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~ Abstract—In this contribution, we investigate the effect of transmit antennas by introducing the concept of orthogonal
imperfect channel estimation on the bit error rate (BER) space-time block coding [17], [18]. As the orthogonal space
performance of multiple-input multiple-output (MIMO) systems  ime plock codes (OSTBCs) achieve full spatial diversityd a

employing Alamouti’'s code. The propagation channels from both . v i . t th . th d
transmit antennas to each of thelV, receive antennas are assumed require only linear processing a e recewer, [hese codes

to be affected by (possibly correlated) flat block fading with an @re a very attractive transmit diversity technique. Under t
arbitrary fading distribution. The transmitted symbols belong to  assumption of perfect channel knowledge (PCK), the bit

a pulse amplitude modulation (PAM) or quadrature amplitude  error rate (BER) performance of OSTBCs has been studied
modulation (QAM) constellation. The mismatched maximum- extensively in e.g. [4], [9], [10] and [11].

likelihood (ML) receiver makes use of a least-squares or linear | tical wirel licati h th
minimum mean-square error (MMSE) channel estimate, obtained n practical wireless applications, however, the recehes

from known pilot symbols sent among the data. to estimate the channel response, which inevitably results
The resulting average BER for QAM transmission can easily be in a performance penalty. Most often, the investigation of

written as an expectation over8 N; real-valued random variables, the resulting performance has been carried out under the

but the computing time needed for its numerical evaluation assumption of Rayleigh fading: an analytical expressian fo

increases dramatically with N,. We point out that the BER can h L
be expressed in terms of the distribution of the Frobenius norm the BER of OSTBCs in case of minimum mean-square error

of the channel matrix, rather than the joint distribution of all (MMSE) channel estimation was derived in [8]; in [15],
channel coefficients. This allows to reduce the BER expression analytical BER expressions as well as the tight Chernoffidou
for any number of receive antennas to an expectation over only \were given for orthogonal space-time block coded systems
6 random variables, which can easily be computed numerically. employing M-ary phase-shift keying {(-PSK) modulation;

Moreover, we show that for real-valued constellations and/or real- high-SNR . for th S babilit
valued channels, the BER expression reduces to an expectation Igh- expressions for the pairwise error probabiliti R

over less than6 variables. For BER levels of practical interest, Were derived in [2] for quite general STBCs with coherent
the numerical evaluation of the BER is much less time-consuming and noncoherent receivers, using an eigenvalue approach; i
than a straightforward computer simulation. The presented BER [5], an exact closed-form expression for the PEP of both
expression is useful not only when the fadlng distribution is given orthogonal and non-orthogonal space-time codes in the case
in closed form, but also when only experimental data (e.g. a . - .
histogram) on the fading are available. of Ieast-squar(_as char!nel estimation was obtained by means
of characteristic functions. However, from the PEP one can
compute only an upper bound on the BER, which in a fading
|. INTRODUCTION environment does not converge to the true BER at high SNR.
The performance of wireless communication systems lis [6], expressions for the exact decoding error probabilit
strongly affected by small-scale fading. To combat thigidet (DEP) were presented for the case of square OSTBCs on
mental phenomenon, several diversity techniques have beebitrary fading channels, but the analysis is restricceB$K
proposed to provide the receiver with independent replicasnstellations.
of the signal. Spatial diversity is achieved by using midtip In this contribution, we provide an exact BER analysis for
antennas at the transmitter and/or receiver side. These Atamouti’'s code with pulse amplitude modulation (PAM) or
called multiple-input multiple-output (MIMO) communid¢ah quadrature amplitude modulation (QAM) constellations on a
systems can achieve a maximum diversity order\afV, bitrary flat-fading channels with imperfect channel estiora
(with Ny and N, denoting the number of transmit and re{ICE). In section Il we describe the observation model which
ceive antennas, respectively), provided that proper spaee includes the N, arbitrary fading channels. Section Il presents
coding is used. In 1998, Alamouti invented a simple coding linear pilot-based channel estimation method (with thi-we
scheme for data transmission using two transmit antenfjas Known least-squares estimation and linear MMSE estimation
with the remarkable benefit that the maximum-likelihood (MLas special cases), and derives the statistical propertids®eo
decoding algorithm reduces to symbol-by-symbol detectiochannel estimate. The mismatched ML receiver is briefly
based only on linear processing at the receiver. Taretkh outlined in section IV. The main part of our contribution
al. generalized Alamouti’s scheme to an arbitrary number &f in section V, where the exact BER expression is reduced



to an expectation over (at modi)variables, that allows nu- [1l. PILOT-BASED CHANNEL ESTIMATION
merical evaluation with a computing time that is indepernden
of the number {,) of receive antennas. In section VI th

results obtained from the numerical evaluation of our BE
expression are confirmed by computer simulations, assum
i.i.d. Nakagamim fading channels. Finally, conclusions are
drawn in section VII. The main conclusion is that the presént 3
BER expression can be used when the fading distribution KpkEyp

is available in closed form or as an experimentally obtaingg, , « R such thaffl can be decomposed into the sum of
histogram, and allows for a faster evaluation than by meags, statistically independent contributions:
of straightforward computer simulation, for practicalwes of )

the operating BER. H=aoaH+ N, (5)

Throughout this paper, the superscrigftsand H repre-
sent the vector (matrix) transpose and conjugate transp
respectively.® {z}, 3{z} andE[z] denote the real part, the
imaginary part and the expected valuerpfespectively, while
|X|| refers to the Frobenius norm &.

The receiver estimates the channel malfixusingR,, and

he known pilot matrixA,,. We assume that the rows &,

e orthogonal, i.eA Al = K E,Iy,, and consider linear
nnel estimates of the form

R,A[ (4)

Jugere the entries dN = (o/ (K, E,)) W, A/l are ZMCSCG
random variables; the real and imaginary parts of the entrie
N have a variance? = a?Ny/(2K,E,). Hence, when con-
ditioned onH, the channel estimafH is a complex Gaussian
random matrix with meanH and diagonal covariance matrix
with diagonal elementgo2. It is readily verified that both
least-squares and linear MMSE estimation satisfy (4) with
We consider a MIMO wireless communication system with = 1 anda = K, E,,/(K,E,, + Ny), respectively [16].
2 transmit antennas anll, receive antennas. The propagation Allocating a large total energi(,, £, to pilot symbols yields
channels between both transmit antennas and each of #imeaccurate channel estimate, but on the other hand gies ris
receive antennas are affected by flat fading with an arbitraio a reduction of the symbol enerdgy,. Denoting byE;, the
distribution. Transmission is organized in frames: in onenergy per information bit and writing,, = vEs, we have
frame, each transmit antenna serds known pilot symbols
and K coded data symbols; the pilot symbols enable channel Ey= ———plog,
estimation at the receiver. Within one frame/f = K + K, K +9K,
symbols, the channel is assumed to be constant (block fadinghere p = 1/2 is the ratio of the number of information
The N, x Ny, received signal matriR; is given by symbols to the total number of symbols in Alamouti's code
Rio = Ry, R] = H[A,, Al + W, @ matrix, and M denote; the numper of constellation points.
ence,E; decreases with increasirgp,.

Il. SIGNAL MODEL

(M)E]m (6)

where the2 x K, pilot matrix A, and the2 x K data matrix
A consist of the pilot symbols and the coded data symbols, IV. ML D ETECTION

respectively, transmitted at each transmit antenna. Topapr ] ] ] )
gation channel is represented by tNe x 2 complex random When the channel state information (CSl) is available at the

matrix H. We consider an arbitrary joint pdi(EH) of the receiver, ML detection is known to be the optimal detection
(possibly correlated) N, complex fading gains. ThaV, x Ny,  @lgorithm for the transmitted data:

matrix W represents additive spatially and temporally white R ) -2
noise and consists of i.i.d. zero-mean circularly symroetri A= argn}inHR_HAH : @
complex Gaussian (ZMCSCG) random variables with variance ] .
No. Denoting by[r; rs] the N,. x 2 observation matrix correspond-
Alamouti's space-time block code [1], that has been dég to a coded symbol matridC (we omit the time index
signed for two transmit antennas, transforms two infororati fOr notational convenience) and writingl = [hy hy], the
symbolss; (k) and s(k) into a2 x 2 coded symbol matrix detection algorithm for the information symbols and s
C(k), given by reduces to symbol-by-symbol detection:
¥ §; = argmin |u; — 84|, @ € {1,2}, 8
oy = [ 1) =55 ] @ gminfu; — s, i € {1,2} ®)
sa(k)  s7(k) .
_ ) ) with
Hence, assuming that an even numb€r of information " _—
symbols is sent, the transmitted data symbol matrix is given w = 1111174&12;2’ )
by A = E;[C(1),...,C(K/2)]. Considering a normalized VE||H]|
information symbol constellatior®(|s;|*] = 1), it follows that hir, — hTp*
. o 2 I'1 1T
the average energy of the transmitted coded symbols is given Uz = ———5 - (10)
by E: vaHHH
LE [HAHQ} - E.. (3) Since the CSI is not known by the receiver, we assume a
2K mismatched receiver which uses the estimated channelxmatri

Similarly, the average energy of the pilot symbolsfis. H in the same way an ML receiver with PCK would use the



actual channel matriH. In this way, the decision variablesExpanding the real part; r of the decision variable (11)
become yields:
hfy; + hlrs
ul = %, (ll) ul,R = UILR +

VE|H]|
_ hir; —hir} with
Uy — I (12)
VES[H]

In this contribution, we consider squaté-QAM transmis- v} = s r ~
sion with Gray mapping, which is equivalent {g)\/-PAM 7 ||H
tr_ansm|35|0_n for both the in-phase a_nd qguadrature !nfommat S{ﬁ{{hl + ﬁghg}
bits. The in-phase (quadrature) bits corresponding to the _ g _
transmitted information symbat;, i € {1,2}, are detected ’ |H
correctly when the real (imaginary) part of the decision N
variableu; is located inside the projection of the decision area
of s; on the real (imaginary) axis. Hence, we can compute the ’ ||HH

BER of Alamouti's code as the average of the BERs for the h bscri d1 ref h land i .
in-phase and the quadrature bits of the symholands,. " (18), the subscripts R and | refer to the real and imaginary
parts of the transmitted symbols, respectively. The sebemad

in (17) represents zero-mean Gaussian noise with variance
V. BIT ERROR RATE ANALYSIS NO/(2ESHI3I||2). The first term in (18) is the useful term,
Focusing our attention to the in-phase information bitghereas the second term represents interference from the
related to the transmitted symbeg], the BER is obtained by quadrature componest ;. The third and fourth term represent
averaging the conditional BER (conditioned on the chaiiel interference from the in-phase and quadrature component of

%{fl{lwl + ﬁgw;}
VE|H]’

; 7

éﬁ{ﬁ{fhl + ﬁg’h;}

! 2

’ 2

and the channel estimaid): the transmitted symbok, respectively. Note that z = s1 r
. whenH = H (i.e. for PCK). Letg;(br) and go(bg) denote

BER1Rr =Ey g [BERLR(HvH)} ’ (13) the boundaries of the projection of the decision area oh

with the real axis, withg; (br) < ¢2(br); we setg;(bg) = —oo

(g92(br) = o0) if b is a left (right) outer constellation point. In

BER; r(H, H) = this way, (16) reduces to

% 3 Y BERig (31,32,H,ﬂ) . (14) Pls1, 85,br, H, H) = Q1 = Qs, (19)
51€F s2€W where the quantitie§), k € {1,2}, are given by
where s; and sy are the symbols actually transmitted, and B
U denotes the normalized/-QAM constellation. An in- Qr=0Q ( QF*HHH (9x(br) — u’LR)) : (20)
phase decision error occurs when the real park of the 0

decision variableu; is inside the projection (on the real|, (20), Q(.)
axis) of the decision area of a QAM symbalfor which ' )
the in-phase componeritz is different from the in-phase N 1 /°° _T )\ g 21
components; i of the transmitted symboal,; this projection Q@) Vor Jy P 2 ) (21)
will be referred to as the decision region &f. In this way,

BER; r(s1, s2, H,H) is given by

is the Gaussian Q-function, defined as

Hence, (13) can be expressed as

. BER, g = / BER; r(H, H)p(H|H)p(H)dHdH.  (22)
BER, r (sl,SQ,H,H) -
wherep(I:I|H) is the joint Gausian pdf df vV, complex-valued
random variables, with meanH and diagonal covariance
matrix with diagonal element®s2, and p(H) represents the
Here, Uy is the set consisting of the real parts of the constedrbitrary fading distribution. Note that this general dgsc
lation points, N(s1.r,br) represents the Hamming distancédion also allows correlation between the componentsHof
between the in-phase bits of the transmitted synsha@nd the Although (22) is conceptually simple, it is not well suited
in-phase bits of the detected symbpand P (s, s, bR,H,ﬂ) for numerical evaluation. Indeed, taking into account that
is the probability that the real part of the decision vagahj components ol andH are complex-valued, the evaluation
is located inside the decision areabgf (when the transmitted of (22) requires taking the expectation ov&N, real-valued
symbolss; and sy, the channeH and the channel estimatevariables; hence, the associated computing time increases
H are known): dramatically with the numbeN, of receive antennas.
~ . In order to avoid the computational complexity correspond-
P(s1,s2,br, H,H) = Pr {31,1% = br|s1, 827H»H} . (16) ing to the evaluation of (22), we will manipulate (22) into an

N b N
S NMewmbe) pe o ope wE), (15)
bcvs §log2M



expectation over only variables. To this end, we introducegains, we need only the distribution of the Frobenius norm

the following real-valued vectors:

h' = [B{Raﬁ{hﬁgﬁaﬁ;lf

h/l = [h;R7h{I7h£th£1]T

h,2 = [h{I7_h{R7_h£I’h£R}T ’ (23)
hy = [hf 5, b, ~hTg, —h7,])"

h; = [h2T,1> *h2T,R, th,Ia *h1T,R}T

>

with h; g + jh;; andh, g + jh; 1, i € {1,2}, denoting the

i-th column of H and H, respectively. It is easily verified
that h;, hy, h; and h, are orthogonal. Let us consider an
orthonormal coordinate system defined by the unit vectot¥

{e;,i=1,--- ,4N,}, with e1, e, e3 and e, directed along
h, h,, h; andh), respectively. The projections & on e;
are denoted:;, with z; = B’Tei, yielding HICIH2 = h? =
23 + a3 + 2% + 2% + 22, where

(24)

Because of the specific choice ef for 1 < i < 4, we have

. N B %{ﬁ{’hl +f12Th§} 5
b ||| ’
o " h, B %{ﬁ{fhl +ﬁ§h§} 6
T [yl ] ’
~T. R leh _ﬁTh*
oy — X s _ s — 1}, (27)
[y |||
A 3{hih, - hfni} o8
T JH] '

Let us introduce the vectax = (z1,z2,x3,z4). From (18)
and (20) it follows thaBER, r (H, H) is a function of only
6 random variablesgy, @2, 3, x4, z and ||H||, which we
denoteBER; r(x, 2, |

properties:

H]||). Taking (5) into account, it can
be shown thatry, zo, x3, x4 and z (when conditioned on
|H||) are independent variables which satisfy the following

|H||. Owing to the rotational symmetry of thé/-QAM
constellation and taking into account that the symbol vscto
are equally likely, it can be verified that the BERSs relateth®
in-phase and quadrature bitsgfandss are equal. Hence, the
BER resulting from Alamouti’s code equalBER; i, and the
BER evaluation involves an expectation over odlyandom
variables. The expectation (29) can be evaluated numirical
by approximating th&-fold integral by a6-fold sum, running
over discretized versions of the continuous variahlesz,,

T3, T4, z andu.

The number of random variables to be considered in the
pectation (29) is reduced in the following cases:

1) In the case of single-input single-output (SISO) trans-
mission (V, = 1), the dimension off’ is 4, so the
only projections arerq, z2, x3 andz4. Hence the BER
computation involves averaging over onfyvariables,
T1, T2, T3, T4 and ||HH

For PAM constellations, we hawg 1 = so 1 = 0, so that
u/LR from (18) does not depend or, and z4. Hence,
the BER (which equals the in-phase BER) is obtained
by averaging over only variables,z1, x3, 2’ and||H|,
where HFIH2 = 22 + 22 + 2"? and 2/ /o, has a chi-
distribution with4 NV, — 2 degrees of freedom.

2)

Till now we have considered complex-valued channel gains.
In some applications (e.g., ultra wideband communication)
channel models with real-valued gains are more appropriate
(and the transmitted symbols are real-valued too). The BER
result in this case is nearly the same as for PAM transmission
over complex-valued channels (averaging oveariableszq,

3, 2 and||H|), the only difference being that on real-valued
channels the variable /o, has2N, — 2 (instead of4N, — 2)
degrees of freedom. For specific cases, a further reducfion o
the number of random variables can be obtained. According
to [6], only a twofold integral must be computed in the case
of M-PSK constellations and arbitrary fading.

VI. NUMERICAL RESULTS

To obtain our numerical results, we assume MMSE channel
stimation withE, = E; and2N, independent and identically
distributed (i.i.d.) Nakagamir fading channels, with parame-

« x1 is a Gaussian variable with mean| H|| and variance ters;, and 2 [14].

2

One

Fig. 1 shows the exact BER curves for Alamouti’s code and

« @2, v3 and x4 are zero-mean Gaussian variables withs_5am transmission over a complex-valued MIMO channel,

varianceos?.

for both the mismatched receiver and the PCK receiver, and

« z/oy is distributed according to the chi-distribution withfor several values ofn and N,. It is easily derived that

4N, — 4 degrees of freedom [3].

Taking the above properties into accoudER; r is obtained
as

BER; g = /BER17R(X7z,u)
p(x,z||H|| = u)p(u)dx dzdu. (29)
where p(u) is the pdf of the Frobenius norfiH|| of the

the Frobenius nornj|H|| of the MIMO channel follows a
Nakagamim distribution with parameter@ N.m and 2N, ().

The curves corresponding to the mismatched receiver repre-
sent the numerically computed expectation ogevariables
resulting from (29), whereas the BER of the PCK receiver
involves the expectation ovefH|| only. Also shown in the
figure are straightforward computer simulation resultstfar
mismatched receiver that confirm the result obtained from (b

channel matrixH. It is important to note that instead ofrequire considerably more computing time then) numerical
the joint distributionp(H) of the 2NV, complex-valued fading averaging.
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Fig. 1. Complex-valued Nakagami- fading channel16-QAM [6]
VII. CONCLUSIONS AND REMARKS 7]

In this contribution, we investigated the effect of impetfe
channel estimation on the BER performance of Alamouti'd®
code. The transmitted symbols belong to a PAM or QAM
constellation. We assumed pilot symbol assisted chantiel ed9]
mation and2N, propagation channels affected by flat bloclﬁo]
fading with arbitrary pdf. The main conclusions are the
following:

o A conceptually simple BER expression can be obtainé%jl]
in the form of an expectation ov&tV, random variables.
However, its numerical evaluation requires a computir}ga
time that increases dramatically wifK,.

« We have reduced the BER expression to a form that
contains an expectation over orflyariables, irrespective [12]
of the value of N,. Rather than the joint distribution of
all 2N, complex-valued channel gains, this expressidm4]
depends on the distribution of only the Frobenius norm
of the channel matrix. We have pointed out that for somes;
cases (SISO, real-valued channel, PAM constellation, and
combinations thereof) the number of variables involved
in the expectation can be further reduced. [16]

« Evaluation of the reduced BER expression generally re-
quires a ¢-fold or less) numerical integration. This BER!7]
expression can be used when the pdf of the Frobenius
norm of the channel matrix is available in closed form dns]
has been determined experimentally (histogram). Com-
paring the computing times resulting from the numerical
averaging and from straightforward simulation, it turns
out that the numerical averaging is to be preferred for
BER values of practical interest.

The reviewers brought to our attention that OSTBCs can be
represented by an equivalent SISO channel, which allows to
exploit SISO channel results for studying OSTBCs [13], [12]
[7]. This avenue will be explored in further research.
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