Steering Dual-Tree Complex Wavelets: is this possible?

One of the primary advantages of the Steerable Pyramid transform (see [1]) is that the filter response in an arbitrary direction can be obtained as a linear sum of the filter responses computed for a fixed number of orientations. Equivalently, by taking linear sums of the basis elements, an arbitrary rotated version of the main basis element can be obtained. This property is usually called steerability.

For the Dual-Tree complex wavelet transform (DT-CWT), it is known that the basis elements are not steerable, this is by the way the transform is designed. Nevertheless, the DT-CWT is still a directional transform with 6 orientations (15;45;75;105;135;165) and the basis elements can be steered approximately, as shown in the example below:

Your browser is not Java enabled. Instead you can download and unzip the software and execute the applets locally through the provided batch scripts: click here. Note that this still requires a local Java installation.

This is particularly of importance when considering inter-orientation dependencies between complex wavelet coefficients. In this example, we assume (for simplicity) that the wavelet filters for different orientations are rotationally similar. In practice, this is not the case for orientations at +/- 45, because these filter responses are concentrated in higher radial frequencies than the others. More information on this topic can be found in [2].