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Samenvatting

Vandaag de dag zijn digitale beelden en video vrijwel niet meer weg te denken:
zowel voor privégebruik als commercieel gebruik, de bewakingsindustrie, de
medische sector, de textielindustrie als voor productie-industrie, om er maar
een paar te noemen. Daarbij stijgen de verwachtingen van de gebruikers, over
de kwaliteit van hun digitaal beeldmateriaal, jaar na jaar. Producenten zijn
continu in de weer om die verwachtingen in te lossen, door de beeldvorming-
toestellen te verbeteren, bijvoorbeeld door het gebruik van optica en camerasen-
soren van hoge kwaliteit, wat dan weer leidt tot hogere fabricagekost. Langs
de andere kant kan geen enkele hoeveelheid geld de wetten van de fysica op-
heffen (bijvoorbeeld de diffractielimiet). Daardoor zullen digitale beelden nooit
perfect zijn wat betreft resolutie, ruis, scherpte, ...

De beperkte kwaliteit van digitale afbeeldingen wordt niet alleen
veroorzaakt door het beeldvormingsproces. Het is een recente trend om oud
beeldmateriaal te digitaliseren, bijvoorbeeld oude foto’s en films, kunststukken
uit musea en galerijen. Dit alles heeft als doel om archivering, bewaring en
onderzoek te vergemakkelijken. Deze beelden kunnen van zeer hoge resolutie
zijn, in het bijzonder in het geval van gedigitaliseerde schilderijen, omdat dit
de toeschouwer in staat stelt om de aller-fijnste details van de schilderkunst te
kunnen bewonderen. Jammer genoeg heeft dit soort beeldmateriaal nog last
van verdere degradaties, zoals krassen in oude foto’s, stof in oud filmmateri-
aal, vlekken en scheurtjes in schilderijen. Veel van deze fenomenen worden
veroorzaakt door veroudering.

Al deze degradaties, ongeacht of ze nu het resultaat zijn van veroud-
ering of imperfecties in de beeldvormingtechniek, kunnen verholpen worden
door gebruik te maken van digitale nabewerkingtechnieken. Dit verbetert niet
alleen de visuele ervaring, maar maakt het ook makkelijker om analyse te doen
van de beeldinhoud in toepassingen zoals bewaking, spooronderzoek, satelli-
etobservatie, medische diagnostiek en kunsthistorische analyse. Sommige van
deze digitale nabewerkingtechnieken kunnen ook gebruikt worden om beelden
aan te passen, bijvoorbeeld om ongewenste elementen uit een afbeelding te ver-
wijderen. Voorbeelden zijn geprinte datums, watermerken, tekst, logos of zelfs
hele objecten (mensen of borden in landschapsfoto’s).

Voor deze thesis zijn digitale nabewerkingtechnieken ontwikkeld om
beelden te restaureren en te bewerken na acquisitie. Onze nadruk lag op im-
age inpainting, of het vervolledigen van een afbeelding, wat het invullen van
ontbrekende gebieden, op een visueel aanvaardbare manier, in een afbeelding
inhoudt. Op die manier slagen we erin om artefacten die veroorzaakt wor-
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den door veroudering of ongewenste elementen in een afbeelding te verwijderen
door de ongewenste elementen te beschouwen als ontbrekende gebieden. We
ontwikkelden methodes om inpainting toe te passen op zogenaamde natuurlijke
afbeeldingen, bijvoorbeeld afbeeldingen van natuurlijke scènes, en voor het ver-
wijderen van krassen in gedigitaliseerde schilderijen. Een andere toepassing die
deze thesis beschouwt, is superresolutie (SR), dit houdt in dat een hoogresolutie
(HR) beeld wordt opgebouwd uit een of meerdere laagresolutie (LR) beelden,
met behulp van geschatte hoge frequenties. De belangrijkste aanpakken die
onderzocht zijn, zijn graafmodellering, in het bijzonder modelleringen met be-
hulp van Markov Random Fields (MRF), voorstelling die gebruik maken van
patches, zelfgelijkenis van afbeeldingen en het gebruik van textuureigenschap-
pen om de beeldcontext te beschrijven.

MRF’s worden vaak gebruikt in beeldverwerking- en computer-
visieproblemen omdat ze een handige en consistente manier bieden om con-
textuele informatie te modelleren. Deze contextuele afhankelijkheden bestaan
onvermijdelijk in afbeeldingen omdat pixels, of andere bouwblokken van een
afbeelding, spatiaal gecorreleerd zijn. Daarenboven zijn MRF’s in staat om
de globale context in termen van locale interacties te modelleren, wat dit
soort modellen elegant en computationeel aantrekkelijk maakt. MRF’s wor-
den vaak gebruikt als voorkennis bij Bayesiaanse inferentie, zoals Maximum
a posteriori (MAP) estimatie, waarbij het doel is om onbekende afbeeldingat-
tributen te schatten uit de beschikbare data, die soms onvolledig of beschadigd
is. De eerste bijdrage die in deze thesis beschreven wordt, is de ontwikkeling
van een nieuwe suboptimale inferentiemethode voor MAP estimatie met MRF
voorkennis. Deze techniek presteert heel goed wanneer toegepast op enorme
grafen met veel korte lussen, wat een grote flexibiliteit inhoudt wat betreft het
definiëren van spatiale interactie tussen beeldentiteiten. Het kernidee is om
informatie te laten propageren doorheen de onderliggende graaf van het MRF
model, door middel van het verzenden van een enkelvoudig “consensus”-bericht
vanuit de buren naar de centrale node. Vandaar is deze techniek genaamd
de “neighbourhood-consensus message passing” (NCMP) techniek. Naast het
ontwikkelen van een algemeen raamwerk, hebben we ook een vereenvoudigde
versie voorgesteld, die toepasbaar is voor grote omgevingen. Experimentele
resultaten voor vier verschillende referentietesten bewijzen het potentieel van
de voorgestelde methoden.

Een recente trend in beeldverwerking is het gebruik van patches, dit
zijn blokvormige structuren van pixelwaarden, als kenmerken ter beschrijving
van de centrale pixel in het blok. Patches worden zelfs gebruikt als atoom
bij de synthesetoepassingen zoals textuursynthese, inpainting en superresolu-
tie. In dit geval wordt de MRF gebruikt om voorkennis te coderen over de
consistentie van naburige beeldpatches. Volgens dit principe hebben we een
nieuwe single image patch-based super-resolution methode ontwikkeld. Deze
maakt gebruik van het interschaal koppelen van patches en MRF-modellering
van een HR afbeelding. De belangrijkste nieuwigheid bij onze methode is dat
we de de zelfgelijkenis van beeldpatches in natuurlijke afbeeldingen over ver-
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schillende resolutieschalen uitbuiten, eerder dan patches over te nemen uit een
externe database. Een andere bijdrage is dat we gebruik maken van onze
NCMP-inferentiemethode, om een MAP schatting te krijgen van het onbek-
ende HR beeld. Experimentele resultaten tonen aan dat de voorgestelde meth-
ode standaardtechnieken overtreft, terwijl ze visueel beter is of gelijkaardig aan
state-of-the-art technieken.

We hebben zelfgelijkenis bij beelden gebruikt in het veld van patch-
gebaseerde beeldinpainting, door het zoeken naar geschikte kandidaatpatches
uit de gekende delen van de afbeelding voor de patch die ontbreekt. De
belangrijkste bijdrage is hier de context-gevoelige manier van inpainting, die
kan gebruikt worden bij elk patchgebaseerd inpaintingsalgoritme. Het idee is
om de zoektocht naar geschikte patches te leiden naar interessante gebieden
in de afbeelding op basis van contextuele eigenschappen. We bereiken dit
door het toekennen van contextbeschrijvingen aan gebieden in de afbeelding.
Deze beschrijvingen zijn gebaseerd op textuureigenschappen, verkregen door
het convolueren van een afbeelding met spatiale lineaire filters van verschil-
lende oriëntatie- en resolutieschaalgevoeligheid. Voor het ontbrekende gebied
in een gegeven regio, worden goed passende kandidaatpatches gevonden uit
contextueel gelijkaardige regio’s. Het voordeel is tweeledig: de kans dat de
gekozen overeenkomsten fout zijn, wordt verminderd en de zoektocht naar goed
passende patches wordt zeer versneld, omdat er geen exhaustieve zoektocht over
de gehele afbeelding meer nodig is.

We gebruikten deze contextgevoelige aanpak in twee nieuwe inpaint-
ingmethoden: de greedy block-based context-aware (GBCA) en de MRF block-
based context-aware (MBCA) inpainting methoden. In GBCA representeren
we de context door gebruik te maken van een combinatie van textuur en
kleureigenschappen als contextuele beschrijvingen binnen blokken van vaste
grootte. De belangrijkste bijdrage van deze methode is een nieuwe prioriteits-
definitie gebaseerd op contoureigenschappen, die ook worden geëxtraheerd door
de output van lineaire filters van verschillende resolutieschalen en oriëntaties
te analyseren. De prioriteit wordt bepaald door de opvulvolgorde, die belan-
grijk is voor patch-gebaseerde inpainting methoden omdat ze het propageren
van beeldstructuren, zoals lijnen of contouren binnen het ontbrekend gebied,
bepaalt. In vergelijking met gradientgebaseerde aanpakken, die vaak gebruikt
worden in andere patchgebaseerde methoden, behaalt onze prioriteit gebaseerd
op contoureigenschappen een betere differentiatie tussen verschillende types
van patches en daarmee dus ook een beter uiteindelijk inpaintingsresultaat,
zoals wordt aangetoond in de experimentele resultaten.

In de MBCA methode, hebben we onze contextgevoelige aanpak ge-
bruikt om de snelheid en performantie te verhogen van zogenaamde globale
patchgebaseerde inpaintingstechnieken met behulp van de MRF voorkennis.
Een belangrijke bijdrage van deze methode is de verbeterde voorstellingswijze
van context: we onderzochten het gebruik van genormaliseerde texton his-
togrammen als contextuele beschrijvingen en we introduceerden ook een nieuwe
top-down splitsingstechniek, die de afbeelding verdeelt in blokken van variabele
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grootte, afhankelijk van de context. We stellen ook een eenvoudige, doch ef-
ficiënte manier voor om optimalisatie in een MRF model uit te voeren, door
onze NCMP-inferentiemethode uit te breiden zodat ze ook gebruikbaar is voor
globale inpaintingsproblemen met een groot aantal labels. We evalueerden deze
voorgestelde methode voor twee toepassingen bij wijze van voorbeeld: kras- en
tekstverwijdering en bewerking van foto’s. De resultaten tonen de kwalitatieve
voordelen van de voorgestelde aanpak in vergelijking met de state-of-the-art
methodes duidelijk aan. Daarenboven is een snelheidsvoordeel aangetoond in
vergelijking met een andere MRF-gebaseerde methode.

Tot slot hebben we een inpaintingsmethode ontwikkeld voor het ver-
wijderen van krassen uit gedigitaliseerde schilderijen. Als een specifiek onderw-
erp is een unieke gedigitaliseerde versie van het Lam Gods, ook wel bekend als
het Gents altaarstuk. Experimentele resultaten tonen aan dat de voorgestelde
methoden andere gerelateerde technieken om krassen te verwijderen overtref-
fen, terwijl ze nog steeds ruimte laten voor verbetering gezien de specifieke aard
van krassen in dit schilderij. Hierdoor hebben we een nieuw patchgebaseerde
krasinpaintingsmethode ontwikkeld. De voorgestelde methode voert een con-
textgevoelige inpainting uit, maar eerder dan het beschrijven van de context
aan de hand van textuur- en kleureigenschappen, zoals in onze andere meth-
oden, hebben we hier het gebruik van beeldsegmentatie voor contextbeschrij-
ving onderzocht. Naast visuele verbetering, blijkt deze voorgestelde methode
een nuttig hulpmiddel voor paleografische analyse van sommige delen van het
schilderij, wat zeer interessant is voor kunsthistorische analyse.

In totaal heeft het werk in deze thesis geleid tot 2 tijdschriftpubli-
caties (waarvan 1 als eerste auteur), 1 ingediend tijdschriftartikel en 2 publi-
caties als hoofdstuk in een boek (als coauteur). 11 artikels zijn gepubliceerd
in internationale en nationale conferenties (waarvan 8 als eerste auteur). 7 ab-
stracts werden gepresenteerd op nationale en internationale conferenties (waar-
van 2 als eerste auteur).



Summary

Nowadays, digital images and videos are used virtually everywhere: in private
and commercial use, surveillance, medicine, mechanical and textile industry,
just to name the few application areas. Moreover, the demands of end users
regarding the quality of this digital imaging material are ever increasing. The
manufacturers are constantly trying to accommodate these demands by improv-
ing the acquisition devices, e.g., by using high precision optics and high-quality
camera sensors, which, on the other hand, results in high costs. Furthermore,
certain physical limitations of the devices (e.g., diffraction limit) still remain.
As a consequence, acquired digital images are imperfect in terms of image res-
olution, noise, blur, etc.

The insufficient quality of digital images is not only caused by the
acquisition process. For example, a recent trend is to digitize old imaging
material, e.g., old photographs and films, as well as artwork in museums and
galleries, all for the purpose of archiving and dissemination. These images may
be of very high resolution, especially in the case of digitized paintings, because
in this way the audience is able to appreciate the paintings and their finest
details. However, they suffer from other degradations, like scratches in old
photographs, dust in old films, stains and cracks in digitized paintings, which
are caused by their ageing.

All these degradations, regardless whether they are the result of age-
ing or using imperfect acquisition devices, can be removed by the means of
digital post-processing techniques. This does not only improve the visual ex-
perience, but also facilitates the analysis of image content in applications like
surveillance, forensics, satellite, medical imaging and art historical analysis.
Some of these digital post-processing techniques can also be used for image
editing, i.e., altering image content. This can be used to remove unwanted
elements from images, for example stamped date, watermarks, text, logos, or
even the whole objects (e.g., people or road signs from landscape photos).

In this thesis, we developed digital post-processing techniques to re-
store and edit images after acquisition. Our main focus is on image inpainting,
or image completion, which is an image processing task of filling in the missing
region in an image in a visually plausible way. In this way, we can remove arte-
facts caused by ageing and unwanted elements from images by treating them
as missing regions. We developed methods for image inpainting both for the
so-called natural images, i.e., images of natural scenes, and for crack removal
in digitized paintings. Another application that we considered in this thesis is
super-resolution (SR), which creates a high-resolution (HR) image from one or
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more low-resolution (LR) images by estimating missing high frequencies. The
main approaches that we explore to achieve these goals are: graphical mod-
elling, in particular Markov random field (MRF) modelling, patch representa-
tions and image self-similarity and the use of texture features for describing
image context.

MRFs are widely used in image processing and computer vision prob-
lems because they provide a convenient and consistent way of modelling con-
textual constraints. These contextual dependencies inevitably exist in images
because image pixels and other image entities are spatially correlated. Further-
more, MRFs are able to model global image context in terms of local interac-
tions, which makes this model elegant and computationally tractable. MRFs
are often used as a prior in problems that involve Bayesian inference, like
maximum a posteriori (MAP) estimation, where the goal is to estimate some
unknown image attributes from the available image data, which are incomplete
or degraded. As the first main contribution of this thesis, we developed a novel
suboptimal inference method for MAP estimation with the MRF prior, which
performs well on huge graphs with many short loops and which allows great
flexibility in defining spatial interactions between image entities. The central
idea is to propagate information through the underlying graph of the MRF
model by sending a single “consensus” message from the neighbourhood to the
central node. Hence, we named our method neighbourhood-consensus message
passing (NCMP). Besides developing a general framework, we also proposed
a simplified version, that is suitable for large neighbourhoods. Experimen-
tal results on four different benchmarks show the potentials of the proposed
methods.

A recent trend in image processing is to use patches, i.e., square
blocks of pixel values, as features describing the central pixel of the patch.
Patches are even used as a unit of synthesis in applications like texture synthe-
sis, image inpainting and super-resolution. In that case, MRF can be used to
encode prior knowledge about the consistency of neighbouring image patches.
Along this line, we developed a novel single-image patch-based super-resolution
method, which uses cross-scale patch matching and MRF modelling of an HR
image. The main novelty of our method is that, instead of using HR patches
from an external database, we exploit the self-similarity of image patches in
natural images across different scales, thus the HR patches are taken from the
input image itself. Another contribution is that we use our NCMP inference
method, developed within the course of this research, to obtain the MAP esti-
mate of the unknown HR image. Experimental results show that the proposed
method greatly outperforms standard techniques, while being visually better
or comparable with state-of-the-art techniques.

We also exploited image self-similarity in the field of patch-based
image inpainting, by searching for well-matching candidate patches of the patch
to be inpainted in the known part of the image. The main novelty therein is
a context-aware approach for image inpainting, which can be used with any
patch-based inpainting algorithm. The main idea is to guide the search for
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patches to the areas of interest based on contextual features. We achieved
this by assigning contextual descriptors to image regions, which are based on
texture features, obtained by convolving the image with the bank of linear
spatial filters at various orientations and scales. For the missing part of the
given region, well-matching candidate patches will be found in the contextually
similar regions. The benefit is twofold: the chance of choosing wrong matches
is reduced and the search for well-matching patches is greatly accelerated (no
exhaustive search over the whole known part of the image takes place).

We employed this context-aware approach in two novel inpainting
methods: greedy block-based context-aware (GBCA) and MRF block-based
context-aware (MBCA) inpainting method. In the GBCA method, we rep-
resented the context by using the combination of texture and colour features
as contextual descriptors within image blocks of fixed size. The main contri-
bution of this method is a novel priority definition based on contour features,
which are also extracted by analysing filter outputs at various orientations
and scales. The priority determines the filling order, which is important for
patch-based inpainting methods because it ensures the propagation of image
structures, such as lines and contours, inside the missing region. Compared to
the gradient-based priority, which is often used in other patch-based methods,
our priority based on contour features achieves better differentiation between
different types of patches, and hence, better final inpainting result, as demon-
strated with experimental results.

In the MBCA method, we employed our context-aware approach to
improve the speed and performance of the so-called global patch-based image
inpainting with the MRF prior. The important contribution of this method
is an improved context representation: we explored the use of normalized tex-
ton histograms as contextual descriptors and we introduced a novel top-down
splitting procedure, which divides the image into variable-size blocks accord-
ing to their context. We also proposed a simple and efficient way to perform
optimization in the MRF model by extending our NCMP inference method to
make it suitable for global inpainting problem with large number of labels. We
evaluated the proposed method on two example applications: scratch and text
removal and photo-editing. Results demonstrate the benefits of our approach in
comparison with state-of-the-art methods in terms of quality and additionally,
in comparison with another MRF-based method, in terms of speed.

Finally, we applied the developed inpainting methods for crack re-
moval in digitized paintings. As a case study, we used the digitized versions
of the Adoration of the Mystic Lamb, also known as the Ghent Altarpiece. Ex-
perimental results show that the proposed methods outperform related crack
inpainting methods, while still leaving some room for improvement due to par-
ticularities of cracks in this painting. For that reason, we introduced a novel
patch-based crack inpainting method. The proposed method performs context-
aware inpainting, but rather than describing the context with texture (and
colour) features within image blocks of fixed or adaptive sizes, like in our previ-
ously proposed methods, we explored the use of image segmentation for context
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description. Apart from visual enhancement, the proposed method appears to
be a useful tool for paleographical analysis of some parts of the painting, which
is of special interest for art historical analysis.

In total, the work conducted during this thesis resulted in 2 jour-
nal publications (of which 1 as the first author), 1 journal submission and 2
publications in book chapters (as co-author). 11 papers are published on inter-
national and national conferences (of which 8 as the first author). 7 abstracts
were presented on international and national conferences (of which 2 as the
first author).
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1
Introduction

In this thesis, we study and develop graphical patch-based models for the pur-
pose of image restoration and editing. We consider two main applications:
image inpainting, i.e., filling in damaged or missing parts of the image and
super-resolution, i.e., increasing the image resolution.

1.1 Problem statement
In recent decades, there has been a tremendously growing use of digital images
and video due to the wide availability of digital cameras, on the one hand, and
the process of digitizing old imaging material, on the other. Furthermore, a
recent trend is to digitize artwork in museums and galleries for the purpose of
archiving and dissemination.

Although the quality of digital cameras is increasing every day, manu-
facturing and physical limitations and cost restrictions still limit image quality,
in terms of image resolution, noise, etc. Furthermore, some image and video
acquisition devices, like web-cameras, cell phones and surveillance cameras, use
low-quality sensors, resulting in imaging material of low resolution. A lot of
low resolution material was captured with old equipment or in old formats,
e.g., NTSC and PAL recordings. Nowadays, this material must be displayed
on high-resolution (HR) displays or printed on HR printing devices. Therefore,
improving the quality of an image by increasing its resolution has become an
important task in image processing.

Digital images obtained by digitizing old imaging material and art-
work also suffer from certain artefacts, like scratches in old photographs, dust
in old films, stains and cracks in digitized paintings, which represent the signs
of their ageing. Removing these artefacts improves the quality of these dig-
itized images and videos, thus improving the visual experience and, in the
case of artwork, facilitating art historical and digital image analysis. However,
the demands of end users regarding digital images extend beyond quality im-
provement. In particular, they need to edit the images in order to remove
unwanted elements, e.g., stamped date, watermarks, text, logos, or even the
whole objects. Removing artefacts and unwanted objects can be achieved with
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the image processing technique called image inpainting, or image completion.
Image inpainting fills in the missing or damaged region in an image in a visually
plausible way.

In this thesis, we develop digital post-processing techniques to restore
and edit images after acquisition. In particular, we aim at increasing image
resolution and removing artefacts and unwanted objects by developing novel
super-resolution and inpainting methods. We apply these techniques on the so-
called natural images, i.e., images of natural scenes, but we also consider the
application of crack removal in digitized paintings. The main approaches that
we explore to achieve these goals are: graphical modelling, in particular Markov
random field (MRF) modelling, patch representations and image self-similarity
and the use of texture features for describing image context.

1.2 Topical outline

Super-resolution and inpainting belong to the wider group of image processing
and computer vision tasks, where the main problem is to estimate some un-
known image attributes from the available image data, which are incomplete or
degraded. The unknown attributes can be missing pixel values (as is the case
in this thesis), but also the noise-free components of noisy image pixels, values
of disparities from a stereo pair, segments of the image to which each pixel be-
longs, etc. This problem is usually referred to as labelling : each pixel or group
of pixels must be assigned a label representing the desired attribute. Optimal
assignment of labels usually involves Bayesian inference, like maximum a pos-
teriori (MAP) estimation, with an MRF prior [Besag 86,Li 95]. Often, this is
equivalently formulated as an energy minimization problem. MRF theory pro-
vides a convenient and consistent way of modelling contextual dependencies
between image pixels or other image features. In particular, the global image
context is elegantly expressed in terms of local interactions.

MAP-MRF modelling has been used for decades in numerous image
processing and computer vision problems, such as image restoration [Geman 84,
Besag 86, Felzenszwalb 04, Roth 05, Raj 05], image inpainting [Sun 05, Ko-
modakis 07], image segmentation [Li 90,Boykov 01a,Rother 04,Kohli 09], tex-
ture modelling [Cross 83,Geman 86], edge detection [Torre 86,Chou 90], stereo
matching [Barnard 89,Boykov 01b], super-resolution [Freeman 00,Tappen 03,
Wang 05], automatic placement of seams in digital photomontages [Agar-
wala 04] and many others. The interest in these approaches has recently
increased due to the emergence of powerful new optimization (inference) algo-
rithms, such as loopy belief propagation (LBP) [Pearl 88,Yedidia 00,Yedidia 05]
and graph cut (GC) [Boykov 01b], which in addition led to more accurate re-
sults in different applications, e.g., stereo matching [Szeliski 08,Bleyer 11]. In
this thesis, we use these models for super-resolution and inpainting, but we also
give our contribution in the domain of inference in MRFs, by developing a novel
inference method, whose applicability we demonstrate on other applications as
well.
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The question that can be posed regarding MRF modelling and
Bayesian inference in general is how to define prior knowledge, i.e., contextual
dependencies between unknown ideal data. The simplest example of modelling
these dependencies is the smoothness prior, which enforces spatial smoothness
across the image in a uniform way. This was one of the first priors used in
image processing in 1970s. Since then, a lot of research has focused on improv-
ing image priors. A recent research direction is the use of image examples, i.e.,
training image data, to learn the prior, rather than choosing a mathematical
expression that would describe image behaviour [Elad 09]. This raises at least
three other questions: how are examples used, how are they represented and
where are they taken from? One way to use examples is directly in the recon-
struction process, where the graphical model, like the MRF, can help to reason
about the global structure, i.e., to treat an image as a whole. Examples in this
case are usually represented as image patches, where we will use the term patch
to refer to a small square block of values, e.g., raw pixel values or features like
high frequencies, etc. In general, a patch is a region with arbitrary, perhaps
image-dependent shape. These patches can be taken either from an external
database of pairs of high-quality images and their corresponding low-quality
versions or from the degraded image itself.

Using patches from the input image itself (the so-called self-examples)
is possible because (almost) the same patches tend to recur many times within
the image, both within the same scale, i.e., within the image of original size, and
across different scales, i.e., within resized versions of the image. This property
of an image is called self-similarity and it was explored in applications like tex-
ture synthesis [Efros 99,Wei 00,Ashikhmin 01,Hertzmann 01,Efros 01,Liang 01,
Kwatra 03], image denoising [Buades 05, Dabov 07, Goossens 08, Buades 08],
inpainting [Criminisi 04, Komodakis 07, Wexler 07, Bugeau 10] and super-
resolution [Ebrahimi 07, Glasner 09, Protter 09, Luong 10], leading to state-
of-the-art results in these fields. The underlying idea is to estimate the missing
or noise-free value of a pixel by considering its neighbourhood, i.e., a patch cen-
tred at a pixel, and all similar neighbourhoods, in the whole input image. These
self-examples thus serve as multiple (noisy) observations of similar image struc-
tures. Self-similarity can also be exploited to estimate the whole patch of pixel
values, i.e., the missing part of the patch is replaced with the values from similar
patches, which are found based on the known part of the patch. The assump-
tion in this case is that most pixels within the patch can be determined by the
pixels that have been previously estimated, thus they can be estimated at once
based on the similar patches. Furthermore, the computation time is decreased
compared with the pixel-by-pixel estimation because the search is performed
for a group of pixels rather than for each pixel separately. This approach has
been extensively employed in texture synthesis [Efros 01,Liang 01,Kwatra 03]
and image inpainting [Criminisi 04,Komodakis 07], usually producing visually
better results.

Self-similarity as recurrence of patches within the same scale and
across different scales was recently statistically analysed in [Glasner 09], while
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in [Zontak 11] a parametric quantification of patch recurrence was derived.
In [Zontak 11], it was also demonstrated that the priors learned from inter-
nal patch statistics are more powerful than the ones learned from the external
database of images, in the sense that better results can be obtained. When
analysing statistics across different scales, the recurrence of the patch means
that the patch appears “as is” at different scales (without downsampling the
patch). This is different than self-similarity across different scales exploited in
fractal-based methods for image coding and upscaling [Jacquin 92,Polidori 97],
because there it is assumed that parts of an image repeat on an ever-diminishing
scale, a property attributed to the geometrical shapes called fractals [Barns-
ley 88].

In our techniques we developed for inpainting and super-resolution,
the unknown attributes to be estimated are whole patches of raw pixel values.
In order to estimate them, we exploit image self-similarity, i.e., we consider
known or undamaged patches within the input image itself as possible values
for unknown patches, and we encode prior knowledge about the spatial con-
sistency between neighbouring image patches by using an MRF model. Since
the number of possible values is unmanageably high for any inference method,
we explore different approaches for reducing this number. In this respect, the
important contribution of this thesis is the context-aware approach for image
inpainting, where the main idea is to guide the search for patches to the areas
of interest based on contextual features. In this way, we employ the wider
context into the patch selection process instead of just observing a small patch
and its known pixels. In order to describe the context, we explore the use of
texture features.

Extraction of texture features has been widely studied in differ-
ent image processing and computer vision tasks, such as automated inspec-
tion [Conners 83, Jain 90, Orjuela 13], medical image analysis [Chen 89], re-
mote sensing [Rignot 90, Poggi 05], texture and image segmentation [Ma-
lik 01, Puzicha 97, Scarpa 09, Arbelaez 11], image retrieval [Puzicha 97], ob-
ject detection [Rikert 99, Torralba 10], scene classification [Oliva 01], texture
classification [Varma 03], surface recognition [Leung 99,Leung 01], analysis of
paintings [van der Maaten 10], etc. There are many approaches on how to
extract these features, among which multi-channel filtering is one of the most
popular. This approach analyses the filter outputs of an image obtained by
convolving the image with the bank of linear spatial filters at various orienta-
tions and scales. We employ different texture features obtained by analysing
these filter outputs in our context-aware approach for inpainting.

1.3 Contributions and publications

The main novelties and contributions that resulted from this research are:

• A new inference method for MAP estimation with the MRF prior. The
central idea is to propagate information through the underlying graph of
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the MRF model by sending a single “consensus” message from the neigh-
bourhood to the central node instead of exchanging messages between
pairs of neighbouring nodes. Hence, we name our method neighbourhood-
consensus message passing (NCMP). The practical algorithm combines
the flexibility of the simple iterated conditional modes (ICM) and the
message-passing framework of the more powerful LBP. The proposed
method is also a generalization of the iterated conditional expectations
(ICE) algorithm. We also develop a simplified version of NCMP, called
weighted iterated conditional modes (WICM), that is suitable for large
neighbourhoods. This work resulted in one journal publication [Ružić 12c]
and two conference publications [Ružić 09,Ružić 11c], where the publica-
tion in [Ružić 09] was awarded with the Best Poster Award.

• A novel single-image patch-based super-resolution method, which uses
cross-scale patch matching and MRF modelling of an HR image. In
patch-based super-resolution, the unknown image attributes to be esti-
mated are HR patches, and the local measurements based on which these
attributes are estimated are low-resolution (LR) patches from the input
LR image. Since the estimation of HR patches solely based on local mea-
surements can be ambiguous, an MRF prior is used to enable the global
agreement of HR patches in terms of their local agreement. The main
novelty of our method is that, instead of using HR patches from an ex-
ternal database, we exploit the self-similarity of image patches in natural
images across different scales. Thus the HR patches are taken from the
input image itself. To solve the resulting optimization problem, we use
our NCMP inference method, also developed within this thesis, to obtain
the MAP estimate of the unknown HR image. This work was published
in a conference proceedings [Ružić 11b].

• A novel context-aware image inpainting approach, which can be used with
any patch-based inpainting algorithm. The main idea is to guide the
search for patches to the areas of interest based on contextual features.
We achieve this by assigning contextual descriptors to image blocks, and
for the missing region within a given block, well-matching candidate
patches will be found in the contextually similar blocks. The benefit
is twofold: 1) the chance of choosing wrong matches is reduced, and 2)
the search for well-matching patches is greatly accelerated (no exhaustive
search over the whole known part of the image takes place). As a con-
sequence, the inpainting result is improved. This work was published in
a conference proceedings [Ružić 12a], and it has laid the basis for other
contributions of this thesis, as described next.

• GBCA, greedy block-based context-aware inpainting method, which em-
ploys a combination of textural and colour features as contextual de-
scriptors within image blocks of fixed size. The main contribution of this
method is a novel priority definition based on contour features, which are
extracted by analysing filter outputs at various orientations and scales.
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The priority determines the filling order, which is important for patch-
based inpainting methods because it ensures the propagation of image
structures, such as lines and contours, inside the missing region. There-
fore, the idea is to give the highest priority to patches containing contours,
then textured patches and finally patches in flat areas. Compared to the
gradient-based priority, which is often used in other patch-based meth-
ods, our priority based on contour features achieves better differentiation
between these different types of patches and hence better final inpainting
result. This work was published in a conference proceedings [Ružić 13c].

• MBCA, MRF block-based context-aware inpainting method, which is a
novel global patch-based image inpainting method. Similarly to the
super-resolution application, MRF encodes prior knowledge about the
consistency of neighbouring image patches. We solve the resulting op-
timization problem with an efficient low-complexity inference method,
which builds upon our NCMP inference method to make it suitable for
global inpainting problem with large number of labels. Another impor-
tant contribution of this method is an improved context representation:
we explore the use of normalized texton histograms as contextual de-
scriptors and we introduce a novel top-down splitting procedure, which
divides the image into variable-size blocks according to their context.
This work resulted in a journal submission [Ružić 13b] and a conference
proceedings [Ružić 12b].

• A novel inpainting method for the virtual restoration of artwork, which
enables the removal of signs of ageing of a painting, such as cracks. Specif-
ically, we address the problem of crack removal in the digitized versions
of the Adoration of the Mystic Lamb, also known as the Ghent Altar-
piece. The proposed crack inpainting method takes the specific problems
of cracks in this painting into account by incorporating some of the earlier
ideas of context-aware inpainting, but with different context representa-
tion based on image segmentation. The Ghent Altarpiece is one the most
important Belgian masterpieces known all over the world. We got in-
volved in this research on the initiative of prof. Ingrid Daubechies from
the Mathematics Department, Duke University, USA, who brought us
into contact with prof. Mark de Mey from the Royal Flemish Academy
of Belgium (KVAB), Belgium and prof. Maximiliaan Martens and Emile
Gezels from the Department of Art, Music and Theatre Sciences, Ghent
University, Belgium. Together with prof. Ann Dooms and ir. Bruno Cor-
nelis from the Vrije Universiteit Brussels, Belgium, we co-operated on this
project, aimed at developing image processing tools for art investigation.
The work on crack removal was published in one journal paper as the sec-
ond author [Cornelis 13], one book chapter as a co-author [Pižurica 13],
two conference publications [Ružić 11a,Ružić 13a] and two abstracts were
presented in international conferences [Ružić 10,Cornelis 11]. This work
also contributed to the research on pearl characterization in the Ghent
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Altarpiece conducted by ir. Ljiljana Platiša from the IPI group. This
research was conducted within the same project and it resulted in several
publications listed in Appendix B.

To summarize, the work presented in this thesis and contributions to
other people’s work resulted in 2 journal publications (of which 1 as the first
author), 1 journal submission and 2 publications in book chapters (as a co-
author). 11 papers are published on international and national conferences (of
which 8 as the first author). 7 abstracts were presented on international and
national conferences (of which 2 as the first author). A list of all the publica-
tions published during the course of this research can be found in Appendix B,
while a selection of the most important publications is given below:

• T. Ružić, A. Pižurica and W. Philips. Neighbourhood-consensus message
passing as a framework for generalized iterated conditional expectations.
Pattern Recognition Letters, vol. 33, pages 309-318, February 2012.

• B. Cornelis, T. Ružić, E. Gezels, A. Dooms, A. Pižurica, L. Platiša,
J. Cornelis, M. Martens, M. De Mey and I. Daubechies. Crack detection
and inpainting for virtual restoration of paintings: The case of the Ghent
Altarpiece. Signal Processing, vol. 93, no. 3, pages 605-619, March 2013.

• T. Ružić and A. Pižurica. Context-aware patch-based image inpainting
using Markov random field modelling. IEEE Trans. on Image Proc. (sub-
mitted).

• T. Ružić, B. Cornelis, L. Platiša, A. Pižurica, A. Dooms, W. Philips,
M. Martens, M. De Mey and I. Daubechies. Virtual restoration of the
Ghent Altarpiece using crack detection and inpainting. In Proceedings of
Advanced Concepts for Intelligent Vision Systems (ACIVS), pages 417-
428, 2011.

• T. Ružić, H. Q. Luong, A. Pižurica andW. Philips. Single image example-
based super-resolution using cross-scale patch matching and Markov ran-
dom field modelling. In M. Kamel and A. Campilho, editeurs, Proceedings
of Int. Conf. on Image Analysis and Recognition (ICIAR), pages 11-20,
2011.

• T. Ružić, A. Pižurica and W. Philips. Neighbourhood-consensus message
passing and its potentials in image processing applications. In J. T. As-
tola and K. O. Egiazarian, editeurs, Image Processing: Algorithms and
Systems IX; Proceedings of SPIE, volume 7870, 2011.

• T. Ružić and A. Pižurica. Texture and color descriptors as a tool for
context-aware patch-based image inpainting. In Image Processing: Algo-
rithms and Systems X; and Parallel Processing for Imaging Applications
II; Proceedings of SPIE, volume 8295, 2012.
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• T. Ružić, A. Pižurica and W. Philips. Markov random field based image
inpainting with context-aware label selection. In Proceedings of IEEE
Int. Conf. on Image Processing (ICIP), pages 1733-1736, 2012.

• T. Ružić, A. Pižurica and W. Philips. Exploring contour and tex-
ture features for context-aware patch-based inpainting. In Proceedings
of Symp. on Signal Processing, Image Processing and Artificial Vision
(STSIVA), pages 1-5, 2013.

• T. Ružić and A. Pižurica. Context-aware image inpainting with appli-
cation to virtual restoration of old paintings. In IEICE Information and
Communication Technology Forum (ICTF), pages 1-8, 2013.

1.4 Organization of the thesis
In this thesis, we study MRF and patch-based models for two main applications:
image super-resolution and inpainting. Each chapter of the thesis therefore
consists of a background and theoretical introduction, a review of state-of-
the-art methods and our contribution in the field. The thesis is organized as
follows.

In Chapter 2, we cover the problem of optimization (inference) in
MRF models. We first introduce the basic theory of MRFs, where we focus on
inference in MRFs, rather than on the task of modelling itself. Therefore, we
review some representative inference methods. We propose a novel suboptimal
inference algorithm, NCMP, which allows great flexibility in defining spatial
interactions between the unknown variables that are to be estimated with the
MRF. We show how our method represents a generalization of the ICE infer-
ence method beyond pairwise interactions. We also derive another inference
method as a simplification of the more general NCMP. We demonstrate the
potentials of the proposed methods with experimental results on four different
benchmarks. Good performance of the NCMP method for patch-based MRF
models encouraged us to use it for inference in all the methods proposed in this
thesis that use MRFs.

Chapter 3 addresses the problem of image upscaling. We start the
chapter by introducing the main applications, problems and degradation mod-
els of image upscaling in general. Afterwards, we give an extensive overview of
representative image upscaling methods, among which patch-based methods are
considered to be very promising because they are capable of recovering missing
high frequencies in the HR image, i.e., performing super-resolution. Combin-
ing the benefits of graphical and patch-based models and exploiting the image
self-similarity across different resolution scales, we develop a new single-image
patch-based super-resolution method. The proposed method generates an HR
image using cross-scale patch matching, patch-based MRF modelling and our
inference technique proposed in Chapter 2. We demonstrate the effectiveness
of our method on different natural images in comparison with other image
upscaling methods.



1.4 Organization of the thesis 11

Chapters 4, 5 and 6 treat the problem of image inpainting. In Chap-
ter 4, we first give a short introduction to the basic methodology for solving
the inpainting problem, which is followed by an extensive overview of inpaint-
ing methods from literature, with the emphasis on patch-based methods. We
propose a general approach for context-aware patch-based image inpainting,
where textural descriptors are used to guide and accelerate the search for well-
matching patches. This approach can be employed to improve the speed and
performance of any (patch-based) inpainting method. In Chapter 4, we employ
the proposed context-aware approach within a novel inpainting method, which
explores the use of contour features to determine the filling order of the missing
region.

Chapter 5 combines the ideas from three previous chapters within a
novel image inpainting method. Firstly, we employ an MRF patch-based model
for inpainting application. Secondly, we apply the proposed context-aware ap-
proach from Chapter 4 to improve the speed and performance of this MRF-
based inpainting method. Thirdly, we improve on this approach by proposing a
novel top-down splitting procedure that divides the image into blocks of adap-
tive sizes based on their context. Finally, we solve the resulting optimization
problem with the extension of our inference method from Chapter 2.

Chapter 6 focuses on the application of image inpainting for virtual
restoration of digitized old paintings, specifically crack removal. We first de-
scribe the cracks in old paintings in general and we review the related work on
virtual restoration of artwork. We focus in more detail on the case study of
the Ghent Altarpiece, by describing the particularities of cracks in this paint-
ing and by briefly introducing the crack detection method developed to tackle
these particularities. We apply our methods developed in Chapters 4 and 5 to
remove cracks in the Ghent Altarpiece. After analysing the results, we iden-
tify the remaining problems and deal with them by developing a novel crack
inpainting method.

Chapter 7 gives concluding remarks about the work presented in this
thesis. We also discuss some possible directions for future work.
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2
Inference in MRF models

Markov random fields (MRFs) are widely used in image processing and com-
puter vision problems because they provide a convenient and consistent way
of modelling contextual constraints in images. These contextual dependen-
cies inevitably exist in images because image pixels and other image entities
are spatially correlated. Furthermore, MRFs are able to model global image
context in terms of local interactions, which makes MRF models elegant and
computationally tractable.

In this chapter, we first introduce basic properties of MRFs in Sec-
tion 2.2. However, we are not concerned with MRF modelling itself, rather
with the design of optimization (inference) algorithms. There are numerous in-
ference methods available in literature, some of which we explain in more detail
in Section 2.3. Also, an excellent overview and comparison of inference meth-
ods is in [Szeliski 08]. In Section 2.4, we propose a novel suboptimal inference
algorithm, which allows great flexibility in defining spatial interactions between
image entities. We name the proposed method neighbourhood-consensus mes-
sage passing (NCMP). Furthermore, we develop another version of our NCMP
method that we call weighted iterated conditional modes (WICM), presented
in Section 2.4.4. Example applications and performance comparisons are given
in Section 2.5, while convergence is addressed in Section 2.6. Finally, the con-
cluding remarks are given in Section 2.7.

2.1 Introduction
A typical problem in image processing and computer vision consists of esti-
mating some unknown image attributes from the available image data, which
are incomplete or degraded. The unknown attributes can be the noise-free
components of the noisy image pixels, values of disparities from a stereo pair,
missing pixel values, segments of the image to which each pixel belongs, etc.
This problem is usually referred to as labelling : each pixel or group of pixels is
assigned a label representing the desired attribute.

Since the labelling solely based on the available image data can be
ambiguous, prior knowledge about spatial context in the image can be addi-
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(a) (b) (c)

Figure 2.1: Example graphs for MRF models in computer vision and image pro-
cessing: (a) 4-connected lattice, (b) 8-connected lattice, and (c) irregular lattice (a
node corresponds to a group of pixels).

tionally introduced. The spatial constraints in images result from the fact that
the value of a pixel (or other image entity) is highly dependent on the values of
surrounding pixels. The simplest assumption regarding the spatial context is
that the image is smooth everywhere, thus neighbouring pixels are more likely
to have similar values. MRF theory provides a convenient and consistent way
of modelling these (and more complex) spatial constraints between image pix-
els or other image features. In particular, the global image context (as a joint
probability) is elegantly expressed in terms of local interactions. The resulting
labelling problem then involves Bayesian inference, like maximum a posteri-
ori (MAP) estimation, with an MRF prior [Besag 86, Li 95] and it is often
formulated as an energy minimization problem.

The so-called MAP-MRF modelling has been used for decades
in numerous image processing and computer vision problems, such as im-
age restoration [Geman 84, Besag 86, Felzenszwalb 04, Roth 05, Raj 05, Ko-
modakis 07], image segmentation [Li 90, Boykov 01a, Rother 04, Kohli 09],
texture modelling [Cross 83, Geman 86], edge detection [Torre 86, Chou 90],
stereo matching [Barnard 89, Boykov 01b], super-resolution [Freeman 00],
automatic placement of seams in digital photomontages [Agarwala 04] and
many others. The interest in these approaches has recently increased due to
the powerful new optimization algorithms, such as loopy belief propagation
(LBP) [Pearl 88, Yedidia 00, Yedidia 05] and graph cut (GC) [Boykov 01b],
which in addition led to more accurate results in different applications, e.g.,
stereo matching [Szeliski 08,Bleyer 11].

An MRF is built over a single undirected graph consisting of nodes
and edges connecting those nodes. Such structure corresponds to an image,
where a node corresponds to a pixel or to a group of pixels (e.g., an image
patch) and the edges connecting the nodes represent context dependencies be-
tween these image entities. The undirected graphs corresponding to MRF
models are depicted in Fig. 2.1. They are mostly lattice-like, but can also be
irregular, in the case of labelling more abstract image features, such as corners
and lines [Li 95]. These types of graphs contain many loops, in the sense that
one node is connected to itself via edges and other nodes. Graphs without
loops also exist, like chains and trees, but those are associated with different
statistical models.
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2.2 Markov random fields

In this section, we introduce the basic theoretical concepts of the MRF model
and notations. For more details, see e.g., [Li 95,Winkler 95,Pižurica 02a,Li 09].

2.2.1 Notation and definitions

In this thesis, we consider an underlying MRF model to be an undirected graph
represented by a regular rectangular lattice S (Figs. 2.1(a) and (b)). Positions
on this lattice, called nodes, are represented by a single index i = 1, . . . , Nn
(assuming raster-scan order). The index corresponds to the positions of image
pixels or patches. In a graphicalmodel, a set of nodes is associated with a family
of random variables X = (X1, . . . , Xn) on a set S, where each random variable
can take one of L values from the discrete set xi ∈ Λ = {1, . . . , L}.1 These
values are usually referred to as labels of a node. Note that in some patch-
based models, which we will consider later in this thesis, this label set can be
node-specific, i.e., xi ∈ Λi = {xi1 , . . . , xiL}, but for now we will assume it is
the same for all nodes. Furthermore, in patch-based models, labels represent
patches of pixel values.

We use the notation Xi = xi to denote the event that the random
variable Xi takes the value xi, and we will refer to this event as the assignment
of the label xi to the node i. The notation X = x will be used to abbreviate
the joint event (X1 = x1, . . . , XNn = xNn) and the probability P (X = x) of the
event X = x is further abbreviated for simplicity to P (x). Therefore, x is one
possible realization of the random vector X. The family of random variables X
is called a random field, where all its possible realizations have strictly positive
probability. Furthermore, we will denote by XA a vector of random variables
with indices in the set A ⊂ S, and its corresponding realization by xA.

A random field X is an MRF if it satisfies the Markov property

P (xi|xS\i) = P (xi|x∂i), (2.1)

where S\i is the set of all nodes except the node i and ∂i is the neighbourhood
of i. The Markov property implies that the probability of a node’s label con-
ditioned on all other labels reduces to the label’s probability conditioned on
its neighbours only. The distant labels have no influence on the label’s prob-
ability provided that its immediate neighbours are specified. In simple words,
the Markov property allows long-range statistical dependencies to be implicitly
described by short-range connections within a specified neighbourhood.

The neighbouring relations are defined formally as follows. The neigh-
bourhood system for the set S is defined as

∂ = {∂i|∀i ∈ S}, (2.2)

1In general, this set can also be continuous, but in this thesis we are considering only
discrete one because we are working with discrete MRFs.
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where ∂i represents the neighbourhood and its nodes k ∈ ∂i represent neighbours
of i. The neighbourhood must satisfy the following conditions:

1. a node is not neighbouring itself: i /∈ ∂i

2. the neighbouring relationship is symmetrical: i ∈ ∂j ⇔ j ∈ ∂i.

The neighbourhoods most often used in image processing are the first-order
(four nearest nodes), corresponding to Fig. 2.1(a), and the second-order neigh-
bourhoods (eight nearest nodes), corresponding to Fig. 2.1(b). MRFs with
bigger neighbourhoods are referred to as highly-connected MRFs.

2.2.2 Gibbs distribution

A Gibbs random field (GRF) [Malyshev 91] is used in statistical mechanics as a
probability model for fluctuations of large physical systems around their equi-
librium state. Due to its equivalence with an MRF, it has been used in many
applications outside physics. While an MRF is characterized by local spatial
interactions, a GRF provides a model for global context since its probability
distribution is defined over all nodes in the graph [Pižurica 02a]. A GRF is a
random field X whose realizations x obey a Gibbs distribution

P (x) =
1

Z
exp

(
− 1

T
E(x)

)
, (2.3)

where T is the temperature, E(x) is the energy function and Z =
∑

x∈X exp
(
−

E(x)/T
)
is the normalizing constant called the partition function. Evaluation

of Z can be computationally prohibitive because it requires summation over
all possible realizations in X . It can be avoided in maximum-probability-based
MRF vision models when there are no unknown parameters in the energy func-
tion [Li 95].

P (x) is the probability that the realization x occurs. According to
Eq. (2.3), the more probable realizations are the ones with lower energies. The
temperature T controls the peakedness of the distribution: when T is high,
realizations are almost equally probable, while for low values the distribution
concentrates around the global energy minimum.

The equivalence of a Gibbs and a Markov random field is established
with the Hammersley-Cilfford theorem, which states that X is an MRF on S
with respect to the neighbourhood system ∂ if and only if X is a GRF on S
with respect to ∂. In other words, if the energy function of a GRF can be
expressed as the sum of clique potentials, E(x) =

∑
C∈C VC(xC), then this

GRF is equivalent to an MRF. Different proofs of this theorem can be found
in, e.g., [Li 95, Besag 74]. The clique C represents a set of nodes, which are
all neighbours of one another (see Fig. 2.2 for examples), while C denotes the
set of all possible cliques. VC(xC) is the clique potential, which is defined as a
function of labels of nodes belonging to C.
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(a)

(b)

Figure 2.2: Types of cliques for (a) the first-order neighbourhood, and (b) the
second-order neighbourhood (bottom row corresponds to clique types of higher-order
MRFs).

This theorem enables us to express the joint probability of an MRF,
which is a measure of a global context, in a simple way by specifying only local
spatial interactions through clique potentials:

P (x) =
1

Z
exp

(
− 1

T

∑
C∈C

VC(xC)
)
. (2.4)

Clique potentials are chosen in practice to favour certain local spatial depen-
dencies, e.g., to encourage smoothness. In this way, the prior knowledge about
the image is encoded in the model. In most cases in image processing, the
clique potentials are the same for all cliques of a given type, regardless of their
spatial position within the lattice, which facilitates computation. Such MRFs
are called homogeneous. MRF is isotropic if clique potential is independent of
orientation of the clique. The choice of isotropic MRF is application-dependent
and in fact, later in this chapter, we will also make use of an anisotropic MRF.

2.2.3 Common MRF models
In addition to the already mentioned general divisions of MRFs into homoge-
neous and inhomogeneous or isotropic and anisotropic, in this subsection we
will introduce some of the common discrete MRF models that we use in the
remaining of this chapter. The most commonly used MRF models are the
so-called pairwise MRFs, where cliques consist of pairs of neighbouring nodes.
The energy function of such an MRF is

E(x) =
∑
〈i,j〉

Vij(xi, xj), (2.5)

where Vij(xi, xj) is the pairwise potential representing the interaction of labels
of neighbouring nodes. Here, we consider a general form of the pairwise poten-
tial, regardless of the homogeneity of the MRF. In the case of a homogeneous
MRF, we will denote the pairwise potential as V (xi, xj). If cliques consist of
more than two neighbouring nodes (see the bottom row of Fig. 2.2(b)), then the
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clique potential is a function of more than two labels, and those MRF models
are usually referred to as higher-order MRFs.

The basic pairwise MRF model is called the Ising model [Li 95,Win-
kler 95], originating from statistical physics, where it was used to model the
behaviour of ferromagnets. The main properties of this model are the following:

• the labels are Boolean (binary) variables, e.g., xi ∈ Λ = {−1, 1};2

• the neighbourhood is of the first-order (Fig. 2.1(a));

• the model is homogeneous and isotropic;

• the pairwise potential takes the form V (xi, xj) = −γxixj .

Such a pairwise potential favours assigning the same label to neighbouring
nodes for γ > 0, i.e., xi = xk is more probable than xi 6= xk, while it is the
opposite for γ < 0.

The energy function of the Ising model is E(x) = −γ
∑
〈i,j〉 xixj . It

falls into the category of pseudo-Boolean functions (PBFs), because the input
is Boolean, and the output is real valued, i.e., not Boolean. PBFs are im-
portant because they can be optimized in polynomial time if they satisfy the
submodularity condition [Kolmogorov 04]

f(x′) + f(x′′) ≥ f(x′ ∨ x′′) + f(x′ ∧ x′′), (2.6)

for all label assignments x′ and x′′, where ∨ and ∧ are component-wise
OR and AND, respectively. The pairwise potential of the Ising model sat-
isfies this condition, i.e., it is submodular, because V (1,−1) + V (−1, 1) ≥
V (1, 1) + V (−1,−1), and since the set of submodular functions is closed un-
der addition, also the MRF energy E(x) of the Ising model is submodu-
lar [Rother 07,Blake 11]. Graph cut (Section 2.3.4) represents an efficient op-
timization algorithm for optimizing a subclass of submodular functions, which
are common in image processing and computer vision problems.

Another important model is the Potts model [Potts 52], which repre-
sents a generalization of the Ising model to the problems with multiple labels
(L > 2). The pairwise potential is defined as

V (xi, xj) =

{
γ, if xi 6= xj

0, if xi = xj .
(2.7)

The Potts model penalizes any pair of different labels equally with γ (γ > 0),
regardless of the magnitude of the difference.3 Therefore, it represents a type
of a smoothness prior. Some other smoothness priors can be expressed in

2Equivalently, binary variables can be xi ∈ Λ = {0, 1}.
3In the definition of the Potts model in [Won 04], V (xi, xj) = −γ if xi = xj , in which case

the parallel can be made with the multi-level logistic (MLL) model [Li 95]. In particular,
the MLL model represents a generalization of the Potts model for the case of different clique
potentials for each clique type.
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Figure 2.3: Square lattice of nodes, where each node i is associated with an obser-
vation yi (black circles) and a hidden random variable Xi and its realization (label)
xi (white circles). A pairwise MRF with the first-order neighbourhood is imposed on
the hidden variables. The edges indicate pairwise cliques.

the general form V (xi, xj) = min(|xi − xj |r, Vmax), and they include, e.g.,
the truncated linear prior (r = 1) and the truncated quadratic prior (r =
2) [Szeliski 08]. The choice of the model and the prior highly depends on the
application. Some example applications are illustrated later in Section 2.5,
while a more comprehensive overview of different applications can be found,
e.g., in [Szeliski 08,Blake 11].

2.2.4 Bayesian inference in MRF models

A common problem in image processing and computer vision is to infer un-
known variables from the available measurements or observations (evidence
assignments). For example, in image denoising, one knows the value of the
noisy pixel and aims at inferring the value of the noise-free pixel based on the
available noisy value and on the prior knowledge about the image. This prior
knowledge can be encoded with an MRF.

The example of such an MRF model with the first-order neighbour-
hood is sketched in Fig. 2.3. Nodes are associated with the unknown (hid-
den) random variables defined in Section 2.2.1 (white circles), and observa-
tions (black circles). Set of observations on S is interpreted as a realization
y = (y1, . . . , yNn) of a random vector Y = (Y1, . . . , YNn) and it represents given
image data, such as colour values of image pixels or patches. The same nota-
tional conventions apply as for unknown random variables in Section 2.2.1: the
joint event (Y1 = y1, . . . , YNn = yNn) is abbreviated as Y = y and P (Y = y)
as P (y).
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Defining such a model naturally leads to an inference problem, where
the goal is to estimate the underlying properties x̂ given the observed data y,
and a certain optimization criterion. Often, the criterion is to maximize the
posterior distribution for the possible labels x, given the observations y, P (x|y),
i.e., to compute the MAP estimate

x̂ = arg max
x

P (x|y). (2.8)

Using the Bayes rule

P (x|y) =
P (y|x)P (x)

P (y)
, (2.9)

and if P (y) is independent of x, the MAP estimate can be expressed as

x̂ = arg max
x

P (y|x)P (x). (2.10)

P (x) is the prior joint distribution of the nodes’ labels, encoded by an MRF
and indicated by edges in the graph in Fig. 2.3, which are connecting the nodes.
This underlying MRF model can take, for example, any of the forms described
in Section 2.2.3. The term P (y|x) is called the likelihood of the observations
and it describes the relationship between a label and an observation at a node,
indicated by an edge between them in Fig. 2.3. It is determined by the knowl-
edge of the reconstruction mechanism or by learning from training data. The
likelihood is commonly approximated by assuming conditional independence
between random variables Y1, . . . , Yn, given the labels x [Besag 86], or formally

P (y|x) = P (y1|x1) . . . P (yn|xn). (2.11)

This aspect is depicted in Fig. 2.3 by the absence of edges between observations
themselves. Furthermore, it is assumed that the conditional density functions
are the same for each yi and dependent only on xi.

If the prior distribution P (x) is a Gibbs distribution (see Eq. (2.4)
and the discussion in Section 2.2.2), then it can be shown [Pižurica 02a] that
also posterior MRF probability is a Gibbs distribution with posterior energy
E(x|y):

P (x|y) ∝ exp
(
− E(x|y)

)
, (2.12)

where ∝ denotes proportionality. Now the MAP estimation problem from
Eq. (2.8) becomes an energy minimization problem: x̂ = arg minxE(x|y). The
posterior energy in general case is represented as

E(x|y) =
∑
C∈C

VC(xC) +
∑
i

Di(xi, yi), (2.13)

where VC(xC) is the clique potential and Di(xi, yi) is the so-called likelihood
energy or data term, which modifies the energy function in order to include
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the observations. Note that in general the model is characterized by certain
parameters ω, which means that the posterior probability, posterior energy
and partition function are dependent on those parameters. However, we will
assume that the parameters are given, in which case the posterior energy is fully
specified, the MAP-MRF problem is completely defined, and the computation
of Z, which is often intractable, is not required.

The posterior energy of the pairwise MRF model, introduced earlier
in Section 2.2.3, and now including observations, is

E(x|y) =
∑
〈i,j〉

Vij(xi, xj) +
∑
i

Di(xi, yi). (2.14)

In belief propagation literature [Yedidia 00,Freeman 00], it is common
to consider the joint distribution between observations y and labels x, which
can be written in a factorized form as

P (x,y) =
∏
〈i,j〉

ψij(xi, xj)
∏
i

φi(xi, yi), (2.15)

where ψij(xi, xj) ∝ exp(−Vij(xi, xj)) denotes the statistical dependency be-
tween labels of pairs of neighbouring nodes and φi(xi, yi) ∝ exp(−Di(xi, yi)) is
the local evidence which models the relationship between an observation and a
label. Essentially, φi(xi, yi) = P (yi|xi). Vij(xi, xj) and Di(xi, yi) are the terms
from Eq. (2.14).

2.3 Inference methods
Inference methods aim at finding the optimal solution to the problem expressed
by the means of the objective function. In image processing and computer
vision, the objective function is formulated in terms of given observations,
e.g., pixel intensities, and spatial interactions between those pixels, which are
derived from the prior knowledge about the image and encoded via MRF. The
most popular choice of optimization strategy is MAP estimation (Eq. (2.8)),
where the objective function is the posterior probability of the underlying image
x given the observed data y from Eq. (2.9). This is equivalent to minimizing
the energy from Eq. (2.13). Since in this thesis we consider only discrete label
set, the inference problem actually represents a combinatorial one.

In this chapter, we are not concerned with how faithfully the ob-
jective function models the reality. We are rather focused on the optimization
algorithms, i.e., how to retrieve the optimal solution under certain optimization
criterion when the objective function is already given.

There are two main issues regarding optimization [Li 95]:

• dealing with the existence of local optima when the objective function is
non-convex and

• the efficiency of the algorithm in terms of memory and computation time.
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In MAP-MRF labelling problems, computation is often exhaustive (meaning
all possible options are examined) or even intractable due to a large number of
variables and the loopy structure of the graph. Therefore, it is difficult to re-
spect both above mentioned demands simultaneously. Some methods perform
local optimization, which is efficient, but can only provide a local optimum
and the solution typically depends on the initial estimate. These combinato-
rial methods include relaxation labelling [Rosenfeld 76], iterated conditional
modes (ICM) [Besag 86], highest confidence first [Chou 90], dynamic program-
ming [Bellman 62], as some of the classical methods listed in [Li 95], and more
recent LBP [Pearl 88,Yedidia 01a]. On the other hand, there exist also global
methods, like random search methods [Metropolis 53,Geman 84], often com-
bined with simulated annealing [Kirkpatrick 83,Cerny 85], which aim at finding
a global optimum. Also GC [Greig 89,Boykov 01b,Boykov 04] and sequential
tree-reweighted message passing [Kolmogorov 06] belong to this group under
certain conditions. Finding a global optimum is a non-trivial problem when the
energy function or joint probability have many local optima, which typically
results in exhaustive search. In the remaining of this section, we will review in
more detail the inference methods, which are the most relevant for our work.

2.3.1 MCMC samplers and simulated annealing
For most types of problems, there is no efficient algorithm which guarantees
to find global optimal solution. In that case, one can settle for an approx-
imate solution at a smaller computational cost. Approximate methods that
provide such solutions are, among others, random search methods, such as
Markov chain Monte Carlo (MCMC) samplers, which are also slow compared
to the more recent methods, but find an optimal solution with high probability.
MCMC samplers obtain a sequence of random samples (e.g., a sequence of real-
izations of an MRF) from a probability distribution for which direct sampling is
difficult, i.e., the samples are only approximately from the target distribution.
The next sample in the sequence is randomly generated by using the previous
sample, thus the sequence represents a Markov chain, and it is used to perform
inference, e.g., by estimating marginals as a fraction of the occurrence of a
given label at a given position in the MRF over the whole chain. During this
iterative search, occasional increases in the posterior energy of the MRF are
allowed, which prevents getting trapped in a local energy minimum.

The most popular MCMC samplers are the Gibbs [Geman 84] and the
Metropolis sampler [Metropolis 53]. The Metropolis sampler starts from some
initial realization x of an MRF and at each step, a new candidate realization is
obtained by random perturbation of the previous realization. Then the change
in the posterior energy ∆E is computed and the new realization is accepted if
∆E ≤ 0 and accepted with probability p if ∆E > 0. In practice, this means
that a random number with uniform distribution on [0, 1) is generated and
compared with exp(−∆E/T ), where T is the temperature in Gibbs distribution
(Eq. (2.3)). One iteration of this algorithm is completed once all the labels are
updated. The algorithm runs through multiple iterations until convergence,
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which is achieved when the equilibrium or maximum number of iterations is
reached.

The Gibbs sampler is the special case of the Metropolis sampler,
where the next realization is based on the conditional probability rather than
the energy change. Specifically, instead of generating a single n-dimensional
vector in a single pass using a full distribution, the Gibbs sampler generates a
sample for n random variables sequentially from n univariate conditional dis-
tributions (i.e., distributions in which all the random variables are fixed except
one). Due to this, it is usually faster and easier to use than the Metropo-
lis sampler. However, its application is limited to the problems where all the
conditional distributions of the target distribution can be sampled exactly.

Note that the above mentioned MCMC samplers operate at a fixed
temperature T . The quality of the solution can be further improved if this tem-
perature, or some other parameter, is gradually reduced from very high value
to a value close to zero in an iterative process, which helps substantially to
avoid getting trapped in the local minimum (see Section 2.2.2). At each step of
this process, i.e., at each value of T , a sampling method (e.g., Metropolis sam-
pler) is applied. After the sampling method converges at the current value of
T , T is decreased according to a carefully chosen schedule. This optimization
method is called simulated annealing [Kirkpatrick 83, Cerny 85]. The most
popular, and the only theoretically justified type of annealing, is stochastic
simulated annealing [Geman 84], which employs the Metropolis or the Gibbs
sampler at each value of T . Other annealing algorithms are listed in [Li 95],
such as deterministic graduated non-convexity [Blake 87] and mean field an-
nealing [Peterson 89]. The drawback of annealing methods is that they are
extremely computationally intensive, because the temperature T has to be de-
creased gradually according to some schedule [Kirkpatrick 83,Geman 84], and
at each value of T the sampling method has to converge.

2.3.2 Iterated conditional modes
Iterated conditional modes (ICM) is a simple, “greedy” inference method aiming
at approximate MAP estimates. It starts from an initial estimate and then
visits the nodes in some predefined order. While the true MAP estimate would
maximize the posterior probability P (x|y), in the case of ICM in each iteration
the new estimate x̂i at node i maximizes the conditional probability given the
evidence y and the current estimation x̂S\i elsewhere:

x̂i = arg max
xi

P (xi|y, x̂S\i). (2.16)

Due to the Bayes theorem (Eq. (2.9)), the assumption of conditional inde-
pendence of observations (Eq. (2.11)) and the Markov property (Eq. (2.1)), it
follows that the approximate posterior probability is [Besag 86,Pižurica 02a]

P (xi|y, x̂S\i) ∝ P (yi|xi)P (xi|x̂∂i). (2.17)

Combining the above two equations, the ICM update rule becomes
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x̂i = arg max
xi

P (yi|xi)P (xi|x̂∂i). (2.18)

If we look at the pairwise MRF, which is most often used, we can express the
spatial interactions with the pairwise clique potential (see Section 2.2.2) as

P (xi|x̂∂i) ∝ exp
(
−
∑
j∈∂i

Vij(xi, x̂j)
)
. (2.19)

Therefore, the ICM estimate becomes

x̂i = arg max
xi

P (yi|xi) exp
(
−
∑
j∈∂i

Vij(xi, x̂j)
)
. (2.20)

Once all the nodes are visited, one iteration of the algorithm is fin-
ished. The procedure is repeated until convergence, which is guaranteed to
occur and in practice is very fast compared to other inference methods. This
stands for the sequential update scheme, where labels are updated as nodes are
being visited. In the parallel case, all labels are updated at once at the end of
each iteration, which can result in small oscillations rather than convergence.
In both cases, only a local maximum of the posterior probability is reached and
the results highly depend on the initial estimate. The initial estimate is usually
set to the maximum likelihood estimate x̂ = arg maxx P (y|x), although better
options may exist.

2.3.3 Iterated conditional expectations

To overcome certain limitations of ICM, which will be discussed below, the it-
erated conditional expectations (ICE) algorithm was introduced in [Owen 89],
specifically for the Ising MRF model. Initially, ICE was developed for im-
age segmentation applications and later it was applied to image restora-
tion [Zhang 93]. In both cases, it was shown that ICE outperforms ICM for very
noisy images. Unlike ICM, which assigns labels after visiting the node (in the
sequential case) or after each iteration (parallel case), ICE within one iteration
updates only the approximate a posteriori probabilities of labels and actually
assigns labels only after all iterations are completed. ICE is closely related to
the mean field theory [Bilbro 88]. Despite its potential, this method is much
less known than ICM in image processing community and usually neglected in
recent papers.

In order to explain ICE, we will first derive the ICM update rule for
the Ising MRF model, as in [Owen 89]. Specifically, the Ising model with binary
labels xi ∈ Λ = {0, 1} is considered, thus the pairwise potential is V (xi, xj) = 0
if xi 6= xj , and V (xi, xj) = −γ if xi = xj , where γ > 0. This means that, e.g.,
for the label xi = 1 of the current node, the neighbourhood influence in ICM,
i.e., the prior information from Eq. (2.19) is

P (xi = 1|x̂∂i) ∝ exp(γni), (2.21)
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where ni is the number of nodes in the neighbourhood that are assigned the
label 1 (x̂j = 1, where j ∈ ∂i), i.e., whose labels are estimated as 1. The
neighbouring nodes that are assigned the label 0, x̂j = 0, do not have any
influence since V (xi = 1, xj = 0) = 0. The same applies for the label xi = 0,
just that the spatial influence becomes the number of assigned (estimated)
zeros in the neighbourhood ∂i. Therefore, for this type of model, ICM reduces
the spatial-context information to the number of estimated labels of each type
within the neighbourhood.4 The approximate posterior probability in ICM is
then

P (xi = 1|yi, x̂∂i) = αP (yi|xi = 1) exp(γni), (2.22)

where α is the normalization constant ensuring that all approximate posterior
probabilities sum to one.

However, in [Owen 89] it was noted that this reduction of spatial-
context information in ICM due to the immediate assignment of labels, intro-
duces some loss of information. For example, the prior information for the
current node with the label xi = 1 is P (xi = 1|x̂∂i). This probability has the
same value, regardless of whether all neighbours j ∈ ∂i of the node i have been
assigned the label 1 (x̂j = 1) with probability P (xj = 1|yj , x̂∂j) = 0.51 or with
probability 0.99. However, the probability P (xi = 1|x̂∂i) would have a quite
different value if, ∀j ∈ ∂i, P (xj = 1|yj , x̂∂j) = 0.49, which means that all the
neighbours have been assigned the label 0 (x̂j = 0).

Therefore, ICE suggests to postpone label assignment until all it-
erations have finished, and update only the approximate a posteriori proba-
bilities of the labels in each iteration. These a posteriori probabilities (e.g.,
for label 1) are now P (xi = l|yi,x∂i), which is different from a posteriori
probability P (xi = 1|yi, x̂∂i) in ICM (Eq. (2.22)), because labels in ICE are
not estimated (assigned) in each iteration. For notational simplicity, we will
from now on use the following abbreviations: pi(l) = P (xi = l|yi,x∂i) and
P (yi|l) = P (yi|xi = l), where l ∈ {0, 1}. The ICE update rule for the Ising
MRF for pi(1) is then defined as

pi(1) = αP (yi|1) exp
(
γ
∑
j∈∂i

pj(1)
)

(2.23)

α =
(
P (yi|1) exp

(
γ
∑
j∈∂i

pj(1)
)

+ P (yi|0) exp
(
γ
∑
j∈∂i

(1− pj(1))
))−1

. (2.24)

The posterior probability of the label xi = 0 is then pi(0) = 1− pi(1). After a
given stopping criterion (convergence or a pre-defined number of iterations), the
labels are chosen so as to maximize these approximate posterior probabilities
over two labels: x̂i = arg maxxi pi(xi). In practice instead, one can simply
check if pi(1) > 0.5 and assign x̂i = 1 if it is true and x̂i = 0 otherwise.

4This also stands for the Potts model [Potts 52] (see also Eq. (2.7)).
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Comparing the approximate posterior probability of ICE from
Eq. (2.23) with the one of ICM from Eq. (2.22), we can see that the ni, i.e., the
number of nodes assigned the label 1 in the neighbourhood ∂i, is replaced with∑
j∈∂i pj(1). This means that ICE considers all nodes j in the neighbourhood

via the posterior pj(1). In this way, more information is kept in the inference
process than it is the case for ICM.

In Section 2.4, we will propose a novel inference method, which also
represents a generalization of ICE beyond the Ising MRF model, as we will
show in Section 2.4.3.

2.3.4 Graph cut and its variations
Graph cut (GC) was first introduced in computer vision by [Greig 89], where
it was demonstrated that it gives exact solution, i.e., global optimum, for a
submodular PBF MRF problem (see Section 2.2.3 for the definition of a sub-
modular PBF MRF). This algorithm was too slow for practical use on images,
just like some other polynomial-time algorithms for minimizing submodular
functions [Orlin 07]. However, it was shown in [Boykov 04] that for quadratic
pseudo-Boolean functions (QPBFs), which are PBFs of at most two variables,
the optimization can be performed much more efficiently. This is because
the optimization problem in this special case can be reduced to the so-called
s − t min-cut problem on a graph, which is a classical combinatorial problem
present in many applications and for which efficient algorithms have been devel-
oped [Ford 62,Dinic 70]. Boykov and Kolmogorov [Boykov 04] also proposed
new optimization algorithms, which improve empirical performance of these
standard techniques.

In order to minimize the energy from Eq. (2.14) with the s−tmin-cut,
first the undirected graph of MRF nodes must be transformed into a directed
weighted graph, which includes two additional terminal nodes, the source s
and the sink t (see Fig. 2.4). These terminal nodes correspond to each of the
binary labels, i.e., s = 1 and t = 0. The data term and the pairwise potential
in Eq. (2.14) are represented by the weighted edges in the graph, with the
restriction that the weights must be non-negative. An s− t cut is defined as a
set of edges that separate the source s from the sink t when removed. The cost
of the cut is the sum of the weights of edges in the cut. The minimum solution
x̂ is obtained by finding the s− t cut with the minimum cost. This leaves the
nodes connected either to s or t, meaning they are assigned with one of the
two labels.

GC can also be used to solve the problems with multiple labels
(L > 2). The most popular algorithms are the so-called move-making algo-
rithms, which decompose the problem with multiple labels into a set of prob-
lems defined over binary labels, and this can be solved efficiently for certain
types of problems, as explained above. Binary labels represent the decision
either that the node keeps its old label or that it switches (moves) to the
proposed label. The algorithm starts from some initial labelling and then iter-
atively finds the optimal subset of nodes (i.e., the one giving the largest energy
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s-t  

mincut s=1 

t=0 

Figure 2.4: Example of a directed weighted graph with terminal nodes source s
and sink t and an s− t min-cut. Thicker arrows indicate the assignment of labels to
regular nodes with one of the two labels corresponding to two terminal nodes.

decrease) to switch to the proposed labels, until energy cannot be further de-
creased by available moves. Available moves are determined based on the size
of the move space, i.e., the number of possible changes that can be made to the
current solution. In [Boykov 01b], two move-making algorithms were proposed:
α-expansion and αβ-swap.

The power of the these algorithms is that substantial changes can be
made to the current solution because multiple nodes can change their labels
at the same time, while in ICM for example, only one node is allowed to do
so. This enables the algorithm to avoid getting stuck in local minima, as well
as faster convergence and independence of the initial labelling [Blake 11]. On
the other hand, these algorithms are still approximate (for multiple labels) and
their applicability is limited only to special kinds of problems (see [Boykov 01b]
for more details). However, some attempts have been made to optimize a non-
submodular energy function based on the roof duality relaxation of the integer
programming problem [Rother 07], as well as to apply move-making algorithms
to higher-order MRFs (e.g., in [Kohli 07,Kohli 09]).

2.3.5 Loopy belief propagation and its variations

Belief propagation (BP) falls into the category of message-passing algorithms.
It was first introduced by Pearl in [Pearl 88], where it was shown that find-
ing a global optimal solution is guaranteed, i.e., it is an exact inference al-
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gorithm, but only in tree-structured graphs. There are two versions of BP:
max-product, which produces joint MAP estimates, and sum-product, which
leads to computation of marginals of individual random variables. Application
of BP in graphs with loops, such as lattice graphs found in image process-
ing and computer vision problems (see Fig. 2.1), was generally not advised,
since the algorithm may not converge or it may give inaccurate results, as it
was indeed shown for some examples in [Murphy 99]. However, its effectiveness
was proved experimentally also in those graphs, especially in the decoding algo-
rithm for error-correcting codes [Frey 98], known as “Turbo Codes” [Berrou 93],
but also in some computer vision problems [Freeman 00,Blake 11]. Thus, BP
applied to graphs with loops, being now an approximate inference algorithm,
is called loopy belief propagation (LBP). We will focus in this thesis on the
max-product version of the LBP algorithm, since we are considering MAP-
MRF labelling problems. For more detailed overview of BP and LBP, see for
example [Pearl 88,Frey 98,Yedidia 01a,Yedidia 05].

The central concept of the algorithm is the message defined with the
message-update rule as

mij(xj) = αmax
xi
{ψij(xi, xj)φi(xi, yi)

∏
k∈∂i: k 6=j

mki(xi)}, (2.25)

(see Fig. 2.5(a) for graphical representation), where α is a normalization con-
stant and the terms ψij(xi, xj) and φi(xi, yi) were previously introduced in
Eq. (2.15). ψij(xi, xj) is called the pairwise compatibility and it represents the
statistical dependency between pairs of labels of neighbouring nodes, xi and
xj , i.e., it encodes the prior information via MRF. φi(xi, yi) is called the lo-
cal evidence (or likelihood, see Section 2.2.4) and it models the relationship
between the labels and observation (measurement).

From Eq. (2.25), we can see that the message mij(xj) that the node i
sends to its neighbouring node j, depends on the pairwise interaction ψij(xi, xj)
between them, the local evidence φi(xi, yi) of i, and all the messages that
node i received from all its neighbouring nodes except j. These messages are
computed at each node and are sent to all its neighbours. Hence, the message
mij(xj) from node i to node j can be interpreted as an “opinion” of node i
about assigning label xj to node j. This opinion also contains the information
from other neighbouring nodes via messages that were sent to node i through
the factor

∏
k∈∂i: k 6=jmki(xi). Message update is conducted iteratively until

convergence. However, LBP is not guaranteed to converge.
The second important term in LBP is belief, which is computed for

each node after convergence of messages as

bi(xi) = αφi(xi, yi)
∏
j∈∂i

mji(xi), (2.26)

(see Fig. 2.5(b)). This equation says that the value of node’s belief depends on
its local evidence and on the product of all incoming messages into the node.
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Figure 2.5: (a) Message-update rule - the message that node i sends to node j ac-
cumulates the messages that the node i has received previously from its neighbouring
nodes, other than j. (b) Belief-update rule - belief of the node is calculated from all
the incoming messages.

A belief actually approximates a posteriori probability of a node and it can be
interpreted as a confidence of a node about its label. Therefore, in order to
compute MAP estimates, at each node the label is chosen at the end of the
algorithm so as to maximize the belief at that node:

x̂i = arg max
xi

bi(xi). (2.27)

In recent years, various modifications of the original LBP algorithm
appeared that attempt to correct some of its disadvantages. Firstly, it has been
reported in [Yedidia 01b] that LBP has poor performance for graphs with many
short loops and with both weak local evidence and strong compatibility con-
straints (meaning that the prior information has more influence on the result
than observations). The poor performance is reflected in approximate beliefs
being far from the exact ones and even MAP estimates being incorrect. Gen-
eralized belief propagation (GBP) [Yedidia 00,Yedidia 01b] has been proposed
as a solution. Here, messages are exchanged between groups of nodes, because
those are believed to be more informative. The second modification is the
tree-reweighted max-product algorithm [Wainwright 05] that is guaranteed to
produce correct MAP estimates under certain conditions. An interesting prop-
erty of this algorithm is that it computes the lower bound on the energy from
Eq. (2.13). However, the algorithm does not necessarily converge. There is also
an improved version of the original algorithm, called sequential tree-reweighted
message passing [Kolmogorov 06], where lower-bound estimate is guaranteed
not to decrease, which results in certain convergence properties [Szeliski 08].

We investigated the use of LBP for detection of fine structures and
thin edges using the Ising MRF model [Pižurica 02b], which will be explained
in more detail in Section 2.5.2. The original version performed quite well with
the Metropolis algorithm as inference engine. Therefore, we were expecting
even better performance and possibility for further upgrade by using LBP.
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(a) (b) (c) (d)

Figure 2.6: Graphical representation of information propagation through the binary
MRF for different algorithms. The label of the central node is to be estimated. Grey
node - label is to be chosen, black or white node - the label is set to one of the two
values. (a) LBP: the messages propagate in pairwise fashion. (b) ICM: the decision is
influenced by the estimated labels in the neighbourhood. (c) NCMP: the decision is
influenced by the beliefs of neighbouring nodes. (d) WICM: the decision is influenced
by the estimated labels in the neighbourhood and the confidences of their estimation.
Different sizes of nodes represent different weights, i.e., node’s confidence about its
assigned label.

However, obtained results were unsatisfactory and even the experiments with
GBP showed no improvement. This motivated us to develop a new inference
algorithm, introduced in the next section, which performs well also in cases
where LBP fails.

2.4 Neighbourhood-consensus message passing

In this section, we propose a novel inference method for MAP estimation with
MRF priors. The central idea is to integrate a kind of joint “voting” of neigh-
bouring labels into a message-passing scheme similar to LBP. While LBP oper-
ates with many pairwise interactions, we define “messages” sent from a neigh-
bourhood as a whole. Hence the name neighbourhood-consensus message pass-
ing (NCMP). The practical algorithm is much simpler than LBP and combines
the flexibility of ICM with some ideas of more general message passing. The
proposed method can also be viewed as a generalization of ICE: we introduced
ICE in Section 2.3.3 for the Ising MRF model and here we show that it can
be interpreted as a particular instance of our general message-passing frame-
work. We also develop a simplified version of NCMP, called weighted iterated
conditional modes (WICM), that is suitable for large neighbourhoods.

2.4.1 Motivation and terminology

Although LBP and GC give state-of-the-art results in many computer vision
and image processing applications [Szeliski 08], they still suffer from certain
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disadvantages. GC is applicable only for certain class of problems (see Sec-
tion 2.3.4) and the patch-based methods we investigate in this thesis do not
belong to this class. Therefore, we concentrate more on LBP because of its
generality. On the other hand, LBP has been reported to fail for graphs with
huge number of nodes and many short loops [Yedidia 01b]. Our idea is to sim-
plify LBP algorithm and make it better suited for this kind of graphs. In this
situation, messages are unable to convey the necessary information globally
throughout the graph. The solution can be to observe a larger neighbourhood,
but then the speed, complexity and memory requirements become issues. We
believe that these problems are caused by the message being defined as a pair-
wise interaction between two neighbouring nodes (see Fig. 2.6(a)). The number
of these messages grows rapidly with the increase of the number of nodes in
the graph and with the size of the neighbourhood. Our approach is to send one
joint message from the whole neighbourhood to the central node rather than
having a set of nodes that individually send messages to the central node like
LBP does. In this way, we use some properties of ICM, which also consults
the whole neighbourhood. The important difference is that the labels in ICM
are estimated in each iteration (Fig. 2.6(b)), thus neglecting any confidence
regarding their estimation (see the discussion in Section 2.3.3), while our ap-
proach takes this confidence into account through iterations and postpones the
estimation of labels until the end of the algorithm. Therefore, we aim at finding
a compromise between ICM and LBP, which is simpler and faster than LBP,
while achieving better results than ICM and LBP.

To derive the new algorithm, we start from interpretations of the
two basic terms in LBP, introduced previously in Section 2.3.5: message and
belief. The message mij(xj) should express the opinion of the sending node i
for each label of the receiving neighbouring node j. Remember that in LBP
this opinion depends on the local evidence φi(xi, yi), the pairwise compatibility
between the two nodes ψij(xi, xj) and the incoming messages from other nodes
(Eq. (2.25)), Fig. 2.5(a)): mij(xj) = f(φi(xi, yi), ψij(xi, xj),mki(xi)), where
∀k ∈ ∂i : k 6= j. This message is computed for each edge, i.e., between each
pair of nodes and in both directions between these nodes. Therefore, while
computing messages, neighbourhood is not observed as one complete entity.

Our idea is to consult all neighbours of a node at once in order to
make a decision about its label. ICM achieves this in a simple manner: just by
counting the labels of each kind that are already estimated within the neigh-
bourhood (Fig. 2.6(b)). If we look at ICM as a rather simple version of message
passing, then the opinion of the neighbourhood for the labels of a central node
consists of estimated labels of the nodes within that neighbourhood. It is hid-
den in the term P (xi|x̂∂i) ∝ exp

(
−Vi,∂i(xi, x̂∂i)

)
(Eq. (2.18) and Eq. (2.20)),

which can be viewed as a joint message that the neighbourhood sends to the
central node. This way we could depart from pairwise interactions to poten-
tially gain more freedom in defining spatial dependencies between the nodes.
This formulation of ICM will be discussed in more detail in Section 2.4.4.

The second term in LBP is the node’s belief bi(xi), which can be
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interpreted as the confidence of a node about its label. The belief depends on
the local evidence and on the incoming messages into the node (Eq. (2.26),
Fig. 2.5(b)): bi(xi) = f(φi(xi, yi),mji(xi)), where ∀j ∈ ∂i. For ICM, this
belief is equal to one, since it greedily estimates the label at each iteration
being completely confident about it. This is an obvious limitation. We wish
to form the messages based on the “voting” of neighbouring labels and their
beliefs, in the fashion of ICE. The ICE algorithm will be a particular instance
in our general approach to neighbourhood-consensus message passing (NCMP).

2.4.2 NCMP framework
The main underlying idea of our work is to propagate belief through the graph
by sending a single joint message to each node from its whole neighbourhood.
We define a joint message from neighbourhood ∂i to node i as a function of
the neighbourhood potential Vi,∂i(xi,x∂i) and the neighbourhood belief b∂i(x∂i)
(Fig. 2.6(c)):

m∂i→i(xi) = f
(
b∂i(x∂i), Vi,∂i(xi,x∂i)

)
. (2.28)

In particular, this function is defined as

m∂i→i(xi) = exp
(
− b∂i(x∂i)Vi,∂i(xi,x∂i)

)
. (2.29)

Note that if #∂i = N , where # denotes the cardinality of the set, and xj ∈
{1, . . . , L}, where j ∈ ∂i, there are LN possible label combinations for x∂i.
Thus, b∂i(x∂i) is a vector of LN elements, Vi,∂i(xi,x∂i) is a LN × L matrix
and the exponent in Eq. (2.29) contains their matrix multiplication. This is
because we are considering all possible labels at each node and only assigning
labels at the end of the algorithm. Therefore, all the label combinations in
the neighbourhood ∂i of the current central node i participate in forming a
unified opinion of the neighbourhood regarding the labelling of i, which is
represented via the joint messagem∂i→i(xi). This opinion is based on the belief
of label combinations within the neighbourhood and their spatial interaction
with the central node, expressed through the neighbourhood potential. This
joint message defined in a general form implies broad spectrum of possibilities
in MRF modelling.

Further on, we define the neighbourhood belief as a function of node
beliefs

b∂i(x∂i) = f
(
bj(xj)

)
, (2.30)

where j ∈ ∂i. The node belief bi(xi) is defined, in analogy to the classical belief
definition from Eq. (2.26), as

bi(xi) = αφi(xi, yi)m∂i→i(xi), (2.31)

where α is a normalization constant because beliefs have to sum up to one. Note
that in this formulation, instead of separate messages from each neighbouring
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node in Eq. (2.26), now one joint message per neighbourhood affects the value of
belief. This gives us more flexibility in defining the spatial interactions between
the nodes. Furthermore, unlike in LBP, where beliefs are computed only at the
end of the algorithm, here we compute them in each iteration. The node belief
represents an approximate a posteriori probability of node’s label.

By looking at Eqs. (2.29), (2.30) and (2.31), we can see that our
joint message contains similar components as the message in LBP (Eq. (2.25)).
In particular, it explicitly depends on the neighbourhood potential, i.e., the
prior information about the spatial context in the image, and implicitly, via
the neighbourhood belief, it depends on the local evidence and the recursive
messages received by the neighbouring nodes. However, as mentioned before,
now this message expresses unified opinion of the neighbourhood, which limits
pairwise interactions and allows richness in modelling compared to LBP.

We can define the neighbourhood potential Vi,∂i(xi,x∂i) as a sum of
clique potentials VC(xC) within a given neighbourhood, as explained previously
in Section 2.2.2. The joint message in Eq. (2.28) then becomes

m∂i→i(xi) = exp
(
−

∑
C⊂i∪∂i

bC\i(xC\i)VC(xC)
)
, (2.32)

where bC\i(xC\i) is the clique belief and C\i denotes a set of all nodes in the
clique C except the central node i. Note that, as in the case of Eq. (2.29), the
exponent contains matrix multiplication. In the case of pairwise cliques, the
clique belief bC\i(xC\i) from Eq. (2.32) reduces to the node belief defined in
Eq. (2.31). In general, for cliques containing more than two nodes, we average
the beliefs from Eq. (2.31) of the corresponding nodes

bC\i(xC\i) = β
∑
j∈C\i

bj(xj), (2.33)

where β = 1
#{C\i} .

Like in ICM, we need to start from some initial configuration. In
practice, we form the initial mask by maximum likelihood estimation, x̂i =
arg maxxi φi(xi, yi), and then we initialize belief of each node by setting it to the
value that favours the label of that node in the initial mask. After initialization,
the algorithm runs through iterations until some stopping criterion is satisfied
or until the specified number of iterations is reached. We used the parallel-
update scheme that calculates all the messages and beliefs based on the values
from the previous iteration. At the end of the iterative algorithm, labels are
assigned to nodes by maximizing their belief, x̂i = arg maxxi bi(xi). Since
bi(xi) approximates the a posteriori probability of xi, this assignment solves
our MAP-MRF labelling problem.

We introduced the proposed NCMP framework in a general form,
which is not limited to pairwise interactions. This general form gives much
room for improvement of the spatial prior, in terms of orientation selectivity
(anisotropic models) and possibilities of using higher-order MRFs. MCMC
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(a)
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Figure 2.7: (a) Oriented sub-neighbourhoods from [Pižurica 02b]. (b) Another
possible set of larger oriented neighbourhoods.

samplers, like the Metropolis sampler (Section 2.3.1), can perform infer-
ence in higher-order and anisotropic models. The Metropolis sampler was
used to demonstrate the relevance of using, in particular, anisotropic mod-
els in [Pižurica 02b] via oriented sub-neighbourhoods depicted in Fig. 2.7(a).
These oriented sub-neighbourhoods can better model edges in different direc-
tions and retain the homogeneity of the structure. We will illustrate the ad-
vantages of the anisotropic model in Section 2.5.2, and we will show that our
NCMP method can handle this type of model, whereas standard LBP cannot.

2.4.3 NCMP as our generalization of ICE

Let us now focus on pairwise MRF, where all the cliques consist of two nodes
〈i, j〉. As mentioned in the previous subsection, in that case the clique be-
lief bC\i(xC\i) is equal to the node belief bj(xj). From the joint message in
Eq. (2.32) we can derive the following:

m∂i→i(xi) = exp
(
−
∑
j∈∂i

∑
xj

bj(xj)Vji(xj , xi)
)
. (2.34)

Then the node belief from Eq. (2.31) becomes

bi(xi) = αφi(xi, yi) exp
(
−
∑
j∈∂i

∑
xj

bj(xj)Vji(xj , xi)
)
. (2.35)

Remember that the node belief represents approximate a posteriori probability
(Section 2.4.2), which we will denote by pi(xi) = P (xi|yi,x∂i), and that the
local evidence is equal to the likelihood φi(xi, yi) = P (yi|xi) (Section 2.2.4).
Then we can rewrite Eq. (2.35) as
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pi(xi) = αP (yi|xi) exp
(
−
∑
j∈∂i

∑
xj

pj(xj)Vji(xj , xi)
)
. (2.36)

Now, let us consider the Ising model from Section 2.3.3, which en-
courages assignment of equal labels to neighbouring nodes. In particular, the
pairwise potential V (xi, xj) = 0 for xi 6= xj and V (xi, xj) = −γ for xi = xj ,
where γ > 0. We denote the pairwise potential as V (xi, xj) because the Ising
MRF model is homogeneous. Then from Eq. (2.36), and using abbreviations
introduced in Section 2.3.3, it follows that the a posteriori probability of xi = 1
is

pi(1) = αP (yi|1) exp
(
−
∑
j∈∂i

(
pj(0)V (0, 1) + pj(1)V (1, 1)

))
= αP (yi|1) exp

(
−
∑
j∈∂i

pj(1)V (1, 1)
)

= αP (yi|1) exp
(
γ
∑
j∈∂i

pj(1)
)
. (2.37)

By comparing Eq. (2.37) with Eq. (2.23), we can see that they are identical.
This means that ICE represents one particular instance of our NCMP frame-
work for the Ising MRF model. However, our proposed NCMP framework is
far more general than ICE, in the sense that it is applicable to more complex
MRF models (see discussion at the end of Section 2.4.2), in addition to being
a novel message-passing setting.

2.4.4 Weighted iterated conditional modes
In this subsection, we propose a simplified version of our NCMP framework,
called weighted iterated conditional modes (WICM), where we assign labels
to nodes at each iteration. Such assignment gives the proposed algorithm a
discrete nature, in the fashion of ICM, rather than continuous one, as in ICE
and our general NCMP formulation. However, unlike in ICM, we propagate
additional information, which is the confidence of that assignment, by sending a
joint message from the neighbourhood to the central node. This scheme is much
simpler and can be of special interest when working with large neighbourhoods.

The assignment of a label to a node is conducted at each iteration by
setting a label to the value that maximizes its node belief

x̂i = arg max
xi

bi(xi). (2.38)

Node belief represents an approximation of a posteriori probability and is de-
fined in Eq. (2.31). In words, node belief depends on the observation at the
node, expressed via the local evidence φi(xi, yi), and the opinion of its whole
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surrounding neighbourhood about each of its labels, expressed via the joint
message m∂i→i(xi) sent to it from the neighbourhood. However, this message
has a different definition from the message in Eq. (2.32), because we assign
labels at each iteration and we want only the probability of this assignment to
influence the assignment of a label of the central node, rather than the proba-
bilities of all possible label combinations within the neighbourhood. Therefore,
the message in WICM is defined as

m∂i→i(xi) = exp
(
−

∑
C⊂i∪∂i

bC\i(x̂C\i)VC(xi, x̂C\i)
)
. (2.39)

We can then define the clique belief bC\i(x̂C\i), for example, as an average
value of node beliefs that belong to the considered clique, as in Eq. (2.33).
Note that both in the argument of the clique belief and the clique potential of
Eq. (2.39), the labels of neighbouring nodes are already set to the value that
maximizes a posteriori probability (via Eq. (2.38)), which is different from the
message in a general NCMP framework (Eq. (2.32)). This means that the joint
neighbourhood message depends on the specific (current) label configuration
within that neighbourhood.

In order to motivate the name of the proposed algorithm, we shall
first revisit ICM and place it within a unifying message-passing framework. If
we look at Eq. (2.18) and compare it with Eq. (2.38) and Eq. (2.31), we can
see that a message in ICM corresponds to the influence of the estimated labels
in the neighbourhood, i.e.,

m∂i→i(xi) = P (xi|x̂∂i), (2.40)

which can be further developed via neighbourhood and clique potential into

m∂i→i(xi) = exp
(
− Vi,∂i(xi, x̂∂i)

)
= exp

(
−

∑
C⊂i∪∂i

VC(xi, x̂C\i)
)
. (2.41)

Therefore, we can see that the message in WICM (Eq. (2.39)) is a weighted
version of the message in ICM derived in Eq. (2.41) because we add weights
to the clique potentials in the form of belief, while still estimating (assigning)
labels in each iteration (see Fig. 2.6(d) for graphical representation). Hence
the name weighted iterated conditional modes.

Due to sampling, i.e., choosing labels in each iteration, the proposed
algorithm retains the simplicity of ICM, especially when it comes to general-
ization beyond pairwise potentials. On the other hand, it follows the idea of
NCMP, in the sense that it is a message-passing algorithm where a single joint
message is sent from the neighbourhood to the central node. However, a cer-
tain loss of information occurs in comparison with the general NCMP due to
this sampling, making that way a trade-off between complexity and qualitative
performance.
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2.5 Experiments and results

In this section, we present a few example applications that illustrate the poten-
tial of the proposed NCMP approach. We consider both binary and multi-label
MRFs with the second and first-order neighbourhoods. We compare the pro-
posed approach with the reference methods, namely ICM, LBP and GC, on
the same examples and the same set of parameters. However, note that LBP
and GC cannot be used in all applications. In the binary denoising exam-
ple of Section 2.5.1 and the binary segmentation example of Section 2.5.3, we
used the code available at http://vision.middlebury.edu/MRF/ that accompa-
nies comparative study of [Szeliski 08]. Apart from this, we used our own
implementation of LBP and ICM in MatLab.

2.5.1 Noise removal from a binary image

In this example, the goal is to remove noise from an observed noisy image y,
whose pixel values are yi ∈ {−1, 1}, ∀i ∈ S. We assume that the image is
obtained by randomly flipping the sign of certain fraction of pixels in a noise-
free image x, xi ∈ {−1, 1}, ∀i ∈ S. The likelihood, i.e., the relationship
between the observation and the label, is φ(xi, yi) = exp(ηxiyi), where η is a
positive constant. The spatial interaction of labels that favours clustering of the
labels of the same type is modelled with the smoothness prior (Section 2.2.3)
as ψ(xi, xj) = exp(−V (xi, xj)), where V (xi, xj) = −γxixj and γ is a positive
constant. We used the second-order neighbourhood. This is a very simple
example of MRF application but is typical of more sophisticated applications.

The performance of the algorithm is illustrated on a binary image
from [Bishop 06]. The noisy version is obtained by randomly flipping 10% of
the pixels in a noise-free image. The denoising result depends on the value of
the parameters of the model η and γ. One way to estimate these parameters
involves computing the partition function of the associated MRF, which is
slow. Therefore, we determined the optimal parameters experimentally. The
only significant noise reduction is obtained for η = 0.5 and γ = 1.0, the second-
order neighbourhood and a maximum of 500 iterations, shown in Fig. 2.8. It is
obvious that ICM gives by far the worst result because it quickly gets trapped
in the local optimum. The proposed methods NCMP and WICM cope well
with this type of problem and give comparable results with the state-of-the-
art methods GC and LBP. The GC method gives the optimal solution for
the energy function on a binary MRF in only one iteration, which makes it
the fastest method, but some errors in pixel-labelling are noticeable, e.g., the
letter “e” in the second row. Finally, if we compare the two proposed methods,
WICM yields slightly poorer results than NCMP, because of isolated dots in
the background, while still outperforming ICM.

We can also measure the quantitative performance by comparing the
percentage of misclassified pixels with the original. For the above mentioned
parameters corresponding to the results from Fig. 2.8, the percentages of mis-
classified pixels for different methods are shown in Table 2.1. The GC method
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Figure 2.8: Top: noisy version of the image from [Bishop 06] of size 1259x1703 with
10% of the pixels flipped, and resulting images of ICM and GC. Bottom: resulting
images obtained with LBP, NCMP and WICM.

Table 2.1: Comparison of misclassified pixel percentage for the results from Fig. 2.8
with parameters η = 0.5 and γ = 1 and 10% of the pixels flipped.

ICM GC LBP NCMP WICM
6.30 0.34 0.43 0.37 0.42

yields the smallest percentage of misclassified pixels, although the information
content (text) result is in this case recovered more faithfully by LBP and NCMP
(see Fig. 2.8). Other parameter values give significantly poorer results for all
methods.

We also noted that the performance of all the methods depends on
the size of the image being processed. The image in Fig. 2.8 is large in size,
1259x1703 pixels, so we also tested the performance on smaller images (80%
and 50% of the original size). The results are summarized in Table 2.2 for
parameters η = 1 and γ = 0.5 and also 10% of the pixels flipped. In general,
for smaller images all the methods perform better and the difference in results
of different methods becomes smaller. However, we can see that even in this
case, our method outperforms ICM and LBP. GC gives the best quantitative
result, but remember that it cannot be used in all applications, as discussed
previously in Section 2.3.4.

In conclusion, in terms of quantitative comparison, both our methods
perform better than LBP and ICM in all analysed cases, while being outper-
formed by the GC method. However, our method yields better qualitative
result than GC, as illustrated in Fig. 2.8. In terms of speed, our method is
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Table 2.2: Comparison of misclassified pixel percentage for different sizes of the test
image from Fig. 2.8 with parameters η = 1 and γ = 0.5 and 10% of the pixels flipped.

% of the ICM GC LBP NCMP WICM
original size

100% 7.68 1.21 7.64 6.34 6.33
80% 0.36 0.07 0.23 0.14 0.14
50% 0.57 0.11 0.4 0.2 0.2

slower than GC because it requires multiple iterations, while GC reaches the
optimum in one iteration for a binary MRF. However, our method is faster
than LBP by an order of magnitude (for the same number of iterations, see
later Fig. 2.15), in addition to being simpler for implementation.

2.5.2 Detection of signal of interest in wavelet domain

Lately, inferring the spatial structure in sparse image representations has be-
come an important issue in structured-sparsity approaches [He 09,Huang 09,
Baraniuk 10,Cevher 10,Pižurica 11]. In this example, we make an attempt to
infer spatial clustering of sparse image coefficients, particularly by detecting
signal of interest, i.e., meaningful edge coefficients, in noisy wavelet sub-bands.
As illustrated in Fig. 2.9, true edge coefficients cannot be detected by simply
thresholding the noisy sub-band.

One solution is to encode prior knowledge about spatial clustering
of edge coefficients using an MRF model [Malfait 97, Pižurica 02b]. In this
case, the labels of nodes xi ∈ {−1, 1} represent absence and presence of signal
of interest, respectively. Conditional likelihoods describe distributions of the
magnitudes of wavelet coefficients given each label, and we estimate these as
described in [Pižurica 02b]. Spatial information is given by the isotropic model
with pairwise potentials V (xi, xj) = −γxixj (γ is a positive constant), that
assigns a higher probability to edge continuity. This is actually the smoothness
prior from Section 2.2.3 corresponding to the Ising model, but we used the
second-order neighbourhood. By performing inference on this model, an edge
map is obtained for each wavelet band that can be later used for subsequent
processing in wavelet domain, e.g., for denoising.

The performance of the inference algorithms LBP, ICM, NCMP and
WICM on the noisy wavelet sub-band from Fig. 2.9 is illustrated in Fig. 2.10.
The result was obtained for a maximum of 20 iterations and γ = 0.7. Unlike
in the previous application from Section 2.5.1, we can see that here LBP per-
forms poorly because it deletes most of the edges leaving the mask to be barely
recognizable. On the other hand, ICM gives quite good results in this exam-
ple, better than LBP. Both NCMP methods perform slightly better than ICM,
yielding more consistent edges, with clearer boundaries and without interrup-
tions. We also included the results of the Metropolis sampler [Metropolis 53]
(Section 2.3.1) that was used in [Pižurica 02b]. The advantage of the Metropo-
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Figure 2.9: Top: noise-free and the corresponding noisy wavelet sub-band (σ = 20)
of the “Lena” image. Bottom: detected edges by thresholding the two sub-bands,
respectively.
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Figure 2.10: Masks of horizontal edges at the first scale of wavelet decomposition
for σ = 20 obtained by using an isotropic MRF model. Top: initial mask and results
of LBP and the Metropolis sampler. Bottom: results of ICM, NCMP, and WICM.

lis sampler is that it estimates accurately the a posteriori probabilities of each
label, but in terms of the final binary mask, its performance in this example
is comparable to ICM. Finally, we tested GC on this model, but due to the
way the model is defined, it gave no meaningful results, i.e., it recognized no
signal of interest in the noisy wavelet sub-band. Note that in this example the
isotropic MRF model was used.

Another advantage of the proposed methods and ICM in comparison
with LBP, is that they can be directly applied to anisotropic models, like those
in Fig. 2.7. These models can be defined in such a way to further improve
the results of edge detection. For example, in [Pižurica 02b], the potential
of the sub-neighbourhood p is defined as Vp(xi,x∂i,p) = −γxi

∑
j∈∂i,p xj and

the potential of the complete second-order neighbourhood is Vi,∂i(xi,x∂i) =
−γxi maxp(

∑
j∈∂i,p xj). This choice of the neighbourhood potential results

from the following reasoning: label xi = 1, i.e., the presence of a signal of in-
terest, should be assigned the high probability if any of the sub-neighbourhoods
indicate the existence of a signal of interest, while label xi = −1 is given pref-
erence if none of the sub-neighbourhoods has that indication.

The benefits of using the anisotropic model were already demon-
strated in [Pižurica 02b] using the Metropolis sampler. In Fig. 2.11, we show
that the performance of the proposed NCMP method also improves largely
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Figure 2.11: Masks of vertical edges at the first scale of wavelet decomposition for
σ = 30. Top: initial mask and results of LBP for the isotropic model. Bottom: results
of NCMP for the isotropic model and NCMP for the anisotropic model (denoted with
an extension -A).
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Figure 2.12: Cropped version of a synthetic image. Top: noisy image, ground truth
and result of ICM. Bottom: results of LBP, NCMP and WICM.

with this anisotropic model (denoted as NCMP-A), in the sense that more
edges are detected and structure is better preserved. NCMP gives similar re-
sults to that of the Metropolis sampler and ICM (not shown here). LBP yields
worse results than NCMP for isotropic model also on this image. Additionally,
it cannot be applied directly on the anisotropic model introduced above, and
its performance is thereby inferior in this case.

2.5.3 Image segmentation

Another application is segmentation of a noisy image: each pixel is assigned
one label that represents the segment to which the pixel belongs. In the first
experiment, we used a synthetic image with artificially added white zero-mean
Gaussian noise of standard deviation σ. The local evidence is then the Gaussian
function with the mean value equal to the pixel value in the non-degraded
image, which is here the label xi, and the standard deviation σ:

φ(xi, yi) =
1√

2πσ2
exp

(−(yi − xi)2

2σ2

)
. (2.42)

The pairwise potential is determined by the discontinuity preserving Potts
model [Potts 52] (Eq. (2.7)).
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Figure 2.13: Binary segmentation of the “flower” image. Top (from left to right):
original image, user data and result of ICM. Bottom (from left to right): result of
GC, LBP and NCMP.

The segmentation results for σ = 20, the second-order neighbour-
hood, γ = 1 and maximum of 50 iterations are shown in Fig. 2.12. ICM
has the weakest performance leaving obviously misclassified areas. NCMP and
WICM yield similar results to LBP. GC (not shown) gave similar results to
LBP and NCMP for the same setting.

In the second experiment, we apply the tested methods to the fore-
ground/background segmentation from [Rother 04], where the test image from
Fig. 2.13 is used and an MRF with the first-order neighbourhood. This method
uses input from a user, who marked the foreground and background region (see
middle image in the top row of Fig. 2.13). Again, our method outperforms ICM
and yields a similar result to LBP. The GC method gives the best result for this
example but note that its applicability is limited to special potential functions
(see Section 2.3.4), while the proposed method is more general.

2.5.4 Super-resolution

For the super-resolution (SR) example, we used our approach from [Ružić 11b],
where the MRF model was similar to [Freeman 00]. The details of this approach
will be described later in this thesis in Section 3.4, but here we introduce it
briefly for clarity. The idea is to find for each position in the unknown high-
resolution (HR) image a well-matching patch from some candidate set of HR
patches, so that it agrees well with the neighbouring overlapping patches and
with the corresponding low-resolution (LR) content. The candidate set of HR
patches is obtained from the previously formed database of pairs of LR/HR
patches by the following procedure. First, the L most similar patches of each
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input LR patch are found in the set of LR patches in the database, and then,
their corresponding HR patches are taken as candidate patches. The local
evidence is taken to be the matching error, i.e., sum of squared differences,
between the starting LR patch and each of the found L most similar patches
(see Eq. (3.15) for details). The pairwise potential is the error in the region of
overlap between two neighbouring HR patches in the first-order neighbourhood
(see Eq. (3.16)).

This problem is non-submodular [Rother 07] (see Eq. (2.6) for the
definition of submodularity), which makes it difficult for GC. In [Rother 07],
a simplified binary form of this problem was used for comparison of different
inference algorithms with the proposed modification of GC. Here, we keep the
original problem and compare the proposed method with LBP. Fig. 2.14 shows
the cropped version of the “zebras” image. In the top row, on the left is the
result of the standard bicubic interpolation algorithm (see Section 3.2.1), while
on the right is the result of choosing the best match at each position, i.e.,
when no MRF modelling is applied. We can see that this approach produces
sharper edges compared to the bicubic interpolation, which is an important
aspect in SR, as will be discussed in detail in Chapter 3. However, it also
introduces a lot of artefacts. In the bottom row are the results of LBP (left)
and the proposed method (right). We can see that MRF modelling brings
improvement, in the sense that artefacts are removed while the sharpness of
edges is retained. Our method performs equally well as LBP, while being about
ten times faster (see the right plot in Fig. 2.16, the relative performance for
this application is similar).

2.6 Convergence consideration

In this section, we inspect the convergence properties of the proposed methods
in comparison with LBP, ICM and GC for some of the application examples.
In particular, we study the change of the total energy E(x,y) = − logP (x,y)
over iterations and/or time. The convergence plot for the application from
Section 2.5.1 is shown in Fig. 2.15. On the left, we can see that ICM reaches
the stable minimum already after the first iteration. However, this is the local
energy minimum, even increased in comparison with the starting energy and
much higher than that of the other methods. On the right of the same figure, we
can see the zoomed-in plot with comparison of other methods (all except ICM).
GC and WICM reach a stable minimum after the first and the third iteration,
respectively, while LBP and NCMP oscillate. Both proposed methods reach the
lower minimum than LBP and GC. Note that each of these iterations consists
of 50 “inner” iterations, i.e., the total number of iterations is 500. The number
of “inner” iterations, according to the code of [Szeliski 08], is the number of
iterations which are conducted anyway, i.e., during which the value of the total
energy of the MRF and the convergence of the algorithm are not checked.

In the example of segmenting a noisy image, we ran the algorithm
for a maximum of 100 iterations and the energy of the last 90 iterations is
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Figure 2.14: Cropped version of the “zebras” image with 2x magnification. From
left to right and top to bottom: result of bicubic interpolation, best-match result,
MRF result with LBP as inference method, and MRF result with NCMP as inference
method.
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Figure 2.15: Illustration of the energy change over iterations for different algorithms
on the example of noise removal from a binary image. Left: all algorithms. Right:
zoomed-in part showing differences between WICM, NCMP, LBP and GC.
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shown on the left of Fig. 2.16. ICM has the highest energy minimum and it
oscillates, as expected due to the parallel-update scheme. The other algorithms
converge to the similar value. LBP converges in the least number of iterations
(12), and it is the only steady one, in the sense that it is constantly decreasing
the energy. WICM takes the highest number of iterations to reach the energy
minimum, but then it oscillates, meaning that it follows the behaviour of ICM.
NCMP has the lowest energy minimum, but only slightly different than LBP. It
has some problems with stabilization of the energy (it increases and decreases)
until eventually it converges. Although LBP converged in fewer iterations, it
was still around five times slower than NCMP, as we can see on the right of
Fig. 2.16, where the energy is plotted as a function of time.

2.7 Conclusion

In this chapter, we first introduced the MRF theory by explaining relevant
definitions, Markov-Gibbs equivalence, examples of MRF models and the MAP-
MRF labelling problem. Then we discussed in more detail inference methods,
like MCMC sampler and simulated annealing, ICM and its variant ICE, GC
and LBP.

The main contribution of this chapter is the new inference method
based on message passing. We called this method neighbourhood-consensus
message passing (NCMP) since a joint message is sent from the specified neigh-
bourhood to the central node, which enables information to propagate through
the graph. Information consists of beliefs of neighbouring nodes as confidence
measure of their own labels. The proposed scheme has the computational
simplicity and robustness similar to ICM, and the flexibility of a more gen-
eral message passing. On the one hand, the performance is significantly im-
proved in comparison with ICM, and on the other hand, we are working with
a whole neighbourhood at once instead of pairs of nodes in comparison with
LBP. Furthermore, we showed that the proposed method can be considered
as a generalization of ICE for more complex MRF models. Additionally, we
developed a simplified version of NCMP, called weighted iterated conditional
modes (WICM), to overcome potential difficulties while working with larger
neighbourhoods. Results on different example applications showed that the
proposed methods outperform ICM, while giving comparable or, in some cases,
favourable results in comparison with LBP in much shorter time. Finally, an-
other contribution of this chapter is that we described some of the inference
methods, namely ICM, ICE and LBP, within a unifying message-passing frame-
work.

It is important to notice that the proposed NCMP is generally appli-
cable to a wide range of problems, which allows us to employ it as an inference
engine for patch-based methods, such as SR and inpainting. Furthermore, these
patch-based methods are quite computationally intensive, so having a fast and
simple inference method, such as NCMP, is of great benefit. The application of
the proposed method to patch-based problems will be discussed in the following
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chapters.
This work has led to a journal publication [Ružić 12c], as well as

other two conference publications [Ružić 09,Ružić 11c], where the publication
in [Ružić 09] was awarded with the Best Poster Award.
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3
Patch-based image

upscaling

Image upscaling plays an important role in image processing applications nowa-
days due to the huge amount of low-resolution (LR) video and image material
that needs to be reproduced on high-resolution (HR) screens or printers. The
low resolution is a consequence of using low-quality imaging sensors for im-
age/video acquisition devices, such as webcams, cell phones and surveillance
cameras. The task of image upscaling is to create an HR image from one or
more LR images.

In this chapter, we will first introduce the problem of image upscaling
in Section 3.1, together with its main applications. We formulate the image
upscaling more formally and explain it within a regularization framework. In
Section 3.2, we classify and give an overview of representative image upscaling
methods. Among these methods, example-based (or patch-based) and multi-
frame methods are considered to be super-resolution (SR) methods, since they
are able to recover missing high frequencies in the HR image. Patch-based
methods have become increasingly popular over the last decade for their ability
to overcome the limitations of the multi-frame approach, above all the value
of the magnification factor. Along this line, we developed a new patch-based
method, presented in Section 3.4, that uses the input LR image itself as a
search space for HR patches by exploiting image self-similarity across different
resolution scales. The found HR patches are combined in an HR image by the
means of Markov random field (MRF) models, where MRF is used to encode
prior knowledge about the consistency of neighbouring HR patches. We employ
our inference technique proposed in Chapter 2 to find the maximum a posteriori
(MAP) estimate of the HR image. To obtain the final HR image, we apply
back-projection and steering kernel regression as post-processing techniques.
In this way, we are able to produce sharp and artefact-free results that are
comparable or better than standard interpolation and state-of-the-art image
upscaling techniques.



52 Patch-based image upscaling

HR image 

LR image 

Figure 3.1: Upscaling procedure: LR pixels (black circles) are copied to the HR
grid and the missing HR pixels (white circles) are to be estimated.

3.1 Introduction

Image upscaling refers to the problem of obtaining an HR image from one
or multiple LR images by increasing their pixel resolution. Pixel resolution
specifies image size, described by the total number of pixels in the image (e.g.,
expressed in megapixels), the number of pixels per each dimension (width ×
height) or the number of pixels per unit length or per unit area, such as pixels
per inch (PPI) or pixels per square inch. Image upscaling can also be viewed as
a re-sampling problem: an LR image constitutes a collection of discrete samples
(pixels), obtained by sampling the continuous function of the scene at a certain
(low) sampling rate. The goal is then to obtain an HR image by estimating
the missing pixels (see Fig. 3.1).

Next to pixel resolution, there are also other ways to describe image
resolution, e.g., spatial, spectral, radiometric. Especially important is spatial
resolution, which is defined as the number of independent pixel values per unit
length and as such, is related to the ability of distinguishing image details. For
example, two images of the same size, i.e., of the same pixel resolution, can
contain different amount of details, i.e., different spatial resolution. Increasing
spatial resolution, i.e., increasing the level of detail in the image, inherently
leads to image upscaling. Some image upscaling methods are capable of in-
creasing spatial resolution. We will refer to those methods as super-resolution
(SR), because the word “super” represents the ability of the technique to over-
come the inherent resolution limitation of the LR imaging system by recovering
the lost or degraded high frequencies during the acquisition process.

Spatial resolution can also be increased in a sensor by improving
manufacturing techniques in order to reduce the pixel size or increase the chip
size. This approach suffers from sensitivity to shot noise because the smaller
the pixel size, the smaller amount of light available. With increasing spatial
resolution, it is not possible to keep pixel size large enough: larger chips have
higher capacitance and, therefore, slow charge transfer rate, making this ap-
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Figure 3.2: Graph representing different image upscaling methods.

proach ineffective [Park 03]. Therefore, image processing techniques for spatial
resolution enhancement are needed. Furthermore, they allow the usage of ex-
isting LR imaging systems and LR image and video material.

We divide image upscaling methods into interpolation and model-
based methods (Fig. 3.2). SR methods belong to the group of model-based
methods, which assume the observation models described in Section 3.1.2 and
treat image upscaling as an inverse problem, while assuming the image is cor-
rupted with noise, blur and aliasing artefacts. Interpolation methods, on the
other hand, assume that the continuous scene is sampled with Dirac pulses.
All the approaches, except multi-frame SR, deal with image upscaling from a
single input LR image. More in-depth overview of each group of methods will
be given later in Section 3.2.

In this introductory section, we will review some of the applications
of image upscaling and introduce observation models that relate LR and HR
images. Furthermore, we will describe image upscaling in a regularization
framework, since some image upscaling methods listed in Fig. 3.2 rely on these
theoretical concepts.

3.1.1 Applications of image upscaling

Image upscaling plays an important role in image processing applications nowa-
days due to the huge amount of LR video and image material. Due to man-
ufacturing limitations and cost restrictions, a lot of imaging material is still
acquired in low resolution. Furthermore, a lot of LR material was captured
with old equipment or according to some old standards, like NTSC and PAL
recordings. Nowadays, this material must also be displayed on HR displays
(e.g., high-definition television (HDTV)) or printed on HR printing devices
(e.g., in document imaging) without visual artefacts. Therefore, an important
application of image upscaling is to perform the conversion of this existing
material from low to high resolution.

Image upscaling is already supported in digital cameras, e.g., the
option digital zoom or in the demosaicing stage (reconstruction of full-colour
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Figure 3.3: Observation model relating HR image with one observed LR image.

images from the colour-filtered CCD or CMOS samples), and in the image
editing software, such as Adobe Photoshop, GIMP, Irfanview, etc.

Another important application is the zooming of region of interest in
surveillance, forensics, satellite and medical imaging in order to facilitate con-
tent analysis. In surveillance or forensics, it is often necessary to recognize the
face of a criminal or read the licence plate of a car. Since surveillance cameras
often employ cheap LR sensors, image upscaling, specifically SR, can enlarge
these parts and help the investigation. In remote sensing (e.g., LANDSAT),
SR can increase the level of detail of the target and facilitate object detection
and classification. Finally, in medical imagining, such as magnetic resonance
imaging and computed tomography, SR can be used to enhance the image and
thereby support the physicians in their diagnosis.

In some of these applications, like medical and satellite imaging and
video applications, it is possible to acquire multiple frames of the same scene,
enabling the use of multi-frame SR techniques (Section 3.2.4).

3.1.2 Observation models

Image upscaling is an inverse problem, where the task is to recover an HR image
from observed data, i.e., acquired single LR image or multiple LR images.
Model-based methods (see Fig. 3.2) assume that an LR image (or images)
is obtained through a conventional imaging system, which inevitably causes
certain loss of resolution. An HR image is assumed to be ideal undegraded
image sampled without frequency aliasing from a continuous scene. This ideal
image is only hypothetical, i.e., it does not exist in practice.

In image upscaling from a single image, the HR image f and the
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observed (measured) LR image g are related through the observation (acquisi-
tion) model shown in Fig. 3.3. The HR image f is of size N = z1N1×z2N2 and
the LR image g is of size M = N1 ×N2, meaning it is related to the ideal HR
image via scaling factors z1 in horizontal and z2 in vertical direction, although
these are often taken to be the same, z = z1 = z2. According to the observation
model, the scene is first blurred, then downsampled and finally noise is added
to create the observed LR image. This is usually described in the matrix form
as

g = DBf + n, (3.1)

where g ∈ RM and f ∈ RN are the vector formulations (assuming raster-scan
order) of the LR image g and the HR image f , respectively, D ∈ RM×N is
the downsampling matrix, B ∈ RN×N is the blur operator and n ∈ RM is the
additive noise. Alternatively, blurring and downsampling can be unified in one
linear degradation operation matrix A = DB, where A ∈ RM×N . Thus the
model can be described as

g = Af + n. (3.2)

This observation model models the degradations that occur during the process
of acquisition of a digital image due to the imperfection of an imaging system.
Conventionally, these degradations include blur, noise and aliasing effects, il-
lustrated in Fig. 3.3. Blurring may be caused by an optical system (e.g., out
of focus, diffraction limit, atmospheric blur, etc.), relative motion between the
imaging system (camera) and the original scene (the so-called motion blur),
and the point spread function (PSF) of the LR sensor. The characteristics of
the blur are usually assumed to be known.1 Downsampling is caused by insuf-
ficient pixel density and results in aliasing effects. In practice, downsampling
is preceded with an anti-aliasing filter in order to avoid aliasing effects. How-
ever, a filter that avoids any aliasing and blurring introduces ringing artefacts,
thus a compromise must be made between aliasing, ringing and blur artefacts.
Therefore, it is often assumed that in a real camera the aliased components are
just attenuated to some degree. Finally, noise can appear in the sensor due to
analogue circuitry or during transmission [Park 03].

The model described above does not consider compression when stor-
ing an image in a lossy compressed format (e.g., JPEG), which can result in
quantization and block artefacts. Furthermore, the model could also include
other operations, which are built in the camera, such as gamma and colour cor-
rection, contrast enhancement, sharpening, demosaicing, etc. However, these
are manufacturer-specific and thus not considered in a general image upscaling
approach [Luong 09].

At this point, we also introduce the observation model used for image
upscaling from multiple LR images, which are sub-pixel shifted and aliased.

1Some methods perform blind SR by also identifying blur properties during reconstruction
procedure.
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Figure 3.4: Observation model relating HR image with multiple observed LR images.

Basically, this model, depicted in Fig. 3.4, relates each LR image gk, k =
1, . . . , Ni, with the desired, ideal HR image [Park 03]. The difference from the
model in Fig. 3.3 is that it assumes motion of the scene, such as global or local
translation, rotation, etc. The motion can be described as a warp matrix Mk,
leading to the following representation of the model:

gk = DkBkMkf + nk = Wkf + nk, k = 1, . . . , Ni. (3.3)

The matrix Wk = DkBkMk of size M × N represents the overall degradation
matrix and includes motion, blurring and downsampling. Note also that, in
general, all degradations can be considered to be different for each LR image,
hence the index k for each matrix. This model is used for multi-frame SR
approach, which will be described in more detail in Section 3.2.4.

3.1.3 Image upscaling as a regularization problem
Image upscaling, as many other problems in image restoration and computer
vision, is ill-posed. Ill-posed problems do not fulfil Hadamard’s postulates of
well-posed problems, which state that the solution has to exist, be unique and
depend continuously on the initial data [Poggio 85]. This is because the number
of LR images can be insufficient for the good reconstruction of an HR image,
especially in the case of image upscaling from a single image. Furthermore, blur
operators can be ill-conditioned, noise is present and amplified by deblurring,
etc.

A straightforward way to solve the problem from Eq. (3.2), would be
to choose the f that maximizes the likelihood function P (g|f):

f̂ML = arg max
f
P (g|f). (3.4)

f̂ML is called the maximum likelihood estimate (MLE). Since noise is typically
modelled as zero-mean additive white Gaussian noise (AWGN) with standard
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deviation σn and f is assumed to be known [Elad 09], the measurement vector
g is also a Gaussian random vector with the shifted mean, thus the likelihood
function becomes

P (g|f) =
1

(2π)M/2σMn
exp

(
− 1

2σ2
n

‖g −Af‖22
)
, (3.5)

and the MLE is

f̂ML = arg max
f
P (g|f) = arg min

f
‖g −Af‖22, (3.6)

where ‖ · ‖2 denotes the L2-norm. MLE chooses the HR image based only
on the measurements, i.e., the observed LR image [Elad 09]. The likelihood
is also referred to as the data fidelity term since it enforces that the blurred
and downsampled version of the HR image resembles as much as possible the
input LR image. MLE, however, is severely under-constrained, especially when
performing image upscaling from a single image, because the number of con-
straints induced by the LR image is smaller than the number of unknowns in
the HR image. Hence, there are infinitely many solutions to the problem.

To overcome this issue, prior knowledge about the HR image can be
used as an additional source of information, leading to the concept of regu-
larization [Jain 89]. Regularization is a way of introducing numerical stability
into inverse ill-posed problems by narrowing the solution space to a sub-space
where solution is well-defined. The simplest regularization, known as Tikhonov
regularization [Tikhonov 77], requires the penalty function to be convex and,
therefore, having a unique solution. It does so by adding a smoothness con-
straint (or regularization term) ‖Rx‖22 to the data fidelity term from Eq. (3.6),
leading to the regularized solution

f̂R = arg min
f

(
‖g −Af‖22 + λ‖Rf‖22

)
, (3.7)

where R is generally a high-pass filter and λ is the Lagrange multiplier, referred
to as the regularization parameter. This type of regularization enforces spatial
smoothness uniformly over the HR image by penalizing the amount of high
frequencies in the HR image, under the assumption that images are naturally
smooth with limited high-frequency activity. However, this smoothness prior
typically yields over-smoothed results. λ can be used to control the influence
of data fidelity and smoothness (regularization) term. Larger values of λ cause
smoother solution, which is useful when the number of observed LR images is
small and/or the amount of noise in the LR image is relatively high. On the
other hand, in the case of the multi-frame approach (Section 3.2.4), when large
number of LR images is available and the amount of noise is small, smaller
values of λ yield better results.

One can gain much more from regularization than just numerical sta-
bility by looking at regularization from a Bayesian point of view. The Bayesian
approach provides robustness and flexibility in modelling prior knowledge about
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the image, which has led to the evolution of image priors over the years in dif-
ferent restoration problems and improved the quality of the result. Excellent
review of image priors can be found in [Elad 09], and we will review some of
the priors used for image upscaling in Sections 3.2.3, 3.2.4 and 3.2.5.

The Bayesian approach aims at estimating the HR image based on
the posterior probability P (f |g) of the HR image given the observed LR image,
thus f is now assumed to be random as well. This posterior probability can be
expressed via the Bayes rule as P (f |g) ∝ P (g|f)P (f) (see also Section 2.2.4).
Typically, the HR image f is estimated by maximizing a posteriori (MAP)
probability, known as the MAP approach:

f̂MAP = arg max
f
P (f |g) = arg max

f
P (g|f)P (f). (3.8)

The prior term P (f) describes the probability density function (PDF) of the HR
image and can be represented in the exponential form via Gibbs distribution
as

P (f) = α exp
(
− βE(f)

)
, (3.9)

where the constant α is the normalization factor and E(f) is a non-negative
energy function (see also Section 2.2.2). Then, in the case of AWGN, the
likelihood term P (g|f) is given by the Eq. (3.5) and the MAP estimate of the
HR image becomes:

f̂MAP = arg max
f
P (g|f)P (f) = arg min

f

(
‖g −Af‖22 + βE(f)

)
. (3.10)

We can see that the MAP approach introduces regularization to the solution.
The difference from Eq. (3.7) is that the additional constraint now has a prob-
abilistic meaning, thus Eq. (3.7) is a special case of Eq. (3.10). In order to use
the Bayesian approach, one needs to specify the energy function E(f), which
should describe the image behaviour.

3.2 Image upscaling: an overview
As depicted in Fig. 3.2, we classify the methods into two main groups: interpo-
lation and model-based methods. Interpolation methods treat image upscaling
as an interpolation problem, assuming that the continuous scene is sampled
with Dirac pulses. They can be further divided into two categories: linear
and adaptive. Linear methods (Section 3.2.1) estimate a missing HR pixel
as a linear combination of LR pixels, while adaptive methods (Section 3.2.2)
adapt interpolation coefficients to image content (e.g., edges vs. smooth ar-
eas). Model-based methods treat image upscaling as an inverse problem (Sec-
tion 3.1.3). We divide this group of methods into reconstruction-based (Sec-
tion 3.2.3), multi-frame (Section 3.2.4) and example-based (Section 3.2.5) meth-
ods. Reconstruction-based methods enforce a reconstruction constraint (or
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data fidelity) on the HR image together with some prior knowledge about the
image in order to minimize the artefacts introduced by linear interpolation.
Multi-frame SR reconstructs the HR image from multiple LR images of the
same scene, which are shifted by sub-pixel shifts and contain frequency alias-
ing. Example-based SR methods attempt to fill in the missing high frequencies
by searching for highly similar examples (usually small patches of pixel values)
in the external database that also contains HR information, or by exploring
the self-similarity within and across scales of the input LR image.

3.2.1 Linear interpolation

Linear interpolation methods aim at approximating the underlying continuous
function from which the pixels of the LR image have been sampled, i.e., to
perform discrete-to-analogue conversion based on the discrete samples. This
process can formally be regarded as a convolution of the (discrete) image with
the continuous interpolation kernel h2D:

q(u, v) =
∑
a

∑
b

q(a, b)h2D(u− a, v − b), (3.11)

where u, v ∈ R and a, b ∈ N. Since convolution is a linear operation, this class of
methods is called linear (or non-adaptive) interpolation. Usually, symmetrical
and separable kernels are employed, h2D(u, v) = h(u)h(v), to decrease the
computational complexity and make the implementation in multiple dimensions
straightforward. Practically, this means that interpolation of two-dimensional
images is split into horizontal and vertical interpolation, which are performed
consecutively.2 Examples of typical interpolation kernels are shown in Fig. 3.5.

The result of image interpolation depends greatly on the choice of
the interpolation kernel, which is usually a trade-off between complexity and
image quality. The optimal interpolation kernel is a sinc function, but because
of its infinite support and slow decay, it is rarely used in practice [Unser 00].
There is a vast number of sinc-approximating kernels, i.e., kernels trying to
resemble the sinc function, that have been used in image processing over the
years. The simplest method is nearest-neighbour interpolation, which assigns
the interpolated pixel the value of the pixel that is closest to it. A slightly
better approach that produces smoother results is bilinear interpolation, a 2D
extension of linear interpolation. This method determines the interpolated
value as a weighted average of known pixel values in a 2×2 neighbourhood sur-
rounding the location of the unknown pixel. The weights are computed based
on the distance of the unknown pixel to the known ones. Even better results
can be obtained with bicubic interpolation, which makes use of a 4×4 neigh-
bourhood and produces sharper results with less interpolation artefacts (see
Fig. 3.6). Next to these common methods, higher-order interpolation meth-
ods exist. They take more neighbouring pixels into consideration and thus

2This is valid for images acquired on Cartesian grids, which is often the case for images
and videos. Other types of sampling grids, e.g., hexagonal lattices, also exist.
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Figure 3.5: Typical interpolation kernels in the spatial (left) and the frequency
spectrum domain (right).

are computationally more intensive, but often without producing substantially
higher quality. Furthermore, a common choice of the interpolation kernel is
the windowed sinc interpolation kernel, which is a sinc function multiplied by a
windowing function with a limited spatial support. Many possible windowing
functions exist, e.g., Lanczos, Blackman-Harris, Hamming, etc. For a detailed
overview of windowing functions see, e.g., [Meijering 01]. Finally, there is
also a group of generalized convolution kernels, among which the most popu-
lar member is the B-spline family [Unser 99]. For a detailed survey of linear
interpolation methods see [Lehmann 99,Meijering 01].

Despite the variety of linear interpolation methods, they still have
several disadvantages, such as not restoring missing high frequencies, not deal-
ing with noise and quantization and finally introducing a number of artefacts.
The most common artefacts are staircase (or jaggy) artefacts, blur and ringing
artefacts, illustrated in Fig. 3.6. Jaggy artefacts are caused by non-ideal nature
of the interpolation kernel, which has sidelobes and ripples present in the stop-
band (see Fig. 3.5). Hence, frequency components of the replicated spectra are
badly suppressed. They are most prominent in Fig. 3.6(b), i.e., in the result
of nearest neighbour interpolation, but they are also present in bilinear and
bicubic interpolation results (Figs. 3.6(c) and (d), respectively). Blur artefacts
are demonstrated as blurring the sharp edges, which is also caused by the non-
ideal interpolation kernel that attenuates (high) frequencies in the pass-band
(see Figs. 3.6(c), (d) and (e)). Finally, ringing artefacts are represented as
ghost repetitions or halos in the uniform areas near edges (Fig. 3.6(e)). This
is due to the band-limited interpolation kernel that stops the high-frequency
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(a) 

(b) (c) 

(d) (e) 

Figure 3.6: Results of linear interpolation methods from Fig. 3.5: (a) full original
image with the marked cropped part, (b) result of nearest neighbour interpolation,
(c) result of bilinear interpolation, (d) result of bicubic interpolation, and (e) result
of Lanczos3 interpolation.

components abruptly.

3.2.2 Adaptive interpolation

The artefacts around edges induced by linear interpolation methods have
prompted a development of image upscaling methods that aim at adapting
interpolation by imposing more accurate models and by incorporating prior
knowledge. Hence, they are referred to as adaptive interpolation methods.
These methods are also non-linear, since they no longer perform a simple con-
volution with an interpolation kernel. They are able to produce visually more
pleasing results with sharper edges and less artefacts (previously mentioned
in Section 3.2.1). Adaptive methods can be broadly divided into two groups:
edge-directed and restoration-based interpolation methods.

The main idea of edge-directed interpolation is to exploit the
property of an image called geometric regularity [Mallat 98], which means that
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image intensity field varies little along the edge orientation, while across edge
orientation significant changes can occur. Since edges are important features
in natural images, exploiting geometric regularity is a valid approach for main-
taining edges’ sharpness and eliminating artefacts. Therefore, the main idea is
to make sure that the image is not smooth perpendicular to edges, but smooth
parallel to edges.

Different methods exploit geometric regularity in different manner.
One group of methods [Jensen 95,Allebach 96,Yu 01,Su 04,Battiato 02,Mure-
san 05,Wang 07] attempts to detect the location or orientation of the edges
explicitly and adjust the interpolation coefficients accordingly, i.e., they modify
linear interpolation to prevent interpolation across edges. The problem with
these methods is that the explicit detection of natural edges is difficult because
they can appear as blurred and/or noisy. This implies that the characteristics
of edges, such as width, location and direction, are also difficult to estimate.
Furthermore, in some of the methods, e.g., [Jensen 95,Battiato 02,Muresan 05],
edge orientation is quantized into a finite number of choices (e.g., horizontal,
vertical, diagonal), which leads to a less accurate edge model, but improves the
computational efficiency.

More accurate results can be obtained with implicit edge-directed in-
terpolation methods [Li 01,Muresan 01,Muresan 04,Li 08], where edge informa-
tion is not estimated explicitly, but rather the principle of geometric regularity
is built into the algorithm itself. These methods yield visually significantly
better interpolation results than linear interpolation methods, especially when
considering jaggy artefacts, because they are able to tune interpolation coeffi-
cients to match an arbitrary edge orientation. However, the sharpness of edges
could still be improved and it makes textured areas look unnatural, although
improvements have been made in this respect in [Muresan 04, Li 08]. The
most popular method from this group is the new edge-directed interpolation
(NEDI) [Li 01], which uses the duality between LR and HR covariance to es-
timate the HR image. In other words, the covariance between neighbouring
pixels in a local window in the LR image is used to estimate the covariance
between neighbouring pixels in the HR image.

Among edge-directed interpolation methods, we ought to mention
the methods based on multi-resolution analysis, mainly in the wavelet do-
main [Chang 95,Carey 99,Kinebuchi 01]. These methods estimate the wavelet
coefficients of the fine scale based on the the wavelet coefficients of the
coarser scale and some assumed model between them. For example, meth-
ods in [Chang 95,Carey 99] model the relationship between exponential decay
of coarse and fine wavelet scales [Mallat 92], while the method in [Kinebuchi 01]
uses Gaussian mixture models and hidden Markov trees [Romberg 01].

The goal of the restoration-based interpolation methods is to
minimize the artefacts in the roughly initialized HR image (e.g., obtained by
linear interpolation) through an iterative optimization process, by putting con-
straints on the HR image. The most popular approach is based on partial
differential equations (PDEs) [Morse 01, Jiang 02, Luong 05]. PDEs describe



3.2 Image upscaling: an overview 63

the evolution of curves, surfaces or vector fields, and are often used in other
image processing fields (see, e.g., Section 4.2). In [Morse 01,Luong 05], smooth-
ness of level curves or isophotes is enforced by minimizing their curvature, while
in [Luong 05], constrained adaptive contrast enhancement is additionally used
to sharpen the edges. Typically, PDE-based methods are iterative, but by us-
ing some approximations PDE can be solved in a one-pass discrete form to
improve the efficiency, as suggested in [Jiang 02, Luong 05]. In general, these
methods yield promising results since they are able to eliminate jaggy artefacts
and produce sharp edges.

Another group of restoration-based interpolation methods use a
projection-onto-convex-sets (POCS) scheme to impose constraints on the HR
image [Gerchberg 74, Papoulis 75, Ferreira 94, Ratakonda 98]. The solution,
i.e., the HR image, is restricted to belong to a convex set, which is defined as
a set of vectors satisfying certain properties, such as fidelity to the observed
data, positivity, smoothness, etc. Multiple constraints result in having multiple
convex sets. The solution lies in the intersection of these sets and can be found
in an iterative procedure by projecting it alternatively onto these sets.

3.2.3 Reconstruction-based methods
Reconstruction-based methods treat image upscaling as an inverse problem
of the degradation process. They assume that LR images are obtained by
smoothing and downsampling HR scenes with low-quality image sensors, as
explained earlier in Sections 3.1.2 and 3.1.3. The methods that we review in
this subsection are related only to image upscaling from a single input LR
image.

Similarly to restoration-based interpolation methods, reconstruction-
based methods aim at minimizing the artefacts in the roughly initialized HR
image through an iterative optimization process. However, unlike interpola-
tion methods, they assume that LR images are corrupted by noise, blur, etc.
Their main requirement is that the data fidelity term (here referred to as the
reconstruction constraint), introduced in Eq. (3.5), is satisfied. Iterative back-
projection (IBP) [Irani 91] was proposed to minimize reconstruction error effi-
ciently through an iterative process for multi-frame SR, thus it will be explained
in more detail in Section 3.2.4. It can also be used for image upscaling from a
single image, but results are insufficiently good because of the ill-posed nature
of the problem.

As explained in Section 3.1.3, image priors are employed to regu-
larize the inverse problem by introducing an additional constraint on the HR
image. Two widely used image priors are image smoothness and edge smooth-
ness prior. Image smoothness prior enforces smoothness across the whole im-
age, thus the resulting HR image contains blurred edges and textures. Edge
smoothness prior, on the other hand, has edge preserving property because
it simultaneously enforces the smoothness of edges along edge direction and
prevents smoothing orthogonally to edge direction, which is consistent with
human perception [Dai 09]. Similar strategy was employed for adapting inter-
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polation weights in edge-directed interpolation and imposing prior knowledge
in restoration-based interpolation (Section 3.2.2).

Edge smoothness prior was used in many image upscaling tech-
niques [Rabaud 05, Aly 05, Tai 06, Dai 09, Luong 07, Fattal 07, Sun 08]. How
exactly the edge smoothness constraint is imposed, and based on which fea-
tures, differs greatly between methods. For example, in [Aly 03,Aly 05], total
variation (TV) is proposed for regularization and PDEs are employed to obtain
the solution, while in [Tai 06], HR curves are inferred by multi-scale tensor vot-
ing [Medioni 00]. An interesting way to impose edge-preserving constraints is
to exploit the statistical dependency between edge features at different resolu-
tions [Fattal 07,Sun 08]. The two methods differ in the proposed edge statistics
and in the edge features from which they draw the statistics.

Other than image smoothness and edge smoothness prior, also
some other priors have been used for image upscaling, like sparse derivative
prior [Tappen 03] and colour prior [Luong 07]. A very promising approach is
also to define the prior based on examples, rather than guessing a mathemat-
ical expression. We will review this approach in more detail in Section 3.2.5.
Regardless of which prior is used, reconstruction-based methods also have the
requirement to satisfy the reconstruction constraint, resulting in an optimiza-
tion problem from Eq. (3.10).

3.2.4 The multi-frame approach

3.2.4.1 Main concepts

Unlike the previously reviewed techniques, methods using the multi-frame ap-
proach are able to recover the missing or degraded high-frequency components
in the HR image and, therefore, are regarded as SR methods. This character-
istic relies on the availability of multiple LR images of the same scene, which,
in general, must be sub-pixel shifted and contain frequency aliasing. If there
is only an integer shift, then each LR image contains the same information,
thus no new information is available for the HR image reconstruction. On
the other hand, if there is no aliasing, the observed data contains only exact
band-limited information, which makes the recovery of missing high frequencies
impossible. Applications where the acquisition of such multiple LR images is
possible include medical imaging, satellite imaging and video applications.

The multi-frame approach assumes the observation model described
in Section 3.1.2 and depicted in Fig. 3.4. In order to recover the HR image,
most of multi-frame methods consist of three stages [Park 03]: registration,
interpolation and restoration (Fig. 3.7). Registration involves estimation of
motion, i.e., shifts with sub-pixel accuracy, of each LR image relative to one
reference LR image. Accurate sub-pixel motion estimation is very important
for the success of these algorithms, so attempts have been made to use accu-
rate registration based on robust motion models [Borman 99] or to include the
registration error in the subsequent reconstruction procedure [Ng 02, Lee 03].
Registration is followed by interpolation, also called data fusion, which interpo-
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Figure 3.7: Illustration of the three stages of multi-frame SR methods.

lates the non-uniformly spaced composite of LR images to uniformly spaced HR
grid. For this purpose, a simple method such as bilinear interpolation could
be used, although vast number of methods have been proposed in literature
(see [Luong 09] for a detailed overview). Finally, image restoration is applied
to remove blur and noise.

3.2.4.2 An overview of algorithms

Literature contains many multi-frame SR methods, which differ in the domain
in which they are operating (spatial or frequency), the observation model as-
sumed, the type of the reconstruction method, etc. Excellent reviews of differ-
ent approaches can be found in [Park 03,Borman 04]. According to [Park 03],
multi-frame SR methods can be divided into five big groups: non-uniform in-
terpolation methods, frequency-domain methods, regularized approaches, pro-
jection onto convex sets (POCS) and other SR reconstruction approaches.

The non-uniform interpolation approach [Ur 82, Shah 99,
Alam 00, Nguyen 00, Farsiu 04, Luong 09] is the most intuitive method for
SR reconstruction, because it directly follows the three stages from Fig. 3.7.
The advantage of this approach is that it is relatively computationally simple,
making it a candidate for real-time applications. On the other hand, the degra-
dation model is limited to having the same noise and blur characteristics for all
input LR images. Furthermore, the whole method is not optimal because the
restoration step ignores errors that may occur during interpolation [Park 03].

The frequency-domain approach [Tsai 84, Kim 90, Kim 93,
Rhee 99] makes explicit use of the aliasing present in the LR images to re-
construct the HR image. As formulated in [Tsai 84], this is achieved through
the shifting property of the Fourier transform, the aliasing relationship between
the samples of the continuous Fourier transform of the original HR image and
discrete Fourier transform of the observed LR image, and the assumption that
the HR image is band-limited. These basic principles make frequency-domain
approach theoretically simple and also convenient for parallel implementation,
but on the other hand, the observation model considers only global translation
and linear space-invariant blur. Furthermore, prior knowledge cannot be added
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as regularization since it is difficult to formulate it in the frequency domain.
The regularized approach uses the regularization framework de-

scribed in Section 3.1.3, either in a deterministic way by introducing numerical
stability in the HR solution [Hong 97,Hardie 98,Bose 01] or via the Bayesian
approach [Tom 95, Schultz 96,Hardie 97, Zibetti 07]. It is based on the same
concepts like reconstruction-based approach from Section 3.2.3, but the inverse
problem is more constrained since multiple images are available and, therefore,
mostly a generic smoothness prior is used. The advantage of these methods
is the flexibility in modelling noise characteristics and prior knowledge about
the HR image, but also the possibility of simultaneous motion and HR image
estimation.

The POCS approach [Stark 89,Patti 97,Eren 97,Patti 01], also used
for single-image upscaling as mentioned already in Section 3.2.2, is the alterna-
tive approach for including prior knowledge into the image upscaling process.
In the multi-frame case, the method estimates the registration parameters and
then performs interpolation and restoration simultaneously. The advantage of
this approach is its conceptual simplicity, powerful spatial domain observation
model and convenient inclusion of prior information. However, the method
does not provide a unique solution, in addition to having a slow convergence
and a high computational cost. In order to overcome the problem of non-unique
solution, a hybrid method was introduced [Elad 97], which combines the MLE
or MAP approach with the POCS constraints.

Other multi-frame methods include iterative back-projection
(IBP) [Irani 91], adaptive filtering [Elad 99b,Elad 99a] and the methods based
on the motionless approach [Elad 97,Rajan 01b,Rajan 01a,Rajan 02,Joshi 02].
The motionless approach does not require existence of motion between LR
images, but rather uses other cues to reconstruct the HR image, such as differ-
ently blurred LR images [Elad 97,Rajan 01b,Rajan 02], photometric cues [Ra-
jan 01a] and zoom [Joshi 02]. The IBP method is frequently used for comparison
and employed in reconstruction-based and example-based approaches to impose
that the reconstructed HR image resembles the input LR image. Therefore,
we explain it here in more detail. IBP updates the current estimate of the HR
image by back-projecting the residual error (difference) between simulated LR
images, i.e., LR images obtained by applying the overall degradation matrix
Wk from Eq. (3.3) on the current HR estimate, and observed LR images:

f̂ (t+1) = f̂ (t) +

Ni∑
k=1

WBP
k (gk −Wk f̂

(t)). (3.12)

Note that if Ni = 1, IBP can be applied as an image upscaling algorithm
from a single input image. There are a few versions of IBP algorithm [Pe-
leg 87, Irani 91, Zomet 01, Irani 93], of which the one from [Irani 91] is the
most often used. It calculates the error as the sum of squared differences be-
tween simulated and observed LR images and updates the HR estimate via the
back-projection kernel, i.e., WBP

k ensures that the HR pixel is updated based
on all contributing LR pixels according to the PSF of the observation model.
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Although this algorithm is simple, it suffers from a series of problems, such
as non-uniqueness of the solution, difficulty in choosing the back-projection
kernel, dependence on the initial guess, etc.

3.2.5 The example-based approach

3.2.5.1 Main concepts

The example-based approach [Freeman 00], just like the multi-frame approach,
is an SR method because it aims at recovering missing HR details (high frequen-
cies) that are not present in the LR image. However, unlike the multi-frame
approach, which assumes that this information is available across multiple LR
images in an aliased form, example-based methods typically try to retrieve
these missing high frequencies from a training database based on the similarity
between the input LR image and training examples. This database contains
pairs of HR/LR examples and is used to learn the correspondences between HR
and LR images, during the so-called learning phase. The learning phase also
reduces the number of examples to some manageable number, thus simplifying
the following reconstruction phase, where learned correspondences are applied
to the new input LR image in order to obtain its HR version.

The example-based approach has become increasingly popular over
the last decade for its ability to overcome the limitations of the multi-frame
approach. These limitations are the following: 1) the multi-frame approach
requires a sequence of degraded LR images in order to reconstruct an HR im-
age, and 2) it is limited in practice to the magnification factor smaller than
two [Baker 02,Lin 04]. Example-based SR is able to reconstruct an HR image
from a single input LR image with much higher magnification factor (in pre-
liminary work of Lin et al. [Lin 08], the limit for the magnification factor for
learning-based approaches is estimated at 10, although it highly depends on
the database). Furthermore, the quality of the result is very encouraging, both
for the reconstruction of edges and textured areas.

However, still some problems remain. First, example-based meth-
ods involve storing and searching large databases, especially when applied to
natural images [Freeman 00,Freeman 02,Wang 05,Xiong 09], although some at-
tempts have been made to constrain the search to a single input texture [Tai 10]
or texturally relevant segments in the database [Sun 10,HaCohen 10]. Searching
the database can be avoided by using it only to learn the interpolation func-
tions [Tappen 03,Tappen 04,Kim 08], but still this external database is neces-
sary. Additionally, it is not guaranteed that the database contains the true HR
details, which may cause the so-called “hallucination” effect resulting in added
artefacts. Furthermore, this database needs to be large enough to provide good
results, which makes learning or searching computationally more demanding.
These problems recently prompted the development of single-image example-
based methods [Ebrahimi 07,Suetake 08,Glasner 09,Luong 10,Yang 10b,Freed-
man 11], which explore image self-similarity within and across scales of the
input LR image and thus do not require an external database.
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Figure 3.8: Patch pairs in external database of [Freeman 00] (figure taken from the
same paper): LR patches (top) and HR patches (bottom).

Let us first consider how to represent examples, although this is still
an opened research question [Elad 09]. Examples are often represented as small
image patches of raw pixel values (e.g., in [Datsenko 07, Yang 08, Elad 09]),
where sometimes the mean value is subtracted to make the patch representa-
tion more general (i.e., to increase the number of possible matches). Another
option is to use patches of extracted features, such as high frequencies [Free-
man 00,Freeman 02], derivatives [Chang 04,Tai 10], principal component anal-
ysis (PCA) coefficients [Wang 05], etc. In [Xiong 09], it was shown that feature
enhancement of LR images, as a combination of interpolation with pre-filtering
and non-blind sparse prior deblurring, can improve matching, and, therefore,
SR results. Since example representation is usually based on patches, example-
based approaches are often referred to as patch-based.

The external database is usually formed by collecting HR/LR patch
pairs from training HR images and their degraded LR versions, respectively.
For example, in the seminal work of Freeman et al. [Freeman 00], HR patches
are extracted from the difference images between the original HR images and
their degraded versions, obtained by blurring and downsampling HR images
and interpolating these back to the original sampling resolution. Therefore, the
difference patches represent the high-frequency detail removed by the degra-
dation process. LR patches are taken from the degraded HR images, whose
low frequencies are additionally removed to create a band-pass “image”. Fi-
nally, both difference and band-pass images are contrast normalized by the lo-
cal contrast of the input band-passed image (see Fig. 3.8). Some methods use
pixel-based features as examples instead of patches. For example, in [Baker 02],
the database is formed as a collection of pixel-based sets of features extracted
from derivative pyramids of training images. On the other hand, as mentioned
earlier, the input image itself can be used as a source of examples based on the
observation that small image patches tend to recur many times inside a natural
image, both within the same scale and across different image scales. This image
property is called self-similarity and it was statistically analysed in [Glasner 09],
while in [Zontak 11] a parametric quantification of this property was derived.
Redundancy of patches within the same scale was previously successfully ex-
plored for texture synthesis [Efros 99], image inpainting (e.g., [Criminisi 04])
and image denoising via non-local means (NL-means) [Buades 05]. Redun-
dancy across scales, on the other hand, provides HR/LR example pairs, thus
enabling example-based SR from the input LR image itself, without using ex-
ternal training database. Such an “internal” database has a limited size, but
its content is more relevant to the target HR image, thus the influence of the
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“hallucination” effect is decreased.
Elad and Datsenko [Elad 09] reviewed example-based methods from a

regularization point of view (see Section 3.1.3), in the sense that examples can
help in defining the image prior, rather than arbitrarily or intuitively choosing
a PDF. They divided the methods for inverse problems in general (not only SR)
based on how to use examples: directly in the reconstruction result, plugged
into regularization expression or by training regularization parameters. We
make a different classification by addressing learning and reconstruction phase
of each group, and ultimately, we divide the methods into five groups: meth-
ods using examples directly, methods using examples to build a regularization
expression, methods using examples to learn interpolation functions, methods
using sparse representations and single-image example-based methods.

3.2.5.2 An overview of algorithms

Methods using examples directly [Freeman 00, Freeman 02, Sun 03,
Chang 04,Wang 05,HaCohen 10] search the database for the nearest neighbour
(or neighbours)3 of each LR patch of the input image during the learning phase.
The nearest neighbour search is part of the online reconstruction, thus should be
performed efficiently. For speed-up, PCA representation of image patches was
proposed in [Freeman 00,Wang 05], as well as fast approximate search meth-
ods, such as tree-based, approximate nearest neighbour search [Nene 97,Free-
man 02], and locality sensitive hashing [Gionis 99,Wang 05]. Each found near-
est neighbour (i.e., LR patch) has a corresponding HR patch in the database.
These HR patches may be regarded as samples from the posterior P (f |g) (see
Eq. (3.8)). The goal of the reconstruction phase is then to combine the HR
patches in order to form the HR image. For this step, different solutions are
proposed. In [Freeman 00, Sun 03,Wang 05], an MRF model is defined over
the HR image to impose the global agreement of HR patches and then in-
ference is performed to choose one HR patch per location (for the details of
MRF modelling see Chapter 2).4 Additionally, the method in [Wang 05] con-
siders the problem of blind SR, when the PSF parameter of the imaging system
is unknown. A simpler reconstruction can be achieved with a one-pass algo-
rithm proposed in [Freeman 02], which selects an HR patch based on its LR
patch and neighbouring HR patches that are already selected. The method
from [Chang 04] uses local linear embedding [Roweis 00] from manifold learn-
ing by computing the reconstruction weights that minimize the reconstruction
error of representing input LR patch with its found neighbours. Those weights
are then used to linearly combine corresponding HR patches of the neighbours
from the database. More recently, HaCohen et al. [HaCohen 10] proposed to
improve the patch-based model for better treatment of textures by segment-

3The nearest neighbours are the most similar patches of the query patch, because patches
can be regarded as points in a multi-dimensional space, thus patch matching can be trans-
formed to a nearest-neighbour search.

4The method from [Freeman 00] will be explained in more detail in Section 3.4.2, since
our proposed method is based on it.
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ing the input image and matching each segment with user-assistance with one
texture from the example texture database, which is then searched for the
best-matching patches.

Methods using examples to build a regularization expres-
sion [Baker 02,Pickup 03,Datsenko 07,Elad 09,Tai 10,Sun 10] have the same
learning phase as the previous group of methods, i.e., for each LR patch or
pixel, nearest neighbours are found in the database. However, in the recon-
struction phase, instead of using these found examples directly, as such, they
build a regularization expression, which forces the proximity between them and
the corresponding features of the HR image. In this way, examples serve as an
additional constraint, a sort of image prior in a broad sense, that together with
a reconstruction constraint, which ensures proximity to the measurements (ob-
served LR image), forms the final optimization problem. This approach is then
global, since the regularization expression is defined over the whole image, but
the learning phase is still local, because the examples are found patch-per-patch,
which enables parallelization and simplification of the algorithms [Elad 09]. Re-
cent trends in this approach involve adding one more constraint to impose edge
smoothness, as in [Tai 10,Sun 10]. In this way, the edges of the HR image are
forced to be sharp, with minimal ringing or jaggy artefacts, since the quality
of edges may be compromised by using the database. Additionally, Sun et
al. [Sun 10] proposed the context-constrained approach for the learning phase,
in the sense that the patch search is constrained to the texturally similar seg-
ments from the database, similarly to [HaCohen 10]. They show that such an
approach leads to better SR result in textured regions. On the other hand,
in [Tai 10], a database consists of only one user-supplied input texture, making
the approach highly dependent on its choice.

Methods using examples to learn interpolation func-
tions [Tappen 03, Tappen 04, Kim 08] have a different learning phase dur-
ing which correspondences are learned between HR/LR patch pairs from the
training database. For example, in [Tappen 03, Tappen 04], a small num-
ber of linear regression functions are learned with the procedure similar to
expectation-maximization, while in [Kim 08], kernel ridge regression is used to
find a mapping between HR and LR patches. Once these functions are learned,
they are applied to each input LR patch to obtain a set of candidate HR patches
for reconstruction. To obtain the final HR image, similarly to [Freeman 00],
loopy belief propagation (LBP) [Yedidia 01b] (Section 2.3.5) is used for infer-
ence on the MRF model to choose one HR patch per location. These methods
do not require searching the huge amount of data in the database during on-
line reconstruction, thus having the potential of being less computationally
intensive. However, learning regression functions can be quite computationally
demanding [Kim 08].

Many recent methods use sparse representations of dictionary el-
ements to reconstruct the HR image [Yang 08,Yang 10b,Wang 10, Zeyde 10].
The main idea is to represent the input LR patch as a sparse combination of
elements of some LR dictionary, and then directly use obtained sparse coeffi-
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cients to recover the corresponding HR patches from some HR dictionary. The
LR dictionary and the HR dictionary have to be coupled so that the LR patch
and the HR patch have the same sparse representation. Dictionaries are gener-
ated in the learning phase, either by randomly sampling raw patches from the
training HR/LR image pairs [Yang 08,Wang 10], or by learning the compact
dictionary pairs from training examples [Yang 10b,Zeyde 10]. With this latter
approach, the speed of the algorithm can be significantly improved, especially
in [Zeyde 10], where K-SVD [Aharon 06] is used for dictionary training, even
on the input LR image itself, eliminating the need for the training set.

The last group of methods in our classification are single-image
example-based methods [Ebrahimi 07, Suetake 08, Glasner 09, Luong 10,
Yang 10a, Freedman 11]. The learning phase of these methods typically con-
sists of searching for the nearest neighbours of the input LR patch in the lower
scales of the input LR image, and extracting their HR counterparts from the
higher scale (e.g., input LR image itself) as candidate HR patches. The method
in [Freedman 11] shows that this search can be done in extremely localized re-
gions, where a small scaling factor is achieved by applying specially developed
filter banks. Such narrowed search leads to a very efficient method with good
results. Other approaches mainly differ in the reconstruction phase. For ex-
ample, Ebrahimi and Vrscay [Ebrahimi 07] use the NL-means framework and
compute the HR image as a weighted average of the found examples. Suetake et
al. [Suetake 08] compute an example codebook and use it to estimate the miss-
ing high-frequency band in the framework similar to [Freeman 02]. Glasner et
al. [Glasner 09] exploit patch redundancy both within and across image scales
in order to enable a unified approach, which combines the classical multi-frame
SR and example-based SR, while Yang et al. [Yang 10a] use sparse representa-
tion via a dictionary, which is trained by enforcing group sparsity constraints.5
We have also contributed to the development of a single-image example-based
SR algorithm that, in addition to these non-local similarities within and across
scales, uses kernel regression and sparsity constraints to perform HR image
reconstruction [Luong 10].

3.3 Notations and definitions for patch-based
models

In this short section, we will introduce the most important notations and defi-
nitions related to patch-based methods, which we will use throughout the rest
of this thesis.

Let I denote a set of pixel positions in some image g of size N1 ×
N2. Pixel positions are represented by a single index p assuming raster-scan
order. If a is a horizontal and b a vertical coordinate, then p = N1b + a. We
define a square mask Ψ as a set of positions p centred at the origin p = 0.

5The method from [Glasner 09] will be explained in more detail in Section 3.4.1, since our
proposed method is based on it.
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Figure 3.9: Illustration of an N1 ×N2 = 6 × 6 image and a 3 × 3 mask Ψ. Raster
coordinates are computed in this case as: p = N1b+ a = 6b+ a.

Let Ψ + p denote a translated mask to position p (see Fig. 3.9 for graphical
representation). We define a patch centred at p′ as a set of pixel values g(p),
with p ∈ Ψ + p′. A patch is thus specified by a function g, a spatial position
p′, and a mask shape Ψ.

An important operation in patch-based methods is to compare
patches from one or more images by calculating some distance measure between
their corresponding pixel values. A common choice is the sum of squared differ-
ences (SSD). In order to express this distance, let us first define the translation
operation Tp′ operating on a function as:

Tp′{g}(p)
4
= g(p+ p′). (3.13)

The braces indicate that the translation operator operates on the function g
and not on the function value g(p). We can leave out the braces and write Tp′g
when it is clear that the operator operates on a function. We define a norm
computed on Ψ of some function h as:

‖h‖Ψ
4
=

√∑
p∈Ψ

h2(p). (3.14)

Now the SSD between two patches in images g′ and g′′ centred at positions
p′ and p′′, respectively, evaluated on some common shape Ψ can be expressed
as ‖Tp′{g′} − Tp′′{g′′}‖2Ψ or ‖Tp′g′ − Tp′′g′′‖2Ψ. This notation means: move the
first image g′ so that the old position p′ is now at the origin. Move the second



3.3 Notations and definitions for patch-based models 73

p~
Dz 

Bg 

DzBg 

p

a 

b 

 za /

 zb /

(0,0) (0,7) 

(7,7) (7,0) 

(0,2) 

(2,0) (0,0) (0,3) 

(3,0) (3,3) 

(0,1) 

(1,0) 

Figure 3.10: Downsampling procedure for z = 2. Black circles in the image at
higher scale (in the top-left corner of each 2×2 block of pixels in the left image) are
kept after downsampling. p = N1b + a = 18 and p̃ = bN1/zcbb/zc + ba/zc = 5 are
corresponding pixel positions in the images at higher and lower scale, respectively.

image g′′ so that the old position p′′ is now at the origin. Subtract the two
images and compute the SSD over a region Ψ centred at the origin.

In the remaining of this section, we also introduce some notations
specific to patch-based SR. In SR, let g denote the input LR image and f the
ideal (hypothetical) HR image (see Section 3.1.2). We assume that g is related
to f by an observation model from Eq. (3.1), but without noise. We represent
here the blur matrix B and the downsampling matrix D as the blur operator B
and the downsampling operator Dz, respectively, where z is the integer scaling
factor. Hence, we can write g = DzBf . To create the Gaussian pyramid of
the input LR image g, the same operators are applied on g, thus DzBg is
the image at the lower scale of the Gaussian pyramid. Specifically, the blur
operator B convolves the image with the Gaussian kernel of size fz and standard
deviation σz. The downsampling operator Dz keeps every zth sample, i.e., if
p = N1b+a is a pixel position in the image g, then p̃ = bN1/zcbb/zc+ ba/zc is
its corresponding pixel position in the image DzBg. This downsampling scheme
is illustrated in Fig. 3.10. Since in SR we are working at different scales, we
can also denote a mask Ψ at a larger scale as zΨ. When the scaling factor z is
used for increasing the scale, we will refer to it as the magnification factor.
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3.4 Single-image patch-based SR using MRF
modelling

In this section, we propose a novel single-image patch-based SR algorithm. The
main idea is to reconstruct the HR image patch-by-patch by using the MRF
model to choose one of the candidate HR patches for each position in the HR
image so that the global agreement of HR patches is enforced. Candidate HR
patches come from the input LR image itself, hence the single-image approach.
In this way, we reduce the set of candidate HR patches from all possible 256Np

patches, where Np is the number of pixels in a patch, to hundreds of thousands
(depending on the size of the input image).

Our single-image patch-based SR method can be divided into three
main phases: learning, reconstruction and post-processing (see Fig. 3.11). In
the learning phase, we additionally constrain the set of candidate HR patches
for each position in the HR image separately, by using its corresponding LR
patch from the input LR image, and by exploiting patch redundancy across
its different resolution scales. This patch redundancy was statistically justified
in [Glasner 09,Zontak 11].

The subsequent reconstruction phase models the HR image as an
MRF and performs inference on this model. As a result of inference, one of the
candidate HR patches is chosen for each position in the HR image, so that all
the HR patches agree with each other globally. The MRF model has a great
advantage over the simpler alternative, i.e., choosing the best match at each
location, as we will demonstrate shortly.

In the last phase of our algorithm, we apply post-processing tech-
niques to eliminate remaining artefacts. We use IBP [Irani 91] to ensure the
consistency of the HR result with the input LR image (see also Eq. (3.12). In
the case of a small input image and a high magnification factor, the level of
patch redundancy may be insufficient, which results in visible artefacts. For
that reason, we also use steering kernel regression [Takeda 07] that produces a
smooth and artefact-free image, while still preserving edges, ridges and blobs.
The effects of the post-processing methods is further discussed in Section 3.5
and Fig. 3.14. Post-processing together with MRFmodelling allows us to obtain
a competitive SR result even with only having the LR image as the algorithm’s
input.

In order to achieve this, we combine the learning phase of [Glas-
ner 09], by searching for candidate HR patches within the Gaussian pyramid
of the input image itself, and the reconstruction phase of [Freeman 00], which
uses the MRF model to reconstruct the HR image. The main benefit of this
learning approach is that no external database, as a limited set of candidate
HR patches, is required, which results in a faster search and absence of the
“hallucination” effect, when compared to [Freeman 00]. We add another contri-
bution to the inference part of the MRF by using a simpler and faster method
instead of the slow LBP [Yedidia 01b] used originally in [Freeman 00]. We
use our neighbourhood-consensus message passing (NCMP) from Section 2.4.
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Figure 3.11: The proposed single-image patch-based SR method.

Using MRF in the reconstruction of the HR image enables us to stay in the
patch-based domain without combining it with classical (mutli-frame) SR as
in [Glasner 09], thus avoiding all the limitations of the multi-frame approach
(discussed previously in Section 3.2.5.1).

In the remaining of this section, we will describe in details the learning
and the reconstruction phase.

3.4.1 Learning candidate patches

In order to learn candidate patches, we use the example-based part of the
algorithm from [Glasner 09], in the sense that we search for similar LR patches
within the Gaussian pyramid of the input LR image, and use their “parent”
HR patches for further reconstruction. Therefore, we will first introduce the
algorithm of [Glasner 09] and then explain how our approach differs.

The goal of the learning phase, illustrated in Fig. 3.12, is to find
a small set of candidate HR patches within the input image g itself for each
position in the HR image f . These positions correspond to each pixel in g.
For each LR patch from the input LR image g (centred at each pixel in g,
excluding pixels at the border), we find the L most similar LR patches in
the image DzBg by minimizing the SSD (step 2 in Fig. 3.12). This search
exploits the patch redundancy across different scales of the Gaussian pyramid.
The shape of the LR patch is determined by the mask Ψ. For each of the L
most similar LR patches, we can find its “parent” patch in the input LR image
(step 3 in Fig. 3.12). This “parent” patch is positioned at the corresponding
pixel position and its shape is determined by the scaled mask zΨ. The found
matching LR patch and its “parent” patch together form an LR/HR pair, which
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Figure 3.12: Illustration of the process of learning candidate patches.

behaves in the same way as the starting LR patch from the input LR image
and its corresponding unknown HR patch. As a consequence, we can use
“parent” patches as candidate HR patches for corresponding locations in the
HR image. Note that this is only possible if we use the same scaling factor z
for downsampling (i.e., to obtain the Gaussian pyramid) as for magnification
(i.e., to obtain the HR image from the input LR image).

In [Glasner 09], multiple matching patches are chosen for each patch
in the input LR image g, but the search is performed inside multiple levels of
the Gaussian pyramid with a non-integer scaling factor, namely αl = 1.25l,
where l = −1, . . . ,−m. The corresponding “parent” patches of these matches
represent “learned” HR patches for higher levels fl to be reconstructed, where
l = 1, . . . , Nl − 1, and z = αNl is the desired magnification factor. To achieve
the desired resolution, all these learned patches are combined in the classical
multi-frame approach (see Section 3.2.4). In this approach, each of the pixels
in each of the LR images induces one linear constraint on the pixel values in
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Figure 3.13: Illustration of SSD computation between labels of neighbouring nodes
i and j in their region of overlap (see Eq. (3.16)).

the HR image, thus if sufficient number of LR images is available (at sub-pixel
shifts), the system of linear equations becomes determined. In [Glasner 09],
example-based and classical SR are combined, in the sense that each of the
“learned” HR patches, as a small image, induces linear constraints on the HR
image, in the form of the classical SR constraints, but with the smaller blur
kernel. In order to recover the missing high frequencies, sub-pixel shifts have
to exist between the learned patches, which is achieved by using a non-integer
scaling factor. Furthermore, the authors of [Glasner 09] do not solve the system
of linear equations at once for the desired HR image fNl , but rather they
employ a coarse-to-fine strategy, i.e., different resolution levels from f1 to fNl
are reconstructed one after another, in order to achieve numerical stability. Due
to the non-integer scaling factor, searching at multiple levels of the Gaussian
pyramid and the coarse-to-fine reconstruction, this approach is very complex,
although it delivers very promising results.

The main difference of our approach from [Glasner 09] is in the recon-
struction step (step 4 in Fig. 3.12). While in [Glasner 09] the classical multi-
frame approach is applied for HR image reconstruction as explained above, we
use MRF modelling of the HR image (Section 3.4.2). This allows us to perform
a more efficient learning phase. Specifically, we search for similar patches in
only one level of the Gaussian pyramid, where the downsampling factor is equal
to the magnification factor, as explained above. This is the case for magnifi-
cation factor of 2 or 3, while for higher magnification factors, which must be 2
or 3 to the power of Nl (z = αNl , where, e.g., z = 4, α = 2 and Nl = 2), the
proposed algorithm (both the learning and reconstruction phase) is applied Nl
times recursively using the previously obtained SR result as an input image in
a coarse-to-fine manner. However, each time the search is performed in only
one level of the pyramid.

In Fig. 3.10, we can see that the downsampling operator downsamples
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the image by keeping the top left pixel in each z×z block of pixels in the image
at higher scale. However, there are z2 possible options for which pixel to keep.
Starting from the input image g, we generate z2 images DzBg corresponding
to all possible options, and use all of them as the search space. In this way, all
possible patches from g are considered as parent patches. This step increases
the search space and, therefore, computation time, because we search in z2

images instead of one. However, we could perform the search more efficiently
by, e.g., searching in only one image and if a good match is found, the search
can be continued in a small window around the corresponding locations in all
other images.6

The main advantages of the proposed approach in comparison
with [Glasner 09] are the following. First, we can use only one level of the
pyramid as the search space, whose downsampling factor corresponds to the
magnification factor, instead of using multiple levels with non-integer downsam-
pling factor, thus simplifying the search. Second, the method in [Glasner 09]
reconstructs all images at intermediate resolutions (between the input and the
desired resolution) in a coarse-to-fine manner, regardless of the magnification
factor. We use coarse-to-fine reconstruction by applying the proposed method
recursively on images at intermediate resolutions, but only for magnification
factors higher than 3, and even then there are fewer intermediate levels because
we use an integer downsampling factor. For magnifications factors lower than
3, we apply the proposed method only once to obtain the HR image at the
desired resolution. Finally, we avoid sub-pixel registration, which often causes
inaccurate results.

3.4.2 High-resolution image reconstruction

Using the MRF framework to perform HR image reconstruction was proposed
in [Freeman 00]. In this approach, an HR patch is assigned to each position
in the HR image, taking into account both the agreement of the HR patch
with the available data (the input image) and the agreement of neighbouring
HR patches in their overlap region. Furthermore, the image is observed as a
whole rather than a collection of local assumptions. In this respect, the choice
of patches is formulated as a global optimization problem over the whole HR
image by using the MRF framework [Li 95] (see also Chapter 2).

Motivated by [Freeman 00], we adopt such MRF framework for the
reconstruction phase of our approach. We model the HR image f as an MRF
(see Fig. 2.3 and Section 2.2.4 for more details), where the lattice S of MRF
nodes consists of pixel positions i, which are z pixels apart in horizontal or
vertical direction on the HR lattice. We consider the first-order neighbourhood
system with pairwise cliques 〈i, j〉. The values that are to be assigned to nodes
are the candidate HR patches. These values are usually referred to as labels in
MRF theory (see also Section 2.2.1). Each MRF node i is also associated with
an observation (measured data), which, in this case, is the LR patch centred

6This approach was not explored in the current implementation.
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Figure 3.14: The cropped “castle” image with ×2 magnification. From left to right
and top to bottom: bicubic interpolation, MRF result, MRF with IBP, and MRF
with IBP and kernel regression.

at the pixel in g, which corresponds to the position i in the HR image. Since
all observations are from the same image g and they are specified by the same
mask shape Ψ, we will refer to an observation by its position in the image g,
denoted as yi (see Section 2.2.4).

As we discussed at the beginning of this section, considering all the
possible HR patches as labels would be prohibitive, thus it is necessary to limit
the number of labels in some meaningful way. We achieve this by using the
learning phase described in Section 3.4.1. Specifically, L labels for each node i
are the L “parent” patches from the input LR image g (the dotted patches in
Fig. 3.12), whose shape is determined by the mask zΨ. They correspond to the
L most similar LR patches of the observation (LR patch) at the node i. Like
for observations, we refer to labels by their position in the image g. Then the
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label position set Λi of the node i consists of the positions of the found “parent”
patches. The assignment of a label to the node i amounts to copying the values
from the patch positioned at xi ∈ Λi to the positions within the mask zΨ + i
in the HR image.7 Note that the masks centred at neighbouring nodes are
overlapping, unless the square mask Ψ consists of a single pixel (which is never
the case).

To completely define the model, we still have to define compatibility
functions between an observation and a label at each node (the so-called local
evidence) and between labels of neighbouring nodes. As a reminder, the former
determines how much a label agrees with measured data, and the latter encodes
prior information on the distribution of the unknown image. As in [Freeman 00],
the local evidence is given as the Gaussian function of the matching error
between the observed LR patch centred at yi in g and its L most similar LR
patches in the image DzBg:

φ(xi, yi) = exp
(
− ‖DzBTxig − Tyig‖2Ψ/2σ2

loc

)
, (3.15)

where the operators and the norm are defined in Section 3.3. Note that the
positions of the L most similar LR patches are related to the label positions
xi via the downsampling operator Dz, because the labels are their “parent”
patches. The compatibility between the labels of neighbouring nodes is the
Gaussian function of the matching error between these labels in their nodes’
region of overlap (see Fig. 3.13 for graphical representation):

ψ(xi, xj) = exp
(
− ‖Txig − Txj+(i−j)g‖2(zΨ)∩((zΨ)−(i−j))/2σ

2
com

)
. (3.16)

σloc and σcom are the noise standard deviations, which represent the difference
between some “ideal” training samples and our image, and training samples,
respectively.

Now, we have to choose one label at each node that fits the above
constraints the best over the whole graph. This can be achieved by finding the
MAP estimate as

x̂MAP = arg max
x

P (x|y) (3.17)

P (x|y) ∝
∏
〈i,j〉

ψ(xi, xj)
∏
i

φ(xi, yi),

where φ(xi, yi) is defined in Eq. (3.15) and ψ(xi, xj) in Eq. (3.16). This is
generally a difficult problem to be solved exactly, but there is a number of
approximate inference algorithms that can yield an approximate solution (see

7In Chapter 2, xi and yi denoted the label and the observation themselves, respectively,
and Λi denoted the label set. For the sake of compactness of representation, in this chapter
and Chapter 5, we use xi and yi to denote the label and the observation position, respectively,
and Λi to denote the label position set.
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Figure 3.15: The “old man” image: results of image upscaling methods for ×2
magnification from the input image of size 200×266. From left to right and top to
bottom: bicubic interpolation, IBP [Irani 91], Fattal [Fattal 07], and the proposed
method.

Section 2.3 for an overview). The method from [Freeman 00] uses LBP as an
inference method (see Section 2.3.5). We use our NCMP inference method
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(Section 2.4), which is simpler and faster than LBP. After the specified number
of iterations of NCMP, at each node i one label positioned at x̂i is chosen. We
then obtain the final SR result as f̂(p+ i) = g(p+ x̂i), ∀p ∈ zΨ, ∀i ∈ S, where
the values in the overlap region between the neighbouring nodes are averaged.

Although we use the MRF model from [Freeman 00] in this recon-
struction phase, our approach has several major differences. First of all, our
candidate HR patches, i.e., labels, are obtained from the input image itself,
while in [Freeman 00] an external database is used.8 Moreover, they consist
of raw pixel values instead of high-frequency details (see Section 3.2.5.1 and
Fig. 3.8). Therefore, our method does not require pre-processing of the search
space and the input image. Finally, we use our inference method for optimiza-
tion, introduced previously in Section 2.4.

Instead of using the MRF approach for HR image reconstruction, we
could simply choose the best match for each LR patch and use the “parent”
patch of that best match as the HR patch for the corresponding position in the
HR image. Again, we can take the average in the overlap region between the
neighbouring HR patches. Although this solution could speed up the search
process (because we only search for one match), the resulting image will have
visible artefacts, as shown in the top right of Fig. 2.14. In the bottom of
Fig. 2.14, we can see that using an MRF model produces much better result,
even if we use a simple inference method like NCMP (bottom right image).

3.5 Results
We applied the proposed method to enhance the resolution of natural images of
different sizes. In particular, we applied the proposed method on the luminance
channel of the image, while chrominance channels were upscaled with bicubic
interpolation. The size of the input image determines the size of the search
space, i.e., a bigger input image provides a bigger search space. This means
that there is more chance of finding a good match in the learning phase and
thus, the final result can be better. We demonstrate the effectiveness of our
technique for a sufficiently large search space in the first experiment. Fig. 3.14
shows the cropped part of the “castle” image (481×321 pixels) and the results
of our SR algorithm with the magnification z = 2. It can be seen in the top
right that the output of the MRF, without any post-processing, gives already
reasonably good results. For example, all edges are sharp without jaggy arte-
facts, which are visible in the result of bicubic interpolation (top left). Fig. 3.14
also demonstrates the effect of the post-processing methods. We can see in the
bottom left that back-projection further improves the MRF result by elimi-
nating artefacts and enhancing textures (e.g., texture on the roof). Finally,
kernel regression (bottom right of Fig. 3.14) only slightly smooths the image,
and can even be left out as a post-processing step in this case. The amount of
post-processing needs to be adjusted in order to avoid introducing additional

8In [Freeman 00], using the input image as a source of labels was tested, but not explored
in detail.
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Figure 3.16: Cropped version of the “koala” image: results of image upscaling
methods for×3 magnification from the input image of size 161×241. From left to right
and top to bottom: bicubic interpolation, IBP [Irani 91], Glasner et al. [Glasner 09],
and the proposed method.

artefacts. This means properly choosing the number of iterations and the ker-
nel parameters in order to avoid ghosting artefacts (for back-projection) or
over-smoothing (for kernel regression).

In the next experiment, we compare the proposed method with the
standard bicubic interpolation, IBP [Irani 91], the original example-based tech-
nique from [Freeman 00]9, and the state-of-the-art techniques from [HaCo-

9http://people.csail.mit.edu/billf/
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Figure 3.17: Cropped version of the “sunflowers” image: results of image upscaling
methods for×3 magnification from the input image of size 320×208. From left to right
and top to bottom: bicubic interpolation, IBP [Irani 91], Glasner et al. [Glasner 09],
and the proposed method.
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Figure 3.18: The “pumpkins” image: results of image upscaling methods for ×4
magnification from the input image of size 160×128. From left to right and top
to bottom: bicubic interpolation, IBP [Irani 91], Freeman et al. [Freeman 00], Fat-
tal [Fattal 07], HaCohen et al. [HaCohen 10], and the proposed method.

hen 10]10 and [Glasner 09]11, the latter being another single-image SR method,
and [Fattal 07]12, which is a reconstruction-based method (Section 3.2.3). The

10http://www.cs.huji.ac.il/∼yoavhacohen/upsampling/
11http://www.wisdom.weizmann.ac.il/∼vision/SingleImageSR.html
12http://www.cs.huji.ac.il/∼raananf/projects/upsampling/upsampling.html



86 Patch-based image upscaling

Figure 3.19: Cropped version of the “chip” image: results of image upscaling meth-
ods for ×4 magnification from the input image of size 244×200. From left to right
and top to bottom: bicubic interpolation, IBP [Irani 91], Freeman et al. [Freeman 00],
Fattal [Fattal 07], Glasner et al. [Glasner 09], and the proposed method.

input images and the results of the reference methods were downloaded from
their websites, except for the results of [Freeman 00], which were generated
using the software available on the author’s website. For the proposed method,
we chose the following parameters: σloc = 0.1 and σcom = 0.5 for MRF com-
patibility functions, the size of the Gaussian kernel fz = 3 (for magnification
factor z = 2) and fz = 5 (for z = 3). These parameters were chosen so to
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Figure 3.20: Images used for quantitative comparisons shown in Tables 3.1 and 3.2.
All used images are of the same size, but in this figure they are differently scaled for
illustrative purpose.

Figure 3.21: Cropped version of the “bears” image (x4 magnification). From left
to right and top to bottom: original image, result of Freeman et al. [Freeman 00],
bicubic interpolation, IBP [Irani 91], and the proposed method.

produce the best results (with the fewest artefacts) for different images. The
standard deviation was chosen as σz = z, as suggested in [Glasner 09]. We set
the LR patch size to 3×3 (resulting in HR patch size 3z×3z), because with
other choices of patch size we were not able to find sufficient number of similar
patches due to the limited size of our search space. The choice of the number of
similar patches L = 10 was motivated by the statistical analysis in [Glasner 09],
where it was concluded that about 80% of image patches have 9 or more simi-
lar patches in the lower level of the Gaussian pyramid with the downsampling
factor z between 2 and 3.

The results of the proposed method and their comparisons with the
previously mentioned reference methods are shown in Figs. 3.15 - 3.19 for dif-
ferent values of the magnification factor: z = 2 (Fig. 3.15), z = 3 (Figs. 3.16
and 3.17) and z = 4 (Figs. 3.18 and 3.19). In Fig. 3.15, the result of the pro-
posed method is somewhat sharper with fewer jaggy artefacts compared to the
results of the reference methods, although the difference is not so significant
since magnification factor is rather small. For z = 3 (Figs. 3.16 and 3.17), the



88 Patch-based image upscaling

Table 3.1: RMSE comparison of the results of our method and the reference meth-
ods.

Image Bicubic IBP Freeman et al. Our
“Butterfly” x2 0.1486 0.1357 0.1630 0.1252
“Skyscraper” x2 0.2794 0.2584 0.3054 0.2441
“Zebras” x2 0.3951 0.3546 0.4410 0.3425
“Bears” x4 0.3085 0.3033 0.3481 0.3024

“Ladybirds” x4 0.1730 0.1688 0.1969 0.1582
“Church” x4 0.1775 0.1649 0.1844 0.1366

Table 3.2: SSIM comparison of the results of our method and the reference methods.
Image Bicubic IBP Freeman et al. Our

“Butterfly” x2 0.9565 0.9637 0.9379 0.9677
“Skyscraper” x2 0.9160 0.9358 0.8898 0.9396
“Zebras” x2 0.9044 0.9340 0.8633 0.9269
“Bears” x4 0.7061 0.7352 0.6612 0.7385

“Ladybirds” x4 0.9287 0.9311 0.9040 0.9365
“Church” x4 0.8962 0.8996 0.8877 0.9311

proposed method and the method from [Glasner 09] are able to produce sharp
edges without jaggy artefacts present in the results of bicubic interpolation and
IBP. Additionally, the proposed method reconstructs the textured area (e.g.,
fur of the koala) somewhat better than [Glasner 09]. For z = 4 (Figs. 3.18
and 3.19), we can see that in the result of [Freeman 00], many additional arte-
facts appear because of using examples from an external database. The same
happens in the result of [HaCohen 10] in Fig. 3.18, although much less because
the database is not general, but specifically selected by the user based on the
image content. The result of [HaCohen 10] is the sharpest for this image, but
the texture appears quite unrealistic. The results of bicubic interpolation, IBP
and the method from [Fattal 07] on both images suffer from blurry and jaggy
edges, while in Fig. 3.19 method from [Glasner 09] produces ringing artefacts.
On the other hand, our method gives sharp and realistic result without any
additional artefacts.

In Tables 3.1 and 3.2, we give quantitative results for a few images
from Berkeley segmentation database13 shown in Fig. 3.20. We performed this
experiment by first downsampling the original images by factor 2 or 4, and
then we used the proposed SR method and the reference methods, namely
bicubic interpolation, IBP and the example-based method from [Freeman 00],
to bring the images back to the original resolution. We calculated the root mean
square error (RMSE), shown in Table 3.1, and the structure similarity index
(SSIM) [Wang 04], shown in Table 3.2, between the image upscaling results

13http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench



3.6 Conclusion 89

and the ground truth on grey-scale versions normalized to zero mean and unit
variance. It can be seen that our method produces for all images the smallest
RMSE (the lower the better), and for all images except the “zebras” image
the highest structure similarity score (the higher the better). The quantitative
improvement is, however, limited, since the improvement is concentrated in
edge regions, which represent a small portion of the whole image. Note also
that the method from [Freeman 00] gives the worst quantitative results due
to artefacts introduced by using an external database. We demonstrate the
qualitative comparison for a small part of the “bears” image in Fig. 3.21. We
can see that the proposed method gives the sharpest result, without jaggy or
ringing artefacts present in the result of IBP, although this advantage is not
so evident from the quantitative comparison. However, none of the methods is
able to reconstruct texture (fur of the bear or waves in the water) because the
input image is too small, only 120×80, and almost all the texture was lost in
the degradation process.

3.6 Conclusion

In this chapter, we introduced the image upscaling problem through basic def-
initions and observation models, which relate HR and LR image in the case of
image upscaling from a single input LR image, and HR image and multiple LR
images in the case of the multi-frame approach. We also defined the image up-
scaling problem from a regularization point of view, since those concepts form
a basis for some of the image upscaling methods. Furthermore, a categorization
and systematic overview of different image upscaling methods were given, with
special emphasis on example-based (patch-based) methods.

The main contribution of this chapter is a novel single-image SR
method based on MRF modelling, making use of concepts and tools studied in
Chapter 2. In the proposed method, unknown HR image was modelled as an
MRF, where the unknown image attributes to be estimated at MRF nodes are
overlapping HR patches. Possible candidate HR patches (i.e., labels) for these
nodes are found within only one level of the Gaussian pyramid of the input
LR image. To choose the best candidate in the MAP sense, we used our pre-
viously developed NCMP inference method (described in Section 2.4), which
makes this step fast and simple. Additionally, we performed IBP and steer-
ing kernel regression to further improve the results. Visual and quantitative
comparison of results (in terms of RMSE and SSIM) shows that our method
greatly outperforms standard techniques, while being visually better or com-
parable with state-of-the-art techniques. This work resulted in one conference
publication [Ružić 11b].

The proposed method was developed as a general-purpose SR algo-
rithm, without making assumptions about camera parameters and the type of
the scene captured by the camera. It was evaluated on natural images, with
resolution ranging from 120×80 to 481×321. Nowadays, there is also the need
to convert images of high resolution to an even higher resolution (e.g., HD to
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4K). Our method could also be used to perform such tasks, with the advan-
tage of having bigger search space at disposal, but at the higher computation
cost. Moreover, it could be used as a pre-processing step for certain computer
vision tasks, e.g., face and licence plate recognition, optical character recog-
nition of text documents, etc. (see also Section 3.1.1). However, in order for
the results to be competitive with SR algorithms that are especially developed
for these types of problems, we should incorporate specifics of these problems
into the algorithm, e.g., in the form of prior knowledge. Finally, the above
mentioned computer vision tasks could also be used to evaluate and compare
the results of different methods, i.e., one could evaluate how much an SR algo-
rithm improves feature detection or recognition. This type of evaluation was
not performed within this research, but it represents a possible direction for
future research.

The potentials of patch-based approaches that we witnessed while
exploring SR application gave us the motivation to further pursue patch-based
methods in other applications.



4
Context-aware patch-based

image inpainting

Digital image inpainting, or image completion, is an image processing task
of filling in the missing or damaged region in a digital image in a visually
plausible way. In order to solve this problem, usually the available data, which
lies outside the region to be inpainted, is used. Image inpainting has become
an active research field in image processing due to its broad area of applications
in image and video restoration and editing.

We begin this chapter by introducing the problem of image inpainting
in Section 4.1. Next, we give an overview of inpainting methods, which can be
categorized into geometry-based (Section 4.2) and patch-based (Section 4.3).
Patch-based methods, being the focus of this thesis, are visited more in-depth,
and we classify them according to the type of patch selection, patch search and
patch priority they employ. Two most important contributions of this chapter
are: 1) a novel strategy for context-aware patch selection (Section 4.4), which
can be used with any patch-based inpainting method, and 2) a novel inpainting
method (Section 4.5), which uses the proposed context-aware approach. The
idea of the proposed approach is to employ contextual (textural) descriptors of
image regions to guide and improve the inpainting process.

4.1 Introduction

The term inpainting is related to artwork restoration, which dates all the way
back to renaissance times, when medieval artwork was retouched or inpainted
in order to bring the painting “up-to-date” or to fill in the gaps [Walden 85].
This practice naturally extended from paintings to photography and film, with
the purpose to, e.g., remove cracks, dust and scratches or add/remove elements
or objects by “airbrushing” [King 97].

This kind of inpainting refers to physical altering of a painting or
a photograph. Nowadays, image inpainting is performed digitally on digital
images. Digital image inpainting (or simply image inpainting) covers a wide
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range of applications, such as

• image restoration (e.g., scratch removal),

• photo-editing (e.g., object or text removal),

• recovery of missing blocks in image and video transmission,

• virtual restoration of digitized paintings (crack removal),

• virtual view synthesis for 3D video (disocclusion), etc.

Image inpainting is related to texture synthesis [Efros 99], in the sense that
texture synthesis also introduces some new content to the image that was not
present before. However, image inpainting is a more demanding task due to
the variety of textures that are present in the known (undamaged) part of the
image and that need to be replicated inside the missing region. Furthermore,
there are also linear structures, i.e., object contours and borders, that need to
be considered. Therefore, texture synthesis is typically just one part of the
image inpainting technique.

Some image inpainting methods also incorporate automatic detection
of damaged regions, e.g., scratches in film [Kokaram 95b] and cracks in digitized
paintings [Cornelis 13]. However, the vast majority of techniques consider
the missing or damaged region to be known beforehand, either through user
interaction or above mentioned automatic detection.

Despite the huge variety of inpainting methods, they are all based
on the same methodology, which is derived from the way conservators perform
physical inpainting on actual paintings. The methodology of conservators is
the following [Bertalmio 00]:

1. The content of the whole image dictates how to fill in the missing region
(the “hole”), since the goal of inpainting is to restore the unity of the
work.

2. The structure of the area surrounding the missing region is continued
inside the hole, by drawing the contour lines as prolongation of those
arriving at the border of the hole.

3. Different areas inside the missing region, defined by the continued contour
lines, are filled with colour in accordance with the colour at the border
of the missing region.

4. The small details are painted, i.e., the texture is added.

Different digital inpainting methods attempt to perform some or all of these
steps in order to yield a visually plausible inpainted image. Among many differ-
ent image inpainting techniques, two categories can be distinguished: geometry-
based and patch-based. Big part of this chapter contains the overview of these
methods, with the emphasis on patch-based methods. The exact location and
the extent of the missing region is assumed to be known (or determined by
another method).



4.2 Geometry-based methods 93

4.2 Geometry-based methods

Geometry-based methods, e.g., [Bertalmio 00, Shen 03, Ballester 01,
Tschumperlé 06], fill in the missing region by smoothly propagating image con-
tent from the boundary to the interior of the missing region. The focus of these
methods is on propagating linear structures by continuing lines that arrive at
the border of the missing region inside the hole (step 2 of the methodology from
Section 4.1). Hence the name geometry-based inpainting [Bertalmio 06]. In lit-
erature, this group of methods is most often referred to as diffusion- or partial
differential equations (PDE)-based. We find that these terms do not describe
well this wide group of methods and that they represent just its sub-categories,
as will be explained shortly.

Geometric inpainting stems from the psychophysical analysis of hu-
man vision [Kanizsa 79], where it was noted that continuation of object bound-
aries plays a crucial role in the process of missing region recovery (the so-called
“amodal completion”). The continuation process should be as smooth as possi-
ble, i.e., smooth completion curves are preferred to abrupt changes of direction.
Based on this observation, Nitzeberg et al. proposed a disocclusion algorithm
for the purpose of image segmentation and depth estimation in [Nitzberg 93].
Their idea was to detect edges and T-junctions (points where edges form a “T”),
and then connect T-junctions at approximately the same grey level with a new
edge of minimum length and curvature. This was achieved by a variational
process, in particular by minimizing an energy functional called Euler’s elas-
tica [Mumford 94]. However, the algorithm was not suitable for natural images
and it was based on the detection of edges, which is insufficiently reliable and
precise. Nevertheless, this approach is considered to be a pioneering work in the
recovery of plane image geometry, from which two categories of geometry-based
inpainting algorithms evolved: variational and PDE-based approaches.1

Variational approaches are related to the Bayesian framework, in
the sense that the way of inpainting an image depends on the existing part of
the image (the data model) and prior knowledge about the type of the image
(described by the prior model). The choice of the prior model is crucial for the
success of the algorithm. The prior model should be general, i.e., independent
of a specific object class, but it should comply with geometric regularities of
the object [Shen 03]. Some models that were used for variational inpainting are
total variation (TV) model [Rudin 92,Shen 02], joint vector-field and grey-value
model [Ballester 01], Mumford-Shah(-Euler) model [Mumford 89,Esedoglu 02],
and already mentioned Euler’s elastica model [Mumford 94,Masnou 98,Mas-
nou 02,Shen 03].

The work of Masnou and Morel [Masnou 98,Masnou 02] was the first
variational approach for inpainting, which extended the ideas from [Nitzberg 93]
to disocclusion in natural images. They proposed to use level (isophote) lines,
i.e., the lines of equal grey values, because they give a reliable, complete and
contrast-invariant representation of an image [Masnou 98]. The idea is to fill

1For this reason, we restrain from naming the whole group of methods PDE-based.
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Figure 4.1: Illustration of possible connections between pairs of isophotes inside the
occlusion (figure taken from [Masnou 98]).

in the missing region by joining with geodesic curves the points of isophotes
arriving at the missing region’s boundary (see Fig. 4.1). However, the model
could only recover straight lines and its practical implementation via dynamic
programming was limited to the application on images with a specific topology
of the missing region. In particular, the missing region cannot contain a hole
and its boundary cannot contain any self-crossings.

Other variational approaches do not have the limitation to specific
topology due to the numerical PDEs used to minimize the energy functional.
They differ in complexity, contrast-invariance, the ability to recover curvy lines
(the so-called principle of good continuation [Bertalmio 06], achieved by equa-
tions of at least third-order [Bertalmio 01]), and the ability to connect widely
separated parts of one object (the so-called connectivity principle [Shen 03]).
For example, the method in [Shen 03] can recover curvy level lines and is
contrast-invariant, but due to the high order (fourth) of the model, the stabil-
ity and convergence speed can become an issue. The method in [Shen 02] and
Mumford-Shah model in [Esedoglu 02] are simple (second-order), but they can
only recover straight or polygonal lines and they are unable to fill in bigger miss-
ing regions. The Mumford-Shah-Euler model in [Esedoglu 02] improves on this
behaviour at the expense of higher complexity. The method in [Ballester 01]
seems to be the most promising, in the sense of reconciling the demands for
low complexity and the ability to recover arbitrarily-shaped lines regardless
of the size of the missing region (to some respect, see [Bertalmio 06]). How-
ever, it is not contrast-invariant, although this characteristic is imposed in the
implementation.

PDE-based methods directly introduce PDEs to perform inpaint-
ing, but, unlike in variational methods, these PDEs do not minimize any known
functional. The first PDE method was introduced in [Bertalmio 00], which uses
edge propagation to smoothly extend isophotes arriving at the border of the
missing region, thus it involves a propagation process. In [Bertalmio 01], the
connection between this PDE and classical fluid dynamics was shown. Further-
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more, in [Bertalmio 00,Chan 01a], it was recognized that, although propagation
process allows grey-scale information to propagate inside the missing region,
still the diffusion process is necessary to stabilize the propagation and reg-
ularize the geometry of the isophotes.2 In [Bertalmio 00], this was achieved
with intermediate steps of anisotropic diffusion [Perona 90]. Some PDE-based
methods employ only the diffusion process, e.g., [Chan 01b, Tschumperlé 00,
Tschumperlé 06], while some attempt to model the combination of propagation
and diffusion processes, e.g., [Bertalmio 01, Chan 01a]. On the other hand,
the method in [Bertalmio 06] views the inpainting problem as a particular
case of image interpolation and derives the third-order PDE. Like in varia-
tional approaches, the success of these methods is measured based on their
contrast-invariance [Chan 01a,Chan 01b,Bertalmio 06], principle of good con-
tinuation [Bertalmio 00, Bertalmio 01, Bertalmio 06], and connectivity princi-
ple [Chan 01b,Bertalmio 06].

Geometric inpainting yields good results when inpainting long thin
regions, e.g., in the application of scratch and text removal. However, they fail
to replicate big textured areas and, in general, introduce blur when filling in
larger holes. The inability of texture replication is due to the application of
PDEs, which model a geometric process and thus allow the recovery of object
contours using geometric information. On the other hand, no assumptions are
made about statistics of pixel intensities, which would enable texture recovery,
as in texture synthesis application [Efros 99]. Therefore, a solution for good re-
covery of both structure and texture in the missing region would be to combine
geometric inpainting and texture synthesis, as in, e.g., [Bertalmio 03,Drori 03].
Furthermore, all the patch-based methods, which will be reviewed in the fol-
lowing section, also attempt to achieve this goal.

4.3 Overview of patch-based inpainting methods
Patch-based inpainting methods, in general, fill in the missing region patch-
by-patch by searching for well-matching replacement patches (i.e., candidate
patches) in the available part of the image and copying them to corresponding
locations (see Fig. 4.2). Since candidate patches can originate from all over
the image, this process is non-local. Some methods, e.g., [Jia 03,Wexler 07,
Bugeau 10,He 12], deviate from this general paradigm in the sense that they
recover the missing region pixel-by-pixel, but they still search for well-matching
patches to find the candidate pixels.

The general idea of patch-based methods originates from patch-based
texture synthesis [Efros 99, Efros 01,Wei 00, Kwatra 03]. Texture synthesis
alone is, however, insufficient for satisfactory inpainting result, so patch-based
inpainting methods also pay attention to structure propagation by defining the
filling order [Criminisi 04, Komodakis 07, Fang 09, Xu 10, Le Meur 11], using
the human intervention [Sun 05], or decomposing the image into structure and

2Because we consider diffusion process as one of the necessary components for geometric
inpainting, we do not name the whole group of methods diffusion-based to avoid confusion.
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Figure 4.2: Schematic representation of the basic idea behind patch-based inpainting
methods.

Figure 4.3: Comparison of geometry-based and patch-based method for inpainting
big missing region. From left to right: original image with missing region marked in
black, inpainting result of the geometry-based method from [Tschumperlé 06], and
inpainting result of the patch-based method from [Criminisi 04].

texture components [Bertalmio 03,Drori 03, Voronin 12]. This reasoning can
be summarized into two main observations of patch-based inpainting [Crim-
inisi 04]: 1) patch-based synthesis is sufficient for both texture and structure
replication, and 2) filling order of the missing region is crucial for the success of
the algorithm. Compared to geometry-based methods, patch-based methods
produce better results, especially when inpainting large missing regions (see
Fig. 4.3 for comparison).

We identify three main components of patch-based methods:

• Patch selection deals with the problem of selecting candidate patches
from the known region, in the sense whether to choose one or multiple
matches among all the available patches and based on which information.

• Patch search defines how to perform the search for candidate patches
across the known region. For example, a naive approach would be to
search among all possible patches in the known region, although more
sophisticated ways can be explored.
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• Filling order of the missing region can be defined based on different
image features.

We will classify patch-based methods according to the patch-selection process
they employ in Section 4.3.1, and then we will identify sub-categories based on
patch search (Section 4.3.2) and filling order (Section 4.3.3).

4.3.1 Patch selection
Based on patch selection, patch-based methods can be categorized into
“greedy” [Drori 03, Criminisi 04, Cheng 05, Fang 09, Anupam 10, Ružić 11a,
Ružić 12a], multiple-candidate [Wong 08,Shen 09,Xu 10,Le Meur 11,Voronin 11,
Le Meur 12], and global [Sun 05,Komodakis 07,Wexler 07,Huang 07,Yang 09,
Bugeau 10, Ružić 12b]. Greedy methods choose only one best match (called
the source patch) for each patch to be filled (called the target patch),
and use this source patch as such to replace the missing pixels. Multiple-
candidate methods, on the other hand, choose multiple candidate patches, as
the name implies, and the final patch represents either their weighted aver-
age [Wong 08, Le Meur 11, Voronin 11, Le Meur 12] or their sparse combi-
nation [Shen 09, Xu 10]. In general, for both greedy and multiple-candidate
methods the matching is performed based on the known pixels of the target
patch (see Fig. 4.2), within an iterative process that gradually completes the
missing region. However, this matching based on the known part of the target
patch can be ambiguous, in the sense that the found match will correspond
to that known part, but that does not necessarily mean it is well suited for
the missing part. Thus, it would be beneficial to include wider neighbourhood
into the patch-selection process. Global methods attempt to achieve this by
defining inpainting as a global optimization problem. They allow the choice
of multiple candidates, which is here made based on the known pixels of the
target patch, but also based on the neighbouring information. Eventually, one
of these candidates is chosen for each position so that the whole set of patches
(at all positions) minimizes a global optimization function.

The matching criterion for choosing the candidate patch (or patches)
is usually the sum of squared differences (SSD) between the known pixels in
the target patch and the corresponding pixels in the candidate patch, unless
stated otherwise.

4.3.1.1 Greedy methods

The basic idea of greedy methods is the following: for each patch at the border
of the missing region (i.e., the target patch), find only its best-matching patch
from the known (source) region (source patch) and replace the missing pixels
with the corresponding pixels from that match, until there are no more missing
pixels (see Fig. 4.2). In this way, both texture and structure are replicated.
Preserving structures is achieved by defining the filling order. Priority should
be given to the target patches that contain object boundaries and less missing
pixels.
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The best known method from this group was proposed by Criminisi
et al. [Criminisi 04], and it is considered as a seminal work for patch-based
inpainting in general. This algorithm defines priority as a combination of the
amount of reliable information within the target patch (called the confidence
term) and the strength of isophote lines hitting the border of the missing re-
gion (called the data term). Furthermore, patch search is performed in an
exhaustive manner, meaning that all possible patches from the source region
are considered. The method in [Anupam 10] represents a fast and improved
version of the algorithm in [Criminisi 04]. The improvement is achieved by
performing a limited search for patches (discussed later in Section 4.3.2) and
defining priority using a different combination of essentially the same features
(Section 4.3.3).

The approach of [Fang 09] greatly accelerates the computation by us-
ing a multi-resolution approach, a limited patch search, a trained database of
patches, and only a thin border of the patch for matching (the so-called O-shape
pattern). The Euclidean distance is used as the matching criterion. Interesting
property of this algorithm is the trained database, which is formed by taking
O-shape patterns of all the possible candidate patches from all resolution levels
of the input image (except original level), on which principal component anal-
ysis (PCA) [Jolliffe 02] is applied to reduce the dimensionality of each pattern.
Then each patch is represented by a weight vector of reduced dimensionality,
obtained by projecting its O-shape pattern onto this PCA eigenspace. Addi-
tionally, weight vectors are clustered using vector quantization, which speeds
up the search process. During the image completion process, the input im-
age is inpainted from low to high resolution, using the lower resolution for
initialization. This method offers an alternative priority definition (discussed
later in Section 4.3.3), which is additionally used to discriminate between non-
directional and directional search for the best-matching patch, as an alternative
to exhaustive search (Section 4.3.2). This method is greedy from the point of
few of patch selection, but it introduces some interesting concepts that speed
up the patch search and improve the priority definition. However, it is rather
complicated and inconsistent, in the sense that almost each resolution level
requires different synthesis process.

Instead of enforcing the continuation of image structures by defining
the filling order, image segmentation could be used to recognize these structures
as partitioning curves between the segments. These can then be extrapolated
inside the missing region. Another advantage of using segmentation would be
to constrain the patch search to each of the segments, depending to which
segment the target patch belongs (see also step 3 of inpainting methodology
in Section 4.1). One such method is proposed in [Jia 03], where tensor vot-
ing [Medioni 00] is used for both curve extrapolation and inpainting. Tensor
voting is a non-iterative method that addresses the problem of structure in-
ference from sparse data. In order to infer the value of the missing pixel, the
texture and colour information in the neighbourhood around each pixel is de-
scribed by an adaptive N -dimensional tensor. This tensor actually represents
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Figure 4.4: Schematic presentation of SR-based inpainting from [Le Meur 12].

a vectorized patch (assuming raster-scan order) centred at each pixel, where
N determines the size of that patch. Then tensor voting is a patch matching
operation, where the pixel whose tensor is the best match of the missing pixel’s
tensor is used to replace the missing pixel. Therefore, the method is greedy.
Note that the missing region is filled pixel-by-pixel, but we still consider this
method as patch-based, because eventually the surrounding patch (via ND
tensor) is used for finding the candidate.

The main problem of greedy methods is that the selection of the can-
didate patch is based only on the known part of the target patch and hence
ignoring the context, as we discussed earlier at the beginning of Section 4.3.1.
This problem is further aggravated by choosing only one candidate patch (the
best match) for each target patch (or pixel), which may be quite limiting. As a
consequence, greedy methods are prone to errors, which then tend to propagate
inside the missing region, causing visually inconsistent results. Constraining
the patch search to segments, as in [Jia 03], could improve on this behaviour,
because in this way the patch-selection process is guided based on some ad-
ditional information, which is not limited to the small patch only. However,
segmentation by itself is a difficult task and if not done properly it can lead to
further deterioration of the result.

4.3.1.2 Multiple-candidate methods

Multiple-candidate methods aim at improving on some aspects of greedy meth-
ods by choosing multiple candidates for each target patch. They can be divided
into weighted-average and sparsity-based methods, depending on how these can-
didates are combined to produce the final replacement for the missing part of
the target patch.

Weighted-average-based methods typically choose several most
similar source patches of each target patch as multiple candidates, and, as the



100 Context-aware patch-based image inpainting

name says, replace each missing pixel in the target patch with a weighted aver-
age of corresponding candidate pixels. The method from [Wong 08] introduces
this concept as a straightforward extension of the algorithm from [Criminisi 04]
in the non-local (NL) means fashion [Buades 05]. This means that the weights
of the K most similar source patches are computed as an exponential func-
tion of their similarity with the target patch. However, the improvement in
the quality of the result compared with [Criminisi 04] is very small. Further-
more, the number of candidates is fixed and it remains the same for all target
patches, which may introduce blur for textured patches. A solution to this
problem, proposed in [Voronin 11,Le Meur 11,Le Meur 12], is to locally adapt
this number by choosing the candidates that yield similarity within some range
of the similarity of the best-matching candidate. Additionally, the method
in [Voronin 11] proposes to use adaptive patch size and shape and increase
the patch-search space by rotating original source patches, which additionally
increases the computation time. The method from [Le Meur 11] introduces a
novel priority definition (Section 4.3.3) and the directional patch search (Sec-
tion 4.3.2).

The method from [Le Meur 12] combines several properties of differ-
ent image inpainting methods to first inpaint the image at the low resolution
(LR), which is easier and computationally less demanding. Then this result is
used to recover the image at high (original) resolution (HR) by using ideas from
single-image super-resolution (SR) methods [Glasner 09] (see Section 3.2.5),
which we also explored in our SR method proposed in Section 3.4. In particu-
lar, a dictionary is built from pairs of LR/HR patches (taken from available LR
and HR data, respectively) and the HR image is inpainted by visiting the HR
target patches according to the filling order, finding multiple candidate patches
of its LR counterpart within the database, and then filling the missing pixels in
the HR patch with the weighted average of the HR pairs of the LR candidates
(see Fig. 4.4 for graphical representation). Weights are calculated based on the
similarity of both LR patches and known parts of HR patches.

Sparsity-based methods [Shen 09,Xu 10] view image inpainting as
a problem of sequential incomplete signal recovery under the assumption that
the target patch can be represented as a sparse linear combination of candidate
patches (see [Rubinstein 10] for an overview of sparse-modelling methods). The
method from [Shen 09] is also an extension of [Criminisi 04], but now the target
patch is viewed as an incomplete signal, which admits a sparse combination over
candidate patches. Candidate patches are either all possible source patches or
some directly sampled subset, which in the end form a redundant dictionary.
Then based on the known part of the target patch, sparse coefficients can be
estimated and used to recover the missing part of the target patch as a sparse
linear combination of dictionary elements. The method in [Xu 10] elaborates
further on this approach, by proposing a novel constrained optimization algo-
rithm that derives sparse linear combination coefficients for several most similar
candidates. The introduced constraint, called local patch consistency, enforces
that the recovered part of the target patch is similar to the corresponding pix-
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els of its neighbouring patches. Additionally, the novel priority definition is
introduced (Section 4.3.3).

Note that sparse representations were also used for inpainting
in [Elad 05, Guleryuz 06a, Guleryuz 06b, Fadili 09], but we do not consider
these methods as patch-based. Moreover, they were mostly used in applica-
tions where missing regions are small (e.g., long thin regions or small missing
blocks), or where missing pixels are randomly distributed across the image. As
noted in [Xu 10], these methods have similar behaviour like geometry-based
methods, in the sense that they may fail to recover structure and texture and
may introduce blur when filling in larger holes.

Multiple-candidate methods, in general, represent an improvement
over the greedy methods. However, better results can be a consequence of im-
proving other components of the algorithm, i.e., priority definition and patch
search. Furthermore, for most multiple-candidate methods, the main problem
of selecting patches based on the known part of a small target patch remains.
The steps towards its solution are taken in [Le Meur 12], by using the inpainted
LR image to guide the inpainting of the HR image, and in [Xu 10], by enforcing
local patch consistency. However, in [Le Meur 12], inpainting of the LR image
still suffers from the above mentioned problem, and the errors that could arise
would propagate to the higher resolution level. On the other hand, in [Xu 10],
local patch consistency is considered only during the sparse reconstruction step,
after multiple candidates have already been chosen based only on the known
pixels of the target patch. Between weighted-average and sparsity-based ap-
proaches, the latter group may be advantageous because it is less prone to the
introduction of blur.

4.3.1.3 Global methods

Global methods treat inpainting as a global optimization problem. There are
two advantages to this approach: 1) multiple candidates (called labels) are
chosen for each location in the target region, and 2) they are selected based on
both the known part of the target patch and the neighbouring information and
combined within a global optimization function. In this way, a wider context
is considered when inferring the missing information in the image.

Such a global approach can be applied to recover only the image struc-
tures (curves), which should be preserved by the inpainting process. The idea
of this approach is similar to the one of segmentation-based inpainting [Jia 03]:
to continue the curves inside the missing region, while the rest of the miss-
ing region is divided by the curves into sub-regions (or segments), which are
individually filled patch-by-patch by using only candidate patches from the sub-
region of the current target patch (see also Section 4.3.1.1). However, instead
of extrapolating partitioning curves obtained by segmentation using tensor vot-
ing as in [Jia 03], a graph can be constructed along the user-specified curves,
as proposed in [Sun 05] (see Fig. 4.5 for graphical representation). The graph
consists of nodes, which are positioned on the curves. Each node is to be as-
signed one of the labels, which are the patches positioned in the narrow band
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Figure 4.5: Schematic presentation of the method from [Sun 05] (see text for details).
The dark grey area is the missing region and the black curves are provided by a user.
The target patch (or unknown patch centred at the node if it lies on the curve) and
its possible corresponding source patch (or label) are of the same pattern. Note that
if the target patch belongs to some sub-region, its source patch will be from the same
sub-region (e.g., patches with diagonal lines in sub-region 2 and patches with waves
in sub-region 4). Also note that labels of the node, which is positioned on the curve,
lie along that same curve (e.g., patches with dots, vertical and horizontal lines).

along the corresponding specified curve in the source region (e.g., patches with
dots, vertical and horizontal lines in Fig. 4.5). Patches assigned to neighbour-
ing nodes overlap. The energy function is then defined in order to enforce the
agreement of the known part at the node with its labels (called the label cost
term) and the agreement between labels of neighbouring nodes in the region
of overlap (called the consistency or coherence term), where agreement is mea-
sured in terms of SSD. Additionally, structure similarity between a node and its
labels is enforced in order to ensure better continuation of curves. The energy
is minimized using the belief propagation (BP) algorithm [Pearl 88] (see also
Section 2.3.5 for loopy version of the algorithm) in order to obtain the labelling
of the graph. This method does a good job in preserving structures and it
eliminates the need for segmentation, but it relies heavily on user interaction.

Global optimization can also be used for inpainting of the whole miss-
ing region by modelling global image context with an MRF (see Section 2.2). In
that case, an MRF is defined over a graph consisting of nodes, which represent
central positions of overlapping square masks that intersect the target region.
Each node has a set of labels, which are all possible patches completely inside
the source region. Methods that apply this approach, the so-called MRF-based
inpainting methods in [Komodakis 07,Huang 07,Yang 09], mainly differ in the
form of the global energy function of the MRF. In [Komodakis 07], this func-
tion consists of the label cost and consistency terms, as in [Sun 05], but no
structure similarity is considered. This objective function is then optimized
with a smart algorithm based on BP, called priority BP (p-BP), whose main
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in the output image. This information is not used in any way in the
original algorithm; the search process starts from scratch at each
new pixel, ensuring that the best available choice is made. However,
it is reasonable to assume that pixels from the input sample that are
appropriately “forward-shifted” with respect to pixels already used
in synthesis are well-suited to fill in the current pixel (see Figure 4).
For example, if a pixel two rows above and one column to the right
of current position was taken from position (x=37, y=15) in the
input sample, the new candidate is pixel (x=36,y=17) in the input
sample. We use only pixels in input sample with neighborhoods
completely inside the image as valid candidates. If the candidate
is outside this valid region, we will replace it with a random valid
position.

This approach tends to grow patches starting from some position
in the input sample and continuing down in y direction to the bot-
tom of the image (see Figure 5). A short horizontal edge which may
appear at the boundary of such a patch if the synthesis process runs
into the bottom of the input image. Such edges are usually well
masked and do not present substantial visual artifacts. However,
this might lead to a problem if there is a recognizable feature near
the bottom of the input texture because it will appear in the output
image more often than it should. Strictly speaking, such an input
sample violates one of the underlying assumption of the method:
stationarity of the texture. However, if necessary, we can artifi-
cially decrease the percentage of output pixels being taken from the
bottom part of the input sample by replacing a candidate from near
the bottom with a random valid candidate with probability related
to the normalized distance   !  ! to the lowest row of the
valid region in the input sample. The condition  !"# " ! for
such replacement (where  !"# is a random variable uniformly dis-
tributed on " # !# ) works well in our test cases but frequent calls
to the random number generator degrade the performance of the
algorithm. In addition, the regions grown by the algorithm are nat-
urally smaller in this case and since copying relatively large input
image pieces is what we rely upon, the quality is also somewhat
lower. We have not done extensive investigation of this issue since
for most images (all images in this paper, for example) this tech-
nique is not necessary and no artificial constrains were put on the
synthesis process.

An array is used to store input sample locations from which al-
ready assigned pixel were taken. The array is initialized to random
valid positions before synthesis begins. Using this array, we create
a list of candidates for each pixel to be synthesized and choose the
best match among these candidates by comparing their neighbor-
hoods in the input sample against the current one in the output.

The length of this candidate list could be a user specified param-
eter but we have found that a fixed number of candidates generated
only by pixels from the L-shaped causal neighborhood works well
in practice. This is justified by initial intuition that the size of the
neighborhood corresponds to the size of the largest texture feature
and outside this region the texture to large extend repeats itself (for
more discussion of the neighborhood size see Section 5). In prac-
tice, however, this short list is often even shorter since our algorithm
encourages copying of relatively large regions and the candidates
generated by several different pixels in the L-shaped neighborhood
can really be the same pixel in the input sample (Figure 4). Since
comparing two neighborhoods is an expensive operation performed
in the inner loop, it is worth the effort to remove the duplicates from
the candidate list.

Our method can be extended in a straightforward way to create
a multiresolution synthesis algorithm similar to the one described
by Wei and Levoy. Using the multiresolution extension is impor-
tant, for example, if the method is to be used for constrained tex-
ture synthesis as described in Section 5.1 of [16]. Otherwise it is
of limited value in our method. We have implemented a multires-
olution version of our algorithm and confirmed Wei and Levoy’s
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Figure 4: Candidate pixels for our algorithm. Each pixel in the cur-
rent L-shaped neighborhood generates a “shifted” candidate pixel
(black) according to its original position (hatched) in the input tex-
ture. The best pixel is chosen among these candidates only. Several
different pixels in the current neighborhood can generate the same
candidate.

Figure 5: Region-growing nature of the algorithm. Boundaries of
texture pieces are marked white on the right. The input sample and
WL result for this texture are shown on figure 3

Figure 4.6: Imposing coherence in pixel-by-pixel texture synthesis algorithm (figure
taken from [Ashikhmin 01]). Each pixel in the current causal neighbourhood is used
for finding candidates for the current missing pixel. This is achieved by memorizing
the positions of their source pixels in the input image (striped squares) and shifting
them within the causal neighbourhood (black squares) so to correspond to the relative
position of the current missing pixel.

purpose is to limit the number of labels of each node in a meaningful way.3
The method from [Huang 07] combines the confidence term from [Criminisi 04]
(see also Section 4.3.1.1) with the label cost and consistency terms. Moreover,
structure propagation is achieved by adding a component to the consistency
term that enforces the gradients of labels of neighbouring nodes to agree in the
region of overlap. The method employs coarse-to-fine BP for optimization in-
stead of p-BP, which is another way of reducing the number of labels. Finally,
the method from [Yang 09] proposes an extension of p-BP to include structural
information.

A quite different global approach, which does not employ MRF mod-
elling, is to define some global objective function over all missing pixels, whose
optimization produces an inpainted image. For example, in [Bugeau 10], this
is achieved by minimizing an energy function over the correspondence map,
which identifies for each missing pixel in the target region the location of the
pixel in the source region from which the pixel value is copied. The energy is
defined as a combination of three terms: 1) self-similarity, which enforces the
similarity of patches centred at the target and source pixel, 2) diffusion and
propagation, which are in charge of the continuation of edges, and 3) coher-
ence, which favours that nearby corresponding points are assigned to nearby
target pixels. This third term is motivated by the texture synthesis algorithm

3This method will be visited in more detail in Section 5.1.
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from [Ashikhmin 01] (see graphical representation in Fig. 4.6). Since all three
energy terms are defined as a function of the patch centred at the pixel, the
method is patch-based. An interesting property of the method is the match-
ing criterion, defined as the combination of SSD and histogram similarity be-
tween the patches. It is based on the observation that SSD alone is unable
to distinguish well between smooth and textured patches. On the other hand,
in [Wexler 07], a global coherence measure is proposed, which enforces that
all matching patches of a patch containing a missing pixel agree on its value.
Both of the aforementioned methods practically perform local optimization of
the objective function for each pixel separately within an iterative process, ap-
plied at each level of the multi-resolution pyramid to speed up the convergence.
The method in [Wexler 07] was developed for space-time video completion and
it was later generalized for image re-targeting/re-shuffling [Simakov 08]. Al-
though the original method is very slow and very sensitive to initialization and
the optimization strategy, it is employed together with the fast patch-search
method called PatchMatch [Barnes 09] (see later Section 4.3.2) within Adobe
Photoshop’s CS5 Content Aware Fill, which works well from the point of view
of both quality and speed.

Finally, a very recent, advanced method from [He 12], treats im-
age inpainting as a photomontage problem [Agarwala 04], meaning that the
missing region is filled by combining a stack of shifted images. This is
achieved by defining an MRF, which is optimized via multi-label graph-cut
technique [Boykov 01b] (see also Section 2.3.4). MRF nodes are all the pixels
in the target region and their labels are represented as pre-selected offsets, i.e.,
relative shifts compared to the location of the node. These offsets (shifts) are
estimated by analysing the statistics of patch offsets, which investigates what
are the most likely correspondences of the locations of similar patches within
the known image region. This statistics enables one to limit the label set and
guide the inpainting process (see Section 4.3.2). This method gives very good
results on a variety of natural images, regardless of the size of the missing re-
gion, and it appears to be robust to the patch size. Furthermore, the reported
computation time is quite low compared to the other inpainting algorithms
(even compared to the Content Aware Fill of Adobe Photoshop), e.g., under
1s for images as big as 1600×1200 pixels. However, the method may run into
failure when the desired offsets do not form a dominant statistics, i.e., there is
insufficient number of similar patches.

4.3.2 Patch search
Many patch-based methods introduced so far, like the methods in [Crimin-
isi 04,Komodakis 07,Wexler 07,Wong 08,Yang 09,Shen 09,Xu 10,Bugeau 10,
Voronin 11], perform an exhaustive search for candidate patches across the
whole source region of the image. This means that matching is performed for
all possible source patches from the source region, which is evidently time-
consuming. Some methods, e.g., in [Wexler 07], apply approximate nearest-
neighbour (ANN) search [Arya 93] for faster implementation. However, this



4.3 Overview of patch-based inpainting methods 105

may produce inaccurate matching result and can only be applied if the known
part of the target patch is of the same size and shape and on the same posi-
tion within the patch across all target patches. Moreover, exhaustive search
may increase the possibility of finding a wrong match, due to the ambiguity
of the known part of the target patch (see discussion at the beginning of Sec-
tion 4.3.1). For global methods, exhaustive search would mean that all possible
patches from the source region are considered as labels. This additionally ag-
gravates the problem because the optimization of the global function becomes
intractable.

Rather than performing exhaustive search throughout the whole in-
painting process, one can employ it only in the first stages of the algorithm.
The purpose is to limit the number of possible matches in subsequent stages
based on the initial matches obtained by exhaustive search. For example, global
methods [Komodakis 07,Yang 09], as mentioned before in Section 4.3.1.3, use
a special optimization algorithm, p-BP, where the nodes are visited in some
meaningful order and their unnecessary labels are discarded based on the avail-
able information at the node. This label pruning enables the definition of a
computationally tractable MRF. However, prior to label pruning, all possi-
ble labels for each node are considered, making the algorithms still computa-
tionally demanding. On the other hand, the method in [Wexler 07] employs
ANN search [Arya 93] only at the lowest resolution level, and locations of
the matches are propagated to higher resolution levels. Finally, the method
from [Bugeau 10] performs exhaustive search only in the first iteration of the
algorithm, and the found K most similar patches for a patch surrounding each
pixel are used as candidates in subsequent iterations.

Another solution for decreasing the computation time is to only
search in a local window surrounding the target patch [Anupam 10,Le Meur 12],
based on the observation that similar patches can be found in the immediate
vicinity of the target patch. However, note that the source region remains
fixed throughout the inpainting process. This means that as inpainting pro-
ceeds from the border to the center of the missing region, the number of source
patches in the local window becomes smaller. Therefore, the local window be-
comes less reliable as a source for similar patches. Furthermore, it is difficult to
determine the optimal size of this window (most likely it should be variable).
Another problem is that local neighbourhood search is prone to the so-called
“garbage growing” [Efros 99], in the sense that the search gets stuck at one
place in the source region producing copies of one source patch for multiple
locations in the missing region. The solution could be to exploit coherence,
that naturally exists in images, as originally proposed in [Ashikhmin 01] (see
Fig. 4.6).

In fact, this coherence has been applied in several inpainting methods,
e.g., in [Bugeau 10, Le Meur 12], as well as in the fast approximate nearest-
neighbour search method called PatchMatch [Barnes 09]. The idea of Patch-
Match is to start from some initialization of the matches (specifically their
offsets) for each patch, which can be chosen randomly or based on prior infor-
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mation. Initialization is followed by an iterative procedure consisting of two
steps: propagation and random search. Propagation uses coherence to improve
the match by looking at matches of adjacent patches, while random search
improves the solution by testing candidates taken randomly from concentric
neighbourhoods of the current estimate. The method was demonstrated in ap-
plications such as image re-targeting, inpainting and re-shuffling, and in fact,
it is used in PhotoShop’s inpainting tool (as mentioned before).

Directional search can also be used to constrain the search for patches
in a meaningful way. The idea is to perform the patch search for patches
positioned on the prominent image structures in areas along those structures
in the known region, as proposed in [Jia 03,Sun 05,Fang 09,Le Meur 11]. In this
way, better structure propagation is enforced. The location and direction of
these structures can be obtained from the user, who specifies the curves [Sun 05]
(see also Section 4.3.1.3 and Fig. 4.5), or from extrapolated partitioning curves
of the result of automatic image segmentation [Jia 03]. Since in this way
the structures are fully specified also within the missing region, they can be
used to determine the sub-regions to which the patch search is additionally
constrained, depending to which sub-region a target patch belongs. Another
approach of determining the position of image structures is to examine the
presence and strength of an edge within the target patch based on some image
features [Fang 09, Le Meur 11]. Then, if there is a strong edge, the search is
performed along that e.g., [Fang 09] or the candidates in the edge direction are
favoured [Le Meur 11].

Another way of avoiding exhaustive search, and thus reducing consid-
erably computation time, is to employ cluster-based search [Fang 09,Huang 07].
This approach requires that all the possible candidate patches are grouped into
several clusters. In order to find the best-matching source patch of a target
patch, first the best-matching cluster center is identified, and then the search is
performed exhaustively among the candidate patches within the corresponding
cluster. This approach is applied, e.g., in [Fang 09] (see also Section 4.3.1.1),
where a trained database, organized in clusters of weight vectors, is searched for
the best-matching weight vector of the weight vector corresponding to the tar-
get patch. Then the source patch corresponding to that best-matching vector
is used to fill in the missing pixels. MRF-based global method from [Huang 07]
uses a similar cluster-based approach within a two-step inference method. In
the first step, the LBP inference algorithm [Yedidia 01b] is applied using clus-
ter centres as labels, where these centres are obtained by K-means cluster-
ing [Duda 73] of all the possible labels. This results in some labelling of the
MRF. The second step comprises of running LBP again, but now the labels of
each MRF node are coming from the chosen cluster.

Finally, a very recent global method from He and Sun [He 12] at-
tempts to limit the label set by analysing the statistics of patch offsets. In par-
ticular, they find the best-matching patch for all the patches from the source
region and they make a histogram of the occurrences of all the offsets, i.e.,
relative positions. What can be concluded from this statistics is that offsets
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2 
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4 

Figure 4.7: Illustration of the filling order. The numbers inside the patches indicate
their filling order (from first to last). The black area marks the missing region.

are sparsely distributed and that several highest peaks in the histogram corre-
spond to several dominant orientations. These dominant orientations not only
provide reliable information for completing the image, but can also improve
the quality of the inpainting result.

4.3.3 Priority definition

When inpainting an image, the goal is to fill in the missing region from its
borders to the center, by first continuing image structures, i.e., lines, contours,
edges, etc. This filling order is determined by priority, whose appropriate
definition is necessary in order to preserve image structures. Therefore, priority
should be designed to give advantage to the target patches containing structure
and additionally fewer missing pixels. The second requirement ensures that the
known part of the target patch is sufficiently big in order to find appropriate
matches. This is illustrated in Fig. 4.7, where the black area marks the missing
region. The patches marked with 1 and 2 have the highest priority because
they contain structure, but the patch marked with 1 has additional advantage
because it contains fewer missing pixels. Between the patches marked with 3
and 4, the patch marked with 3 has higher priority because it contains texture,
while the the patch marked with 4 is flat. In the case of global methods using
p-BP [Komodakis 07, Yang 09], filling order is actually the visiting order of
MRF nodes according to which the labels of the nodes are pruned. However,
some methods, e.g., [Huang 07,Wexler 07,Bugeau 10,He 12], do not explicitly
define priority, but impose structure propagation in a different way, e.g., by
defining energy terms that enforce this behaviour.

Most of the patch-based methods described in the previous subsec-



108 Context-aware patch-based image inpainting

tions define priority as a product of the confidence term and the data term
for each target patch at the border of the missing region, as initially pro-
posed in [Criminisi 04] (see Section 4.3.1.1). The confidence term measures
the relative amount of known pixels in the target patch, while the data term
is actually responsible for encouraging the linear structures to be synthesized
first, i.e., for preserving structure continuation. The data term is determined
based on the strength of isophotes, i.e., gradients, and their relative direction
compared to the the border of the missing region (e.g., if the isophote is orthog-
onal to the border, the target patch containing it has the bigger data term and
thus higher priority). This priority is also adopted in other inpainting meth-
ods, e.g., in [Wong 08,Shen 09,Voronin 11]. In [Cheng 05,Anupam 10], it was
noted that the confidence term decreases exponentially as inpainting proceeds
towards the center of the hole. To mitigate this problem, it was suggested to
replace the product of the confidence and data term by their weighted sum.
However, the same gradient-based approach for data term is used, which per-
forms insufficiently well in discriminating between patches containing structure
and texture.

One solution to this problem is to find a better estimate of local ge-
ometry, which can better differentiate between different types of patches. Ex-
amples include Hessian matrix decision value (HDMV) [Fang 09] and structure
tensor [Di Zenzo 86,Le Meur 11]. HDMV represents the ratio between eigen-
values of a Hessian matrix constructed in a small window surrounding each
pixel at the border of the missing region. According to the eigenvalues and the
HDMV, three types of window content can be distinguished: 1) a structured
window (when HDMV is high, i.e., one eigenvalue is significantly higher than
the other), 2) a textured patch (HDMV is close to or equal to one and the two
eigenvalues are similar and high), and 3) a smooth patch (HDMV is close to
or equal to one and both eigenvalues are low). Additionally, HDMV is used
to make the choice between directional and non-directional search (see Sec-
tion 4.3.2). Similar discrimination can be achieved by comparing eigenvalues
of a structure tensor. Structure tensors can also be smoothed by the Gaussian
filtering in order to improve robustness to noise and local orientation singulari-
ties. The latter is additionally improved in [Le Meur 11] by using a hierarchical
approach, where structure tensor is propagated from lower to higher resolution
levels.

Instead of estimating local geometry, one could use similarity between
the target patch and the candidate patches to define priority. The reasoning is
the following: if there are few well-matching patches of the target patch, it is
more likely that the target patch contains structure, thus it should be assigned
higher priority, and vice versa, if there are many well-matching patches, the
target patch is probably textured or smooth, and it should have lower priority.
Implicitly, this also means that the target patch of higher priority has more
known pixels, because such patch will also have less well-matching patches.
In [Le Meur 12], it was demonstrated that this approach can better distinguish
structure and texture than the gradient-based priority discussed above, and
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that it is more robust to the orientation of the border of the missing region.
This similarity-based priority is practically defined in [Xu 10] via the so-called
structure sparsity, which measures the sparseness of the similarities of the target
patch within its neighbourhood (bigger sparseness means less similar patches).
Additionally, this term is combined with the confidence term from [Criminisi 04]
as the final patch priority. On the other hand, in [Komodakis 07, Yang 09],
priority is a function of beliefs, where belief is one of the terms in the LBP
algorithm (see Section 2.3.5). Beliefs can be used to define confidence of a
node about its labels. The more confidence a node has about its labels, meaning
there are fewer labels with belief higher than some threshold, the higher is its
priority, and in practice, it is the node lying on an object border and having
more known pixels (see Section 5.1.2 for details).

4.4 Context-aware approach for inpainting

In this section, we propose a general context-aware approach for patch-based
image inpainting, which can be used with any patch-based inpainting algorithm.
The main idea is to guide the search for patches to the areas of interest based
on contextual features. Fig. 4.8 illustrates this concept: contextual descriptors
are assigned to image blocks of fixed size. For the missing region within a
given block, well-matching candidate patches will be found in the contextually
similar blocks. We employ Gabor-based texture descriptors (see Appendix A)
as contextual descriptors and extend them with colour information.

In this way, we employ the wider context around the target patch into
the patch-selection process instead of just observing a small patch and its known
pixels like most greedy methods and multiple-candidate methods do. Further-
more, we perform guided search for patches, which represents an alternative
to the time-consuming exhaustive search. The benefit of our context-aware
approach is, therefore, twofold: the search for candidate patches is accelerated
and the inpainting result is improved.

4.4.1 Notations and definitions for patch-based inpaint-
ing

In this subsection, we extend the general notations and definitions for patch-
based methods, introduced previously in Section 3.3, to the problem of patch-
based inpainting.

In image inpainting, a damaged colour image g, over a set of pixel
positions I, consists of a missing and a known region. Let Ω ⊂ I denote the
missing region, i.e., the region to be filled, called the target region, and Φ ⊂ I
denote the known (undamaged) part of the image, called the source region,
where Ω ∩ Φ = ∅ and initially Ω ∪ Φ = I. Recall that pixel positions are
represented by a single index p ∈ I, assuming raster-scan order.

Analogously to the definition of a mask Ψ in Section 3.3 (see also
Fig. 3.9), we can define a square block B as a set of positions p centred at
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Figure 4.8: Illustration of the proposed context-aware approach for inpainting.

Figure 4.9: Input image (left) and its gist descriptor (right). In the right image,
the average of the output magnitude within each non-overlapping block is shown.
The orientation on the polar plot is orthogonal to the direction of the edges in the
image, scale is colour coded (red for high spatial frequencies and blue for low), and
the intensity of the colour is proportional to the magnitude of each filter output. In
this example, we used Gabor filters of 8 orientations and across 4 scales.

the origin p = 0. A block is bigger than a mask. Let B + l denote a block
translated to position l ∈ Θ, where Θ is the set of allowed block positions
defined in such a way that neighbouring blocks are not overlapping. A block,
in general, can contain both known and missing pixels. Let ζ(·) be a function
that for each pixel position returns the central position of the block to which
that pixel belongs. Hence, B + ζ(p) is the block containing the pixel p.
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4.4.2 Context representation

Suppose we divide the image into Nv × Nh square non-overlapping blocks of
fixed size, then nb = NvNh is the total number of blocks (see Fig. 4.8 and the
top of Fig. 4.10). Using the notations for blocks we introduced above, we can
refer to each of the nb blocks by their central positions l ∈ Θ. The set Θ of
block positions, as well as the block size, are determined by the division of the
image into blocks. We want to assign a contextual descriptor c(l) to each block
B + l, which characterizes in some way spatial content and textures within
that block. Moreover, we want to have compact descriptors that allow efficient
search for regions of similar context.4

In this chapter, we propose a combination of texture and colour fea-
tures as contextual descriptors. The choice of texture features, as well as the
simple division of the image into blocks of fixed size, are motivated by a global
image representation called gist [Oliva 01], due to its simplicity and efficiency.
Gist is computed by averaging the magnitudes of filter responses within square
non-overlapping image blocks, where filter responses are obtained by filtering
the luminance channel of the image with a bank of multi-scale oriented filters,
e.g., Gabor filters (see Section A.3 for details). Fig. 4.9 shows the information
that gist descriptor provides: a coarse description of textures in the image and
their spatial organization.5

Instead of using gist as a global image representation, for the inpaint-
ing purpose we will focus on the coarse texture description per block. Such
description gives an idea of the context surrounding pixels or patches within
that block. In Fig. 4.9, we can see that the blocks with similar content have
similar representation (e.g., blocks containing parts of the palm trees), which
is exactly the property we want to use for our context-aware approach. While
gist was used as a scene descriptor, e.g., for scene classification [Oliva 01], we
do not know of any methods in which it was used for image inpainting.

Let f(p) = (f1(p), . . . , fNf (p)) denote an Nf -dimensional vector of
complex filter responses6 at pixel p ∈ I, obtained by filtering the image with
the bank of Nf multi-scale oriented complex Gabor filters (see Section A.2
for details on Gabor filtering). We define the contextual descriptor c(l) of the
block B + l as an (Nf + Nc)-dimensional feature vector, where the first Nf
components represent texture descriptor, and the last Nc components repre-
sent colour descriptor (see also Fig. 4.8). The first Nf components of c(l) are
related to gist, and are computed by averaging the magnitudes of complex filter
responses at the known pixels of the block B + l:

4Alternatively, contextual descriptors could be assigned to overlapping blocks, but we have
not seen any benefits of such division in our experiments, in terms of contextual similarity.

5Gist descriptors are obtained with the source code available at
http://people.csail.mit.edu/torralba/code/spatialenvelope/.

6Note that in Chapter 3, f denoted a vector formulation (assuming raster-scan order) of
a high-resolution image f .
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c(l)n =
1

#((B + l) ∩ Φ)

∑
p∈((B+l)∩Φ)

|fn(p)|, n = 1, . . . , Nf , (4.1)

where # denotes the cardinality of the set. This texture descriptor contains
average information about the presence of image energy at certain orientations
and at certain scales within the block.

The last Nc components of c(l), i.e., the colour descriptor, represent
the average colour within the block B + l per each colour channel:

c
(l)
Nf+n =

1

#((B + l) ∩ Φ)

∑
p∈((B+l)∩Φ)

gn(p), n = 1, . . . , Nc, (4.2)

where gn(p) is the colour value at pixel position p in the nth colour channel
and Nc = 3. The averaged colour values per channel are typically higher than
the averaged filter responses. Hence, we normalize the colour components by
the factor α, c(l)Nf+n = α−1c

(l)
Nf+n, n = 1, . . . , Nc. We define this factor as the

ratio between the maximum value of the last Nc colour components and the
maximum value of the averaged filter responses on the first Nf components:

α =
maxn∈{Nf+1,...,Nf+Nc} c

(l)
n

maxn∈{1,...,Nf} c
(l)
n + ε

, (4.3)

where ε is a small constant that prevents division by zero. Throughout this
chapter, we use complex Gabor filters of 6 orientations and across 3 scales
(see Fig. A.1), thus Nf = 18. The resulting feature vector c(l) then has 21
components and it shows dominant orientations and scales within the block
B + l and the average colour of that block. Fig. 4.10 illustrates these feature
vectors corresponding to different blocks of an image. The first 18 components
(texture features) are ordered by orientation per scale, from small to large
scales, i.e., from high to low spatial frequencies (see the first 18 components in
the plot in Fig. 4.8 and in the bottom of Fig. 4.10). We can see that the texture
features are small for nearly flat blocks (most of the blocks in the second and
third row in the bottom of Fig. 4.10). For blocks with dominant edges (in
the last two rows), the peaks appear at positions corresponding to a particular
orientation and tend to increase when the scale coarsens. Textured blocks (in
the fourth row for example) have smaller descriptor values and smaller peaks
at multiple orientations.

4.4.3 Context-aware patch selection

Now that we chose a context representation, we want to constrain the source
region for target patches, belonging to some current block B + l, to a region
Φ(l) ⊂ Φ with a context well matching that of B + l. Let H̄(l,m) denote a
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Figure 4.10: Top: division of the image into 6× 9 non-overlapping blocks. Bottom:
corresponding contextual descriptors plotted over 21 components and with values
ranging between 0 and 0.04. The first 18 components, corresponding to texture
features, are ordered by orientation per scale, from high to low scales, i.e., high to low
spatial frequencies. Contextual descriptors of unreliable blocks (see later Eq. (4.7))
are set to zero.

measure of contextual dissimilarity between blocks B+ l and B+m. We define
H̄(l,m) as some distance measure between contextual descriptors (vectors) c(l)

of the block B + l and c(m) of the block B +m:
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H̄(l,m) = d(c(l), c(m)). (4.4)

In this chapter, we take this distance measure to be the SSD between the
vectors c(l) and c(m):

H̄(l,m) =

Nf+Nc∑
n=1

(c(l)n − c(m)
n )2. (4.5)

The choice of this measure was motivated by the comparison of gists of two
images for scene completion in [Hays 08].

Let Σ(l) denote the set of positions of blocks B +m that are contex-
tually similar to the current block B+ l. We define contextually similar blocks
as the ones that yield Z smallest contextual dissimilarities H̄(l,m). The con-
strained source region Φ(l) is then a union of known parts of blocks B+m, which
are contextually similar to the block B + l, i.e., whose contextual descriptors
are close to that of B + l:

Φ(l) = ∪m∈Σ(l)((B +m) ∩ Φ). (4.6)

Note that the current block itself is always a part of Φ(l) because H̄(l,l) = 0.
In practice, the number of chosen blocks Z is proportional to the number of
blocks in the image, Z = nb/r, where the fraction r is some constant.

In practical applications, however, some blocks are dominated by
missing pixels (e.g., central blocks in Figs. 4.8 and 4.10) and hence yield un-
reliable contextual descriptors. To indicate whether a block contains enough
information from which the contextual descriptors can be drawn, we define the
block reliability ρ(l) as

ρ(l) =

{
1, if #((B + l) ∩ Φ) > #(B+l)

2

0, otherwise.
(4.7)

If ρ(l) = 1, the block B + l is reliable and vice versa, it is unreliable if ρ(l) = 0.
The contextual descriptor of an unreliable block is also unreliable and cannot
be used directly to find contextually similar blocks. Instead, we use its neigh-
bouring blocks B + l′ to define the constrained source region Φ(l). Therefore,
to account for both reliable and unreliable blocks, we express Eq. (4.6) in a
more general form as

Φ(l) =

∪m∈Σ(l)((B +m) ∩ Φ), if ρ(l) = 1

((B + l) ∩ Φ) ∪ (∪ l′∈∂l
ρ(l
′)=1

Φ(l′)), if ρ(l) = 0, (4.8)

where ∂l denotes the neighbourhood of l, i.e., the set of central positions of the
blocks neighbouring the block B + l. According to Eq. (4.8), the constrained
source region Φ(l) of the current unreliable block B + l consists of the known
part of the block B+l itself and block matches of all of its neighbouring reliable
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Algorithm 1 Context-aware patch selection

1: for all B + l such that l ∈ Θ and (B + l) ∩ Ω 6= ∅ do
2: compute reliability ρ(l) of the block B + l (Eq. (4.7))
3: if ρ(l) = 1 then
4: compute H̄(l,m), ∀m ∈ Θ
5: define Σ(l) as the set of positions of contextually similar blocks to

the block B + l
6: define new source region Φ(l)

7: else
8: for all B + l′ such that l′ ∈ ∂l do
9: repeat steps 2-6

10: end for
11: define new source region Φ(l)

12: end if
13: end for

blocks (∪ l′∈∂l
ρ(l
′)=1

Φ(l′)). The proposed context-aware approach is summarized as

pseudo-code in Algorithm 1.

Fig. 4.11 illustrates block-matching results for current blocks from
Fig. 4.8 (shown in Fig. 4.11(a)), by using only texture descriptors, i.e., the first
Nf components of contextual descriptors (Fig. 4.11(b)), and both texture and
colour descriptors, i.e., the complete contextual descriptors (Fig. 4.11(c)). For
example, in the last row, we can see that both choices of descriptors can find
contextually similar blocks. However, the first three rows clearly demonstrate
that using colour improves the block-matching performance. Some of the mis-
matches (previously inside the blue square) are now eliminated and replaced
with better matches.

A few implementation details are described next. The neighbourhood
∂l initially consists of the top, bottom, left and right neighbours of the current
block B + l. If none of these neighbours is reliable (which could happen if
the block size is too small relative to the size of the target region), the neigh-
bourhood is extended to the diagonal neighbours. Furthermore, note that a
target patch can span multiple blocks, e.g., B + l and B + l′, in which case
the constrained source region for that patch would be Φ(l,l′) = Φ(l) ∪Φ(l′). Fi-
nally, although our contextual descriptors are computed within non-overlapping
blocks, we take source patches from a block extended by w in each dimension,
where 2w + 1 × 2w + 1 is the patch size, by requiring the central pixel of the
patch to belong to the constrained source region (see later Eq. (4.15)). In this
way, also the source patches spanning multiple blocks are considered.
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(a) (b) (c) 

Figure 4.11: Block matches: (a) current blocks from Fig. 4.8, (b) block matches
based on texture descriptors, and (c) block matches based on both texture and colour
descriptors. Each row represents block matches of the block in (a). Blocks are ordered
by the increasing block-matching error. The blue squares mark the mismatches.

4.5 Proposed context-aware inpainting method

In this section, we apply the proposed context-aware approach within a novel
context-aware inpainting algorithm. In addition to context-awareness, the pro-
posed algorithm explores the use of contour features [Perona 90, Malik 01]
to define the patch priority. We propose a novel priority definition, called
orientation-based priority, where the goal is to achieve better differentiation
between patches containing contours, textured patches and patches in flat ar-
eas compared to the gradient-based patch priority of [Criminisi 04] (see also
Section 4.3.3). Therefore, our proposed method aims at improving all three
components of patch-based inpainting algorithms: patch selection and patch
search, through context-awareness, and priority definition.

4.5.1 Orientation-based priority

Let δΩ denote the border of the target region. The filling order is defined by the
priority R(p) for each of the target patches centred at p ∈ δΩ (see Section 3.3
for the definition of the patch).

As we discussed earlier in Section 4.3 and in more detail in Sec-
tion 4.3.3, the filling order of the missing region, defined via priority, is an
important component of patch-based inpainting algorithms. Priority is defined
in a way that ensures the propagation of image structures inside the missing
region, thus often involving the detection of these structures at the central
pixel of each target patch by the means of gradient computation. However, we
have at our disposal filter outputs due to our context-aware approach, which
explores texture features obtained by filtering the image with the bank of Ga-
bor filters at multiple orientations and scales. Analysis of filter outputs can
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Figure 4.12: Binary images indicating the central lines of a 15×15 mask with ori-
entations from 0◦ to 150◦ in steps of 30◦.

provide a better estimate of local geometry than gradients because of the abil-
ity to detect more complex edges by extracting contour features (see also the
discussion in Section A.4). A well-known approach for the extraction of con-
tour features, namely dominant orientation and oriented energy, is the oriented
energy approach [Perona 90] (see Section A.4 for more detail).

The oriented energy OEθ(p) at the pixel p ∈ I represents the strength
of filter responses in each orientation θ, which is orthogonal to the filter orien-
tation η. Let fθ,ς(p) denote the complex filter response to the complex Gabor
filter Gη,ς(p). The oriented energy is then defined as

OEθ(p) = [Re
(
fθ,ς(p)

)
]2 + [Im

(
fθ,ς(p)

)
]2

= |fθ,ς(p)|2, (4.9)

Then the dominant orientation θ∗(p) at p is defined as

θ∗(p) = arg max
θ
OEθ(p), (4.10)

and it represents the orientation of the strongest contour at p, and the strength
of that contour is OEθ∗(p). OEθ∗(p) additionally undergoes non-maximal sup-
pression [Canny 86] for better localization of the contour, resulting in the non-
maximal suppressed oriented energy OE∗(p) (see Eq. (A.5) and Section A.4 for
more detail).

We use these contour features to define a novel priority, called
orientation-based priority, as a combination of contour strength and directional
strength of each target patch. The contour strength Dcon(p) of the patch cen-
tred at p is represented by the non-maximal suppressed oriented energy at the
central pixel p:

Dcon(p) = OE∗(p). (4.11)

We determine the directional strength Ddir(p) via the statistics of dominant
orientations at the known pixels of the patch. Let us define Lγ + p as a set of
positions on the central line of the mask Ψ+p, where γ denotes the orientation
of the line. These positions are indicated in white in the binary images shown in
Fig. 4.12. The orientation of the line γ ∈ Γ coincides with contour orientation,
thus Γ = {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} (because we use complex Gabor filters
of 6 orientations). To evaluate the statistics of dominant orientations within
the patch centred at p, it is sufficient to consider only the pixels in Lγ + p, i.e.,
along the thin lines shown in Fig. 4.12, because we perform this evaluation for
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each patch along the border of the missing region, i.e., centred at each pixel
p ∈ δΩ. Therefore, the pixels on the lines parallel to the lines shown in Fig. 4.12
will be considered while evaluating the statistics of the neighbouring patches.

We define the directional strength of the patch centred at p as the
maximum over γ ∈ Γ of the relative number of pixels p′ ∈ ((Lγ + p) ∩ Φ), at
which the dominant orientation θ∗(p′) coincides with the orientation γ, i.e.,

Ddir(p) = max
γ∈Γ

#{p′ ∈ ((Lγ + p) ∩ Φ)|θ∗(p′) = γ}
#((Lγ + p) ∩ Φ)

, (4.12)

where θ∗(p′) is defined in Eq. (4.10). The reasoning behind this choice is the
following. A high value of the directional strength indicates that the pixels
along certain direction within the target patch lie on the same contour (see the
last row of Figs. 4.13(a) and (b)), thus it is more probable that the target patch
contains image structure. On the other hand, if this value is low (Figs. 4.13(c)
and (d)), it means that the dominant orientations at pixels along all directions
are different, i.e., it is more probable that the target patch belongs to the
textured region. Finally, very low or zero value of the directional strength
(Fig. 4.13(e)) indicate that the target patch is flat.

When we evaluate Ddir(p), we do not consider pixels for which
OE∗(p) < TOE (pixels in dark red in the bottom row of Fig. 4.13). If the
target patch centred at p consists only of such pixels, e.g., in flat areas, we set
its directional strength to zero, i.e., Ddir(p) = 0. This is because non-maximal
suppression (Eq. (A.5)) sets the oriented energy and dominant orientation of
certain pixels to zero. This orientation coincides with the horizontal one, while,
in fact, it should not be specified. Furthermore, we want to discard from anal-
ysis all the pixels with very low values of orientation energy to obtain more
stable measurements.

The directional strength is necessary because the contour strength
alone is not robust enough to distinguish between different types of patches.
For example, Dcon(p) (see the middle row of Fig. 4.13) can have higher value
for the textured patch (Fig. 4.13(c)) than for the patch containing contour
(Fig. 4.13(a) and (b)). On the other hand, it can also be zero for the textured
patch due to the non-maximal suppression (Fig. 4.13(d)), which should nor-
mally happen in the flat area (Fig. 4.13(e)). To circumvent this problem, we
could, as in [Criminisi 04], look at the relative orientation between the con-
tour and the border of the target region, but this approach is not robust to
the orientation of the border and relies significantly on the measurements at
one (central) pixel of the patch. On the other hand, the proposed directional
strength does not suffer from these problems.

In the end, Dcon(p) and Ddir(p) are combined in one orientation-
based priority as

R(p) =
Dcon(p) + µDdir(p)

2
, (4.13)
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Figure 4.13: 15×15 patches from Fig. 4.8 with the missing region in black: colour
image patches (top row), corresponding oriented energies OE∗ (middle row), and
corresponding dominant orientations θ∗ (bottom row). In the bottom row, “non-
specified” dominant orientation marks the pixels that are not considered in the anal-
ysis (see text for details). Corresponding values of R, Dcon and Ddir are indicated.
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Figure 4.14: Comparison between the proposed priority R and the gradient-based
data term Dg from [Criminisi 04]: (a) patches from Fig. 4.16, and (b) patches from
Fig. 4.17. Patches are ordered from left to right by decreasing value of R (top row)
and Dg (bottom row).
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where µ is the weighting factor that ensures that the two components are in
the same range of values. Such a priority distinguishes better between patches
with contour and textures than the gradient-based definition of the data term,
as demonstrated in Fig. 4.14 for patches from two different images. We can see
that the proposed priority R has higher value for the patch containing contour
than for the textured patch, while the gradient-based data term, denoted as
Dg, would give preference to the textured patch.

4.5.2 Greedy block-based context-aware (GBCA) in-
painting method

In this subsection, we present the actual inpainting method that incorporates
two novelties introduced earlier in this chapter: context-aware patch selection
(Section 4.4.3) and orientation-based priority (Section 4.5.1). We fill in the
missing region iteratively, where in each iteration for the target patch of the
highest orientation-based priority, we find the best match from the constrained
source region, based on context-aware patch selection, and we copy its cor-
responding pixels to the locations of missing pixels. We name this method
greedy block-based context-aware (GBCA) method because it selects only the
best match in a greedy manner.

Let us assume that at this point we have already extracted contour
features for each pixel, i.e., oriented energy and dominant orientation, and
determined contextual descriptors for each block. The inpainting algorithm
proceeds in the following manner until there are no more missing pixels. At
each step t, the border δΩ(t) is identified and the priorities R(p) are computed
as in Eq. (4.13), ∀p ∈ δΩ(t). Then we find the target patch with the highest
priority as the one whose central pixel is

p̂ = arg max
p∈δΩ(t)

R(p). (4.14)

In order to perform context-aware patch selection, introduced earlier in Sec-
tion 4.4.3, we need to find a block to which the pixel p̂ belongs by using the
function ζ(·) introduced in Section 4.4.1. Hence, B + ζ(p̂) is the block con-
taining the pixel p̂. Context-aware patch selection then constrains the source
region for the target patch centred at p̂ to Φ(ζ(p̂)) ⊂ Φ (see Algorithm 1 for
details). The best-matching patch of the target patch is found in this con-
strained source region by calculating the SSD only between the known pixels
of the target patch and the corresponding pixels of the candidate patch. Using
the notations introduced in Section 3.3, the central pixel of the best-matching
patch is defined as:

q̂ = arg min
q∈Φ(ζ(p̂))

‖Tp̂g − Tqg‖2((I\Ω(t))−p̂)∩Ψ. (4.15)

The shape ((I \ Ω(t)) − p̂) ∩ Ψ is obtained by translating the current set of
positions of known pixels I \ Ω(t) so that p̂ is now at the origin, and then
finding the intersection with the mask Ψ centred at the origin. Thus this
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Algorithm 2 GBCA inpainting method

1: while Ω(t) 6= ∅ do
2: identify the fill front δΩ(t)

3: compute priorities R(p), ∀p ∈ δΩ(t) (Eq. (4.13))
4: find the central position p̂ of the patch with the highest priority

(Eq. (4.14))
5: find the current block B + ζ(p̂) to which p̂ belongs
6: find the constrained source region Φ(ζ(p̂)) with Algorithm 1
7: find the the best-matching patch of the target patch (Eq. (4.15))
8: replace missing pixels of the target patch
9: update Ω(t), f , c(ζ(p̂)), OE∗ and θ∗

10: end while

shape corresponds to the current mask of the known pixels of the target patch
centred at p̂. Finally, the missing pixels in the target patch are replaced with
the corresponding ones from the best match centred at q̂.

Replacing missing pixels of the target patch means that the target
region is shrinking at each step t, i.e., that Ω(t) needs to be updated, while
the source region Φ remains the same throughout the whole algorithm, thus
I \Ω(t) 6= Φ. However, we still determine the constrained source region Φ(ζ(p̂))

at each step, because as the filling process proceeds, there is more available
contextual information. We obtain this additional information by updating
the filter responses f , i.e., by copying the corresponding magnitudes of filter
responses from the found source patch. Then we can update the contextual
descriptor c(ζ(p̂)) of the current block B + ζ(p̂). Such update yields more re-
liable contextual descriptors and better block-matching result. Furthermore,
once an unreliable block becomes reliable, we can use its own contextual de-
scriptor for matching instead of contextual descriptors of neighbouring blocks
(see Eqs. (4.7) and (4.8)), leading to the context being better determined and
saving some computation time because the constrained source region is smaller.
The pseudo-code of the algorithm is shown in Algorithm 2. Note that also OE∗
and θ∗ need to be updated by again copying the corresponding values from the
found match, in order to have information for priority computation.

4.6 Results
We tested the proposed context-aware inpainting method on a number of nat-
ural images and one artificial example. We consider the application of image
editing, which involves object removal and is typically more demanding than,
e.g., text removal, due to the size of the missing region. We compare the pro-
posed method with different patch-based inpainting methods. For the proposed
and all the reference methods we show the best inpainting result, depending
on the patch size. Our method also depends on the division into blocks, so we
also chose the division that yields the best inpainting result. The number of
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Figure 4.15: Dependence of inpainting result on priority definition. Top: inpainting
process with the original priority as in [Criminisi 04]. Bottom: inpainting process with
the proposed priority definition. From left to right: results after iterations 1, 10, 50,
and final result. Current target patch is marked with red.

Figure 4.16: Comparison of inpainting results for the “baseball” image. From left to
right and top to bottom: input image with the missing region marked in black, result
of [Criminisi 04] (9×9 patches), result of [Le Meur 11] (7×7, 3 levels of hierarchy and
search window of 31 × 31), and result of the proposed GBCA method (3×4 blocks
and 13×13 patches).
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chosen contextually similar blocks Z is then proportional to the total number
of blocks, Z = nb/r, where r = 6, but we do not allow Z to be lower than 2.
We will comment on the different choices of patch size, number of blocks and
r at the end of this section. Finally, the threshold for oriented energy from
Section 4.5.1 is set to TOE = 10−4. By experimental evaluation on different
natural images, we determined that this value preserves the important contour
features, while discarding the noisy measurements in flat areas.

As the first experiment, we compare the original priority definition
from [Criminisi 04], R1(p) = Dc(p)Dg(p), where Dc(p) is the confidence term
and Dg(p) is the gradient-based data term (see Section 4.3.3), with the pro-
posed orientation-based priority R(p) (Eq. (4.13)). For inpainting, we used the
proposed context-aware patch selection with the same parameters (patch size
11×11, division into 3×3 blocks, total nb = 9). Fig. 4.15 shows the inpainting
results on the artificial example, where R1(p) is used in the top and R(p) in
the bottom row. We can clearly see that the proposed priority preserves better
the structure in the image, while original priority gives preference to texture.
This leads to the proposed method yielding better inpainting result.

Next, we qualitatively compare the results of the proposed method
with some of the state-of-the-art patch-based methods on different natural im-
ages. Fig. 4.16 shows the comparison with the “greedy” method from [Crimin-
isi 04]7 and a more recent non-local method from [Le Meur 11]8 (see caption
for parameters). We can see that the method from [Criminisi 04] (top right) in-
troduces artefacts because it partially duplicates the man in the green sweater.
The method from [Le Meur 11] (bottom left) does not preserve well neither the
image structure (because it propagates snow in the region of the sky), nor the
texture. The proposed approach (bottom right) preserves well the image struc-
ture (the border between sky and snow), while introducing the least amount
of artefacts in the texture of the snow. Therefore, the proposed approach out-
performs both reference methods.

Better performance compared with [Criminisi 04] is also visible in
Figs. 4.17 and 4.18. In the “elephant” image (Fig. 4.17), we can see that the
method from [Criminisi 04] introduces artefacts, e.g., branches of the trees
in the blue background area and background area in the bushes (see marked
areas in the bottom left). These artefacts are not present in the result of
the proposed method (bottom right). In the “vegas” image (Fig. 4.18), the
method from [Criminisi 04] also introduces some artefacts, e.g., plants are not
homogeneous and the socket from the lower left part of the image is inpainted
into the missing area (see marked areas in the bottom left). In addition, the
structure is not well-preserved. Compared with the result of the Content Aware
Fill from Adobe PhotoShop, the proposed method (in the bottom right of
Figs. 4.17 and 4.18) provides better continuation of structures (see marked
areas in the top right).

Fig. 4.19 shows another comparison with the Content Aware Fill (top

7MatLab software from http://www.cc.gatech.edu/∼sooraj/inpainting/.
8Results were received from the authors.
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Figure 4.17: Comparison of inpainting results for the “elephant” image. From left
to right and top to bottom: input image with the missing region marked in black,
result of the Content Aware Fill, result of [Criminisi 04] (13×13 patches), and result
of the proposed GBCA approach (5×7 blocks and 21×21 patches).

Figure 4.18: Comparison of inpainting results for the “vegas” image. From left to
right and top to bottom: input image with the missing region marked in black, result
of the Content Aware Fill, result of [Criminisi 04] (17×17 patches), and result of the
proposed GBCA approach (4×6 blocks and 17×17 patches).
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Table 4.1: Comparison of computation times for different images.
Image Greedy method Proposed

(patch size) from [Criminisi 04] method
“baseball” (13×13) 154.64s 81.15s
“elephant” (21×21) 181.3s 88.51s
“vegas” (17×17) 155.32s 85.63s

right), and with the very recent method from [Le Meur 12]9 (bottom left). We
can see that the proposed method (bottom right) outperforms the Content
Aware Fill, which introduces artefacts (the man from the background is dupli-
cated), while yielding comparable results with the method from [Le Meur 12].

Table 4.1 shows the comparison of computation times of the pro-
posed method and the related method from [Criminisi 04] on images from
Figs. 4.16, 4.17 and 4.18. The times were obtained in MatLab R2012b on Intel
Core2 Quad Q9550 2.83 GHz CPU with 8GB RAM. For fair comparison in
terms of parameters, we tested the algorithms for the same patch size, which
was in this case the one yielding the best result of the proposed method, as
indicated in the first column of the table. Note that for the “vegas” image
(Fig. 4.18), the same patch size yielded the best result for both tested meth-
ods, thus the comparison of computation times for this image is fair also in
terms of the quality of the result. We can see that our method is about 2 times
faster than the greedy method from [Criminisi 04], which performs exhaustive
search for the best-matching patch. The context-aware approach accelerates
the patch search itself about 6 times, because the search space is about 6 times
smaller than in the exhaustive search (r = 6). However, the overall speed-
up is smaller due to the overhead computations, mainly updating contextual
descriptors (see step 9 in Algorithm 2).

As we mentioned at the beginning of this section, our method depends
on the patch size and the division into blocks of fixed size, and we showed
the results for the combination of parameters that performed best. Patch
size is an important parameter in all patch-based algorithms, regardless of
application (texture synthesis, SR or image inpainting). It should be big enough
to capture important structures in the image (in this case, the area surrounding
the missing region), but not too big in order to still be able to find good
matches. Therefore, for most of the inpainting methods, including ours, the
choice of the “good” patch size is individual for each image and its variation
influences the inpainting result. This is shown in Fig. 4.20, where inpainting
results were obtained with the proposed method and the patch size 9×9, 13×13
and 17×17, with the division into 4×5 blocks and r = 6, thus Z = 3. We can
see that for this image, the best result is obtained with the patch size 9×9.

The dependence on the number of blocks in the image is shown in
Fig. 4.21, with the patch size fixed to 17×17 and r = 6. We can see that the

9Results were received from the authors.
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Figure 4.19: Comparison of inpainting results for the “rice field” image. From left
to right and top to bottom: input image with the missing region marked in black,
result of the Content Aware Fill, result of [Le Meur 12], and result of the proposed
GBCA approach (4×5 blocks and 15×15 patches).

Figure 4.20: Dependence of the inpainting result of the proposed method on the
patch size while keeping the number of blocks fixed (4×5 blocks). From left to right
and top to bottom: input image with the missing region marked in black, inpainting
result with 9×9, 13×13 and 17×17 patches.



4.6 Results 127

Figure 4.21: Dependence of the inpainting result of the proposed method on the
division into blocks of fixed size, with 17×17 patches and r = 6. From left to right:
input image with the missing region marked in black, inpainting result with 4×6, 5×7
and 6×9 blocks.

Figure 4.22: Dependence of the inpainting result of the proposed method on the
parameter r. The results are shown for the “vegas” image (Fig. 4.18) with 17×17
patches and the division into 4×6 blocks. From left to right and top to bottom:
inpainting result with r = 3, r = 4, r = 6 and r = 8.

results vary and that the best one corresponds to the division into 4×6 blocks.
Furthermore, the results also depend on the fraction r, as shown in Fig. 4.22.
The results get worse as the number of chosen blocks increases (i.e., r decreases)
because the source region is bigger and less constrained, thus the possibility of
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finding a wrong match is increased. Moreover, the computation time increases.
After experimental evaluation on a number of images, we concluded that r = 6
gives good block-matching and final inpainting result, with a good trade-off
between quality and speed.

The disadvantage of the proposed method is the number of parame-
ters that needs to be set in order to obtain the inpainting result. In Chapter 5,
we will make an attempt to diminish the number of parameters. In this chapter,
our goal was to illustrate the proof of concept for context-aware patch selection
and to introduce a novel patch priority. We also showed that such an approach
outperforms in terms of both quality and speed the method from [Criminisi 04],
and often even some state-of-the-art methods (in terms of quality).

4.7 Conclusion

In this chapter, we introduced the image inpainting problem, where the goal is
to fill in the missing or damaged part of the image by using the known (undam-
aged) part. This region to be inpainted is assumed to be known, either from
the user-provided information or as an output of some automatic detection.
We made an overview of different image inpainting methods, with the focus on
patch-based algorithms, which we viewed from three different aspects: patch
selection, patch search and patch priority.

The main contribution of this chapter is a novel context-aware patch-
selection approach, which reduces the number of candidate patches and chooses
them in such a way that they better fit the surrounding context. Context
is represented within blocks of fixed size using contextual descriptors in the
form of combined texture and colour features. Comparison of these contextual
descriptors enables us to find regions of similar context in the image, as we
demonstrated with intermediate results. Such context-aware approach is gen-
eral and thus can be applied within any patch-based inpainting algorithm. In
this chapter, we applied it within a novel greedy inpainting algorithm, called
greedy block-based context-aware (GBCA) method, where we proposed a novel
orientation-based priority. This definition of priority is based on contour fea-
tures, which are obtained by filtering the image with the bank of Gabor filters
at multiple scales and orientations. The same approach was applied for the
extraction of texture features used for context representation. The results ob-
tained with the proposed method illustrate the potential of our approach. We
demonstrated that the meaningful constrained search for patches yields better
inpainting result in less time than the exhaustive search. Furthermore, our
results are visually better or comparable with state-of-the-art methods.

Parts of this work resulted in several conference publica-
tions [Ružić 12a,Ružić 12b,Ružić 13a], while the method was fully presented
in [Ružić 13c].

This chapter also serves as an introduction to the remaining of this
thesis, since it gives a thorough overview of patch-based inpainting methods and
introduces some preliminary ideas about context-aware approach. In the next
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chapter, those preliminary ideas will evolve into a solid framework resulting
from more elaborate analysis and validation and from improvements on various
aspects of contextual descriptors, block division strategy and patch-selection
approach.
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5
MRF-based image

inpainting with
context-aware label

selection

In this chapter, we further develop our context-aware approach for patch-based
inpainting, introduced in Chapter 4. The main contributions of this chapter are
a novel MRF-based inpainting method, which uses the context-aware approach,
and improved context representation.

At the beginning of the chapter, in Section 5.1, we introduce a general
approach for MRF inpainting, together with an efficient optimization method
called priority belief propagation from [Komodakis 07]. Next, in Section 5.2 we
propose the improved context representation compared to the one we proposed
in Section 4.4.2. First of all, we propose to use texton histograms as contextual
descriptors, which prove to be more effective than averaged filter outputs and
averaged colour we introduced in the previous chapter. Second, we describe the
context within blocks of adaptive sizes. Finally, the division of the image into
blocks of adaptive sizes is obtained with the novel top-down splitting procedure,
which we describe in Section 5.2.2.

A novel MRF-based approach with the context-aware label selection
is introduced in Section 5.3. Another important contribution of the proposed
approach is a novel optimization approach, which extends our inference method
from Section 2.4 in order to deal with the problems with huge number of labels.
The results, presented in Section 5.4, demonstrate potential of the proposed
inpainting method for two applications: scratch and text removal and object
removal.
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5.1 MRF-based image inpainting

A promising approach for patch-based image inpainting is to treat inpainting
as a global optimization problem (see Section 4.3.1.3 for an overview of global
inpainting methods). This approach allows multiple candidate patches (labels)
to eventually choose one label for each position so that the whole set of labels (at
all positions) minimizes a global optimization function. Among different global
methods, MRF-based methods [Komodakis 07, Huang 07, Yang 09] combine
patch-based models and the MRF framework, which models the global image
context via local interactions (see Chapter 2). In particular in this section, we
visit in more detail the seminal work of [Komodakis 07], which is the starting
point for our method, proposed later in Section 5.3.

5.1.1 Notations and definitions

Patch-based image inpainting via MRF modelling proposed in [Komodakis 07],
assumes an MRF model (see Fig. 2.3) over a target region Ω of a damaged
input image g. The MRF lattice S consists of pixel positions, which are w
pixels apart in horizontal or vertical direction on the image lattice I, and where
(2w + 1) × (2w + 1) masks Ψ + i centred at the positions i ∈ S intersect the
target region, i.e., (Ψ+ i)∩Ω 6= ∅ (see Fig. 5.1 for graphical representation and
Section 3.3 for the definition of the mask). The positions i on the lattice S ⊂ I
thus represent MRF nodes. The first-order neighbourhood system is considered
with pairwise cliques 〈i, j〉. Note that the masks centred at neighbouring nodes
are overlapping.

Rather than estimating a single pixel at each node i, all pixels within
a (2w+ 1)× (2w+ 1) mask Ψ + i are estimated at once. Therefore, the values,
i.e., the labels, which are to be assigned to nodes are patches. In particular,
labels are all possible (2w + 1) × (2w + 1) patches from the input image that
are completely inside the source region Φ, i.e., that have no missing pixels (see
Fig. 5.1). According to notations introduced in Section 3.3, an image patch
(thus also a label) is specified by its central pixel position, image g, and mask
shape Ψ. Since in this application all labels come from the same image and
are specified with the same mask, we refer to labels only by their central pixel
positions. Now the label position set can be formally defined as

Λ = {p ∈ I|(Ψ + p) ⊂ Φ}. (5.1)

The assignment of a label to the node i amounts to copying the values from the
patch centred at xi ∈ Λ to the positions within the mask Ψ + i centred at the
node i in the image. An illustration of the MRF notations introduced above is
shown in Fig. 5.2.

The Bayesian estimator requires specifying both the prior (MRF
model) and the likelihood model, i.e., the data cost (see Section 2.2.4 for more
details). The data cost models the relationship between the label centred at xi
and the observation yi at each node i (see Fig. 2.3 and Section 2.2.4). In this
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Figure 5.1: Illustration of the MRF for inpainting.
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Figure 5.2: Illustration of the MRF notations. The green circles, corresponding to
positions i, j, k ∈ S, denote MRF nodes, and the orange circles denote the central
positions xi, xj , xk ∈ Λ of their corresponding labels, which are the whole patches of
pixel values centred at these positions. The black areas in the patches centred at i (or
equivalently yi) and xi mark the locations of missing pixels at the node i. The data
cost D(xi, yi) is computed over the non-black areas of these patches. The pairwise
potential V (xj , xk) is computed over the light yellow region.

patch-based MRF model for inpainting, the observation, i.e., the available in-
formation at the node i, is the existing image patch centred at i, whose content
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is partially or fully unknown. Since we refer to image patches by their central
positions, yi denotes the central position of the observation at node i, resulting
in yi = i (see also Fig. 5.2).

The data cost D(xi, yi) measures the agreement of the label centred
at xi with the known pixels of the image patch (observation) centred at yi,
thus it is defined for each label as

D(xi, yi) =

{
‖Txig − Tyig‖2(Φ−yi)∩Ψ, if (Φ− yi) ∩Ψ 6= ∅
0, if (Φ− yi) ∩Ψ = ∅,

(5.2)

where the translation operator T and the norm are defined in Section 3.3.
Therefore, if there is a known part of the observation centred at yi, the data
cost is the SSD between that known part and the corresponding part of the la-
bel centred at xi. Otherwise, if the observation is completely inside the missing
region Ω, the data cost is zero. The nodes whose observations are completely
inside the missing region are called interior nodes. Finally, the pairwise poten-
tial V (xi, xj) is similarly defined as the SSD between labels centred at xi and
xj in their nodes’ region of overlap

V (xi, xj) = ‖Txig − Txj+(i−j)g‖2Ψ∩(Ψ−(i−j)), (5.3)

(see also Fig. 3.13). The global inpainting problem can now be formulated as
minimizing the energy

E(x|y) =
∑
〈i,j〉

V (xi, xj) +
∑
i

D(xi, yi). (5.4)

As a result of this minimization, one label is chosen per MRF node so that all
labels (over all nodes) agree with each other as much as possible globally.

Note that this MRF model has some similarities with the MRF model
used for patch-based super-resolution (SR) [Freeman 00,Ružić 11b], which we
also used in our SR method (Section 3.4). In particular, the MRF model for
SR is also defined on a lattice of nodes, which represent the central positions
of overlapping square masks. The pixel values within these masks are to be
estimated by the MRF. The data cost, which is in SR actually defined in prob-
ability form via local evidence (see Eq. (3.15)), also measures the agreement
between the available information at the node and its labels, while the pair-
wise potential (or equivalently pairwise compatibility in Eq. (3.16)) measures
the agreement of labels in their nodes’ region of overlap. However, there are
several differences. First of all, for image inpainting the lattice of nodes covers
only the target region and not the whole image. Second, the observation rep-
resents the actual image patch at the position of the node in the image, while
in SR that is the low-resolution (LR) patch at the corresponding position in
the LR image. Consequently, the data cost is computed in a different way. Fi-
nally, labels have different interpretation (patches from the image at the same
resolution instead of high-resolution patches).
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Minimizing the energy from Eq. (5.4) could be solved using loopy
belief propagation (LBP) algorithms [Yedidia 01b] (see also Section 2.3.5), like
in the SR application in [Freeman 00]. However, applying LBP directly (or
any standard inference method) may be prohibitive due to the huge number
of labels of each node. The inpainting method of [Komodakis 07] introduced
an improved version of belief propagation called priority belief propagation
(p-BP), to deal more efficiently with such problems.

5.1.2 Priority belief propagation

The main goal of p-BP [Komodakis 07] is to reduce the number of labels in
a meaningful way, which leads to an efficient minimization of Eq. (5.4). This
is achieved by adding two extensions to LBP: priority message scheduling and
label pruning. Therefore, the core of the algorithm is still LBP, because informa-
tion is propagated throughout the graph by communicating messages between
the nodes (Eq. (2.25), Fig. 2.5(a)), while label assignment is based on the value
of belief (Eq. (2.26), Fig. 2.5(b)). Message and belief can be defined in log
domain as

mij(xj) = min
xi∈Λ
{V (xi, xj) +D(xi, yi) +

∑
k∈∂i:k 6=j

mki(xi)} (5.5)

bi(xi) = −D(xi, yi)−
∑
k∈∂i

mki(xi), (5.6)

respectively, where ∂i is the neighbourhood of the node i. Belief describes
how likely is that the label centred at xi will be assigned to the node i. The
maximization of beliefs, which takes place after the algorithm has converged,
leads to the maximum a posteriori (MAP) estimate.

Considering the huge number of labels in the inpainting application
(tens of thousands, depending on the image size), it is obvious that messages
are very expensive to compute. Therefore, the important extension introduced
by the p-BP algorithm is label pruning. Its purpose is to reduce the number
of possible labels for each node to some number L ∈ [Lmin, Lmax], where
Lmax � #Λ. This is achieved by discarding unlikely labels, i.e., the labels
whose relative belief breli (xi) = bi(xi)− bmaxi (where bmaxi = maxxi∈Λ bi(xi)) is
smaller than some threshold bprune (for details, see [Komodakis 07]). However,
beliefs of interior nodes are zero for all labels, because the data cost is zero (see
Eq. (5.2)), thus the node cannot know which labels to prefer.

In order to solve this problem, priority message scheduling was in-
troduced as another extension to LBP in the following manner. Previously
unvisited nodes are visited in the order of the highest priority, their labels
are pruned, messages are sent to their unvisited neighbours, and beliefs and
priorities of those neighbours are updated. This means that label pruning is
performed for the node of the highest priority, and priority is defined in such
a way to ensure that the node has sufficient information about which labels
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Algorithm 3 Priority belief propagation (p-BP)

1: assign priorities to nodes and declare them as “unvisited”
2: for t = 1 to Niter do {Niter is the total number of iterations}
3: forward pass:
4: for n = 1 to Nn do {Nn is the total number of nodes}
5: i = “unvisited” node of the highest priority
6: apply label pruning to node i
7: order[n] = i
8: declare i as “visited”
9: for any “unvisited” neighbour j ∈ ∂i do

10: send all messages mij(xj) from node i to node j, ∀xj ∈ Λ
11: update belief bj(xj), ∀xj ∈ Λ, and priority R(j) of node j
12: end for
13: end for
14: backward pass:
15: for n = Nn to 1 do
16: i=order[n]
17: declare i as “unvisited”
18: for any “visited” neighbour j ∈ ∂i do
19: send all messages mij(xj) from node i to node j, ∀xj ∈ Λ
20: update belief bj(xj), ∀xj ∈ Λ, and priority R(j) of node j
21: end for
22: end for
23: end for
24: assign x̂i = arg maxxi∈Λ bi(xi), ∀i ∈ S

to prefer, i.e., that is confident about its labels. In particular, priority R(i) is
inversely proportional to the number of labels whose relative belief breli (xi) is
equal to or higher than some threshold bconf :

R(i) =
1

#{xi ∈ Λ|breli (xi) ≥ bconf}
. (5.7)

This means that the nodes with more confidence about their labels will have
higher priority. In practice, those are the nodes lying on an image structure
and having more known pixels. The benefit of priority message scheduling is
twofold: it makes label pruning possible, thus allowing “cheap” computation of
messages, and it makes the inference algorithm converge faster [Komodakis 07].

The above described algorithm represents only one part of p-BP,
called the forward pass. The other part is the backward pass, where nodes are
visited in the reverse order and the rest of the messages are sent and the beliefs
and priorities are updated. The forward and the backward pass are conducted
over multiple iterations (see pseudo-code in Algorithm 3). Note that label
pruning does not take place in the backward pass. In fact, in practice it takes
place only during the first forward pass, because after that L labels will be
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chosen for each node, and it will not be necessary to perform label pruning
again.

It is also important to notice that both label pruning and prior-
ity computation are based on beliefs. Since beliefs are computed during the
inference algorithm, it means that the information necessary for algorithm’s
efficiency is obtained from the algorithm itself. However, a problem with p-BP
is that, prior to label pruning, all possible labels for each node are considered.
Therefore, the message and belief computations in the first forward pass of the
algorithm (steps 10 and 11 in Algorithm 3) are performed for a huge number
of variables, which makes the algorithm very slow, especially when applied on
bigger images.

5.2 Improved context representation

In Section 4.4, we proposed a general approach for context-aware inpainting,
where the main idea is to constrain the patch search to image areas that are
contextually similar to the area surrounding the missing region. This idea is
illustrated in Fig. 4.8. We proposed context representation, which is based on
image division into square non-overlapping blocks of fixed size, where to each
block B + l, l ∈ Θ, a contextual descriptor c(l) is assigned. This descriptor
consists of texture and colour features (Eqs. (4.1) and (4.2)), where texture
features are extracted by averaging magnitudes of filter responses obtained by
filtering the image with the bank of Gabor filters.

In this section, we aim at improving context representation in two
ways. First, we explore the use of normalized texton histograms [Leung 99,
Malik 99,Malik 01] as contextual descriptors (see Section A.5 for more details
on textons and texton histograms). Texton histograms were previously used
in [Leung 99,Leung 01,Varma 02,Cula 04,Varma 05] for texture classification
and recognition, and in [Malik 01, Arbelaez 11] to estimate the texturedness
of a pixel for the purpose of image segmentation. However, to our knowledge,
their use for image inpainting application has never been explored before.

Another improvement that we introduce in this section is the more
sophisticated division of the image into blocks of adaptive sizes. In order to
obtain this division, we propose a novel top-down splitting procedure, which is
also based on contextual descriptors (Section 5.2.2).

5.2.1 Texton histograms as contextual descriptors

In this chapter, we will use textons as they were originally defined for grey-scale
images in [Malik 99,Malik 01] (some alternative definitions and interpretations
are reviewed in Section A.5.1). This original approach includes filtering the
image with a bank of oriented multi-scale filters, followed by K-means clustering
of normalized filter responses. Textons are then defined as theK cluster centres,
each being a vector of dimensionality equal to the total number of filters in
the filter bank. Each pixel is mapped to the texton that is the closest to its
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Figure 5.3: Top left: input image. Top right: textons found via K-means clustering
of magnitudes of complex Gabor filter outputs (K = 16), sorted in raster-scan order
by decreasing norm. Bottom: mapping of pixels to each texton channel.

vector of filter responses (in terms of a distance between two vectors), resulting
in a pixel-to-texton mapping T (see Section A.5 for more details). In our
approach to computing textons, we use the bank of complex Gabor filters (see
Appendix A), and we cluster magnitudes of complex filter responses. For the
image in the top left of Fig. 5.3, we obtained the textons shown in the top
right of Fig. 5.3. The textons are visualized by pre-multiplying each vector
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corresponding to the texton by the pseudo-inverse of the filter bank, as proposed
in [Jones 92]. The bottom of Fig. 5.3 represents pixel-to-texton mapping T ,
where each binary image corresponds to one texton. We can see that textons
correspond to oriented edge elements (most of the textons in the first three
rows), texture (e.g., the first three textons in the last row) and smooth areas
(the last texton in the last row).

Now we can easily substitute averaged filter responses that we used
in Chapter 4 with texton-based analysis, with the goal of improving context
description. In particular, we propose to use normalized texton histograms,
similar to those in [Leung 99,Malik 99,Malik 01] (see Section A.5 for more
details), as contextual descriptors for each image block. Therefore, we define
the contextual descriptor c(l) of the block B + l as the normalized texton
histogram, where each bin of the histogram represents one element of the vector
c(l):

c(l)n =
1

#((B + l) ∩ Φ)

∑
p∈((B+l)∩Φ)

ξ[T (p) = n], n = 1, . . . ,K. (5.8)

Therefore, only known pixels from B + l are used for computation because we
have to consider that some pixels are missing. ξ is the indicator function, i.e.,
it returns one if its argument is true and zero otherwise.

To compare blocks by their context, we introduced in Eq. (4.4) a gen-
eral dissimilarity measure H̄(l,m) between blocks B+ l and B+m as some dis-
tance between their corresponding contextual descriptors c(l) and c(m). Since
contextual descriptors are now defined as texton histograms, this general dis-
similarity measure is now specified as a common χ2 test:

H̄(l,m) = χ2(c(l), c(m)) =
1

2

K∑
n=1

(c
(l)
n − c(m)

n )2

c
(l)
n + c

(m)
n

. (5.9)

An illustration of different image blocks, their texton histograms and histogram
dissimilarity is shown in Fig. 5.4. We can see that the context similarity of
image regions is reflected in the texton histogram dissimilarity measure: the
dissimilarity is much lower between two regions consisting of mainly flat areas,
χ2(c(l), c(m)), and high between a flat and a textured region, χ2(c(l), c(n)).

In our experiments, using texton histograms as defined above requires
less parameters and easier parameter optimization than our earlier contextual
descriptors from Chapter 4. This will be further discussed in Section 5.4.3.

5.2.2 Image division into blocks of adaptive sizes

So far, we considered a simple image division into fixed-size blocks, where con-
textual descriptors are computed as some statistics of texture features within
the blocks. However, if a block is inhomogeneous, i.e., it contains different
textures, that statistics does not necessarily represent well any of the textures
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Figure 5.4: Top left: original image with the missing region marked in black. Bottom
left: pixel-to-texton mapping for all textons together with three different image blocks
marked with red squares (l,m, n are the central positions of the blocks). Right:
normalized texton histograms as contextual descriptors corresponding to the marked
blocks, and their histogram dissimilarity.

(a) (b)

Figure 5.5: Division into blocks: (a) division into 5×7 blocks of fixed size and (b)
division into blocks of adaptive sizes.

present in a block. Therefore, in most natural images, some image areas call
for finer division than the others (see the example in Fig. 5.5 and see how the
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number of blocks of fixed size influences the inpainting result in Fig. 4.21).
Moreover, the optimal size of blocks can differ from one image to another (see
the results in Section 4.6). We define a novel top-down splitting procedure
that automatically divides the image into blocks of adaptive sizes. The idea
is to start from some coarse division of the input image into blocks, which are
further divided depending on the “homogeneity” of their texture. This homo-
geneity is determined by the statistical test, which measures the similarity of
texture features.

Fig. 5.6 illustrates the proposed splitting procedure for one image
block B. We need to favour that the splits in horizontal and vertical direction
alternate through levels in order to prevent splitting along one direction only.
Therefore, we assign each block a binary variable δ ∈ {h, v}, that we call di-
rectional flag. This variable determines the direction, horizontal (h) or vertical
(v), along which the evaluation of the block’s homogeneity will have the prior-
ity. Let Bd1 and Bd2 denote two sub-blocks of B along direction d ∈ {h, v}, and
c

(1)
d and c

(2)
d the corresponding texton histograms. We define the measure of

inhomogeneity of the block B along direction d as the χ2 dissimilarity measure
from Eq. (5.9):

H̄d = H̄
(1,2)
d = χ2(c

(1)
d , c

(2)
d ), d = h, v, (5.10)

and we define the split variable sd along direction d as:

sd =

{
1, if H̄d > Tb

0, if H̄d ≤ Tb,
(5.11)

where Tb is the block similarity threshold. If the block B is inhomogeneous
along direction d, then the value of sd signals splitting along that direction. In
practice, we allow splitting only along one direction at the time. Therefore,
we initialize sh and sv to zero and we evaluate them sequentially, in the order
that depends on the directional flag δ. If δ = h, we first evaluate sh, and then
only if sh = 0, we evaluate sv. The order is reversed when δ = v. Hence, there
are only three possible outcomes for (sh, sv) in our algorithm: (0, 0) implies
no further splitting of B, (0, 1) implies splitting vertically and (1, 0) splitting
horizontally.

If the block B is split along one of the directions, each of the two
new sub-blocks Bj , j = 1, 2, can be declared as amenable to further splitting
or not, depending on the reliability check, denoted as Q(j) in the algorithm in
Fig. 5.6. If the size of the block Bj is above a certain fraction r of the input
image dimensions, and if ρ(j) = 1, where ρ(j) is the reliability from Eq. (4.7),
then Q(j) = 1. This means that the block Bj is allowed to be tested for further
splitting, and its directional flag δ(j) is set to the direction opposite of the split
by which the sub-block was generated. If Q(j) = 0, the block Bj may not be
split any further. This reliability check prevents already unreliable and/or too
small block from being divided into less meaningful parts.
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Figure 5.6: Block diagram of the proposed top-down splitting procedure (see text
for notations). The core of the algorithm is indicated with dashed lines.
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The above described algorithm, illustrated in Fig. 5.6, can be applied
on any image block that is amenable to further splitting. We start the complete
top-down splitting procedure from the initial coarse division of the image into
four blocks, and we apply the above described algorithm on each of these blocks
and all of their sub-blocks (amenable to further splitting), at all the levels. The
top-down splitting procedure finishes once there are no more blocks that are
allowed to be tested for further splitting. The output is the division of the
image into blocks of adaptive sizes (see Fig. 5.5b), which consists of all the
blocks, from all the levels, which were not divided further. According to the
previously introduced notations, we will refer to these blocks by their central
positions l ∈ Θ, thus the block is denoted as B+l. The set Θ is now determined
by the adaptive division. Note that the sizes of these blocks differ, but the
size does not play a part in our equations. Therefore, we will not express it
explicitly, but rather assume that it is determined automatically by the central
position of the block.

5.3 MRF block-based context-aware (MBCA)
inpainting method

In this section, we propose a novel context-aware MRF-based inpainting algo-
rithm, where the search for labels is constrained to the regions of well-matching
context. For this purpose, we adapt our general approach for context-aware
patch (i.e., label) selection, presented earlier in Section 4.4, to the improved
context representation introduced in Section 5.2. Specifically, this modification
accounts for a new type of block division, new contextual descriptors and a new
criterion for choosing contextually similar blocks, as we will explain in detail in
Section 5.3.1. We call the proposed method MRF block-based context-aware
(MBCA) method.

We encode prior knowledge about the spatial consistency between
neighbouring image patches using an MRF model, similarly as in [Ko-
modakis 07] (see Section 5.1.1 for notations and definitions). Although we limit
the label set with our context-aware approach, the number of labels is still too
big and most of the existing inference methods will be inefficient. Therefore,
we propose a novel optimization approach in Section 5.3.2, which is suitable
for global inpainting problem with large number of labels.

5.3.1 Context-aware label selection
Regardless of the division strategy (into blocks of fixed or adaptive sizes), the
idea of our context-aware approach is to constrain the source region for un-
known patches, belonging to some current block B + l, to a region Φ(l) ⊂ Φ
with the context well matching that of B + l. Recall from Section 4.4.3 that
Σ(l) denotes the set of indices of the blocks that are contextually similar to
the current block B + l. If we use texton histograms c(l) from Eq. (5.8) as
contextual descriptors, then the set Σ(l) is determined as
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Σ(l) = {m|H̄(l,m) ≤ Tb}, (5.12)

where H̄(l,m) is defined as in Eq. (5.9), and Tb is the block similarity threshold
from Section 5.2.2. Then Φ(l) is defined as

Φ(l) =∪m∈Σ(l)((B +m) ∩ Φ), if ρ(l) = 1

((B + l) ∩ Φ) ∪
(
∪ l′∈∂l
ρ(l
′)=1

Φ(l′)
)
∪
(
∪ l′∈∂l
ρ(l
′)=0

((B + l′) ∩ Φ)
)
, if ρ(l) = 0,

(5.13)

taking into account both reliable and unreliable blocks, since this distinction
can also be made for blocks of adaptive sizes (see Eq. (4.7) for the definition
of reliability). Note that the constrained source region Φ(l) of the current
unreliable block B + l according to Eq. (5.13) is different from the one defined
earlier in Eq. (4.8). Here, it additionally includes neighbouring unreliable blocks
themselves (∪ l′∈∂l

ρ(l
′)=0

((B+l′)∩Φ)). This is because in the MRF-based approach,

Φ(l) remains fixed throughout the algorithm, i.e., it is determined once at the
beginning, as opposed to the “greedy” approach proposed in Section 4.5.2, where
it is re-evaluated in each iteration. This also means that unreliable blocks stay
unreliable while performing label selection, thus we have to make sure that at
the start we include all contextually similar regions of the image. Note that
the pseudo-code in Algorithm 1 still applies, just that now H̄(l,m) and c(l) are
differently defined and blocks are of adaptive sizes.

Now we can apply the above described approach for the context-
aware label selection in MRF-based inpainting. According to the notations
introduced in Section 4.4.1, B + ζ(i) denotes the block that contains the node
i. As a result of context-aware label selection, the labels of i are all possible
patches that are completely inside Φ(ζ(i)). This results in a node-specific label
position set, which we can formally define as

Λi = {p ∈ I|(Ψ + p) ⊂ Φ(ζ(i))}. (5.14)

Therefore, the node i can take a label centred at xi ∈ Λi, where #Λi < #Λ (Λ
was defined in Eq. (5.1)).

5.3.2 Efficient energy minimization

We propose an efficient inference method, which builds on our general infer-
ence approach neighbourhood-consensus message passing (NCMP), introduced
earlier in Section 2.4, in order to deal with MRF problems with a large number
of labels. This approach shares some ideas about label pruning and priority
scheduling from p-BP [Komodakis 07] (see also Section 5.1.2), in the sense
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Algorithm 4 Efficient energy minimization
1: initialization:
2: for i = 1 to Nn do {Nn is the total number of nodes}
3: compute D(xi, yi) (Eq. (5.2))
4: compute priority R(i) (Eq. (5.17))
5: set νi = 0 {indicates whether the node is unvisited (νi = 0) or visited

(νi = 1)}
6: end for
7: label pruning:
8: compute DW (xi, yi), ∀i ∈ S (Eq. (5.18))
9: for n = 1 to Nn do

10: î = arg maxi:νi=0R(i)
11: apply label pruning: choose L � #Λî labels centred at xî that yield

L smallest DW (xî, yî)

12: for any j ∈ ∂î such that νj = 0 do
13: update D(xj , yj) (Eq. (5.19)), DW (xj , yj) and R(j)
14: end for
15: set νî = 1
16: end for
17: inference method: x̂ = arg minE(x|y)

that we visit the nodes in some meaningful order and discard unnecessary la-
bels. However, our approach differs on several major points. Firstly, we apply
context-aware label selection to limit the number of labels. Secondly, we apply
priority scheduling and label pruning only once and prior to the actual infer-
ence, while in p-BP these two steps are a part of the message-passing process
(which was expensive in terms of memory and computational effort and even
prohibitive for application on bigger images). Thirdly, we introduce new formu-
lations of priority scheduling and label pruning, whose computation is simpler
and more memory efficient than computations in p-BP. Finally, we employ
a different message-passing inference algorithm to obtain the final inpainting
result.

We divide the optimization process into three steps: initialization
(computing priorities of nodes), label pruning (based on nodes’ priorities), and
the actual inference. The pseudo-code of the proposed efficient energy opti-
mization is given in Algorithm 4.

5.3.2.1 Initialization

This step assigns priorities to all MRF nodes, which determine their visiting
order in the next phase (label pruning). Like in p-BP, we shall assign higher
priority to nodes that are more confident about their labels. Since in our case
the number of labels #Λi for each node i can be different, we define the priority
in terms of the relative number of confident labels RNCi as
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R(i) =
1

RNCi
. (5.15)

Our idea is to determine this RNCi without the need to compute beliefs, but
rather based on the data cost D(xi, yi) defined in Eq. (5.2). To this end, let us
define the relative data cost between the label centred at xi and the observation
centred at yi as

Drel(xi, yi) = D(xi, yi)− min
xi∈Λi

D(xi, yi). (5.16)

Now we determine RNCi and the corresponding priority R(i) as

R(i) = (RNCi)
−1 =

( 1

#Λi

∑
xi∈Λi

(
TR −Drel(xi, yi)

)
+

)−1

(5.17)

where (τ)+ = 1 if τ > 0 and zero otherwise, and TR is the threshold for
the relative data cost, under which the assignment of a label to a node is
considered as confident. Practical computation of this parameter is explained in
Section 5.4. According to this priority definition, interior nodes, i.e., the nodes
whose observations have no known pixels, have the lowest priority, because by
definition their data cost is zero. Finally, we assign each node a binary variable
νi, which indicates whether the node has been visited (νi = 1) or not (νi = 0).
Initially, νi = 0,∀i ∈ S.

5.3.2.2 Label pruning

This step reduces the number of labels at each node i to a relatively small
number L� #Λi of the “best” candidate labels. To decide which labels are the
best candidates, we need a suitable distance measure. This distance measure
needs to take into account:

• data fidelity, as the agreement between the undamaged part of the obser-
vation centred at yi and the corresponding part at the label centred at
xi,

• contextual similarity between the regions (blocks) B+ζ(yi) and B+ζ(xi)
that contain yi and xi, respectively.

One such possible label-pruning distance measure is contextually-
weighted data cost that we define as

DW (xi, yi) =

(
1− e−H̄

(ζ(xi),ζ(yi))−Tb
)
D(xi, yi), (5.18)

where D(xi, yi) is the data cost and H̄(ζ(xi),ζ(yi)) is the contextual dissimilarity
between image blocks containing xi and yi, defined in Eq. (5.9). Tb is the
block similarity threshold from Section 5.2.2. Note that the weighting factor
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1− e−H̄(ζ(xi),ζ(yi))−Tb becomes very small when image blocks containing xi and
yi are contextually similar, and tends to one when the contextual dissimilarity
is very large. The constant Tb in the exponent prevents that the weighting
factor becomes zero when H̄(ζ(xi),ζ(yi)) = 0, and enables in this way that the
labels centred at xi coming from the contextually ideally matching region can
still be ordered based on their data cost D(xi, yi).

After computing the label-pruning distance measure DW (xi, yi) for
each node, the nodes are visited in the order of their priority (Eq. (5.17)), keep-
ing L labels with the smallest DW (xi, yi) and discarding the rest. When one
node chooses its labels, this information can be propagated to its neighbouring
nodes. In this way, those neighbouring nodes have more information based
on which they can perform label pruning, while also the agreement of labels
of neighbouring nodes can be enforced. As mentioned earlier, the data cost
D(xi, yi) of interior nodes and consequently, the initial value of DW (xi, yi), are
zero. Therefore, the only available information at the interior nodes is the one
coming from the neighbours. We propagate the neighbouring information by
updating the data cost at neighbouring nodes j of the current node î (the node
with the highest priority) as

D(t+1)(xj , yj) = D(t)(xj , yj) + min
xî

V (xî, xj), ∀xj ∈ Λj . (5.19)

This updated measure can now be used directly in Eq. (5.18) to update
DW (xj , yj). Such an update definition is motivated by the update of beliefs
within the global framework in p-BP, but we do not require the computation
of messages. Note that each node is visited only once during label pruning,
thus once chosen set of L labels per node remains fixed throughout the rest of
the inference algorithm. Therefore, the update is only necessary for unvisited
neighbouring nodes (with νj = 0), because their labels have not been pruned
yet (see Algorithm 4).

5.3.2.3 Inference

After labels of each node have been pruned, we can turn to minimizing the
energy in Eq. (5.4). We employ here our inference method NCMP, introduced
earlier in Section 2.4, to choose one label per node, where the set of labels x̂ over
all nodes minimizes the energy in Eq. (5.4). This method uses the message-
passing framework, where one joint message, which is a function of beliefs, is
sent from the whole neighbourhood to the central node. The message is de-
fined in Eq. (2.34), because this MRF is pairwise, while the belief is defined in
Eq. (2.31), where φ(xi, yi) = exp

(
− D(xi, yi)

)
. The data cost D(xi, yi) and

the pairwise potential V (xi, xj) are now computed from Eqs. (5.2) and (5.3),
respectively, but only for L chosen labels of each node. We initialize the al-
gorithm by first forming the initial mask by maximum likelihood estimation,
x̂i = arg maxxi∈Λi φ(xi, yi), and then we initialize belief of each node by setting
it to the value that favours the label of that node in the initial mask. We then
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run the algorithm iteratively until the specified number of iterations is reached.
Compared to LBP, which is the core of p-BP and which could also be used for
inference at this point, NCMP is simpler and faster, and was proved to give
good results in other patch-based MRF models (see Chapter 3).

The final inpainting result is formed by assigning each node i its
chosen label, which means that we copy the patch of pixel values centred at x̂i
to the positions within the mask centred at i. We can formally write this as

g(p+ i) = g(p+ x̂i), ∀p ∈ Ψ, (5.20)

where a mask Ψ is a set of positions centred at the origin (see Section 3.3).
However, the chosen patches need to be stitched together in the region of over-
lap. As suggested in [Komodakis 07], we use the minimum error boundary
cut [Efros 01] to find the seam along which the transition between two neigh-
bouring patches is the least visible.

5.4 Experiments and results
We evaluate the proposed MBCA method in applications of scratch and text
removal, and image editing, i.e., object removal. The reference methods for
comparison are chosen from all three categories of image inpainting methods:
“greedy”, multiple-candidate and global. For all the analysed methods we show
the best inpainting result, by optimizing the patch size (where possible). Fur-
thermore, for our method, if not stated otherwise, we use Nf = 18 filters (over
3 scales and 6 orientations) and K = 16 textons for contextual descriptors,
threshold for block similarity Tb = 0.15, number of chosen labels L = 10 and
Niter = 10 iterations of the inference algorithm. The threshold for priority
TR is computed as the median value of SSDs computed between each pair of
patches in the source region, as suggested in p-BP, just that in our case this
source region is constrained and it differs from one block to another. For all
the results, we used the division into blocks of adaptive sizes obtained with the
proposed top-down splitting procedure. This procedure was conducted until
the block size reached r = 1/4 of the image size for images in Sec. 5.4.1 and
r = 1/8 for images in Sec. 5.4.2, because the former images contain a close-up
of the object (see Fig. 5.7), thus finer division would not be beneficial.

5.4.1 Experiments and comparisons for scratch and text
removal

For the task of scratch and text removal, we use the dataset of four images
from [Xu 10] (the top row of Fig. 5.7), where the ground truth is available.
The reference methods include the “greedy” approach from [Criminisi 04]1,
the commercially available software Content Aware Fill of Adobe PhotoShop,
based on [Wexler 07,Barnes 09], the multiple-candidate sparsity-based method

1MatLab software from http://www.cc.gatech.edu/∼sooraj/inpainting/.



5.4 Experiments and results 149

PSNR = 20.00 (9x9)

PSNR = 21.82

PSNR = 23.89 (7x7) PSNR = 23.83 (7x7) PSNR = 28.20 (7x7)PSNR = 20.62 (7x7)

D
eg

ra
d

ed
 

im
ag

es
M

C
S

 [
X

u
 1

0
]

A
d

o
b

e’
s 

C
o

n
te

n
t 

A
w

ar
e 

F
il

l
O

u
r 

re
su

lt
s

[C
ri

m
in

is
i 

 0
4
]

PSNR = 18.41 (7x7) PSNR = 21.15 (7x7) PSNR = 25.34 (5x5)

PSNR = 17.35 PSNR = 20.74 PSNR = 25.03

PSNR = 20.60 (11x11) PSNR = 21.74 (7x7) PSNR = 25.12 (11x11)PSNR = 19.49 (7x7)

PSNR = 23.41 (7x7) PSNR = 22.95 (5x5) PSNR = 26.85 (5x5)PSNR = 20.10 (7x7)

O
ri

g
in

al
 

im
ag

es
p

-B
P

 [
K

o
m

o
d

ak
is

 0
7
]

Figure 5.7: Comparison of different inpainting methods for scratch and text removal
(see text for details).
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(MCS) from [Xu 10]2, and the global method from [Komodakis 07]3, which is
most related to ours. Peak signal-to-noise ratio (PSNR) values indicated in
Fig. 5.7 are computed only in the target (missing) region as

PSNR = 20 log10

1√
MSE

MSE =

∑
p∈Ω

(
gorig(p)− ĝ(p)

)2
#Ω

, (5.21)

with the pixel values in the range [0,1], where gorig is the ground truth image
and ĝ is the resulting inpainted image.4 The patch size is shown in the paren-
thesis in Fig. 5.7. We varied the patch size from 5×5 to 13×13 and chose the
one with the highest PSNR for each method. Only the Content Aware Fill does
not require explicit specification of the patch size.

The results in Fig. 5.7 demonstrate that the proposed MBCA method
gives visually pleasing result, with almost no disturbing artefacts. Compared to
the methods from [Criminisi 04,Komodakis 07] and Adobe’s Content Aware Fill,
our method yields the best result for all images, both quantitatively (in terms of
PSNR) and qualitatively. Compared to the MRF-based p-BP [Komodakis 07],
the increase in PSNR ranges from 0.6 to 2.8dB. Our PSNR values are lower
than those of MCS [Xu 10] (with the difference in PSNR ranging from 0.5 to
1.3dB). This can be partly due to the fact that [Xu 10] is ideally suited for
this type of problems (thin missing regions), while our method is generally
formulated to cope with larger “holes”. Nevertheless, this example shows that
our method can also deal with scratch/text removal and achieve comparable,
and in many cases better results than related and state-of-the-art methods.

5.4.2 Experiments and comparisons for object removal

In this subsection, we deal with a more demanding task of object removal,
which requires large missing regions to be inpainted. The bigger the missing
region is, the more ambiguity there is on how to fill it in.

In Fig. 5.8, we show the comparison of the proposed MBCA method
with the Content Aware Fill and p-BP [Komodakis 07] for the “bungee” image.
We can see that our method is more successful in preserving structure in the
image. For example, see artefacts on the roof of the building and the grass
area below it in the result of the Content Aware Fill (see marked areas), and
the border between land and water in the result of p-BP [Komodakis 07] (see
marked areas).

2Test images and results were received from the authors.
3We use our own implementation in MatLab with Lmin = 3, Lmax=10 and 10 iterations

of the p-BP algorithm.
4We chose to compute PSNR in this way because the same approach was used in [Xu 10],

thus we could compare our results with the ones they reported.
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Input image Adobe’s Content Aware Fill 

p-BP [Komodakis 07] MBCA 

Figure 5.8: Comparison of inpainting results for the “bungee” image. From left to
right and top to bottom: input image with the missing region marked in black, result
of the Content Aware Fill, result of p-BP [Komodakis 07] (11×11 patches), and result
of the proposed MBCA method (13×13 patches).
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Input image Adobe’s Content Aware Fill 

p-BP [Komodakis 07] 

MBCA 

[Le Meur 12] 

GBCA 

Figure 5.9: Comparison of inpainting results for the “baseball” image. From left to
right and top to bottom: input image with the missing region marked in black, result
of the Content Aware Fill, result of [Le Meur 12], result of p-BP [Komodakis 07] (7×7
patches), result of our GBCA method (13×13 patches and division into 3×4 blocks
of fixed size), and result of the proposed MBCA method (15×15 patches and division
into blocks of adaptive sizes from Fig. 5.5b).
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Input image 

Adobe’s Content Aware Fill [Le Meur 11] 

p-BP [Komodakis 07] MBCA 

Figure 5.10: Comparison of inpainting results for the “wall” image from [Kawai 08].
From left to right and top to bottom: input image with the missing region marked
in black, result of the Content Aware Fill, result of [Le Meur 11], result of p-BP [Ko-
modakis 07] (7×7 patches), and result of the proposed MBCA method (7×7 patches).
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Input image 

Adobe’s Content Aware Fill [Le Meur 11] 

p-BP [Komodakis 07] MBCA 

Figure 5.11: Comparison of inpainting results for the “lake” image from [Kawai 08].
From left to right and top to bottom: input image with the missing region marked
in black, result of the Content Aware Fill, result of [Le Meur 11], result of p-BP [Ko-
modakis 07] (7×7 patches), and result of the proposed MBCA method (7×7 patches).
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Input image 

Adobe’s Content Aware Fill [Le Meur 11] 

p-BP [Komodakis 07] MBCA 

Figure 5.12: Comparison of inpainting results for the “office” image from [Kawai 08].
From left to right and top to bottom: input image with the missing region marked
in black, result of the Content Aware Fill, result of [Le Meur 11], result of p-BP [Ko-
modakis 07] (7×7 patches), and result of the proposed MBCA method (5×5 patches).
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Table 5.1: Comparison of computation times for different images.
Image p-BP [Komodakis 07] Proposed

(patch size) method
“bungee” (13×13) 253.88s 113.76s
“baseball” (15×15) 1295.95s 499.5s

“wall” (7×7) 103.33s 18.54s
“lake” (7×7) 138.76s 45.14s
“office” (5×5) 214.23s 58.42s

Table 5.2: Computation times per each phase of the algorithms for the “baseball”
image (Fig. 5.9) for 15×15 patches.

Phase p-BP [Komodakis 07] Proposed method
threshold computation 144.44s 73.35s

initialization 20.29s 7.88s
label pruning 1126.45s 400.76s
inference 2.67s 0.82s

overhead computations 2.1s 16.69s

The results in Figs. 5.9, 5.10 and 5.11 also show improvements over
p-BP [Komodakis 07]. Compared with the Content Aware Fill, our results are
better (see Figs. 5.11 and 5.12) or comparable (Figs. 5.9 and 5.10). Finally, we
also show the results of two multiple-candidate state-of-the-art methods: the
very recent SR-based method from [Le Meur 12] in Fig. 5.9, and the method
from [Le Meur 11] in Figs. 5.10, 5.11 and 5.12.5 The result of our method is
comparable to that of [Le Meur 12], although our method preserves better the
border between snow and sky. Compared with [Le Meur 11], our method gives
superior results on all images in Figs. 5.10, 5.11 and 5.12.

Additionally, Fig. 5.9 shows the advantage of the proposed MBCA
method over the GBCA method we proposed in Chapter 4. The texture in
the snow contains less artefacts and the border between snow and sky is better
preserved. The advantage is also shown in Fig. 5.13 (see marked areas). Besides
yielding qualitatively better results, the MBCA method also has the advantage
of being more automatic, due to the automatic division into blocks of adaptive
sizes and choosing block matches based on the threshold Tb.

Table 5.1 shows the computation times of the p-BP from [Ko-
modakis 07] and the proposed MBCA method, using our own MatLab imple-
mentation of both methods on Intel i5-2520M 2.5 GHz CPU with 6GB RAM,
for several test images from Figs. 5.8, 5.9, 5.10, 5.11 and 5.12. For fair compar-
ison, we tested the algorithms for the same patch size, which was in this case
the one yielding the best result of the proposed method, as indicated in the
first column of the table. Note that for the images “wall” and “lake”, the best

5Results are available on the author’s website.
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Input image MBCA GBCA 

Figure 5.13: Comparison of inpainting results for the “ski resort” image. From left
to right: input image with the missing region marked in black, result of our GBCA
method (17×17 patches and division into 4×6 blocks of fixed size), and result of the
proposed MBCA method (13×13 patches and division into blocks of adaptive sizes).

result of the reference p-BP method was obtained with the same patch size.
As we can see from the results, the proposed method is obviously much faster,
2 to 6 times, in all the tested cases, with different image and patch sizes and
different sizes of the missing region. However, note that the proposed method
is much slower than the earlier proposed GBCA method (see Table 4.1) due to
the MRF approach and allowing multiple choice of labels.

Most of the computation time is spent on label pruning (which is the
forward pass of the first iteration in p-BP), 87% for p-BP and 80% for our
method, as shown in Table 5.2 for the “baseball” image (Fig. 5.9), and this
depends on the size of the label set. Therefore, the acceleration of our method
is largely due to the use of contextual information, which yields a smaller
(constrained) label set, and hence there is less work for pruning. Initialization
is also much accelerated due to the same reason. Finally, our inference method
is also faster than p-BP (i.e., the backward pass of the first iteration and both
passes of subsequent iterations), by about 3-4 times on the “baseball” image,
with the same number of iterations (Niter = 10) and the same number of
pruned labels (L = Lmax = 10). Overhead computations include stitching the
patches together and in the case of the proposed method, texton computation,
division into blocks of adaptive sizes and block matching. Note also in Table 5.2
that significant amount of time is needed for the computation of thresholds,
which include bconf and bprune in p-BP and TR in our method. However, these
threshold computations are for the most images still much faster than label
pruning.
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5.4.3 Effect of the parameter choice

Let us first comment on the choice of contextual descriptors. Based on extensive
experimental evaluation on a number of natural images using the division of
the image into fixed-size blocks, we concluded that texton histograms (TH) are
a better choice compared with the combination of averaged filter outputs and
colour (AFC) from Chapter 4. The main reason is that they allow us to set the
threshold Tb for block similarity, i.e., to define as blocks of similar context the
ones which yield dissimilarity H̄(l,m) ≤ Tb, where H̄(l,m) is defined in Eq. (5.9).
This threshold is universal, i.e., independent of the block’s content and/or
size. The value of the threshold depends on the number of filters Nf and the
number of textonsK, which will be discussed below. An alternative to having a
threshold would be to choose for each block a fixed number of block matches as
blocks with similar context, as we proposed earlier in Section 4.4.3. However, it
is obvious that not all the blocks have equal number of good matches, especially
if we look at different images (see Figs. 5.4 and 5.5a). Furthermore, good
thresholding performance is crucial for the success of our division into blocks
of adaptive sizes (Section 5.2.2).

We illustrate this conclusion in Fig. 5.14. We used Nf = 18 filters
(across 6 orientations and 3 scales) and K = 16 textons and we found Tb = 0.15
to be a good choice for a threshold for TH (see blocks within red rectangles in
the first row of Figs. 5.14(a) and (b)). We explored also the possibility of setting
a threshold Te for AFC, and we found that for the above mentioned filtering
parameters Te = 2× 10−4. We can see in Fig. 5.14 that AFC is less robust to
the block’s content, which results in a selection of many wrong block matches
(see blocks within red rectangles in the second row of Figs. 5.14(a) and (b)).
This behaviour is less desirable than having a smaller number of matches, which
would all be correct, as in the first row of Figs. 5.14 (a) and (b). Furthermore,
we can see in Fig. 5.14 that TH produces better block-matching results in this
example than AFC, in the sense that more similar blocks are found and they
are better ordered.

One could argue that the threshold Te for AFC could be set to some
lower value to achieve similar block matching as with TH. However, in the
second row of Fig. 5.15, we can see that Te = 2 × 10−4 is already too low
because it chooses only the current block as the constrained source region,
which can be too small to find well-matching patches. On the other hand,
Tb = 0.15 chooses a sufficient number of good matches also for this image.
Therefore, we can conclude that indeed TH is more robust to block’s content,
especially across different images.

We also made experiments for TH with Nf = 24 filters (over 3 scales
and 8 orientations) and K = 32 textons, which requires the threshold Tb to
be adapted to 0.2 to achieve similar block-matching result. The comparison
of divisions into blocks of adaptive sizes is shown in the top row of Fig. 5.16.
We can see that using more filters gives finer division, which is the case for
most images. This is sometimes justified by the content of the image, but most
often this division is too fine and leaves more unreliable blocks (see Eq. (4.7)),
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Figure 5.14: Examples of block matching for two blocks from the “elephant” image
(Fig. 5.4). (a) and (b): current block (in the first column) and the corresponding 10
matches (including the current block itself) obtained by comparing different features:
TH and AFC. Block matches are ordered from left to right from most to least similar.
Above each block match, the dissimilarity value is shown (χ2 for TH and e as SSD
of feature vectors for AFC). The red rectangles mark the blocks whose dissimilarity
is lower than the threshold: Tb = 0.15 for TH and Te = 2× 10−4 for AFC.
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Figure 5.15: Example of block matching for one block from Fig. 4.8. The current
block (in the first column) and the corresponding 10 matches (including the current
block itself) obtained by comparing different features: TH and AFC. Block matches
are ordered from left to right from most to least similar. Above each block match,
the dissimilarity value is shown (χ2 for TH and e as SSD of feature vectors for AFC).
The red rectangles mark the blocks whose dissimilarity is lower than the threshold:
Tb = 0.15 for TH and Te = 2× 10−4 for AFC.

which is often undesirable. On the other hand, as we can see from the results
in the bottom row of Fig. 5.16, similar results can be achieved with both sets of
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Figure 5.16: Effect of filtering parameters on the division into blocks of adaptive
sizes and the final inpainting result. Top row (from left to right): input image with
the missing region marked in black, division obtained with Nf = 18, K = 16 and
Tb = 0.15, and division obtained with Nf = 24, K = 32 and Tb = 0.2. Bottom row
(from left to right): result of the MCS method [Xu 10], result of the proposed MBCA
method using the division above it and 11×11 patches, and result of the proposed
MBCA method using the division above it and 11×11 patches.

parameters, which are better than the result of the MCS method from [Xu 10]
(see the marked area). In the end, we found the first set of parameters, i.e.,
Nf = 18, K = 16 and Tb = 0.15, to be a good and stable choice for different
images.

Finally, we comment on the choice of L, i.e., the number of labels
kept after label pruning. We found L = 10 to be a good trade-off between algo-
rithm’s computational complexity and quality of the result, because more cho-
sen labels means longer computation time. In the method from [Komodakis 07],
Lmax was allowed to go up to 50, but we consider this number to be unnec-
essarily high in our approach, considering that our label set is already limited
due to the context-aware label selection.



5.5 Conclusion 161

5.5 Conclusion

In this chapter, we extended our work on context-aware patch-based inpaint-
ing. We introduced several contributions compared to Chapter 4. First of all,
we introduced a novel context representation within blocks of adaptive sizes
using contextual descriptors in the form of normalized texton histograms. Nor-
malized texton histograms have been widely used for image segmentation and
texture classification, but to our knowledge, they have never been used for
image inpainting before. We showed the advantages of these contextual de-
scriptors compared to averaged filter outputs and colour used in Chapter 4.
Additionally, to divide the image into blocks of adaptive sizes, a novel top-
down splitting procedure was introduced, which is also based on contextual
descriptors.

We applied this improved context-aware approach within a novel
MRF-based inpainting method (MBCA method) in order to reduce the number
of possible labels per MRF node and choose them in such a way that they bet-
ter fit the surrounding context. MRF-based, i.e., global approach, overcomes
some of the limitations of the “greedy” approach, which we used in Chapter 4.
We also proposed a simple and efficient way to perform optimization by first
pruning the labels, and then separately employing the inference method to ob-
tain the final inpainting result. Labels are pruned for each node separately by
visiting the nodes in the order of priority, which is necessary to ensure that
the node has sufficient information based on which it can choose its labels. La-
bel pruning in the order of priority was motivated by the original MRF-based
approach for inpainting, which we also described in detail in this chapter. How-
ever, our approach has several major differences, as we pointed out earlier in
the chapter.

We evaluated the proposed method on two example applications:
scratch and text removal and photo-editing. Results demonstrated the ben-
efits of our approach in comparison with state-of-the-art methods in terms of
quality and additionally, in comparison with a related MRF-based method, in
terms of speed. We also qualitatively compared the results of the proposed
MBCA method with the earlier proposed GBCA method from Chapter 4, and
we showed that they are more visually pleasing, at the expense of the higher
computation time.

In both this chapter and Chapter 4, we evaluated our inpainting
methods on natural images from Berkeley segmentation database6, which is
often used as a data set in image processing and analysis. Our method could
also be used for error concealment in video and multi-view synthesis, e.g.,
for free viewpoint television (FTV). Rather than applying the method “as is”,
e.g., frame-per-frame, we could gain more by exploiting temporal and/or depth
information. Some of these possibilities are discussed in Section 7.2. Finally, in
the next chapter, we consider another special application of image inpainting
for crack removal in digitized paintings.

6http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
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This work resulted in one journal paper submission [Ružić 13b],
while some parts were presented in two conference publications [Ružić 12b,
Ružić 13a].



6
Crack removal in artwork

Today, museums and galleries are digitizing their artwork for the purpose of
archiving and dissemination. Sometimes, these digitized paintings are avail-
able online in high resolution, thus enabling a large audience to appreciate the
paintings and their finest details. Furthermore, this digitization has opened
the door for a new application of digital image processing and analysis focused
on art investigation.

In this chapter, we are focusing on virtual restoration of artwork,
which enables the removal of signs of ageing of a painting, such as cracks.
Specifically, we address the problem of crack removal in the digitized versions
of the Adoration of the Mystic Lamb, also known as the Ghent Altarpiece. Crack
removal involves filling the detected cracks with appropriate content. Hence, it
can be regarded as a special application of image inpainting, which we studied
earlier in Chapters 4 and 5. However, cracks in old paintings are particular in
a number of ways, which makes crack inpainting a challenging problem, where
most “off-the-shelf” general inpainting methods fail. Therefore, we develop a
novel crack inpainting method (Section 6.6), which incorporates our earlier
ideas of context-aware inpainting, but also specifics of the application.

6.1 Introduction

Image processing for art investigation can be roughly divided into two large
groups of methods. One group of digital image analysis methods focuses on
characterizing the style of the painter [Platiša 11] to, e.g., facilitate artist iden-
tification and forgery detection [Johnson 08,van der Maaten 10,Daubechies 12].
The other group of methods focuses on virtual restoration of digitized paintings
with the goal of improving the visual experience or facilitating art historical
and iconographical analysis. Virtual restoration usually aims at removing the
signs of ageing in paintings, such as stains, artefacts and cracks. In this work,
we will focus on crack removal.
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6.1.1 Cracks in old paintings

Breaking of the paint layer, called craquelure or cracks, is one of the most com-
mon deteriorations in old paintings (see examples in Figs. 6.2, 6.4 and 6.3). It
is a sign of the inevitable ageing of materials, and it constitutes a record of
their degradation. The formation and the extent of cracks is caused and influ-
enced by different factors, by which they can be divided into age, mechanical,
premature and varnish cracks.

Age cracks are mainly caused by climate changes, such as varia-
tions in temperature, relative humidity or pressurization (e.g., during trans-
port via air when the pressure in the cargo compartment is lower than in the
cabin) [Abas 03]. Mechanical cracks result from external impacts, such as vi-
brations during transport and human handling. Age-related and mechanical
cracks can affect the entire paint layer structure, including both the preparation
layer and the paint layers on it. On the other hand, premature cracks [Mo-
hen 06] are more dull-edged than those formed by ageing, and originate in only
one of the paint layers. They generally reveal a defective technical execution
at the painting stage, such as not leaving enough time for a layer to dry, or ap-
plying a layer that dries faster than the underlying one. Finally, varnish cracks
are formed in the varnish layer, which protects the paint layer and is originally
transparent. During ageing, this varnish layer loses its transparency and be-
comes greenish or yellowish. Since also the paint layer ages, varnish is no longer
capable of keeping the paint layer intact, thus cracks begin to form [Abas 04].

Crack patterns can be of different shapes: rectangular, circular, web-
shaped, unidirectional, tree-shaped or even completely random [Cornelis 13].
The appearance of cracks and the whole crack pattern depends on the choice of
materials and methods used by the artist. This makes cracks useful for judging
authenticity, as is proposed in [Bucklow 97]. Cracks can also assist conservators
by providing clues on the causes of degradation of the paint surface. This can be
used for degradation monitoring of the paint layer, or a more in-depth study on
factors that contribute to the formation of cracks, so that steps can be taken to
reduce them [Abas 04]. The potential of using cracks as a non-invasive means
of identifying the structural components of paintings is highlighted in [Buck-
low 98]. The correlation between the network of cracks on the surface and
the structure of the panel below is also investigated in [Mohen 06] by using
multi-layered X-ray radiography. An area which is thought to be of great in-
terest to art conservation is content-based analysis, where cracks are used for
content-based retrieval of information from image databases [Abas 03].

In this chapter, we consider cracks to be an undesired pattern in
digitized paintings, which we would like to remove by the means of virtual
restoration. This virtual removal employs digital image processing techniques
and it consists of two steps: 1) detection of cracks, and 2) “filling” the detected
cracks such that they are no longer visible. Although cracks are inherent to our
appreciation of these paintings as old and valuable, they deteriorate perceived
image quality. Cracks become especially prominent and disturbing when zoom-
ing in on details of the high-resolution (HR) scans of the paintings [Pižurica 13],
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Figure 6.1: The opened (top) and the closed view (bottom) of the Ghent Altarpiece.

which are nowadays made available for the larger audience through websites
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such as the Google Art Project1 or the Closer to Van Eyck2. Since cracks are
never removed in the actual, physical restoration of the painting, their virtual
removal is the only way to obtain the painting as it used to appear before the
ageing process. This does not only make the appearance more pleasing, but it
can also be of interest in psychovisual studies, to analyse how our perception of
the painting is affected when observing it in its initial state. Moreover, crack
removal can facilitate art historical and iconographical analysis of paintings.

6.1.2 Case study: the Ghent Altarpiece
In this work, we focus on the difficult problem of crack inpainting in the Ado-
ration of the Mystic Lamb, also known as the Ghent Altarpiece (see Fig. 6.1).
The polyptych consisting of 12 panels, dated by inscription 1432, was painted
by Jan and Hubert van Eyck, and is considered as one of the most important
masterpieces in the world. It is still located in the Saint Bavo Cathedral in
Ghent, its original destination.

We got involved in this research on the initiative of prof. Ingrid
Daubechies from the Mathematics Department, Duke University, USA, who
brought us into contact with prof. Mark de Mey from the Royal Flemish
Academy of Belgium (KVAB)3, Belgium, and prof. Maximiliaan Martens and
Emile Gezels from the Department of Art, Music and Theatre Sciences, Ghent
University, Belgium. Together with prof. Ann Dooms and ir. Bruno Cornelis
from the Vrije Universiteit Brussel, Belgium and, ir. Ljiljana Platiša from the
IPI group, we started collaboration on this project, aimed at developing image
processing tools for art investigation.

In the Ghent Altarpiece, as in most 15th century Flemish paintings
on Baltic oak, fluctuations in relative humidity cause the wooden support to
shrink or expand, thus forming age cracks. These cracks are particular in a
number of ways:

1. The width and length of cracks ranges from very narrow, barely visible
hairline structures to larger areas of missing paint (see enlarged detail on
the far right of Fig. 6.2).

2. Depending on the painting’s content, cracks appear as dark thin lines on a
bright background or vice versa, bright thin lines on a darker background
(see the enlarged detail in the bottom right of Fig. 6.4).

3. Often, cracks have very similar characteristics, e.g., colour and width,
as brush strokes that depict fine details, thus it is difficult to make a
distinction between them in some parts of the image (see the eye lashes
in Adam’s eye in the bottom left of Fig. 6.4, and the letters of the book
in Fig. 6.3).

1http://www.google.com/culturalinstitute/project/art-project
2http://closertovaneyck.kikirpa.be/
3At the time of this research, prof. Mark de Mey was affiliated with the Flemish Academic

Centre for Science and the Arts (VLAC), Belgium.
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Figure 6.2: The God the Father panel and the enlarged image of the locking pin.

Figure 6.3: The Annunciation to Mary panel and the enlarged image of the book.
The height of one letter on the painting is approximately 0.17cm.

4. Some of the cracks are surrounded with bright borders (visible in the
enlarged details in Figs. 6.2 and 6.4, and mostly visible in the enlarged
detail on the far right of Fig. 6.3), which cause incorrect and visually
disturbing inpainting results. These borders are caused by either the
reflection of light on the inclination of the paint caused by the crack on
the varnish layer, or the exposure of the underlying white preparation
layer due to the accidental removal of the surface paint due to wear or
after cleaning.
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Figure 6.4: The Adam panel and the enlarged image of Adam’s head, eye and
mouth. The width of the mouth on the painting is approximately 2.86 cm. Black and
white squares on the detail of Adam’s mouth illustrate different types of cracks: dark
cracks on a bright background (black square) and bright cracks on a dark background
(white square).
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As we mentioned earlier, crack removal does not only enhance the
visual experience and aids psychovisual studies, but it can also facilitate art
historical analysis. In the Ghent Altarpiece, for example, of great interest to art
historians is the text in the book in the Annunciation to Mary panel (Fig. 6.3),
because its paleographical deciphering can give new clues to the iconographical
and theological meaning of this artwork. Since this panel is heavily damaged
by cracks, which, in addition, have similar characteristics as the letters, crack
removal can improve the legibility of the text and thus, aid paleographers in
its deciphering. Finally, it is important to mention that currently the physical
restoration of the Ghent Altarpiece is taking place, and it will last for (at
least) another four years. However, in this restoration, the cracks will not be
physically removed, thus our virtual restoration is a valuable “complement” to
the actual ongoing physical restoration.

In this work, we used HR scans of the original photographic negatives
(Kodak Safety Film 13×18 cm) taken by a professional photographer, the late
Rev. Alfons Dierick. This material is currently preserved in the Alfons Dierick-
fonds archive of Ghent University. The images were acquired under different
conditions, i.e., different field of view, lighting circumstances and chemicals
used to develop the negatives. Moreover, the negatives were scanned at differ-
ent resolutions and with different scanning hardware. As a consequence, the
quality of the images varies significantly making a general, automatic crack
detection and inpainting a very difficult problem. Now, there is also a Closer
to Van Eyck4 archive, which consists of images of the painting acquired in four
different modes: digital macro photography, digital macro infra-red photog-
raphy, infra-red reflectography and X-radiography. However, this archive was
not at our disposal during our research. We intend on working on this new
database in our future work.

6.2 Related work

Automatic detection of crack-like patterns or similar elongated structures is well
studied in many applications of digital image processing. Examples, other than
old paintings, include medical images of veins and vessels [Zana 01], images of
fingerprints, and satellite imagery of rivers and roads. Some common principles,
which are often referred to as ridge-valley structure extraction [López 99], can
be used to extract or detect these crack-like patterns in order to separate them
from the rest of the image. An overview of different crack detection techniques
can be found in [Abas 04]. These include different types of thresholding, the
use of multi-oriented filters (e.g., Gabor filters, see Section A.2) and a variety
of morphological transforms.

The second step of virtual restoration of digitized paintings is to fill
in the cracks in a visually plausible way. For this purpose, image inpainting can
be used (see Chapters 4 and 5), where the detected cracks are treated as missing

4http://closertovaneyck.kikirpa.be/
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regions that need to be filled in. In Chapter 4, we made a distinction between
two large groups of methods: geometry-based and patch-based methods. While
patch-based methods (in most cases) fill in the missing region patch-by-patch,
geometry-based methods aim at replacing one missing pixel at the time, thus
they can be regarded as pixel-based.

Crack detection and removal is related to the detection and removal of
scratches and other artefacts from films [Joyeux 99,Kokaram 95a,Kokaram 95c],
but these methods exploit information from several frames and thus cannot be
applied directly to the restoration of old paintings. There are several methods in
literature that explicitly address the complete virtual restoration problem in old
paintings [Giakoumis 98,Barni 00,Giakoumis 06,Solanki 09,Spagnolo 10]. The
method from [Barni 00] is based on a semi-automatic crack detection procedure,
where users need to select a crack point. The algorithm will then track other
suspected crack points based on two main features, namely absolute grey level
and crack uniformity, under the assumption that the cracks are characterized by
a uniform grey colour, which is darker than the background. Once the algorithm
has completely detected cracks, they can be removed by interpolation. The
authors in [Barni 00] propose to use interpolation based on weighted averaging
of the known pixels within some radius from the crack point [Franke 82].

In [Giakoumis 98,Giakoumis 06,Solanki 09,Spagnolo 10], crack pat-
terns are detected by thresholding the output of the morphological top-hat
transform [Meyer 79]. Cracks are subsequently separated from brush strokes
by: 1) using the hue and saturation information in the HSV or HSI colour
space and feeding it to a neural network, or 2) letting a user manually select
seed points. Finally, the cracks are inpainted using order statistics filtering for
interpolation [Giakoumis 06,Solanki 09] or controlled anisotropic diffusion [Gi-
akoumis 06]. Order statistics filters proposed for this purpose are the median
and the mean filters and their variations. Controlled anisotropic diffusion rep-
resents a modification of anisotropic diffusion [Perona 90], which takes into
account crack orientation. This means that the diffusion is applied only in the
direction perpendicular to the crack direction. Both order statistics filtering
and controlled anisotropic diffusion can be considered as very simple pixel-based
inpainting methods, from which controlled anisotropic diffusion produces better
crack inpainting results, as shown in [Giakoumis 06]. Finally, in [Spagnolo 10]
patch-based texture synthesis is applied to fill in the cracks in combination
with median filtering, in the sense that if a well-matching replacement patch
cannot be found, the central pixel of the patch is replaced by the median value
of the pixels in the patch.

Another virtual restoration method was presented in [Hanbury 03],
which focuses on detecting and removing cracks from infra-red reflectograms.
These types of images show the underdrawing, i.e., the basic concept of the
painting that is drawn by the artist on the ground layer. The authors assume
that the cracks are thinner than the brush strokes and that they have a favoured
orientation. Then they use viscous morphological reconstruction [Serra 99] to
detect and fill in the cracks in one step.
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Related work on virtual restoration of old paintings is also presented
in [Pei 04, Papandreou 08], where the goal is to remove undesirable patterns,
not specifically cracks, which are manually indicated. For example, the method
in [Pei 04] removes stains and artefacts in Chinese paintings, which are caused
by ageing, by the means of texture synthesis similar to [Efros 99]. To pre-
serve linear structures in the paintings, it is required to manually continue the
structures through the missing (damaged) region. On the other hand, Papan-
dreou et al. [Papandreou 08] propose an inpainting method based on the hidden
Markov tree model in the complex wavelet domain [Kingsbury 01]. They apply
it on the wall paintings to fill in the gaps, which arise from making a mosaic of
small fragments of the painting.

6.3 Crack detection
A hybrid approach for crack detection in the Ghent Altarpiece was proposed
in [Cornelis 13], which deals with specific problems of cracks in this painting
described earlier in Section 6.1.2. This approach employs three different crack
detection techniques: filtering with oriented elongated filters [Poli 97], a multi-
scale morphological top-hat transform [Meyer 79], and image reconstruction
from learned dictionary representations using K-SVD [Aharon 06]. Each of
these techniques has its own strengths and weaknesses:

• Oriented elongated filters detect most of the cracks of various widths,
but they also detect other elongated structures, such as brush strokes
and image objects.

• A multi-scale morphological top-hat transform reduces the number of
falsely detected cracks and it makes a distinction between fine and coarser
cracks, thus improving on the classical top-hat transform. However, some
of the very fine cracks can remain undetected due to the way the crack
maps are combined over the scales.

• The K-SVD approach yields a smooth crack map, but the results depend
on the ability of the learned dictionary to represent cracks of different
widths and orientations.

Fig. 6.5 shows an overview of the hybrid crack detection approach
(for the details of each of the three techniques, see [Cornelis 13]). The method
also includes pre- and post-processing. Pre-processing is necessary to enhance
the detection performance in low-contrast areas, thus it comprises of a local
contrast enhancement step. Post-processing, on the other hand, differentiates
cracks and brush strokes falsely detected as cracks by using a semi-automatic
K-means clustering-based procedure [Duda 73]. The idea is to divide a crack
map into smaller segments (see [Cornelis 13] for details), which are clustered
based on the combination of features like colour, physical properties (length,
orientation and eccentricity), colour of the surrounding region and spatial den-
sity. From the resulting clusters, the ones that correspond to falsely detected
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Figure 6.5: Overview of the crack detection procedure [Cornelis 13]. Inpainting
pre-processing (within dashed block) is optional, applied only when bright borders
around cracks are very prominent (e.g., in the image from Fig. 6.3).

(a) (b) (c) (d)

Figure 6.6: Crack detection results [Cornelis 13]: (a) original, (b) dark crack map,
(c) bright crack map, and (d) combined dark and bright crack maps.

brush strokes are manually removed. These small segments are also used in
the final step of the algorithm: a specially designed voting procedure, which
combines the post-processed crack maps obtained by the three techniques into
one single crack map. This voting basically marks the segment as a crack if
most of its pixels are detected as cracks with at least two detection methods.

The above described method can be applied to detect both dark
cracks on a light background, the result being a dark crack map, and bright
cracks on a darker background, resulting in a bright crack map. To obtain
the final crack map, dark and bright crack maps are simply combined (see an
example in Fig. 6.6).

Recall that in Section 6.1.2, we outlined the existence of
whitish/bright borders around the cracks as one of the problems of the cracks
in the Ghent Altarpiece, which can negatively influence inpainting result, as



6.4 Patch-based methods in crack inpainting 173

Figure 6.7: Detecting white borders [Cornelis 13]. Left: original colour image
overlapped with a square, which shows the values in the blue plane of the RGB image
representation. Right: detection result in the blue plane.

we will show later in Section 6.5. These borders in most of the images can
be detected with the bright crack map. However, in some cases, e.g., in the
book in Fig. 6.3, the bright crack map is insufficient because the borders are
much wider than the cracks. To address this problem, an optional step called
inpainting pre-processing is introduced, which extends the crack map with cor-
responding bright regions by using their high response in the blue plane of the
RGB representation of the image, because it was experimentally determined
that in this plane they are the most prominent, thus the easiest to detect (see
Fig. 6.7).

6.4 Patch-based methods in crack inpainting

In the process of virtual restoration of digitized paintings, cracks, once de-
tected, can be treated as missing regions that need to be filled in. Therefore,
removal of cracks falls into the category of image inpainting (see Chapter 4
for an overview of inpainting methods). Crack inpainting methods considered
in literature so far are mostly pixel-based, and include order statistics filter-
ing [Giakoumis 06,Solanki 09], controlled anisotropic diffusion [Giakoumis 06]
and interpolation [Barni 00]. In [Spagnolo 10], a patch-based texture synthe-
sis method was used (see Section 6.2 for a more detailed overview of related
methods).

In Chapters 4 and 5, we proposed two context-aware patch-based in-
painting methods: greedy block-based context-aware (GBCA) and MRF block-
based context-aware (MBCA) method, respectively. We shall compare these
approaches to the best-performing crack inpainting method among the afore-
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mentioned ones from literature. In particular, we use as a reference controlled
anisotropic diffusion (CAD), which was reported in [Giakoumis 06] to out-
perform other pixel-based crack inpainting methods, including order statistics
filtering. Additionally, we shall test the GBCA method with two different
priorities: 1) our orientation-based priority (GBCA-O) defined in Eq. (4.13),
and 2) the confidence-based priority (GBCA-C). The confidence-based priority
represents the confidence term from the method in [Criminisi 04] (see also Sec-
tion 4.3.3). It is computed based only on the relative number of existing pixels
within the target patch:

R(p) =

∑
q∈ΨDc(q + p)

#Ψ
, (6.1)

(using the previously introduced notations for patch-based methods in Chap-
ters 3 and 4). The confidence Dc(p) is initially set to zero for the pixels in
the target region Ω and to one for the pixels in the source region Φ. After the
missing pixels in the target patch are filled in (see step 8 in Algorithm 2), the
confidence values at those pixels are updated by the value of priority of that
target patch, computed as in Eq. (6.1). Therefore, this confidence-based prior-
ity does not consider the presence of image structures. The orientation-based
priority, on the other hand, aims at giving preference exactly to the patches
containing image structures. However, in the case of digitized paintings, these
structures are usually difficult to determine due to the painting technique (in-
complete brushstrokes), scanning artefacts, etc. Moreover, undetected cracks
can be interpreted as object boundaries, thus having high priority, which re-
sults in their continuation. For that reason, we test the GBCA method with
two different definitions of priority.

The performance of these methods is evaluated only by visual inspec-
tion, as in the other papers on this application [Giakoumis 06,Solanki 09,Spag-
nolo 10]. Quantitative comparison is infeasible due to the unavailability of the
ground truth data, i.e., we have no information on how the painting looked like
in its original state, before the deterioration of wooden panels. On the other
hand, the nature of the painting itself and the influence of the acquisition pro-
cess of the digitized version (such as noise and scanning artefacts), make it very
difficult to replicate the problem in a form of a suitable toy example on which
the objective measurements could be performed.

By visually comparing the results of the four above mentioned meth-
ods, namely CAD, MBCA, GBCA-O and GBCA-C (see Fig. 6.8), we can see
that all patch-based methods outperform the pixel-based CAD. This is also
notable in the results in Figs. 6.10, 6.11 and 6.12. Although CAD performed
sufficiently well for other case studies in literature, where the cracks were rep-
resented by thin lines, in our experiments this method was unable to reproduce
texture and to fill in larger holes. This poor performance of CAD can be at-
tributed to the special characteristics of the cracks in the Ghent Altarpiece,
e.g., their relatively large width and whitish borders (see Section 6.1.2). Fur-
thermore, the quality of the scans, i.e., the presence of noise and scanning
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Original image Overlapped image 

CAD MBCA 

GBCA-O GBCA-C 

Figure 6.8: Comparison of crack inpainting results for the 750×825 part of the
image in Fig. 6.7. From left to right and top to bottom: original image, original
image overlapped with the combined dark and border crack map, result of CAD [Gi-
akoumis 06], result of our MBCA method (Chapter 5), result of our GBCA-O method
(Chapter 4), and result of our GBCA-C method. For our three methods, we used Ga-
bor filters of 6 orientations and across 3 scales and 17×17 patches. Additionally, for
MBCA, the rest of the parameters are the same as in Section 5.4.2, except Tb = 0.03.
For GBCA-O and GBCA-C, we used division into 6×6 blocks and r = 6, and for
GBCA-O, TOE = 10−3.
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Overlapped image MBCA 

GBCA-O GBCA-C 

Figure 6.9: Comparison of crack inpainting results. From left to right and top to
bottom: original image overlapped with the combined dark and bright crack map,
result of our MBCA method, result of our GBCA-O method, and result of our GBCA-
C method. We used Gabor filters of 6 orientations and across 3 scales and 11×11
patches. Additionally, for MBCA, the rest of the parameters are the same as in
Section 5.4.2, except Tb = 0.1. For GBCA-O and GBCA-C, we used division into
4×4 blocks and r = 6, and for GBCA-O, TOE = 10−3.

artefacts, raises the need for better texture replication because diffusion-based
methods produce blurry results.

In Figs. 6.8 and 6.9, we also compare our three proposed patch-based
methods among each other. They all perform relatively well, but they still
leave room for improvement when crack inpainting is considered. The complex
MRF-based method, MBCA, performs similarly to the two simpler greedy ones,
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although some artefacts are noticeable, especially in the result in Fig. 6.8 (see
marked areas). Additionally, this method is about an order of a magnitude
slower than our GBCA methods (see Section 5.4.2). In crack inpainting, the
problem of the high computational load is especially aggravated due to the
high resolution of the scans, making it impractical for the processing of larger
areas. On the other hand, limiting the method to small areas can jeopardize
finding the right matching patch. Therefore, we adopt the greedy patch-based
method from Chapter 4, and improve it for crack inpainting. In particular,
from now on we will use the GBCA-C method, with the priority as defined
in Eq. (6.1), because it introduces the least number of artefacts (see Figs. 6.8
and 6.9). Comparison of the results of this method and CAD on a bigger image
is shown in Fig. 6.10.

6.5 Combining dark and bright crack map

To improve the inpainting performance, some specifics of the problem need to
be taken into account. In some cases, the presence of bright borders around
the cracks (see Section 6.1.2) causes the missing crack regions to be filled with
incorrect content and the positions of cracks to remain visible after inpainting
(see the results on the left of Figs. 6.11 and 6.12). This is due to the fact
that most inpainting algorithms fill in the missing (damaged) region based
on pixel values from its immediate surroundings, which in this case are the
aforementioned bright borders. Note in the second row on the left of Fig. 6.11
that CAD is especially sensitive to this problem, because it generally suffers
from the introduction of blur. Often, the problem of the existence of bright
borders is partially solved by using the bright crack map, which extends the
dark crack map with the corresponding bright regions. Because this bright
crack map also marks some of the bright borders, the benefit of using this map
is evident in all cases: in the results on the right of Fig. 6.11, more cracks are
detected and inpainted, causing a more pleasing visual appearance.

However, for some images this procedure might not be sufficient due
to the width of the borders, as mentioned earlier in Section 6.3. In those
cases, the inpainting pre-processing is used to obtain the map of crack border
locations (see Fig. 6.7). The improvement of the inpainting results is shown on
the right of Fig. 6.12, both for CAD and our patch-based GBCA-C method, in
comparison with the results obtained using just the dark crack map shown on
the left of Fig. 6.12. If the image also contains bright cracks, all three crack
maps (dark, bright and border crack map) are combined together.

6.6 Segmentation-based candidate selection for
crack inpainting

As we demonstrated so far, our patch-based GBCA-C method gives reasonably
good visual results for most parts of the panels. However, the book of the
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Figure 6.10: Comparison of crack inpainting results for the detail from the God the
Father panel (see original image on the far right of Fig. 6.2). From top to bottom:
original image overlapped with the combined dark and bright crack map, result of
CAD, and result of our GBCA-C method (we used Gabor filters of 6 orientations and
across 3 scales, 15×15 patches, division into 8×8 blocks, and r = 6).
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Figure 6.11: Influence of bright borders on inpainting. Left: dark crack map as
input. Right: combined dark and bright crack map as input. The first row shows
the original image overlapped with crack maps. The second and the third row show
inpainting results obtained with CAD and our GBCA-C method, respectively. For
our GBCA-C method, we used Gabor filters of 6 orientations and across 3 scales,
17×17 patches, division into 6×4 blocks, and r = 6.

Annunciation to Mary panel is exceptionally difficult to process due to the
width of the cracks, prominent scanning artefacts and imperfect brush strokes
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(see Fig. 6.3). This causes some cracks to remain undetected and misguides the
inpainting during the patch matching process. The first consequence is that we
can get an inpainted image where small parts of letters appear erroneously in
the background, and the other way around, parts of letters get “deleted”, i.e.,
replaced by the background. The second consequence is that positions of cracks
remain visible (see the result in the bottom right of Fig. 6.12). Exactly in the
part of the panel containing the book, accurate inpainting is very important
because of paleographical deciphering of the text (see Section 6.1.2 and later
Section 6.6.3).

6.6.1 General idea

To further improve crack inpainting results, we propose a novel crack inpainting
method that involves two contributions:

• the segmentation-based approach to patch candidate selection, and

• the approach to patch size adaptation.

Like our methods from Chapters 4 and 5, this method also aims at performing
context-aware inpainting: the search for candidate patches is constrained to
image regions, with the context well matching the context of the current tar-
get patch. However, in this method contextual information is adapted to the
particular application. In the case of the image of the book from Fig. 6.3, we
segment the image into background (page of the book) and foreground (letters).
Such segmentation allows us to make a better distinction between these two
important components of this image than our previously proposed contextual
descriptors within fixed or even adaptive blocks. In particular, since letters
are equally distributed across the image, all these blocks contain both letters
and background, and thus block matching is not able to substantially guide the
inpainting process (see Fig. 6.13).

Our proposed method for crack inpainting consists of three main
steps:

1. Exclusion of damaged pixels

Although we use the bright crack map and/or border crack map to deal
with the problem of whitish borders around the cracks (see Section 6.5
and Fig. 6.12), some damaged pixels still remain. These pixels are either
too distant from the crack, belong to the non-detected cracks, or appear
in the source region not related to the cracks. Our idea is to detect these
pixels within the current target patch based on their colour properties,
and treat them as missing ones. Additionally, we do not use the patches
from the source region containing damaged pixels as possible matches.

2. Segment-constrained matching
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Figure 6.12: Influence of bright borders on inpainting. Left: dark crack map as
input. Right: combined dark and border crack map as input. The first row shows
the original image overlapped with crack maps. The second and the third row show
inpainting results with CAD and our GBCA-C method, respectively. For our GBCA-
C method, we used Gabor filters of 6 orientations and across 3 scales, 17×17 patches,
division into 6×6 blocks, and r = 6.

In the results in the bottom row of Fig. 6.8 and in the bottom right of
Fig. 6.12, it can be seen that patch-based inpainting occasionally intro-
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duces some artefacts. This can happen because the known part of the
target patch is not distinctive enough to find the right source patch. An-
other reason is that undetected cracks can be present in the known part
of the target patch so that the matched source patch will probably con-
tain a letter, since cracks and letters often have similar properties. In
order to minimize these errors, we first segment the image in two classes:
foreground (letters and undetected cracks) and background (page of the
book). Based on this segmentation, we constrain the search for candidate
patches, in the sense that if the target patch completely belongs to one
segment, we constrain the search for candidate patches to that segment
only. Therefore, this approach has very similar reasoning like our ear-
lier proposed context-aware inpainting methods, but rather than using
contextual descriptors within image regions, we explore the use of image
segmentation.

3. Adaptive patch size

Instead of using a fixed patch size, as most inpainting methods do, we
adapt the patch size to the local context. As in the previous step of the
algorithm, context is determined via image segmentation. Our idea is
to gradually reduce the patch size while performing segment-constrained
matching in order to localize better the patches within the segments.

Next, we present formally above described ideas within a novel crack
inpainting method.

6.6.2 Proposed crack inpainting algorithm

Similarly to our GBCA inpainting method (Section 4.5.2, see also Chapters 3
and 4 for notations), we fill in the missing region iteratively, where in each
iteration we search for the best-matching patch of the current target patch in
the source region. Considering the aforementioned observations, we constrain
this search based on two properties: 1) whether the candidate source patches
contain damaged pixels (step 1 in Section 6.6.1), and 2) the context surrounding
the current target patch (step 2 in Section 6.6.1). We make a distinction
between “damaged” and “undamaged” pixels based on their values in the blue
plane of the RGB representation of the image, denoted as gB .5 Therefore,
we enforce the first constraint by creating the new “undamaged” source region
Υ ⊂ Φ as:

Υ = {p ∈ Φ|gB(p) ≤ Td}, (6.2)

where Td is some threshold. Note that, by definition, the candidate source
patch is completely inside the source region Υ, thus it cannot contain any
damaged pixels.

5The same feature was used to detect the white borders in Section 6.3.
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Figure 6.13: Division of the image of the book into 6×6 non-overlapping blocks.
Block matches of the blocks in outlined squares are marked with the matching colour.

(a) (b)

Figure 6.14: Segmentation results for the part of the book from Fig. 6.3 (cracks
detected as in Section 6.3 are marked in red, letters and undetected cracks in black,
and background in white): (a) result of the K-means, and (b) result of the MRF-based
segmentation.
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We determine the context based on image segmentation into fore-
ground and background. For segmentation, we use the MRF-based approach,
similar to the one introduced previously in Section 2.5.3. The MRF is defined
over image pixels, thus pixels represent MRF nodes, and the labels xi assigned
to nodes i represent the segments to which each pixel can belong. The pairwise
potential is defined via the Potts model (Eq. (2.7)), while the local evidence is
defined as

φ(xi, yi) =
1√

2πσ(xi)2
exp

(−(yi − µ(xi))
2

2σ(xi)2

)
, (6.3)

where µ(xi) and σ(xi) are computed per each segment xi as mean value
and standard deviation of all the pixels that initially belong to the seg-
ment xi, where the initial segmentation is obtained with the K-means algo-
rithm [Duda 73]. yi represents the observation, which is the measured pixel
value at the node i. We used our neighbourhood-consensus message passing
(NCMP) method for inference (Section 2.4). Fig. 6.14 shows how the MRF-
based segmentation approach improves on the result of the K-means segmen-
tation [Duda 73], which is noisy with a lot of misclassified isolated dots in the
background. The MRF-based segmentation removes these isolated dots and
yields more compact letters. In this way, better segmentation-based context-
awareness can be achieved. Let ∆ ⊂ I and Ξ ⊂ I denote the background and
the foreground segment, respectively, where ∆ ∪ Ξ = I.

After creating the new source region and performing segmentation,
we start the inpainting process. In each iteration t, we first find the target patch
of the highest priority, whose central pixel p̂ is computed like in Eq. (4.14), and
the priority R(p) is defined in Eq. (6.1). Within the known part of this patch,
we detect the undamaged pixels as the ones whose value in the blue plane is
lower or equal to the threshold Td. The other known pixels of the current
target patch are considered damaged and thus are treated as missing, i.e., as
the pixels that need to be inpainted (step 1 in Section 6.6.1). In this way, we
prevent the damaged pixels from misguiding the inpainting process. We can
formally define the set of current known undamaged pixels as

Υ(t) = {p ∈ I \ Ω(t)|gB(p) ≤ Td}, (6.4)

where Ω(t) denotes the current target (missing) region. We introduce the set
Υ(t) because we need to keep the undamaged source region Υ fixed throughout
the algorithm. Note also that Υ ∪ Ω 6= I, because we want to replace only
the damaged pixels that are in the vicinity of the cracks and not elsewhere in
the image. The threshold Td is chosen high enough to allow sufficient num-
ber of candidate patches, while still detecting the artefacts around cracks. In
particular, we chose a fixed threshold Td = 220 by inspecting the histogram of
manually marked damaged regions.

The next step is to find the best-matching patch of the current target
patch based on its known undamaged pixels by performing segment-constrained
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matching. The proposed segment-constrained matching enforces the follow-
ing: when all the known undamaged pixels in the target patch belong to the
background, we only accept source patches that belong completely to the back-
ground and the undamaged source region as candidate patches. Otherwise, the
search is performed everywhere in the undamaged source region. We can de-
fine formally the central pixel of the best-matching patch of the current target
patch centred at p̂ as

q̂ =

{
arg minq∈(Υ∩∆) ‖Tp̂g − Tqg‖2(Υ(t)−p̂)∩Ψ

, if (Ψ + p̂) ∩ Ξ = ∅
arg minq∈Υ ‖Tp̂g − Tqg‖2(Υ(t)−p̂)∩Ψ

, otherwise,
(6.5)

using the notations and definitions introduced in Section 3.3. We could per-
form a similar procedure for the target patches belonging completely to the
foreground, i.e., for which (Ψ + p̂)∩∆ = ∅. However, some cracks that remain
undetected by using the detection methods from Section 6.3 are also identified
as foreground. This can result in unjustified insertion of letters and/or cracks
(foreground) in the background. Therefore, if the target patch is not entirely
in the background, we search through all possible candidates.

Finally, we perform the search for the best-matching patch by adapt-
ing the patch size according to the local context. We start from the maximal
patch size and check if the target patch completely belongs to the background.
If this is the case, we constrain the search to the background. If not, we reduce
the patch size by half and repeat the same procedure. If even this smaller
patch only partially belongs to the background, we search for the match of the
target patch of the maximal size at all possible locations. Once the best match
is found, we copy the corresponding pixels from this match to the locations of
missing pixels.

6.6.3 Results
The effects of the proposed method from Section 6.6.2 are illustrated in
Fig. 6.15(d). The result of the proposed method when using the fixed patch size
instead of adaptive patch size is shown in Fig. 6.15(c). Comparing these two
results, we can see that using adaptive patch size produces better result, with
less artefacts in the background, meaning that the adaptive patch size approach
can better locate target and source patches belonging to the background. Fur-
thermore, some letters are better inpainted. In comparison with the result of
our GBCA-C method in Fig. 6.15(b), the letters are better inpainted and the
whole image contains less visually disturbing bright borders.

The result on the whole book is shown in Fig. 6.18. Since this image
is large in size (4166×5206 pixels), we divided it into regions and performed
inpainting in each region separately. Furthermore, we only inpainted the region
of interest, i.e., the part of the image containing letters, leaving the rest of the
image untouched. In [Cornelis 13], we showed that this result indeed improved
legibility of the text in this book, as implied in Section 6.1.2. Crack inpainting
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(a) (b) 

(c) (d) 

Figure 6.15: Comparison of inpainting results for the part of the book from Fig. 6.3:
(a) original image overlapped with the combined dark and border crack map, (b) result
of our GBCA-C method (see Section 6.4 and the caption of Fig. 6.12 for parameters),
(c) result of the proposed crack inpainting method with fixed patch size, and (d)
result of the proposed crack inpainting method with adaptive patch size.

enabled the deciphering of some additional word groups, although the text
still cannot be read entirely. These deciphered word groups are: hio dicta
significata (telling the message with mouth wide open), de virtutibus d[ei] (on
the virtues of God), in videndo (the appearance of God). The former reading
of Prologus iste est ad can be completed with the words differentiam cognite
dei. Moreover, the paragraph mark on the upper left of the page should be read
as LXII (62) rather than VII (7). All deciphered text fragments are related to
the Annunciation, and can be found in Thomas of Aquino’s Summa Theologica
(written between 1266 and 1273). These first results provide a basis for further
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(a) (b) 

(c) (d) 

Figure 6.16: Comparison of inpainting results for Adam’s Eye from Fig. 6.4: (a)
original image overlapped with the combined dark and bright crack map, (b) result
of the MRF-based segmentation, (c) result of our GBCA-C method, and (d) result
of the proposed crack inpainting method with segment-constrained matching. For
both methods, we used 15×15 patches, and for GBCA-C, we used Gabor filters of 6
orientations and across 3 scales, division into 8×6 blocks, and r = 6.

research into the iconographical implications of this text.
Note that our segment-constrained matching, i.e., the second step of
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the complete method, can in principle also be used on more complex images,
containing more than two segments, to limit the search to specific areas so that
the computation time is reduced. However, in general, the improvement of
the quality of the inpainting result compared to the block-based context-aware
inpainting is minimal. Results are shown in Fig. 6.16: (c) shows the result of
our GBCA-C method, and (d) shows the result of the proposed crack inpainting
method with segment-constrained matching based on the segmentation shown
in (b).

6.7 Conclusion

In this chapter, we addressed an interesting and challenging application of
image inpainting for the virtual removal of cracks in old paintings. We first
explored the use of our patch-based inpainting methods, proposed earlier in
this thesis, for crack removal in the case study of the Ghent Altarpiece. While
these methods were shown to outperform other related crack inpainting meth-
ods, they still left some room for improvement. The main contribution of this
chapter is a novel patch-based inpainting method, which is specifically designed
for virtual removal of cracks in old paintings. The proposed method performs
context-aware inpainting, but rather than describing the context with texture
(and colour) features within image blocks of fixed or adaptive sizes, like in our
previously proposed methods, we explore the use of image segmentation for
context description. The idea is to constrain the search for candidate patches
to appropriate segments of the image, while also adapting the patch size accord-
ing to the context. Additionally, the method is capable of dealing with some
specific problems of the cracks in the Ghent Altarpiece, such as the existence
of whitish crack borders.

A special attention was devoted to inpainting the image of the book
in the Annunciation to Mary panel. The text in the book is of special interest
to art historians, because its paleographical deciphering can give new insights
to the meaning of this painting. We showed that the proposed crack inpainting
method produces more accurate results, in the sense that the positions of cracks
are not visible, letters of the text are better preserved and minimal artefacts
are introduced in the background. In this way, we were able to improve the
legibility of the text and contribute to the art historical analysis.

This work resulted in one journal paper as the second author [Cor-
nelis 13], one book chapter as a co-author [Pižurica 13], two conference publica-
tions [Ružić 11a,Ružić 13a], and two abstracts were presented in international
conferences [Ružić 10,Cornelis 11]. These results also attracted the attention
of wider audience, resulting in the article in the popular Belgian and Dutch
science EOS Magazine (June, 2012), in the Flemish newspapers De Standaard6

(March 27, 2013) and Het Nieuwsblad7 (March 27, 2013), in the VRT’s online

6http://www.standaard.be/cnt/dmf20130327_00520016
7http://www.nieuwsblad.be/article/detail.aspx?articleid=DMF20130326_00519077
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cultural magazine Cobra8 (March 27, 2013), and in the Schamper magazine
of Ghent University9 (April 15, 2013). They were also mentioned in the two
Press Releases of Ghent University: on the occasion of the official start of the
physical restoration of the Ghent Altarpiece (September 7, 2012)10 and about
the Ghent University research related to Lam Gods (March 26, 2013)11. Fi-
nally, this research was presented on several invited talks at prestigious events:
Het Lam Gods Series of Lectures, Provinciaal Administratief Centrum P.A.C.
Ghent12 (November, 2012) and TEDxGent13, Aula, Ghent (June, 2012).

8http://www.cobra.be/cm/cobra/kunsten/1.1586571
9http://www.schamper.ugent.be/527/op-zoek-naar-het-lam-gods

10Persbericht: “Een traditie van innovatief onderzoek van het Lam Gods aan de UGent”
11http://www.ugent.be/nl/actueel/nieuws/lam-gods.htm
12http://www.csct.ugent.be/
13http://www.youtube.com/watch?v=kvVb5NG6TLk
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Figure 6.17: Original image of the book from the Annunciation to Mary panel.
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Figure 6.18: Result of the proposed crack inpainting method on the image of the
book from the Annunciation to Mary panel (Fig. 6.17).
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7
Conclusion

Even with the advance of digital imaging acquisition devices, acquired images
still contain degradations in terms of resolution, noise, artefacts, etc. These
degradations can be caused by imperfect acquisition devices (e.g., due to phys-
ical limitations and cost restrictions), or by ageing of the material to be digi-
tized (e.g., scratches in scanned old photographs or artefacts such as cracks and
stains in digitized artwork). Digital post-processing techniques are an inexpen-
sive and often the only way to remove these degradations in order to improve
the quality of digital images. Moreover, this facilitates the analysis of image
content in applications like surveillance, forensics, satellite, medical imaging
and art historical analysis. Some of these digital post-processing techniques
can also be used for image editing, e.g., removing unwanted elements from
images, like stamped date, watermarks, text, logos, or even the whole objects.

In this thesis, we developed digital post-processing techniques to re-
store and edit images after acquisition, which are based on Markov random
field (MRF) models and patch representations. We focus on super-resolution
(SR) and inpainting application. In this chapter, we first review our main
contributions and then outline a few directions for future research.

7.1 Review of our contributions
MRFs are widely used in image processing and computer vision problems be-
cause they provide a convenient and consistent way of modelling contextual
constraints, like spatial correlations among image pixels and spatial consis-
tency among other image entities. In particular, MRFs are able to model
global image context in terms of local interactions, which makes this model
elegant and computationally tractable. MRFs are often used as a prior in
problems that involve Bayesian inference, like maximum a posteriori (MAP)
estimation, where the goal is to estimate some unknown image attributes from
the available image data, which are incomplete or degraded. In Chapter 2,
we developed a novel suboptimal inference method for MAP estimation with
the MRF prior, which is based on message passing. We called this method
neighbourhood-consensus message passing (NCMP) since a joint “consensus”
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message is sent from the specified neighbourhood to the central node, rather
than relying on pairwise interaction only. We showed that the proposed method
can be considered as a generalization of the iterated conditional expectations
(ICE) inference algorithm. Additionally, we developed a simplified version of
NCMP, called weighted iterated conditional modes (WICM), which is espe-
cially efficient when working with large neighbourhoods. Results on different
example applications showed the potentials of the proposed methods. In par-
ticular, NCMP always improved over the popular greedy method of iterated
conditional modes (ICM) with only mild increase in complexity. Moreover,
NCMP in most of the practical labelling applications yielded similar results
as the state-of-the-art loopy belief propagation (LBP), while being much less
complex.

The proposed NCMP is generally applicable to a wide range of prob-
lems, which allowed us to employ it as an inference engine for MRF patch-
based models for SR and inpainting. In Chapter 3, we addressed the SR prob-
lem using contextual modelling: the unknown high-resolution (HR) patches
are estimated based on the agreement with the available low-resolution (LR)
versions and based on the prior knowledge about spatial consistency among
neighbouring HR patches, encoded by the MRF prior. Other methods that
use these types of models typically employ an external database from which
the HR patches are extracted. We proposed a novel single-image patch-based
SR method, where we exploited the self-similarity of image patches in natural
images across different scales, thus the HR patches are taken from the input
image itself. Visual and quantitative comparison of results, in terms of root
mean square error (RMSE) and structure similarity index (SSIM), showed that
our method greatly outperforms standard techniques, while being visually bet-
ter or comparable with state-of-the-art techniques. Results could be further
evaluated in some computer vision tasks, e.g., for feature detection, but this
was not investigated within the scope of this research.

In Chapters 4, 5 and 6, we also exploited image self-similarity, but
within the same scale, for the problem of image inpainting. Here, the idea
is to search for well-matching candidate patches of the patch to be inpainted
in the known part of the image. The main contribution of Chapter 4 is a
novel context-aware patch selection approach, which reduces the number of
candidate patches and chooses them in such a way that they better fit the
surrounding context. We represented context within blocks of fixed size using
contextual descriptors in the form of combined texture and colour features.
Texture features were obtained by filtering the image with the bank of Gabor
filters at multiple scales and orientations (the so-called multi-channel filtering).
Comparison of these contextual descriptors enabled us to find regions of simi-
lar context in the image, as we demonstrated with intermediate results. Such
context-aware approach is general, and thus can be applied with any patch-
based inpainting algorithm. In Chapter 4, we employed the proposed approach
within a novel greedy block-based context-aware (GBCA) inpainting method,
whose additional contribution is a novel orientation-based priority, which deter-
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mines the filling order of the missing region. This definition of priority is based
on contour features, which were also obtained by multi-channel filtering. We
demonstrated that the meaningful constrained search for patches yields better
inpainting result in less time than the exhaustive search (i.e., searching over
the whole known part of the image). Furthermore, our results were visually
better or comparable with state-of-the-art methods.

In Chapter 5, we further evolved our work on context-aware patch-
based inpainting. We introduced a novel context representation within blocks
of adaptive sizes using contextual descriptors in the form of normalized texton
histograms. For the division of the image into blocks of adaptive sizes, we pro-
posed a novel top-down splitting procedure, which is also based on contextual
descriptors. We applied this improved context-aware approach within a novel
MRF block-based context-aware (MBCA) inpainting method. In this way, the
speed and the performance of the so-called global patch-based image inpaint-
ing with the MRF prior is improved. To solve the inference problem in this
MRF model, we proposed a simple and efficient method, which builds upon our
NCMP inference method to make it suitable for global inpainting problem with
large number of labels. We evaluated the proposed method on two example
applications: scratch and text removal and object removal. Results demon-
strate the benefits of our approach in comparison with state-of-the-art methods
in terms of quality and additionally, in comparison with another MRF-based
method, in terms of speed.

In Chapter 6, we applied the developed inpainting methods on the
interesting and challenging application of virtual removal of cracks in old paint-
ings. As a case study, we used the digitized versions of the Adoration of the
Mystic Lamb, also known as the Ghent Altarpiece. We showed how the pro-
posed methods outperform related crack inpainting methods. However, they
still leave some room for improvement due to the particularities of cracks in
this painting, especially for the image of the book in the Annunciation to Mary
panel. The text in this book is of special interest to art historians, because its
paleographical deciphering can give new insights to the meaning of this paint-
ing. Therefore, we introduced a novel patch-based crack inpainting method,
where the idea is to use image segmentation for context description. In partic-
ular, we constrained the search for candidate patches to appropriate segments
of the image, while also adapting the patch size according to the context. We
showed that the proposed crack inpainting method produces more accurate re-
sults, in the sense that the positions of cracks are not visible, letters of the text
are better preserved and minimal artefacts are introduced in the background.
In this way, we were able to improve the legibility of the text. In particular,
some additional word groups were deciphered, although the text still cannot
be read entirely. These first results provide a basis for further research into the
iconographical implications of this text.
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7.2 Future research

The research presented in this thesis opens several directions for future work,
especially in the domain of image (and video) inpainting. In particular, it would
be interesting to explore three topics: automatic evaluation of parameters,
quality assessment techniques and application of inpainting for disocclusion
filling in virtual view synthesis.

In the inpainting methods we developed within this research, we used
several parameters, which we evaluated experimentally, i.e., we ran experiments
for different values of parameters and chose the one that yielded the best re-
sult. Perhaps the most notable parameter is the patch size. As we discussed
in Section 4.6, the choice of the patch size is a trade-off between capturing
important structures or texture elements in the image and the ability to find
good matches. Several methods in literature consider using adaptive patch size,
where the main idea is to choose small patches for regions with high frequen-
cies (i.e., textured and structured regions) and big patches for regions with
low frequencies (i.e., flat areas). Our algorithms, on the other hand, use fixed
patch size for all positions (except the crack inpainting method in Chapter 6).
Therefore, in future work, two options can be explored: 1) using ideas about
adaptive patch size to find an optimal fixed patch size depending on the im-
age content and the size of the known region, and 2) extending our methods
to the use of adaptive patch sizes. Another option would be to also consider
using adaptive shapes, which are determined based on the image content. Re-
garding the proposed context-aware approach, we already introduced several
improvements in Chapter 5, which resulted in less parameters and easier pa-
rameter optimization. However, still some dependencies on parameters remain,
e.g., how to choose the optimal number of textons and consequently, the block
similarity threshold, based on the given number of filters in the filter bank.
Finding dependencies between these parameters and their dependency on the
image content is a difficult and challenging task.

Another interesting question is how to compare inpainting results of
different methods. Most of the time, comparison is performed visually, be-
cause of the absence of ground truth images in applications like object re-
moval, scratch removal from old photographs and crack removal from digitized
paintings. For artificially added artefacts, some quantitative measure can be
computed, e.g., peak signal-to-noise ratio (see Section 5.4.1). However, a good
result of image inpainting does not necessarily need to be as close as possible
to the ground truth. Rather, inpainting should be performed in such a way
that it is not noticeable to an observer that the image has been altered. In this
respect, interesting research topic would be to develop quality assessment tech-
niques for image inpainting, e.g., by exploring techniques from image forensics
and/or performing human observer studies.

With the growing popularity of 3D television (3DTV) and free view-
point television (FTV), image inpainting has found an important application
for disocclusion filling in virtual view synthesis. Disocclusions are the missing
areas to the left or right of the foreground objects, which were occluded in
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the original view and become visible in the generated views. Removing these
holes becomes demanding when 3D information is available in video-plus-depth
format, which consists of the colour values of the central view and the depth
map, or stereo (or multi-view) format during view extrapolation, i.e., synthe-
sizing views outside the baseline. Our patch-based inpainting methods can be
extended for this specific application by exploiting depth and temporal infor-
mation and information from other views. Furthermore, certain simplifications
of the algorithm can be made, e.g., feature reduction, fast approximate patch
search, simpler approach for filling flat areas, etc. Finally, the algorithms can
be implemented on the Graphical Processing Unit (GPU), in order to enable
them to run in real time. This requires parallel processing and certain parts
of the proposed algorithms can be executed in parallel, e.g., patch search and
priority computation. Furthermore, inpainting of different areas of the missing
region could be performed in parallel. These areas could be the blocks in our
context-aware approach, although within the block the filling order should be
imposed. Another option is to first continue important image structures inside
the missing region, which then divide the missing region in different segments
that can be processed in parallel. This research will be conducted within the
iMinds ICON ASPRO+ project.
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A
Texture and contour

features

In this appendix, we give a theoretical background of texture and contour
features, which we use as inpainting tools for our inpainting methods introduced
in Chapters 4 and 5.

A.1 Extraction of texture features

Extraction of texture features has been widely studied in different image
processing and computer vision tasks, such as automated inspection [Con-
ners 83, Jain 90, Orjuela 13], medical image analysis [Chen 89], remote
sensing [Rignot 90, Poggi 05], texture and image segmentation [Malik 01,
Puzicha 97, Scarpa 09, Arbelaez 11], image retrieval [Puzicha 97], object de-
tection [Rikert 99,Torralba 10], scene classification [Oliva 01], texture classifi-
cation [Varma 03], surface recognition [Leung 99,Leung 01], analysis of paint-
ings [van der Maaten 10], etc. There are many approaches on how to extract
these features, and they can be categorized into statistical, geometrical, model-
based and signal processing methods [Tuceryan 98].

Statistical approaches measure the spatial distribution of grey-level
values [Tuceryan 98], and they include, e.g., autocorrelation features, co-
occurrence matrices [Haralick 73] and sum and difference histograms [Unser 86].
Geometrical methods first identify “texture elements” or primitives, and
then extract texture features either as some statistics of these primi-
tives [Tuceryan 90] or their spatial arrangement, like in a very popular technique
called local binary patterns [Ojala 96]. Model-based methods use stochastic
or generative models (e.g., different kinds of MRF models [Chellappa 85,An-
drey 98, Poggi 05, Scarpa 09]) to both describe and synthesize texture. The
estimated model parameters are used as texture features. Finally, signal pro-
cessing methods [Unser 90,Jain 91] extract a set of features from filtered images,
which are then applied for classification or segmentation.

Among signal processing methods, and texture feature extraction



200 Texture and contour features

methods in general, multi-channel filtering is among the most popular ones.
This approach analyses filter outputs of an image obtained by convolving an
image with a bank of linear spatial filters at various orientations and scales. The
inspiration for this approach comes from psychophysical studies of the human
visual system [Hubel 62,Campbell 68,Devalois 82]. The study in [Campbell 68]
suggested that the visual system decomposes an image into filtered images of
various frequencies and orientations, while in [Devalois 82], it was shown that
the receptive fields of simple cells in the visual cortex of some mammals are
tuned to narrow ranges of frequency and orientation. Therefore, the multi-
channel filtering approach models very well the processing of visual information
in the early stages of the visual system.

Note that some methods combine different approaches to extract tex-
ture features. Most often, they perform statistical analysis of filter responses
in order to learn their joint distribution. In this way, dimensionality reduction
is achieved and the influence of all filters at the points of interest is modelled,
as opposed to independent distributions for each filter [Varma 03]. This joint
distribution is represented by clusters [Leung 99,Rikert 99,Malik 01,Varma 05]
or histograms [Zhu 98,Portilla 00,Konishi 00], and it can be used as a texture
model for texture classification, synthesis or segmentation. We will visit the
clustering-based method in more detail in Section A.5.

As mentioned earlier, multi-channel filtering is a widely used ap-
proach for feature extraction. Furthermore, it is used in image segmenta-
tion [Malik 01, Puzicha 97, Arbelaez 11], object detection [Torralba 10] and
scene classification [Oliva 01], which were the motivation for our work, thus we
will focus on this approach in this thesis.

Some of the filters that have been used for multi-channel filtering
include Gaussian derivatives [Young 85], steerable pyramids [Simoncelli 92],
Gabor filters [Gabor 46,Daugman 85], wavelets [Daubechies 92,Meyer 95,Mal-
lat 09], and complex wavelets [Kingsbury 01, Selesnick 05]. Gabor filters
represent a good model due to their optimal joint localization in both spa-
tial and spatial-frequency domains [Daugman 85]. Furthermore, the studies
in [Randen 99,Chen 99] showed that they outperform other filtering methods,
such as ring/wedge filter, spatial filter, eigenfilter and wavelet transform. Fi-
nally, filters with very similar receptive fields as Gabor filters are obtained by
performing different analysis on natural images, such as independent compo-
nents analysis (ICA) [Hyvärinen 09], dictionary learning via sparse coding [Ol-
shausen 97] or by training certain models based on MRFs [Osindero 06], which
suggests that Gabor-like filters form the basis of natural images. Represen-
tation of an image via Gabor filter responses has been proven as very effec-
tive for texture analysis and many related applications, e.g., texture segmen-
tation [Bovik 90, Jain 91,Weldon 96], object detection [Jain 97, Torralba 10],
scene classification [Oliva 01], etc.
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Figure A.1: (a) Illustration of Gabor filters across six orientations and three scales
in spatial domain. Even filters (the first six columns) represent the real part of the
complex Gabor filters, while odd filters (the other six column) represent the imaginary
part. (b) Tiling of the frequency domain obtained by the filters from (a).

A.2 Multi-channel filtering using Gabor filters
A 2D complex Gabor filter (in spatial domain) consists of a complex sinusoid
plane wave of a certain frequency and orientation modulated by a Gaussian
envelope [Gabor 46]:

Gη,τ,σ(u, v) = exp
(
− u′2 + ϑv′2

2σ2

)
exp

(
i
(

2πτu′ + ϕ
))

(A.1)

u′ = u cos η + v sin η

v′ = −u sin η + v cos η.

σ is the standard deviation of the Gaussian envelope, which determines the
effective size of the surrounding of a pixel in which weighted summation takes
place. ϑ, called the spatial aspect ratio, determines the eccentricity of the Gaus-
sian, and it is kept constant (usually ϑ = 1). τ defines the spatial frequency of
the complex sinusoid, while 1/τ is the wavelength. Then ς = στ determines the
spatial frequency bandwidth of the Gabor filter, i.e., the scale. Angle η ∈ [0, π)
specifies the filter orientation, i.e., the orientation of the normal to the parallel
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stripes of the sinusoid. Finally, ϕ is the phase offset. A complex Gabor filter
has a real and an imaginary component, which are conveniently in quadrature,
i.e., out of phase by 90 degrees.

During multi-channel filtering, an image I, as a continuous signal, is
convolved with the bank of such filters at multiple orientations and scales. As a
result, I is represented by a set of filtered images Fη,τ,σ(u, v) = (I∗Gη,τ,σ)(u, v),
where ∗ is the convolution operator.

Since we are working with digital images, we will observe all the above
operations in discrete space. Therefore, the image is defined over a lattice I,
where positions on this lattice are represented by a single index p ∈ I (assuming
raster-scan order). The Gabor filters we use in this thesis are also discrete and
they vary by scale ς and orientation η, while the rest of the parameters are kept
constant. Therefore, we denote the discrete Gabor filter as Gη,ς . Then the total
number of complex filters in the Gabor filter bank is Nf = NςNη, where Nς
is the number of scales and Nς is the number of orientations. If we consider
the real and the imaginary parts of the filters separately, the total number
of filters is 2 × Nf . Fig. A.1a illustrates 36 real and imaginary Gabor filters
in spatial domain, corresponding to the complex filters of 6 orientations and
across 3 scales, total of Nf = 18 complex filters. Fig. A.1b shows the obtained
tiling of the frequency space. Finally, f(p) denotes an Nf -dimensional vector
of complex filter outputs at the pixel p. This vector actually characterizes the
image patch centred at p by a set of values at that pixel.

A.3 Texture features as averaged filter outputs

The vectors of filter responses can be used in applications like texture segmen-
tation and classification to eventually describe the whole texture. It is also
possible to use some other pixel-wise texture features extracted from these vec-
tors (see [Clausi 00] for an overview and comparison). On the other hand, in
some applications texture features can be used to describe an image region. For
example, texture features were used for scene description by obtaining global
image representation, rather than dividing a scene into objects [Oliva 01]. This
representation is called a gist of an image, and it is based on computing statis-
tics of low-level image features over fixed image regions, which divide the image
into square non-overlapping blocks.

Let Gn denote one filter from the bank of complex Gabor filters,
where the index n = 1, . . . , Nf represents the combination of filter orientation
η and scale ς. Let B+ l denote a set of pixel position in a square block centred
at l ∈ Θ. The set Θ is determined by the division of the image into square
non-overlapping blocks, and nb is the total number of blocks. Then, the gist
descriptor is the vector of features d, where each feature is computed in the
following way. First, the luminance channel of the image is filtered with each
Gabor filter Gn from the filter bank, obtaining thus complex filter responses
fn(p), ∀p ∈ I. Then, the magnitudes of these complex responses are averaged
within each block B + l, i.e.,
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d(l)
n =

1

#(B + l)

∑
p∈(B+l)

|fn(p)|, n = 1, . . . , Nf . (A.2)

Therefore, d(l) is the feature vector per block whose dimensionality is Nf , while
the gist of the whole image is d = (d1, . . . ,dnb). Gist as a scene descriptor was
used for scene classification [Oliva 01], object detection and localization [Tor-
ralba 10], and scene completion using millions of photographs [Hays 08].1

A.4 Contour features

Contour features are mostly used in contour-based approaches for image seg-
mentation, e.g., [Williams 95,Malik 01, Arbelaez 11]. The first step of these
algorithms is often edge detection, which was in early approaches performed
based on local measurements. Such edge detection algorithms include Sobel
operator [Duda 73], zero crossings [Marr 80], Canny detector [Canny 86], etc.
However, these approaches model brightness edges as step edges, which is in-
sufficient for natural images due to phenomena such as mutual illumination,
shading, depth or orientation discontinuities. Consequently, image edges re-
quire a richer description as a combination of steps, peaks and roof profiles [Ma-
lik 01]. Such a description can be obtained by analysing the response of an im-
age to multi-channel filtering via the so-called oriented energy approach [Mor-
rone 87, Perona 90]. This approach can be used to detect and localize these
composite edges by employing quadrature pairs of even and odd symmetric
filters. The obtained contour features are called dominant orientation and
oriented energy.

Let fevenθ,ς (p) and foddθ,ς (p) denote filter responses to some even and
odd symmetric filters, respectively, of orientation η and scale ς. Filter of orien-
tation η will detect contours of orientation θ, which is orthogonal to the filter
orientation (e.g., horizontally oriented filter with η = 0◦ detects vertical con-
tours, i.e., contours with θ = 90◦). Since for the analysis of contour features it
is important to emphasize contour orientation, we use index θ to denote filter
responses. The oriented energy at pixel p at scale ς and orientation θ is defined
as [Perona 90]

OEθ(p) =
(
fevenθ,ς (p)

)2
+
(
foddθ,ς (p)

)2
. (A.3)

Then the dominant orientation at pixel p at scale ς is [Perona 90]

θ∗(p) = arg max
θ
OEθ(p), (A.4)

1In [Torralba 10], it is stated that gist is computed by averaging output energy,
i.e., |fn(p)|2. However, the source code provided by the same authors, available at
http://people.csail.mit.edu/torralba/code/spatialenvelope/, suggests that the magnitude of
filter response is used. Since we use this code for all our Gabor filtering computations, we
define gist according to the implementation.
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and it represents the orientation of the contour at the pixel, while its corre-
sponding oriented energy OEθ∗(p) measures the contour’s strength.

To better localize the contour, oriented non-maximal suppres-
sion [Canny 86] is used in the following manner. Let us denote as p1 ∈ I
and p2 ∈ I the neighbouring pixels of p, which lie on the line orthogonal to the
dominant orientation θ∗(p). OEθ∗(p) is compared to the values OEθ∗(p1) and
OEθ∗(p2). Then the final oriented energy is

OE∗(p) =

{
OEθ∗(p), if OEθ∗(p) ≥ OEθ∗(p1) ∧OEθ∗(p) ≥ OEθ∗(p2)

0, otherwise.
(A.5)

Contour features are calculated per scale, and to obtain one feature per pixel,
one can simply take the maximum over all scales [Malik 01].

Originally, in [Perona 90], even and odd symmetric Gaussian deriva-
tives were used as filters. However, the analysis of features can be equivalently
performed for Gabor filters [Malik 01].

A.5 Texton histograms

A.5.1 What are textons?

The term texton was first introduced by Julesz [Julesz 81] to represent the
putative units of pre-attentive human texture perception. He qualitatively de-
scribed them as simple binary line segment stimuli, such as elongated blobs,
bars and crosses. He defined them by conducting experiments, where human
subjects were asked to detect the target element among a number of distract-
ing elements in the background, and then their response time was measured.
Later it was shown that perceptual textons could be adapted through train-
ing [Karni 91]. However, these early psychophysical studies of textons relied
on artificial texture patterns, thus lacked a mathematical definition for natural
images.

Malik et al. revisited the concept of textons for the purpose of im-
age segmentation in [Malik 99, Malik 01] (2D textons) and surface recogni-
tion [Leung 99, Leung 01] (3D textons). They presented a discriminative
method for computing textons from grey-level images based on K-means clus-
tering [Duda 73] of outputs of linear oriented Gaussian derivative filters. In
this way, textons represent the prototypes of filter responses corresponding to
local image structures, like edges, bars, corners, etc. 2D textons were also
used for image segmentation in [Martin 04,Arbelaez 11], while 3D textons have
been extended to textures with lighting variations and texture surface render-
ing [Liu 01,Cula 01,Varma 02,Varma 05].

An interesting approach is also to use directly raw pixel values to
generate textons [Varma 03,van der Maaten 10], thus avoiding filter banks all
together. In that case, feature vectors that are clustered are vectorized patches
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surrounding each location in the image instead of vectors of filter outputs at
those locations. Using pixel values directly was motivated by the success of tex-
ture synthesis algorithms [Efros 99, Zalesny 01,Wei 00], which use local pixel
neighbourhood under an MRF assumption, in the sense that the pixel is condi-
tioned on its neighbours (see Chapter 2). In [Varma 03], it was shown that this
approach outperforms the filter bank-based approaches [Leung 01,Varma 02]
for the purpose of texture classification. Later, this type of textons was also
used for image segmentation [Schroff 06] and analysis of paintings [van der
Maaten 10].

However, if we return to the broad definition of textons as fundamen-
tal micro-structures in natural images, specifically natural textures, then the
above mentioned method represents just one way of learning textons. Accord-
ing to [Zhu 05], alternative approaches include ICA [Hyvärinen 09], transformed
component analysis (TCA) [Frey 99], and dictionary learning based on sparse
coding [Olshausen 97], as well as their own three-level generative image model
for learning textons [Zhu 05].

Dictionary learning based on sparse and redundant representation
modelling has received a considerable attention in image processing commu-
nity over the last two decades. These methods assume that a signal, i.e., an
image, can be described as a linear combination of few atoms from a dictionary,
which is learnt from the data using sparse coding. Therefore, dictionary atoms
can be regarded as textons, since they represent perceptual elements of an im-
age. The seminal work on this topic was presented in [Olshausen 97], where
the obtained trained atoms were very similar to the receptive fields, which were
until then described by Gabor filters (see also Section A.2). Other dictionary
learning methods include the method of optimal directions [Engan 99], gen-
eralized principal component analysis (PCA) [Vidal 05], K-SVD [Aharon 06],
multi-scale KSVD [Mairal 08], etc. Dictionary can also be built based on the
mathematical model, where atoms represent some basis functions that have
analytic formulation. They have the advantage of being mathematically sound
and they allow fast implicit implementation. On the other hand, trained dic-
tionaries enable greater flexibility and the ability to adapt to the specific data
(see [Rubinstein 10] for an excellent review of dictionary-based methods). Re-
cently, they have been also used for texture modelling in, e.g., [Peyré 07].

A.5.2 Textons and texton histograms: original definition

2D textons from [Malik 99,Malik 01], as prototypes of filter responses, are ob-
tained by K-means clustering of outputs of linear oriented Gaussian derivative
filters at multiple scales. Let us assume for know a more general filtering ap-
proach, where the filter bank is not specified upfront, i.e., it consists of any kind
of oriented multi-scale filters. Furthermore, let fn(p) denote the filter response
to the nth filter Gn from the filter bank at pixel p.2 Prior to computing textons,

2Note that in Sections A.2 and A.3, Gn and fn(p) were used to denote the nth Gabor
filter and its response, respectively, while here we start from a more general approach.
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a contrast normalization step is suggested in [Malik 01], which normalizes the
filter outputs in the following way:

fn(p) = fn(p)
log
(

1 + ‖f(p)‖
0.03

)
‖f(p)‖

, n = 1, . . . , Nf , (A.6)

where ‖f(p)‖ is the L2 norm of the filter responses at the pixel p, and Nf
is the total number of filters in the filter bank. Then textons are obtained
by first clustering normalized high-dimensional vectors of filter outputs with
the K-means algorithm [Duda 73]. The criterion for this algorithm is to find
K centres, such that after assigning each data vector to the nearest center,
the sum of squared distances from the center is minimized. Textons are then
defined as the K cluster centres, each being a vector of dimensionality Nf .
Each pixel p is assigned to one of the K textons. Let T (p) denote this pixel-to-
texton mapping, which takes one of the K possible values, for K textons, i.e.,
T (p) = n, n = 1, . . . ,K.

In [Malik 01], the normalized texton histogram in the area surround-
ing each pixel was used to estimate texturedeness at that pixel, while in,
e.g., [Leung 99], this histogram was computed over the whole texture and was
used for its representation. Therefore, for some block B + l (centred at the
position l), its normalized texton histogram h(l) is defined as

h(l)(n) =
1

#(B + l)

∑
p∈(B+l)

ξ[T (p) = n], n = 1, . . . ,K. (A.7)

This texton histogram has K bins (K is the number of textons), where each
bin n contains the number of pixels in B + l that are mapped to the texton
n [Malik 01]. In the equation above, T is pixel-to-texton mapping defined
earlier and ξ is the indicator function, i.e., it returns one if its argument is true
and zero otherwise.

Textons and texton histograms can be very useful for texture analysis,
as previously shown in [Leung 01,Malik 01,Cula 04,Martin 04,Varma 05,Ar-
belaez 11] for image segmentation and texture classification. As mentioned
above, they were originally computed using even and odd symmetric Gaussian
derivatives as filters in [Malik 01,Leung 01], but the above described analysis
can be equivalently performed for any choice of filter bank, thus different filter
banks have been proposed over the years (see [Varma 05] for a short overview).
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