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We consider an overlay system where narrowband AM signals interfere with a broadband multicarrier system. To reduce the effect
of the AM narrowband interference on the multicarrier system, we propose a low-complexity algorithm to estimate the AM nar-
rowband interference. Analytical expressions for the performance of this estimator are derived and verified with simulations. The
performance of this estimator, however, degrades when the number of interferers increases. To improve the algorithm, we adapt it
such that the interferers are estimated in a successive way. The proposed estimators are able to produce accurate estimates of the
frequencies, and track the time-varying amplitudes of the AM signals. The estimators can reduce the power of the AM signal to a
level that is approximately 20 dB lower than the multicarrier power, independently of the AM signal power.
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1. INTRODUCTION

In aeronautical communication, nowadays narrowband
VHF signals are used for communication between the
ground station and the air carriers. Most of these VHF sig-
nals consist of analog dual-sideband amplitude modulated
(DSB-AM) signals for voice communication. However, as the
air traffic is constantly increasing, the available bandwidth is
fixed, and the used VHF signals are bandwidth inefficient, it
is expected that the available bandwidth resources will be in-
sufficient by the year 2015. Hence, an alternative bandwidth
efficient communication system has to be found. A technique
that combines a high bandwidth efficiency with a high flex-
ibility and immunity to dispersive channels is multicarrier
(MC) modulation [1]. The MC technique has been proposed
and/or standardized for various applications, like, for exam-
ple, ADSL [2], wireless LAN (hiperlan, IEEE 802.II) [3, 4],
digital audio, and video broadcasting [5, 6], and so forth.

In the B-VHF project [7, 8], a broadband multicar-
rier system was proposed for the 118–138 MHz aeronautical
band. In this cellular-based system, the overlay B-VHF sys-
tem has to coexist with the narrowband VHF legacy systems.
The B-VHF system is aware of the presence of the legacy sig-
nals and adapts its signal to keep the interference from the B-

VHF system to the legacy as small as possible and vice versa.
We can consider two types of interference from the legacy
systems to the B-VHF system: intracell interference, coming
from legacy systems that are located in the same cell as the B-
VHF system, and intercell interference, coming from legacy
systems from neighboring cells. Intracell interference is re-
duced by not using parts of the frequency band of the B-
VHF system where (possibly) narrowband legacy VHF sig-
nals reside. This frequency gap in the B-VHF spectrum not
only copes with the interference from the legacy systems to
the B-VHF system but also reduces the disturbance from the
B-VHF system on the legacy systems. In contrast with inter-
ference within the B-VHF cell, the B-VHF system does not
provide a frequency gap on frequencies used by legacy sys-
tems from other cells. Although the intercell interference is
typically weaker than intracell interference, the intercell in-
terference can strongly reduce the B-VHF performance [9].

In the literature, several techniques were considered to
reduce the effect of the AM interferers on the B-VHF perfor-
mance. In [10], the authors use time domain windowing to
reduce the spectral width of a B-VHF carrier to reduce the
out-of-band radiation from the B-VHF system to the legacy
systems. However, this technique also has the beneficial ef-
fect that the interference of the legacy system on the B-VHF
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system will be reduced as the spectral leakage is reduced: less
B-VHF carriers will be affected by the interference. However,
the performance gain that can be achieved in the B-VHF sys-
tem with this technique is rather small. An interference can-
cellation technique that estimates and subtracts the legacy
signals from the received signal is considered in [10]. The
technique uses the frequency gaps, where no B-VHF signal
is present, to estimate the interferers in the frequency do-
main. However, as this technique needs the presence of the
frequency gap, it is not able to eliminate interferers from
other cells. In this paper, we propose a novel algorithm to
estimate and cancel narrowband AM interferers from within
the B-VHF cell and from neighboring cells by using a low-
complexity time domain approach. The work in this paper is
an extension from our work in [11].

2. SYSTEM MODEL

The received signal r(t) at the receiver of the multicarrier sys-
tem consists of the useful multicarrier signal rMC(t), the sig-
nal rAM(t) caused by the AM interferers, and noise w (t):

r(t) = rMC(t) + rAM(t) +w(t). (1)

We assume that the bandwidth of the AM narrowband sig-
nal is small as compared to the coherence bandwidth of the
channel, so rAM(t) can be written as

rAM(t) =
L∑

l=1

Al
(
1 +mxl(t)

)
e j(2π fc,l t+θl), (2)

where L is the number of AM interferers, m the modulation
index, xl (t) the voice signal of interferer l, Al its amplitude,
fc,l its central frequency, and θl its phase. A typical value of
the modulation index for voice communication is m = 0.85.
The noise signal w (t) is assumed to be AWGN.

In the multicarrier system, the data is transmitted over
NMC subcarriers at a rate of 1/T . The time-domain signal of
the multicarrier system consists of the sum of contributions
of theNMC carriers. If the transmitted data symbols have zero
mean, and the number of carriers NMC is sufficiently large
(NMC ≥ 64), the time domain samples of the MC signal
can, according to the central limit theorem, be modelled as
zero mean Gaussian distributed. Because in the B-VHF sys-
tem the number of carriers equals 512 and zero mean data
symbols are transmitted, both conditions are fulfilled and, as
the scope of this contribution is the estimation of the AM
interference signals, the considered situation can be simpli-
fied by modelling the multicarrier signal rMC (t) as an extra
Gaussian distributed term. The received signal r (t) can be
rewritten as

r(t) = rAM(t) + w̃(t), (3)

where w̃(t) is the equivalent noise consisting of the AWGN
w(t) and the multicarrier signal rMC(t). The variance of this
equivalent (possibly colored) noise is denoted as σ2 and is
mainly determined by the MC power.

3. ESTIMATION OF THE AM INTERFERERS

In the MC system, the received signal is sampled at a rate 1/T .
To keep the overhead for the AM interference estimator as
small as possible, we want to estimate the AM signal samples
rAM (kT) using the available samples r (kT). The AM signal
samples can be rewritten as

rAM(kT) =
L∑

l=1

Ãl(kT)e j2π fc,lkT (4)

with Ãl (kT) defined as

Ãl(kT) = Al
(
1 +mxl(kT)

)
e jθl . (5)

The equivalent amplitudes Ãl(kT) are slowly varying func-
tions of the time index k because the bandwidth of the AM
signal is small as compared to the bandwidth 1/T of the mul-
ticarrier system. Hence, it follows from (4) that the param-
eters to be estimated are the number of interferers L, the
central frequencies { fc,l}, and the time-varying amplitudes
{Ãl (kT)}, l = 1, . . . ,L.

To estimate the number of interferers L and the cen-
tral frequencies { fc,l} of the interferers, an ad hoc algorithm
is considered. First, an N-point discrete Fourier transform
(DFT) is applied to a block of N samples of the received sig-
nal {r (kT) | k = 0, . . . ,N − 1}. This DFT can easily be im-
plemented as a fast Fourier transform (FFT). This results in

y(n) = 1√
N

N−1∑

k=0

r(kT)e− j2π(kn/N) = yAM(n) +W(n), (6)

where

yAM(n) = 1√
N

N−1∑

k=0

rAM(kT)e− j2π(kn/N) (7)

and W(n) is the noise component with zero mean and vari-
ance σ2.

We assume that the equivalent amplitudes {Ãl (kT)} are
approximately constant for k = 0, . . . ,N − 1. This implies
that, with respect to the determination of L and { fc,l}, we
approximate each narrowband AM interferer as a sinusoid
with frequency fc,l and amplitude Ãl (0). The DFT output
corresponding to the AM signal is then given by

yAM(n) ≈ 1√
N

N−1∑

k=0

L∑

l=1

Ãl(0)e j2π fc,lkTe− j2π(kn/N)

=
L∑

l=1

Ãl(0)DN

(
n

N
− fc,lT

)
,

(8)

where

DN (x) = 1√
N

N−1∑

k=0

e− j2πkx = 1√
N
e− jπ(N−1)x sin(πNx)

sin(πx)
. (9)

Figure 1 shows the function (1/
√
N)|DN (x)|. Note that this

function is periodic and shows a peak with maximum 1 for
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Figure 1: The function (1/
√
N)|DN (x)|, with N = 128.

integer values of x, while for noninteger values, the ampli-
tude sharply drops. For increasing N , the width of the peak
decreases while the value of (1/

√
N)|DN (x)| for noninteger

values of x decreases. We assume that the interferers are spec-
trally separated, that is, the peaks for the interferers do not
spectrally overlap. In most practical situations, this assump-
tion is fulfilled. For example, an analog voice signal has typ-
ically a bandwidth of about 8 kHz. In the aeronautical com-
munication system, the spectral separation between two AM
modulated voice signals is at least 25 kHz to avoid interfer-
ence between the AM signals. This assumption implies that
for n ≈ fc,lNT , the sum in (8) reduces to one term. There-
fore, the DFT output corresponding to the AM signal will
show peaks at the indices nl for which | fc,l − nl/NT| ≈ 0,
l = 1, . . . ,L.

The number of interferers L is determined by observing
the amplitude of the output of the DFT and by counting the
maxima. However, the presence of noise causes some peaks
to be invisible (when the power of the AM interferer is small)
or can introduce unwanted peaks. The inability to detect low-
power AM signals will have only a small influence on the per-
formance of the MC system, as such weak interferers only
slightly disturb the multicarrier signal. On the other hand,
estimation and elimination of an unwanted peak must be
avoided because this will distort the multicarrier signal. To
avoid this distortion, a threshold is introduced so that only
peaks larger than this threshold will be selected for estima-
tion and elimination. The threshold is selected such that the
probability of an unwanted peak is smaller than a predeter-
mined value that depends on the power of the multicarrier
signal. If we assume that the unwanted peak is caused by the
noise termW (n) only (no AM contribution is present), then
the probability that the amplitude of the noise contribution is
larger than the threshold α is given by Pr (amplitude noise >
α) = exp(−α2/σ2).

The above-mentioned method results in L̂ detected peaks
larger than the threshold. The index nl corresponding to the
lth detected peak yields a coarse estimate for the frequency of
the lth AM signal, l = 1, . . . , L̂. This estimate can be improved
by observing (8) and Figure 2 which shows the influence of
fc,l on the output of the DFT. For values of n close to nl, (8)

fc,lNT fc,lNT fc,lNT

|D
FT

(n
)|

nl − 1 nl nl + 1 nl − 1 nl nl + 1 nl − 1 nl nl + 1
n

nl − fc ,l NT = 0 nl − fc ,l NT > 0 nl − fc ,l NT < 0

Figure 2: Influence of fc,l on the output of the DFT.

reduces to Ãl (0)DN (n/N− fc,lT) because the contributions of
the other terms can be neglected. We can determine the shift
εl = nl/N− fc,lT by observing yAM(nl±1). The effect of Ãl (0)
can be eliminated by computing the ratios yAM (nl)/yAM(nl±
1). Taking into account the definition of DN (x) (9), these
ratios can be approximated by

yAM
(
nl
)

yAM
(
nl + 1

) = e− j(π/N) sin
(
π
(
εl + 1/N

))

sin
(
πεl

)

≈ e− j(π/N)

(
1 +

1
Nεl

)
,

(10)

yAM
(
nl
)

yAM
(
nl − 1

) = e+ j(π/N) sin
(
π
(
εl − 1/N

))

sin(πεl)

≈ e+ j(π/N)

(
1− 1

Nεl

)
,

(11)

where we assumed that εl is small. At the receiver side,
the samples yAM(n) are not available, so we define Δ±1 =
y (nl)/y (nl ± 1). The samples y (n) contain a noise compo-
nent, such that the estimation of εl is affected by the noise.
The effect of the noise on the estimate will be smaller when
the amplitude of yAM(nl ± 1) is larger, so we only use the
largest of the two DFT outputs |y (nl ± 1)| for estimating εl.
The estimate of the shift ε̂l can then be approximated by

ε̂l ≈

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
N
(
R
(
Δ+1e+ j(π/N)

)− 1
) if

∣∣Δ+1
∣∣ <

∣∣Δ−1
∣∣,

−1
N
(
R
(
Δ−1e− j(π/N)

)− 1
) if

∣∣Δ+1
∣∣ >

∣∣Δ−1
∣∣.

(12)

However, if nl ≈ fc,lNT , the estimated ε̂l will be unreliable
and can be larger than 1/(2N) because in that case yAM (nl ±
1) is close to zero, as can be seen from Figure 2, such that
y(nl ± 1) contains mainly noise. However, in this case, the
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coarse estimate is an accurate estimate, so when |ε̂l| >
1/(2N), no correction is applied and the frequency estimate
is given by

f̂c,l = nl
NT

. (13)

By increasing N , the coarse estimate can become more accu-
rate, as the difference | fc,l − nl/NT| < 1/NT decreases with
increasingN . However, we made the assumption that Ãl (kT)
is approximately constant over the N samples. When we in-
crease N , this assumption will not hold, such that the fine
estimates from (12) will become less reliable.

In this first step, we have determined the number of inter-
ferers L̂, and for each AM interferer, an estimate of the central
frequency f̂c,l has been obtained, l = 1, . . . , L̂. In the second
step, we estimate the amplitude of the lth AM signal with the
following estimator:

̂̃Al(nT) = 1
2K + 1

K∑

k=−K
r
(
(n + k)T

)
e− j2π(n+k) f̂c,lT . (14)

First, the lth AM signal is downconverted to its baseband
by multiplying the received signal samples with

exp(− j2πk f̂c,lT). The estimate of the amplitude of the
lth AM signal is obtained by averaging the resulting samples
over a (2K + 1) size sliding window. This averaging acts as a
lowpass filter with bandwidth 1/(2K + 1)T , which reduces
the effects of the noise and the contributions of the other
AM signals with frequencies f̂c,l′ − f̂c,l, so containing mainly
high-frequency components with respect to the window
size. The effects of noise and disturbing AM signals can be
further reduced by increasing K , which results in reducing
the bandwidth of the equivalent lowpass filter; but if the
bandwidth of the equivalent lowpass filter becomes smaller
than the bandwidth of the AM signals, which means that K
is selected too large, the sliding window will not be able to
track the fast variations of the wanted AM signals. Hence,
an optimal value of the window size can be found. Note that
a small estimation error of the central frequency fc,l will
result in a slow-time variation of the amplitude, which can
easily be tracked by the amplitude estimator (14). Hence, the
proposed algorithm is robust to small estimation errors of
the central frequency.

4. PERFORMANCE EVALUATION

In this section, we derive the mean square error (MSE) for
the amplitude, assuming perfect frequency estimation. This
assumption is valid because it will be shown in the numerical
results that the MSE for the frequency estimation is very low.
We assume that Al is real-valued and the real-valued voice
signal xl (t) has zero mean, l = 1, . . . ,L. We define Rl (t) as
the autocorrelation function and Sl ( f ) as the spectrum of
xl (t):

Rl(t) = E
[
xl(τ)xl(t + τ)

]
,

Sl( f ) = FT
(
Rl(t)

)
,

(15)

where FT(·) denotes the Fourier transform. The MSE of the
amplitude can be written as (see the appendix for the com-
putation)

σ2
Ãl

= A2
l m

2
∫ +∞

−∞
Sl( f )

(
FK ( f T)− 1

)2
df

+
L∑

l′=1; l′ /=l
A2
l′

((
FK
(
Δ fl′,lT

))2

+m2
∫ +∞

−∞
Sl′( f )

(
FK
((
f + Δ fl′,l

)
T
))2

df
)

+
σ2

2K + 1
,

(16)

where Δ fl′,l = fc,l′ − fc,l and

FK (x) = 1
2K + 1

K∑

k=−K
e j2πkx = 1

2K + 1
sin

(
π(2K + 1)x

)

sin(πx)
.

(17)

When the amplitude Ãl(nT) can be considered as constant
over the interval [(n − K)T , (n + K)T], l = 1, . . . ,L, that is,
for sufficiently small K , the MSE (16) reduces to

σ2
Ãl
= σ2

2K + 1
+

L∑

l′=1; l′ /=l
Pl′
(
FK
(
Δ fl′,lT

))2
, (18)

where we defined Pl = A2
l (1 + m2Rl(0)) as the power of the

lth AM signal.

5. SUCCESSIVE INTERFERENCE CANCELLATION

The second term in (16) implies that the estimation of the
amplitude of an AM interference signal is disturbed by the
presence of other AM signals. This disturbance increases with
increasing number of AM signals. Further, weak AM signals
will suffer more from the disturbance of other AM signals
(especially when the other AM signals are stronger) than
strong AM signals. Therefore, we propose to improve the per-
formance of the previous estimator by successively estimat-
ing and cancelling the AM signals. Based on the DFT outputs
of the frequency estimator, we rank the detected AM signals
from strong to weak.

First, an estimate of the amplitude of the strongest AM
interferer is obtained with the previously described sliding
window method. Then, this AM interferer is removed by sub-
tracting the estimated AM signal from the received signal
samples r (kT). Next, the amplitude of the second strongest
AM interferer is estimated with the sliding window method.
Hence, to estimate the amplitude of the lth AM signal, the
l − 1 stronger AM signals are canceled from the received sig-
nal and based on the resulting signal, an estimate of the am-
plitude of the lth AM signal is made using the sliding window
method. Successive interference cancellation results in better
estimates of the amplitudes of the AM interferers at the cost
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Figure 3: MSE and attenuation for one AM interferer (L = 1), Al =
1, N fc,lT = 10.76, m = 0.85, σ2 = −10 dB.

of a higher complexity: to estimateN values of the amplitude
of the weakest AM interferer, N + 2K successive modified re-
ceived signal samples are needed, which means that also an
estimate of the amplitude of the other L−1 AM interferers for
theseN +2K samples is needed. To estimate the amplitude of
the second weakest AM interferer, we need the estimate of the
previous L− 2 AM interferers in N + 4K successive samples.
The algorithm requires the estimate of the amplitude of the
strongest AM interferer in N + (L− 1)2K successive samples,
and to estimate the amplitude of the strongest AM interferer,
we need N + 2LK successive samples of the received signal.

6. NUMERICAL RESULTS

For the simulations, we consider an MC system with a sam-
pling rate of 1/T = 1/0.9375 μs and an FFT with length
N = 512. The voice signals xl (t) are generated with the B-
VHF voice signal generator [8]. The sum of the MC signals
and noise is generated as AWGN.

Figure 3 shows the MSE of the frequency estimate and
the amplitude estimate for the case of one AM interferer
(L = 1) with amplitude Al = 1 and the noise level equals
σ2 = −10 dB. The frequency estimator is very accurate as
the MSE of the frequency estimate is very low. The theoret-
ical expressions for the MSE of the amplitude (16) and (18)
are compared with the numerical results from the simula-
tions. We can see that the simulation results agree well with
the theoretical result (16) for all values of K . However, to
compute (16), the spectra of the AM signals Sl ( f ) must be
known which are not always available. If only the powers Pl
of the AM signals are available, expression (18) can be used.
This expression shows a good accordance with the simula-
tion results for sufficiently small window size K , where the
assumption that the time-varying amplitude Ãl (nT) is con-
stant over the window is valid. Figure 3 also shows the atten-
uation, which is defined as the difference between the power
of the AM signal after and before elimination. We notice that
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the attenuation almost coincides with the MSE of the esti-
mate of the amplitude which indicates that the estimation
errors of the frequencies can be neglected.

In Figure 4, the MSE of the frequency and amplitude esti-
mates are shown together with the attenuation for the case of
two AM interferers (L = 2). We can draw similar conclusions
as in Figure 3. The second AM signal affects the estimation
error: the MSE of the amplitude shows an oscillation. This is
caused by the second term in (16) and (18) because the func-
tion FK (Δ fl′,lT) is a periodic function with frequency Δ fl′,l.

Figure 5 shows the simulation results for the attenuation
of the AM signal obtained with the proposed estimator for
L = 1 (note that both methods for estimating the ampli-
tude of the AM interferer are the same if there is only one
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AM interferer to estimate) for different values of the MC sig-
nal plus noise level σ2. Theoretical results are also shown for
the cases of AM signal only (no noise present), correspond-
ing to the first term in (16), and noise only (no AM signal
present), corresponding to the last term in (16). The attenu-
ation is dominated by the noise for small values of K because
the time variation of the amplitude can be neglected. By in-
creasing K , the noise isbetter averaged out. The time varia-
tion of the amplitude becomes important for large values of
K because the estimator cannot track the fast variations of
the amplitude as the window size is too large: the AM sig-
nal is approximated by the estimator as a sinusoid with con-
stant amplitude. The optimum value of K depends on the
bandwidth of the AM signal and the noise level. We observe
that when the noise level decreases, the optimum value of K
also decreases because the noise averaging becomes less im-
portant than the time variation of the AM signal. Note that
the optimum value of the attenuation is approximately 20 dB
lower than the noise level σ2: the estimator is able to reduce
the AM signal power to roughly 20 dB below the power of
the MC signal.

In Figure 6, the two estimators for the amplitude of the
AM signals are compared in terms of the MSE of the am-
plitude estimate for the same situation as in Figure 4. The
simulation results indicate that successive interference can-
cellation gives rise to an MSE that is 3 dB below the MSE for
the sliding window method in this case.

Figure 7 shows the influence of the threshold on the at-
tenuation for the case of one AM interferer (L = 1) for dif-
ferent values of σ2. At low values of the threshold, the proba-
bility of a false detect increases, as more unwanted peaks are
detected. This causes a distortion of the MC signal, resulting
in performance degradation. At high values of the threshold,
the probability of a false miss, that is, the inability to detect
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Figure 7: Attenuation for one AM interferer (L = 1), Al = 1,
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a peak, increases. When no AM signal is detected, it can also
not be eliminated, resulting in a reduction of the average at-
tenuation that can be obtained. We can see that a good choice
of the threshold minimizes the attenuation independently of
σ2.

Now we consider an OFDM system with 512 carriers in
two cases. In both cases, we consider a frequency gap of M
carriers to cope with a possible interferer within the B-VHF
cell, so only N −M carriers are filled with data symbols. This
means that the average transmitted power per sample is re-
duced to POFDM = ((N − M)/N)Es. The power of the AM
interferer is approximately given by PAM � A2, so the signal-
to-interference ratio (SIR) is defined as ((N−M)/N)(Es/A2).
In both cases, we assume one interferer is present. In the
first case, the AM interferer is located within the B-VHF cell,
and the M unused carriers of the B-VHF system are centered
around this interferer. In Figure 8, the BER is shown for the
OFDM system with and without interference cancellation for
an SIR � −20 dB (dashed lines). The BER for BPSK modu-
lation is also shown which serves as a lower bound for the
BER of the considered OFDM system. The performance of
the OFDM system with interference cancellation is close to
optimum for a wide range of Es/N0 and has a gain of 5 dB
compared to the OFDM system without interference can-
cellation. For the higher Es/N0, there exists an error floor as
the proposed algorithm cannot eliminate the fast changes of
the AM interferer. In the second case, also shown in Figure 8
(solid lines), all interferers within the B-VHF cell are inac-
tive, and only one AM interferer from a neighboring cell is
present, having an SIR � −20 dB. This interferer is located
outside the frequency gap of M carriers. The performance
of the OFDM system is reduced, but performing interference
cancellation still gives (in this figure) a gain of 3 dB compared
to an OFDM system without interference cancellation. The
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Figure 8: BER for an OFDM system (Es = 1, N = 512, M = 12) in
the presence of 1 interferer (A = √100).

error floor is close to 10−3 which is the target BER for voice
communication. This error floor is caused by the fact that
the data symbols transmitted on the carriers close to the cen-
tral frequency of the AM interferer are destroyed. In our case
(SIR � −20 dB), the side lobes of the AM interferer (after
cancellation) are weaker than the OFDM signal, but the cen-
tral frequency is strong enough to disturb the OFDM signal.
This results in the 2 carriers closest to the central frequency
of the AM interferer to be lost, so the BER floor is approxi-
mately given by 2/(512− 12)× 1/2 = 2.10−3. Decreasing the
SIR will cause the sidelobes of the AM interferer to become
more important which results in a higher BER floor as more
carriers will possibly be destroyed.

7. CONCLUSION

In this paper, we have proposed two AM signal estimators,
that is, the sliding window estimator and the successive inter-
ference cancellation algorithm, to reduce the effect of the AM
interference in an overlay multicarrier system. Both estima-
tors use the same frequency estimation method but differ in
the way in which the time-varying amplitudes of the AM sig-
nals are estimated. For the sliding window estimator, we have
derived the MSE of the amplitude estimate in an analytical
way. Simulation results confirm the theoretical expressions.
Simulations also indicate that the attenuation is independent
of frequency estimation errors, but is mainly determined by
the amplitude estimation errors. An attenuation of the AM
signal of approximately 20 dB below the multicarrier signal
power can be obtained. For more than one AM interferer, the
successive interference cancellation algorithm outperforms
the sliding window estimator in terms of attenuation. Fur-
ther, the numerical results show that the OFDM system with
interference cancellation has a considerably lower BER com-

pared to an OFDM system without interference cancellation.
If we would combine the proposed algorithm with the time
domain windowing from [10], this would result in an extra
performance improvement: the BER of the OFDM system
will slightly decrease.

APPENDIX

A COMPUTATION OF σ2
ÃL

Starting from (14) and using (3) and (4), the estimate
̂̃Al (nT) can be rewritten as

̂̃Al(nT) = 1
2K + 1
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K∑
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(
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)
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1
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)
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(A.1)

and the MSE of the estimate of Ãl (nT) is defined as

σ2
Ãl
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. (A.2)

This MSE can be written as a sum of three components:
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Ãl′
(
(n+k)T

)
e j2π(n+k)( fc,l′− fc,l)T

∣∣∣∣∣

2⎤
⎦

+ E

⎡
⎣
∣∣∣∣∣

1
2K + 1

K∑

k=−K
w̃
(
(n + k)T

)
∣∣∣∣∣

2⎤
⎦ .

(A.3)

The first component can be rewritten as

E

⎡
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(A.4)

where we used the definition of Ãl (nT) (5) and the defini-
tion of Rl (k) (15). Using the relationship between Rl (k) and
Sl (k), this result can be rewritten as
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(A.5)

where FK (x) is defined in (17).
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The second term of (A.3) can be written as
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Exploiting (15) and (17) yields that
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The third component of (A.3) is the noise term and can easily
be found to be

E

⎡
⎣
∣∣∣∣∣

1
2K + 1

K∑
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(
(n + k)T
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Collecting the results of (A.5), (A.7), and (A.8) yields (16).
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