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Motivation:

1. Very simple system to model many natural applications

2. Joint analysis of the steady-state queue contents is
challenging
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Motivation:

1. Very simple system to model many natural applications
2. Joint analysis of the steady-state queue contents is
challenging

Define

N; := steady-state number of customers in queue i,i =1,2.

Joint probabilities? Correlation coefficient?
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Generating functions
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Generating functions

Functional equation for P(z1, z):

(2120 — A(z1, 22)|P(21, 22) = A(21, 22) (21, 22) ,
with

L(Zl, 22) = (22—]_):’:)(217 0)—|—(21—]_):D(07 22)+(21—1)(22—1)P(0, 0)
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Objective

> Pr[N1 = m, N2 = n2]

4/16



Objective

> = =

4/16



Objective

> — —
» Questions of “asymptotic correlation”

> lim, o0 E[z2| Ny = n] =7
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Preliminaries

Two queues are GeoX /D/1 queues when viewed in isolation:

> We assume the two queues have steady-state distributions

» We know Pr[N; =-],i=1,2
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Preliminaries

Two queues are GeoX /D/1 queues when viewed in isolation:

> We assume the two queues have steady-state distributions
» We know Pr[N; =-],i=1,2
» In particular: we know the tail distribution

RPN, = k] = G (k— )

> 7, is the dominant singularity of E[z"]
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Main result

Assume that

d Alr, 2)

dz Al 1) |,y ©

6/16



Main result

Assume that

d Alr, 2)

- 1.
dz A(r.1) |,y =

z=1

Then, we have the following limit law

fim E[2M| Ny = ) = Lol DA

e 2 A5(2)
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Main result

Assume that

d Alr, 2)
dz A(Tl, 1)

Then, we have the following limit law

z=1

lim E[z"2| Ny = n] = [1 - )z - 1)A(2)

n——+-00 7z — A;(Z) )
where
A(11,2) dA;(2)
A* — d /\ -
5(2) Alr 1) an 5 |
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Step-by-step overview of the proof

1. Show that 7 is the dominant singularity of P(z,0) (!)

2. Show that 77 is a simple pole and compute the residue of
P(z,0)atz=m
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P(z,0)atz=m

3. Define Py(z) := 332 Pr[N1 = n, N> = k]z¥ and note that

P(x,z) = Z Pn(z)x"
n=0

4. Consider x — P(x,z) as a function of x and show that 7y is
the dominant singularity of x — P(x, z)

[ [xz — A(x, 2)]P(x, z) = A(x, z)L(x, z) J
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4. Consider x — P(x,z) as a function of x and show that 7 is
the dominant singularity of x — P(x, z)
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. Consider x — P(x, z) as a function of x and show that 71 is
the dominant singularity of x — P(x, z)

. Show that 77 is a simple pole and compute the residue —B(z)
of P(x,z) at x =11

. Estimate P,(z) using step 4 and step 5:
11 Pn(z) = B(z) (n— o0)

. Normalize:

Pn(2) B(z)
PriNi=1] G

[ ™ Pr[Ny = n] = G (n — 00) ]
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Discussion

B(z) _ R-Mlz-1)Az) ..
G z— A(z) , A(2):=

» PGF of the queue content in a GeoX /D/1 queue!
> Stability condition of this queueing system is

d A(Tl.Z)

— 1
dz A(m.1)|,_, ©

<ls&e
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Numerical examples: example 1

binomial distributed
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Numerical examples: example 1

M Ao 8
Az, 22) = (1 + 3(21 -1)+ §(22 - 1))
> Negative correlation
» Condition A5 < 1 is always fulfilled:
bY; A2 < o<1

2T (- )
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Figure: Average queue content in queue 2 versus Ay (A; = 0.4)
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Numerical examples: example 2

Poisson distributed arrivals

V] —p—— 1
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Numerical examples: example 2

Poisson distributed arrivals

V] —p—— 1
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A(Zl,ZQ) = eV1(2171)eV2(2271)eu3(212271)
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A(Zla 22) = eV1(Z1—1)eu2(22—1)6y3(zlz2_1)
> )‘l:V1+V3, )\2:y2_|_y3
» Positive correlation if 3 > 0

» Condition A5 < 1 not always fulfilled:

?
A =X tu(n—1)<1
~—

>0
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Figure: Mean of the queue content in queue 2 versus A, (v = 0.4,

V3 = 03)
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Final remarks

» Applicability to other similar models: singularity analysis of
P(z,0) and/or P(0, z) is required
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Final remarks

» Applicability to other similar models: singularity analysis of
P(z,0) and/or P(0, z) is required

» Open question: intuitive interpretation of A3(z)?
» Open question: what if \j > 17

» Open question: generalization to more than two queues?

Thank you for your attention!
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