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Abstract— In this contribution, we investigate the effect of
imperfect channel estimation on the bit error rate (BER)
performance of multiple-input multiple-output (MIMO) systems
employing Alamouti’s code. The propagation channels from both
transmit antennas to each of theNr receive antennas are assumed
to be affected by (possibly correlated) flat block fading with an
arbitrary fading distribution. The transmitted symbols belong to
a pulse amplitude modulation (PAM) or quadrature amplitude
modulation (QAM) constellation. The mismatched maximum-
likelihood (ML) receiver makes use of a least-squares or linear
minimum mean-square error (MMSE) channel estimate, obtained
from known pilot symbols sent among the data.

The resulting average BER for QAM transmission can easily be
written as an expectation over8Nr real-valued random variables,
but the computing time needed for its numerical evaluation
increases dramatically with Nr. We point out that the BER can
be expressed in terms of the distribution of the Frobenius norm
of the channel matrix, rather than the joint distribution of all
channel coefficients. This allows to reduce the BER expression
for any number of receive antennas to an expectation over only
6 random variables, which can easily be computed numerically.
Moreover, we show that for real-valued constellations and/or real-
valued channels, the BER expression reduces to an expectation
over less than6 variables. For BER levels of practical interest,
the numerical evaluation of the BER is much less time-consuming
than a straightforward computer simulation. The presented BER
expression is useful not only when the fading distribution is given
in closed form, but also when only experimental data (e.g. a
histogram) on the fading are available.

I. I NTRODUCTION

The performance of wireless communication systems is
strongly affected by small-scale fading. To combat this detri-
mental phenomenon, several diversity techniques have been
proposed to provide the receiver with independent replicas
of the signal. Spatial diversity is achieved by using multiple
antennas at the transmitter and/or receiver side. These so-
called multiple-input multiple-output (MIMO) communication
systems can achieve a maximum diversity order ofNtNr

(with Nt and Nr denoting the number of transmit and re-
ceive antennas, respectively), provided that proper space-time
coding is used. In 1998, Alamouti invented a simple coding
scheme for data transmission using two transmit antennas [1],
with the remarkable benefit that the maximum-likelihood (ML)
decoding algorithm reduces to symbol-by-symbol detection,
based only on linear processing at the receiver. Tarokhet
al. generalized Alamouti’s scheme to an arbitrary number of

transmit antennas by introducing the concept of orthogonal
space-time block coding [17], [18]. As the orthogonal space-
time block codes (OSTBCs) achieve full spatial diversity, and
require only linear processing at the receiver, these codes
are a very attractive transmit diversity technique. Under the
assumption of perfect channel knowledge (PCK), the bit
error rate (BER) performance of OSTBCs has been studied
extensively in e.g. [4], [9], [10] and [11].

In practical wireless applications, however, the receiverhas
to estimate the channel response, which inevitably results
in a performance penalty. Most often, the investigation of
the resulting performance has been carried out under the
assumption of Rayleigh fading: an analytical expression for
the BER of OSTBCs in case of minimum mean-square error
(MMSE) channel estimation was derived in [8]; in [15],
analytical BER expressions as well as the tight Chernoff bound
were given for orthogonal space-time block coded systems
employing M -ary phase-shift keying (M -PSK) modulation;
high-SNR expressions for the pairwise error probability (PEP)
were derived in [2] for quite general STBCs with coherent
and noncoherent receivers, using an eigenvalue approach; in
[5], an exact closed-form expression for the PEP of both
orthogonal and non-orthogonal space-time codes in the case
of least-squares channel estimation was obtained by means
of characteristic functions. However, from the PEP one can
compute only an upper bound on the BER, which in a fading
environment does not converge to the true BER at high SNR.
In [6], expressions for the exact decoding error probability
(DEP) were presented for the case of square OSTBCs on
arbitrary fading channels, but the analysis is restricted to PSK
constellations.

In this contribution, we provide an exact BER analysis for
Alamouti’s code with pulse amplitude modulation (PAM) or
quadrature amplitude modulation (QAM) constellations on ar-
bitrary flat-fading channels with imperfect channel estimation
(ICE). In section II we describe the observation model which
includes the2Nr arbitrary fading channels. Section III presents
a linear pilot-based channel estimation method (with the well-
known least-squares estimation and linear MMSE estimation
as special cases), and derives the statistical properties of the
channel estimate. The mismatched ML receiver is briefly
outlined in section IV. The main part of our contribution
is in section V, where the exact BER expression is reduced



to an expectation over (at most)6 variables, that allows nu-
merical evaluation with a computing time that is independent
of the number (Nr) of receive antennas. In section VI the
results obtained from the numerical evaluation of our BER
expression are confirmed by computer simulations, assuming
i.i.d. Nakagami-m fading channels. Finally, conclusions are
drawn in section VII. The main conclusion is that the presented
BER expression can be used when the fading distribution
is available in closed form or as an experimentally obtained
histogram, and allows for a faster evaluation than by means
of straightforward computer simulation, for practical values of
the operating BER.

Throughout this paper, the superscriptsT and H repre-
sent the vector (matrix) transpose and conjugate transpose,
respectively.ℜ{x}, ℑ{x} and E[x] denote the real part, the
imaginary part and the expected value ofx, respectively, while
‖X‖ refers to the Frobenius norm ofX.

II. SIGNAL MODEL

We consider a MIMO wireless communication system with
2 transmit antennas andNr receive antennas. The propagation
channels between both transmit antennas and each of the
receive antennas are affected by flat fading with an arbitrary
distribution. Transmission is organized in frames: in one
frame, each transmit antenna sendsKp known pilot symbols
andK coded data symbols; the pilot symbols enable channel
estimation at the receiver. Within one frame ofNfr = K +Kp

symbols, the channel is assumed to be constant (block fading).
The Nr × Nfr received signal matrixRtot is given by

Rtot = [Rp,R] = H [Ap,A] + W, (1)

where the2×Kp pilot matrix Ap and the2×K data matrix
A consist of the pilot symbols and the coded data symbols,
respectively, transmitted at each transmit antenna. The propa-
gation channel is represented by theNr × 2 complex random
matrix H. We consider an arbitrary joint pdfp(H) of the
(possibly correlated)2Nr complex fading gains. TheNr×Nfr

matrix W represents additive spatially and temporally white
noise and consists of i.i.d. zero-mean circularly symmetric
complex Gaussian (ZMCSCG) random variables with variance
N0.

Alamouti’s space-time block code [1], that has been de-
signed for two transmit antennas, transforms two information
symbolss1(k) and s2(k) into a 2 × 2 coded symbol matrix
C(k), given by

C(k) =

[

s1(k) −s∗2(k)
s2(k) s∗1(k)

]

. (2)

Hence, assuming that an even numberK of information
symbols is sent, the transmitted data symbol matrix is given
by A =

√
Es [C(1), ...,C(K/2)]. Considering a normalized

information symbol constellation (E[|si|2] = 1), it follows that
the average energy of the transmitted coded symbols is given
by Es:

1

2K
E

[

‖A‖2
]

= Es. (3)

Similarly, the average energy of the pilot symbols isEp.

III. P ILOT-BASED CHANNEL ESTIMATION

The receiver estimates the channel matrixH usingRp and
the known pilot matrixAp. We assume that the rows ofAp

are orthogonal, i.e.ApA
H
p = KpEpINt

, and consider linear
channel estimates of the form

Ĥ =
α

KpEp

RpA
H
p , (4)

with α ∈ R, such thatĤ can be decomposed into the sum of
two statistically independent contributions:

Ĥ = αH + N, (5)

where the entries ofN = (α/(KpEp))WpA
H
p are ZMCSCG

random variables; the real and imaginary parts of the entries of
N have a varianceσ2

n = α2N0/(2KpEp). Hence, when con-
ditioned onH, the channel estimatêH is a complex Gaussian
random matrix with meanαH and diagonal covariance matrix
with diagonal elements2σ2

n. It is readily verified that both
least-squares and linear MMSE estimation satisfy (4) with
α = 1 andα = KpEp/(KpEp + N0), respectively [16].

Allocating a large total energyKpEp to pilot symbols yields
an accurate channel estimate, but on the other hand gives rise
to a reduction of the symbol energyEs. Denoting byEb the
energy per information bit and writingEp = γEs, we have

Es =
K

K + γKp

ρ log2(M)Eb, (6)

where ρ = 1/2 is the ratio of the number of information
symbols to the total number of symbols in Alamouti’s code
matrix, and M denotes the number of constellation points.
Hence,Es decreases with increasingKp.

IV. ML D ETECTION

When the channel state information (CSI) is available at the
receiver, ML detection is known to be the optimal detection
algorithm for the transmitted data:

Â = arg min
Ã

∥

∥

∥
R − HÃ

∥

∥

∥

2

. (7)

Denoting by[r1 r2] theNr×2 observation matrix correspond-
ing to a coded symbol matrixC (we omit the time index
for notational convenience) and writingH = [h1 h2], the
detection algorithm for the information symbolss1 and s2

reduces to symbol-by-symbol detection:

ŝi = arg min
si

|ui − si| , i ∈ {1, 2} , (8)

with

u1 =
h

H
1 r1 + h

T
2 r

∗

2√
Es

∥

∥H
∥

∥

2
, (9)

u2 =
h

H
2 r1 − h

T
1 r

∗

2√
Es

∥

∥H
∥

∥

2
. (10)

Since the CSI is not known by the receiver, we assume a
mismatched receiver which uses the estimated channel matrix
Ĥ in the same way an ML receiver with PCK would use the



actual channel matrixH. In this way, the decision variables
become

u1 =
ĥ

H
1 r1 + ĥ

T
2 r

∗

2√
Es

∥

∥Ĥ
∥

∥

2
, (11)

u2 =
ĥ

H
2 r1 − ĥ

T
1 r

∗

2√
Es

∥

∥Ĥ
∥

∥

2
. (12)

In this contribution, we consider squareM -QAM transmis-
sion with Gray mapping, which is equivalent to

√
M -PAM

transmission for both the in-phase and quadrature information
bits. The in-phase (quadrature) bits corresponding to the
transmitted information symbolsi, i ∈ {1, 2}, are detected
correctly when the real (imaginary) part of the decision
variableui is located inside the projection of the decision area
of si on the real (imaginary) axis. Hence, we can compute the
BER of Alamouti’s code as the average of the BERs for the
in-phase and the quadrature bits of the symbolss1 ands2.

V. B IT ERROR RATE ANALYSIS

Focusing our attention to the in-phase information bits
related to the transmitted symbols1, the BER is obtained by
averaging the conditional BER (conditioned on the channelH

and the channel estimatêH):

BER1,R = E
H,Ĥ

[

BER1,R(H, Ĥ)
]

, (13)

with

BER1,R(H, Ĥ) =

1

M2

∑

s1∈Ψ

∑

s2∈Ψ

BER1,R

(

s1, s2,H, Ĥ
)

, (14)

where s1 and s2 are the symbols actually transmitted, and
Ψ denotes the normalizedM -QAM constellation. An in-
phase decision error occurs when the real partu1,R of the
decision variableu1 is inside the projection (on the real
axis) of the decision area of a QAM symbolb for which
the in-phase componentbR is different from the in-phase
components1,R of the transmitted symbols1; this projection
will be referred to as the decision region ofbR. In this way,
BER1,R(s1, s2,H, Ĥ) is given by

BER1,R

(

s1, s2,H, Ĥ
)

=

∑

bR∈ΨR

N(s1,R, bR)
1
2

log2 M
P (s1, s2, bR,H, Ĥ), (15)

Here,ΨR is the set consisting of the real parts of the constel-
lation points,N(s1,R, bR) represents the Hamming distance
between the in-phase bits of the transmitted symbols1 and the
in-phase bits of the detected symbolb, andP (s1, s2, bR,H, Ĥ)
is the probability that the real part of the decision variable u1

is located inside the decision area ofbR (when the transmitted
symbolss1 and s2, the channelH and the channel estimate
Ĥ are known):

P (s1, s2, bR,H, Ĥ) = Pr
[

ŝ1,R = bR

∣

∣s1, s2,H, Ĥ
]

. (16)

Expanding the real partu1,R of the decision variable (11)
yields:

u1,R = u′

1,R +
ℜ
{

ĥ
H
1 w1 + ĥ

T
2 w

∗

2

}

√
Es

∥

∥Ĥ
∥

∥

2
, (17)

with

u′

1,R = s1,R

ℜ
{

ĥ
H
1 h1 + ĥ

T
2 h

∗

2

}

∥

∥Ĥ
∥

∥

2

− s1,I

ℑ
{

ĥ
H
1 h1 + ĥ

T
2 h

∗

2

}

∥

∥Ĥ
∥

∥

2
+ s2,R

ℜ
{

ĥ
H
1 h2 − ĥ

T
2 h

∗

1

}

∥

∥Ĥ
∥

∥

2

− s2,I

ℑ
{

ĥ
H
1 h2 − ĥ

T
2 h

∗

1

}

∥

∥Ĥ
∥

∥

2
. (18)

In (18), the subscripts R and I refer to the real and imaginary
parts of the transmitted symbols, respectively. The secondterm
in (17) represents zero-mean Gaussian noise with variance
N0/(2Es

∥

∥Ĥ
∥

∥

2
). The first term in (18) is the useful term,

whereas the second term represents interference from the
quadrature components1,I. The third and fourth term represent
interference from the in-phase and quadrature component of
the transmitted symbols2, respectively. Note thatu′

1,R = s1,R

when Ĥ = H (i.e. for PCK). Letg1(bR) and g2(bR) denote
the boundaries of the projection of the decision area ofb on
the real axis, withg1(bR) < g2(bR); we setg1(bR) = −∞
(g2(bR) = ∞) if b is a left (right) outer constellation point. In
this way, (16) reduces to

P (s1, s2, bR,H, Ĥ) = Q1 − Q2, (19)

where the quantitiesQk, k ∈ {1, 2}, are given by

Qk = Q

(

√

2
Es

N0

∥

∥Ĥ
∥

∥

(

gk(bR) − u′

1,R

)

)

. (20)

In (20), Q(.) is the Gaussian Q-function, defined as

Q(x) ,
1√
2π

∫

∞

x

exp

(

−x2

2

)

dx. (21)

Hence, (13) can be expressed as

BER1,R =

∫

BER1,R(H, Ĥ)p(Ĥ
∣

∣H)p(H)dĤdH. (22)

wherep(Ĥ
∣

∣H) is the joint Gausian pdf of2Nr complex-valued
random variables, with meanαH and diagonal covariance
matrix with diagonal elements2σ2

n, andp(H) represents the
arbitrary fading distribution. Note that this general descrip-
tion also allows correlation between the components ofH.
Although (22) is conceptually simple, it is not well suited
for numerical evaluation. Indeed, taking into account thatthe
components ofH and Ĥ are complex-valued, the evaluation
of (22) requires taking the expectation over8Nr real-valued
variables; hence, the associated computing time increases
dramatically with the numberNr of receive antennas.

In order to avoid the computational complexity correspond-
ing to the evaluation of (22), we will manipulate (22) into an



expectation over only6 variables. To this end, we introduce
the following real-valued vectors:































ĥ
′

=
[

ĥ
T
1,R, ĥT

1,I, ĥ
T
2,R, ĥT

2,I

]T

h
′

1 =
[

h
T
1,R,hT

1,I,h
T
2,R,hT

2,I

]T

h
′

2 =
[

h
T
1,I,−h

T
1,R,−h

T
2,I,h

T
2,R

]T

h
′

3 =
[

h
T
2,R,hT

2,I,−h
T
1,R,−h

T
1,I

]T

h
′

4 =
[

h
T
2,I,−h

T
2,R,hT

1,I,−h
T
1,R

]T

, (23)

with ĥi,R + jĥi,I and hi,R + jhi,I, i ∈ {1, 2}, denoting the
i-th column of Ĥ and H, respectively. It is easily verified
that h

′

1, h
′

2, h
′

3 and h
′

4 are orthogonal. Let us consider an
orthonormal coordinate system defined by the unit vectors
{ei, i = 1, · · · , 4Nr}, with e1, e2, e3 and e4 directed along
h

′

1, h
′

2, h
′

3 andh
′

4, respectively. The projections of̂h
′

on ei

are denotedxi, with xi = ĥ
′
T
ei, yielding

∥

∥Ĥ
∥

∥

2
= |ĥ′ |2 =

x2
1 + x2

2 + x2
3 + x2

4 + z2, where

z2 =

4Nr
∑

i=5

x2
i . (24)

Because of the specific choice ofei for 1 ≤ i ≤ 4, we have

x1 =
ĥ
′
T
h

′

1

|h′

1
| =

ℜ
{

ĥ
H
1 h1 + ĥ

T
2 h

∗

2

}

∥

∥H
∥

∥

, (25)

x2 =
ĥ
′
T
h

′

2

|h′

2
| =

ℑ
{

ĥ
H
1 h1 + ĥ

T
2 h

∗

2

}

∥

∥H
∥

∥

, (26)

x3 =
ĥ
′
T
h

′

3

|h′

3
| =

ℜ
{

ĥ
H
1 h2 − ĥ

T
2 h

∗

1

}

∥

∥H
∥

∥

, (27)

x4 =
ĥ
′
T
h

′

4

|h′

4
| =

ℑ
{

ĥ
H
1 h2 − ĥ

T
2 h

∗

1

}

∥

∥H
∥

∥

. (28)

Let us introduce the vectorx = (x1, x2, x3, x4). From (18)
and (20) it follows thatBER1,R(H, Ĥ) is a function of only
6 random variables,x1, x2, x3, x4, z and

∥

∥H
∥

∥, which we
denoteBER1,R(x, z,

∥

∥H
∥

∥). Taking (5) into account, it can
be shown thatx1, x2, x3, x4 and z (when conditioned on
∥

∥H
∥

∥) are independent variables which satisfy the following
properties:

• x1 is a Gaussian variable with meanα
∥

∥H
∥

∥ and variance
σ2
n.

• x2, x3 and x4 are zero-mean Gaussian variables with
varianceσ2

n.
• z/σn is distributed according to the chi-distribution with

4Nr − 4 degrees of freedom [3].
Taking the above properties into account,BER1,R is obtained
as

BER1,R =

∫

BER1,R(x, z, u)

p(x, z
∣

∣

∥

∥H
∥

∥ = u)p(u)dx dz du. (29)

where p(u) is the pdf of the Frobenius norm
∥

∥H
∥

∥ of the
channel matrixH. It is important to note that instead of
the joint distributionp(H) of the 2Nr complex-valued fading

gains, we need only the distribution of the Frobenius norm
∥

∥H
∥

∥. Owing to the rotational symmetry of theM -QAM
constellation and taking into account that the symbol vectors
are equally likely, it can be verified that the BERs related tothe
in-phase and quadrature bits ofs1 ands2 are equal. Hence, the
BER resulting from Alamouti’s code equalsBER1,R, and the
BER evaluation involves an expectation over only6 random
variables. The expectation (29) can be evaluated numerically
by approximating the6-fold integral by a6-fold sum, running
over discretized versions of the continuous variablesx1, x2,
x3, x4, z andu.

The number of random variables to be considered in the
expectation (29) is reduced in the following cases:

1) In the case of single-input single-output (SISO) trans-
mission (Nr = 1), the dimension of̂h′ is 4, so the
only projections arex1, x2, x3 andx4. Hence the BER
computation involves averaging over only5 variables,
x1, x2, x3, x4 and

∥

∥H
∥

∥.
2) For PAM constellations, we haves1,I = s2,I = 0, so that

u′

1,R from (18) does not depend onx2 and x4. Hence,
the BER (which equals the in-phase BER) is obtained
by averaging over only4 variables,x1, x3, z′ and

∥

∥H
∥

∥,

where
∥

∥Ĥ
∥

∥

2
= x2

1 + x2
3 + z′2 and z′/σn has a chi-

distribution with4Nr − 2 degrees of freedom.

Till now we have considered complex-valued channel gains.
In some applications (e.g., ultra wideband communication),
channel models with real-valued gains are more appropriate
(and the transmitted symbols are real-valued too). The BER
result in this case is nearly the same as for PAM transmission
over complex-valued channels (averaging over4 variables,x1,
x3, z′ and

∥

∥H
∥

∥), the only difference being that on real-valued
channels the variablez′/σn has2Nr − 2 (instead of4Nr − 2)
degrees of freedom. For specific cases, a further reduction of
the number of random variables can be obtained. According
to [6], only a twofold integral must be computed in the case
of M -PSK constellations and arbitrary fading.

VI. N UMERICAL RESULTS

To obtain our numerical results, we assume MMSE channel
estimation withEp = Es and2Nr independent and identically
distributed (i.i.d.) Nakagami-m fading channels, with parame-
tersm andΩ [14].

Fig. 1 shows the exact BER curves for Alamouti’s code and
16-QAM transmission over a complex-valued MIMO channel,
for both the mismatched receiver and the PCK receiver, and
for several values ofm and Nr. It is easily derived that
the Frobenius norm

∥

∥H
∥

∥ of the MIMO channel follows a
Nakagami-m distribution with parameters2Nrm and 2NrΩ.
The curves corresponding to the mismatched receiver repre-
sent the numerically computed expectation over6 variables
resulting from (29), whereas the BER of the PCK receiver
involves the expectation over

∥

∥H
∥

∥ only. Also shown in the
figure are straightforward computer simulation results forthe
mismatched receiver that confirm the result obtained from (but
require considerably more computing time then) numerical
averaging.
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Fig. 1. Complex-valued Nakagami-m fading channel,16-QAM

VII. C ONCLUSIONS AND REMARKS

In this contribution, we investigated the effect of imperfect
channel estimation on the BER performance of Alamouti’s
code. The transmitted symbols belong to a PAM or QAM
constellation. We assumed pilot symbol assisted channel esti-
mation and2Nr propagation channels affected by flat block
fading with arbitrary pdf. The main conclusions are the
following:

• A conceptually simple BER expression can be obtained
in the form of an expectation over8Nr random variables.
However, its numerical evaluation requires a computing
time that increases dramatically withNr.

• We have reduced the BER expression to a form that
contains an expectation over only6 variables, irrespective
of the value ofNr. Rather than the joint distribution of
all 2Nr complex-valued channel gains, this expression
depends on the distribution of only the Frobenius norm
of the channel matrix. We have pointed out that for some
cases (SISO, real-valued channel, PAM constellation, and
combinations thereof) the number of variables involved
in the expectation can be further reduced.

• Evaluation of the reduced BER expression generally re-
quires a (6-fold or less) numerical integration. This BER
expression can be used when the pdf of the Frobenius
norm of the channel matrix is available in closed form or
has been determined experimentally (histogram). Com-
paring the computing times resulting from the numerical
averaging and from straightforward simulation, it turns
out that the numerical averaging is to be preferred for
BER values of practical interest.

The reviewers brought to our attention that OSTBCs can be
represented by an equivalent SISO channel, which allows to
exploit SISO channel results for studying OSTBCs [13], [12],
[7]. This avenue will be explored in further research.
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