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ABSTRACT

This work presents a novel parallel technique to implement stack
morphological filters for image processing. The method relies on ap-
plying the image bitwise decomposition to manipulate the grayscale
image at a bit-plane level, while simple logical operations and Pos-
itive Boolean Functions (PBF’s) are executed in parallel to derive
the transformed bit-planes. The relationship between the bitwise
and threshold decomposition is closely investigated and analysed,
which lead us to derive an algorithm whose control flow is full bi-
nary encoded. Furthermore, the algorithm exhibits an interesting
performance, which depends on the image histogram thanks to its
hierarchical processing and the study of the relationship among bi-
nary decompositions.

Index Terms— Stack filters, Morphological operators, Rank fil-
ters, Bitwise decomposition, SIMD array.

1. INTRODUCTION

Stack filters are defined as the class of non-linear digital filters that
can be implemented by decomposing a multilevel signal into a set
of either binary or low dynamic range signals through a mono-
tone increasing mapping and then restoring it by summing up
the transformed signals. These two properties introduced in [1]
are commonly called threshold decomposition (TD) and stacking,
respectively. Weighted order statistic (WOS) filters, rank order
filters (ROF), morphological filters can be implemented as stack
filters. These sort of filters have been especially exploited on ar-
eas such as image and speech restoration by removing impulsive
and non-Gaussian noise. Other areas of prolific success are pattern
recognition and medical image processing.

Apart from the theoretical interest, the threshold decomposition
and stacking property have enabled implementing stack filters in a
efficient way. There is plenty of literature dealing with the imple-
mentation of stack filters for diverse filter specifications, VLSI ar-
chitectures, and applications. Most of these approaches are surveyed
in [2], covering techniques having a bit-serial processing in mind.

On the other hand, word-parallel implementations such as [3,
4, 5] have attempted to reduce the latency experienced on bit-serial
implementations at a expense of a higher chip area.

Parallel architectures such as Focal Plane Processors (FPPs) al-
low performing low-level image processing in parallel on all image
pixels. This new capability turns the traditional bit-parallel process-
ing into bit-plane processing, leading to new techniques to imple-
ment basic image processing algorithms such as stack filters.

In this paper, we propose a serial implementation for stack filters
and then we extend it to the FPP architecture. As a result, we employ
the image bitwise decomposition to deal with bit-planes and take
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advantage of the very fast processing of positive boolean functions
(PBF) performed by the FPP.

Another important feature of the FPPs is that they are able to
perform binary morphological operations in parallel. That is, these
operations are not performed by sequentially sliding a kernel over
the binary image, but filtering over all neighbourhoods in the bit-
plane at the same time. Therefore, traditional stack filters with a line
structuring element can be extended into a morphological approach.

The paper is organized as follows: In section 2 the relation-
ship between the threshold and bitwise decomposition is established.
Section 3 shows a simple serial implementation to compute stack fil-
ters based on the relationship established in section 2. In section
4, the serial approach is extended to a bit-plane architecture suited
for the FPP. Section 5 evaluates the hardware complexity of the al-
gorithm. Finally, the conclusions of this work are stated in section
6.

2. FROM BITWISE TO THRESHOLD DECOMPOSITION

Let un be a discrete-time signal of index n ∈ Z, with L levels, the
binary threshold and bitwise decomposition are defined as in (1) and
(2), respectively.

ti(un) =

{
1, un ≥ i
0, un < i

(1) bk(un) =
⌊un

2k

⌋
mod 2 (2)

where i = 1, 2, ..., L and k = 0, 1, ..., nb − 1 such that nb =
dlog2(L)e represents the number of bits. The corresponding multi-
level signals can be restored by using the stacking property (3), and
the weighted stacking property (4).

un =

L∑
i=1

ti(un) (3) un =

nb−1∑
k=0

bk(un)2
k (4)

Since the bitwise decomposition is generated by a non-monotone
increasing mapping, the threshold decomposition property does not
hold. Therefore, non-linear filters cannot be applied over those bi-
nary signals straightforwardly. In order to overcome this problem,
our algorithm regenerates threshold mappings from those obtained
by the bitwise decomposition through simple boolean functions.

2.1. The Regenerative Boolean Function

According to [6], we can check whether un is equal (hl = 1) or not
(hl = 0) to a level l by manipulating the bitwise decomposition of
un as shown in (5).

hl =

nb−1∧
k=0

βk(l) βk(l) =

{
bk, if wk(l) = 1

bk, if wk(l) = 0
(5)

where wk(l) =
⌊
l/2k

⌋
mod 2. This test can be useful to regen-

erate a threshold decomposition mapping, since it implies to repeat



iteratively this test for all levels in which any i-th threshold decom-
position mapping is comprised. Consequently, the threshold decom-
position can be expressed in terms of the bitwise decomposition of
un, leading us to the Regenerative Boolean Function (RBF)

ti(un) =

2nb−1∨
l=i

nb−1∧
k=0

βk(l) (6)

It is worth to note that the RBF has the canonical form of a Sum
of Products (SoP). Such a boolean expression can be minimized for
every i-th mapping in order to reduce to a minimum the number of
terms in the logical expression.

2.2. Minimization of the RBF

Boolean functions can be minimized by using a Karnaugh map (K-
map). A K-map is a grid-like representation of a truth table, or equiv-
alently, of a boolean expression. Boolean expression simplification
with K-maps is basically performed by finding the largest power-of-
two groups of adjacent cells containing the miniterms involved in
the boolean expression. After grouping, simple boolean laws are ap-
plied to each group in order to eliminate redundancies and yield a
minimal SoP expression.

In light of the adjacency and power-of-two grouping constraints
imposed by the Karnaugh minimization, it seems logical to first of all
analyse the K-maps resulting from multiple power-of-two threshold
mappings.

2.2.1. Minimization of the 2nb−1-th mapping

The K-map of the 2nb−1-th mapping is presented in Fig. 1.
Its boolean expression is t2nb−1 = f(bnb−1bnb−2bnb−3 ...b1b0)

=
∑
m(2nb−1... 2nb − 1), where

∑
m(·) represents the sum of

miniterms involved in the expression. Since all miniterms are rect-
angular grouped in a power-of-two number, as outlined in red, the
2nb−1-mapping is minimized as shown in (7).
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Fig. 1 K-map of the 2nb−1-th mapping.

t2nb−1 = bnb−1 (7)

2.2.2. Minimization of the 2nb−2-th and 3 · 2nb−2-th mapping

The K-map of the 2nb−2-th and 3 · 2nb−2-th mapping is pre-
sented in Fig. 2. Their corresponding boolean expressions are
given by t2nb−2 =

∑
m(2nb−2... 2nb − 1) and t3·2nb−2 =∑

m(3 · 2nb−2... 2nb − 1).
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Fig. 2 K-map of the (a) 2nb−2-th (b) 3 · 2nb−2-th mapping.

In Fig. 2(a), we can see that all miniterms can be grouped in two
logical adjacencies, simplifying the corresponding RBF to (8). On
the other hand, Fig. 2(b) leads to (9). Note that the 2 ·2nb−2-th map-
ping corresponds to the 2nb−1-th one, which we already computed
in section 2.2.1.

t2nb−2 = bnb−1 ∨ bnb−2 (8) t3·2nb−2 = bnb−1 ∧ bnb−2 (9)

2.2.3. Mapping minimization of odd multiples of 2nb−3

Similarly as in Sec. 2.2.2, we can find the minimal SoP expression
of the λ · 2nb−3-th mappings (λ = 1, 3, 5, 7), by using their corre-
sponding K-maps presented in Fig. 3.
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(a) λ = 1
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(b) λ = 3
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Fig. 3 K-map of the λ · 2nb−3-th mappings

Fig. 3 shows the largest power-of-two logical adjacencies
looped out for each K-map, which leads us to

t2nb−3 = bnb−1 ∨ (bnb−2 ∨ bnb−3) (10)

t3·2nb−3 = bnb−1 ∨ (bnb−2 ∧ bnb−3) (11)

t5·2nb−3 = bnb−1 ∧ (bnb−2 ∨ bnb−3) (12)

t7·2nb−3 = bnb−1 ∧ (bnb−2 ∧ bnb−3) (13)

In order to obtain the threshold mapping at any level expressed in
bitwise mappings without appealing to its K-map, it would be neces-
sary to know how many bits are required to regenerate the threshold
mapping and the way to combine the ∨ and ∧ operators. By care-
fully analyzing Figs. 1-3, we can realize that such information is
actually coded in the binary representation of the i-th threshold level
that we want to evaluate. For instance, in Fig. 2, we know that for
any un > 1, the two most significant bits of the mappings i = 2nb−2

and i = 3 · 2nb−2 are (01)2 and (11)2, respectively. Therefore, in
accordance with (8) and (9), we can establish that the two most sig-
nificant bits of the decomposition of un are necessary to regenerate
those threshold mappings. Furthermore, the corresponding boolean
operator can be coded with the most significant bit, that is, 0 → ∨
and 1 → ∧. Consequently, for the i = λ · 2nb−2 (λ = 1, 3, 5, 7)
mappings depicted in Fig. 3, their regeneration codes correspond to
(001)2, (011)2, (101)2, (111)2 telling us that three bits are neces-
sary and the two most significant bits of the code provide the infor-
mation about the way to combine the boolean operators. This can



be easily verified in (10)-(13); however, keep in mind that the or-
der of combination of the boolean operators depends on the order of
significance in the code.

Finally, we conclude that any i-th threshold mapping is ex-
pressed in the following generic and simplified form

ti(un) = (bnb−1♦dnb−1(bnb−2♦dnb−2 ...

(bnb−`+1♦dnb−`+1bnb−`))) (14)

where the binary representation of (i)10 = (dnb−1dnb−2...d1d0)2
defines the conditional boolean operator presented below

♦x =

{
∨, if x = 0
∧, if x = 1

(15)

On the other hand, ` represent the number of bits of the regeneration
code, such that any threshold level i can be represented as λ · 2nb−`.
Where λ is an odd number that represents the regeneration code,
while 2nb−` is an even number that depends on the number of bits
in which λ is represented. For instance, assume that we want to get
the threshold at i = 168; therefore, the regeneration code can be
obtained as follows

(168)10 = (10101000)2

λ · 2nb−` = (21 · 8)10 = (10101)2 · (1000)2

Note that the regeneration code is formed by discarding the less sig-
nificant bits set to zero of the binary representation of i. Therefore,
` can be defined as in (16), where #z represents the number of less
significant bits set to zero.

` = nb −#z (16)

3. BINARY SEARCH ALGORITHM BY THRESHOLD
MAPPING REGENERATION

The Binary Search Algorithm (BSA) [7] is a stack filter implemen-
tation based on iteratively testing a threshold condition in the middle
of the search space in which the T-th ranked element of the sequence
is located. Thus, reducing the search space by half on each iteration.
The threshold condition is generated by using the binary-tree thresh-
old, which is defined as in (17).

L1 = 2nb−1 for j = 1

Lj =

j−1∑
m=1

PBF (tLm(u1), tLm(u2), ...,

tLm(un))2
nb−m + 2nb−j , for j ≥ 2 (17)

where PBF represents the positive boolean function of the non-
linear filter. The binary search algorithm can be simplified by
using the corresponding RBF to generate the binary-tree threshold
(Lj) without performing its computation straightforwardly as in
(17). In order to better show how the RBF can be used with the
binary search algorithm, let us analyse the following example. Let
ROF(6){6, 2, 11, 4, 8, 3, 14} be the sequence from which we want
to obtain the 6th ranked element. Table 1 better shows how the BSA
works by using bitwise manipulations and the RBF.

The first step of the BSA (i.e. j = 1) consists of applying
the binary-tree threshold in L1 = 8 and the binary ROF6 opera-
tor. Since the data sequence is bitwise decomposed with 4 bits, the
MSB row exactly corresponds to the L1 threshold. As a result, we

rewrite directly this row into the 1st level of the binary-tree threshold
column, while the 6-th ranked bit leads to 1. This output serves to
compute the L2 = 12 threshold when j = 2. This way, the binary-
tree threshold is computed according to (14) and (15) leading us to

tL2(un) = b3 ∧ b2 (18)

which implies that the binary-tree threshold when j = 2 is computed
by applying the AND operator between the 1st and 2nd bit level. The
result is shown in the binary-tree threshold column while the 6th
ranked bit in the second level is 0. For the third level (i.e. j = 3) the
binary-tree threshold is set to L3 = 10 and it can be regenerated in
terms of the bitwise decomposition by using the following RBF

tL3(un) = b3 ∧ (b2 ∨ b1) (19)

In the binary-tree threshold column we can verify the result of this
regeneration, and the 6th ranked bit at this level yields 1. Finally,
for the fourth level, the threshold condition is L4 = 11 and it is
implemented with the following RBF

tL4(un) = b3 ∧ (b2 ∨ (b1 ∧ b0) (20)

The 6th ranked element is shown in the ROF(6) column, which is
u3 = 11.

Data Sequence
un Binary-tree threshold

j-level bk 6 2 11 4 8 3 14 tLj (un) ROF(6)

1 b3 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1
2 b2 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0
3 b1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1
4 b0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1

Table 1. Binary search algorithm.

It is worth to remark that by using RBFs to get the binary-tree
thresholds rather than full comparators, the complexity of the BSA
is reduced. Note that only basic logical manipulations were used,
while the control flow of the algorithm is full binary encoded. In
other words, the T -th ranked bit relates the boolean operator (i.e.
0 → ∨, 1 → ∧) to be used to regenerate the thresholds, while the
j-level of such bit relates the order of combination in which those
operators should be applied. For instance, coming back to Table
1, we can see that the 6th ranked bit for j = 1 yielded 1, which
implies to regenerate tL2(un) by using ∧ in (18). A similar process
is observed for tL3(un) since the two boolean operators used in (19)
come from the regeneration code (10)2, which is obtained from the
ranked bits at j = 1 and j = 2. This sort of control flow codification
of the BSA can be also verified for tL4(un).

4. THE BIT-PLANE STACK FILTER ALGORITHM

The approach presented in the previous section can now be extended
to a bit-plane architecture. Note that FPPs are able to perform PBFs
and logical operations very efficiently at a bit-plane level. There-
fore, we will apply the image bitwise decomposition to split up the
multilevel image, and then use the BSA and threshold mapping re-
generation to apply the respective non-linear filter.

Every bitwise decomposed bit-plane Ak is formed by N =
2nb−k−1 non-monotone mappings aqk as shown in (21), where k is
the level of significance.

Ak = a1k ∨ a2k ∨ . . . ∨ aNk aqk = rqk ∧ s
q
k (21)



rqk = tli(I) represents the threshold mapping at level li = (2q −
1) · 2k of the multilevel image I . Similarly, sqk = tlf (I) and lf =

q · 2k+1. Thus, rqk and sqk represent the initial and final threshold
levels that compose each non-monotone mapping. The transformed
bit-plane Ck is obtained after applying the non-linear filter (?) to
each threshold mapping with the flat structuring element se yielding

Ck = c1k ∨ c2k ∨ . . . ∨ cNk cqk = (rqk ? se) ∧ (sqk ? se) (22)

where rqk and sqk can be regenerated by using the RBF shown in (14).
Algorithm 1 is a top-down approach that processes each bit-

plane from the most to the least significant level. In lines 1-3, the
most significant bit-plane is processed directly since no further logic
manipulation is required than applying the non-linear filter. On the
other hand, in lines 4 and 5, the final threshold mappings to be used
in the next level of significance depend on the initial thresholds com-
puted in the actual level. Note that 0 represents a bit-plane of zeros.

From line 6 to 19 the rest of the levels of significance are pro-
cessed, where from line 10 to 13, every cqk non-monotone mapping is
computed. It is worth to remark that in lines 10 and 11 the threshold
regeneration process takes place and its computation is full binary
encoded. Finally, in lines 16 and 17, the final threshold mappings sqk
are computed for the next level of significance.

Algorithm 1 Bit-plane stack filter algorithm

1: r1nb−1 ← Anb−1

2: f1
nb−1 ← r1nb−1 ? se

3: Cnb−1 ← f1
nb−1

4: s1nb−2 ← f1
nb−1

5: s2nb−2 ← 0
6: for k = (nb − 2) down to 0 do
7: Ck ← 0
8: p = nb − 2− k
9: for q = 1 to 2nb−k−1 do

10: (dpdp−1 . . . d0)2 ← (q − 1)10
11: rqk ← (Anb−1♦dp(Anb−2♦dp−1 ...(Ak+1♦d0Ak)))
12: fq

k ← rqk ? se
13: cqk ← fq

k ∧ s
q
k

14: Ck ← Ck ∨ cqk
15: m← 2q − 1
16: smk−1 ← fq

k

17: sm+1
k−1 ← sqk

18: end for
19: end for

Some filters such as morphological operations and ROFs may
have either extensive or anti-extensive properties. For instance, ero-
sion shrinks bright regions while dilation expands them. These prop-
erties combined with the hierarchical processing of our algorithm
may help to considerably reduce the processing time. In order to
justify this statement, let’s consider that (?) is an anti-extensive filter
in Algorithm 1. Therefore, we may conclude that

if fq
k = 0 then ∀fq′

k−1 : fq′

k−1 ⊆ f
q
k ⇒ fq′

k−1 = 0 (23)

This means that due to the anti-extensive properties of the non-linear
filter, fq

k in line 12 of Algorithm 1 may turn into a bit-plane of zeros.
Consequently, all the initial thresholds filtered in the lower levels of
significance and with greater threshold level will be also zero. In
this way, we can avoid computing cqk mappings in the lower levels of
significance, and thus reduce the processing time. Conversely, if (?)

is an extensive filter, fq
k may turn into a bit-plane of ones. Therefore,

all the final thresholds filtered in the lower levels of significance and
with lower threshold level will be also one. Since the final thresholds
are complemented, as shown in line 13, cqk turns to be zero and the
processing time can be reduced. The dual expression of (23) is

if fq
k = 1 then ∀fq′

k−1 : fq
k ⊆ f

q′

k−1 ⇒ fq′

k−1 = 1 (24)

5. ALGORITHM COMPLEXITY

Several advantages can be remarked in terms of hardware complex-
ity of the bit-plane stack filter algorithm. For instance, the multilevel
image decomposition/recomposition only involves reading/writing
on the bit-fields of each data word. Also, according to Algorithm
1, the most demanding operations are simple logical manipulations
(i.e. ∨ and ∧) and binary filters, both implemented at a bit-plane
level. As mentioned previously, these operations are efficiently per-
formed in FPPs. Therefore, implementing a stack filter of an image
with an 8-bit depth and full dynamic range, lead us to perform 2046
logical operations and 255 binary rank filters at a bit-plane level.

6. CONCLUSIONS

In this work we presented a stack filter algorithm that fits to the
architecture of a focal plane processor. Relying on the image bit-
wise decomposition to process the image in the binary domain, we
were able to study in depth the relationship between bitwise and
threshold decomposition. As a result, we found that the algorithm
can be implemented by using simple logical operations and PBFs,
while the control flow of the algorithm can be full binary encoded.
Our approach outperforms the naive bit-plane implementation of the
threshold decomposition since the thresholding and stacking steps
are not computed by using comparators and full adders. Also, the
processing time of our approach depends on the histogram distribu-
tion, which is a feature not found in other approaches.
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Calderón, “A practical parallel architecture for stacks filters,”
Springer Journal of VLSI Signal Processing, vol. 38, pp. 91–
100, September 2004.

[6] A. Frı́as-Velázquez and J.R. Morros, “Histogram computation
based on image bitwise decomposition,” in Proc. of IEEE Int.
Conf. on Image Processing (ICIP’09), 2009, pp. 3259–3272.

[7] K. Chen, “Bit-serial realization of a class of nonlinear filters
based on positive boolean functions,” IEEE Trans. Circuits and
Systems, vol. 36, pp. 785–794, June 1989.


