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A B S T R A C T

In this work, a set of general expressions treating both transmitter and receiver tilt in received
signal strength based visible light positioning is elaborated. A meticulous approach involving
Euler rotations leads to a compact expression for the modified channel gain that can be inter-
preted graphically. It is demonstrated that ignoring even small tilt angles can easily result in a
bias of the planar positioning estimation in the order of several tens of centimeters in realistic
settings. As a result, it is important to take into account the receiver and transmitter tilt for
obtaining highly accurate indoor localization by means of received signal strength based visible
light positioning. Based on the modified channel gain, a simple and accurate rule-of-thumb is
formulated, allowing to determine the worst-case planar position errors when tilting angles are
ignored.

1. Introduction

The topic of accurate indoor positioning has been investigated for several decades [1]. Multiple signals of different nature are
hereby analysed. A majority of the research efforts can be found in the usage of ubiquitous radio frequency (RF) signals emitted by
WiFi, Bluetooth or other RF communication technologies [2]. More recently though, a technique based on the modulation of artificial
visible light has emerged, exploiting the omnipresence of indoor illumination infrastructures [3,4]. Several papers on the potential
accuracies [5–8] and multiple access techniques [9] of this novel technique, called Visible Light Positioning (VLP), have been
published. In a large majority of these publications, the signal transmitting light emitting diode (LED) is pointing perfectly down-
wards while the receiving photo diode (PD) is oriented upwards. In reality though, one can imagine that this situation is more an
exception than a rule. Regarding the LED, attachment of this device at the ceiling or on a dedicated rail can easily introduce a small
tilt due to the mechanical fixation. Recent work [10] has studied the impact of transmitter tilt on the position estimation, where tilt
angles of 1 and 2 degrees were considered. At the receiver side, the time-varying presence of small tilts is obvious, even if the PD is
attached on the roof of e.g., a forklift truck. When the vehicle is charged with a large weight, one can imagine that the roof becomes
tilted towards the increased weight lifted by the arms of the truck. In [11], error compensation for receiver tilt was considered. The
particular application scenario that needs highly accurate positioning is the localization of autonomous guided vehicles (AGV) in
indoor premises. Considering the width of the corridors in warehouses and the observation that multiple AGVs maneuver in these
premises, an accuracy of sub 10 cm is needed.

In previous work, the tilting impact on the channel gain in received signal strength (RSS) ranging-based VLP was quantified [12].
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Here, the impact on the planar position estimation bias in the presence of both transmitter and receiver tilt is evaluated. In Section 2,
the modification of the channel gain is elaborated. In Section 3, the planar distance estimation under tilting conditions is analysed
and numerically evaluated. A closed-form expression for the planar position is found. Multiple representative configurations are
studied, including tilting of the receiver and transmitter, leading to a positioning error value when these tilt angles are not taken into
account. This has led to a simple and generally applicable rule-of-thumb for the maximum mean absolute error.

2. System description

To determine the distance between an LED and the PD, we evaluate the RSS. The RSS signal at the PD output is given as [6]

= +r t R αs t n t( ) ( ) ( ),p (1)

where Rp is the responsivity of the PD, α the channel gain, s t( ) the transmitted optical power signal during a time slot with durationTs
and n t( ) the additive noise contribution. This noise is typically modelled as zero-mean Gaussian noise with power spectral density N0.
From the received signal, we extract an RSS value, by correlating r t( ) with s t( ) in the interval T[0, ]s . Assuming perfect synchroni-
zation, the RSS value yields

= +r R αP n,p s (2)

where ∫=P s t t( )ds
T

0
2s , and the noise term ∫=n s t n t t( ) ( )dT

0
s is zero-mean Gaussian noise with variance N Ps0 . In this work, we will

not include the noise contribution since the focus is on the modification of the channel gain and planar distance estimation when the
transmitter and receiver are tilted. The observation that the precision deterioration due to noise of the position estimation is very
limited [13,14] further motivates this choice. In (2), the channel gain when the receiver is in line-of-sight of the transmitter without
any other contribution (e.g., reflections by walls) can be written as

= +α m A
πd

ϕ ϕ T ϕ g ϕ( 1)
2

cos cos ( ) ( ),m
S R R R2 (3)

where A is the surface of the PD, m is the Lambertian order of the LED, d is the Euclidian distance between the LED and the PD,T ϕ( )R
is the signal transmission gain, and g ϕ( )R the concentrator gain [15]. Further, the angles ϕS and ϕR correspond to the angle of
radiation and the angle of incidence, respectively and are defined as in Fig. 1; ϕcos S and ϕcos R are found by

= −ϕ
d

n r rcos ·S S
R S

(4)

= −ϕ
d

n r rcos ·R R
S R

(5)

where nS and nR are the unit normal vectors of the LED and photo diode. In Fig. 1, the global coordinate system (GCS) that is linked to
the room is introduced. The vectors rS and rR are the location vectors of respectively the transmitting LED and receiving PD. In (3),
the concentrator gain can be written as

Fig. 1. The transmitting LED is situated at = x y zr ( , , )S S S S , while the receiving photodiode at = x y zr ( , , )R R R R .
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where nc is the refractive index of the concentrator, and ψc the concentrator field-of-view (FOV) semi-angle. Note that within the FOV
of the PD, the concentrator gain is constant. Further, also the signal transmission gain can be modelled as a constant. Hence, we can
rewrite the channel gain as

= ≤α
γ
d

ϕ ϕ ϕ ψcos cos , for ,m
S R R c2 (7)

where the prefactor = +γ T ϕ g ϕ( ) ( )m A
π R R

( 1)
2 is constant for ≤ϕ ψR c.

From (2) and (7), it follows that the RSS value depends on the distance d through the channel gain. This channel gain is in inverse
proportion to d2, but further depends on the distance and orientation through the angles ϕS and ϕR. In order to determine the
relationship between ϕR, ϕS and d, we introduce two additional coordinate systems: (i) the LED-centric coordinate system (LCS)

′ ′ ′x y z( , , ), and (ii) the receiver-centric coordinate system (RCS) ″ ″ ″x y z( , , ). To obtain the relationship between the different co-
ordinate systems, we define the orientations of the LED and PD through the Euler angles, i.e. for the LED, we have the Euler angles set

=ψ ψ ψ ψ( , , )S S S S,1 ,2 ,3 , and for the PD the set =ψ ψ ψ ψ( , , )R R R R,1 ,2 ,3 , where the first and third angle correspond to a rotation around the
z-axis, and the second angle to a rotation around the y-axis. The LCS coordinates are obtained by applying the rotations ψS to the GCS
coordinate system, with as center the LED with GCS coordinates = x y zr ( , , )S S S S :

′ = −r M M M r r( ),ψ ψ ψ SS S S,3 ,2 ,1 (8)

where = x y zr ( , , ) are the coordinates in the GCS, and ′r the coordinates in the LCS. It is clear that based on (8), ′ =r 0S . The rotation
matrices are given by

=
⎛

⎝
⎜
⎜

−
⎞

⎠
⎟
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=

=
⎛
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(9)

Similarly, the RCS coordinates are obtained by applying a rotation to the GCS, but now with as center the PD, having GCS coordinates
= x y zr ( , , )R R R R :

″ = −r M M M r r( ),ψ ψ ψ RR R R,3 ,2 ,1 (10)

where ″ = ″ ″ ″x y zr ( , , ) are the coordinates in the RCS, and the transformation matrices MψR i, are defined similarly as (9). Here, ″ =r 0R

is valid. The angles ψS i, and ψR i, are chosen so that =′u nz S and =″u nz R, where ′uz and ″uz are the unit vectors of the ′z and the ″z

Fig. 2. Geometric interpretation of ′zR and ″zS .
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axis, respectively. Let us denote ′zR as the ′z -value of the receiver in the LCS coordinate system and ″zS as the ″z -value of the LED in the
RCS coordinate system. The geometric interpretation of ′zR and ″zS is shown in Fig. 2.

Using these coordinate systems, we can obtain the expressions for ϕcos S and ϕcos R, corresponding to the definition of these
angles in Fig. 1:

=
′

=
″

ϕ
z
d

ϕ
z
d

cos

cos .

S
R

R
S

(11)

where = − = ′ − ′ = ″ − ″d r r r r r r|| || || || || ||S R S R S R
2 2 2 2. Note that, when ′ <z 0R , the PD will not receive a signal as the LED does not

radiate at angles ϕS outside the interval ° °[0 , 90 ]. Hence, =α 0 if ′ <z 0R . Further, when ″ <z 0S , the LED will be out of the FOV of the
PD. Hence, =α 0 if ″ <z 0S . Moreover, the concentrator gain is zero if >ϕ ψR c, which can be rewritten as ″ ≥z d ψcosS c. As the half-
angle ∈ ° °ψ [0 , 90 ]c , it follows that ≥d ψcos 0c , which implies ″ ≥ =z d ψ d ψmax(0, cos ) cosS c c, i.e. the concentrator gain limits ″zS .
Taking this into account, we obtain

= ′ ″
+α γ

d
z z1 ( ) ( ),m R

m
S3 (12)

for ′ ≥z 0R and ″ ≥z d ψcosS c. The values ′zR and ″zS still depend on the distance d between the LED and the PD. Therefore, we take a
closer look at these terms. First we recall that ′ =r 0S and ″ =r 0R . Further, we denote = −h z zS R as the vertical distance between the
LED and the PD in the GCS, and = = −h ϕ d hΔ tan 2 2 as the horizontal distance, and define the rotation angle φ:

− =
− =

x x φ
y y φ

Δ cos
Δ sin ,

S R

S R (13)

where ϕ and φ are defined as shown in Fig. 1. Elaborating (8) and (10) results in

′ = − − −
″ = − +

z ψ ψ φ h ψ
z ψ ψ φ h ψ

Δ sin cos( ) cos
Δ sin cos( ) cos .

R S S S

S R R R

,2 ,1 ,2

,2 ,1 ,2 (14)

To demonstrate the symmetry between the effects of the transmitter and receiver orientation and to simplify the interpretation of the
results, we introduce the supplementary angle ψ̄S,2 of ψS,2 (i.e. + = °ψ ψ¯ 180S S,2 ,2 ).1 The following expressions for ′zR and ″zS are
obtained:

′ = − − +
″ = − +

z ψ ψ φ h ψ
z ψ ψ φ h ψ

Δ sin ¯ cos( ) cos ¯

Δ sin cos( ) cos .
R S S S

S R R R

,2 ,1 ,2

,2 ,1 ,2 (15)

Hence, the condition ′ ≥z 0R can be rewritten as

≤
−h ψ ψ φ

Δ 1
tan ¯ cos( )S S,2 ,1 (16)

and ″ ≥z d ψcosS c as

− ≥ −
h

ψ φ d
h

ψ
ψ ψ

Δ cos( )
cos

sin
1

tan
,R

c

R R
,1

,2 2 (17)

which, depending on the sign of −ψ φcos( )R,1 , results in an upper or lower bound for hΔ/ .
We notice that the channel gain, and thus the RSS value, is independent of the Euler angles ψS,3 and ψR,3. This is explained as

follows. Recall that the distance d is independent of the considered coordinate system. Hence, the channel gain depends on the
orientation of the LED and PD through their z-coordinates in the LCS and RCS only. As the last Euler angle corresponds to a rotation
around the z-axis, it does not alter this z-coordinate. Therefore, without loss of generality, we can set = = °ψ ψ 0S R,3 ,3 . In Fig. 3, the
followed procedure for transforming the channel gain α is shown.

3. Planar distance estimation

3.1. Analysis

Under conditions (16) and (17), one can thus write down the value of the channel gain α that takes into account the tilting of the
transmitter and receiver:

=
− − + − +

+
+α γ

ψ ψ φ h ψ ψ ψ φ h ψ

h

( Δ sin ¯ cos( ) cos ¯ ) (Δ sin cos( ) cos )

(Δ )
S S S

m
R R R

m
,2 ,1 ,2 ,2 ,1 ,2

2 2 3
2 (18)

1 Remark that we work with angular degrees, where °180 corresponds with π radians.
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Obviously, when = = °ψ ψ¯ 0S R,2 ,2 , the channel gain equals the well-known expression

= =
+

= = °
+

+α α γ h

h
|

(Δ )
ψ ψ

m

m0 ¯ 0
1

2 2 3
2

S R,2 ,2
(19)

Knowledge of α0 (19) easily leads to a value of Δ since h is known. However, when we consider (18), finding an exact value for Δ with
known parameters ψ̄S,2, ψR,2, ψR,1, ψS,1 and φ is clearly less straightforward. Nevertheless, by means of a numerical approach, de-
termining the exact Δ still turns out to be feasible (e.g., we used the scipy.optimize.minimize [16] functionality for this purpose).

An interesting study is to evaluate the planar position estimation when it is erroneously supposed that both ψ̄S,2 and ψR,2 are
perfectly equal to °0 , while in reality, this is not the case. When the receiver measures α when neither the transmitter nor the receiver
are tilted ( =α α0), based on (19) and knowledge of h, we obtain the planar distance Δ by means of

⎜ ⎟+ = ⎛
⎝

⎞
⎠

+ +
h

γh
α

Δ
m

2 2
1

0

m
2

3

(20)

Suppose however, that the user is not aware that the transmitter and/or receiver are tilted, and measures α from Eq. (18). Following
the same procedure, the distance Δ will be estimated as Δ̂, where the following expression is valid:

⎜ ⎟
+
+

= ⎛
⎝

⎞
⎠

= ⎛
⎝ ′ ″
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(21)

Obviously, we are particularly interested in the planar position estimation error, defined as = −ε Δ̂ ΔΔ , that is being made for various
tilt angles. Based on (21), this leads to

⎜ ⎟= ⎛
⎝ ′ ″

⎞
⎠

+ − −
+ +

ε h
z z

h h
( ) ( )

(Δ ) Δ
m

R
m

S

m
Δ

1
2

3
2 2 2

(22)

An interesting observation that can be made is that εΔ does not depend on the signal levels (note, noise is not included in the model) or
γ , and is solely determined by the geometrical parameters and the order m of the Lambertian radiator. Secondly, it is observed that
for =m 1, the importance of the receiver tilt ( ″zS ) is the same as the transmitter tilt ( ′zR). For higher values of m (and thus more
directive beams), the tilting of the transmitter has a higher weight in the overall planar position error than the receiver tilt. It is clear
that εΔ is a value that depends on multiple parameters: Δ, φ, ψ̄S,2, ψS,1, ψR,2, ψR,1, h and m. In what follows, a procedure to reduce the
complexity of the approach is elaborated, leading to a practical rule of thumb for the planar estimation error under receiver and/or
transmitter tilt for various heights h and Lambertian orders m.

3.2. Numerical example

In this subsection, we will numerically determine the distribution of the planar offset εΔ for a representative set of tilting angles
(ψ̄S,2 and ψR,2). We simulated the following configuration (see Fig. 1), where = =x y 0S S and =z hS , with h equal to 6m, which is a
representative value for larger facilities such as a warehouse. Initially, a value of =m 1 as Lambertian order of the transmitting LED is
applied. In order to suppress the influence of the concentrator field-of-view semi-angle ψc, we have chosen this value equal to °90 . The
receiver is positioned in the xy-plane ( =z 0), with Δ varying between 0 and +1.5h and φ between 0 and °360 . The location of the
receiver is thus in a circular area with as center the xy position of the LED and radius 1.5h. A rotational symmetric observation area
was chosen in correspondence with this property of the configuration. Remark that we did not consider any noise contribution, i.e.,

Fig. 3. Flow chart summarizing the transformation of the channel gain α.
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the resulting bias values are completely due to the fact that tilting is not taken into account in the estimation process. Since
= =x y 0S S and taking into account (13), it is clear that the positive x -axis corresponds to = °φ 180 and the positive y-axis corre-

sponds to = °φ 270 .
As a first configuration, we consider a receiver tilt ψR,2 of °1 , with ψR,1 equal to °45 , while there is no transmitter tilt ( = °ψ̄ 0S,2 ).

This means that the receiver is directed to the LED when x and y are negative. Therefore, we expect that the planar distance will be
underestimated in this third quadrant. The result is shown in Fig. 4, confirming the underestimation of the planar distance in the third
and overestimation in the first quadrant. Another observation is that even a small tilting angle of °1 introduces position biases up to
10 cm, which is quite substantial, when the tilt effect is not taken into account. The value of ψR,1 is not critical here, since it only
determines the direction of the receiver tilt.

In the second example, we focus on a configuration where we have a transmitter tilt ψ̄S,2 of − °1 and a receiver tilt ψR,2 of °2 , for
some randomly chosen values of ψS,1 and ψR,1. When the user is not aware of the receiver (ψR,2) and transmitter tilt (ψ̄S,2), obviously,
the direction (ψS,1 and ψR,1) of these tilting angles is also unknown. In Figs. 5–7, the distribution of the planar offset εΔ for identical
tilting angles ψ̄S,2 and ψR,2, Lambertian order ( =m 1) and height ( =h 6 m) is shown. The range of errors clearly depends on the angles
ψS,1 and ψR,1, which can be observed by considering the maximum values of εΔ.

3.3. Complexity reduction

When considering previous figures, it is clear that the distribution of the planar offset εΔ depends on a large set of parameters. In
this subsection, we will, based on the sequential reduction of parameters, construct a simple and accurate rule-of-thumb, allowing the
estimation of the planar position error when tilting is ignored.

The first step is to identify a single parameter for each distribution. Therefore, the expectation of ε| |Δ , known as the mean absolute
error (MAE), is defined as in (23), with ε̄Δ expressed in cm.

� ∮= =
= <

ε ε
S

ε¯ {| |} 1 | | dS
S hΔ Δ {Δ 1.5 } Δ (23)

Fig. 4. The planar offset εΔ as function of ≤ hΔ 1.5 and ≤ < °φ0 360 for =h 6 m, =m 1, = °ψ̄ 0S,2 , = °ψ 1R,2 and = °ψ 45R,1 .

Fig. 5. The planar offset εΔ as function of ≤ hΔ 1.5 and ≤ < °φ0 360 for =h 6 m, =m 1, = − °ψ̄ 1S,2 , = °ψ 2R,2 , = °ψ 0S,1 and = − °ψ 45R,1 .
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Due to this receiver position surface integration, the parameter space is reduced (integration over Δ and φ), but the MAE ε̄Δ still
depends on ψ̄S,2, ψR,2, ψS,1, ψR,1, h and m. Let us consider ε̄Δ as a function of h taking previous distributions of Figs. 5–7 as re-
presentative examples. The result is shown in Fig. 8. Remark that a height h of 0m has no practical meaning but it is useful to include
in the model in order to perform an accurate fitting. The trend suggests a linear dependency on h, with an offset equal to 0m. This
was mathematically confirmed: a linear least-squares regression leads to an interception with the h-axis at =h 0 m and a correlation
coefficient of 1, and this for all possible tilting angles. Consequently, (24) is valid, where β is the slope of the linear dependency
expressed in cm/m.

Fig. 6. The planar offset εΔ as function of ≤ hΔ 1.5 and ≤ < °φ0 360 for =h 6 m, =m 1, = − °ψ̄ 1S,2 , = °ψ 2R,2 , = − °ψ 30S,1 and = °ψ 120R,1 .

Fig. 7. The planar offset εΔ as function of ≤ hΔ 1.5 and ≤ < °φ0 360 for =h 6 m, =m 1, = − °ψ̄ 1S,2 , = °ψ 2R,2 , = °ψ 60S,1 and = °ψ 180R,1 .

Fig. 8. The MAE ε̄Δ as function of h for the tilting angles = − °ψ̄ 1S,2 and = °ψ 2R,2 of Figs. 5–7.
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=ε ψ ψ ψ ψ m h β ψ ψ ψ ψ m h¯ ( ¯ , , , , , ) ( ¯ , , , , )·S R S R S R S RΔ ,2 ,2 ,1 ,1 ,2 ,2 ,1 ,1 (24)

Fig. 8 demonstrates that the slope value β strongly depends on ψS,1 and ψR,1. Therefore, for each value of ψ̄S,2 and ψR,2, we have
determined the maximum value of β, called βmax :

=β ψ ψ m β ψ ψ ψ ψ m( ¯ , , ) max { ( ¯ , , , , )}S R ψ ψ S R S Rmax ,2 ,2 , ,2 ,2 ,1 ,1
S R,1 ,1 (25)

βmax is the highest possible and thus worst-case slope, given the tilting angles ψR,2 and ψ̄S,2. In Fig. 9, the slope βmax is shown for =m 1.
We performed a curve fitting on this distribution, and found

= ≈ +β ψ ψ m ψ ψ( , ¯ , 1) 0.633177(| | | ¯ |)R S R Smax ,2 ,2 ,2 ,2 (26)

where βmax has the unit cm/m, with ψ̄S,2 and ψR,2 expressed in degrees. In Fig. 10, the difference between the numerical obtained
values and approximation (26) is shown. Remark that in Fig. 10, the distribution is expressed in mm/m. Clearly, the model is very
accurate and can be used to assess βmax for various tilt angles.

Let us illustrate the usefulness of the model as described by (26). Suppose that the transmitter is tilted over − °1.5 and the receiver
is tilted °1 , where the height h equals 4m. Applying (26) leads to a value for ° − °β (1 , 1.5 , 1)max of approximately 1.583 cm/m.
Considering a height h of 4m, we find that the highest and thus worst-case mean absolute error in a circular plane right below the
LED with radius of 6m (= h1.5 ) is 6.33 cm. By means of (26), assessment of this value is straightforward.

The procedure can be extended for transmitters with ≠m 1. This is illustrated in Fig. 11, where the distribution β ψ ψ( , ¯ )R Smax ,2 ,2 is
shown for =m 2. Clearly, the interchangeability of ψR,2 and ψ̄S,2 as in Fig. 9 is no longer applicable. This is easily explained by
relationship (20), where for ≠m 1, the symmetry between ′zR and ″zS is broken. As a consequence, relationship (26) can be generalized
by

= ≈ +β ψ ψ m a ψ b ψ( , ¯ , 1) | | | ¯ |R S R Smax ,2 ,2 ,2 ,2 (27)

where the expansion coefficients a and b are expressed in cm/(° m). In Table 1, these coefficients are shown. One clearly sees that the
value of b, thus the importance of the transmitter tilt increases when the Lambertian order m becomes larger, fully in correspondence

Fig. 9. The slope βmax as function of ψR,2 and ψ̄S,2 for =m 1.

Fig. 10. − +β ψ ψ0.633177(| | | ¯ |)max R S,2 ,2 as function of ψR,2 and ψ̄S,2 for =m 1.
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to the mth power of ′zR in (21). With the coefficients as tabulated, a similar model accuracy as with =m 1 from Fig. 10 was obtained.
To illustrate, when we take the same tilt angles as for the case =m 1, i.e. = °ψ 1R,2 and = − °ψ̄ 1.5S,2 , and height =h 4 m, we obtain for

=m 2 a worst-case MAE of 8.12 cm, which is significantly higher compared to the =m 1 case.

4. Conclusions

In this work, we elaborated and applied general expressions for two-dimensional RSS-based visible light positioning solutions
when tilting of the receiver and transmitter is applied. Of particular interest is the configuration where only small tilt angles occur,
while the procedure to estimate the planar position neglects this tilt. It is demonstrated that the introduced position estimation bias
depends solely on the geometrical parameters and the order of Lambertian radiator. Moreover, even when slight tilting occurs, values
of more than 10 cm as bias are realistic. As a consequence, it is of utmost importance to take into account any possible tilting when
accurate indoor positioning by means of RSS-based VLP is used, especially for configurations where the transmitting LEDs are
attached to high ceilings such as in warehouse environments.

Analysis of the different configurations led to a useful and straightforward applicable rule-of-thumb that can be used for any
height, allowing to determine the maximal mean absolute error when receiver and transmitting tilt are ignored.
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