM

IEM + 1
× TEM

TD
+ I∗D − 1

In general, we have that TEM ≪ TD since TD usually involves a complex decoding step. Hence,

if we set I∗D = 1, which corresponds to one detection iteration per EM iteration, the overhead

caused by the estimation is marginal. Therefore, embedded EM estimation is especially well-

suited to detectors which are themselves iterative.

5 Numerical Results

5.1 Simulation parameters

To validate the proposed algorithms, we have carried out Monte Carlo simulations. We consider

a R = 1/3 rate turbo-code consisting of two constituent systematic recursive rate one-half

convolutional codes with generators (21, 37)8. We consider a block of N = 512 16-QAM symbols

made of Na unknown data and Nt pilot symbols. The channel has length L = 15 and was

generated with independent components, each being a zero-mean complex Gaussian random

variable with an exponential power delay profile [5]:

E
[
|h (l)|2

]
= 0.58 exp (−2l/5) , l = 0, . . . , L − 1. (37)

Hence, the energy of the channel is concentrated mainly in the first few channel taps. Note also

that Ch is diagonal, with its diagonal elements given by (37). To avoid ISI, a cyclic prefix of

length ν = 16 is employed. We have set ∆max = 40 and kept actual delay fixed ∆ = 23. In

the numerical results, we compare code-aided or soft decision directed (SDD) estimation with

data-aided (DA) estimation. When considering code-aided or SDD estimation, the estimation

is fully embedded in the iterative detector, i.e., we set I∗D = 1 as explained in section 4.3.

4Sometimes known as extrinsic information.
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5.2 Channel estimation

First, we consider the estimation of the channel impulse response h, assuming perfect knowledge

of F and ∆. In Fig. 3, we compare the mean squared error (MSE) of the iterative EM algorithm

for both ML and MAP estimation as function of the number of iterations within the EM

algorithm. The first iteration corresponds to a pure data-aided estimator. The signal to noise

ratio is set equal to Eb/N0 = 12dB and the different curves correspond to different number of

pilot symbols applied to provide initial estimates. Clearly, the initial estimate is rather crucial

to prevent the EM algorithm from converging to a local maximum of the cost function rather

than to the global maximum (ML or MAP solution). We observe a significant improvement

resulting from iterating between detector and estimator. The MAP estimator exhibits a lower

MSE than the ML estimator, since the former takes prior information into account about the

channel taps distribution, whereas the latter ignores this information. This also translates into

the BER plots from Fig. 4, which show the significant performance advantage of the MAP

estimator compared to the ML estimator.

5.3 Carrier frequency offset estimation

Next we consider the carrier frequency offset (CFO) estimation, assuming perfect knowledge of

the other parameters. In the simulation results, the initial estimate of the CFO is set equal to

zero, while the actual normalized CFO varies from zero to 0.5, i.e. the CFO takes on values up

to one half of the carrier spacing. Fig. 5 and 6 show plots of the MSE and BER, respectively,

as a function of the actual normalized CFO for Eb/N0 = 12dB. It is well-known that multi-

carrier systems are very sensitive to residual CFO’s [3,4]. This is confirmed in Fig. 6. The EM

algorithm, on the other hand, can recover the CFO in a satisfactory manner as long as the CFO

is smaller than 0.4 times the carrier spacing.

The improvement obtained from the iterative estimation may be even more pronounced in

Fig. 7, where the MSE is plotted as a function of the SNR, when all unknown parameters are

jointly estimated. In particular at high SNR values, the difference between no CFO correction

and EM estimation is substantial.

5.4 Frame synchronization

Finally, we consider frame synchronization, jointly with channel and CFO estimation. The

MSE of the normalized delay is shown in Fig. 8. Again the iterative estimator turns out to be

superior to its data-aided counterpart. The MSE of the delay renders only a partial view of the

behavior of ∆̂. Therefore, we take a look at the average ML cost function for the timing delay ∆
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at Eb/N0 = 12dB, illustrated in Fig. 9. For both data-aided estimation and EM estimation, the

cost function is maximized at ∆ = 23, which corresponds to the actual value of ∆. Furthermore,

we observe that the peak is much more pronounced when approaching from ∆ > 23, compared

to ∆ < 23. Hence, the probability to have a positive delay error, i.e. ǫ∆
.
= ∆̂ − ∆ > 0,

will be lower than the probability to encounter ǫ∆ < 0. Fig. 10 depicts the probability mass

function (pmf) of ǫ∆ after estimation and confirms the latter conjecture. Note that even at

Eb/N0 = 12dB, the frame synchronizer will make the wrong decision in about 50% and 2% of

the time for the data-aided and EM estimator, respectively. Fortunately, the situation where

ǫ∆ < 0 is not very critical. In fact, if L − ν < ǫ∆ < 0, the frame synchronization error will not

destroy the orthogonality among the subcarriers [5]. Furthermore, when ν ≪ ǫ∆ ≤ L − ν, no

large degradation is expected, since the first few channel taps carry most of the energy. On the

other hand, when ǫ∆ > 0, the estimate of h will not capture the dominant components, which

can have a severe impact on the detection performance. From Fig. 10, we see that the latter

situation occurs rarely with the data-aided and EM-based estimators.

To conclude the simulation results, we show the BER resulting from the joint ML estimation

of all parameters, in Fig. 11. As expected, the DA estimator gives rise to large degradations,

whereas the EM based estimator yields a close to optimal performance.

6 Conclusions

We have presented a novel Bayesian code-aided estimation algorithm for joint channel estimation

and synchronization for multi-carrier systems. Based on the EM algorithm, the receiver iterates

between data detection and estimation, with the exchange of soft information in the form of

a posteriori probabilities. Compared to a conventional data-aided algorithm, the code-aided

algorithm results in impressive gains in terms of mean squared error and BER performance.

Although the complexity of this estimator is large, we have described how the computational

load may be reduced in a practical set-up. For iterative detectors, the proposed algorithm can

be embedded in the iterative detection, which only gives rise to a fairly small overhead. The

proposed algorithm can easily be extended to any other (multi-user) multi-carrier system, as

long as a soft detector is available.
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