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Summary

In the last decades, the use of digital images has tremendously increased, due
to the wide availability of imaging devices, such as digital still cameras and
medical scanners (in hospitals). Simultaneously, image quality expectations
of end users have augmented. To meet these expectations, manufacturers of
imaging devices push the electronics in their devices up to their limits. However,
physical limitations and cost restrictions pose stringent limits on the maximum
achievable image quality. Also in medical imaging, it is desirable to lower
the acquisition times, for patient comfort, less motion-induced artifacts and
increased examination throughput. Especially important in x-ray imaging is
the tendency to lower radiation doses in order to minimize health risks due to
radiation exposure. In practice, a compromise between image quality, radiation
dosis, acquisition time and other imaging parameters need to be made.

Consequently, acquired digital images are imperfect and often contain many
degradations, such as noise and blur. It becomes increasingly important to
extract more useful information out of these degraded images and to improve
the quality of these images.

In this dissertation we develop digital post-processing techniques to restore
the images after acquisition. We thereby employ a generic methodology that
can easily be adapted to various practical applications. Based on improved mul-
tiresolution representations, we develop new and improved statistical models
for images and image noise.

Correspondingly, the three pilars of this work are multiresolution repre-
sentations, image models and noise models. Multiresolution representations
describe images using a small number of significant coefficients, typically much
less than the total number of pixels in the image. Statistical models describe
the properties of ideal undegraded images and are used as prior knowledge for
image restoration. Noise models characterize the statistical properties of image
noise.

In the context of multiresolution representations, we improve the direc-
tional selectivity of the first-scale of the dual-tree complex wavelet transform,
which results in a better reconstruction of fine details at arbitrary orienta-
tions. Next, we propose a new design for the discrete shearlet transform that
offers low redundancy, shift invariance and high directional analysis properties,
a combination of properties difficult to achieve with existing multiresolution
representations.

We present two new statistical models for image multiresolution transform
coefficients: a joint intra/inter-scale model, which incorporates in a novel way



vi

both spatial correlations and inter-scale dependencies between transform co-
efficients, and an intra-scale model (MPGSM), which is a generalization and
improved version of the well-known and popular GSM model. While these
models attempt to fully exploit local dependencies between transform coeffi-
cients, we also investigate models for non-local dependencies. In particular, we
introduce an improved image-domain non-local prior model for images. Exper-
imental results show that the denoising techniques that make use of these two
multiresolution models and non-local model are currently among the state-of-
the-art methods in image denoising.

Because existing restoration techniques often make restrictive assumptions
with respect to the noise statistics (e.g. they assume additive white Gaussian
noise), these techniques generally perform poorly when applied to real images
(as for example captured by a digital still camera). Therefore, we devote special
attention to models for noise encountered in realistic scenarios. In particular,
we study colored Gaussian noise, non-stationary noise and signal-dependent
noise and we provide novel estimation techniques for estimating the parameters
of these noise models. These noise models can easily be adapted to underlying
processing techniques in the imaging devices.

In this respect, one of the contributions of this dissertation is a new sta-
tistical model for non-stationary noise in Computed Tomography (CT) im-
ages. Because of the signal-dependency of the projection data noise and be-
cause of the non-local character of the traditionally used filtered backprojection
reconstruction algorithm, the statistics of noise in reconstructed images are
very complicated. Our statistical model describes the position-dependent and
orientation-dependent properties of the CT noise. We provide a parameter
estimation technique for this model based on multiresolution concepts.

We also introduce a new complex-wavelet packet based demosaicing algo-
rithm, which fully exploits the analyzing properties of the complex wavelets in
order to reconstruct fine details and to avoid discoloration artifacts. This al-
gorithm is particularly intriguing because it has a low computation complexity
(which permits implementation on digital camera hardware) and can be easily
extended to perform joint denoising and demosaicing.

Next, we explain how the “generic” image models, noise models and mul-
tiresolution representations can be jointly combined for a given restoration
task. Consider for example the problem of noise reduction of images cap-
tured by a digital still camera. The photon energies measured by the sensor
elements of the camera typically exhibit a Poisson distribution. By image re-
construction techniques and various post-processing techniques in the camera
(such as gamma correction, color enhancement, digital zoom, demosaicing, ...)
the statistics of the noise are significantly changed. Consequently, the image
restoration problem becomes very difficult. Therefore, we illustrate how the
Bregman optimization framework can be used to solve the more complicated
image restoration problems. In particular, we present new techniques that
exploit properties of the improved multiresolution transforms (e.g. shearlet
transform) in order to perform joint denoising and deblurring, estimate and
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remove correlated noise from images, and remove signal-dependent noise from
images jointly with de-biasing.

Finally, we consider the automatic quality assessment of medical images.
Here the goal is to objectively and automatically measure image quality. This
is useful for validating restoration techniques for medical images and for im-
proving future medical display systems. Traditionally, to assess the impact of
new display technologies on the quality of the images as seen on the screen,
time-consuming and costly psychovisual experiments involving human special-
ists need to be conducted. By automatically assessing the image quality, the
need for these experiments is eliminated. Image quality is then measured by
means of a “virtual specialist”, which is a software program that is tuned to
match human specialists in evaluating the images. In this dissertation, we
present a novel framework for deriving model observers that detect abnormal-
ities with random parameters. We find that model observers tuned for this
detection task make use of multiresolution concepts, hence the quality assess-
ment task is very related to the image restoration task. Because nowadays the
use of 3D medical images becomes increasingly important, we also discuss novel
extensions of the “virtual specialist” model to 3D image visualization.



Samenvatting

De laatste decennia is het gebruik van digitale beelden sterk toegenomen als
gevolg van de ruime beschikbaarheid van beeldopnametoestellen, zoals digitale
camera’s en medische scanners (ondermeer in ziekenhuizen). Tegelijkertijd zijn
ook de verwachtingen van de eindgebruikers over de beeldkwaliteit toegenomen.
Om hieraan tegemoet te komen, trachten fabrikanten van beeldopnameappara-
tuur het maximale uit de elektronica in hun apparaten te halen. Maar omwille
van fysische beperkingen en kostprijsredenen, is de maximaal haalbare beeld-
kwaliteit echter beperkt. Ook in de medische beeldvorming is het wenselijk om
lage opnametijden te gebruiken, dit voor het comfort van de patiënt, minder
bewegingsartefacten en kortere onderzoeken. Om gezondheidsrisico’s te mi-
nimaliseren wenst men bij x-ray beelden een zo laag mogelijke stralingsdosis
te gebruiken. In de praktijk moet er vaak een compromis tussen beeldkwa-
liteit, stralingsdosis, opnametijd en andere beeldvormingsparameters worden
gemaakt.

Bijgevolg vertonen opgenomen digitale beelden vaak vele degradaties, zoals
ruis en onscherpte. Het is dus belangrijk om de kwaliteit van de beelden te
verbeteren om zo meer nuttige informatie te halen uit deze imperfecte beelden.

In dit proefschrift worden digitale naverwerkingstechnieken ontwikkeld om
opgenomen beelden te verbeteren, aan de hand van een generieke methodolo-
gie die gemakkelijk kan worden aangepast voor diverse praktische toepassingen
en die gebaseerd is op verbeterde multiresolutievoorstellingen. Verder worden
nieuwe en verbeterde statistische modellen ontwikkeld voor beelden en de bij-
horende ruis.

Het proefschrift steunt daarom op drie grote pijlers: multiresolutievoorstel-
lingen, statistische beeldmodellen en ruismodellen. Multiresolutievoorstellingen
beschrijven beelden met behulp van een klein aantal significante coëfficiën-
ten, doorgaans is dit aantal veel minder dan het totale aantal pixels in het
beeld. Statistische modellen beschrijven de eigenschappen van ideale, niet-
gedegradeerde beelden en worden gebruikt als voorkennis voor de beeldrestau-
ratie. Ruismodellen karakteriseren statistische eigenschappen van beeldruis.

In het kader van multiresolutievoorstellingen, wordt de richtingsgevoeligheid
van de eerste schaal van de dual-tree complexe wavelettransformatie verbeterd.
Hierdoor worden fijne details met willekeurige oriëntaties beter gereconstru-
eerd.

Vervolgens wordt een nieuw ontwerp ontwikkeld voor de discrete shearlet-
transformatie, dat een lage redundantie en verschuivingsinvariantie combineert
met een fijne richtingsanalyse.
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Verder worden twee nieuwe statistische modellen voorgesteld voor multi-
resolutiecoëfficiënten van beelden: een gezamenlijk intra-/inter-schaalmodel,
waarin op een nieuwe manier spatiale correlaties en onderlinge afhankelijkhe-
den tussen coëfficiënten in verschillende multiresolutieschalen in rekening wor-
den gebracht en een intra-schaalmodel (MPGSM), dat een veralgemening en
verbeterde versie is van het bekende en populaire GSM-model. Deze modellen
benutten de lokale afhankelijkheden ten volle. In dit proefschrift worden ook
niet-lokale afhankelijkheden behandeld aan de hand van een verbeterd niet-
lokaal a priori model voor het beelddomein. Experimentele resultaten tonen
aan dat de ruisonderdrukkingstechnieken die gebruik maken van deze modellen
momenteel tot de state-of-the-art technieken behoren in de ruisonderdrukking
voor beelden.

Omdat bestaande beeldrestauratietechnieken vaak beperkende veronder-
stelling maken ten aanzien van de ruiseigenschappen, zoals uitgaan van addi-
tieve witte Gaussiaanse ruis, presteren deze technieken in het algemeen slecht
wanneer ze worden toegepast op beelden die opgenomen zijn met een digitale
camera.

In dit proefschrift wordt daarom speciale aandacht besteed aan modellen
voor ruis in realistische omstandigheden. In het bijzonder wordt gekleurde
Gaussiaanse ruis, niet-stationaire ruis en signaal afhankelijke ruis bestudeerd.
Nieuwe technieken voor het schatten van de parameters van deze ruismodellen
komen aan bod. Deze ruismodellen kunnen gemakkelijk aangepast worden aan
de onderliggende verwerkingsstappen in de beeldopnametoestellen.

In dit opzicht is één van de bijdragen van dit proefschrift een nieuw sta-
tistisch model voor niet-stationaire ruis in Computed Tomography (CT) beel-
den. Omwille van de signaalafhankelijkheid van de projectiedata en omwille
van het niet-lokale karakter van het traditionele “filtered backprojection” re-
constructiealgoritme, zijn de ruisstatistieken in gereconstrueerde CT beelden
zeer ingewikkeld. Ons statistisch model beschrijft de positieafhankelijkheid en
de oriëntatieafhankelijkheid van het lokale ruisvermogenspectrum van CT ruis.
We bespreken een parameterschattingstechniek gebaseerd op multiresolutiecon-
cepten.

Er wordt ook een nieuw demosaicing algoritme ontwikkeld, gebaseerd op
complexe wavelet packets, dat volledig gebruik maakt van de eigenschappen
van complexe wavelets om fijne details in de beelden te reconstrueren en om
kleurartefacten te voorkomen. Dit bijzonder intrigerende algoritme heeft een
lage rekencomplexiteit, wat een implementatie mogelijk maakt op digitale ca-
merahardware. Het kan gemakkelijk worden uitgebreid om ruisonderdrukking
en demosaicing gezamelijk uit te voeren.

Vervolgens wordt uitgelegd hoe de “generieke” beeldmodellen, ruismodellen
en multiresolutievoorstellingen gecombineerd kunnen worden om een bepaald
beeldrestauratieprobleem op te lossen. Neem bijvoorbeeld de ruisonderdruk-
king van beelden gemaakt met een digitale fotocamera. De fotonenergiëen ge-
meten door de sensorelementen van de camera vertonen algemeen beschouwd
een Poissondistributie. Door beeldreconstructietechnieken en diverse naverwer-
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kingsstappen in de camera (zoals gammacorrectie, kleurverbetering, digitale
zoom, demosaicing, ...) worden de ruisstatistieken aanzienlijk beïnvloed. Het
gebruik van het Bregmanoptimalisatieraamwerk wordt geïllustreerd om gecom-
pliceerde beeldrestauratieproblemen op te lossen. Nieuwe technieken worden
voorgesteld die de eigenschappen van de verbeterde multiresolutievoorstellin-
gen ten volle benutten. Behandelde voorbeelden zijn gezamenlijke ruisonder-
drukking en verscherping, schatting en verwijdering van gecorreleerde ruis in
beelden, verwijdering van signaalafhankelijke ruis.

Tot slot wordt de automatische kwaliteitsbeoordeling van medische beelden
behandeld. Het doel is hier om objectief en automatisch de beeldkwaliteit te
bepalen. Dit is nuttig voor zowel het valideren van restauratietechnieken voor
medische beelden als voor het verbeteren van toekomstige medische beeldscher-
men. Om de impact van nieuwe beeldschermtechnologiëen op de beeldkwaliteit
vast te stellen, worden traditioneel tijdrovende en dure psychovisuele experi-
menten met medische specialisten uitgevoerd. Door de beeldkwaliteit automa-
tisch te beoordelen, worden deze experimenten overbodig. De beeldkwaliteit
wordt dan gemeten door middel van een “virtuele specialist.” Dit is een soft-
wareprogramma dat is afgestemd op artsen in het beoordelen van beelden.
In dit proefwerk wordt een nieuw raamwerk voor virtuele specialistmodellen
voor de detectie van afwijkingen met willekeurige parameters voorgesteld. De
specialistmodellen, die afgestemd zijn op deze detectietaak, maken noodzake-
lijkerwijs gebruik van multiresolutieconcepten. De automatische kwaliteitsbe-
oordeling van medische beelden is dus sterk gerelateerd aan het probleem van
beeldrestauratie. Omdat tegenwoordig het gebruik van 3D medische beelden
steeds belangrijker wordt, worden ook nieuwe uitbreidingen van het virtuele
specialistmodel voor 3D beeldvisualisatie besproken.
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1
Introduction

In this dissertation, we examine and develop statistical multiresolution models
for images and statistical models for noise in images. Using statistical estima-
tion, we devise new processing techniques using these models. In particular, we
focus on image restoration and medical image quality assessment. We thereby
attempt to fill the gap between theory and practice.

1.1 Problem statement and topical outline

Because of the wide availability of imaging devices such as digital still cameras
and medical scanners (in hospitals), there has been a tremendously growing
use of digital images in the last decades. While the image quality expectations
of the end users have significantly been increased, physical limitations and cost
restrictions of the imaging acquisition devices often pose stringent limits on the
maximum achievable image quality, e.g., in terms of image resolution, noise, ...

For example, there is an ongoing trend to increase the number of photosen-
sitive elements in digital cameras: nowadays, cameras with 10 megapixel (10
million photosensitive elements) or more are very common. However, adding
more photosensitive elements in the camera involves reducing the area of the
sensor elements, which also increases the noise in the images. Furthermore, this
reduces image resolution because of the non-negligible crosstalk between the
sensor elements. Also in medical imaging, decreased acquisition times and the
use of lower radiation doses (in x-ray imaging) are desired. This often results
in a trade-off between image quality, radiation dosis and acquisition time and
various other imaging parameters.

Because the acquired images are imperfect and always contain artifacts or
degradations, it becomes increasingly important to improve the quality of these
images, or to extract as much information from these images as possible. In
this dissertation, we develop digital post-processing techniques to restore the
images after acquisition. To build such processing techniques, we employ a
generic methodology that can easily be adapted to various practical problems:
we devise advanced statistical models for images and image noise based on mul-
tiresolution concepts and we explain a general framework in which these models
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can be jointly used for a given image restoration task (e.g. noise reduction of
digital still images). Hence, the three pilars of this work are multiresolution
representations, image models and noise models. Multiresolution representa-
tions describe images using a small number of “significant” coefficients, typi-
cally much less than the total number of pixels in the image, thereby exploiting
their correlation structure and redundancy. Statistical image models describe
the properties of ideal, undegraded images and are used as prior knowledge for
image restoration. Noise models characterize the statistical properties of noise
in images.

In the context of multiresolution representations, we improve the directional
selectivity of the first-scale basis elements of the dual-tree complex wavelet
transform. We also propose a new design for the discrete shearlet transform.
This new design offers low redundancy, shift invariance and high directional
analysis properties, a combination of properties which is difficult to achieve
with existing multiresolution representations.

We present two new statistical image models for multiresolution transform
coefficients: a joint intra/inter-scale model, which incorporates both spatial
correlations and inter-scale dependencies between transform coefficients, and an
intra-scale model (MPGSM), which is a generalization and improved version of
the well-known and popular GSM model. While these models attempt to fully
exploit local dependencies between transform coefficients, we also investigate
models for non-local dependencies. In particular, we introduce an improved
image-domain non-local prior model for images. Experimental results show
that the denoising techniques based on these two multiresolution models and
the non-local model are currently among the state-of-the-art methods in image
denoising.

We particularly devote attention to noise models that can take underlying
processing techniques in the acquisition devices into account. By the image
reconstruction and processing methods used by the devices, the noise char-
acteristics are often seriously altered. Because traditional image restoration
methods often make restrictive assumptions with respect to the noise statistics
(e.g. they assume additive white Gaussian noise), these techniques generally
give poor results or even fail when applied to images originating from real ac-
quisition devices. In this work, we provide several novel approaches to solve
this problem.

Next to image restoration applications, we also consider the problem of
quality assessment of medical images. Here the goal is to automatically de-
termine which images are “better” in terms of quality (i.e. clinical value) than
other images and to objectively measure the quality. Medical image quality as-
sessment is not only useful for optimizing restoration techniques dealing with
medical images, but it is also of great importance for improving future medical
display systems.

Traditionally, to assess the impact of new technologies (e.g. new types of
backlights for an LCD display) on the quality of the images as seen on the
screen, psychovisual experiments involving human specialists are performed.
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A panel of experienced physicians is asked to view a set of medical images and
to make a binary decision for each image: an abnormality is either present in
the diagnostic image, or not. Based on the results of these experiments, the
image quality is then measured objectively. Because psychovisual experiments
are very time-consuming and costly, “virtual specialist” models (so-called model
observers) have been developed in the last decades. The goal is to develop a
model that well predicts the performance of a physician performing the same
detection task.

In this dissertation, we present a novel framework for model observers for
detecting abnormalities with random parameters in images. We will see that
model observers that are optimized for this detection task make use of multires-
olution concepts, hence quality assessment is very related to image restoration.

Finally, we provide practical results of the proposed image restoration and
medical image quality assessment techniques, and when available, we compare
to state-of-the-art techniques performing the same task.

1.2 Contributions and list of publications

This research has resulted in several contributions. These contributions are not
only improvements to multiresolution representations, but also novel image and
noise models and corresponding estimation techniques. The key noveltiesthat
will be discussed in detail in this dissertation, are:

• A specialized design technique for complex wavelet filters for the first scale
of the dual-tree complex wavelet transform (DT-CWT). This method
improves the directional properties of the basis functions of the first scale
of the transform, which is crucial for many applications in which accurate
representation of image details is desired. Published in ICIP conference
[Goossens et al., 2009b].

• A novel design of a discrete shearlet transform with a low redundancy ra-
tio (around 2.6) and many interesting properties, such as shift invariance
and excellent directional selectivity of the basis functions. This transform
is an optimally sparse multiresolution representation for smooth images
containing smooth line-like and curve-like discontinuities. Published in
LNLA’09 workshop [Goossens et al., 2009a].

• MPGSM, which is an improved intra-scale statistical model for images in
a multiresolution transform domain. This model is a generalization of the
existing Gaussian Scale Mixtures and Mixtures of Gaussian Scale Mix-
tures model and captures the spatial variability of the local covariance
matrix of subband coefficients. The Bayesian Minimum Squared Error
(MMSE) estimator for this model in a denoising task has a performance
that is competitive to or better than many state-of-the-art image denois-
ing methods. Published in IEEE Trans. Image Processing [Goossens
et al., 2009c].
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• Vector-ProbShrink, which is a vector-based extension of ProbShrink
[Pižurica and Philips, 2006,Pižurica, 2002], particularly designed to deal
with stationary correlated noise in images. With a small modification,
the method can also be used for non-stationary noise. Furthermore, the
underlying Vector-ProbShrink image model can be coupled to a hidden
markov tree (HMT) model in order to take statistical dependencies be-
tween subband coefficients in different scales in to account. Published in
IEEE Trans. Image Processing [Goossens et al., 2009d].

• An expectation maximization (EM) algorithm for the estimation of the
noise covariance of stationary correlated noise in images, which leads - in
combination with Vector-ProbShrink - to a “blind” restoration method for
images corrupted with correlated noise. We also investigate the estima-
tion of non-stationary noise with spatially variant correlation structure in
images. As far as the authors are aware of, this problem has never been
tackled before. We present an extension of the EM algorithm to deal with
this type of noise. Published in ICIP conference [Goossens et al., 2008c].

• A novel non-stationary model for noise in computed tomography images
(CT) reconstructed by the filtered backprojection algorithm. This model
is of great importance not only for correct analysis of low-dose CT images
(which suffer from noise streaking artifacts) but also for devising CT
imaging denoising techniques. Submitted to IEEE Trans. Medical

Imaging (under revision).

• An approximative analytical relationship between the camera response
function and the noise level function that is important for the modeling
and estimation of signal-dependent noise in images.

• An improved non-local means algorithm which exploits self-similarity in
images. Here we made several quality and computation time improve-
ments, leading to a denoising technique that again compares favorably to
state-of-the-art approaches, both objectively and visually. Published in
LNLA’08 workshop [Goossens et al., 2008a].

• A complex-wavelet based demosaicing method (developed in close collab-
oration with ir. J. Aelterman) that exploits the spatial and frequency
localization properties of the wavelets. This technique is computation-
ally simple, solves many discoloration problems and better reconstructs
high frequency information in images than a very recent wavelet-based
demosaicing method of Hirakawa. The method is particularly interesting
because it can be easily combined with denoising.

• Applications and tuning of Bregman optimization for image restoration
tasks in combination with novel multiresolution representations. These
contributions resulted from a close collaboration with dr. Hiêp Luong
and ir. Jan Aelterman. Combined with other image and noise models
presented in this dissertation, this led to:
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– An iterative technique which makes use of the discrete shearlet trans-
form in order to jointly perform denoising and deblurring.

– An iterative method which estimates the Power Spectral Density of
the noise in images and simultaneously restores these images.

– An iterative method which estimates and removes signal-dependent
noise from images. This technique is also able to remove the signal-
dependent bias caused by the degradation process (e.g. due to clip-
ping of the intensity range).

• A novel theoretical framework for deriving channelized Hotelling ob-
servers for assessing medical image quality, in medical signal detection
tasks in which the signal is known statistically. The application of joint
estimation and detection theory to this problem leads to model observers
that are optimal in the maximum a posteriori sense and that make use
of multiresolution representations.

• In close collaboration with ir. Ljiljana Platiša and the American Food
and Drug Administration, we developed novel multi-slice Channelized
Hotelling observers, intended for the quality assessment of volumetric
medical images viewed in stack-browsing mode (i.e. slices of the medical
volume are shown sequentially).

So far, our work resulted in 3 published journal publications in IEEE Trans-

actions (as first author), 5 submitted journal publications (of which 1 as first
author) and 2 publications in book chapters (as second author). 22 papers
are published in the proceedings of international conferences with peer review
(of which 8 as first author). 11 papers have been published in conference pro-
ceedings without peer review (of which 5 as first author). 1 European patent
application has been filed. A small selection of the key publications published
during this research is given below:

• B. Goossens, A. Pizurica and W. Philips, "Removal of Correlated Noise by
Modeling the Signal of Interest in the Wavelet Domain," in IEEE Transactions
on Image Processing , vol 18 (6), p.1153–1165, june 2009.

• B. Goossens, A. Pizurica and W. Philips, "Image Denoising Using Mixtures of
Projected Gaussian Scale Mixtures," in IEEE Transactions on Image Process-
ing , vol 18 (8), p. 1689–1702, august 2009.

• B. Goossens, J. Aelterman, A. Pizurica and W. Philips, "A Recursive Scheme
for Computing Autocovariance Functions of Decimated Complex Wavelet Sub-
bands, " in IEEE Trans. Signal Processing , in press.

• J. Aelterman, B. Goossens, A. Pizurica and W. Philips, "Suppression of Corre-
lated Noise", in Recent Advances in Signal Processing , 2010, IN-TECH, ISBN
978-953-307-002-5

• F. Rooms, B. Goossens, A. Pizurica and W. Philips, "Image restoration and
application in biomedical processing, " in Optical and Digital Image Processing ,
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2010, Eds. G. Cristobal, P. Schelkens and H. Thienport, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, ISBN 13-978-3-527-31291-7

• B. Goossens, Lj. Platisa, E. Vansteenkiste and W. Philips, "The Use of Steer-
able Channels for Detecting Asymmetrical Signals with Random Orientations",
in Proc. of the SPIE: Medical Imaging 2010 , Feb. 2010, San Diego, CA, USA

• B. Goossens, J. Aelterman, H. Q. Luong, A. Pizurica and W. Philips, "Efficient
Design of a Low Redundant Discrete Shearlet Transform, " in Proc. 2009 Inter-
national Workshop on Local and Non-Local Approximation in Image Processing
(LNLA 2009), August 19-21, 2009, Tuusula, Finland (invited paper)

• B. Goossens, A. Pizurica and W. Philips, "A Filter Design Technique for Im-
proving the Directional Selectivity of the First Scale of the dual-tree complex
wavelet transform," in Proc. of the IEEE Int. Conf. Image Processing (ICIP
2009), Nov. 7-11, Cairo, Egypt

• B. Goossens, A. Pizurica, and W. Philips, "EM-Based Estimation of Spatially
Variant Correlated Image Noise," in Proc. of the IEEE IEEE Int. Conf. Image
Processing (ICIP2008), San Diego, California, USA, Oct. 2008, pp. 1744-1747

• B. Goossens, H.Q. Luong, A. Pizurica, W. Philips, "An improved non-local
means algorithm for image denoising," in Proc. of the 2008 International Work-
shop on Local and Non-Local Approximation in Image Processing (LNLA 2008),
Lausanne, Switzerland, Aug. 25-29 (invited paper)

• B. Goossens, A. Pizurica, and W. Philips, "Removal of Correlated Noise By
Modeling Spatial Correlations and Interscale Dependencies in the Complex
Wavelet Domain," in Proc. of the IEEE Int. Conf. Image Processing (ICIP
2007), San Antonio, Texas, USA, 16-19 Sept. 2007.

1.3 Organization of this dissertation

This thesis is organized as follows: in Chapter 2 we review a number of mul-
tiresolution representations for images. We describe the discrete wavelet trans-
form, the complex wavelet transform, the steerable pyramid transform and the
shearlet transform, as the concepts related to these transforms form the basis
of our further developments. We also present our improvement to the dual-
tree complex wavelet transform and our novel design for the discrete shearlet
transform.

In Chapter 3 we discuss a number of statistical modeling strategies for
ideal (i.e. degradation-free) images. Because multiresolution transforms do
not fully “decorrelate” images, statistical dependencies between the multireso-
lution transform coefficients still exist. In particular, we devote attention to the
intra-scale and inter-scale modeling of the dependencies between the transform
coefficients. This leads to two novel statistical image models.

Next, we present novel statistical models and estimation techniques for
noise in images in Chapter 4. In particular, we investigate spatially stationary
colored Gaussian noise, spatially non-stationary colored Gaussian noise and
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signal-dependent noise. We explain the Gaussian modeling of signal-dependent
noise and discuss how the signal-dependency characteristics of the noise are
changed by various post-processing operations in a digital still camera.

In Chapter 5, we use the models presented in the previous chapters for the
purpose of image restoration. We consider three designs of image restoration
algorithms: spatial domain techniques, multiresolution transform domain tech-
niques and combined domain techniques. We solve various restoration problems
by using Bayesian estimation techniques, resulting in algorithms for denoising,
deblurring, demosaicing or combinations such as joint denoising and deblurring.

In Chapter 6 we investigate the statistical properties of noise in CT images
reconstructed using the traditional filtered backprojection method (which is
used in almost all commercially available medical CT scanners [Hsieh, 2003]).
Because of the signal-dependency of the noise captured by the detector elements
and because of the non-local characteristics of the reconstruction algorithm, the
statistics of the noise are much more complicated than in our chapter on general
noise models. Nevertheless, by relying on the backprojection reconstruction for-
mulas and using the theory presented in Chapter 4 we derive a novel statistical
model for noise in CT images in which multiresolution concepts (in particular,
steerability) plays an important role.

In Chapter 7 we present a new theoretical framework for mathematical
model observers (“virtual observers”) for assessing medical image quality. We
consider signal-known-statistically (SKS) detection tasks in which the signals
have unknown parameters. We show that the optimal linear (or Channelized
Hotelling) observer is not always adequate for these tasks. We develop a model
observer that is optimal in the maximum a posteriori (MAP) sense based on
joint estimation and detection theory. We show that this leads to Channelized
Hotelling Observers that make use of steerable channels as used in the steerable
pyramid multiresolution transform.

Finally, in Chapter 8 a general conclusion is given for our work and some
directions for future research are being discussed.
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2
Multiresolution

representations for images

Taking advantage of the redundancy present in images is crucial for designing
good image processing algorithms. The redundancy in images is caused by
1) geometrical structures in images (such as edges, contours, textures, ...), 2)
self-similarity (or non-local redundancy) and 3) color information. For many
applications, it is desirable to find an adapted representation of images that is
suitable for the given problem, thereby taking advantage of the redundancy.
For example, in image denoising applications it is benificial if this representa-
tion separates structural information from the noise in the images well. This
is possible if the clean, noise-free image can be approximated with a small
number of significant coefficients. The representation is then called a sparse
representation.

Multiresolution transforms decompose an image in a natural way: the image
is approximated by successively adding detail information to it in subsequent
refinement steps. This approach is effective as natural images are often low-
pass in nature (see further in Chapter 3). Classical tools in this respect are
the Fourier transform and the Short-Time Fourier transform, however, these
transforms do not allow fine localization of image features in space: it is for
example not possible to determine the exact position of edges. The wavelet
transform offers a compromise between spatial and frequency localization of
image features as we will see further. The classical wavelet transform, while
ideally suited for one-dimensional signals, turns out to be sub-optimal for rep-
resenting images, because it can not entirely adapt to the image geometry.
Moreover, the transform can not exploit the self-similarity in images.

Therefore, during the last decades, there has been a quest for finding mul-
tiresolution transforms that yield “sparser” representations for images than the
wavelet transform. Most of these transforms attempt to adapt to the geomet-
rical patterns in images, for example, by decomposing the images according
to multiple analysis directions. In this chapter, we will review some of these
transforms, where occasionally, we will improve some of their properties: in
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Section 2.1 we briefly introduce the discrete wavelet transform and we discuss
a number of problems with this transform for representing images. In Section
2.2, we explain the dual-tree complex wavelet transform (DT-CWT), which
offers a solution to some of these problems. To further improve the directional
selectivity of the transform, we will propose a new filter design for the first scale
of the DT-CWT (Section 2.2.3). The steerable pyramid transform is discussed
in Section 2.3, together with steerability concepts that will prove useful for the
remainder of this dissertation. Section 2.4 gives a literature overview of related
multiresolution representations for images. Finally, in Section 2.5 we present
a novel design of the discrete shearlet transform. This transform design of-
fers multidirectional analysis, low redundancy and shift-invariance properties,
a combination that is difficult to achieve with existing multiresolution trans-
forms.

2.1 The discrete wavelet transform

The first transform that we will discuss, is the discrete wavelet transform.
Before going into the details of this discrete transform, we will give a brief
introduction to wavelet theory and multiresolution analysis. These concepts
will also be useful in the remainder of this chapter.

2.1.1 A short introduction to wavelet theory

The basic idea of the wavelet transform [Daubechies, 1992,Mallat, 1999] is to
analyze signals according to different scales and at different points in time.
Wavelets are functions that oscillate in a small portion of time (or space) and
that decrease back to zero outside this portion. When applying a (continuous)
wavelet transform to a signal, we start from a fixed wavelet ψ(t), called mother
wavelet, and we analyze correlations of the input signal with time-shifted and
time-stretched (dilated) versions of this wavelet. Correlations with wavelets
with a large dilation factor then give the coarse features of the image, while
correlations with wavelets with small dilation factors indicate fine details in
the image. In general, the dilation factor can be tuned continuously, e.g. to
zoom in at specific features of the image. In signal processing terms, a wavelet
is a band-pass filter that has either a finite impulse response or an impulse
response with a fast decay. By changing the dilation factor, the band-pass
center frequency can be controlled. The time-shift parameter allows to select
the time portion of the signal we want to analyze.

By considering all possible values of the dilation factor and time-shift pa-
rameter, the wavelet transform provides a representation of the signal in terms
of these time-shifted and time-stretched wavelet functions. More specifically,
let us denote the time-shifted and dilated basis functions by:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
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where a is the dilation factor, b is the time shift, and the normalization constant
1/

√
a is introduced to keep the energy of the wavelet constant. The continuous

wavelet transform (CWT) of a signal of finite energy f(t) ∈ L2 (R) is defined
by:

Wf (a, b) =

ˆ +∞

−∞
f(t)ψa,b(t)dt = 〈f, ψa,b〉 . (2.1)

with · the complex conjugate. If the wavelet ψ(t) satisfies the admissibility

condition (
´ +∞
−∞

∣∣∣ψ̂(ω)
∣∣∣
2

/ωdω < +∞), with Fψ the Fourier transform of ψ,

the original signal can be exactly reconstructed by [Daubechies, 1992]:

f(t) =

ˆ +∞

−∞
da

ˆ +∞

−∞
db 〈f, ψa,b〉ψa,b(t), (2.2)

which constitutes the inverse continuous wavelet transform. To satisfy the
admissibility condition, it is required that the mother wavelet averages to zero
´ +∞
−∞ ψ(t)dt = 0 and that the mother wavelet is well localized (i.e., |ψ(t)| → 0

when |t| → +∞). By convention, the wavelet is centered around t = 0 and
has unit norm (‖ψ‖2

= 〈ψ, ψ〉 = 1). In practice, one can choose the mother
wavelet according to the application one has in mind: in general one has to
trade off time (spatial) localization properties versus the frequency localization
properties. For example, a wavelet that is bandlimited (e.g. the Meyer wavelet)
will necessarily have an infinite support, hence a poor localization in time.
On the other hand, wavelets that have a compact support in time domain
are not bandlimited. For image restoration, wavelets with a good localization
in time are preferable over bandlimited wavelets, because of spurious ringing
(Gibbs) artifacts that might appear after applying the inverse transform due
to estimation errors.

So far, we considered the dilation and time-shift parameters a and b to
be continuous, however, in practice it is impossible to analyze the signal
according to all corresponding wavelet coefficients. Therefore, a and b are
usually restricted to discrete values: integer shifts b ∈ Z and dyadic scales
a = 2i with i ∈ Z. Mathematically speaking, if the set of wavelet functions{
ψ2i,b(t)|i ∈ Z, b ∈ Z

}
forms a basis for L2 (R), any signal f(t) of finite energy

(f ∈ L2 (R)) can be reconstructed by:

f(t) =

+∞∑

i=−∞

+∞∑

b=∞

〈
f, ψ2i,b

〉
ψ2i,b(t). (2.3)

The corresponding transform Wf
(
2i, b

)
is then called the dyadic discrete

wavelet transform (DWT). When we compare (2.2) to (2.3), we see that the
integral has been replaced by a sum. Now, suppose that we want to approxi-
mate the signal f(t) up to scale I. This can be accomplished by reducing the
number of terms in the sum (2.3), as follows:

f(t) ≈
I∑

i=−∞

+∞∑

b=∞

〈
f, ψ2i,b

〉
ψ2i,b(t),
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Figure 2.1: Illustration of wavelet analysis (a) wavelets at different scales, (b)
wavelet approximation of a signal using the wavelets from (a): the smaller the scale
index i, the more detail information that is added to the signal.

which only requires the computation of correlations
〈
f, ψ2i,b

〉
up to scale I.

An illustration is given in Figure 2.1, where the maximum wavelet scale is
subsequently increased.

Because the wavelet functions
{
ψ2i,b(t)|i ∈ Z, b ∈ Z

}
need to form a basis,

the choice of the wavelet is far more restrictive than for the CWT. For this rea-
son, the mathematical concept of multiresolution analysis has been introduced.

2.1.2 Multiresolution analysis and wavelet filters

Multiresolution analysis (MRA) is the analysis of a function in successive
approximation function spaces · · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · where the

subspaces Vi form a partition of the L2 (R)-space:
⋃̃
i∈Z

Vi = L2 (R) and⋂
i∈Z

Vi = {0} [Mallat, 1989b, Daubechies, 1992]. Here, Ṽ denotes the clo-
sure of a set V . By definition, a number of additional properties are required
from MRA:

1. When a function f belongs to a given subspace, it is demanded that a
dilated version of this function is contained in the subsequent subspace:

f(x) ∈ Vi+1 ⇔ f (2x) ∈ Vi

or in other words: all approximation spaces Vi are scaled versions of the
central space V0.

2. Furher, invariance under integer shifts is required (n ∈ Z):

f(x) ∈ Vi ⇔ f (x− n) ∈ Vi.

3. Finally, there must exist a scaling function φ ∈ V0 such that

{φ0,n|n ∈ Z} is an orthonormal basis in V0

where
φi,n(t) = 2−i/2φ

(
2−it− n

)
.
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The merit of MRA is that when the subspaces Vi satisfy all of the above condi-
tions, there exists an orthonormal wavelet basis {ψi,n|i, n ∈ Z} of L2 (R) with
ψi,n(t) = 2−i/2ψ

(
2−it− n

)
, such that for all f ∈ L2 (R),

Pi−1f = Pif +
∑

n∈Z

〈f, ψi,n〉ψi,n.

Consequently, instead of using infinitely many scales i ∈ Z as in (2.3), the
decomposition can be stopped at a given scale I:

f(t) =

I∑

i=−∞

+∞∑

n=∞
〈f, ψi,n〉ψi,n(t) +

+∞∑

n=∞
〈f, φI,n〉φI,n(t),

which gives the representation of the signal f(t) in terms of the scaling functions
φI,n(t) and wavelet functions ψi,n(t). Because the functions φi,n(t), n ∈ Z form
a basis for Vi, both the wavelet and scaling functions can be expanded in this
basis, which gives the so-called wavelet and scaling equations:

1√
2
φ

(
t

2

)
=

∑

n∈Z

hnφ (t− n) , (2.4)

1√
2
ψ

(
t

2

)
=

∑

n∈Z

gnφ (t− n) , (2.5)

where hn = 〈φ, φ−1,n〉 and gn = 〈ψ, φ−1,n〉. The sequences hn and gn are
respectively called scaling and wavelet filters. The practical importance of
these equations is that when we want to compute wavelet coefficients (i.e. the
inner products of the signal f(t) with the wavelet basis functions), this can be
done in terms of scaling coefficients from a finer scale:

〈f, φi,n〉 =
∑

k

hk−2n 〈f, φi−1,n〉 , (2.6)

〈f, ψi,n〉 =
∑

k

gk−2n 〈f, φi−1,n〉 . (2.7)

This immediately leads to a practical implementation for the DWT: starting
from the finest scale coefficients 〈f, φ0,n〉, coefficients from coarser scales can
be readily computed by recursively applying the filtering equations (2.6) and
(2.7). The wavelet analysis and synthesis can be seen as a two-channel digital
filter bank (see Figure 2.2), consisting of a low-pass (scaling) filter h and a
high-pass (wavelet) filter g, followed by decimation by factor 2. The filter bank
is applied recursively on the low-pass output (i.e. scaling coefficients). Very
useful for practical computation is that the filters h and g are FIR, such that
the corresponding wavelet and scaling functions are compactly supported. The
construction of wavelet bases relies on equations (2.4)-(2.5) and the reader can
refer to [Daubechies, 1992,Mallat, 1989a] for more details on this topic.
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Figure 2.2: Two analysis/synthesis steps of the fast (orthogonal) DWT in 1D. Hi+1

and Hi+2 are sequences of wavelet coefficients for respectively scale 1 and 2. Li+2 is
a sequence of scaling coefficients. (a) Wavelet analysis (forward DWT), (b) wavelet
synthesis (inverse DWT).

2.1.3 The Fast DWT in higher dimensions

The DWT can be generalized to any dimension. In the following we will briefly
look at the 2D case. Most often, separable decompositions are used [Mallat,
1989b, Daubechies, 1992]. Here, the approximation spaces of the MRA are
spanned by the shifts and dilations of three wavelets:

ψLH(x, y) = φ(x)ψ(y),

ψHL(x, y) = ψ(x)φ(y),

ψHH(x, y) = ψ(x)ψ(y)

and a 2D scaling function is defined as:

φLL(x, y) = φ(x)φ(y).
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Because of the separability of the wavelets, the 2D transform can be straightfor-
wardly implemented, by applying the Fast DWT algorithm successively to the
rows and to the columns of the image. The corresponding filter bank scheme
for one decomposition step is illustrated in Figure 2.3. The decomposition is
iterated on the scaling coefficients (i.e. LLi+1).

In Figure 2.4, the 2D DWT of the picture of a mandrill is shown. It can be
noted that the LL2 subband contains most information about the input image,
while other subbands only have a limited number of (significantly) non-zero
coefficients. These significant wavelet coefficients correspond to detail infor-
mation, mostly textures and edges. When a coefficient is non-zero in a coarse
scale i+ 1, it is very likely to be non-zero in a finer scale i as well (interscale
dependency). Around vertical edges, HLi subbands contain significant non-
zero wavelet coefficients, while near horizontal edges, LHi subband coeffients
are typically non-zero. As we will explain later, the HHi is not related to a
specific orientation, but this subband contains information about features and
edges with dominant orientation +45° and −45°. To summarize, we observe
that:

• The low-pass subband (that consists of the scaling coefficients) is a coarse
approximation of the original input image.

• All other wavelet subbands are relatively sparse: many wavelet coeffi-
cients are (close to) zero, only few of them are significantly non-zero.

• The wavelet coefficients are not completely decorrelated: e.g. the occur-
rence of an edge results in many neighboring wavelet coefficients that are
non-zero.

• There are interscale correlations between wavelet coefficients in different
scales.

• In presence of edges and textures there exist interorientation dependen-
cies between the wavelet coefficients in different orientation subbands (e.g.
HLi vs. LHi): e.g. a vertical edge causes a non-zero response while in the
LH-subbands the response is approximately zero in the HL-subbands.

These observations will form the basis of our statistical models for images.
For more information about the dependencies that exist between wavelet co-
efficients and how these dependencies can be modeled, we refer to Chapter
3.

2.1.4 Problems with the DWT

Despite the efficiency and the sparsity of the DWT, there are a number of
fundamental problems [Selesnick et al., 2005a]:

1. Positive and negative oscillations of the wavelet coefficients around sin-
gularities: practical applications that make use of the DWT need to take
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Figure 2.3: A decomposition step of the fast (orthogonal) DWT in 2D.
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Figure 2.4: (a) Image of a mandrill (b) 2D DWT subbands of the mandrill image
(gray corresponds to 0).

into account that in presence of edges, the wavelet coefficients can be
either significantly positive, negative or both. Often, it is desired to ob-
tain an estimate of the local spectrum at a specific scale and position,
which one can obtain by computing the wavelet coefficient magnitude.
However, after reconstructing a wavelet coefficient (e.g. in a denoising
task) it is not always clear whether to assign a positive or negative value
to the processed wavelet coefficient.

2. Shift variance: the local energy signature of edges in the transform do-
main can be significantly disturbed by shifts of the input signal (or image).
For statistical modeling tasks, it is convenient to have a representation
that is invariant under translations of the input image. If this is not the
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case, the (unknown) input shift would need to be treated as an extra
hidden variable in the model, which makes the resulting statistical model
more complicated. For example, to match keypoints in the wavelet do-
main in an image registration application, one can look for the keypoint
that has a maximal similarity to the reference keypoint. However, if
the similarity measure does not incorporate the shift dependence, either
wrong matches will be found, or keypoints will be missed. In general, the
DWT has been found to be unsuitable for certain applications, such as
pattern recognition [Mallat, 1996].

3. Aliasing caused by decimation operations: the aliasing often causes dis-
turbing artifacts in reconstructed images in which the wavelet coefficients
have been processed. Obviously, the inverse DWT cancels this aliasing,
however, this is only the case if the wavelet coefficients are unmodified.

4. Poor directional selectivity: the DWT allows to distinguish horizontal
and vertical edges, however, the transform does not allow to make a dis-
tinction between features at +45° and −45° (also known as the checker-
board problem). This is due to the separability of the higher dimensional
wavelets, which produces wavelets with a checkerboard pattern that does
not have a dominant direction. The poor directional selectivity makes
the modeling of edges more complicated.

Some of these issues can easily be alleviated, e.g. one can easily get rid of
the shift variance and aliasing by skipping the decimation steps of the DWT
(called undecimated DWT) [Mallat, 1999], or by cyclically shifting the input
image (called cycle spinning) [Coifman and Donoho, 1995]. However, this comes
at the cost of extra redundancy for the transform coefficients and some of the
other problems still remain.

2.2 The dual-tree complex wavelet transform

In the last decades, many alternative multiresolution representations have been
developed in order to give a solution to the previously mentioned problems
with the DWT. One such transform is the dual-tree complex wavelet transform
(DT-CWT) [Kingsbury, 2001], which is very related to the DWT and that also
provides MRA (Section 2.1.2). As the name already says, the DT-CWT uses
complex-valued wavelets instead of real-valued wavelets. When additionally
these complex-valued wavelets fulfill a so-called Hilbert-transform pair prop-
erty (see further), the transform performs a multi-directional analysis (which
practically means that features that have a dominant direction, such as edges
in images, can be more compactly represented). This is beneficial for analyzing
higher-dimensional data in general, including images and image volumes. We
will now explain the DT-CWT in more detail.
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2.2.1 One-dimensional complex wavelets

In [Selesnick et al., 2005a], it has been noted that the Fourier transform does
not suffer from the problems mentioned in Section 2.1.4: the magnitude of
the Fourier coefficients does not oscillate but provides a smooth envelope in
frequency domain. Next, the magnitude of the Fourier coefficients is shift-
invariant, while the shift is encoded in the phases of the Fourier coefficients.
Hence, one can see a difference between the DWT and the Fourier transform:
while the DWT is based on real-valued wavelets, the Fourier transform is based
on complex-valued oscillating functions:

exp (jωt) = cos (ωt) + j sin (ωt)

where the imaginary part is 90° out of phase of the real part. Moreover,
exp (jωt) is an analytic function, i.e. it is supported on one half of the fre-
quency axis (ω > 0). In analogy to the Fourier transform, we can devise a
wavelet transform in which the wavelets are analytic, such that the magnitude
of the wavelet coefficients is shift-invariant. It can be shown that this wavelet
must be complex-valued and that the imaginary part of the wavelet should be
the Hilbert transform of the real part [Selesnick et al., 2005a]:

ψc(t) = ψ(t) + jH{ψ} (t). (2.8)

This expression is also called the analytic representation of the wavelet.1 Here,
the Hilbert transform of ψ(t) is given by:

H{ψ} (t) =
1

π

ˆ +∞

−∞

ψ(t)

t− τ
dτ (2.9)

or, in the Fourier domain:

Ĥ {ψ}(ω) = Hhil(ω)ψ̂ (ω) , with Hhil(ω) =





−j, ω > 0

0, ω = 0

j, ω < 0

To see the analogy with the Fourier transform, remark that H{cos} (t) =
sin (t), such that substituting ψ(t) = cos (ωt) yields ψc(t) = exp (jωt).2 In
Figure 2.5, the complex exponential function and an example of a complex
wavelet are depicted. It can be seen that the complex wavelet has a smooth
envelope that is well localized in time, while the complex exponential function
has a constant magnitude and is not localized in time at all.

1We remark that (2.8) is not the only way to construct complex wavelets. More general
complex wavelets ψc(t) are investigated in [Belzer et al., 1995, Lina and Mayrand, 1995],
however, these wavelets are not analytic.

2Note in this respect that exp (jωt) is not a wavelet - the complex exponential does not

satisfy the admissibility condition
´+∞
−∞

��� bψ(ω)
���2 /ωdω < +∞.
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Figure 2.5: (a) The complex exponential function exp (jωt), (b) A complex wavelet
ψc(t).

Based on the definition of a complex analytic wavelet (2.8), it is easy to
show that ψc(t) is supported on positive frequencies (ω > 0):

ψ̂c(ω) =

{
2ψ̂(ω) ω > 0

0 ω ≤ 0

and conversely, ψc(t) is supported only on negative frequencies (ω < 0). By
projecting a real-valued signal on the complex-valued wavelet functions:

ψa,b(t) =
1√
a
ψc

(
t− b

a

)
,

complex wavelet coefficients 〈f, ψa,b〉 are obtained, from which the magnitude
and phase can be easily computed: a large magnitude then reveals the presence
of a singularity (e.g. edge, texture, point, ...), while the phase indicates the
position of the singularity within the support of the complex wavelet [Selesnick
et al., 2005a].

Discrete implementations of the DT-CWT transform again make use of
the fast DWT decomposition scheme: usually two fast DWTs are applied in
parallel, one DWT for the real part of the complex wavelet, a second DWT for
the imaginary part. Because there are two wavelet decomposition trees, the
transform is called the dual-tree complex wavelet transform.

Unfortunately, a complication arises with the design of the complex wavelets:
when the real part ψ(t) is compactly supported, its Hilbert transform is infi-
nitely supported, hence the wavelet filter coefficients cannot be compactly sup-
ported! For practical (time-domain) implementation, one often prefers com-
pactly supported filters because of the computational efficiency. In the litera-
ture, two solutions are proposed to design complex wavelets:

1. One solution is to use dedicated complex wavelet design techniques to
offer perfect reconstruction with compactly supported wavelets, compro-
mising the analyticity of the wavelets. To name a few of these techniques:
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the q-shift solution [Kingsbury, 2003], the Common Factor solution [Se-
lesnick, 2002], Bernstein polynomial-based [Tay et al., 2006] and the semi-
definite programming (SDP) approximation [Dumitrescu, 2009]. In all of
these techniques, a trade-off between the degree of analyticity and the
wavelet filter support size needs to be made: the longer the filter sup-
ports, the better the analyticity (but the higher the computational cost!).
The main drawback of these techniques is that the analyticity only holds
approximately, hence the shift-invariance property of the magnitudes of
the complex wavelet coefficients is not exact. Fortunately, approximate
analyticity is sufficient in practice as this does not pose many problems
for most applications.

2. The second solution is to perform the wavelet filtering in the DFT do-
main [Chaux et al., 2006]. This has the advantage that the Hilbert trans-
form relationship holds exactly, however, the wavelet filters are not com-
pactly supported, which may cause more ringing artifacts to appear in
the reconstructed images after processing of the DT-CWT coefficients.

A second complication that - as far as the author is aware of - has not been
addressed in the literature, is that analyticity is difficult to fulfill for the first
(finest) scale of the transform as the same input signal is used for every wavelet
decomposition tree. We give a more detailed description of this problem and
we propose a solution to it in Section 2.2.3.

Nevertheless, to summarize, the DT-CWT solves the problems from Section
2.1.4 in the following way:

• The positive and negative oscillation problem disappears when processing
the complex wavelet coefficient magnitudes, which have been shown to
be good estimates of the local spectrum at a given position and scale
[Selesnick et al., 2005b].

• The magnitudes of the complex coefficients are shift-invariant, hence tech-
niques that only process magnitude information in a coefficient-wise man-
ner and that leave the phase information untouched, will automatically
be shift-invariant and free of aliasing.

• The DT-CWT performs a directional analysis in 6 orientations in 2D and
28 orientations in 3D and does not suffer from the checkerboard problem
of the DWT.

In the next section we will explain in more detail how the improved directional
selectivity compared to the DWT is accomplished, as this is crucial for our
later developments.

2.2.2 Higher dimensional complex wavelets: how direc-

tional selectivity is obtained.

As in the real-valued DWT, higher-dimensional wavelet can be formed as
tensor-product of one-dimensional wavelets. For illustrational purposes, we will
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Figure 2.6: Illustration of how directional selectivity of the complex wavelets is
achieved. Different gray-shades indicate the frequency spectra of different complex
wavelets: (a) bψc,x (ωx) and bψc,x (−ωx), (b) bψc,y (ωy) and bψc,y (−ωy), (c) The resulting

2D complex wavelets bψc,k(ωx, ωy) obtained as tensor products of 1D complex wavelets.

explain only the 2D case. Extensions to higher dimensions are straightforward.
Let us start from a pair of complex wavelets ψc,x(t) = ψx(t) + jH{ψx} (t)

and ψc,y(t) = ψy(t) + jH{ψy} (t) with Fourier transforms ψ̂c,x (ω) =

(1 + jHhil(ω)) ψ̂x (ω) and ψ̂c,y (ω) = (1 + jHhil(ω)) ψ̂y (ω), respectively. The
frequency response of a corresponding 2D complex wavelet is given by:

ψ̂c,1(ωx, ωy) = ψ̂c,x (ωx) ψ̂c,y (ωy)

= ψ̂x (ωx) ψ̂y (ωy) (1−Hhil(ωx)Hhil(ωy)+j (Hhil(ωx) +Hhil(ωy)))

= 4ψ̂x(ωx)ψ̂y(ωy)S (ωx)S (ωy) , (2.10)

with S (t) =





0 t < 0

1/2 t = 0

1 t > 0

a step function. From (2.10) it can be seen that ψ̂c,1(ωx, ωy) only passes positive
horizontal and vertical frequencies, hence ψ̂c,1(ωx, ωy) is supported on the first
quadrant of the 2D frequency plane. The same way, it is possible to design
complex wavelets that pass frequencies in other quadrants of the frequency
plane, by using conjugates of the one-dimensional complex wavelets, e.g.:

ψc,2(x, y) = ψc,x (x)ψc,y (y) . (2.11)

Using the same reasoning, it can be shown that the frequency response of
ψc,2(x, y) is given by:

ψ̂c,2(ωx, ωy) = 4ψ̂x(ωx)ψ̂y(ωy)S (−ωx)S (ωy) , (2.12)

which is supported in the second quadrant of the frequency plane (i.e. ωx <
0 and ωy > 0). A frequency domain illustration of this process is given in
Figure 2.6.
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Now, if we would look at the frequency response of the real part and imag-
inary part of the 2D complex wavelets, i.e.:

ψ̂c,k(ωx, ωy) = ψ̂re,k(ωx, ωy) + jψ̂im,k(ωx, ωy), k = 1, 2 (2.13)

then we find that, by the conjugate symmetry property of the Fourier transform,
both parts have the same magnitude response:
∣∣∣ψ̂re,1(ωx, ωy)

∣∣∣ =
∣∣∣ψ̂im,1(ωx, ωy)

∣∣∣ =

2
∣∣∣ψ̂x(ωx)

∣∣∣
∣∣∣ψ̂y(ωy)

∣∣∣ (S (ωx)S (ωy) + S (−ωx)S (−ωy))
∣∣∣ψ̂re,2(ωx, ωy)

∣∣∣ =
∣∣∣ψ̂im,2(ωx, ωy)

∣∣∣ =

2
∣∣∣ψ̂x(ωx)

∣∣∣
∣∣∣ψ̂y(ωy)

∣∣∣ (S (−ωx)S (ωy) + S (ωx)S (−ωy)) (2.14)

where the last factor selects two quadrants (as illustrated in Figure 2.7). Hence,
by using a pair of complex wavelets: Ψc,x(ωx), Ψc,y(ωy) and their conjugates
Ψc,x(ωx), Ψc,y(ωy) , followed by taking the real parts of the resulting complex
wavelet coefficients, we obtain two orientation bands with angles ±45°. This
elegantly solves the directionality problem of the separable DWT, that cannot
distinguish between orientation angles +45° and −45°. When wavelet filters
are used together with scaling filters in a multiresolution approach, an analysis
is possible in 6 orientation angles instead of 3, as shown in Figure 2.8. Even a
further decomposition in a higher number of orientation angles is possible by
using complex wavelet packets [Bayram and Selesnick, 2008]. Also remarkable
is that the real or imaginary parts of the complex wavelets are not separable.
The DT-CWT provides directional selectivity using separable wavelet filters.

Finally, it is worth to point out that the 2D DT-CWT is easily imple-
mented using 4 DWT transforms (or 4 wavelet trees) in parallel. Each DWT
then uses real-valued wavelets: ψx(t)ψy(t), ψx(t)H{ψy} (t),H{ψx} (t)ψy(t)
and H{ψx} (t)H{ψy} (t). Note that each of the four DWTs has a frequency
tiling as in Figure 2.8a. To arrive at oriented complex wavelet subbands as
explained above (Figure 2.8), an extra operation needs to be performed to the
output of each tree. To see this, we write the real and imaginary part of the
2D complex wavelets in terms of the real-valued wavelets ψx(t) and ψy(t):

ψre,1(x, y) = 2−1/2 (ψx(x)ψy(y) −H{ψx} (x)H{ψy} (y)) ,

ψim,1(x, y) = 2−1/2 (H{ψx} (x)ψy(y) + ψx(x)H{ψy} (y)) ,

ψre,2(x, y) = 2−1/2 (ψx(x)ψy(y) + H{ψx} (x)H{ψy} (y)) ,

ψim,2(x, y) = 2−1/2 (−H{ψx} (x)ψy(y) + ψx(x)H{ψy} (y)) , (2.15)

where 2−1/2 is an energy normalization constant. Hence, when we want to
compute the inner products of an image f(x, y) with ψre,1(x, y), we need to
subtract wavelet coefficients as follows:

〈f, ψre,1〉 = 2−1/2 (〈f, ψx(x)ψy(y)〉 − 〈f,H{ψx} (x)H{ψy} (y)〉)
〈f, ψre,2〉 = 2−1/2 (〈f, ψx(x)ψy(y)〉 + 〈f,H{ψx} (x)H{ψy} (y)〉)(2.16)
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(a) (b)

Figure 2.7: Frequency supports of the real (or imaginary) parts of the complex
wavelets (a) ψre,1(ωx, ωy) or ψim,1(ωx, ωy) (b) ψre,2(ωx, ωy) or ψim,2(ωx, ωy)

and with similar expressions for the other equations. The calculation in (2.16)
is even more conveniently written in matrix form:
(

〈f, ψre,1〉
〈f, ψre,2〉

)
=

1√
2

(
1 −1
1 1

)(
〈f, ψx(x)ψy(y)〉

〈f,H{ψx} (x)H{ψy} (y)〉

)
. (2.17)

Since the matrix in (2.17) is invertible, the inverse DT-CWT can be imple-
mented first by inverting (2.17) and next by applying inverse DWTs to the
four trees.

Finally, as an illustration, the 2D DT-CWT of barbara is shown in Figure
2.9. The stripes in the trousers of Barbara have orientations +45° (left leg)
and −45° (right leg). These features can be distinguished from each other in
the subbands corresponding to these orientations.

2.2.3 Improving the Directional Selectivity of the First

Scale

In this section, we present our novel extension to the DT-CWT, which improves
the directional selectivity of the first scale of the transform. We shall start from
a thorough analysis and explanation of the problem.

As explained before, to obtain a good directional selectivity, we must have
that φ2(t) = H{φ1} (t) and ψ2(t) = H{ψ1} (t). A reasonable question is: how
do the filter coefficients h2(n) and g2(n) relate to h1(n) and g1(n) such that
the two wavelets form a Hilbert pair?
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(a) (b)

Figure 2.8: Frequency domain tiling of (a) the 2D DWT, with 3 orientation bands
(b) 2D DT-CWT, with 6 orientation bands.

Figure 2.9: The 2D DT-CWT of Barbara: magnitude of the complex wavelet coef-
ficients (black indicates a high magnitude, white corresponds to zero).

Let Hk(z) and Gk(z) denote the z-transforms of respectively hk(n) and
gk(n), k = 1, 2. In [Selesnick, 2001] it was shown that the sufficient condition
for Hilbert pair of wavelets is that

H2(z) = H1(z)z
-1/2, (2.18)

or informally, h2(n) ≈ h1(n − 0.5), which means that there must be a half-
sample delay between both scaling filters. This condition we will further call
the half-sample delay condition. Given that the wavelets are orthogonal, the
condition for the wavelet filters on the unit circle is given by [Dumitrescu, 2009]:

G2(e
jω) = G1(e

jω)ejω/2Hhil(ω). (2.19)
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In (2.19), we can also recognize the half sample delay ejω/2, although the delay
is now negative.

In order to have analyticity (and hence a good directional selectivity and
shift invariance) at every scale, each decomposition stage of the DT-CWT needs
to satisfy the following condition: if the input signal of the second tree is one
half-sample delayed from the input signal of the first tree, after one wavelet
decomposition stage (i.e. filtering and decimation), there must also be a half-
sample delay between the output signals of both trees.

According to this criterion, for the first (finest) scale of the DT-CWT, the
input samples of each tree should also be delayed 1/2 sample. For example in 2D,
there are 4 trees (2 horizontally, 2 vertically) and ideally, the input image should
be shifted first by the offsets (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2), depending on the
filters in each tree (whether we use G2(z) or G1(z) horizontally or vertically),
as illustrated in Figure 2.10. A practical implementation of the scheme would
require interpolation of the input image, as concerning the input, there is no
information about samples that have been delayed 1/2 sample!

To get around this problem, in [Kingsbury, 2001,Selesnick et al., 2005b], it
is proposed to use wavelet filters that are delayed with 1 sample (or H2(z) =
H1(z)z

−1) such that starting from the second scale, the half-sample delay con-
dition is fulfilled. This is equivalent to using an undecimated DWT for the
first scale (with cycle spinning) and has the advantage of being shift-invariant.
The downside is that the wavelet pairs are no longer Hilbert pairs and we can
expect a directional selectivity that is no better than the directional selectivity
of a DWT (causing checkerboard problems)!

Let us analyze the severity of this problem. Figure 2.11 shows the magnitude
responses of the 2D DT-CWT basis functions for different orientation subbands
at the same scale and as function of the polar angle (this is done by integrating
the 2D squared frequency response over line integrals that go to the origin of
frequency space). The more concentrated the frequency response around the
center peak, the better the directional selectivity. In Figure 2.11(a)-(b), i.e.
for the second and third scales, the directional selectivity is quite good. The
magnitude response for orientations at 45° and 135° contains sharper peaks and
smaller side-lobes than the response for other orientations. This effect is caused
by the rectangular tiling of the frequency domain (see Figure 2.8(b)): the DT-
CWT basis functions are supported (approximately) on squares in frequency
domain and integrating the squared magnitude response in the radial direction
inherently results in asymmetry of the responses.3 However, Figure 2.11(c)
reveals the energy leakage for the orientations at 45° and 135° for the first
scale of the DT-CWT. Here the checkerboard problem of the DWT remains,
as predicted.

To have a consistent directional selectivity of the basis functions for all
scales of the DT-CWT, we investigate the design of first-scale wavelet filters
that satisfy the half-sample delay condition, such that there is one sample delay

3In [Kingsbury, 2006] the rotational symmetry of the basis functions is improved for
analysis tasks.
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Figure 2.10: Illustration of the half-sample delay condition: each pair (0, 0), (0, 1),
(1, 0), (1, 1) signifies a tree of the DT-CWT. The samples of each tree are located
midway the samples of the other trees, e.g. between the samples of tree (0, 0) and (0, 1)
there is a half-sample delay of (0, 1

2
). This recursive property is retained when zooming

in to a more coarse scale. For the first (finest) scale of the DT-CWT transform, the
same input image is used for each tree, which means that the samples are coincident
and there is no half-sample delay, hence a correction is needed.

between the corresponding scaling filters. To do so, we use an undecimated
wavelet transform for the first scale and subsequently impose the half-sample
delay condition (2.19) to the wavelet filters, while leaving the scaling filters
untouched (i.e. one sample delay between the scaling filters):

H2(z) = H1(z)z
-1 (2.20)

G2(z) = G1(z)z
-1Q(z) (2.21)

where Q(z) is a filter that we will design to satisfy (2.19). Obviously, by
modifying the wavelet filters, the perfect reconstruction property of the wavelet
scheme will be lost. To prevent this, we will choose Q(z) appropriately, such
that this is not the case. The wavelet and scaling filters satisfy the following
perfect reconstruction (PR) conditions [Daubechies, 1992]:

G1(z)G̃1(z
-1) +H1(z)H̃1(z

-1) = 2 and

G1(z)G̃1(-z-1) +H1(z)H̃1(-z-1) = 0. (2.22)

For the modified wavelet filters in (2.20)-(2.21), the perfect reconstruction con-
ditions are given by:

G1(z)G̃1(z
-1)Q(z)Q̃(z-1) +H1(z)H̃1(z

-1) = 2 and

G1(z)G̃1(-z-1)Q(z)Q̃(-z-1) +H1(z)H̃1(-z-1) = 0. (2.23)
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(c) First scale (without corrections) (d) First scale (improved)

Figure 2.11: Directional selectivity of various scales of the DT-CWT. In the plots,
the magnitude response of the wavelet basis functions is shown as function of the
polar angle, for different orientation bands at the same scale.
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Figure 2.12: Proposed analysis and synthesis stages for the second tree of the DT-
CWT (Solution using IIR filters): the scaling filters are delayed one sample, such
that the half-sample delay condition is satisfied starting from the second scale. The
wavelet filters are filtered by the allpass filter Q(z).

Identification with the PR conditions (2.22) for the first QMF pair, immediately
gives the following design constraints for Q(z):

Q(−z)Q̃(z−1) = 1 and Q(z)Q̃(z−1) = 1. (2.24)

These conditions are satisfied if Q(z) = Q(−z) and Q̃(z) = Q−1(z−1), hence
Q(z) can only have terms in even powers of z and Q̃(z) is the inverse of the
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time reversed version of Q(z). To impose the half-sample delay condition on
Q(z), equation (2.19) requires that Q(ejω) ≈ e3jω/2Hhil(ω), which gives us the
following design constraints for Q(z):

Q(ejω) ≈ e3jω/2Hhil(ω) (2.25)

Q(z) = Q(−z) (2.26)

Following (2.25), we find
∣∣Q(z)

∣∣ =
∣∣e3jω/2

∣∣ |Hhil(ω)| = 1, such that Q(z)
passes all frequencies equally. This leads us to the allpass filter design Q(z) =
B(z)/A(z) [Laakso et al., 1996,Baher, 2001] with

B(z) = 1 +

M∑

m=1

qmz
2m

A(z) = B(1/z)

= 1 +

M∑

m=1

qmz
−2m (2.27)

where M is the filter order. With this choice, Q(z) = B(z)/A(z) is an allpass
filter. Because A(z) = A(−z) and B(z) = B(−z), the requirement Q(z) =
Q(−z) is also automatically fulfilled. Now, from equation (2.25) it follows
that B(ejω) ≈ A(ejω)e3jω/2Hhil(ω). We therefore define the following error
function:

EQ =

ˆ +π

−π

∣∣∣B(ejω) −A(ejω)e3jω/2Hhil(ω)
∣∣∣
2

dω. (2.28)

Minimizing EQ is a least-squares problem, which leads to a linear system of
equations. The linear system to solve is described by:




1
5

1
9

1
13 · · · 1

1+4M
1
9

1
13

1
17 · · · 1

5+4M
1
13

1
17

1
21 · · · 1

9+4M
...

...
...

. . .
...

1
1+4M

1
5+4M

1
9+4M · · · 1

1+8M







q1
q2
q3
...
qM



−π

2




q1
q2
q3
...
qM




=




1
1
5
1
9
...
1

4M−3




where the matrix on the left hand side is a Hankel matrix. An efficient Matlab
program to design the filter Q(z) is given in Table 2.1. For M = 1, the solution
Q(z) is given by:

Q(z) = Q̃(z) =
1 − 0.5647176836z2

1 − 0.5647176836z−2
(2.29)

and the second order solution is (M = 2):

Q(z) = Q̃(z) =
1 − 0.5594687532z2 − 0.0836530813z4

1 − 0.5594687532z−2 − 0.0836530813z−4
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Because z−2MQ̃(z) is causal and infinite, the anticausal filter z2M Q̃(z−1) can
only be realized by filtering the time-reversed input signals with Q̃(z), followed
by time-reversal of the result. This practically corresponds to filtering from
right to left (future to past) instead of from left to right (past to future).

A wavelet constructed using the modified filtering scheme is shown in Figure
2.13: on the top, the Daubechies wavelet with two vanishing moments is shown.
In the middle, the Hilbert transform of this wavelet is drawn (such that both
wavelets form a Hilbert filter pair, and consequently ψc(t) is analytic). On
the bottom, the IIR-allpass based approximation of the Hilbert transform of
this wavelet (according to (2.21)) is shown. In Figure 2.13b, the frequency
response of the complex wavelet formed by the Daubechies wavelet and its
Hilbert transform approximation is visualized and it can be seen that there
is a good suppression of negative frequencies. The improved analyticity leads
to a better directional selectivity that is consistent to the other scales of the
DT-CWT, which is shown in Figure 2.11(d).

Experimental results

As an illustration, we test the improved filters in a practical application: the
estimation of the dominant orientation of edges in an image. If we denote
the complex wavelet coefficients for the first scale of the DT-CWT as xk,i,
with k = 1, ..., 6 the orientation index and with i a one-dimensional index of
the position in the wavelet subband (e.g. obtained using raster scanning), the
dominant orientation ϑi at position i can be estimated as:

ϑ̂i =
1

2
∠

{
6∑

k=1

|xk,i|2 exp
(
−2jϑ

(ref)
k

)}
, (2.30)

with ∠z the argument of the complex number z and with ϑ
(ref)
k the reference

dominant orientation of the complex wavelet at orientation k. In this experi-
ment, we used the simple formula ϑ(ref)

k = 2.548+π(k−1)/6, assuming that the
dominant orientation angles of the complex wavelets are equally spaced. The
estimated dominant orientation is shown in Figure 2.14 for the zoneplate im-
age.4 Because of the rotational symmetry of this image, it is expected that the
orientation angle is approximately constant on radial lines that intersect with
the center of the image. In Figure 2.14(b), the orientation angles are clearly
misestimated; this effect is the most prominent in the high frequencies (i.e. cor-
ners of the image) at angles ±45°. In fact, the misestimation can be explained
by the checkerboard problem of the unmodified first-scale DT-CWT basis func-
tions, which was mentioned earlier. With the proposed complex wavelet filters,
this problem is solved, as can be seen in Figure 2.14(c).

Finally, we also analyze the improvement in directional selectivity in 3D. In
Figure 2.15, frequency responses of the real parts of the complex wavelet basis

4Visit http://telin.ugent.be/~bgoossen/wavelets.htm for testing the effects of the
wavelet being used and for estimating the edge orientation in different images.
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Table 2.1: Matlab program for designing the filter Q(z).

b= -1./(1:4: -3+4*M)’;
C=hankel (1./(5:4: -3+8* M));
C=C(1:M,1:M)+pi/2*eye(M);
q=[1; C\b];
B=upsample (q(end:-1:1),2); % B(z)

A=upsample (q,2); % A(z)
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Figure 2.13: (a) Plots of different wavelets: (top) Daubechies wavelet with two van-
ishing moments (Daub2) (middle) Hilbert transform of the Daub2-wavelet (bottom)
approximation of the Hilbert transform of the Daub2-wavelet, obtained using the IIR
wavelet filter solution (with M = 4). (b) Squared magnitude response of Ψc(ω), for
the IIR wavelet filter solution, illustrating the near-analyticity of the complex wavelet.

functions are given and compared to the original wavelet filters (Figure 2.15(a)-
(b)). In Figure 2.15(a)-(b) there is leakage of the filter energy to different
orientations, which results in a poor directional selectivity. For the proposed
filters, the frequency responses are well-localized and as expected.

2.3 The steerable pyramid transform

The steerable pyramid (STP) transform [Simoncelli et al., 1992,Simoncelli and
Freeman, 1995] is a 2D multiresolution transform that, like the DT-CWT, has
been introduced to overcome limitations of the DWT. Detailed information
about this transform can be found in [Freeman and Adelson, 1991, Simoncelli
et al., 1992,Simoncelli and Freeman, 1995], here we will only review the basic
concepts behind the STP that are of importance for the remainder of this work.
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Figure 2.14: Edge orientation estimation of the “zoneplate” image: (a) the “zone-
plate” image, (b) estimated edge orientation (in degrees) without the proposed filter
design, (c) estimated edge orientation (in degrees) with the proposed filter design.

The STP transform is based on the concept of “steerable filters”, which has
been introduced for image analysis tasks as an efficient way to do scale-space
analysis [Freeman and Adelson, 1991]. In many image processing applications,
one needs to apply the same filter several times, but each time under a different
rotation angle. An example could be the estimation of the dominant orientation
of an edge. Instead of having to investigate e.g. 360 different orientations to
have an estimation accuracy of ±0.5°, steerable filters allow to use only a small
number of filters and by making linear combinations of the basis filter responses,
the filter response in any direction can be obtained. This not only results in
a huge savings in computation time, but also facilitates rotationally invariant
processing [Simoncelli, 1996].

2.3.1 Steerability

While steerability is usally explained for designing oriented filters, we will intro-
duce this concept from a slightly broader perspective, to illustrate that steer-
ability is even applicable to a wide range of problems. Therefore, we introduce
steerability already for 1D functions, which will also raise some interesting
thoughts.

We say that a function f(t) is steerable in t, if any shifted version of this
function f(t− t0) with t0 ∈ R, can be written as a linear sum of a fixed number
of shifted functions f(t− tk), k = 1, ...,K, for a given K 5 and with tk constant
and independent of f(t).

For example, let f(t) = cos t, then

f(t− t0) = cos (t− t0)

= cos t cos t0 + sin t sin t0

= cos t cos t0 + cos
(
t− π

2

)
sin t0

= b1 (t0) cos t+ b2 (t0) cos
(
t− π

2

)
.

5Note that a function may be steerable for different values of K. In this case, we will take
the smallest value of K under which this function is steerable.
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(a) (b)

(c) (d)

(e) (f) (g)
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Figure 2.15: Iso-energy plot of the frequency responses of the real parts of the
basis functions for the first scale of the 3D DT-CWT (different colors signify different
orientations), for (a)-(b) The original wavelet filters (Db8 ), in one orientation only
(corresponding to the red surfaces in (c)-(d)). (c)-(d) The proposed wavelet filters
(Db8 ), for the first order M = 1, and in four orientations. For the original wavelet
filters (top row), there is leakage of the basis function energy to different orientations,
indicating a poor directional selectivity. With the proposed filters (bottom row), the
leakage is well suppressed. (e)-(i) The remaining directional filters (in 3D there are
28 orientations).
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From our definition, it follows that f(t) is steerable in t, with K = 2, t1 = 0 and
t2 = π

2 . The functions b1 (t) = cos t and b2 (t) = sin t are called interpolation
functions (the reason for this name will be made clear later).

At first sight, a definition of steerability does not seem to be very use-
ful, because the function f(t) is completely known and shifted versions can be
readily obtained by simply shifting the argument t. To recognize the primary
advantage of steerability, consider f(t) as a basis function and project an arbi-
trary function g ∈ L2 (R) onto a fixed number of shifted versions of this basis
function. Let us denote the corresponding projections by c(tk), k = 1, ...,K,
then:

c(tk) = 〈g, f(· − tk)〉 =

ˆ +∞

−∞
g(t)f(t− tk)dt, k = 1, ...,K.

Based on this small set of projections, we can compute the projection on any
shifted version of the basis function:

c(t0) =

ˆ +∞

−∞
g(t)f(t− t0)dt =

K∑

k=1

c (tk) bk (t0) , (2.31)

which results in a linear combination of the projections on the basis functions
(or interpolation). Instead of having to project g(t) onto a continuous range of
basis functions, the same result can be obtained by projecting onto a very small
number (e.g. K = 2) of basis functions and by making a linear combination of
the projection coefficients.

In the previous example, we dealt with a very simple function, f(t) = cos t,
and this gave us the interpolation functions b1 (t0) and b2 (t0). Note however
that bk (t0) and the shifts tk are not uniquely defined according to our definition
of steerability. For example, if we had chosen t0 = 0 and t1 = π/3, we would
have found:

b1(t0) = −1 + 2 cos t0,

b2(t0) =
2√
3

sin t0.

In other words: the sine basis functions do not need to be in quadrature phase!
It turns out that t0 and t1 can be freely specified (as long as they are not equal),
as we will explain further on.

Also, we are interested in investigating the steerability of an arbitrary func-
tion instead of only sine (or cosine) functions. In the following, we will first
consider real-valued functions f(t) ∈ L2 ([0, 2π]) that are 2π periodic. The
shifting operation is then interpreted modulo 2π. These functions can be ex-
panded into a converging complex Fourier series:

f(t) =
+∞∑

k=−∞
ake

jkt (2.32)
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Again, we can formulate the steerability condition:

f(t− t0) =

+∞∑

k=−∞
ake

jk(t−t0) =

+∞∑

k=−∞

K∑

l=1

ake
jk(t−tl)bl (t0) (2.33)

For real-valued functions, we have the conjugate symmetry property ak = a−k.
Now, if the function only consists of the first K Fourier terms (i.e. if ak = 0
for |k| ≥ K), the above equation amounts to a linear system of K equations
and unknowns bk (t0) , k = 1, ...,K:



1
ejt0

...
ej(K−1)t0


 =




1 1 · · · 1
ejt1 ejt2 · · · ejtK

...
...

. . .
...

ejt1(K−1) ejt2(K−1) · · · ejtK(K−1)







bl (t0)
b2 (t0)

...
bK (t0)


 ,

(2.34)
which has a unique solution. Hence, for functions consisting of K Fourier
terms, K basis functions f(t − tk) are needed and the interpolation functions
are solutions of (2.34). This is known as Steering Theorem 1 in [Freeman and
Adelson, 1991]. This also implies that, independent of the exact values of ak,
the interpolation functions only depend on the shifts tk. In practice, uniform
shifts in the interval [0, 2π] are mostly used:

tk =
2π

K
(k − 1) , k = 1, ...,K (2.35)

For this choice, the matrix in (2.34) amounts to the Fourier transform matrix
and the interpolation functions are uniquely given by:

bk(t0) =
1

K

(K−1)/2∑

l=−(K−1)/2

cos (2 (tk − t0) l) (2.36)

=
1

K

sin ((tk − t0)K)

sin (tk − t0)
(2.37)

where in (2.36) we use the convention that for even K the summation takes
place over non-integer values of l. The function in (2.37) is commonly known as
the Dirichlet function (see Figure 2.16). The Dirichlet function is very similar
to the sinc function, with the main difference that the Dirichlet function is
periodic. If we now turn again to (2.31), unsurprisingly we find the result:

c (t0) =

K∑

k=1

c (tk)
1

K

sin ((tk − t0)K)

sin (tk − t0)
, with t0 ∈ R (2.38)

This is basically the sampling theorem for 2π periodic functions. Recall that
we have called bk(t0) interpolation functions. This is clear now: “intermedi-
ate” samples of c (t) can be obtained by interpolating the samples c (tk) , k =
1, ...,K.

The basis process to design a steerable function is hence as follows:
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Figure 2.16: The dirichlet function (with K = 6) and the sinc function.

• First select the number of Fourier terms K for f(t).

• Choose the shifts tk, k = 1, ...,K, for example use uniform shifts as in
(2.35).

• Obtain the interpolation functions bk(t0) by solving (2.34). For uniform
shifts this gives (2.37).

• Determine the coefficients ak.

The last step deserves some extra attention. In essence, we are free to choose
the coefficients ak, k = 0, ...,K−1. In practice, we want f(t) to be well-localized
in time (to extract a certain frequency band or orientation, see further in Sec-
tion 2.3.2). Ideally, a rectangular function can be used, however, this would
require an infinite number of Fourier terms. Instead, we can approximate the
rectangular function by a bandlimited function by taking theK most significant
Fourier terms:

fsquare(t) =
1

K


1 +

K−1∑

k=1,3,5,...

1

k
sin (kt)


 , (2.39)

with K even. If the time shifts tk are uniformly spaced (tk = 2π(k−1)/K), the
interpolation functions are given by (2.36)-(2.37). Moreover, it can be checked
that f(t) as defined in (2.39) satisfies other properties for analysis:

f(t) ≥ 0
K∑

k=1

f(t− tk) = 1, t ∈ [0, 2π]

On the other hand, in [Portilla et al., 2003], the following steerable function is
used:

fcos(t) =
2K−1 (K − 1)!√
K(2K − 2)!

cosK−1 (t/2) (2.40)
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Figure 2.17: Illustration of two steerable functions: fsquare(t) and fcos(t).

with time shifts again uniformly spaced but on the interval [0, 2π]: tk = 2π(k−
1)/K. By iteratively using the formula cos2 t = (1 + cos 2t) /2, it can be seen
that f(t) consists ofK Fourier terms. The magnitude of the function is maximal
for t = 0 and t = π. Furthermore, the function has the following properties:

K∑

k=1

f(t− tk) = constant if K is odd

K∑

k=1

|f(t− tk)|2 = 1 if K > 0 (2.41)

The property (2.41) is very useful in the design of the steerable pyramid trans-
form, as we will see further on. The functions (2.39) and (2.40) are illustrated
in Figure 2.17.

2.3.2 Steerable filters

Based on the concept of “steerable functions”, a steerable filter G(ω, ϑ) can be
easily designed in polar (frequency) coordinates [Freeman and Adelson, 1991]:

G(ω, ϑ) = R(ω)f (ϑ) (2.42)

where ω is the radial frequency, ϑ is the angle, R(ω) is the frequency response
of a radially symmetric filter and f (ϑ) is a steerable function, as defined in
Section 2.3.1. Although the term “steerable filters” is typically reserved for
filters that can be steered in orientation, we remark that steering in scale is
also possible: in essence, it suffices to use a second steerable function for R(ω).
This will be of importance in Section 7.3.3.

As a simple example, consider again f (ϑ) = cosϑ for K = 2 and ϑ1 = 0,
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ϑ2 = π/2. This gives the steerable filters:

G1(ω, ϑ) = G(ω, ϑ− ϑ1) = R(ω) cosϑ and

G2(ω, ϑ) = G(ω, ϑ− ϑ2) = R(ω) sinϑ.

To steer the filters for an arbitrary angle of ϑ0 radians, we just need to apply

the steering matrix
(

cosϑ0 − sinϑ0

sinϑ0 cosϑ0

)
. The filters rotated by ϑ0 radians

are:
(

cosϑ0 − sinϑ0

sinϑ0 cosϑ0

)(
G1(ω, ϑ)
G2(ω, ϑ)

)
=

(
R(ω) cos (ϑ− ϑ0)
R(ω) sin (ϑ− ϑ0)

)
. (2.43)

In Cartesian frequency coordinates, the filters can also be written as follows:

G1(ωx, ωy) = R
(√

ω2
x + ω2

y

) ωx√
ω2
x + ω2

y

and

G2(ωx, ωy) = R
(√

ω2
x + ω2

y

) ωy√
ω2
x + ω2

y

.

Because of the steerability of f (ϑ), all properties relating to steerability
also apply to G(ω, ϑ). For example, if we use f(ϑ) from (2.40) with orientation
angles ϑk = π (k − 1) , k = 1, ...,K, property (2.41) amounts to:

K∑

k=1

|G(ω, ϑ− ϑk)|2 = |R(ω)|2 , (2.44)

which means that the sum of the power spectral densities of the steerable
filters G(ω, ϑ− ϑk) only depends on the power spectral density of the radially
symmetric filter. Now, suppose we have a number of radially symmetric filters
Ri (ω) , i = 1, ..., I with a similar property:

I∑

i=1

|Ri (ω)|2 = 1,

and with corresponding steerable filters Gi,k(ω, ϑ) = Ri(ω)f (ϑ− ϑk), we could
immediately obtain a subband decomposition scheme in I scales and K orien-
tations. For this scheme, the analysis and synthesis filters are given by respec-
tively Gi,k(ω, ϑ) and Gi,k(ω, ϑ). The perfect reconstruction of this scheme can
readily be checked:

I∑

i=1

K∑

k=1

Gi,k(ω, ϑ)Gi,k(ω, ϑ) =

I∑

i=1

K∑

k=1

|Gi,k(ω, ϑ)|2

=
I∑

i=1

|Ri (ω)|2 = 1
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In other words: analyzing an image using the set of filters {Gi,k(ω, ϑ)} and
resynthesizing the image using the complex conjugates of the filters and sub-
sequently summing the results is equivalent to using a filter with frequency
response 1, hence the original image is reconstructed. The steerable pyramid
transform, which can be seen as a refinement of this scheme, will be explained
next.

2.3.3 Architecture of the steerable pyramid transform

The STP performs a decomposition of the image in a variable number of scales
(I) and orientations (K). As with the DWT, this process is done recursively
by splitting the input image in a number of oriented subbands and a low-pass
subband that is decimated by a factor of two in both dimensions. Unlike the
DWT, the oriented subbands are not decimated. To obtain shift-invariance
of the transform, the STP filters are designed to be bandlimited. The major
benefit of the STP is that orientation subbands in any orientation α ∈ [0, π]
can be synthesized by linear combinations of the STP subbands, computed for
a fixed number of orientations. As the steering operation (see (2.43)) can be
expressed as an orthonormal transformation in orientation space, the squared
norm of the STP coefficients across orientation will be invariant to rotations.
This is very useful for certain applications, such as image retrieval [Simoncelli,
1996].

Furthermore, the STP does not suffer from the problems mentioned in Sec-
tion 2.1.4, at the cost of a high redundancy factor: the redundancy factor (i.e.
the number of transform coefficients divided by the number of input pixels) of
the transform is 7K/3 for an infinite number of scales I → ∞. For example,
for 6 orientations, the redundancy factor of the STP is 14, compared to 4 for
the DT-CWT. The frequency tiling of the STP is shown in Figure 2.18.

The frequency responses of the steerable STP filters are defined as [Portilla
et al., 2003]:

H(ω, ϑ) =





cos
(
π
2 log2

(
4ω
π

))
, π

4 < ω < π
2

1, ω ≤ π
4

0, ω > π
2

(2.45)

Gk(ω, ϑ) =





fk(ϑ) cos
(
π
2 log2

(
4ω
π

))
, π

4 < ω < π
2

fk(ϑ), ω > π
2

0, ω ≤ π
4

(2.46)

fk(ϑ) =
(K − 1)!√
K (2K − 2)!

(
2 cos

(
ϑ− πk

K

))K−1

(2.47)

with k = 1, ...,K. The radial response of H(ω, ϑ) and Gk(ω, ϑ) is a raised
cosine function that is logarithmically warped to simulate dyadic scales. The
angular response (2.47) is a steerable trigonometric function from (2.40). In
Figure 2.18(b), a number of basis elements of the STP transform are depicted,
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ωx

ωy

(a) (b) (c)

Figure 2.18: (a) Frequency tiling of a STP transform with two scales (I = 2)
and eight orientations (K = 8), (b) Example of a set of basis function of the STP
transform, (c) Basis functions of the DT-CWT.

for two different scales of the transform. As expected, the basis elements are
rotated versions of each other (rotated by multiples of 22.5° in this case).

For comparison, we also computed basis elements of the DT-CWT (see
Figure 2.18(c)). Despite the fact that the DT-CWT basis elements contain
“staircasing artifacts” (this is due the approximate analyticity of the complex
wavelets - see Section 2.2), there is a good resemblance between the complex
wavelets and the STP basis elements. We remark that by the use of separable
filters, the implementation of the DT-CWT is often computationally much more
efficient than the STP, also the redundancy factor of the DT-CWT is lower
(4 compared to 7K/3). Therefore, we can consider the DT-CWT as a more
practical transform with STP-like properties. Nevertheless, exact “steerability”
properties only hold for the STP transform.

2.4 Overview of related representations

Due to the success of wavelets, complex wavelets and steerable pyramids in
many areas of image processing, other related multiresolution transforms have
been proposed as well, to further improve the properties and to obtain even
more sparse representations for images. We make a distinction between adap-
tive representations (which are optimized with respect to the image being an-
alyzed), and non-adaptive representations.

Adaptive representations

Many adaptive representations attempt to exploit the geometry that is present
in images. Instead of decomposing the image in a fixed basis, adaptive tech-
niques modify the representation dynamically based on the geometry computed
from the image. In [Philips, 1996], bases of time-warped and spatial-warped or-
thonormal polynomials are used to efficiently adapt the polynomial basis to the
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local bandwidth of the image. The wedgelet transform [Donoho, 1999,Romberg
et al., 2002] divides the image into dyadic blocks at different scales and projects
these blocks onto piecewise constant functions with linear discontinuities. The
direction of the edges is locally estimated from the image. [Shukla et al., 2005]
generalizes this approach by considering piecewise polynomial functions.

The bandelet transform [LePennec and Mallat, 2005,Mallat and Gabriel,
2007] further improves the sparsity of DWT coefficients by applying polyno-
mial approximation to the wavelet coefficients, thereby constructing orthog-
onal vectors that are elongated along the edges in the image. The grouplet
transform [Mallat, 2009] exploits non-local redundancy in images by further
decomposing the wavelet subbands using the lifting scheme [Daubechies and
Sweldens, 1996] of the Haar wavelet transform applied to “similar” wavelet co-
efficients. These similar coefficients are found using block-matching techniques.

The directionlet transform [Velisavljevic et al., 2006] partitions the image
domain into integer lattices, where 1D filtering is performed along lines of
the lattice yielding directional and anisotropic basis functions. The filtering
direction is thereby adapted to the dominant orientation of each block of the
partition.

Nonadaptive representations

Next to adaptive representations, a number of image-independent (nonadap-
tive) transforms have been proposed. Brushlets [Coifman and Meyer, 1997]
improve the angular selectivity of wavelet packets by expanding the Fourier
plane into a windowed Fourier basis. Brushlets are well localized in frequency
and are good for representing texture-rich images.

The contourlet transform [Do and Vetterli, 2003a,Do and Vetterli, 2005]
provides a multidirectional analysis for the Laplacian pyramid [Burt and Adel-
son, 1983,Do and Vetterli, 2001], a multiscale transform that was very success-
ful in the 80s for e.g. image coding. While the Laplacian pyramid decomposes
an image into multiple scales by successively filtering and downsampling and by
computing the prediction error, the contourlet transform adds a second layer
in which a directional filter bank is used to further analyze the frequency bands
in multiple orientations. Directional filter banks [Bamberger and Smith, 1992]
further make use of quincunx downsampling, and critical sampling is almost
achieved: the redundancy factor is approximately 4/3.

A shortcoming of the contourlet transform is its shift-variance (as the
DWT), therefore a nondecimated version of the contourlet transform has been
proposed in [da Cunha et al., 2006], yielding excellent results in denoising at
the cost of a relatively high redundancy factor (1 + I ·K, where I is the num-
ber of scales and where K is the number of orientations). Surfacelets [Lu and
Do, 2007] are related to contourlets, but use N-D directional filterbanks based
on pyramidal and wedge shaped filters to achieve an efficient multidirectional
decomposition of higher dimensional data.

Phaselets [Gopinath, 2003] are a generalization of dual-tree complex wavelets
and are designed to obtain better shift invariance and directional properties.
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Figure 2.19: Illustration of 2D-Gabor functions.

While the DT-CWT uses scaling filters that are shifted one half sample (see
Section 2.2), the Phaselet transform considers arbitrary shifts. Phaselets are
also specific cases of framelets [Daubechies et al., 2003], which emerge from
MRA and frame theory.

2D Gabor functions [Lee, 1996] (see Figure 2.19) are Gaussian functions
multiplied by a complex exponential (or in the frequency domain - shifted
Gaussian functions), well-known for their excellent localization in position, fre-
quency and orientation. Furthermore, several neuroscience studies have shown
that the responses of simple cells in the Primary Visual Cortex (V1) can be well
modeled by Gabor functions [Field, 1987]. Consequently, Gabor multiresolution
analysis has been successfully used in image analysis tasks, but somewhat less
effective in image restoration tasks: the design of Gabor transforms with exact
reconstruction is rather difficult, because the Fourier domain is not uniformly
covered [Fischer et al., 2007]. Instead, log-Gabor filters tend to bring a better
coverage of the frequency space and a self-invertible multiresolution transform
based on log-Gabor filters has been introduced in [Fischer et al., 2007]. We
remark that the Gabor functions have a very similar appearance as the STP
basis functions (see Figure 2.18(b)).

Other recent additions to the (complex) wavelet family are: polyharmonic
wavelets [Van De Ville et al., 2005], Marr-like wavelet pyramids [Van De Ville
and Unser, 2008] and steerable wavelet frames [Unser and Van De Ville, 2009].

Related research focused on the study of multiscale geometrical transforms
with a typically very high number of analysis orientations, such as ridgelets
[Candès, 1998,Do and Vetterli, 2003b], curvelets [Starck et al., 2000,Candès
et al., 2006] and shearlets [Guo and Labate, 2007]. The ridgelet transform
achieves a multi-directional decomposition through the use of the Radon trans-
form. Next, a 1D DWT is performed in the Radon domain, to obtain a further
analysis in multiple scales. The ridgelet transform is well suited for repre-
senting discontinuities along straight lines. This is in contrast to the curvelet
and shearlet transforms, which can represent discontinuities along curves with
bounded curvatures. More specifically, it has been shown that if each basis
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Table 2.2: Overview of the properties of a number of multiresolution transforms
(I=number of scales, K=number of orientations).

Red. Shift
Representation Sep. filtering Phase # orient. factor invariance

DWT yes no 2 (hor+vert) 1 no
dual-tree DWT yes no 6 2 no

DT-CWT yes yes 6 4 approx.
Undec. DWT yes no 2 (hor+vert) 1 + 3I yes
Contourlet no no power of 2 ≈ 4/3 no

Unsubs. Contourlet no possible variable 1 + I ·K yes
STP no possible variable 1.33K yes

log-Gabor no yes variable 4.66K yes
Curvelets no yes variable ≈ 7.2 yes
Shearlets no possible variable ≈ 2.6 yes

element has a frequency support that is contained in a rectangle of size pro-
portional to 2i× 4i (or 4i× 2i), or in other words if the length of the frequency
support is approximately the squared width of the frequency support (called
parabolic scaling property), we obtain a sparse representation that is optimal
for representing images that contain edges [Candès et al., 2006,Guo and La-
bate, 2007]. This practically means that images with edges can be represented
in these transform domains with much less significant coefficients than with
other transforms.

A few properties of some of the above mentioned multiresolution transforms
are listed in Table 2.2: sep. filtering indicates whether the implementation can
be based on separable filtering, phase indicates whether phase information of
the transform coefficients is available (which is useful for a number of applica-
tions), # orient gives the number of analysis orientations for the transform,
Red. factor is the redundancy factor of the transform (the number of transform
coefficients divided by the number of image pixels). Finally, shift invariance
indicates whether processing of the transform coefficients can be done in a shift-
invariant manner. The last transform, i.e. the shearlet transform, will now be
discussed somewhat in more detail.

2.5 The shearlet transform

The shearlet transform [Guo and Labate, 2007], is a very recent sibling in the
family of geometric image representations and provides a traditional multires-
olution analysis (see Section 2.1.2). By a specific design of the discrete shearlet
transform that we will explain in this section, a lower redundancy factor is
possible than with most other multiresolution representations, while offering
an excellent directional analysis and shift invariance. We will show that a de-
sign is possible with a redundancy factor as low as 8/3 ≈ 2.6, independent
of the number of analysis orientations. This property, together with the opti-
mality results for images that contain edges, make the shearlet transform an
attractive candidate for image representation.
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(a) (b)

Figure 2.20: Geometric transformations used by the shearlet transform (a)
anisotropic dilation (matrix A). (b) shear (matrix B).

2.5.1 An introduction to shearlet theory

The continuous shearlet transform (CST) is a generalization of the continuous
wavelet transform (Section 2.1) with basis functions well localized in space,
frequency and orientation. Let ψi,k,l(p) denote the shearlet basis functions (or
in the remainder simply called shearlets), then the CST of an image f(p) ∈
L2
(
R2
)

is defined by [Guo et al., 2009,Yi et al., 2009]:

[SHψf ] (i, k, l) =

ˆ

R2

f(p)ψi,k,l(l − p)dp (2.48)

where i ∈ R, k ∈ R and l ∈ R2 denote the scale, orientation and the spatial lo-
cation, respectively. The idea behind the continuous shearlet transform (CST)
is to combine geometry and multiscale analysis [Easley et al., 2008]: shearlets
are formed by dilating, shearing and translating a mother shearlet function
ψ ∈ L2

(
R2
)
, as follows:

ψi,k,l(p) = |det A|i/2 ψ
(
BkAip − l

)
(2.49)

where A and B are invertible 2×2 matrices, with det B = 1. As with wavelets,
the normalization factor |det A|i/2 has been chosen such that the norm ‖ψ‖2 =
‖ψi,k,l‖2 for all i, k, l. The basis functions are subject to a composite dilation
Ai and geometrical transform Bk. For the shearlet analysis, the following
transform matrices are being used:

A =

(
4 0
0 2

)
and B =

(
1 1
0 1

)
. (2.50)

Here, A is an anisotropic scaling matrix (in the x-direction, the scaling is
twice the scaling in the y-direction) and B is a geometric shear matrix. These
transforms are illustrated in Figure 2.20.

The shearlet mother function is a composite wavelet that satisfies appropri-
ate admissibility conditions [Guo et al., 2009], and that is defined in the Fourier
transform domain as:

ψ̂(ω) = ψ̂1 (ωx) ψ̂2

(
ωy
ωx

)
(2.51)
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with ω = [ωx ωy], ψ̂1(ωx) the Fourier transform of a wavelet function and
ψ̂2(ωy) a compactly supported bump function:

ψ̂2(ωy) = 0 ⇔ ωy /∈ [−1, 1]. (2.52)

By this condition, the mother shearlet function is bandlimited in a diagonal
band of the 2D frequency spectrum. Because the basis functions are obtained
through shears and dilations of the mother shearlet function, this bandlimited
property also directly controls the directional sensitivity of the basis functions.
To see this, let us investigate the effect of a shear operation on the mother
shearlet function. For the shear transform in (2.50), we have: 6

ψ̂
(
Bkω

)
= ψ̂1 (ωx) ψ̂2

(
k − ωy

ωx

)
, (2.53)

which means that a shear operation results in a shift in the argument of
ψ̂2(ωy/ωx), hence the orientation of the basis function is controlled by the
shear parameter k (see Figure 2.21(b)). Similarly, the anisotropic scaling leads
to:

ψ̂
(
Aiω

)
= ψ̂1

(
4−iωx

)
ψ̂2

(
2−i

ωy
ωx

)
. (2.54)

We see that changing the scale parameter i results in a scaling in the argument
of the wavelet ψ̂1, but it also affects the support of the bump function ψ̂2. More
concretely, when the scale parameter is increased by 1, the bandwidth of the
shearlet is halved (hence the shearlet has a finer directional selectivity).

Hence, by changing the shear and scale parameters k and i, arbitrary wedges
of the frequency plane can be selected, as shown in Figure 2.21(b).

Shearlets on the cone

So far, we considered shear operations in the vertical direction and anisotropic
dilation, with a larger scaling factor in the x-direction than in the y-direction.
To obtain a more equal treatment of the horizontal and vertical directions, the
frequency plane is split into two cones (for the high frequency band) and a
square at the origin (for the low frequency band), see Figure 2.22 [Guo and
Labate, 2007]:

C1 =
{
(ωx, ωy) ∈ R2| |ωx| ≥ ω0, |ωy| ≤ |ωx|

}
,

C2 =
{
(ωx, ωy) ∈ R2| |ωy| ≥ ω0, |ωy| > |ωx|

}
,

C3 =
{
(ωx, ωy) ∈ R2| |ωx| < ω0, |ωy| < ω0

}
,

with ω0 the maximal frequency of the the center square C3. This square is
added to be able to construct a shearlet tight frame [Guo and Labate, 2007,
Easley et al., 2008]. To treat horizontal and vertical frequencies equally, in

6Here, we rely on the fact that the Fourier transform of a geometrically transformed
function f(Ap) is given by |detA|−1 F {f}

�
A−T

ω

�
, with F {f} the Fourier transform of f .
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Figure 2.21: (a) Frequency tiling of the shearlet transform in trapezoidal shaped tiles

(wedges) [Guo and Labate, 2007]. (b) Individual components bψ1(ωx) and bψ2(ωy/ωx)
of the Fourier transform of the shearlet mother function and the selection of orienta-
tions by the parameter k.

cone C2, the x- and y-components for p need to be switched before applying
geometric transforms. This comes down to using the following dilation and
shear matrices in both cones:

A1 =

(
4 0
0 2

)
, B1 =

(
1 1
0 1

)

A2 =

(
2 0
0 4

)
, B2 =

(
1 0
1 1

)
. (2.55)

Consequently, the horizontal cone is dilated horizontally by a factor 4 per scale,
while the vertical cone is dilated vertically by factor 4. In the following, we
distinguish between both cones explicit by assigning different shearlet basis
functions to each cone d = 1, 2:

ψ
(d)
i,k,l(p) = |det Ad|i/2 ψ

(
Bk
dA

i
dp − l

)
. (2.56)

Analogously to the DWT (Section 2.1), it is natural to discretize the scale,
orientation and position indices. In the remainder, we will therefore restrict
i, k, l to discrete (integer) values. The resulting frequency tiling is illustrated
in Figure 2.21(a).

Tight frames of shearlets

Next, we want to represent an arbitrary function f ∈ L2
(
R2
)

by a set of

projections of this function onto the shearlet basis elements,
〈
f, ψ

(d)
i,k,l

〉
. Un-

fortunately, it is still an open question whether it is possible to design bases
of shearlet functions. A shearlet basis would give a complete (non-redundant)
representation for e.g. images. Instead, we rely on frame theory [Daubechies,
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Figure 2.22: Partitioning of the 2D frequency plane into two cones (C1 and C2) and
a square (C3) at the origin.

1992], which has been developed as a general theory for overcomplete (redun-
dant) representations. The family of functions

{
ψ

(1)
i,k,l(p), ψ

(2)
i,k,l(p)|i ∈ Z, k ∈ Z, l ∈ Z2, i ≥ 0

}
(2.57)

is called frame if there exists positive constants A and B, such that for all
f ∈ L2

(
R2
)
:

A ‖f‖2
2 ≤

∑

i,k,l,d

∣∣∣
〈
f, ψ

(d)
i,k,l

〉∣∣∣
2

≤ B ‖f‖2
2 , (2.58)

where A and B are frame bounds. The analysis of the frame bounds of often
useful to investigate the numerical stability of a multiresolution transform.
Additionally, a frame is called tight frame (or Parseval frame) if the frame
bounds are equal (A = B). By proper normalization, the frame bound can be
chosen to be equal to 1, such that the Parseval relationship holds:

∑

i,k,l,d

∣∣∣
〈
f, ψ

(d)
i,k,l

〉∣∣∣
2

= ‖f‖2
2 . (2.59)

The Parseval relationship implies that any function in L2
(
R2
)

can be expanded
into a set of functions [Daubechies, 1992]:

f =
∑

i,k,l,d

〈
f, ψ

(d)
i,k,l

〉
ψ

(d)
i,k,l. (2.60)

This equation is in fact similar to (2.3), the difference here is that the set of
functions (2.57) do not form a basis but a frame. For the shearlet functions,
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equation (2.59) imposes specific constraints to the functions ψ̂1(ω) and ψ̂2(ω):

∑

i≥0

∣∣∣ψ̂1(4
−iω)

∣∣∣
2

= 1 for |ω| ≥ ω0 (2.61)

2i−1∑

k=−2i

∣∣∣ψ̂2(2
iω − k)

∣∣∣
2

= 1 for |ω| ≤ π (2.62)

which practically means that the sum of the energies of ψ̂1(ω) and ψ̂2(ω) for re-
spectively scaled frequencies and shifted frequencies must be one. The Parseval
relationship holds for the part of the frequency plane that excludes the center
square (see Figure 2.22), although this can be trivially extended to the com-
plete frequency plane by adding a bandlimited scaling function [Easley et al.,
2008]:

φ̂(ωx, ωy) =





Φ̃ (ωx) |ωy| ≤ |ωx| < ω0

Φ̃ (ωy) |ωx| ≤ |ωy| < ω0

0 else
(2.63)

with Φ̃(ω) a 1D scaling function that satisfies:

∑

i≥0

∣∣∣ψ̂1(4
−iω)

∣∣∣
2

+
∣∣∣Φ̃ (ω)

∣∣∣
2

= 1 for |ω| < ω0 (2.64)

By comparing equation (2.49) to equation (2.63), it can be noted that the
scaling function is more or less isotropic. This behavior resembles the isotropy
of the scaling functions in the DWT, with the main difference that in the DWT,
2D scaling functions are formed by a tensor products of one-dimensional scaling
functions, instead of being defined per cone.

Shearlets or curvelets?

Shearlets are very similar to curvelets in the sense that both perform a mul-
tiscale and multidirectional analysis, and both transforms obey the parabolic
scaling property. Both transforms have very similar asymptotic approxima-
tion properties: for images f(p) that are C2 everywhere except near edges,
where f(p) is piecewise C2, the approximation error of a reconstruction with
the N -largest coefficients (fN (p)) in the shearlet/curvelet expansion is given
by [Candès et al., 2006,Guo and Labate, 2007]:

‖f − fN‖2
2 ≤ B ·N−2 (logN)

3
, N → ∞

with B a constant. Because this is the optimal approximation rate for this
type of functions [Guo and Labate, 2007], this property is often referred to as
optimal sparsity. Still, there are a number of differences between shearlets and
curvelets [Easley et al., 2008]:
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• Shearlets are generated by applying a family of operators to a single func-
tion, while curvelet basis elements are not in the form of equation (2.49).

• Shearlets are associated to a fixed translation lattice, while curvelets are
not. This is of importance for applications: when combining information
from multiple scales and orientations (e.g. to model inter- or intrascale
dependencies, see Chapter 3), curvelet techniques need to take into ac-
count that the translation lattice is not fixed.

• In the construction of the shearlet tight frame above, the number of ori-
entations doubles at every scale, while in the curvelet frame, this number
doubles at every other scale.

• Shearlets are associated to a multiresolution analysis, while curvelets are
not.

Perhaps the most primary advantage that we want to point out, is that shearlets
allow for a much less redundant sparse tight frame representation, while offering
shift invariance.

2.5.2 New design of the discrete shearlet transform

In analogy to the fast DWT (see Section 2.1) for computing the DWT from an
image, it is desirable to have an efficient decomposition and synthesis scheme
for shearlets as well. Recently, a number of possible designs of the discrete
shearlet transform (DST) have been proposed. A first approach, used e.g.
in [Easley et al., 2009], is to apply a direct discretization to the shearlet basis
functions ψ(d)

i,k,l(p), which leads to shearlet filters implemented in Fourier space.
Although such a scheme is simple and shift-invariant, the redundancy factor is
high due to the lack of downsampling operations in the decomposition. More
specifically, the redundancy factor is:

1 +

I∑

i=1

2i+1 = 2I+2 − 3,

when choosing 2I+1 orientations for the first scale. For example, using 3 scales
gives redundancy factor 29. In analogy to the undecimated DWT, we will call
this transform the undecimated DST because of the lack of decimations.

[Easley et al., 2008] propose a discrete implementation with one of the
main applications in image denoising. In their work, a Laplacian pyramid is
followed by windowing filters in the Pseudo-Polar DFT domain. By including
decimations in the Laplacian pyramid, the redundancy of the transform is
reduced. Because the redundancy factor per scale of the transform increases
linearly with the number of orientations for that scale, the overall redundancy
factor is still high. We remark that the Laplacian pyramid representation
of [Burt and Adelson, 1983] that is used in [Easley et al., 2008] is not a tight
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frame in its standard form, however, a tight frame can be constructed by using
orthogonal pyramid filters [Do and Vetterli, 2001].

[Yi et al., 2009] outline a different implementation for edge detection and
analysis. In their implementation, there is an explicit distinction between hor-
izontal and vertical shearlets. However, the authors do not take further steps
to reduce the redundancy, as they choose to stay faithful to the CST in terms
of edge analysis. Further, it is not clear which cascade algorithm would be the
best to do the inverse transform of this scheme, as no reconstruction algorithm
is proposed.

Next, we will present a design that can be used in a wide range of applica-
tions and that has a lower redundancy factor than the above implementations
of the DST. As we explained in Section 2.5.1, for the CST there is an explicit
separation of the horizontal cone C1 and the vertical cone C2. An obvious
discrete realization would be to use hourglass-shaped filters. We prefer not to
do this, as this either increases the redundancy factor by 2, or causes angular
aliasing when including decimations in the angular filtering.7 The presence
of angular aliasing is very cumbersome in practical applications as it severely
degrades the directional selectivity of the basis functions. Instead, we apply
only one angular filtering stage at each scale to directly split up all orientation
subbands, which also has the advantage that the corresponding filterbank is
conceptually more clean.

To proceed, we will define shearlet filters in pseudo-polar frequency coor-
dinates (FC). Every shearlet filter will extract a wedge-shaped region of the
2D frequency plane; these wedge filters can be easily described in pseudo-polar
FC.

Pseudo-polar coordinate system

We use FC (ωr, ϑ) in a pseudo-polar grid [Averbuch et al., 2006] that is con-
sistent to a polar grid, in the sense that the pseudo-angle is in the range
ϑ ∈ [−π, π]. The corresponding conversion from Cartesian coordinates (ωx, ωy)
to pseudo-polar FC (ωr, ϑ) is given by:

ωr(ωx, ωy) =

√√√√1 + max
(
|ωx|2 , |ωy|2

)

1 + π−2
(2.65)

ϑ(ωx, ωy) =





π
4

(
ωy

ωx

)
, if |ωx| > |ωy| and ωx ≥ 0,

π
4

(
2 − ωx

ωy

)
, if |ωx| < |ωy| and ωy ≥ 0,

π
4

(
4 +

ωy

ωx

)
, if |ωx| > ωy ≥ 0 and ωx < 0,

π
4

(
−4 +

ωy

ωx

)
, if |ωx| > -ωy > 0 and ωx < 0,

π
4

(
−2 − ωx

ωy

)
else,

(2.66)

7Such an angular filterbank with decimation is used in e.g. the contourlet transform [Do
and Vetterli, 2005].
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Figure 2.23: Pseudo-polar coordinate system.

where we replace the fractions ωx/ωy and ωy/ωx by 0 whenever the denom-
inator becomes 0. The denominator in (2.65) has been chosen such that
ωr(±π,±π) = π. Important to note is that adding a constant to the pseudo-
angle ϑ corresponds to a vertical shear transform if both (ωx, ωy) ∈ C1 and the
transformed point also belong to C1. Equivalently, if (ωx, ωy) ∈ C2, adding a
constant to ϑ corresponds to a horizontal shear transform if the transformed
point also belongs to C2. Transiting from C1 to C2 (or vice versa) can be done
using a cascade of a horizontal and vertical shear transform. The pseudopolar
grid defined above is illustrated in Figure 2.23. It can be noted that contours of
equal pseudo-radial frequencies ωr define concentric squares around the origin,
instead of circles as is the case with a polar grid.

Filter bank

The filter bank design that we propose is mostly related to the design of the
steerable pyramid transform (see Section 2.3.3), in the sense that we use a fre-
quency partitioning into Ki ≥ 2 orientation subbands and a low-pass subband
at each scale. In our scheme, the specific way of decimating the horizontal
and vertical orientation subbands, is different, as well as the pseudo-polar grid
for defining the filters and the filters being used. This will allow us to further
subsample the orientation subbands.

At each scale of our DST, we use a (Ki + 1)-band recursive decomposition
into Ki (band-pass or high-pass) orientation bands and a low-pass band. Let
us denote the scaling analysis filters as H(ω) and the shearlet analysis filters as
Gk(ω), with k = 1, ...,Ki the index of the orientation band. The scaling syn-
thesis filters and shearlet synthesis filters are H̃(ω) and G̃k(ω), respectively.
The analysis and synthesis filter bank is shown in Figure 2.24. In our filter
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Figure 2.24: Shearlet analysis and synthesis filterbank.

bank, the image is first filtered using the oriented shearlet filters Gk(ω), subse-
quently the result is decimated with a scale-dependent factor qi, in the direction
orthogonal to the main filter orientation (i.e. horizontal or vertical). Next, the
filter bank is iterated on the decimated output of the scaling filters, where the
decimation factor for the scaling step i is denoted by pi. The synthesis filter
bank is entirely analogous, hence when designing the filters appropriately, the
filter bank can be made to be self-inverting.

To design the filters, we express the perfect reconstruction equations for
Figure 2.24, and try to find filters that satisfy these equations. The first perfect
reconstruction (PR) condition for this filter bank is given by:

H(ω)H̃(ω) +

Ki∑

k=1

Gk(ω)G̃k(ω) = 1, ω ∈ Ω (2.67)

with Ω = [−π, π]× [−π, π]. For a decimated transform, other PR conditions are
needed to state that the aliasing caused by the downsampling operations should
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cancel itself. We will call these conditions the aliasing canceling conditions.
Note that for some combinations of (p, q) PR is not even possible (e.g. (p, q) =
(4, 2)), in that case, the PR conditions are conflicting.

We investigate p = 4 and q = 1 with the anisotropic dilation matrices from
(2.55). The aliasing canceling PR conditions are:

H
(
ωx, ωy

)
H̃
(
ωx +

mπ

2
, ωy +

nπ

2

)
= 0, (2.68)

with m = 0, ..., 3, n = 0, ..., 3 and (m,n) 6= 0. Notably, (2.68) only affects
the scaling filter and not the shearlet filters: the scaling filter H(ω) must have
frequency support [−π

4 ,
π
4 ]×[−π

4 ,
π
4 ]. Consequently,H(ω) cannot have compact

support in spatial domain (see [Daubechies, 1992]). Nevertheless, because of
the lack of aliasing, the transform can be made to be shift-invariant, in a similar
way as done for the steerable pyramid transform. To do so, we define the filters
in separable pseudo-polar frequency coordinates:

H(ωr, ϑ) = H0(ωr),

Gk(ωr, ϑ) = G0(ωr)

+∞∑

i=−∞
R

(
(ϑ+ iπ)Ki

π
− k + 1

)
,

H̃(ωr, ϑ) = H̃0(ωr),

G̃k(ωr, ϑ) = G̃0(ωr)

∞∑

i=−∞
R̃

(
(ϑ+ iπ)Ki

π
− k + 1

)
(2.69)

with H0(ωr) the frequency response of a 1D scaling filter, G0(ωr) the frequency
response of a 1D wavelet filter and R(ϑ) a real-valued compactly supported
bump function. In (2.69), the bump function is periodized in ϑ with period π to
construct filters with real-valued impulse responses. In practice we can assume
that ϑ ∈ [−π, π], by the construction of the pseudo-polar grid. Consequently,
the summation in (2.69) only needs to iterate over a finite number of values for
i.
Using the above filters, the PR conditions come down to:

H0(ωr)H̃0(ωr) +G0(ωr)G̃0(ωr) = 1, ωr ∈ [−π, π]

K∑

k=1

+∞∑

i=−∞
R

(
(ϑ+ iπ)Ki

2π
− k + 1

)
·

R̃

(
(ϑ+ iπ)Ki

2π
− k + 1

)
= 1, ϑ ∈ [−π, π] (2.70)

H0(ωr) = H̃0(ωr) = 0, |ωr| >
π

4
(2.71)

In Figure 2.26(a), examples of radial filters satisfying these equations are shown.
It can be seen that the scaling filter has a band center frequency ∼ π/8, as a
result the frequency resolution of this DST may be rather poor (for the second
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scale i pi qi

1 2 1
2 4 1
3 4 2
4 4 4
5 4 4

Table 2.3: Proposed decimation factors for the DST with anisotropic dilation (also
see Figure 2.24).

scale, this frequency becomes ∼ π/32; hence much of the frequency content of
the image is contained in the first scale). Therefore, we replace (2.71) by a less
strong condition:

H0(ωr) = H̃0(ωr) = 0, |ωr| >
π

2

and modify the decimation operations appropriately, such that there is no
information loss and hence PR is still possible. For the first scale, we set
p1 = 2, q1 = 1 and starting from the second scale (i > 1), we use pi = 4
and qi = 2. In Table 2.3, the decimation factors pi and qi are listed per
scale. The modified Meyer wavelet and scaling filters with adjusted frequency
scaling is shown in Figure 2.26(b). The use of the Meyer wavelet here is an
appealing choice due to its excellent localization properties in both time and
frequency and also because the filters are defined directly in frequency domain
[Daubechies, 1992]:

H0(ωr) =





1 |ωr| < π
4

cos
(
π
2 v
(

4|ω|
π − 1

))
π
4 ≤ |ωr| ≤ π

2

0 else

,

G0(ωr) =





0 |ωr| < π
4

sin
(
π
2 v
(

4|ω|
π − 1

))
π
4 ≤ |ωr| ≤ π

2

1 else

,

H̃0(ωr) = H0(ωr),

G̃0(ωr) = G0(ωr).

where the interpolation function v(x) satisfies v(x) = 1− v(1−x) [Daubechies,
1992]. Here, we use a third order polynomial for the range x ∈ [0, 1] (see Figure
2.25):

v(x) =





3x2 − 2x3 0 ≤ x ≤ 1

0 x < 0

1 1 < x

(2.72)
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Figure 2.25: The interpolation function v(x).

Similarly, angular filters satisfying (2.71) are given by:

R(x) = R̃(x) =





0 x < − 1+α
2

sin
(
π
2 v
(
α+2x+1

2α

)) ∣∣x+ 1
2

∣∣ ≤ α
2

1 |x| < 1−α
2

cos
(
π
2 v
(
α+2x−1

2α

)) ∣∣x− 1
2

∣∣ ≤ α
2

0 else

with α ∈
[
0, 1

2

]
a constant parameter that determines the bandwidth of the

angular filters. In Figure 2.26(c), R(x) is depicted for different values of α.
Higher values of α correspond to a slower decay of the transition bandwidth.
The corresponding filters G̃k(ωr, ϑ) for ωr = π

2 and α = 1
2 are shown in Figure

2.26(d).
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Figure 2.26: (a) Shearlet radial magnitude responses for dilation factor 4 (using
the Meyer wavelet), (b) Shearlet filter radial magnitude responses with proposed
adjustment to increase the low-pass center band frequency (using the Meyer wavelet),
(c) Angular response R(x), (d) Shearlet filter magnitude responses for the constant
radial frequency ωr = π/2.
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Figure 2.27: Strategies to reduce the redundancy of the DST. (a) Perfect recon-
struction by shear operations and decimating (Folding), (b) Perfect reconstruction by
decimating without shearing (Non-folding). See text also.

Folding and angular decimation

By the compact support of R(x), the filters Gk(ωr, ϑ) are supported on trape-
zoidal wedges in the frequency plane. In case of more than two orientations
(K > 2), we can partially get rid of the extra redundancy in two different ways
(see Figure 2.27):

1. (Folding) The filtered subbands can be sheared such that the frequency
support is fully contained in the central rectangles as shown in Figure
2.27(a). Subsequently, a vertical decimation can be applied to the sub-
bands in cone C1 and a horizontal decimation to the subbands in cone C2.
Note that a suitable (possibly non-integer) decimation factor needs to be
chosen, we will explain this further on. For the shear transform, we rely
on bandlimited interpolation (most efficiently implemented in the DFT
domain). For the exact details of the shear transform implementation,
we refer to [Condat et al., 2008].

2. (Non-folding) On the other hand, perfect reconstruction is possible even
without folding. Therefore we need to make sure that the aliasing caused
by the decimations does not contaminate the content of the wedges of in-
terest. This can again be done by chosing the decimation factor suitably
(actually the same as in the folding strategy). This approach is illustrated
in Figure 2.27(b). Even though many aliasing copies are produced dur-
ing decimation, the original wedges can be perfectly reconstructed after
applying the reconstruction filter G̃k(ωr, ϑ).

Both schemes have the same redundancy factor. The difference is that in the
folding strategy, the translation lattice is sheared, while without folding, the
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translation lattice remains Cartesian, which can be an advantage in certain ap-
plications. Additionally, the non-folding strategy heavily relies on aliasing and
it is easy to show that the non-folding strategy is not shift-invariant, whereas
the folding strategy is shift-invariant.

For a squared subband at scale i of size Ni, we compute the decimation
factor from Figure 2.27 as follows:

di = max

(
1,

Ni
d(1 + 2α)Ni/ (Ki/2)e

)
(2.73)

In our implementation, the folding is performed in the DFT domain; Ni/di
then determines the integer number of DFT coefficients to keep per row or
column. For this reason a ceiling function is present in (2.73).

More importantly, because we have Ki orientation subbands per scale, we
see that the redundancy for scale i of the transform, which is proportional to
Ki/di ≈ 2(1 + 2α), becomes independent of Ki! 8

Because the filters are defined in frequency domain and because the shear-
ing operations are based on DFT transforms, our current implementation of
this filterbank makes use of FFTs. Because the filters H0(ωr), G0(ωr), H̃0(ωr)
and G̃0(ωr) are bandlimited, the filters do not have compact support in spa-
tial domain. Nevertheless, it is possible to approximate the impulse response
by truncation, as proposed e.g. in [Castleman et al., 1998] for the steerable
pyramid filters.

Based on the filter bank scheme from Figure 2.24 and equation (2.73), a
recursive formula can be written for the redundancy factor of our scheme:

R ≈
[

2

q1
+

1

p2
1

(
2

q2
+

1

p2
2

(
2

q3
+

1

p2
3

(
2

q4
+ · · ·

)))]
(1 + 2α) + 2−2

PI
i=1 pi

≈
[
2 +

1

4

(
2 +

1

16
(1 + ...)

)]
(1 + 2α) + 2−2

PI
i=1 pi . (2.74)

with pi and qi as listed in Table 2.3. In Table 2.4, redundancy factors of the
transform are given with respect to the number of scales I and the parameter
α.

In Figure 2.28, shearlet basis functions are shown for different scales and
orientations. Even though the size of the support of these basis functions is
not finite, these functions have a fast decay and are well localized in space,
frequency and orientation.

As an example, we investigate the approximation quality of different mul-
tiresolution transforms. We start from a test image, apply a given wavelet
or shearlet transform to this image and we reconstruct the image from the
2.5% largest wavelet or shearlet coefficients (in magnitude). In Figure 2.29,
the results are given for the zone plate image and the barbara image, for the
decimated DWT, the undecimated DWT, the DT-CWT and the DST. We also
list the redundancy ratios for each transform in the figure, because this ratio

8Up to small deviations caused by the ceiling operation, but this is usually neglectible.
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number of α
scales I 1

32
1
8

1
2

1 2.19 2.56 4.06
2 2.66 3.13 5.00
3 2.67 3.14 5.03
4 2.67 3.15 5.03
5 2.67 3.15 5.03

Table 2.4: Redundancy factors for I scales, computed using (2.74).
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Figure 2.28: Shearlets basis elements for α = π

2
. For illustration purposes, we used

K1 = 16 (instead of 32) orientations for the first scale.

plays a big role here. The DWT is a shift variant transform, and the aliasing
creates disturbing artifacts in the end result. The undecimated DWT has the
largest number of coefficients retained in absolute terms, however, the basis
functions of this transform corresponding to the HHi subbands have a poor di-
rectional selectivity, which causes here the blurring of some of the edges. The
DT-CWT basis functions have an excellent spatial localization, but are only
able to distinguish 6 orientations, also causing a fair amount of blurring here
(see Figure 2.29(c)/(g)). The DST gives here the best visual result, mainly
because of its excellent directional selectivity and shift-invariance.

2.6 Conclusion

In this chapter, we presented a number of multiresolution representations for
images. The discrete wavelet transform (DWT) offers a multiresolution analy-
sis by successively approximating the original image with a coarser version of
this image, thereby extracting detail information. Unfortunately, there are a
number of fundamental problems with the DWT: most notably are shift vari-
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(a) DWT (1) (b) UDWT (7) (c) DT-CWT (4) (d) DST (4.06)

(e) DWT (1) (f) UDWT (7) (g) DT-CWT (4) (h) DST (4.06)

Figure 2.29: Reconstruction from 2.5% of the x -let coefficients, for (a),(e) DWT
with 2 scales, (b),(f) Undecimated DWT with 2 scales, (c),(g) DT-CWT with 2 scales,
(d),(h) DST with 1 scale (because of anisotropic dilation with factor 4). Top row :
crop out of the Barbara image, bottom row : crop out of the zone plate image. Between
parentheses is the redundancy factor of each transform in this experiment.

ance, aliasing and the poor representation of directional features in images,
such as edges. The dual-tree complex wavelet transform brings an appealing
solution here, however, in the current discrete implementation of the transform,
the analyticity properties of the complex basis functions for the first scale of
the transform are rather poor, which makes the first scale of the transform not
better than an undecimated version of the DWT. As a solution, we presented
a specific filter design technique for improving the first scale complex wavelet
filters, without affecting the subsequent scales. This gives a vast improvement
in directional selectivity properties, which is benificial for many applications.

Further, we explained the steerable pyramid transform, which offers a “steer-
able” or rotational invariant representation for images. Steerability properties
will be of use later, in Chapter 6 and Chapter 7. While the steerable pyra-
mid transform in its standard version, considers a fixed number of analysis
orientations per scale, in the shearlet transform, the number of orientations
doubles at every scale. This allows for an optimally sparse representation for
images containing edges with bounded curvatures. Furthermore, the shearlet
transform allows for a much less redundant sparse representation, compared
to its predecessors. To achieve this, we presented a novel discrete implemen-
tation of the shearlet transform that makes use of digital shearing operations
and subsequent “angular” decimation. The redundancy factor of the transform
thereby becomes independent of the number of analysis orientations and can
be as low as ∼ 2.66, while still offering shift invariance. This design makes
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the shearlet transform an effective candidate representation for many practical
image processing applications.

The contributions of this chapter so far have led to two publications in
proceedings of international conferences [Goossens et al., 2009b,Goossens et al.,
2009a]. One journal paper is in preparation [Goossens et al., 2010b].
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3
Statistical models for

images

Many digital imaging applications, such as image analysis, restoration and
compression, require a mathematical representation of images. For example,
to restore a degraded image, it is very useful to know how typical hypothetical
ideal images “look like”, i.e. which features they exhibit. This kind of infor-
mation can be encoded in the form of pre-knowledge in the application. Prior
knowledge can be obtained from a large class of images, by a learning process
where patterns and tendencies in images are being isolated and extracted. The
development of statistical models for images is then a result of the efforts to
explain patterns found in natural images.

To understand more about the statistics of images, we first make a few
observations:

• The class of natural images that we encounter in daily life is only a very
small subset of the set of all possible images. Some authors call this
subset a natural image manifold [Srivastava et al., 2003].

• All images, are not equally likely to occur. Digital imaging applications
can hence benefit by concentrating on classes of images that occur most
frequently.

Although the image formation can be seen a consequence of exact physical
processes corresponding with deterministic mathematical models (e.g. based
on geometry, material properties, lighting models, ...), working with these kind
of models is often overly complicated and not very practical.1 Instead, there
has been a lot of interest over several last decades in the statistical modeling
of images, where images are treated as the realization of a random process.
Statistical models are built to explain image variability that occurs in observed
images. Usually the models are designed to be practical in terms of computa-
tions.

1Moreover it becomes increasingly difficult to use these models for images containing
degradations, such as noise, blur, ...
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A first possible approach toward statistical image modeling is to isolate the
image manifolds (e.g. by using a multiresolution representation as introduced in
Chapter 2). Subsequently statistical properties are investigated and statistical
distributions (e.g. univariate Gaussian, generalized Laplace distributions) are
fitted to the manifold. Many wavelet-based techniques belong to this category
(e.g. [Chang et al., 1998,Portilla et al., 2003,Fadili and Boubchir, 2005,Pižurica
and Philips, 2006, Selesnick, 2008]), and some of them will be briefly outlined
later in this chapter.

Another approach is to impose a probability density function (PDF) to the
image space and to discover the manifold and to assign most of the mass of the
PDF to it [Srivastava et al., 2003]. To these class belong techniques such as
density estimation [Comaniciu and Meer, 2002], local linear embedding [Roweis
et al., 2002a], probabilistic PCA [Tipping and Bishop, 1999] and Markov Ran-
dom Field models [Geman and Geman, 1984,Li, 1995].

In this chapter, we will first review existing image decomposition schemes
(Section 3.1). In Section 3.2 we discuss a number of parametric densities for
modeling the marginal histograms of multiresolution transform subbands. In
Section 3.3, we will investigate the joint statistics of subband coefficients. Sta-
tistical models for intra-scale and inter-scale dependencies will be presented
in Section 3.4 and Section 3.5, respectively. In particular, we introduce our
new intra-scale model MP-GSM in Section 3.4.4 and we present our novel joint
inter/intra-scale model in Section 3.6. Finally, we discuss the use of non-local
image models in Section 3.7.

3.1 Decomposition of images

As a starting point, we consider the problem of decomposing an image in a
set of independent elements (or building blocks). In general, this problem is
very difficult because we have to deal with the high dimensionality of the data,
for example when computating joint histograms of images. To circumvent this
problem, additional assumptions are usually made.

3.1.1 Classical image model

In classical image analysis, the image is modeled as a second order statistical
process. This involves taking mean and correlations of the input image into
account. A restriction that is often made is to consider only linear decom-
positions. One solution to find uncorrelated components is given by principal
component analysis (PCA) [Hotelling, 1933,Anderson, 1963,Jolliffe, 1986], also
known as the Karhunen-Loèvre Transform (KLT). PCA computes the eigen-
vectors of the sample covariance matrix. The eigenvectors corresponding to
the largest eigenvalues are called principal components. These are a set of
orthogonal axes along which the components are decorrelated. In case the im-
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age statistics are Gaussian2, the PCA solution also gives components that are
statistically independent.

Often, an additional assumption is made that the statistical properties of
the image are translation invariant (also called spatial stationarity). For second
order processes this means that the correlation between two pixel intensities
in the image only depends on the difference between the positions, and not on
the absolute positions of the pixels. In that case, the sample covariance matrix
becomes circulant, and possible principal component axes are the basis vectors
of the Fourier transform. Let us denote by R(p,q) the autocorrelation func-
tion of a signal in the spatial domain, where p, q are two-dimensional vectors
representing the spatial position in the image. Then the correlation between
two pixel intensities depends only on the difference between their positions if:

R(p,q) = R(0,q − p). (3.1)

The power spectral density (PSD) describes how the energy (or variance) of an
image is distributed in frequency space and according to the Wiener−Khintchine
theorem [Baher, 2001], the PSD is obtained as Fourier transform of the auto-
correlation function R(0,q):

P (ω) =

ˆ

R2

R(0,q) exp
(
−jωTq

)
dq (3.2)

If the image statistics are Gaussian, images can be completely represented
by their Fourier coefficients, which are uncorrelated, and statistical models can
be build to allow for some randomization in the Fourier coefficients. A number
of studies have indicated that the PSD for natural images obeys a power law
property [Field, 1987,Srivastava et al., 2003] : the power decays as:

P (ω) ∝ 1

‖ω‖2−η (3.3)

where ‖ω‖ is the magnitude of the spatial frequency and η is a constant that
varies with the image type but that is usually small [Mumford and Gidas, 2001].
According to the power law, the spectra of images show highest amplitudes for
low frequencies and the amplitude decreases as the frequency increases. This
characteristic is very different from white noise, which has a flat spectrum
(P (ω) ∝ 1).

In Figure 3.1, the PSD is computed for a set of 12 standard test images.
Figure 3.1(a) shows iso-power contours of the average PSD over the images.
As a rough approximation, the PSD can be considered to be radially symmet-
ric, with a slightly higher power concentration near the frequency coordinate
axes. In Figure 3.1(b), the PSD of these images is shown after averaging over
all orientations. It can be seen that in all of these images, the power law is
applicable.

2Note that this assumption is too simplistic for most applications, as we will see in the
remainder of this chapter.
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In the past, researchers have searched for a plausible explanation for the
1/ω2 law and this has been topic of speculation and debate [Simoncelli and
Olshausen, 2001]. One of the most common beliefs is that it is due to the
scale invariance of the visual world [Ruderman, 1997, Zhu et al., 1997]. Scale
invariance means that the statistical properties do not depend on the scale at
which the observation was made. For example, let us compute the variance of
an image in a one octave frequency band [ω0, 2ω0]. The central band frequency
1.5ω0 determines the zoom factor at which the observation was made. The
variance in this band can be computed by integrating the PSD:

σ2 =

ˆ 2ω0

ω0

P (ω)dω =

ˆ 2

1

P (ω0ω)ω0dω (3.4)

Upon a constant factor, by the power law, (3.4) amounts to
´ 2

1 P (ω) dω. Hence
the variance does not depend on the center band frequency, or the zoom factor
at which the observation was made.

In addition, it is important to remark that the power law is applicable
for a whole ensemble of images, but not necessarily for one particular image
from this ensemble. For one particular image, (3.4) may not hold at all! On
the other hand, (3.4) indicates another useful property for designing subband
decomposition schemes: if subbands are used with a constant bandwidths in
logarithmic scale, the variance of the image in each subband will be roughly
equal [Field, 1987,Burton and Moorhead, 1987].

A second proposed explanation for the 1/ω2 law is that it is caused by the
presence of edges, which possess this frequency characteristic on their own. [Si-
moncelli and Olshausen, 2001]. Other authors have argued that the spatial
distribution of sizes of objects and distances between objects causes this phe-
nomenon [Ruderman, 1997,Lee and Mumford, 1999].

Although the PSD provides very useful “global” information about images, a
description of the frequency distribution alone is not sufficient for representing
various features in images, such as edges that are much more localized and
often exhibit fluctuating local time-frequency characteristics. In general, PCA
is found to be non-suitable for non-Gaussian random vectors (such as images),
as the computed components are not independent.

3.1.2 Probabilistic PCA

Because PCA only defines a linear projection under which the projection com-
ponents are uncorrelated, the applicability of PCA is somewhat limited [Tip-
ping and Bishop, 1999], not only for image modeling, but also in the general
context of data representation and visualisation. This lead to various schemes
for non-linear PCA, in an attempt to model the non-linear structure (mani-
fold) in which the data resides, such as Principal Curves [Hastie and Stuetzle,
1989], Generative Topographic Mapping [Bishop et al., 1998] and Locally Lin-
ear Embedding [Roweis et al., 2002a].
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Figure 3.1: (a) Iso-power contours of the PSD (averaged over 12 test images) (b)
Logarithmic plot of the (radial) PSD of 12 test images, obtained by radially averaging.
For clarity, the PSDs have been shifted vertically. The bold line indicates the power
law P (ω) ∝ 1/ ‖ω‖2−η , where η = 0.2.

An alternative to non-linear projections is the use of mixtures of local lin-
ear models. Locally, the data is then assumed to be well described by a linear
model (or a combination of a number of linear models), while globally, the
data is contained in a non-linear manifold. In [Tipping and Bishop, 1999],
probabilistic PCA (PPCA) is proposed for this task. PPCA is a latent vari-
able model that also has an associated likelihood function. A latent variable
model [Bartholomew, 1987] describes the set of observed data vectors xj in a
d-dimensional vector space W in terms of a set of q-dimensional latent (unob-
served) variables tj , according to:

xj = h(tj) + gj (3.5)

where h(·) is a function of random variable tj , and gj is a residual process,
independent of tj . In general, q < d, such that a lower dimensional description
of the observed image is obtained. These models are sometimes also called
generative [Tipping and Bishop, 1999], in the sense that a high-dimensional
vector yj can be obtained by mapping a low-dimensional vector tj to a higher
dimensional space, followed by adding a residual gj . For the task of image
modeling, one observation vector yj can (in principle) be either a complete
image (e.g. reshaped to a vector using raster scanning) or a fixed-sized patch
of an image.

The PPCA model introduced in [Tipping and Bishop, 1999] is a specific
latent variable model in which the residual is assumed to be Gaussian with
zero mean and (diagonal) covariance matrix σ2I, tj is Gaussian with mean m

and (diagonal) covariance Ct. Further, the function h(t) is linear:

h(t) = Vt (3.6)
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with V a d× q-projection matrix. To build a mixture model, we can allow for
multiple projection matrices for V, by introducing K hypotheses:





H1, if V = V1

H2, if V = V2

...
...

HK if V = VK

Each hypothesis Hk corresponds to one suitable projection Vk that will yield
uncorrelated components, i.e. if Hk holds for observation xj , the corresponding
low-dimensional vector xj will be uncorrelated. The model likelihood function
is fairly easy to compute. Let mk and Ct|k respectively denote the mean
and covariance matrix of t under hypothesis Hk.3 The conditional likelihood
function is then given by:

fx|H (x|Hk) = N
(
x;mk,VkCt|kV

T
k + σ2I

)
(3.7)

where N (x;m,C) is the Gaussian PDF (with mean m and covariance C),
evaluated in y. From (3.7), the likelihood function can be computed using the
law of total probability:

fx (x) =

K∑

k=1

fx|H (x|Hk) P (Hk) . (3.8)

The PPCA model contains a set of model parameters

Θ = {mk,Vk,Ct,k, σ,P (Hk) k = 1, ...,K} ,

which need to be trained either from the observed image itself, or from a train-
ing set of images. Because of the presence of unobserved, hidden variables, the
direct training by maximizing the likelihood function is difficult. Instead, the
expectation maximization (EM) algorithm [Dempster et al., 1977] is used. The
EM algorithm is a general method for finding the maximum likelihood (ML)
estimate of the model parameters Θ, when the data has missing values. The
EM algorithm iteratively updates the posterior probabilities of the unobserved
variables and the estimates of the model parameters. It can be shown [Tipping
and Bishop, 1999] that a straightforward (but not the most efficient) implemen-
tation of the EM algorithm for PPCA is very similar to the EM algorithms for
Gaussian mixtures, with one little modification that applies PCA to the activ-
ity4 weighted sample covariance matrices. The algorithm is briefly summarized
in Algorithm 3.1.

3For completeness, the description of PPCA in [Tipping and Bishop, 1999] is slightly
different from the description here, in the sense that non-orthogonal projection matrices V

are allowed such that Ct|k = I. The restriction to orthogonal projection matrices is without
loss of generality and will offer some advantages later in Section 3.4.4. In our description,

these “non-orthogonal” projection matrices are simply given by: VC
1/2
t|k

.
4Activities are posterior probabilities fH|x (Hk|x).



3.1 Decomposition of images 67

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

t
1

t 2

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

t
1

t 2

−40 −20 0 20 40
−30

−20

−10

0

10

20

30

t
1

t 2

(a) (b) (c)

Figure 3.2: Illustration of PPCA. (a) Scatter plot of two-dimensional data (neigh-
boring pixel intensities), (b) Isoprobability contours of a fitted bivariate Gaussian
PDF, (c) Isoprobability contours of the mixture components fy|k (y|k) for a fitted
PPCA model.

Remark that for q = d, the PPCA model specializes to a Gaussian Mixture
model.

In Figure 3.2, the PPCA model is trained on a two-dimensional data (ob-
tained by taking pairs of neighboring pixel intensities of an image as observation
vectors) in Figure 3.2(a). Figure 3.2(b-c) show isoprobability contours of re-
spectively a fitted Gaussian PDF and mixture components of the PPCA trained
model. It is clear that the isoprobability contours for PPCA better coincide
with the data than in case of a simple Gaussian PDF.

However, there are a few limitations of using PPCA:

1. The mixture model count K needs to be known in advance. “Greedy”
EM algorithms [Vlassis and A., 2002,Verbeek et al., 2003] offer a solution
here by starting with one mixture component and iteratively adding other
mixture components when a certain criterion is fulfilled).

2. The negative log-likelihood function (- log fx (x)) is non-convex. Conse-
quently, the solution found by the EM algorithm is not necessarily the
global optimum [Tipping and Bishop, 1999] and can depend on the chosen
initial parameter values.

In the remainder, we will use PPCA as a reference method for comparison. In
Section 3.4 we will further extend PPCA to mixtures of Gaussian Scale Mixture
models.

3.1.3 Analysis of images in independent components

Another alternative to PCA for decomposing images is independent compo-
nent analysis (ICA) [Bell and Sejnowsky, 1997]. ICA was originally introduced
to separate mixed audio signals, for example voice recordings of two speakers
that are talking simultaneously. Instead of directly decorrelating the compo-
nents (which is not guaranteed to yield statistical independence), ICA aims at
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Algorithm 3.1 A straightforward EM algorithm for PPCA (as implemented
in Netlab [Nabney, 2001]).

1. Initialization: choose initial values for the parameters Θ(1) ={
m

(1)
k ,V

(1)
k ,C

(1)
t,k , σ

(1),P(1) (Hk) k = 1, ...,K
}

2. Compute the posterior probabilities for iteration i + 1 (starting from
i = 1):

P
(
Hk

∣∣∣yj ,Θ(i+1)
)

=
fy|H,Θ

(
yj
∣∣Hk,Θ

(i)
)
P
(
Hk

∣∣Θ(i)
)

∑K
k=1 fy|H,Θ

(
yj
∣∣Hk,Θ(i)

)
P
(
Hk

∣∣Θ(i)
)

3. Update the model parameters:

P
(
Hk

∣∣∣Θ(i+1)
)

=
1

N

N∑

j=1

P
(
Hk

∣∣∣yj ,Θ(i)
)

m
(i+1)
k =

∑N
j=1 yjP

(
Hk

∣∣yj ,Θ(i)
)

∑N
j=1 P

(
Hk

∣∣yj ,Θ(i)
)

C
(i+1)
k =

∑N
j=1 yjy

T
j P
(
Hk

∣∣yj ,Θ(i)
)

∑N
j=1 P

(
Hk

∣∣yj ,Θ(i)
)

4. PPCA-step: the projection bases V
(i+1)
k are obtained as the eigenvectors

of C
(i+1)
k corresponding to the q most dominant eigenvalues (i.e. with

largest magnitude). Therefore, let C
(i+1)
k = V

(i+1)
k Λ(i+1)

(
V

(i+1)
k

)T
be

the SVD of the positive definite matrix C
(i+1)
k , where the eigenvalues (di-

agonal elements of Λ(i+1)) are sorted according to descending magnitude.
Subsequently,

(
σ2
)(i+1)

=
1

d− q

d∑

n=q+1

[Λ]nn

C
(i+1)
t,k =

(
V

(i+1)
k

)T
C

(i+1)
k V

(i+1)
k −

(
σ2
)(i+1)

I

5. Increase the iteration index i by 1 and go to step 2 until convergence
(e.g. when the increment of the loglikelihood function is smaller than a
predefined threshold).

maximizing the higher order statistical moments (e.g. kurtosis) of the com-
ponents. This typically results in components that have very non-Gaussian
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characteristics but that are (approximately) statistically independent. Because
of a relatively high computational cost of ICA algorithms, the analysis is usu-
ally performed on small patches of an image (e.g. 15 × 15). More specifically,
ICA decomposes an image patch into a sum

x =
K∑

k=1

xkuk, (3.9)

where uk denotes an ICA basis element and where xk, k = 1, ...,K are “inde-
pendent” components of x.

We remark that ICA on its own can not be regarded as a complete image
model: the superposition in (3.9) can for example not account for occlusion of
objects in images [Donoho and Flesia, 2001]. Nevertheless, the most important
result is that the ICA yields edge filters: the basis elements are spatially local-
ized, have a clear orientation and a band-pass frequency characteristic. Fur-
ther, the computed independent components are sparse, which is very useful
for many applications. Because the filters Zk found by ICA are by assumption
independent, the probability density function of the considered patch x can be
found by multiplying the marginal distributions of the filter responses:

fx (x) =
K∏

k=1

fxk
(xk) . (3.10)

However, in general, the independence assumption holds only approximately,
which makes this density model only an approximation.

As an illustration, we computed principal components from overlapping
patches of size 13 × 13 extracted from the Lena image (see Figure 3.3(a)).
In Figure 3.3(b), PPCA basis vectors are shown, for patches of size 7 × 7,
using 40 mixture components (K = 40) and with q = 1. Figure 3.3(c) shows
independent components obtained from the same image and using the same
patch size. To compute the independent components we used the Fast-ICA
algorithm [Hyvärinen, 1999] with PCA-based prewhitening enabled. It can be
seen that the PCA components resemble Fourier basis functions, while the ICA
components are edge filters that have much better localization and orientation
properties. We also computed the ICA basis elements optimized for a number
of images, where we made a distinction between texture-rich images (Barbara,
Baboon) and edge-rich images (Lena, Boats, Man). The results are shown in
Figure 3.3(c)-(d): for edge-rich images, the ICA basis elements are even more
dominantly edge filters, while for texture-rich images, the ICA basis elements
are edge filters that are shifted and superposed on top of each other.

Applying ICA results in band-pass subbands with a non-Gaussian behavior.
To test this, we carefully selected a PCA basis element, an ICA basis element
and a shearlet basis element (see Chapter 2), such that the three filters have
“similar” orientation and frequency characteristics. Next, we computed sub-
band coefficients by applying the filters to the input image. As a measure of
the non-Gaussianity, we use the sample kurtosis [Donoho and Flesia, 2001].
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(a) (b)

(c)

(d) (e)

Figure 3.3: Basis elements computed using (a) PCA (Lena image), (b) PPCA (Lena
image), (c) ICA (Lena image), (d) ICA (2 texture-rich images), (e) ICA (3 edge-rich
images).

We computed the histogram and the kurtosis of the subband coefficients. The
results are shown in Figure 3.4: for ICA, the kurtosis is the highest (38.21). In
contrast to ICA, shearlet filters are image-independent and not optimized to
the image structures, the kurtosis of the shearlet filtered subbands is also quite
high (34.66). Finally, PCA also gives kurtotic filter responses, but the kurtosis
is significantly lower (9.62). This provides evidence that the shearlet trans-
form, while being image-independent, does allow to reveal the non-Gaussian
structure in the images, in a similar way as ICA.

Although projections on ICA components give very sparse subbands, the
redundancy (or the number of subband coefficients) is relatively high and de-
pends on the number of ICA components chosen (which is typically the number
of pixels in a patch). Also, ICA does not provide a means to estimate the actual
number of independent components in advance.
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Figure 3.4: Illustration of the non-Gaussianity of band-pass filtered images. (a)
Basis elements, (b) Filter responses, (c) Histogram of the filter responses from (b).

3.1.4 Related techniques

Next to ICA, several other authors investigated the construction of “optimal”
bases by maximizing measures that depend on the higher order statistical mo-
ments. Examples of such measures are “Minimum Entropy” coding [Banham
et al., 1994], which maximizes the sparsity of the filter responses. This has
also led to projection pursuit, best orthogonal basis, matching pursuit and ba-
sis pursuit techniques. Projection pursuit [Friedman, 1987] iteratively searches
for projections that lead to projection coefficients with a highly non-Gaussian
behavior. When such a projection is found, the dimensionality of the image
is reduced by removing the component along that projection. Matching pur-
suit [Mallat and Zhang, 1993] is a greedy solution technique for finding the
best matching projections out of an overcomplete dictionary. Best orthogonal
basis [Coifman and Wickerhauser, 1992] adaptively picks a single orthogonal
basis that is the “best basis” out of many bases, thereby yielding near-optimal
sparsity representations. Basis pursuit [Chen et al., 1998] decomposes an image
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into an “optimal” superposition of basis elements, optimal in the sense that the
L1-norm of the resulting coefficients is minimized.

Also related to ICA are sparse coding techniques inspired by the visual
cortex (V1). In [Olshausen and Field, 1996, Olshausen and Field, 1997], a
linear generative model is used, in which each patch is modeled in terms of a
linear sum of basis functions, in such a way that for every patch, either only a
few basis functions have non-zero weight in the sum (sparsity). These sparse
coding objective are very related to non-Gaussianity criterion used in ICA.

Most of the above techniques focus on image patches, but not on statistics of
the whole image. Therefore, [Sallee and Olshausen, 2003] propose a probability
density function for the whole image. This prior consists of a mixture of a
Gaussian distribution and a Dirac delta function. The model parameters are
computed using Gibbs sampler techniques [Li, 1995]. The obtained basis is very
similar to the steerable pyramid basis (see Chapter 2), which also indicates that
image-independent bases often yield sparse representations. [Elad and Aharon,
2006a, Elad and Aharon, 2006b] train a dictionary based from an observed
image, such that the dictionary yields a sparse representation for that image.
This leads to a prior distribution for the whole image that enforces sparsity for
overlapping small patches in the image.

To overcome some of the limitations of the ICA probability density model
in (3.10), products of experts (PoE) [Hinton, 1999] have been used for modeling
image patches in [Teh et al., 2003]. PoE is a special case of fields of experts
(FoE) [Roth and Black, 2009] and models the high-dimensional PDF fx (x) as
products of several “expert” distribution, where each expert works on a low
dimensional subspace that is much easier to model. Usually, one-dimensional
subspaces are used (similar to the sparse coding models). The projection onto
this subspace is performed using a linear filter, as in ICA approaches. [Teh
et al., 2003] proposes to model the highly kurtotic data in these one-dimensional
subspaces using a Student-t distribution. Similar to [Olshausen and Field,
1997], PoE allows for an overcomplete representation.

3.2 Parametric densities

Classical techniques (such as PCA), do not work well in practice because these
methods assume that images are secondary order statistical processes. In par-
allel to the development of ICA-type techniques discussed in the previous sec-
tion, researchers studied the higher order statistics of images and this led to
some interesting results. Studies from [Field, 1987, Mallat, 1989a] were one
of the first to point out the highly kurtotic shape of the histograms of band-
pass filtered images. [Mallat, 1989a] proposed the generalized Laplacian dis-
tribution for modeling these highly kurtotic histograms. The non-Gaussian
behavior has been investigated further by [Simoncelli and Adelson, 1996, Si-
moncelli, 1999], [Moulin and Liu, 1999], [Chang et al., 1998], [Srivastava et al.,
2002], [Fadili and Boubchir, 2005] and [Boubchir, 2007]. Additionally, joint
statistics of filter responses have been studied: the presence of local structures
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such as edges and textures results in correlations between band-pass coeffi-
cients. Joint histograms of wavelet coefficients reveal dependencies across po-
sition, scales and even orientations. Shapiro exploited these dependencies for
compression [Shapiro, 1993], with remarkable results. [Simoncelli, 1999] found
that joint histograms often show correlations between the amplitudes of the
band-pass filter responses, even when their signed responses are uncorrelated.
Inside local neighborhoods of band-pass coefficients, joint histograms are typi-
cally ellipsoidal [Portilla et al., 2003].

In this section, we review several of parametric densities that have proven
to be useful for modeling band-pass coefficients in various sparse representa-
tions (such as ICA, wavelets, shearlets...). We make a distinction between uni-
variate densities and multivariate densities. For univariate densities, wavelet
coefficients are assumed to be statistically independent and identically distrib-
uted. That means that each wavelet coefficient is treated as being drawn from
a given (known) univariate distribution. Often the parameters of this distribu-
tion are estimated empirically from the complete set of wavelet coefficients for
that particular subband.

In case of multivariate densities, a neighborhood of a given size is defined
around every wavelet coefficient. Typically, squared neighborhoods of a rather
small size (e.g. 3 × 3 or 5 × 5) are being used. The neighborhoods are over-
lapping. Next, every neighborhood can be represented by a vector (e.g. using
column-stacking) that follows a multivariate density. The assumptions made
are typically the same as in the case of univariate densities. Here individual
neighborhoods are ussumed to be mutually independent, despite the overlap.
This is mostly to keep the computations tractable and to keep the resulting
algorithms practical, although recently it has been shown that modeling depen-
dencies across neighborhoods (e.g. by Markov random field type approaches)
can increase the performance of the model in e.g. denoising [Lyu and Simon-
celli, 2008].

Besides the local spatial neighborhood, it is also possible to include wavelet
coefficients from other scales and/or orientations: for example, in [Portilla
et al., 2003] better denoising results were obtained in some cases by including
the parent wavelet coefficient (in the wavelet tree) to the local neighborhood.
Later (in Section 3.3) we will investigate which information to include in the
spatial neighborhood, in the remainder of this section, we will concentrate on
the involved parametric densities.

3.2.1 Generalized Laplace distribution

For natural images, the marginal histograms of wavelet coefficients (as shown in
Figure 3.4(c)) typically have a long tail and a sharp peak at 0. Several authors
proposed to use a generalized Laplace distribution (also known as generalized
Gaussian distribution, GGD) to model this behavior [Mallat, 1989b,Antonini
et al., 1992, Simoncelli and Adelson, 1996,Chang et al., 1998,Moulin and Liu,
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1999,Pižurica and Philips, 2006]:

fx (x) =
ν

2sΓ (1/ν)
exp

(
−
∣∣∣x
s

∣∣∣
ν)

(3.11)

where Γ (x) =
´ +∞
0

tx−1e−tdt is the Gamma function. The parameter s is a
scale parameter that is related to the variance of the GGD, which is given by

σ2 = s2
Γ (3/ν)

Γ (1/ν)
. (3.12)

The parameter ν is a shape parameter of the GGD, which controls the kurtosis
of the distribution. More specifically, the kurtosis is given by:

κ =
Γ (5/ν) Γ (1/ν)

Γ (3/s)
2 − 3. (3.13)

For the specific case ν = 1, a Laplace distribution (also called double exponential
distribution) is obtained. For ν = 2, (3.11) amounts to a Gaussian distribution.
For wavelet, shearlet or STP coefficients, ν is typically in the range [0.5, 1] and
increasing with the support size of the basis functions, i.e. lower frequency
subbands tend to have higher ν. The parameters are usually estimated by the
method of moments (i.e. by replacing the variance σ2 and kurtosis κ in (3.12)
and (3.13) by respectively the sample variance and sample kurtosis estimated
from the observed wavelet subbands).

3.2.2 Weighted mixtures of two distributions

An alternative to (generalized) Laplacian distributions are mixtures of two
distributions, where one distribution models the “significant” coefficients (i.e.
coefficients with a large magnitude) and where the other distribution models
the “non-significant” coefficients (i.e. coefficients with a small magnitude) [Vi-
dakovic, 1998b,Leporini et al., 1999,Abramovich et al., 1998,Chipman et al.,
1997,Clyde et al., 1998,Crouse et al., 1998,Romberg et al., 2001b,?, Pižurica
et al., 2002,Pižurica and Philips, 2006,Pižurica and Philips, 2007,Shi and Se-
lesnick, 2006]. A Bernoulli (hidden) random variable is used as the mixing
parameter. Examples are:

• Mixtures of a Gaussian distribution and a point mass at zero [Abramovich
et al., 1998,Clyde et al., 1998].

• Mixtures of two Gaussian distributions [Crouse et al., 1998, Romberg
et al., 2001b, ?] (see Figure 3.5(a)).

• Mixtures of two (truncated) Laplace distributions [Pižurica et al., 2002,
Pižurica and Philips, 2006,Pižurica and Philips, 2007] (see Figure 3.5(b)).

The merit of mixture distributions is that the probability density functions of
the mixture components can be relatively simple, which facilitates statistical
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Figure 3.5: Weighted mixture models of two distributions (a) Mixture of Gaussians
(b) Mixture of two truncated Laplace distributions.

estimation techniques (e.g. denoising) and makes the computations analytically
tractable. Further, the mixing variable can be used to model interdependen-
cies between coefficients. Let H0 and H1 denote the hypotheses that a given
coefficient is respectively “non-significant” and “significant”, then the model
likelihood function can be written as:

fx (x) = P (H0) fx|H (x|H0) + P (H1) fx|H (x|H1) ,

where the conditional densities fx|H (x|Hk) are chosen as listed above. The
mixture model depends on the prior probabilities P (H0) and P (H1). When
the mixture model is used to model coefficients within the same subband, prior
probabilities are normally estimated per subband [Chipman et al., 1997]. Tech-
niques that exploit dependencies between coefficients, estimate P (H0) and
P (H1) adaptively per coefficient, in a Hidden markov tree framework (for
taking into account interscale dependencies, see further in Section 3.5), in a
Markov Random Field (MRF) model (to model intrascale dependencies, see
Section 3.4.1), or by conditioning the hypothesis to a local spatial activity
indicator (see further in Section 3.4.2).

3.2.3 Elliptically symmetric distributions

A number of recent statistical studies (e.g. [Chang et al., 2000a], [Portilla et al.,
2003]) have shown that distributions of noise-free wavelet coefficients are typi-
cally symmetric around the mode, have a highly kurtotic non-Gaussian behav-
ior and exhibit strong correlations, especially in areas with edges and textures.
For many natural images, the histograms of the wavelet coefficients reveal el-
liptical contours, which suggests the use of the elliptically symmetric family
for modeling this behavior. The family of elliptically symmetric distributions
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(a) (b)

Figure 3.6: The multivariate exponential power (EPD) distribution (a) ν = 0.5, (b)
ν = 10.

is defined by the following class of densities [Kotz and Kozubowski, 2001]:

fX(x) = kd|Cx|−1/2g
(∣∣(x − m)TC−1

x (x − m)
∣∣1/2

)
(3.14)

where m is the mean of the distribution, g(u) is a one dimensional real-valued
function (called density generator function), d is the number of dimensions of
x and kd is a proportionality constant.

An example is the multivariate extension of the generalized Laplace distri-
bution (usually known and referred to as the multivariate exponential power
distribution, EPD) [Gómez et al., 1998,Kotz et al., 2000], which has the folow-
ing density generator function:

g(x) = exp (− |x|ν) .

where ν is a shape parameter. The EPD density function is depicted in Figure
3.6 for both leptokurtic and platykurtic shapes. However, there are a few
issues related to the multivariate EPD when modeling neighborhoods of wavelet
coefficients:

• When a random vector has an EPD, its marginal distributions do gen-
erally not belong to the EPD class (except for the case of a Gaussian
distribution, ν = 2).

• The distribution often leads to expressions that are analytically intractable.
An example is the MAP or MMSE estimator for an EPD random variable
corrupted with Gaussian noise.

Fortunately, the Bessel K Form (BKF) has similar properties as the GGD/EPD
and does not suffer from these problems. The BKF distribution belongs to the
class of the Gaussian Scale Mixtures, which will be discussed next.
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3.2.4 Gaussian Scale Mixtures

Wainwright and Simoncelli [Wainwright and Simoncelli, 2000] used the prop-
erty that when the band-pass filter responses are normalized by dividing by the
square root of their local variance, the statistics of the normalized coefficients
are approximately Gaussian. For this reason, the Gaussian Scale Mixtures
(GSM) was proposed, to account for second order statistics and for the vari-
ability in the local variance of the wavelet coefficients.

A random variable x conforms to a GSM model [Andrews and Mallows,
1974] if it can be written as the product of a zero mean Gaussian random
vector u (with covariance Cu) and a scalar random variable z1/2 where z ≥ 0:

x
d
= z1/2u (3.15)

where d
= denotes equality in distribution. The scalar random variable z is often

called ’hidden’ multiplier (or mixing variable) because it is not observed. Given
that the expected value of z exists, the covariance matrix of x is related to the
covariance matrix Cu by

Cx = E [z]Cu. (3.16)

To avoid scaling ambiguity between u and z, the convention E [z] = 1 is often
used such that Cx = Cu. Prior distributions fz(z) for the hidden variable
z include Jeffrey’s non-informative prior [Portilla et al., 2003], the log-normal
prior [Portilla and Simoncelli, 2001], the exponential distribution [Selesnick,
2006] and the Gamma distribution (see e.g. [Srivastava et al., 2002,Fadili and
Boubchir, 2005]).

Like the EPD, the GSM also belongs to the family of elliptically symmetric
distributions, where the density generator function is in this case given by:

g(x) =

ˆ +∞

0

fz (z) z−
d
2 exp

(
− 1

2z
x2

)
dz (3.17)

where a marginalization takes place over the hidden multiplier. In some specific
cases, a closed form expression can be found for g(x), although most often, the
integration is performed numerically over a closed interval. To have the best
approximation with the fewest count of integration points possible, integration
points for z are chosen to be linear in a logarithmic scale, i.e. zk ∝ exp(ak)
with a a constant [Portilla et al., 2003].

Recently, it has been shown that the multivariate exponential power distri-
bution is also a Gaussian Scale Mixture distribution [Gómez et al., 2008], for
some values of the shape parameter ν ∈ ]0, 1], i.e. if the kurtosis of the dis-
tribution is higher than the kurtosis of the Laplace distribution. However, the
distribution of the hidden multiplier depends on d and has a rather complicated
analytical expression (see [Gómez et al., 2008]).

The hidden multiplier z can also be estimated directly from the data, e.g.
using a maximum likelihood estimate [Wainwright and Simoncelli, 2000]:

ẑ = xTC−1
u xT /d, (3.18)
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Figure 3.7: Illustration of the hidden multiplier z, estimated from a shearlet subband
using (3.18). (a) Window image, (b) Shearlet subband, (c) Logarithm of the estimated
local variance (log ẑ). Black corresponds to a high local variance, white to low local
variance. (d) Normalized shearlet subbands x/

√
ẑ, (e) Histogram of (d) and fitted

Gaussian distribution (thick line).

which is basically a measure for the local variance of the data x. In Figure
3.7(b), a shearlet subband of the window image (Figure 3.7(a)) is depicted,
together with its estimated local variance (Figure 3.7(c)). In this example, a
3 × 3 neighborhood was used.

3.2.5 Bessel K Form density

An alternative to the multivariate EPD is the Bessel K Form (BKF) prior [Kotz
and Kozubowski, 2001,Srivastava et al., 2002,Fadili and Boubchir, 2005], which
is again an elliptically distributed distribution with density generator:

g(u) =
(u

2

) τ
2 − d

4

Kτ−d/2(
√

2u), and kd =
2(2π)−d/2

Γ(τ)
(3.19)

where Ki(u) is the modified Bessel function of the second kind and order i
(see [Kotz and Kozubowski, 2001]) and Γ(τ) =

´∞
0
zτ−1e−zdz is the Gamma

function. In [Srivastava et al., 2002], it has been shown that the marginals
of this distribution fit well with the observed histograms for a wide variety of
images. The BKF distribution is also a specific case of the GSM, in which the
hidden multiplier has a Gamma distribution:

fZ(z) =
1

Γ(τ)
zτ−1e−z. (3.20)
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Figure 3.8: The univariate Bessel K form density, for different values of τ . Special
value τ = 1 gives the symmetric Laplace distribution, for τ → +∞ the Bessel K form
approaches the Gaussian density. Values τ < 1 result in a high kurtosis (sharp peak).

The use of the BKF density is attractive because it generalizes both the
multivariate Laplace distribution (for τ = 1 and z is exponentially distributed
[Kotz and Kozubowski, 2001, Selesnick, 2006]) and the Gaussian distribution
(For τ → ∞ [Kotz and Kozubowski, 2001]), just as the EPD. In contrast to the
EPD, conditional density functions of x are also BKF distributed. For practical
applications, the BKF is computationally and analytically much more tractable
because it consists of a mixture of Gaussian distributions. We also note that
the Bessel K Form corresponds to the symmetrized Gamma family proposed
in [Wainwright and Simoncelli, 2000]. The kurtosis is given by κ = 3 + 3/τ ,
thus for small positive τ , we obtain a highly leptokurtic prior. Furthermore, the
parameter τ depends on the frequency of occurrence (or sparsity) of particular
features in the image, like edges, bands, textures [Srivastava et al., 2002]. In
Fig. 3.8 the univariate marginals of the Bessel K Form density are plotted for
different values of τ .

Compared to GSM distributions with other hidden multiplier priors (log-
normal, Jeffrey and exponential), the BKF is the only one that offers explicit
control of the kurtosis, which is advantageous when modeling wavelet subbands
of natural images (see [Srivastava et al., 2002]). The parameter τ is usually es-
timated through the method of Matching Cumulants (see [Fadili and Boubchir,
2005]), however, we remark that the maximum likelihood estimate (obtained
through an EM algorithm, see [Boubchir, 2007, p. 85]) is often more accurate.

In [Fadili and Boubchir, 2005] the Bessel K Form prior is compared to the
α-stable prior and Generalized Gaussian Distribution in modeling observed
histograms by means of the Kullback-Leibler divergence (KLD). The authors
conclude that the Bessel K prior performs at least as well as the GGD for
modeling the statistics of wavelet coefficients of a test set of natural images.
In Figure 3.9 we performed a similar experiment for modeling shearlet coeffi-
cients. It can be seen that the GGD and BKF density fits are considerably
better in modeling the highly kurtotic behavior of the shearlet coefficients than
the Laplace density fit. The Kullback-Leibner divergences for the GGD are
respectively: 0.1008, 0.0960, 0.0269 while for the BKF density: 0.0866, 0.1086,
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Figure 3.9: Different empirical marginal histograms of shearlet coefficients (for one
image) with fitted distributions. A logarithmic scale is used for the y-axis.

0.0450. Hence the GGD is marginally better in terms of KLD than BKF for
these examples, although we found that this is generally image-dependent.

3.2.6 Other densities

Some authors have used a number of related probability density functions
for modeling subband coefficients. Examples are: the Student-T distribution
[Tzikas et al., 2007], Alpha-stable distributions [Nikias and Shao, 1995,Achim
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et al., 2001b] and the Cauchy distribution [Rabbani et al., 2006]. All these
heavy tailed distributions have a Gaussian Scale Mixture representation, hence
studying general GSMs automatically covers all of these distributions. Further,
a complex extension of the Gaussian Scale Mixture density has been proposed
for modeling complex-valued wavelet coefficients in [Vo et al., 2007]. This com-
plex GSM distribution is a special case of the GSM distribution, with a special
condition imposed to the covariance matrix of the distribution.

3.3 Joint statistics of subband coefficients

In general, multiresolution representations do not fully decorrelate the signal,
and noise-free coefficients often exhibit strong local correlations. To illustrate
this, we applied a dyadic shearlet transform with two scales and four orienta-
tions to an image of two squirrels (Figure 3.10, left image of the bottom row).
Next, we computed the joint histograms of shearlet coefficients:

1. within the same scale (called intra-scale histograms),

2. between adjacent scales (called inter-scale histograms) and

3. between adjacent orientations (called inter-orientation histograms).

The results are shown in Figure 3.10. The first row shows the basis elements
for the second scale of the used shearlet transform, to indicate the analysis ori-
entation. The second row (Figure 3.10(a)-(d)) shows equiprobability contours
of the joint histogram of neighboring shearlet coefficients within the same sub-
band, horizontally next to each other. It can be seen that the joint histograms
reveal approximately elliptical contours, which can be well modeled using el-
liptically symmetric densities as explained in Section 3.2. Also, the correlation
is maximal (in absolute sense) in the direction orthogonal to the filter direction
(see Figure 3.10(d)). The third row (Figure 3.10(e)-(h)) shows equiprobabil-
ity contours for the joint histogram between coefficients residing in adjacent
scales. Here, elliptical symmetry is only present up to a certain degree: in gen-
eral the correlations seem to be much more complex and cannot be described
well by elliptically symmetric densities. Figure 3.10(j)-(l) illustrates the joint
histograms for shearlet coefficients that belong to different orientation bands :
the equiprobability contours are rhombus-shaped. This phenomenon can be
explained by the fact that natural images contain many oriented edges. Sup-
pose that at a given position in the image we find an edge with angle 45°,
then the shearlet subbands with orientation 45° will reveal a high amplitude at
that position, while in the other orientation subbands, the shearlet coefficient
amplitude at the same position will be very low.

Several authors have pointed out that by exploiting dependencies between
these coefficients, improvements can be achieved in various applications, such
as denoising [Chang et al., 2000a, Şendur and Selesnick, 2002a,Portilla et al.,
2003,Crouse et al., 1998] and compression [Shapiro, 1993]. One way to deal with
these dependencies, is to model the joint statistics using multivariate densities
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Table 3.1: Correlation coefficients for shearlet coefficients
Type of correlation Lena Barbara Peppers Man House

Inter-scale correlation 0.60 0.67 0.49 0.58 0.59
Inter-orientation correlation 0.23 0.23 0.18 0.24 0.23

Intra-subband 0.81 0.83 0.79 0.79 0.83

that are presented above. Despite the fact that elliptically symmetrical densi-
ties offer many benefits, most empirical joint histograms in Figure 3.10 do not
have elliptical iso-probability contours. To model these joint histograms, one
needs to use probability densities with more parameters to estimate. However,
when the number of parameters becomes too large, the estimation from one
observed image becomes unreliable. Hence we need to strike a balance between
the number of model parameters and the number of exploited dependencies and
we need to find out which dependencies are stronger than others. For this task,
we performed a simple experiment using the shearlet transform, similar to the
experiment in [Tessens et al., 2008] for the curvelet transform. First we trans-
formed a number of images to the shearlet domain. Next, we computed the
average correlation coefficients between shearlet coefficients residing in differ-
ent subbands and within the same neighborhood (intra-subband). The results
are shown in Table 3.1. For computing the inter-scale and inter-orientation
correlation coefficients, we used an undecimated shearlet transform (obtained
by skipping the decimation steps of the transform). The intra-subband corre-
lation was computed between neighboring shearlet coefficients, in the direction
orthogonal to the filtering direction (this is the direction in which the corre-
lations are maximal) and for a decimated shearlet transform (to reduce the
amount of correlations introduced by the transform itself). Although correla-
tion coefficients cannot fully capture all dependencies, the table gives a good
idea of which dependencies are the most relevant.

3.4 Models for intra-scale correlations

3.4.1 Markov Random Field models

In [Malfait and Roose, 1997, Jansen and Bultheel, 1999,Pižurica et al., 2002],
Markov Random Field (MRF) models are developed for wavelet-domain image
denoising. These models encode the “geometry” of subbands by giving pref-
erence to spatially connected configurations of significant wavelet coefficients.
Similar to weighted mixtures of Gaussians (Section 3.2.2), a hidden variable
kj ∈ {0, 1} is attached to each coefficient xj (or node from V ), where again
kj = 1 denotes that the coefficient is “significant” and kj = 0 denotes the oppo-
site. The vector of binary labels k = [k1 · · · kN ] for a given subband, consisting
of N -coefficients, is called a mask. Each mask is assumed to be a realization
of a Markov Random Field k. A set of neighboring pixels in a predefined con-
figuration is called a clique. Let C denote the set of all considered cliques, then
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Figure 3.10: Equiprobability contours of the joint histograms of shearlet coefficients.

by the Hammersley-Clifford theorem [Moussouris, 1974], the joint probability
of x is given by the Gibbs distribution:

fx (x) =
1

A
exp

(
− 1

T

∑

C∈C
VC (x)

)
, (3.21)

where A is a probability density normalization constant, T is called “tempera-
ture” constant and VC (x) is a clique potential function. The clique potential
function is defined to give preference to certain local spatial dependencies. In
many cases, the cliques are chosen a priori by hand, according to some regular
neighborhood structure [Roth and Black, 2009]. Often, pairwise cliques are
chosen, in which each label is connected to one of its four direct neighbors to
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the left, top, right and bottom. This is then called a pairwise MRF model
(the maximal cliques are pairs of neighboring labels). Further, a MRF model is
called homogeneous if the clique potential functions are invariant to the spatial
position (hence yielding a shift-invariant representation). Isotropic MRF mod-
els (e.g. [Malfait and Roose, 1997]) treat all spatial directions equally, while
anisotropic MRF models [Pižurica et al., 2002] are slightly more complex, but
are generally better in modeling directional features, such as edges. Another
interesting case of a MRF model is a Gaussian MRF [Chellappa, 1985]:

x ∼ N (0,C) (3.22)

where elements of the precision matrix C−1 are zero (
[
C−1

]
j,j′

= 0) if the
pixels at positions j, j′ are unconnected.

Using Markov Random Fields, it is often desirable to compute the posterior
probabilities that a given coefficient xj is either significant or non-significant:

P (kj = 1|x) =

ˆ

k∈[0,1]N :kj=1

P (k|x) dk

=

´

k∈[0,1]N :kj=1
fx|k (x|k) P (k) dk

P (x)
(3.23)

and an equivalent expression can be written for P (kj = 0|x). This process
is called Bayesian inference, however, the exact computation of P (kj |x) is
intractable, because as (3.23) shows, it requires the summation over all possi-
ble configurations k. In practice, the summation therefore takes place over a
set of “important” configurations [Pižurica and Philips, 2003], which is called
importance sampling. In [Malfait and Roose, 1997,Pižurica et al., 2002], the
Metropolis sampler is used for this task.

Recently, the Fields of Gaussian Scale Mixtures (FoGSM) model has been
proposed in [Lyu and Simoncelli, 2008]. In FoGSM, the coefficient subbands
are modeled as the product of a homogeneous Gaussian MRF (hGMRF) and a
second independent positive-valued MRF. The former MRF models the second-
order statistics of the coefficients, while the latter captures the variability of the
local variance. Individual coefficients of the FoGSM model are marginally GSM
distributed, while the global MRF structure generates dependencies across lo-
cal neighborhoods (where GSM models typically assume that different local
neighborhoods are statistically independent). Unfortunately, by the homogen-
ity assumptions, FoGSM is not able to capture long-distance interactions that
are present in images around captures and in textures. Nevertheless, the
FoGSM model gives a denoising performance comparable to state-of-the-art
approaches [Lyu and Simoncelli, 2008].

The Fields of Experts (FoE) model [Roth and Black, 2009] is a higher-
order MRF model that uses clique potentials that represent products of experts
(see Section 3.1.4). All parameters, including the filters of the PoE model,
are trained from the observed images. The FoE model is, compared to other
MRF models, directly applicable to many image processing problems, such as
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denoising, impainting. The drawback is that this inference in this higher-order
MRF model is considerably more difficult than for more simple MRF models,
for this reason only small clique sizes have been used so far.

3.4.2 Local spatial activity indicators

In [Pižurica and Philips, 2006], it is proposed to estimate the probability that
a given coefficient is significant given its value and knowing the marginal dis-
tribution of the noise-free coefficients. This probability was used in a denoising
application, as a suppression factor for the wavelet coefficients in the Prob-
Shrink estimator. A locally adaptive version of this approach was also intro-
duced in [Pižurica and Philips, 2006] which attempts at making use of spatial
correlations that exist between the coefficients within the same subband. The
marginal distribution is a weighted mixture of truncated Laplace distributions
(see Section 3.2.2) that are conditioned on a local spatial activity indicator vj :

fx (xj) =

ˆ +∞

0

fx|v (xj |vj) fv (vj) dv with

fx|v (xj |vj) = P (H0|vj) fx|v,H (xj |vj , H0) + P (H1|vj) fx|v,H (xj |vj , H1) ,

where the Local Spatial Activity Indicator (LSAI) vj is computed as the locally
averaged coefficient magnitude.

The rationale behind this approach is: if a wavelet coefficient is large (small)
in magnitude then the majority of the neighboring coefficients within a local
window is also likely to be large (small) because true image discontinuities
typically result in spatially clustered wavelet coefficients. To illustrate this ra-
tionale, we computed equiprobability contours of the joint histogram (averaged
over 7 test images) of a shearlet coefficient and its LSAI, for two different win-
dow sizes (see Figure 3.11). According to the rationale, the equiprobability
contours need to be radial lines, with both positive and negative slopes, that
pass through the origin x = v = 0. From the figure, it can be seen that this is
satisfied to some extent. Furthermore, for a fixed value of v, the coefficient x
is approximately equally likely to be in the range [−v, v].

3.4.3 Mixtures of Gaussian Scale Mixtures

A recent extension to the GSM model for modeling spatial correlations, are
Mixtures of GSMs [Guerrero-Colón et al., 2008b]. First, consider a square√
d ×

√
d local (overlapping) neighborhoods of coefficients residing within the

same subband (where
√
d is integer). Each of these neighborhoods can be seen

as a realization of a d-dimensional random vector x. The covariance matrix Cx

of this vector has size d× d, the matrix is symmetrical and contains d(d+ 1)/2
independent parameters. We further denote by

R(p,q) = (Cx)p,q (3.24)
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Figure 3.11: Equiprobability contours of the joint histogram of a coefficient x and
its LSAI v for (a) 3× 3-neighborhood, (b) 7× 7-neighborhood. The lines x = ±v are
also shown (straight lines).

the covariance between the components corresponding to the positions p =
[p1, p2] ∈ [0,

√
d − 1]2 and q = [q1, q2] ∈ [0,

√
d − 1]2 of the local window, i.e.,

the element at row (p1 +
√
dp2 + 1) and column (q1 +

√
dq2 + 1) of Cy. Here

pi and qi are the ith component of respectively p and q. When either p or
q are outside the local window, we assume that the corresponding covariance
R(p,q) = 0, thus we only consider correlations between coefficients inside the
local window.

When assuming spatial stationarity of the observed wavelet coefficients, the
covariance two coefficients at positions p and q only depends on the difference
in location between both positions (see Section 3.1):

(Cx)p,q = R(p,q) = R(0,q − p). (3.25)

In Figure 3.12, the autocorrelation function is shown for the high-pass bands of
the shearlet transform of the House test image. In Figure 3.12 we notice that
the spatial correlations are typically the strongest in the directions orthogonal
to the filter direction.

These second order statistics can be taken into account by modeling x using
elliptically symmetric distributions, such as the GSM (Section 3.2.4). The
traditional GSM model, as employed in [Portilla et al., 2003], assumes that the
signal covariance matrix is constant within each subband. Ideally, this would
mean that if we would divide the subband into different regions, the covariance
matrix of the coefficients in every region would be approximately5 the same, up
to a constant scaling factor. Despite the fact that this holds for large ensembles
of images, it turns out that for individual images this is not always the case and

5Due to estimation errors.
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Figure 3.12: High-pass shearlet subbands bands of the House image, for the different
orientations. Below each band is the autocorrelation function R(0,p) for that band
cropped to an 21 × 21 window (black corresponds to large correlation magnitudes,
white to small correlations).

that the subband statistics may vary with the spatial position. An example
is given in Figure 3.13 for the zebra-texture: even though we would expect
that the statistics in different regions of the image would be the same (due
to the self-similarity in this texture), this is not true at all! It can be even
noted that in the third part of the image, the equiprobability contours are not
even elliptical6. In this example, the variability of the covariance matrix can
be explained by the fact that the correlation between neighboring coefficients
depends on the orientation of the present edges in the given region. Non-
elliptical equiprobability contours arise when the given region contains edges
with different orientations (in this case +45° and −45°).7 A poor directional
selectivity is not the only cause of spatial variability of the covariance matrix:

6Because this effect can also be caused by the shift variance of the transform (see Section
2.1.4), we used the undecimated wavelet transform in this example, which is shift-invariant.

7In this particular example, this could alternatively be solved by using the DT-CWT in-
stead of the undecimated DWT because the DT-CWT allows to distuingish features oriented
at +45° from features oriented at −45° (see Section 2.2).
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Figure 3.13: Illustration of the spatial variability of the covariance matrix. (a)
Zebra-texture, (b)HH undecimated wavelet subband, (c) Scatter plots of neighboring
coefficients (as indicated in (b)) for different parts of the wavelet subband.

in [Guerrero-Colón, 2008] it is noted that multiresolution transforms with a
poor frequency localization often exhibit more variability in the local spectra
of the transform subbands than transforms with a good frequency localization.
This was illustrated for the translation invariant Haar pyramid [Guerrero-Colón
et al., 2007], which uses Haar wavelet filters as radial filter responses.

By taking the variability of the local covariance matrix into account, im-
provements to the GSM model were obtained. In Spatially Variant GSM
(SVGSM) [Guerrero-Colón et al., 2008a], the covariance matrix is estimated
locally in non-overlapping regions. In Orientation Adaptive GSM (OAGSM)
[Hammond and Simoncelli, 2008], the local covariance matrix is adapted to
the local dominant orientation. In [Portilla and Guerrero-Colón, 2007], the
spatial variability of the covariance matrix is attributed to the fact that tex-
ture boundaries in natural images are not sharply defined and that textures
may blend into each other. To obtain adaptability, a mixture of Gaussian
Scale Mixtures (MGSM) models is proposed in [Portilla and Guerrero-Colón,
2007,Guerrero-Colón, 2008]. By clustering the local covariance matrices glob-
ally, the model can also exploit non-local redundancy in images, to some ex-
tent.8 Let k = 1, ...,K again denote the mixture component index and let Hk

denote the hypothesis that mixture component k is “the correct GSM model”.
Then, the likelihood function is given by:

fx (x) =

K∑

k=1

fx|H (x|k) P (Hk) with

fx|H (x|Hk) = π−d/2|Cx|k|−1/2g

(∣∣∣xTC−1
x|kx

∣∣∣
1/2
)

(3.26)

8We will go deeper into this in Section 3.7.
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Figure 3.14: Bayesian network structure of MGSM: the MGSM likelihood function
can be factored as: fx (x) = fx|z,H (x|z,Hk) fz|H (z|Hk) P (Hk).

where g(·) is given by (3.17). The model parameters:

Θ =
{
Cx|k,P (Hk) , with k = 1, ...,K

}
,

can be trained again from the observed subband, using an EM algorithm (see
[Guerrero-Colón et al., 2008b]).

MGSM has two hidden variables per local neighborhood: the scaling vari-
able z, which is proportional to the local variance and the mixture component
index, which determines the local covariance matrix. Consequently, MGSM
has a causal Bayesian network structure as shown in Figure 3.14, consisting of
two layers of hidden variables. Both variables determine the local covariance
matrix: suppose that for observation xj we have estimates ẑj and k̂j , then the
local covariance matrix at position j, according to the MGSM model, can be
computed as:

Ĉx,j = ẑjCx|k̂j
. (3.27)

Similar as for GSM, maximum likelihood estimates can be used to obtain ẑj
and k̂j :

(
ẑj, k̂j

)
= argmax

(z,k)
log fx|z,H (xj |z,Hk)

= arg min
(z,k)

[
d log z +

1

z
xTj C−1

x|kxj

]
(3.28)

Solving this optimization problem gives the following global solution:

k̂j = arg min
k

xTj C−1
x|kx

T
j and ẑ =

1

d
xTC−1

x|k̂j
xT (3.29)

The first estimate k̂j is basically a classifier that selects which spatial covariance
matrix Cx|k best describes the data (locally at position j), while the second
estimate ẑ uses this covariance matrix to compute the local variance.

The number of mixture components K needs to be selected in advance or
chosen using greedy EM-type algorithms (e.g. [Vlassis and A., 2002,Verbeek
et al., 2003]). In general, K needs to be sufficiently large to capture most
variability of the spatial covariance matrix. On the other hand, the number
of model parameters increases linear with K, which can cause problems due
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Figure 3.15: Illustration of GSM and MGSM models fitted to the wavelet coefficients
from Figure 3.13. (a)-(b) Equiprobability contours of respectively GSM, MGSM. (c)-
(d) Logarithm of the pdfs.

to the “curse of dimensionality” [Bellman, 1961]. This frequently occurs in
smaller subbands of decimated multiresolution transforms, because the number
of neighborhood vectors is too small. Also, the computation time for the EM
algorithm is relatively large: for example, in [Guerrero-Colón et al., 2008b] it
is reported that it takes six hours to denoise a 512 × 512 image using MGSM
withK = 10 in a 5-scale Translation Invariant Haar Pyramid (TIHP) transform
(Matlab implementation).
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3.4.4 An improved model: MPGSM

While MGSM is potentially very powerful, as already mentioned there is are
two important issues: the unreliable model training due to the excessive number
of parameters and the high computation time. For example, for a 5 × 5 local
neighborhood and K = 10 MGSM components, the number of parameters is
25 × 26 × 10/2 = 3250 !

In this dissertation, we will address these issues by introducing dimension
reduction through linear projections in the MGSM model and we will call this
model the mixtures of projected GSM models (MPGSM). We show that the use
of linear projections not only significantly reduces the number of model parame-
ters but also allows us to design fast training algorithms. In this sense, we build
upon the MGSM model from [Portilla and Guerrero-Colón, 2007, Guerrero-
Colón, 2008,Guerrero-Colón et al., 2008b]. Further, the resulting model can
be interpreted as a generalized MGSM model that unifies the SVGSM and
OAGSM methods. To reduce the number of free parameters of the MGSM
model, we use dimension reduction through linear projections, which is similar
to PPCA Section 3.1.2.

In our application, we consider the following linear latent variable model:

xj = Vtj + V̄rj (3.30)

where tj is a q-dimensional zero mean GSM random vector, with covariance
Ct, rj is (d − q) dimensional zero mean Gaussian distributed residual vector,
with diagonal covariance Ψ and independent of tj and V̄rj = gj . V is a
d × q matrix, the columns of which are orthonormal basis vectors of the low-
dimensional space V . V̄ is a d×(d−q) matrix, containing the orthonormal basis
vectors of the orthogonal complementary subspace V⊥, such that W = V ⊕V⊥

(here “⊕” denotes the orthogonal direct sum). We remark that rj is not the
image noise, but the approximation error in the complementary space V⊥.

Using equation (3.30), we can write the covariance matrix of x as:

Cx = VCtV
T + V̄ΨV̄T (3.31)

where Ct = E [z]Cu and where Ψ is assumed to be a diagonal matrix. Be-
cause of this diagonality assumption, the number of free parameters in Cx is
significantly reduced when q � d. Compared to the MGSM model and the
GSM model, the proposed MPGSM model adds a third layer of adaptation as
depicted in Fig. 3.16. In this conceptual scheme, the first layer is the GSM scal-
ing factor that provides adaptation to the local signal amplitude or variance.
The second layer is the MGSM component index, which provides adaptation to
signal covariance (textural and edge characteristics). The third layer is added
by the proposed model, and it encodes the information inside the covariance
matrix more efficiently. In the following paragraphs, we will investigate two
different types of projection bases for MPGSM (i.e. the matrices V and V̄).
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Adaptation to the local signal amplitude - GSM

Adaptation to the local signal covariance matrix
(or Power Spectral Density) through mixtures - MGSM

(z)

(k)

Recoding of the information in the local
signal covariance matrix - MPGSM

Figure 3.16: Three layers of the MPGSM model

Data-independent bases for MPGSM

A first choice of bases are data-independent bases, which do not depend on the
image. The spatial autocorrelation functions from subbands of natural images
(see Figure 3.12) reveal that the strongest correlations are along straight lines
passing through the center (0, 0), and the direction of these lines is orthogonal
to the filtering direction. Our goal is to construct data-independent bases that
have a large proportion of the signal in the latent space. A computationally
attractive choice are bases made of unit vectors consisting of d− 1 zeros. This
results in simple neighborhood structures, as illustrated in Figure 3.17. For the
3 × 3 neighborhood structure of Figure 3.17a (left), V and V̄ are given by:

V=




0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0



T

, V̄=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




T

(3.32)
The main benefit of these simple projection bases is that the dimension

reduction is very fast. The covariance matrix Ct is obtained from Cy us-
ing Ct = VTCxV (see (3.31)), which comes down to simply extracting el-
ements of Cx. Analogously, the diagonal elements of Ψ are computed as
Ψii =

[
V̄TCxV̄

]
ii
. An attractive feature of these projection bases is that

one is not limited to neighborhoods of the same size. As illustrated in Figure
3.17, one could e.g. use a 1×1 neighborhood for wavelet coefficients with small
(negligible) magnitudes, a 3×3 neighborhood for modeling textures and a 5×1
neighborhood for edges. This limits the number of model parameters but at
the same time allows to retain a 5 × 5 window size globally.
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(a) (b)

Figure 3.17: (a) A set of four simple neighborhood structures representing bases
of three unit vectors in the Cartesian coordinate system. Each structure models
correlations in a specific direction, e.g. the first structure is sensitive to horizontal
edges, the second structure to vertical edges, etc. (b) A set of neighborhood structures
with variable sizes and orientations.

Bases of Principal Components for MPGSM

A second choice is to estimate the projection bases from the observed data, e.g.,
using PPCA. The matrix V then contains the eigenvectors of the covariance
matrix Cx that correspond to the largest eigenvalues of Cx. The matrix Ct is
diagonal and has the largest (most dominant) q eigenvalues of Cx as diagonal
elements.

To estimate the dimensionality q of the model in a data-driven way, we
consider the cumulative proportion of the variance explained by the first q
Principal Components [Jolliffe, 1986]:

αq =

q∑

i=1

λi/

d∑

i=1

λi =

q∑

i=1

λi/tr (Cx) (3.33)

where λi is the i-th eigenvalue of the covariance matrix Cy. To determine q we
select a proportion of the total variance and solve this equation to q numerically.
In Fig. 3.18 it can be seen that for common test images, this yields dimension
reduction parameters q � d. For example, if we select αq = 88% for the Lena
image, we obtain q = 15 � 49, as illustrated by the solid lines in Fig. 3.18.
Other approaches estimate the dimensionality q by looking for a drop in the
decrease of the reconstruction error when q increases [Tenenbaum et al., 2000],
are based on the eigenvalues of the covariance matrix of samples in a local
neighborhood [Verveer and Duin, 1995], or determine q by comparing distances
between data vectors [Verveer and Duin, 1995].

MPGSM Model training

As for PPCA Section 3.1.2, we use the EM algorithm to estimate the model
parameters. If we denote the mixing weights as αk = P (Hk), the set of model
parameters is given by Θ = {πk,Vk, V̄k,Ct,k,Ψk, k = 1, ...,K} with the con-
straints

∑K
k=1 πk = 1 and Ψk diagonal. In [Goossens et al., 2009c], it is shown
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Figure 3.18: The cumulative proportion of the variance αq explained by the first q
Principal Components for all samples in a 7× 7 window. In this example, we use the
first high-pass band of a steerable pyramid with 8 orientations, for each image in the
legend.

that for iteration i, the model parameters can be estimated as follows:

α̂
(i)
k =

1

N

N∑

j=1

P
(
Hk|xj ,Θ(i−1)

)
and S

(i)
k =

∑N
j=1 P

(
Hk|xj ,Θ(i−1)

)
xjx

T
j∑N

j=1 P
(
Hk|xj ,Θ(i−1)

)

where the posterior probabilities P
(
Hk|xj ,Θ(i−1)

)
(or activities) are computed

using Bayes’ rule:

P
(
Hk|xj ,Θ(i−1)

)
=

α
(i−1)
k fx|H,Θ(xj |Hk,Θ

(i−1))
∑L

l=1 α
(i−1)
l fx|H,Θ(xj |Hl,Θ(i−1))

. (3.34)

For the MPGSM model, the conditional likelihood function
fx|H,Θ(xj |Hk,Θ

(i−1)) can be factored as:

fx|H(xj |Hk) = ft,r|H(VT
k xj , V̄

T
k xj |Hk)

= ft|H(VT
k xj |Hk)fr|H(V̄Txj |Hk) (3.35)

= fr|H(V̄Txj |Hk)

ˆ +∞

−∞
ft|z,H(VTxj |z,Hk)fz(z)dz (3.36)

where r|Hk ∼ N(0,Ψk) and t|z,Hk ∼ N(0, zCu,k). Next, the ML estimates
for Vk, V̄k,Ct,k and Ψk are obtained through a diagonalization of the local

activity-weighted covariance matrix S
(i)
k , similar to the straightforward imple-

mentation of PPCA (see Algorithm 3.1).
As it is common for most EM algorithms, the algorithm above may con-

verge to poor non-global maxima of the objective function. Therefore, careful
parameter initialization of the initial projection bases is required. In [Roweis
et al., 2002a,Verbeek, 2006], other non-linear dimension reduction methods are
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used to obtain these initial estimates, like the Local Linear Embedding algo-
rithm [Roweis et al., 2002b]. In our experiments (see Chapter 5), we initialize
the parameters using a uniform distribution for the mixture weights π̂(0)

k = 1/K
and initialize the sample covariance matrices heuristically as follows:

Ŝ
(0)
k = E [z] Ĉu

2k

K + 1
+ Cn, (3.37)

with the scaling factor 2k/(K + 1) chosen such that
∑K

k=1 π̂
(0)
k Ŝ

(0)
k = E [z] Ĉu,

the expected covariance matrix of the signal.
To speed up the EM-algorithm, we investigated approximations. One way

to speed up the training phase is by maximizing the log-likelihood for the
expected value of the hidden variable z, instead of numerically integrating
over all possible z-values (as explained in the Appendix). We also found that
an additional significant improvement in computation time can be realized by
using a “winner-takes-all” variant of the EM algorithm [Neal and Hinton, 1998].
This comes down to replacing the local activities (3.34) with binary values:

P
(
Hk|xj ,Θ(i−1)

)
≈
{

1 k = arg maxk∈{1,...,K} P
(
Hk|xj ,Θ(i−1)

)

0 else
(3.38)

Sadly, in the EM context the “winner-takes-all” variant does not necessarily
converge to a maximum of the log-likelihood function. However, we can still
apply this technique during the first iterations and use the standard approach
(3.34) only when the winner-takes-all variant has converged [Neal and Hinton,
1998].

Another advantage of the “winner-takes-all” approach is that the MAP clas-
sification in (3.38) can be optimized as follows:

arg max
k∈{1,...,K}

P
(
Hk|xj ,Θ(i−1)

)

=arg max
k∈{1,...,K}

πkP
(
xj |Hk,Θ

(i−1)
)

=arg max
k∈{1,...,K}

(
log πk + log P

(
xj |Hk,Θ

(i−1)
))

=arg max
k∈{1,...,K}

(
log π

′

k−
q∑

m=1

(
VT
k xj

)2
m

(Ct,k)m,m
−
d−q∑

m=1

(
V̄T
k xj

)2
m

(Ψk)m,m

)
(3.39)

with log π
′

k = 2 log πk −
∑q
m=1 log (Ct,k)m,m −∑d−q

m=1 log (Ψ)m,m. We partic-
ularly note that the terms in the summations in (3.39) are positive. While
evaluating this equation, the computations can be stopped whenever the cur-
rent accumulated sum becomes smaller than the last maximum. In this case,
we would never be able to improve the last maximum. To get the most benefit
of this trick as possible, we first completely evaluate (3.39) for the mixture
component k? that we predict to be the most likely. For EM iteration i = 1,
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(a) (b)

Figure 3.19: (a) Magnitude of a noisy wavelet subband of Barbara. Black corre-
sponds to high magnitudes (b) Label image of the most dominant MPGSM compo-
nent. The number of MPGSM components is 4 and the size of the neighborhood is
5 × 5. We used q = 20.

we therefore use k? that has the highest πk? . For subsequent iterations i > 1
we reuse the classification result from the previous estimate. Moreover, we
can expect the most benefit if the terms in the summations (3.39) are ordered
such that they are decreasing and such that the current maximum is attained
as quickly as possible. Because Ct,k and Ψ usually are obtained from a SVD
algorithm that orders the eigenvalues in decreasing order, this automatically is
the case.

This way, the EM algorithm fully takes advantage of the linear projections.
This technique finds the desired maximum P

(
Hk|xj ,Θ(i−1)

)
exactly, but in

a reduced number of computations. In the best case scenario, it is K times
faster; in the worst case (if yj = 0 and π

′

k = π
′

1, k = 1, ...,K, which never
occurs in practical situations) the computation time remains the same.

To illustrate the effectiveness of the “winner-takes-all” variant of the EM-
algorithm for this task, we applied the MPGSM EM algorithm to the Barbara
image corrupted with additive white Gaussian noise (with standard deviation
σ = 25). Noise was added to make the training task somewhat more difficult
than the noise-free case. In Figure 3.19(a), the magnitude of a wavelet sub-
band of the noisy image is depicted. Figure 3.19(b) shows the index k of the
most dominant MPGSM component of each position in the wavelet subband.
Even though the noise level is quite high, the method is able to capture the
repetitivity in the image: neighborhoods that are similar are also classified as
such.

In Chapter 5, we will validate the MPGSM model compared to other GSM
models in denoising applications.
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(a) (b) (c)

Figure 3.20: Schematic representation of (a) Quad-tree multiscale stochastic process
(e.g. [Basseville et al., 1992]), (b) Hidden Markov Tree structure [Crouse et al., 1998],
(c) Hidden Markov Tree structure with extra hidden layer, for the proposed joint
inter/intra scale model (Section 3.6). Black nodes are coefficients, z-nodes and s-
nodes represent respectively the hidden multiplier (local variance) and the significance
associated with the coefficients.

3.5 Models for inter-scale dependencies

3.5.1 Hidden Markov Tree models

Multiscale stochastic processes ( [Basseville et al., 1992,Wainwright et al., 2001,
Banham and Katsaggelos, 1996]) have been studied for modeling these inter-
relationships between coefficients in a quad-tree structure of many decimated
representations such as the DWT, DT-CWT, STP...). By the decimations,
each coefficient at scale 2i is related to four coefficients at the finer scale 2i−1:
the spatial support of a basis element that produced a coefficient at scale 2i

overlaps with the spatial support of four bases elements at the finer scale 2i−1.
Because of the overlap of the spatial and frequency supports, dependencies
will exist among the coefficients. Often, the studied multiscale processes rely
on a Markov relationship between parent and child coefficients in a quad-tree,
thereby reducing the number of number of parameters (compared to models
that do not use the Markovian assumption).

The Hidden Markov Tree (HMT) [Crouse et al., 1998,Nowak, 1999a,Choi
et al., 2000a,Romberg et al., 2001b,Fan and Xia, 2001a,Fan and Xia, 2001b]
establishes relationships between hidden state variables rather than between
the coefficients themselves. An illustration of different multiscale stochastic
processes is shown in Figure 3.20. In Figure 3.20(a), a quad-tree multiscale
stochastic process is depicted. Every node (black disks) corresponds to a coef-
ficient; an arrow represents the dependency between two coefficients. The HMT
structure (Figure 3.20(b)) is very similar to the quad-tree structure, however,
for every scale there is an extra layer of hidden state variables (white disks),
and the arrows connect the hidden variables rather than the coefficients.

Next, we will briefly summarize the HMT model. Let x
(i)
j , j = 1, ..., Ni

represent the coefficients of a local window at position j and scale i (here, Ni
is the number of coefficients at scale i). The HMT model is characterized by:
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1. Two possible states for each scale i: H(i)
0 and H(i)

1 , and their correspond-

ing state probabilities P
(
H

(i)
0

)
and P

(
H

(i)
1

)
= 1 − P

(
H

(i)
0

)
. As in

Section 3.2.2, H(i)
1 denotes the hypothesis that a coefficient is significant

(and has a large magnitude), while H(i)
0 signifies the hypothesis that the

coefficient is non-significant (with a small magnitude).

2. Two conditional densities for each scale: f(x(i)|H(i)
0 ) and f(x(i)|H(i)

1 ).
This results in the overall PDF:

f(x(k)) =P
(
H

(i)
0

)
f(x(k)|H(i)

0 ) + P
(
H

(i)
1

)
f(x(k)|H(i)

1 ).

The densities f(x(k)) are assumed to be mutually independent for each
scale; their dependency is imposed through the hidden state variables.

3. The state transition probability distributions ε(k) = {ε(k)m,n}:

ε(i)m,n = P
(
H(i+1)
n |H(i)

m

)
with m = 0, 1, n = 0, 1.

The parameters ε(i)0,0 and ε(i)1,1 are called persistency probabilities; ε(i)0,1 and

ε
(i)
1,0 are novelty probabilities. These parameters express the probabilities

that the hidden state values will change from one scale to the next.

The parameters P
(
H

(i)
0

)
,P
(
H

(i)
1

)
, ε(i), i = 2, ..., I are estimated iteratively

using the Baum-Welch algorithm (also known as the Expectation Maximization
(EM) algorithm for HMM’s) [Crouse et al., 1998,Rabiner, 1989].

Commonly mentioned problems are [Pižurica and Philips, 2003]: (1) a large
number of model parameters (despite the Markovian assumption) (2) model
training using Baum-Welch can be relatively slow [Romberg et al., 2001b] and
(3) the lack of spatial adaptation. In this respect, a local contextual HMT
model of Fan et al. [Fan and Xia, 2001a] is an improvement: the authors
attach an additional hidden state to every coefficient; this additional hidden
variable is the local average energy of the surrounding coefficients.

3.5.2 The Bivariate distribution of Şendur and Selesnick

[Şendur and Selesnick, 2002b] focus on the dependencies between a coefficient
and its parent in detail. Based on empirical joint histograms of parent and
child coefficients (as in Figure 3.10), the authors propose an elliptically sym-
metric bivariate probability density function to model the dependency between
a parent and child coefficient:

fx (x) =
3

2πσ1σ2
exp


−

√
3

((
x1

σ1

)2

+

(
x2

σ2

)2
)1/2


 , (3.40)
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where x here denotes a two-dimensional vector that contains both parent and
child coefficients (x = [x1, x2]). In this model, x1 and x2 are uncorrelated
but not statistically independent. We remark in this respect that (3.40) is
a special case of the EPD distribution from Section 3.2.3, with ν = 1 and a
diagonal covariance matrix Cx. Further, the authors derive the MAP estimator
in a denoising application, for additive white Gaussian noise. Despite the
simplicity of the model, a better denoising performance was demonstrated for
some images in the DT-CWT domain compared to the HMT model. We will
use this bivariate method as a reference for comparison in Chapter 5.

3.6 A novel joint inter/intra-scale model

In the HMT model of Crouse et al. [Crouse et al., 1998], later extended by
Romberg et al. [Romberg et al., 2001b], use a weighted mixture of two uni-
variate Gaussian distributions (Section 3.2.2) for the marginal densities of the
coefficients. The number of mixture components is directly related to the num-
ber of states: one mixture component corresponds to each state. To describe
the leptokurtotic behavior of the coefficients more accurately, a larger num-
ber of Gaussian mixture components (e.g. 8) may be necessary.9 However,
this inherently increases the number of model parameters and subsequently
the computational complexity. In [Kivinen et al., 2007], non-parametric HMT
models, connecting discrete GSM distributions across states, are trained using a
Monte Carlo learning algorithm. The number of states is also learned from the
training Markov Chain Monte Carlo methods can be designed to escape from
local maxima and saddle points of the likelihood function (see e.g. [Gamerman,
1997]). However, the computational cost is often significant, which makes these
methods less practical.

The HMT models from [Crouse et al., 1998, Nowak, 1999a, Choi et al.,
2000a,Romberg et al., 2001b] and the bivariate model from [Şendur and Se-
lesnick, 2002b] do not capture intra-scale correlations of coefficients. More
importantly, the models assume that the coefficients within the same subband
are statistically independent, despite the fact that multiresolution transforms
are not capable to fully decorrelate images (see Section 3.3). To further improve
the results, [Fan and Xia, 2001a] and [Şendur and Selesnick, 2002a] indepen-
dently include a spatial activity indicator in their models. The spatial activity
indicator being used is in both cases an estimate of the local variance.

In this section, we present a new joint inter/intra-scale statistical model.
The main idea is to model the probability of signal presence (i.e. significance
of a coefficient) given a vector of surrounding coefficients, i.e., given a struc-
ture of the local neighborhood, thereby taking the true correlations between
the coefficients into account. This is achieved by introducing an extra hidden
parameter in the GSM model, that models signal presence. Further, the ap-
proach is combined with a HMT model to capture the inter-scale coefficient

9Note that for an infinite number of mixture components, the mixture becomes a GSM,
see Section 3.2.4.
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dependencies, yielding a joint inter/intra-scale model.
Our approach is on the one hand an improvement and generalization of the

main ideas of [Pižurica and Philips, 2006] where the estimation of probability
of signal presence is now improved, and where the estimator is combined with
a powerful HMT model. On the other hand, this work can also be seen as
an improvement and generalization of the HMT approaches of [Crouse et al.,
1998,Choi et al., 2000b,Romberg et al., 2001b,Fan and Xia, 2001a], where we
now employ a better likelihood model and a better estimation of the involved
state probabilities.

Alternatively, our joint inter/intra-scale model may be combined with the
MPGSM model from Section 3.4.4 as well. Because the extension of our ap-
proach to mixtures of GSMs is straightforward, we only discuss the GSM model
here.

Modeling the signal of interest

Significant coefficients can be characterized by means of a significance measure,
based on the magnitude of the considered wavelet coefficient [Pižurica and
Philips, 2006]:

S(x) = I (|x|/σw ≥ T ) (3.41)

where σw is the noise standard deviation, T is a given threshold and I(x) is the
indicator function. In our work, we extend (3.41) to vectors of neighboring
coefficients, by the following generalization:

S(x) = I
(∥∥∥C−1/2

w x

∥∥∥ ≥ T
)

(3.42)

where C
1/2
w is the square root of the positive definite matrix Cw and ||x|| is the

norm of x. By the positive-definiteness of Cw,
∥∥∥C−1/2

w x

∥∥∥
2

= xTC−1
w x = T 2

represents the equation of an ellipsoid in a d-dimensional space. The signif-
icance measure (3.42) then tests whether x is inside or outside the ellipsoid.
This is illustrated in Fig. 3.21.

According to the significance measure (3.42), the conditional density
fx|H (x|H0) is given by:

fx|H (x|H0) =
fx (x)

P (H0)
I
(∥∥∥C−1/2

w x

∥∥∥ < T
)

(3.43)

and an analogous expression can be given for fx|H (x|H1). Now, to take intra-
scale correlations into account, we use a GSM distribution, or more specifically,
the multivariate Bessel K Form distribution (see Section 3.2.5) as PDF for x.
The resulting conditional densities are depicted in Figure 3.22 for a diagonal
matrix Cw.
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Figure 3.21: Illustration of "signal of interest" on the spatial prior fX(x). The
ellipse xT C−1

w x = T 2 is extruded to a cylinder, for visibility. Samples x outside the
cylinder are regarded as significant. Non-significant samples are contained in the
cylinder.

(a) (b) (c)

Figure 3.22: Multivariate mixture models: (a) fx (x) = fx|H (x|H0)P (H0) +
fx|H (x|H1) P (H1), (b) Signal present fx|H (x|H1), (c) Signal absent fx|H (x|H0).

Hidden Markov Tree model based on the signal of interest modeling

In our joint inter/intra-scale model, the significance measures S(x) are used
as hidden nodes for the HMT model. Because this only requires two states,
independent of the number of Gaussian mixture components, this reduces the
computational complexity of the HMT training procedure while retaining a
highly kurtotic distribution fx (x). We use independent HMT models for the
different orientations of the DT-CWT. The HMT structure of our model com-
prises two layers of hidden variables (a first layer for the significance variables,
a second layer for the GSM multipliers), see Figure 3.20(c).

For the HMT model, the significance of the coefficients at a given scale i can
be estimated through the posterior probabilities fH|x(i),...,x(I)

(
Hk|x(i), ...,x(I)

)
,

k ∈ {1, 2}, through the MAP estimate, as follows:

ŜHMT

(
x(i)
)

= arg max
k∈{1,2}

fH|x(i),...,x(I)

(
Hk|x(i), ...,x(I)

)
. (3.44)
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Figure 3.23: Detection of "signal presence". (Left) Cropout of a noisy wavelet band
(HH1) of the Barbara image (with added Gaussian noise with covariance Cw = 252Id)
(Right) MAP estimate of the significance.

Here x
(i)
j signifies the coefficients of a local window centered at position j ∈

{1, ..., Ni} and scale i ∈ {1, ..., I}. Clearly, the estimate of the significance
for a coefficient vector at scale i is conditioned on all coefficients on parent
(coarser) scales. In Figure 3.23, the significance of noise-free wavelet coefficients
is estimated for one subband of the DT-CWT transform, in the presence of
additive Gaussian noise. Although for this example, the observation density
is in fact the convolution of the PDF of x with the noise PDF. Therefore we
applied the same principle as in (3.44), but we conditioned on the observed
noisy variables instead of x(i), ...,x(I). It can be seen that despite the high
variance of the added noise, the significance estimates are quite accurate. This
is because the combination of the spatial GSM model and the HMT tree model
allows us to capture both spatial and interscale dependencies between wavelet
coefficients. In Section 5.2.3 we will present a denoising method based on this
joint inter/intra-scale model.

3.7 Non-local image models

A completely different approach for modeling images is to exploit their self-
similarity: many details, patterns or features occur several times in the same
image. An example is given in Figure 3.24 where details of the windows and
exterior shutters are present multiple times.

Already since the 80s, the self-similarity of images has played an impor-
tant role in image processing, and has led to the development of fractal -based
compression schemes (see e.g. [Jacquin, 1992]). Similarity between consecutive
frames in a video sequence is also the basis of many motion estimation schemes
for video compression (e.g. [Zhang and Zafar, 1992, Stiller, 1997, Wang and
Ostermann, 1998]).

Concerning the content of images, we can distinguish 1) similaries between
patterns or features within the same object or in different objects, 2) similarities
across edges of objects and 3) similarities in uniform regions of an image [Lu-
ong, 2009]. In a multiresolution representation of the image, similaries can
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Figure 3.24: Illustration of the self-similarity in images. The small crosses indicate
patches that are similar to the 8 × 8 patch with center marked with the big cross, in
the mean squared difference sense.

occur within the same scale or across similar scales (e.g. similar objects of
different sizes), within the same analysis orientation or across different analysis
orientations (e.g. similar rotated objects).

Recently, a number of non-local methods have been developed to take ad-
vantage of the similarity of small patches in the image at the same scale [Elad
and Aharon, 2006b,Dabov et al., 2007,Luong et al., 2006], often yielding bet-
ter results than existing local methods. Most notably is the non-local means
(NLMeans) filter [Buades. et al., 2005, Buades et al., 2008], in which a pixel
intensity is estimated as a weighted average of all pixels in the image, where
the weights are proportional to the similarity between the local neighborhood
of the pixel being processed and local neighborhoods of the surrounding pixels.
Although the NLMeans filter has traditionally been introduced in the context
of image denoising, we will review a number of aspects of the underlying image
model that the filter relies on, in this section. Studying this non-local image
model also allows to envisage extensions of the filter to other image restoration
applications (see Chapter 5).

Let us denote xj as the vector of pixel intensities of a local
√
d ×

√
d-

neighborhood centered at position j, where we will typically use overlapping
neighborhoods. Here, we are considering neighborhoods in the image domain.
Recall that in the previous sections, we often assumed that xj at different
positions j are statistically independent. To take advantage of the “possible”
similarity between different neighborhoods, non-local methods need to drop
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Table 3.2: Overview of multivariate robust M-functions, with h a smoothing para-
meter.

Type Weighting function g(x) Robust function ρ(x)

Cauchy 1/
�
1 + ‖x‖2 /h2

�
1
2
h2 log

�
h2 + ‖x‖2

�
Tukey

(
(1 −

‖x‖2

h2 )2 ‖x‖ ≤ h

0 ‖x‖ > h

8<:h2

6

�
1 −

�
1 − ‖x‖2

h2

�3
�

‖x‖ ≤ h

h2

6
‖x‖ > h

Andrews

(
sin(π‖x‖/h)

π‖x‖/h
‖x‖ ≤ h

0 ‖x‖ > h

(
h2

π2 (1 − cos (π ‖x‖ /h)) ‖x‖ ≤ h
h2

π2 ‖x‖ > h

Leclerc exp
�
−

‖x‖2

2h2

�
h2 − h2 exp

�
−

‖x‖2

2h2

�
Bisquare

8<:�1 − ‖x‖2

h2

�2
‖x‖ ≤ h

0 ‖x‖ > h

8<:h2

6

�
‖x‖
h

− 1
�3 � ‖x‖

h
+ 1

�3
‖x‖ ≤ h

0 ‖x‖ > h

Modified Bisquare

8<:�1 −
‖x‖2

h2

�8
‖x‖ ≤ h

0 ‖x‖ > h

8<:h2

18

�
‖x‖
h

− 1
�9 � ‖x‖

h
+ 1

�9
‖x‖ ≤ h

0 ‖x‖ > h

this statistical independence assumption. However, because similarities occur
across the whole image, further assumptions are needed to arrive at a tractable
probability density model in which the parameters can be estimated from the
image itself. As we already encountered in previous sections, the number of
parameters can be reduced by either an independence assumption (e.g. MRF
models) or by imposing a particular structure to the covariance matrix of the
model (e.g. MPGSM). In this case, both approaches are not an option, since we
really want to take these dependencies into account. Consequently, proposing
a correct PDF model capturing non-local dependencies while allowing for easy
parameter estimation from a single image is a challenging task (as far as we
are aware of, such a model has not been proposed in the literature so far).
Instead, a number of methods rely on clustering techniques, based on block-
matching [Dabov et al., 2007], k-means or k-svd clustering [Aharon et al., 2006].
Here, we will impose a specific likelihood function to the neighborhood vectors,
similar as in MRF models (Section 3.4.1):

fx1,...,xN (x1, ...,xN ) =
1

A
exp


− 1

T

N∑

j,j′=1

ρ (xj′ − xj)


 (3.45)

where A is a PDF normalization constant, T is a “temperature” constant and
ρ(·) is a multivariate robust loss function. The robust loss function assigns a
cost to the difference xj′ − xj : typically, the lower the norm of the difference
‖xj′ − xj‖ is, the higher the likelihood function (3.45) and vice versa. A few
robust loss functions are tabulated in Table 3.2.

In [Goossens et al., 2008a], we have shown that for the Leclerc robust loss
function, the use of the distribution (3.45) for modeling a noisy image in a
denoising application, directly leads to an iterative estimator that corresponds
to the NLMeans filter from [Buades. et al., 2005]. The first iteration of this
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estimator is given by:

[̂xj ]c =

∑N
j′=1 g (yj′ − yj)yj′
∑N

j′=1 g (yj′ − yj)
(3.46)

with y is an observed degraded image, [·]c denoting the central coefficient of the
neighborhood and with the weighting function g(·) defined by xg(x) = ∂ρ/∂x.
Hence, the “denoised” neighborhood x̂j is simply the weighted average of all
neighborhoods in the image. As can be noted from Table 3.2, the weighting
function is characterized by a parameter h that in some cases (e.g. bisquare)
also serves as a threshold: if the Euclidean distance between two neighborhoods
is smaller than h, the two neighborhoods are considered to be similar, otherwise
the neighborhoods are dissimilar. In that case, only a limited number of terms
will have a non-zero weight in (5.5), which is beneficial 1) to avoid the contri-
bution of many dissimilar neighborhoods in the averaging and 2) to reduce the
computation time [Dauwe et al., 2008]. We will discuss our improvements to
the NLMeans filter in Chapter 5.

An interesting question is how to incorporate multiresolution concepts into
the non-local model. Answers to this question are part of recent ongoing re-
search. For example, in [Hammond et al., 2009] it is proposed to use graph
theory: the authors associate a graph G = (V,E, g) with each image, where
the vertices are given by V = {xj , j = 1, ..., N}, the edges connect different
nodes E ⊂ V × V and g(·) is the weighting function. Associated to the graph
is the function f : V → R, which defines the pixel intensity for every vertex of
the graph. Next, the unnormalized discrete graph Laplacian operator of f is
defined as:

(∆f) (j) =
N∑

j′=1

g (xj′ − xj) (xj′ − xj) . (3.47)

Based on the spectral decomposition of the discrete graph Laplacian, the graph
analogue of a Fourier transform is defined. Next, a “graph wavelet transform”
is obtained by modulating the eigenvalues of the Laplacian operator (which
can be seen as applying wavelet filtering in the graph Fourier domain). It was
found that the resulting “graph” wavelet basis functions are generally localized
both in frequency and in space, and are approximately radially symmetric.
Based on the weighting function g(·), the basis functions effectively capture
the similarity of features and patterns in images.

3.8 Conclusion

Despite all the efforts that have been done in the past for modeling the statis-
tics of images, building an accurate probability density model for the general
class of natural images remains a challenging task. In this chapter, we have
first reviewed a number of image decomposition techniques (that are due to
computational constraints mostly applied to patches): PCA, PPCA and ICA.
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Marginal parametric densities directly model the highly kurtotic behavior of
band-pass filtered coefficients, for either projections onto ICA components or
for image-independent multiresolution transforms from Chapter 2. Next, we
have shown that linear filters are not able to completely decorrelate the images,
hence incorporating intra-scale or inter-scale correlations into the model is cru-
cial. We have discussed a number of intra-scale models, such as Markov Ran-
dom fields, GSM, MGSM and MPGSM and inter-scale models such as HMTs
that can be used to this end. Then, we have presented a new joint inter/intra-
scale model that combines ideas from earlier MRF and HMT approaches and
jointly models the second order statistics of the coefficients and the dependen-
cies between different multiresolution scales. Finally, we investigated the use
of non-local information to exploit the self-similarity in images.

Another important aspect, for statistical image models, is that the model
should be easily applicable as “prior knowledge” in practical circumstances. To
demonstrate that this is the case for the novel models, we will further use these
models in image restoration applications in Chapter 5.

The contributions of this chapter already resulted in the following publica-
tions: [Goossens et al., 2007b,Goossens et al., 2009c] (on MPGSM), [Goossens
et al., 2007c, Goossens et al., 2009d] (on the joint inter/intra-scale model),
[Dauwe et al., 2008,Goossens et al., 2008a] (on the non-local image model).



4
Noise modeling and

estimation

Many digital imaging devices often produce a substantial amount of noise. The
noise is originating from the analog circuitry (sensors, amplifiers) in the devices.
Digital imaging techniques need to deal with the noise present in the images,
which occasionally can lead to failure of these techniques. A first solution to this
problem is to make the methods more robust against noise; a second solution is
to apply noise suppression (colloquially known as denoising) as pre-processing
step. In both solutions, an accurate noise model is indispensable: the more
pre-knowledge about the noise we can build into the imaging technique, the
better its performance will be.

In contrast to all the research that describes properties of natural images
(see Chapter 3), relatively little research has gone into describing noise or noise
properties. Also, the majority of digital image processing techniques are only
capable of efficiently dealing with white Gaussian noise in its basic form.

First, let us consider noise in digital still cameras (DSC). The imaging
pipeline of a DSC is shown in Figure 4.1.The incident light reaches an ar-
ray of CCD or CMOS sensor elements through the lens. Subsequently, the
measured light intensity signals are amplified electronically and converted to
digital signals in the analog-to-digital (A/D) convertor. Next, the DSC per-
forms a number of post-processing techniques, mainly to increase the quality of
the images: white balance correction, gamma correction, color enhancement,
contrast enhancement, digital zoom and noise reduction... Finally, the image
is compressed to be put on a storage medium (e.g. flash).

Because the noise originates from the image sensor elements, it is clear that
every component in this pipeline will influence the noise characteristics in the
final (reconstructed) image. We remark that the noise reduction techniques
integrated in DSCs are of low complexity (because of the limited amount of
resources on the camera, e.g. memory and power usage) and consequently, the
quality improvement of the processed images may be limited.

Furthermore, there is a trend to increase the number of image pixels and
images consisting of 10 million pixels (10 mega pixel) are now common. Unfor-
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Figure 4.1: Pipeline of a digital still camera (DSC)

tunately, this inherently reduces the area of each sensor element and increases
the amount of noise captured by each sensor.
Noise produced by DSCs has various origins [Nakamura, 2005]:

1. Sensor noise (photon noise or shot noise): this type of noise is caused
by the fluctuations of the detected photons, by the sensors of the DSC.
By quantum-mechanical effects, sensor noise can not be avoided. Sensor
noise is mostly noticable when taking photographs using short exposure
time settings and in dark lighting conditions.

2. Read-out noise: noise generated by the electrical circuits (e.g. amplifiers)
in the camera.

3. Pattern noise: refers to the correlated components of the read-out noise
due to imbalances of the pixel readout. The human eye is very sensitive
for patterns in the noise of a digital photographs. This kind of noise
typically appears in the form of horizontal and vertical banding noise.

4. Thermal (or dark) noise: many CCD camers produce a noise signal even
when there is no incident light present. The noise level increases gradually
from the beginning to the end of the readout. Fortunately, this type of
noise is non-random and the readout can be compensated by subtracting
an offset that depends on the vertical position of the sensor element.

5. Sensor cross-talk noise: noise caused by interaction between neighboring
sensor elements (by electron and photon leakage) [Hirakawa, 2008a].

Other imaging devices (such as medical scanners) also very often need to deal
with noise in their reconstruction algorithms: for example in CT, measured x-
ray intensities also inherently contain noise components that very often create
disturbing streaking artifacts in the reconstructed images, especially for low ra-
diation doses. In Magnetic Resonance Imaging (MRI), received radio frequency
signals also contain statistical fluctuations, which can not be avoided.
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Because the noise in digital images can have various origins, we will cate-
gorize different noise characteristics into different classes that can be studied
individually:

• The marginal distribution of the noise: in many practical applications the
marginal noise distribution is well approximated by a Gaussian distribu-
tion. Another distribution that is often used is the Poisson distribution
(e.g. in medical imaging, microscopy).

• The second order statistics of the noise: noise can be spatially uncorre-
lated (white noise) or correlated (colored noise).

• The stationarity of the noise process: noise processes can be either sta-
tionary or non-stationary. In case of stationary noise, the noise statistics
(such as the variance) are invariant to the position in the image. For
non-stationary noise, the noise characteristics depend on the position in
the image. An example is noise in Computed Tomography.

• Signal dependency of the noise process: the noise component can be either
additive, or signal-dependent. In the former case, the observed image is
simply the sum of the original image and a noise component. In the
latter case, there exists dependencies between the noise samples and the
original image.

In the remainder of this chapter, we will focus on the specification of parametric
noise models and the corresponding estimation of the noise model parameters.
In particular, we will present novel EM algorithms for the estimation of sta-
tionary correlated noise in Section 4.2.2 and non-stationary correlated noise in
Section 4.3. We establish new approximate and exact analytical relationships
between the camera response function and the noise level function, which is
useful for modeling and estimating signal-dependent noise in images (Section
4.4).

The presented noise models will be further used in the chapter on image
restoration (Chapter 5).

4.1 Probability density functions for modeling
noise

Let y denote a pixel intensity at a given position of an observed image, and
let x signify the corresponding pixel intensity of the original (ideal) image. For
simplicity of the notations, we omit the position index and assume that all
pixel intensities in the image are independent and identically distributed. The
PDF that is most oftenly used for describing the noise in y, is the Gaussian
distribution:

y|x ∼ N
(
x, σ2

)
⇔ fy|x (y|x) =

1√
2πσ2

exp

(
− (y − x)

2

2σ2

)
.
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Additive white Gaussian noise (AWGN) has generally been found to be a rea-
sonable model for noise originating from electronic amplifiers (see e.g. [Sarpeshkar
et al., 1993,Lim, 2006]).

When measuring light intensities from a single source, statistical fluctua-
tions will be observed. According to quantum mechanics, the measurement of
light intensity can be interpreted as a spatio-temporal integration, for which
the “total number” of photons emitted by the source in the considered spatio-
temporal interval is often assumed to be Poisson distributed:

y ∼ Poisson(x) ⇔ fy|x (y|x) =
xy exp (−x)

y!
.

Poisson noise is unbiased: it does not alter the intensity mean (i.e. E [y] =
E [x]). Also, Poisson noise has a variance that increases linearly with the orig-
inal intensity x (Var [y] = x), the surface area of the sensor elements and the
integration (or exposure) time. Poisson noise arises in digital cameras (sensor
noise), in medical and nuclear imaging (e.g. CT) and in microscopy [Rooms,
2005]. Consequently, for small sensor elements or short integration times, the
Signal-to-noise ratio (SNR) will be low [Hirakawa, 2008a]. On the other hand,
for sufficiently long integration times (i.e. for high SNRs), the Poisson distrib-
ution can be well approximated by a Gaussian distribution.

Another type of noise encountered in Magnetic Resonance Imaging (MRI),
is Rician noise. In MRI, there is a trade-off between SNR and image resolution
[Pižurica, 2002, p. 161]. In practice, the acquisition time is also limited for
the comfort of the patient and to avoid patient motion. The main noise source
in MRI images is thermal noise in the patient [Edelstein et al., 1986,Pižurica,
2002].

In general, the intensities y of the reconstructed image are assumed to
follow an uncorrelated complex-valued Gaussian distribution, with mean x and
variance σ2. However, MRI magnitude images, which are obtained by taking
the magnitude of y, are most commonly used. Consequently, y′ = |y| follows a
Rice distribution:

y′ ∼ Rice (x′) ⇔ fy′|x′ (y′|x′) =
y′

σ2
exp



−
(
x

′2 + y
′2
)

2σ2


 I0

(
x′y′

σ2

)
,

where x′ = |x| and with I0(·) the modified Bessel function of the first kind and
zero order. In contrast to Poisson noise processes, Rice noise processes do alter
the intensity mean, as:

E [y′|x′] = σ

√
π

2
M

(
−1

2
, 1,− x′

2σ2

)
6= x′,

where M (·, ·, ·) is the confluent hypergeometric function [Abramowitz and Ste-
gun, 1964]. The bias introduced by Rician noise is generally undesired, as
the bias reduces constrast between bright and dark areas in the image [Aelter-
man et al., 2008]. For this reason, several bias removal techniques have been
proposed for MRI, e.g. [Sled et al., 1998,Van Leemput et al., 1999].
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Figure 4.2: Marginal probability density functions (with parameter σ = 1).

The Rayleigh distribution is a special case of the Rice distribution and arises
for low intensities in MRI images (i.e. when the mean x′ ≈ 0):

y′ ∼ Rayleigh (x′) ⇔ fy′|x′ (y′|x′) =
y′

σ2
exp

(
−y′2

2σ2

)
.

Finally, multiplicative speckle noises, e.g. in Synthetic aperture radar (SAR),
have successfully been modeled using the Gamma distribution [Baraldi and
Panniggiani, 1995].

In Figure 4.2, the above probability density functions are depicted for two
intensity levels (x = 2 and x = 6). It can be seen that the Poisson, Rician
and Rayleigh distributions are asymmetric around y = x (straight line). For
higher intensity levels, the Poisson distribution has a higher variance than the
Gaussian distribution (6 versus 1), while the Rician distribution approximately
coincides with the Gaussian distribution.
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4.2 Second-order statistics of noise

In most practical applications, neighboring noise samples are not statistically
independent. Instead, spatial dependencies exist between these samples and
the noise is called “colored noise”. In Section 4.2.1, we will explain how these
dependencies can be described by the second-order statistics of the noise. We
discuss a few origins of colored noise in digital images. Next, in Section 4.2.2,
we will present a new technique for estimating the noise correlations from an
observed image.

4.2.1 From white to colored noise

We consider a stationary additive noise process, which can be described by:

y(p) = x(p) + w(p) (4.1)

where x(p) is a pixel intensity of a noise-free image at position p, y(p) is the
corresponding observed pixel intensity and w(p) is a zero-mean additive noise
component. We will further assume that the samples w(p) are generated by a
(wide-sense) spatial stationary process w, in which the correlation between two
noise samples only depends on the position difference between the two noise
samples, but not on their absolute position. Consequently, w can be completely
described by mean and autocorrelation function.

A random process w obeying the above conditions is called white if its
autocorrelation function is a Dirac delta function:

Rw(p) = E
[
w(p′)w(p + p′)

]
= δ (p) . (4.2)

According to the Wiener-Khinchin theorem, the power spectral density (PSD)
is the (discrete time) Fourier transform of Rw(p):

P (ω) =
∑

p∈Z2

Rw(p) exp
(
−jωTp

)
. (4.3)

The PSD describes how the noise energy is distributed in frequency space. For
white noise, the PSD is flat P (ω) = 1, hence the name white. Suppose a filter
with frequency response H(ω) 6= 1 is applied to the white noise samples, then
the resulting PSD R

′

w(p) becomes [Baher, 2001]:

R
′

w(p) = Rw(p) |H(ω)|2 . (4.4)

Clearly, the PSD R
′

w(p) is subjected to the filter magnitude response |H(ω)|.
Hence one can think of correlated noise as white noise subjected to linear
filtering. In analogy with the term “white noise” the resulting term is called
“colored noise” (or correlated noise, because the filtering introduces correlations
in the noise samples).

Next, we will discuss a number of origins of colored noise in images:
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Figure 4.3: Power Spectral Density [dB] of noise in PAL broadcasting.

• Phase Alternating Line (PAL) television: the noise in PAL television
images is a good example of colored noise. The correlations between the
noise samples are caused by several mechanisms, such as deinterlacing
[Kwon et al., 2003], demodulation and filter schemes. In Figure 4.3 the
PSD of a noise patch from a PAL broadcast is shown. Here, there is a
high concentration of energy in the lower horizontal frequencies, leading
to horizontal stripes and artifacts.

• Color interpolation (demosaicing): modern digital cameras use a rectan-
gular arrangement of photosensitive elements. In this matrix arrange-
ment, photosensitive elements of different color sensitivity are placed in
an interleaving way. This allows sampling of full color images without the
use of three matrices of photosensitive elements. One popular example
is the Bayer pattern [Bayer, 1976] (see Figure 4.4). Color interpolation
(or demosaicing) is the process of estimating the values of missing pho-
tosensitive elements. The basic concept is illustrated in Figure 4.4(a):
the interpolation is here a average of the neighboring red sensor element
values: R2 = (R1 + R3)/2. This is equivalent to a one-dimensional in-
terpolation filter with frequency response H(ω) = 1

2 (1 + exp (−jω)) (see
Figure 4.4(b)). This interpolation also inherently introduces correlations
in the noise (see Figure 4.5). The image quality of this linear interpola-
tion scheme is rather poor and for this reason most digital cameras use
more sophisticated edge-adaptive interpolation schemes. However, the
presence of sensor noise hampers the estimation of the edge direction.
Generally, the presence of correlated noise in demosaiced images can not
be avoided. In Chapter 5 we will describe a new demosaicing technique
that is able to deal with sensor noise.

• Post-processing techniques: image noise often becomes correlated by the
use of post-processing techniques, e.g., to enhance the quality of the im-



114 Noise modeling and estimation

0 1 2 3 4 5
0

1

2

3

4

5

G

G

G

G

G

G

G

G

G

G

G

G

G

B

B

B

B

B

B

R

R

R

R

R

R

R

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

Normalized frequency ω/π
H

(ω
) 

[d
B

]
(a) (b)

Figure 4.4: (a) Bayer mosaic pattern and linear color interpolation for a missing
red photosensitive element. (b) Frequency response of the linear filter H(ω) = 1

2
(1 +

exp (−jω)).

50 100 150 200 250

50

100

150

200

250 ω
x

ω
y

 

 

−π

π

−π π 0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 4.5: (a) Image corrupted with colored noise caused by demosaicing (b) PSD
of the noise in the green color channel of (a).

age or to store the images. Examples are sharpening filters, digital zoom
functions of cameras, JPEG compression... In [Luong, 2009] it was found
that superresolution (SR) fusion techniques often create correlated noise
with a very specific structure (see Figure 4.6(c)), mainly due to the par-
ticular alignment of the low resolution input images.

• Thermal cameras : images captured by thermal cameras of the push
broom or whisk broom type often exhibit streaking noise artifacts, mainly
caused by detector and sampling circuitry [Aelterman et al., 2010b]. This
kind of noise can be approximated using a 1/f frequency characteristic
(called pink noise) [Borel et al., 1996]. Pink noise also frequently arises
in image sensors that acquire pixel data in time.
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• Computed Tomography (CT): in CT, noise correlations are often intro-
duced by the specific reconstruction technique that is being used. Noise
created by the backprojection algorithm (without reconstruction filter) is
called ramp-spectrum noise, and has a f1 frequency characteristic. Noise
in CT will further be treated in Chapter 6.

• Magnetic Resonance Imaging (MRI): noise in MRI images is traditionally
considered white [Nowak, 1999b, Pižurica et al., 2003], although many
MRI scanner manufacturers have included a wide range of techniques to
allow for shorter scanning times (mainly to avoid patient motion artifacts
in the images). To name a few: K-space subsampling, partial Fourier,
elliptical filtering [Aelterman et al., 2010a]. The use of these techniques
results in correlated noise in the reconstructed MRI images.

In Figure 4.6 some examples are shown of images corrupted with colored noise.
The colored noise was artificially generated by subjecting white noise to a filter
with magnitude response

√
P (ω) and subsequently by adding the filtered noise

to the images.
For some applications that we will encounter in Chapter 5, the noise auto-

correlation function is required in the wavelet domain (or another multiresolu-
tion transform domain). In case the noise PSD is known in advance (e.g. as in
the above examples), the transform domain autocorrelation function for every
subband can be computed using (4.4). However, this is only possible for a shift-
invariant multiresolution transforms, such as the undecimated wavelet trans-
form and steerable pyramid transform. For shift-variant transforms, the auto-
correlation formula should also take the decimations of the discrete transform
into account. A straightforward solution would then be to compute autocorre-
lation functions using (4.4) and subsequently to apply appropriate decimation
operations to the obtained autocorrelation functions. However, this approach
is not very practical in higher dimensions (e.g. 3D), as the spatial supports
of the autocorrelation functions can become very large and many redundant
computations need to be done.

In [Goossens et al., 2010a], we propose an alternative computation method
that is similar to the fast DWT (see Section 2.1.3), but that processes auto-
correlation functions instead of raw signals or images. Therefore, we derived
an analytical formula that expresses the noise autocorrelation function for each
invididual multiresolution subband as a function of the noise autocorrelation
function of the subband coefficients in a finer multiresolution scale (taking the
decimations of the transform into account). Next, by applying this formula re-
cursively, the noise autocorrelation function can be exactly computed for every
scale of the multiresolution transform.

For the DT-CWT, the calculation of the autocorrelation function is slightly
more complicated than for, e.g., the DWT, because it also involves computing
crosscorrelations, due to the linear transform needed to determine the real and
imaginary parts of the complex wavelet coefficients (see Section 2.2.2). Never-
theless, devising a recursive computation scheme for the noise autocorrelation
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function is still possible. For the exact details, we refer to [Goossens et al.,
2010a].

In the next section, we investigate an even more challenging task: the esti-
mation of the noise PSD from an observed image containing signal structures.

4.2.2 Estimation of colored Gaussian noise

Estimating the correlation properties of colored Gaussian noise from an ob-
served image amounts to estimating the Power Spectral Density (PSD) of the
noise in this image. However, this is a very challenging task, because one has
to discriminate between the noise and the underlying image. For characteriz-
ing the noise, a good frequency resolution is desired, while for identifying the
signal, good spatial resolution is needed. For this perspective, it is natural to
estimate the noise correlations in a multiresolution transform domain, this has
also the advantage that (noise-free) image models defined in this domain (see
Chapter 3) can be used. In this section, we will present a technique that uses
the Gaussian Scale Mixture as underlying prior model for the noise-free coef-
ficients. A linear multiresolution transform retains the additivity of the noise,
such that for one particular subband, we can write:

yj = xj + wj , (4.5)

where yj ,xj ,wj are vectors consisting of respectively the observed subband
coefficients, the noise-free subband coefficients and the noise coefficients. The
vectors are extracted in

√
d×

√
d overlapping local neighborhoods, centered at

position j = 1, ..., N . Here the position index is again a one-dimensional index
(like in raster scanning). The noise is Gaussian N (0,Cw) and the noise-free
coefficients are GSM distributed with covariance matrix Cx = E [z]Cu:

x|z ∼ N (0, zCu) . (4.6)

Consequently, the density of y is a Gaussian mixture model with a specific
constraint imposed to the covarianced matrices of the components:

y|z ∼ N (0, zCu + Cw) , (4.7)

with covariance matrix Cy = E [z]Cu + Cw. Our goal is now to estimate the
noise covariance matrix Cw.

One of the main difficulties here is dealing with the hidden multiplier z,
which has a continuous range of possible values. To allow for a simple numer-
ical implementation, we will assume a discrete density for z: αk = P (z = zk),
for k = 1, ...,K and with zk fixed. The full set of model parameters is then
given by Θ = {Cx,Cw,Ck, αk}. To simplify the notations and to avoid scaling
ambiguity (see Section 3.2.4), we will again assume that E [z] = 1, such that
Cx = Cu. As in Section 3.4.4, the parameter estimation can be done using an
Expectation Maximization (EM) algorithm. However, estimating the GSM pa-
rameters jointly with the noise covariance matrix has been found to be a difficult
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Figure 4.6: Examples of images with colored noise with PSD P (ω) (use a > 1,
b ∈ [−π, π], c ∈ [−π, π] and 0 < d < 1).
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task even using an EM algorithm [Portilla, 2004], in the sence that straightfor-
ward derivations do not lead to closed-form update formulas. In [Portilla, 2004]
the update formula was therefore replaced by an easier, approximate equation
and after every iteration it was checked whether the model likelihood was in-
creased. If not, the update from the last iteration was un-done and replaced
by a steepest ascent step, yielding a Generalized Expectation Maximization
algorithm.

Here, we take a different approach: we rely on the fact that the density
fy (y) is a Gaussian Mixture model in which the components have covariance
matrices Ck and subsequently we impose a Gaussian Scale Mixture constraint
to the components. Compared to the GEM algorithm from [Portilla, 2004], our
technique will have the advantage that the log-likelihood function does not need
to be computed at every iteration to ensure convergence (which is generally a
computationally intensive task). The Gaussian Scale Mixture constraint is as
follows:

Ck = zkCx + Cw. (4.8)

Given the set of model parameters Θ(i) at iteration i, we want to optimize the
new parameters Θ in order to maximize the objective function:

maximize E
[
log fy,k|Θ

(
y, k|Θ(i)

)
|y,Θ(i)

]

s.t. Ck = zkCx + Cw, k = 1, ...,K (4.9)

This optimization problem can be converted into a constrained problem (which
is also called a “constrained” EM algorithm):

Q(Θ,Θ(i)) = E
[
log fy,k|Θ

(
y, k|Θ(i)

)
|y,Θ(i)

]
−

K∑

k=1

λk ‖Ck − zkCx − Cw‖2
F ,

(4.10)
where λk, k = 1, ...,K are Lagrange multipliers and where ‖A‖2

F = tr
(
AAT

)
denotes the matrix Frobenius norm. It can be shown that the EM update
equations are given by:

mixture weights (E-step) α̂k =
1

N

NX
j=1

P (z = zk|yj) , k = 1, ..., K

(4.11)

Component covariances (M-step) Ĉ
(1)
k =

PN
j=1 P (z = zk|yj)yjy

T
jPN

j=1 P (z = zk|yj)
, k = 1, ..., K

(4.12)

Signal covariance matrix (M-step) Ĉx =
KX

k=1

µ1 − zk

µ2
1 − µ2

λkĈ
(1)
k (4.13)

Noise covariance matrix (M-step) Ĉw =
KX

k=1

µ1zk − µ2

µ2
1 − µ2

λkĈ
(1)
k (4.14)
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Algorithm 4.1 Algorithm for estimating the noise covariance matrix of a noisy
wavelet subband.
repeat

α̂k = 1
N

∑N
j=1 P (z = zk|yj) , for k = 1, ...,K

Ĉ
(1)
k =

PN
j=1 P(z=zk|yj)yjy

T
jP

N
j=1 P(z=zk|yj)

, for k = 1, ...,K

Ĉx =
∑K

k=1
µ1−zk

µ2
1−µ2

α̂kĈ
(1)
k

Ĉw =
∑K
k=1

µ1zk−µ2

µ2
1−µ2

α̂kĈ
(1)
k

Ĉk = zkCx + Cw

until convergence

where µ1 =
∑K

k=1 λkzk and µ2 =
∑K
k=1 λkz

2
k. For GSM mixtures of two com-

ponents (K = 2), the GSM constraint (4.8) can be satisfied exactly. Further
demanding that the weighted sum of the mixture component covariance ma-
trices is equal to the sum of the signal covariance matrix and noise covariance
matrix (

∑K
k=1 α̂kĈk = Ĉx + Ĉw) allows us to calculate the Lagrange multipli-

ers:

λk = α̂k =
1

N

N∑

j=1

P (z = zk|yj) . (4.15)

However, if K > 2, the constraint (4.8) will no longer hold exactly: the M-
step (4.12) does not satisfy the constraints of the GSM model. The reason
is that (4.8) constitute a set of linear equations (one for every element of the
covariance matrices), and if K = 2 the linear system has an exact solution. For
larger K, minimizing ‖Ck − zkCx − Cw‖2

F leads to the least squares solution
for Cx and Cw (which generally has a cost ‖Ck − zkCx − Cw‖2

F > 0), hence to
satisfy (4.8), the Lagrange multipliers tend to infinity: λk → ∞. As a solution
to this problem, we modify our estimate (4.12) for the covariance matrix of
component k, such that the constraint is satisfied:

Ĉk = zkĈx + Ĉw. (4.16)

The resulting algorithm is summarized in Algorithm 4.1. It can be shown that
this approach is similar to a Bregman iteration [Bregman, 1967], in which the
error (i.e. Ĉk − Ĉ

(1)
k ) is added back to the right handed side of the constraint

Ck = zkCx+Cw. Bregman iterations will be discussed more into detail in Sec-
tion 5.3. Unfortunately, because the function E

[
log fy,k|Θ

(
y, k|Θ(i)

)
|y,Θ(i)

]

is not convex in general, convergence results from Bregman optimization do not
transfer to this constrained EM algorithm. In Appendix A we show that the
constrained EM algorithm has the same convergence properties as the uncon-
strained EM algorithm for Gaussian mixtures, in the sence that every iteration
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increases the likelihood function. One drawback of our method is that there
is no guarantee to converge to a global maximum, because the likelihood func-
tion may exhibit multiple non-global maxima. This is the case for almost all
EM algorithms [Dempster et al., 1977]. Consequently, the final solution can
be improved by using good initial estimates of Ĉ

(0)
x and Ĉ

(0)
w . In this work,

we choose Ĉ
(0)
x = qCy and Ĉ

(0)
w = (1 − q)Cy, with q close to 0 (e.g. q = 0.1).

This choice is motivated by the fact that for sufficiently low SNRs, the sub-
bands are dominated by noise, such that Cw ≈ Cy. Alternatively, good initial
estimates can be obtained using robust S-estimators of the (noise) covariance
matrix [Campbell et al., 1998].

Important to remark is that the above algorithm fails, if the denominator
in the update formulas (4.13)-(4.14) is zero, i.e. if µ2

1 = µ2. It is worthful
to note that the kurtosis of the coefficient subband coefficients is given by
3µ2/µ

2
1 − 3, which becomes zero if µ2

1 = µ2. In this case, the probability
density function fy (y) is Gaussian, and every component of the GSM model
will have the same hidden multiplier value zk = µ1, such that also fx (x) is
Gaussian. Consequently, it becomes impossible to separate the signal from the
noise: the highly kurtotic behavior of the noise-free coefficients x can not be
exploited. Luckily, we can avoid this problem, by using a prior distribution for
z that is well initialized (i.e. all zk are different). A possible choice is to use
a fixed initialization, e.g., zk = exp (−3 + 7(k − 1)/(K − 1)) , k = 1, ...,K and
αk = 1/K, as in [Goossens et al., 2009d]. Nevertheless, it has been noted (e.g.
in [Portilla, 2004]) that the kurtosis of noise-free coefficients decreases for lower
frequency subbands, such that it becomes more and more difficult to estimate
the noise covariance matrix in these subbands. A possible solution is then to
use an appropriate interscale model (see Section 3.5) combined with this EM
algorithm to detect significant coefficients in these subbands.

Another practical problem is that the eigenvalues of Cx and Cw can become
negative during the iterative procedure (mainly due to estimation errors or
numerical errors). In this case, we replace the negative eigenvalues of Cx and
Cw by a small positive value (e.g. 10−4), such that the positive definiteness of
these covariance matrices is not lost. A similar approach is taken in [Portilla
et al., 2003] for estimating Cx, for the case that Cw is known.

A “blind” denoising technique can then be obtained by 1) estimating the
signal and noise covariance matrix using the above EM algorithm, and by
2) using a general denoising technique which assumes that these covariance
matrices are known in advance. Although general denoising techniques will
be discussed in Chapter 5, Figure 4.8 already shows a denoising result for
the Baboon and Peppers image. In particular, the Baboon image was chosen
because it contains many fine details (e.g. the hairs) that could potentially be
mistakenly recognized as components of white Gaussian noise. The denoising
technique being used is BLS-GSM from [Portilla et al., 2003]. It can be seen
that both the noise estimation and denoising techniques are quite effective in
this example, as most fine details are well reconstructed, despite the high noise
variance.
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Figure 4.7: Evaluation of the noise covariance estimation error in the MSE sense
for texture-rich images: (a) the Barbara image, (b) the Baboon image.

Finally, to evaluate the estimation performance of our estimation technique
as a function of the EM iteration number, we added artificial white Gaussian
noise to the Barbara and the Baboon image,1 with standard deviation respec-
tively σ = 2 and σ = 4. We then compare the noise estimation method
from [Portilla, 2004] to the proposed estimation scheme in the DT-CWT do-
main, using the fixed initialization for zk and αk, with K = 8. Because the
number of complex wavelet coefficients depends on the scale of the transform,
we only used the finest scale for comparison in this experiment. Orthogonal
Symlet wavelets with 16 vanishing moments are used for the first scale of the
DT-CWT. Because the noise PSD is known, we can directly apply our exact
computation method from [Goossens et al., 2010a] (which is briefly outlined at
the end of Section 4.2.1) to obtain a ground truth for noise covariance matrix
of every complex wavelet subband. The performance measure we use is the
MSE between the estimated noise covariance matrix and the exact (ground

truth) noise covariance matrix (MSE =
∥∥∥Ĉw − Cground truth

w

∥∥∥
2

F
). The results

are shown in Figure 4.7. It can be seen that, after a sufficient number of it-
erations, the proposed EM algorithm consistently obtains a lower MSE than
the reference method from [Portilla et al., 2003], which indicates more accurate
estimation of the noise covariance matrix.

4.3 Modeling and estimation of non-stationary
noise

In practice, we encounter many situations where the noise energy and corre-
lation structure depends on the position in the image (non-stationary noise).

1Two texture-rich images are used in this case, in order to have a non-trivial estimation
task.
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(a) (b) (c)

Figure 4.8: Blind denoising results using the EM algorithm from 4.1 for the DT-
CWT. (a) Original noise-free image, (b) Image with correlated noise of variance 502,
(c) Denoised image.

This can be both due to the acquisition device itself (e.g. interference from
other devices), or by various post-processing steps (e.g. locally adaptive filter-
ing). An example of an image with artificially generated non-stationary noise
is given in Figure 4.9. In this example, the noise variance varies with the po-
sition in the image, but does not depend on the underlying image. Most often
so, the noise is signal-dependent as well. In this section, we restrict ourselves
to signal-independent (additive) noise; signal-dependent noise will be discussed
later in Section 4.4.

In general, a model for non-stationary noise requires many parameters such
that large ensembles of images are needed in order to reliably estimate these
parameters. Therefore, we will make a few assumptions, which will allow us to
work with one single image:

1. We assume that the statistics of the noise are Gaussian.

2. We consider locally stationary processes, which have properties that change
slowly in space.

Because the noise properties vary slowly in space, it becomes possible to build
a model for the noise from which the parameters can be estimated locally, using
an EM algorithm that is similar as in Section 4.2.2.
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Figure 4.9: Example of an image with artificially generated non-stationary noise.

4.3.1 Modeling of locally stationary Gaussian noise

In this section we will study locally stationary Gaussian noise processes, which
have properties that change slowly in space. We say that a noise process is
locally stationary, if in the neighborhood of any q ∈ Z2, there exists a square
window δ(q) of size l(q), centered at position q, where the process can be
approximated by a stationary one : for p ∈ δ(q) and for |r| ≤ l(q)/2, the
autocorrelation is well approximated by [Mallat, 1998]:

E [w(p)w(p + r)] ≈ E [w(q)w(q + r)] = Rw(q, r). (4.17)

We define the space-varying spectrum (SVS) of w(p) as the Discrete Time
Fourier transform (DTFT) of R(q, r) with respect to r:

S(q,ω) =
∑

r∈Z2

R(q, r) exp(−jrTω) (4.18)

For stationary processes, the SVS coincides with the Power Spectral Density
(PSD), while for non-stationary processes, the PSD does not exist. We say
that the SVS is separable if it can be factored as S(q,ω) = S0(q)S1(ω) with
1
2π

´ π

−π S1(ω)dω = 1. The first component S0(q) represents the variance at
position q while the second component S1(ω) denotes the normalized Power
Spectral Density (PSD). A specific class of locally stationary processes is ob-
tained by the spatially variant filtering of white noise. Let w(p) denote a white
Gaussian noise process, then Y (p) is obtained as:

Y (p) =
∑

q∈Z2

w(q)H(p,p − q) (4.19)

with H(p, r) the impulse response of a linear spatially variant filter with
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DTFT Ĥ(p,ω). The autocorrelation function of Y (p) is then given by:

R(p, r) = E [Y (p)Y (p + r)] (4.20)

=
1

2π

ˆ +π

−π
Ĥ(p,ω)Ĥ(p + r,ω) exp(jωT r)dω. (4.21)

The local stationarity assumption (4.17) imposes that Ĥ(p,ω) has to sat-
isfy some smoothness conditions (see [Mallat, 1998]). More specifically, if

|rT ∂ bH(p,ω)
∂p | � |Ĥ(p,ω)|, for |r| ≤ l(p)/2, we have approximately:

Ĥ (p,ω)Ĥ (p + r,ω) ≈ |Ĥ(p,ω)|2. (4.22)

This condition implies that the SVS of the noise process varies slowly in time.
An example of such a noise process in 1D is depicted in Figure 4.10: Figure

4.10(a) shows a stationary white Gaussian noise process, Figure 4.10(b) displays

the frequency response
∣∣∣Ĥ(p,ω)

∣∣∣ of a time-variant linear filter. In particular,

a high-resonant low-pass IIR filter with a transition band of 12dB/octave was
used here; the cutoff frequency of the filter is varied slowly in time in order
to obtain a locally stationary process. Next, Figure 4.10(c) shows the filtered
noise signal and Figure 4.10(d) displays the multiscale undecimated wavelet
analysis of the filter noise signal. The wavelet analysis is able to recover the
time variant frequency response relatively well, despite the fact that only one
examplar of the noise process is used.

Our approach to dealing with spatially variant correlated noise consists of 1)
estimating the spatially variant autocorrelation function R(p, r) in the wavelet
domain, in presence of signal information and 2) denoising the degraded image
in the wavelet domain using the estimated autocorrelation functions.

4.3.2 Estimation of locally stationary Gaussian noise

To estimate the noise covariance function R(s,o)(p,q) in the wavelet domain, in
the presence of signal structures we again consider one wavelet subband (s, o).
By the additivity of the noise, we have an equivalent additive relationship
between the noisy wavelet coefficients y(p), the noise-free coefficients x(p) and
the white noise w(p) at position p ∈ B:

y(p) = x(p) + ρ(p)w(p). (4.23)

The vectors x(p), ε(p) and y(p) are formed by column-stacking the wavelet
coefficients in local

√
d×

√
d overlapping windows centered at position p. ρ(p)

is a spatially variant d× d matrix that correlates the noise w(p) ∼ N(0, I). To
distinguish noise from signal structures, we take again prior knowledge about
the noise-free signal x(p) into account by modeling x(p) as a Gaussian Scale
Mixture (GSM) with discrete hidden multiplier z ∈ {z1, z2, ..., zK}. With this
model, estimating R(s,o)(p, r) comes down to estimating ρ(p)ρT (p), for which
we can use a similar scheme as in Section 4.2.2. In the following, we will denote
again αk = P (z = zk) , k = 1, ...,K.
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Figure 4.10: (a) White noise signal, (b) Frequency response of a time-variant filter
as function of the time t (vertical frequency axis is in a logarithmic scale), (c) The
white noise signal filtered by the time-variant filter from (b), (d). Undecimated
discrete wavelet analysis of the noise signal from (c). Black corresponds to wavelet
coefficients with significant magnitudes, white corresponds to nonsignificant wavelet
coefficients.

Noise with separable space-varying spectrum

In a number of circumstances, the noise covariance matrix is constant for the
whole image, up to a spatially varying scale factor σ2(p), representing the local
noise variance. We have:

ρ(p)ρT (p) = σ2(p)Cw . (4.24)

It is clear that Cw can be estimated using information from the whole sub-
band, while σ2(p) can only be obtained locally. Let θ(p) = {Cu,Cw, σ

2(p)} ∪
{αk, k = 1, ...,K} denote the model parameters related to position p. To es-
timate the total set of model parameters Θ =

⋃
p∈B θ(p) we again devise an

EM algorithm for Gaussian mixtures with appropriate GSM constraint, as in
Section 4.2.2:

Ck(q) = zkCu + σ2(q)Cw (4.25)

where Ck(q) denotes the covariance matrix of the kth Gaussian mixture com-
ponent at position q. Given a set of model parameters Θ(i) at iteration i, we
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optimize the new parameters Θ in order to increase the objective function:

Q(Θ(i),Θ) = E


log

∏

q∈B

∏

p∈δ(q)

f(y(p), k|θ(q))
∣∣y,Θ(i)




−
K∑

k=1

∑

q∈B
λk
∥∥Ck(q) − zkCu − σ2(q)Cw

∥∥2

F
(4.26)

with the first term the expected complete-data log-likelihood function (where
we use a simplifying assumption that coefficients in different overlapping local
windows are statistically independent). The second term denotes the GSM
constraint added to the problem using Lagrangian multipliers λk, k = 1, ...,K.
It can be shown that the EM update equations are given by:

α̂k =
1

N

X
q∈B

1

l2(q)

X
p∈δ(q)

P (k|y(p), θ(q)) , k = 1, ..., K (4.27)

Ĉ
(1)
k (q) =

P
p∈δ(q) P (k|y(p), θ(q))y(p)yT (p)P

p∈δ(q) P (k|y(p), θ(q))
, k = 1, ..., K (4.28)�

Ĉu

Ĉw

�
=

�
Nµ2 µ1ν1
µ1ν1 ν2

�−1
 PK

k=1 α̂kzk

P
q∈B Ĉ

(1)
k (q)PK

k=1 α̂k

P
q∈B σ

2(q)Ĉ
(1)
k (q)

!
(4.29)cσ2(q) =

tr
�PK

k=1 α̂kCw(Ĉ
(1)
k (q) − Cu)T

�
tr (CwCT

w)
(4.30)

with µ1, µ2 as defined in Section 4.2.2 and with νb =
∑

q∈B σ
2b(q), b = 1, 2. The

formulas above must be iterated until convergence of the likelihood. We note
that update equations (4.29) and (4.30) depend on each other and must be used
alternately in subsequent EM iterations in order to maximize the likelihood.
In this iterative process, the global noise and signal covariance matrices Cu,
Cw as well as the local variance σ2(q) are estimated jointly. As for the EM
algorithm from Section 4.2.2, the above formulas are the exact classical EM
formulas for two mixture components (i.e. K = 2). For K > 2, we again
modify the estimate (4.28) such that the GSM constraint is satisfied:

Ĉk(q) = zkĈu + σ2(q)Ĉw . (4.31)

The computational time of this technique is significantly higher than the EM
algorithm for stationary correlated noise from Section 4.2.2. This is because
(4.28) and (4.29) require traversing the stationarity window δ(q) (in which local
stationarity is assumed), for every position q in the subband. In practice, we
use relatively large stationarity windows (e.g. 32×32) in order to obtain reliable
estimates. Fortunately, the stationarity assumption can be further exploited to
speed up the algorithm. For the details, see [Goossens et al., 2008c].

In Figure 4.11, some visual results are shown for this technique. First, the
noise-free wavelet subband of Figure 4.11(g) is corrupted with additive noise,
resulting from filtering white Gaussian noise by the space variant filter with
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Figure 4.11: (a) Wavelet subband of Lena with added artificial noise with separable SVS

(b) True local noise variance σ2(p) (c) Estimated local noise variance cσ2(p), using the MAD-

estimator (MSE=0.682) (d) Estimated local noise variance cσ2(p), using the proposed method

(MSE=0.451) (e) True noise PSD (f) Estimated noise PSD, using the proposed method (g)

Original noise-free wavelet subband of Lena (h) Denoised wavelet subband of (a) using the

estimated noise PSD (f) and local variance (d).

spectrum |Ĥ(p,ω)|2 ∼ [p]
2
y exp(−60((ωx−0.34π)2+(ωy−0.20π)2)), see Figure

4.11(a). Here ωx and ωy denote respectively the x- and y-components of ω and
[p]y is the y-component of p. We use l(p) = 32 and d = 9, corresponding to a

3×3 window for local correlations. The local noise variance σ2(p) ∝ [p]
2
y is de-

picted in Figure 4.11(b). In Figure 4.11(c) the local noise variance is estimated
locally using the robust Median of Absolute Deviations (MAD) estimator in a
32× 32-window. Figure 4.11(d) shows the estimated σ̂2(p) using the proposed
method with the same window size. The EM estimate is clearly much more ro-
bust to the presence of signal structures than the MAD estimate. This is mainly
due to the fact that our method takes signal correlations into account whereas
the MAD estimate does not. The estimated noise PSD in Figure 4.11(f) is
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obtained by first converting the estimated noise covariance matrix Ĉw into an
autocorrelation function of size 128×128 by averaging over correlations that
correspond to the same difference in position, setting correlations that can not
be captured using a

√
d×

√
d window to zero and subsequently by computing

the Discrete Fourier Transform. Despite the small window size 3×3 used for
estimating local correlations, there is a very good resemblance to the original
noise PSD in Figure 4.11(e). Next, the estimated noise parameters from Figure
4.11(d) and Figure 4.11(f) are used to denoise the wavelet subband, with an
extension of the algorithm presented in [Goossens et al., 2009d] (such that it
can deal with non-stationary noise, similar to the extension presented in [Por-
tilla, 2005]. The result is shown in Figure 4.11(h). Due to the accurate noise
estimation, the denoising algorithm reconstructs most of the signal structures
present in Figure 4.11(a).

Noise with non-separable space-varying spectrum

In a more general scenario, the noise covariance matrix varies spatially and has
to be estimated locally: ρ(p)ρT (p) = Cw(p). To facilitate this, we will still
estimate the signal covariance matrix Cu globally. The objective function now
becomes:

Q(Θ(i),Θ) =E

24log
Y
q∈B

Y
p∈δ(q)

f(y(p), k|θ(q))
��y,Θ(i)

35
−

KX
k=1

X
q∈B

λk ‖Ck(q) − zkCu −Cw(q)‖2
F . (4.32)

Maximizing this function yields the same update equations as in the previous
EM algorithm, except that (4.29) and (4.30) have to be replaced by:

Ĉu =
1

N

K∑

k=1

∑

p∈B
α̂k

(
zk − µ1

µ2 − µ2
1

)
C

(1)
k (p) (4.33)

Ĉw(p) =

K∑

k=1

α̂kĈ
(1)
k (p) − µ1Ĉu, p ∈ B (4.34)

Finally, for K > 2, we again modify the estimate (4.28) such that the GSM
constraint is satisfied:

Ĉk(q) = zkĈu + Ĉw(p). (4.35)

One interesting point of this approach is that the convergence results from the
estimation technique for stationary colored noise also apply to this algorithm.

To test the noise estimation method, we consider again a denoising experi-
ment. Figure 4.12(a) shows a low-dose Pathological Thorax CT image from a
15-year old female girl that was captured on a Siemens Emotion 6 CT Scan-
ner at Sophia Children’s Hospital, EMC in Rotterdam (the Netherlands), with
scan parameters (KVP=110, 127mAs and using a B30s convolution kernel).
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: (a) Pathological Thorax Computed Tomography (CT) image of a 15-year old

female. (b)-(c) Denoised versions of (a), using [Pižurica et al., 2003] with different threshold

parameters. (d) Denoised version of (a), using [Portilla, 2004] (e) Denoised version of (a),

using the proposed method. (f) Difference image between (d) and (a) (contrast enhanced,

intensity 128 corresponds to difference zero).

The image suffers from noisy streak artifacts.2 In Chapter 6, we will show
that CT noise can be modeled as additive white Gaussian noise filtered by
a space-variant filter. We compare the proposed noise estimation combined
with the extension of the algorithm of [Goossens et al., 2009d], also discussed
in Section 5.2.3 (Figure 4.12(d)) (see above), to the blind denoising methods
of [Pižurica et al., 2003] (Figure 4.12(b)) and [Portilla, 2004] (Figure 4.12(c)).
The method of [Pižurica et al., 2003] assumes white stationary noise and es-
timates the noise variance from the high-pass subband of the nondecimated
spline wavelet transform. Due to the noise model mismatch, noise artifacts are
left in the denoised image (Figure 4.12(b)) in areas where the local noise vari-
ance exceeds the estimated noise variance, whereas the proposed method does
not. The method of [Portilla, 2004] assumes stationary correlated noise and
also because of the non-stationarity, not all parts of the noise are removed. Our
method uses the dual-tree complex wavelet transform from [Kingsbury, 2001],
with 3 scales, d = 9 and l(p) = 16. Figure 4.12(f) shows the difference image
of Figure 4.12(d) and Figure 4.12(a). It can be noticed that some signal struc-
tures are present in the difference image, for example at the edges of the bright

2We will further discuss the topic of CT streak artifacts in Chapter 6.
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areas in Figure 4.12(a). Here, due to the saturation in the scanner at intensity
255, there is a fast transition in the local noise variance. As a consequence, the
local-stationarity assumption is violated and the local noise variance is slightly
overestimated, causing oversmoothing of the edges. Nevertheless, the blind
denoising method is able to remove the noise well in the organ regions, while
preserving details better than the other methods. Alternatively, the saturation
problem can be completely avoided by using the proper intensity windowing
settings during CT acquisition. On Pentium IV 2 GHz processor, denoising a
256×256 image in an unoptimized implementation takes 143 s, from which 110
s are spent to noise estimation.

In the next section, we will drop the additivity assumption of the noise by
considering signal-dependent noise.

4.4 Signal-dependent noise

From a theoretical point of view, dealing with signal-dependent noise is rela-
tively easy: one only needs to model the joint density fy,x (y, x) of the noise-free
pixel intensity x and a observed noisy pixel intensity y. Statistical methods,
e.g. denoising, then directly follow. For example, for denoising the MMSE
estimator is given by x̂MMSE = E [x|y] =

´ +∞
−∞ xfx|y (x|y) dx and the MAP

estimator is simply x̂MAP = arg maxx fx|y (x|y). Unfortunately, there are a
number of problems with this approach:

• Exact analytical expressions for the joint density fy,x (y, x) are often com-
plicated in real-life situations and closed-form expressions do not always
exist. If the input-output relationship between x and y are known in the
noise-free case and if the noise sources can be simulated, a possible way
to proceed is to use Monte Carlo (MC) techniques. However, it then be-
comes more difficult to study the influence of parameter changes, as this
would require extra MC simulations. On the other hand, if the input-
output relationship is not known, density estimation techniques need to
be used. Again, studying the effects of parameter choices is not trivial.

• In many practical situations, the noise is also spatially correlated (on top
of being signal-dependent), as we already explained. The noise modeling
and estimation task then becomes significantly more difficult as we need
to find the high-dimensional joint density of either the complete image or
patches of this image (fy,x (y,x)).

As a workaround to these issues, we will seek for approximative descriptions of
signal-dependent noise. We will show that these kind of descriptions, despite
being very simple, are often very accurate in practice and serve well for our
needs (e.g. for image restoration, see further in Chapter 5). Moreover, the
approximative descriptions also lead to much easier processing techniques, as
we will show later.
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Figure 4.13: The principle of removal of signal-dependent noise using homomorphic
filtering.

4.4.1 Variance stabilization

Variance stabilization (VS) aims at transforming signal-dependent noise into
(approximately) signal-independent additive noise. VS techniques are very
popular for dealing with signal-dependent noise because any denoising scheme
designed for stationary AWGN can be used. Homomorphic filtering [Ding and
Venetsanopoulos, 1987] is a VS technique that applies an invertible monotoni-
cally increasing non-linear function γ̄(·) to every noise intensity y:

y|x ∼ N
(
γ̄ (x) ;σ2

0

)

with σ2
0 a constant. A well-known example of such a transform is the Anscombe

transformation γ̄(x) = 2
√
x+ 3/8 for Poisson noise [Anscombe, 1948]. In

general, if the standard deviation of x as function of the mean σ(x) is known,
the non-linear function can be computed using the indefinite integral [Foi, 2008]:

γ̄ (x) =

ˆ

σ0

σ(x′)
dx′.

Once the variance stabilizing transform is available, the removal of signal-
dependent noise is performed through a three-step proceduce (see Figure 4.13):
1) normalize the noise variance by applying the homomorphic filtering, 2) use
a denoising algorithm designed for stationary AWGN and 3) apply the inverse
homomorfic filtering to obtain an estimate of the original, noise-free image.

The disadvantage of variance stabilization is that the signal model assumed
for x may not hold for γ̄ (x) and that very often the optimality of the estimator
in signal space diminishes in homomorphic transform space [Hirakawa, 2008b].

As an experiment to assess the quality of the variance stabilization, we com-
puted the bias E [y|x]− γ̄ (x) introduced by the Anscombe transform for Pois-
sonian distributed data, using both Monte-Carlo simulations and an exact com-
putation method (that will be explained in the following sections). Similarly, we
computed the variance of the data after homomorphic filtering. The results are
shown in Figure 4.14. Here, we used a modified version of the Anscombe trans-
form in which the output is linearly mapped onto the range [0, 255] (this does
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Figure 4.14: Experimental result for the Anscombe transform of Poissonian dis-
tributed data (a) Signal bias after homomorphic filtering, (b) Noise variance after
homomorphic filtering.

not affect the bias and variance results, upon scaling). It can be noted that the
bias and variance are near-constant, but for large input intensities. For small
input intensities the variance of the output decreases and the bias increases in
magnitude. We can conclude that the variance is stabilized, but not perfectly.
Moreover, a bias error is introduced when the variance stabilizing transform
is being inverted (e.g. through the algebraic inverse γ̄−1 (x)). The solution is
then to derive an unbiased inverse transform [Anscombe, 1948,Mäkitalo and
Foi, 2009]. For example, for the Anscombe transform, an asymptotically unbi-
ased inverse transformation is given by: γ̄−1 (x) = (x/2 − 1/8)

2.

4.4.2 Gaussian modeling of signal-dependent noise

To overcome the limitations of variance stabilization, we will investigate explicit
models for signal-dependent noise. Therefore, we start from a simple model
that describes the functional relation between a noisy pixel intensity y, the
noise-free pixel intensity x ∈ [xmin, xmax] and a noise sample w:

y = ζ (x,w) , (4.36)

where w is Gaussian distributed w ∼ N (0, 1) and ζ (·) is a nonlinear func-
tion that “mixes” the signal and the noise. Next, certain restrictions apply to
ζ (x,w): firstly, let γ(x) = ζ (x, 0) denote the intensity mapping function (i.e.
in absence of noise, y = γ(x)) and let us assume that γ(x) is continuous and
monotonic on x ∈ [xmin, xmax]. Consequently, the inverse function γ−1 (y) ex-
ists for y ∈ [γ (xmin) , γ (xmax)]. Secondly, ζ (x,w) is analytic in a small interval
around w = 0, such that the Maclaurin series

ζ(x,w) =

+∞∑

n=0

∂ζ

∂w

∣∣∣∣
w=0

wn (4.37)
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converges on this interval. This allows for a first-order MacLaurin series ap-
proximation:

y ≈ γ(x) +
∂ζ

∂w

∣∣∣∣
w=0

w, (4.38)

from which the conditional mean E [y|x] and variance Var [y|x] can be easily
obtained as:

E [y|x] ≈ γ(x), (4.39)

Var [y|x] ≈
(
∂ζ

∂w

∣∣∣∣
w=0

)2

. (4.40)

More specifically, the linearization from (4.37) causes y|x to be Gaussian dis-
tributed with mean and variance as above. We will call this approach the
Gaussian modeling of signal-dependent noise (as in [Foi et al., 2008]). Remark
that both (E [y|x] − x) and Var [y|x] are generally a function of x, hence the
signal-dependency of the noise translates into 1) a bias γ(x)−x (as E [y|x] 6= 0)
and 2) a signal-dependent variance Var [y|x].

Equation (4.36) generalizes a number of noise models used in the literature.
For example:

• An additive Gaussian noise model can be obtained as:

ζ(x,w) = x+ σw, (4.41)

where σ =
√

Var [y|x] is the noise standard deviation.

• A multiplicative noise model, which has been used, e.g., to model speckle
noise in ultrasound images (see [Achim et al., 2001a], [Pižurica, 2002, p.
158]) is given by:

ζ(x,w) = (x+ 1)w. (4.42)

• A mixed first order additive-multiplicate noise model [Hirakawa and Parks,
2005b] is found by choosing:

ζ(x,w) = x+ (a1 + a2x)w. (4.43)

with a1 the standard deviation of the signal-independent noise component
and with a2 the multiplicative noise component gain factor.

• A related mixed additive-multiplicate noise model [Lim, 2006] is defined
by:

ζ(x,w) = x+
√
a1 + a2x+ a3x2w, (4.44)

where the constant a1 is the variance of read-out noise generated by the
sensors in the camera, a2 is a photon noise gain factor and a3 is the
variance of pattern noise.
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Figure 4.15: Simplified pipeline for a digital still camera (compare to Figure 4.1).
Also see text.

• The signal-dependent CCD noise model from [Faraji and MacLean, 2004]
is given by:

ζ(x,w) = x+ σxaw (4.45)

where σ and a are constants that depend on the CCD photon transfer
curve.

We remark that the above noise models rely on an identity intensity response
mapping function ζ(x, 0) = γ(x) = x. To obtain noise models with non-identity
response mapping functions, x can be replaced by γ(x) in the right-handed sides
of the above equations (4.41)-(4.45).

Modeling the Digital Still Camera pipeline

Consider the simplified model for noise in a digital camera from Figure 4.15:
a Poisson distributed intensity, captured by a sensor element in a DSC, is
amplified and subjected to a nonlinear camera response function (CRF) γ(x).
Camera response functions [Liu et al., 2006a], which are also widely used in high
dynamic range (HDR) imaging [Debevec and Malik, 1997,De Neve et al., 2009],
account for different (pointwise) post-processing steps in the DSC3, such as
contrast enhancement, gamma correction, ... For noise-free images, the role of
the CRF function is the same as the role of the intensity mapping function (i.e.
ζ(x,w) = γ(x, 0)). In Figure 4.15 we assume that the DSC has sufficiently been
well-engineered, such that the contributions of read-out noise and pattern noise
can be ignored. However, what follows can be easily extended to include these
additional noise terms. By using Gaussian modeling, we obtain the following
“mixing” function:

ζ(x,w) = γ
(
x+

√
xw
)
, (4.46)

for which the first and second order conditional statistical moments are given
by:

E [y|x] ≈ γ(x), (4.47)

Var [y|x] ≈ |x|
(

dγ

dx

)2

. (4.48)

3We will later explain how to deal with non-pointwise operations.
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Table 4.1: Various camera response function (CRF)-noise level function (NLF) pairs.

Type CRF γ(x) NLF σ(x)

Gamma correction xα αxα
√
x

Contrast enhancement ax a
√
x

Logarithm log x 1√
x

“Gamma” NLF −
√
xe−αx

α + 1
2

√
πerf(

√
αx)

α3/2 x · exp(−αx)
Composite CRF γ2 (γ1(x))

√
x∂γ2∂γ1

(γ1(x))
∂γ1
∂x

Let σ(x) =
√

Var [y|x] denote the standard deviation of the noise as function
of the “ideal” intensity x (which we will refer to as the noise level function,
NLF4), then based on (4.48) we find the relationship between the NLF and the
CRF:

σ(x) ≈ √
x

dγ

dx
and γ(x) ≈

ˆ

σ(x)√
x

dx+ C. (4.49)

Hence, if we know the CRF (e.g. because we have information about the
exact algorithms being used in the DSC), we can compute the NLF. On the
other hand, if we can somehow estimate the NLF (see Section 5.3.5), the CRF
is determined up to a constant C. The latter case corresponds to reverse-
engineering: the DSC is considered to be a black-box; based on the noise
characteristics of acquired images, information about the internal processing is
obtained (through the CRF). In Table 4.1, a number of CRF-NLF pairs are
listed, for a number of components of the DSC pipeline (Figure 4.1).

Equation (4.49) is also useful when considering composite CRFs γ(x) =
γ2 (γ1(x)) (see bottom row of Table 4.1): by the chain rule for derivatives, the
resulting NLF is basically the product of the NLFs corresponding to respectively
γ1 and γ2, with appropriate scalings and warpings. This easily allows to find
the NLF for a combination of processing algorithms. We illustrate this through
a simple example: suppose we want to compute the NLF for gamma correction
followed by a contrast enhancement. Following Table 4.1, the respective NLFs
are:

σ1(x) =
αxα√
x

and σ2(x) = a
√
x (4.50)

The composite NLF can then be expressed in terms of the NLFs of the
individual operations:

σ(x) =
σ2(γ1(x))√

γ1(x)
σ1(x) (4.51)

= a

√
xα√
xα

αxα√
x

=
aαxα√
x

(4.52)

4We remark that the NLF is sometimes defined as a function of the processed intensity
x′ = γ(x), while here it is a function of the “RAW” pixel intensity x. Caution is advised not
to mix both definitions.
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If we would change the order of the NLFs, the composite NLF becomes:

σ(x) =
α (ax)

α

√
x

(4.53)

which is a different expression than (4.52). Hence the NLF is highly dependent
on the order of the invididual CRFs.

We emphasize that the equations (4.47)-(4.48) are only approximate and
only take the photon noise component into account. To assess the accuracy
of the approximation, we performed a number of Monte-Carlo experiments.
Therefore, we generated 2000× 256 Poisson distributed random variables with
gradually increasing mean in the range [0, 255]. Next, we applied several CRFs
to these variables and we estimated the variance. The results are shown in
Figure 4.16. The first and second CRFs simulate the dynamic range compres-
sion present in most cameras [Mann, 2000], to pre-compensate the intensity
response curve of Cathode Ray Tube (CRT) monitors. It can be noted that in
these examples, the approximation (4.48) is quite accurate. However, this is
not always the case, as we will explain next.

Assessing the inaccuracy of the model

Our initial requirement that ζ (x,w) must analytic in a small interval around
w = 0, is too strong in a number of cases. The requirement implies that the
CRF γ(x) must be analytic for x ∈ [xmin, xmax], which is not always the case
in practice. Therefore, consider the CRF-NLF pair (for x ∈ [0, 255]):

γ(x) =

ˆ

2dx

(1 + exp (α (x1 − x))) (1 + exp (−α (x2 − x)))
,

σ(x) =
2
√
x

(1 + exp (α (x1 − x))) (1 + exp (−α (x2 − x)))
. (4.54)

with 0 < x1 < x2 < 255 and γ(0) = 0. The above CRF simulates “soft”
saturation between [x1, x2]. As the parameter α→ ∞, the following saturation
curve is obtained:

γsat(x) =





0 x < x1

(x− x1)/(x2 − x1) x1 ≤ x < x2

1 x2 ≤ x

It can be shown that γ(x) is analytic for x ∈ [0, 255], although it approaches
γsat(x) for α → ∞, which is not analytic for x = x1 and x = x2. In Figure
4.17, the Monte-Carlo experiment is repeated for the CRF-NLF from (4.54)
for x1 = 40 and x2 = 216 and for two different values of α. As the parameter
α increases, the CRF becomes less smooth in x ∈ {x1, x2}. More specifically,
it can be checked that the magnitude of the second derivative of γ(x) in x ∈
{x1, x2} increases approximately linearly. Consequently, the approximations
(4.47) and (4.48) become less accurate, as Figure 4.17(b) illustrates.
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Gamma correction (α = 0.4)
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Figure 4.16: Illustration of the accuracy of the approximation σ2(x) ≈ |x|
�

∂γ
∂x

�2
,

for different camera response functions listed in Table 4.1. Note: results are obtained
in the absence of saturation.

However, the most severe limitation is in the bias estimation: according to
(4.55), the bias predicted by the model E [y|x] − γ (x) is always 0. In case of
saturation, this is certainly not valid: e.g. by the clipping of the high intensity
values that are corrupted with noise, the conditional mean E [y|x] is shifted to
the left: E [y|x] < γ (x). A possible solution is to compute more terms of the
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(a) α = 0.1 (b) α = 10
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Figure 4.17: Illustration of the inaccuracy of the approximation σ2(x) ≈ |x|
�

dγ
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,

for non-analytic CRFs.

McLaurin series:

y ≈ γ(x) +

N∑

n=1

∂nζ

∂wn

∣∣∣∣
w=0

wn
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The first order conditional statistical moment becomes:

E [y|x] ≈ γ(x) +

N∑

n=1

∂nζ

∂wn

∣∣∣∣
w=0

E [wn]

n!

= γ(x) +

N∑

n=1

∂2nζ

∂w2n

∣∣∣∣
w=0

2−n

n!
(4.55)

where we used statistical moments of the Gaussian distribution:

E [wn] =

{
n!

2n/2(n/2)!
n even

0 n odd

In (4.55), the bias E [y|x] − γ(x) will generally be non-zero. As predicted by
the “soft saturation” experiment, the absolute value of the bias |E [y|x] − γ(x)|
increases with the magnitude of the higher order derivatives

∣∣∂2nζ/∂w2n
∣∣
w=0

.
Given the fact that 2−n/n! drops quickly to zero as n→ ∞, the most significant
term will be the second derivative.

We can conclude that the Gaussian modeling technique using an N -term
McLaurin series-based computation of the conditional moments gives accu-
rate results only if the higher-order derivatives

∣∣∂2nζ/∂w2n
∣∣
w=0

are sufficiently
bounded - which is not the case near the saturation points of γ(x).

4.4.3 Exact conditional moments E [yn|x]

In this section, we will present a computation technique that does not require
that the mixing function ζ (x,w) is analytic around w = 0, and that can be
used in the presence of saturation. Note that equation (4.36) can be seen as a
nonlinear coordinate transform:

{
x′ = x

y = ζ (x,w)
.

Now, assuming that this coordinate transform is invertible on (x,w) ∈ Ω, we
can write an inverse relationship:

{
x′ = x

w = ζ′ (x′, y)
,

where ζ′ (x′, w) satisfies ζ′ (x, ζ (x,w)) = w for (x,w) ∈ Ω. The conditional
density fy|x (y|x) can be written in this new coordinate system:

fy|x (y|x) =
fx,y (x, y)

fx (x)

=

∣∣∣∣
∂ζ′

∂y

∣∣∣∣
fx,w (x, ζ′ (x, y))

fx (x)

=

∣∣∣∣
∂ζ′

∂y

∣∣∣∣ fw|x (ζ′ (x, y) |x)
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where |∂ζ′/∂y| is the magnitude of the determinant of the Jacobian matrix
for the coordinate transform. Based on the above definitions, we can exactly
compute the conditional noncentral moments Mn(x) = E [(y − γ (x))n |x] as:

Mn(x) =

ˆ +∞

−∞

∣∣∣∣
∂ζ′

∂y

∣∣∣∣ (y − γ (x))
n
fw

(
γ−1 (y) − x√

x

)
dy. (4.56)

We derive the noncentral moments here (remark that in general E [y] 6= γ (x)),
because we found that this yields simpler analytical expressions for Mn(x).5

From these moments, the conditional mean and variance are readily obtained
as:

µ(x) = E [y|x] = M1 (x) + γ (x) (4.57)

σ2(x) = M2 (x) − 2 (µ (x) − γ (x))µ (x) + µ2 (x) − γ2 (x) (4.58)

The major advantage of these equations is that their exactness ; only required
is that the partial derivative ∂ζ′/∂y exists. However, based on (4.58) it is not
possible to derive a bidirectional relationship between the NLF σ2(x) and the
γ(x) (note in this respect that Mn (x) even depends on the inverse γ−1 (y)).

Gaussian-Poisson modeling

Now, we will consider again a Poisson distributed random variable xthat is sent
through the CRF γ (x), where the response of the CRF is saturated at x = 0
and x = 255 (γ(x) = 0 for x ≤ 0 and x ≥ 255). We further assume that the
CRF is a continuous monotonic (invertible) function on the interval x ∈ [0, 255].
To simplify the equations, we use the Gaussian-Poisson approximation, which
here leads to:

fw|x (w|x) = fw (w) = (2π)−1/2 exp
(
−w2/2

)
, (4.59)

Consequently, we can write:

ζ(x,w) =





γ (x+
√
xw) 0 ≤ x+

√
xw ≤ 255

0 x+
√
xw < 0

255 255 < x+
√
xw

(4.60)

The function ζ(x,w) is invertible in w for 0 ≤ x+
√
xw ≤ 255, see Figure 4.18.

Next, we define ζ′(x, y) such ζ′ (x, ζ (x,w)) = w, but in a way that ζ′(x, y)
is invertible for y ∈ R:

ζ′(x, y) =

{
γ−1(y)−x√

x
0 ≤ y ≤ 255

y else
(4.61)

5In case central moments are needed, conversion formulas can be used.
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Figure 4.18: Signal and noise mixing function ζ(x,w) according to (4.60), for the
gamma-correction γ(x) = 255 (x/255)0.4 with x ∈ [0, 255] and including saturation to
the range [0, 255]. The thick lines delineate the regions x+

√
xw = 0 and x+

√
xw =

255.

x

y

0 50 100 150 200 250
0

50

100

150

200

250

Figure 4.19: Conditional probability density function fy|x (y|x) for the mixing func-
tion from Figure 4.18. Black corresponds to high probabilities, white to low proba-
bilities.

The determinant of the Jacobian matrix for the coordinate transform (see
above) is given by:

∂ζ′

∂y
=

{
1√
x

dγ−1

dy 0 ≤ y ≤ 255

1 else
(4.62)

Based on (4.59)-(4.62), the conditional noncentral moments can be expressed
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as:

Mn(x) =

ˆ 255

0

(y − γ (x))
n

√
x

∣∣∣∣
dγ−1

dy

∣∣∣∣ fw
(
γ−1 (y) − x√

x

)
dy

+

ˆ 0

−∞

(0 − γ (x))
n

√
x

fw

(
γ−1 (y) − x√

x

)
dy (4.63)

+

ˆ +∞

255

(255 − γ (x))n√
x

fw

(
γ−1 (y) − x√

x

)
dy. (4.64)

Subsequently, the bias E [y − γ (x) |x] and NLF can be computed through
(4.57)-(4.58). Hence, for a given CRF, we can compute the bias E [y|x]− γ(x),
the variance Var [y|x] and even higher order statistical moments, as a function
of the signal intensity in the presence of Poisson noise We will now discuss a
number of special cases.

Example I: saturation of a signal in Poisson noise with an identity

CRF

In case the CRF is the identity function on [0, 255] (γ(x) = x for x ∈ [0, 255]),
closed-form analytical expressions can be found for Mn(x):

M1(x) =

√
x

2π

(
e−

1
2 |x| − e−

(x−255)2

2|x|

)
+

(
255

2
− x

)

+
255− x

2
erf

(
x− 255√

2x

)
+
x

2
erf

(√
x

2

)
,

M2(x) = −
√

x

2π

(
xe−

1
2 |x| + (255 − x)e−

(x−255)2

2|x|

)
+

(255 − x)2

2
+
x2

2

+
|x| − x2

2
erf

(√
x

2

)
− |x| − (x− 1)2

2
erf

(
x− 1√

2x

)
(4.65)

where erf(x) = 2π−1/2
´ x

0
e−t

2

dt is the error function. In Figure 4.20(a), the
bias function and NLF corresponding to these equations are shown and com-
pared to MC simulations (in the same way as in Section 4.4.2). Even tough the
MC simulations make use of “true” Poisson random variables while equation
(4.65) relies on the Gaussian approximation of the Poisson distribution, the
results are very accurate. The NLF increases linearly in the interval [0, 200] (as
expected, as the variance of a poisson random variable is equal to its mean),
but decreases around x = 230 due to the saturation. A similar remark can
be made for the bias: the bias is zero for x < 200, but becomes negative for
larger x due to the saturation. Saturation does not have any influence for small
x-values, this is because Poisson random variables are always positive.



4.4 Signal-dependent noise 143

Example II: saturation of a signal in Poisson noise with gamma cor-

rection

As a second example, we consider a combination of saturation and gamma
correction. The CRF is given by:

γ(x) =





255 (x/255)
α

0 ≤ x ≤ 255

0 x < 0

255 255 < x

Unfortunately, for this problem, no closed-form analytical expressions exist
for Mn(x) (as far as the authors are aware of). Nevertheless, the integrals in
(4.64) can still be computed through numerical integration techniques. The bias
function and NLF are depicted in Figure 4.20(b). The nonlinearity of the CRF
causes a bias for both small and large x values. The NLF is decreasing, although
for x < 30 it is not predicted accurately by (4.65). Here, the discrepancy
between the computed NLF and the estimated NLF by MC can be attributed
to the Gaussian approximation of the Poisson distribution.

The results can be further improved by using the true Poisson density for
fy|x (y|x) instead of the Gaussian density (i.e. by dropping the Gaussian-
Poisson approximation). Because the Poisson density deals with discrete ran-
dom numbers (and consequently y is a discrete number), the integrals in (4.64)
will need to be replaced by a sum (over possibly an infinite number of terms).
This leads to expressions that are even less analytically tractable, hence we
need turn to numerical evaluation. Doing this, we found that the technique
suffers from overflow errors. Fortunately, these errors can be partially avoided
by working with the logarithm of the Poisson density (using numerical tech-
niques to compute the log-gamma function), thereby translating products into
sums and applying the exponential function in the final stage.

4.4.4 Possible extensions to the signal-dependent noise

models

As mentioned in Section 4.4.2, the Gaussian-Poisson modeling does not take
noise sources other than photon noise into account. To incorporate pattern
noise and read-out noise (as described in [Lim, 2006]) into the model, we can
extend the Gaussian-Poisson modeling as follows (see (4.44)):

ζ(x,w) = γ
(
x+

√
a1 + a2x+ a3x2w

)
(4.66)

Following the same reasoning as in Section 4.4.2, we find the following approx-
imation for the NLF:

σ(x) =
√
a1 + a2x+ a3x2

dγ

dx
.

An extra complication in practice is that the constants a1, a2, a3 depend on
various camera settings, such as the exposure time, ISO setting, automatic gain
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(a) Identity CRF on the (b) Gamma correction:
interval x ∈ [0, 255] γ(x) = 255 (x/255)

0.4 for x ∈ [0, 255]
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Figure 4.20: Results for the exact computation of the bias E [y − γ (x) |x] and NLF
Var [y|x]

control, etc. In case the CRF γ(x) is known exactly and with an appropriate
estimation technique for σ(x) and x (see Section 5.3.5), these parameters can
be estimated from the image through a linear regression.

Furthermore, the CRF is assumed to be a pixelwise nonlinear operation,
which holds for a number of post-processing steps such as contrast enhancement
and gamma correction, but not for steps involving color operations:

• Color correction: is used to compensate cross-color bleeding in the im-
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age sensor CFA [Nakamura, 2005], e.g., caused by cross-talk [Hirakawa,
2008a]. Color correction typically applies a fixed pixel-wise linear trans-
form to the R,G,B intensities in the image.

• White balance correction: the goal of white balancing techniques is to
give the DSC a reference to white in the captured image. Once the white
point is estimated from the image, the colors are converted to the correct
ones. Simple techniques correct the average pixel luminance values, while
more sophisticated techniques rely on chromatic adaptation and color
constancy techniques [Nakamura, 2005]. The latter involves a pixel-wise
nonlinear transform to the R,G,B intensities.

To deal with these situations, a possible solution is to extend the signal-
dependent noise model from (4.36) to vectors (in which each component denotes
color component R/G/B):

y = ζ (x,w) (4.67)

where the noise w ∼ N (0, I3) is spherically Gaussian distributed. A vector-
valued extension of the CRF can be defined as:

γ(x) = ζ (x,0) . (4.68)

Next, a Maclaurin series approximation can be applied (under the same condi-
tions as mentioned in Section 4.4.2):

y ≈ γ(x) +
3∑

c=1

∂ζ

∂wc

∣∣∣∣
wc=0

wc (4.69)

where wc is the cth component of w. The conditional mean E [y|x] and covari-
ance Var [y|x] are readily obtained as:

E [y|x] ≈ γ(x) (4.70)

Var [y|x] ≈
3∑

c,c′=1

∂ζ

∂wc

∣∣∣∣
wc=0

(
∂ζ

∂wc′

∣∣∣∣
wc′=0

)T
(4.71)

It is clear that the resulting noise models are considerably more complicated, as
now signal-dependent cross-channel correlations are taken into account. Never-
theless, the vector-extension relies on the same principles as those we presented
above.

4.4.5 Estimation of signal-dependent noise

Before closing this chapter, we give a few notes on how signal-dependent noise
in images can be estimated, without knowledge of the CRF. In case both an
original image and a noisy image are available, we can:

• estimate the joint density fx,y (x, y) as the joint histogram of x and y.
Subsequently, the conditional moments E [(y − E [y])n |x] can be com-
puted numerically.
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• fit a noise level function σ(x) to the data, e.g., by linear regression tech-
niques (see e.g. [Portilla, 2005,Liu et al., 2006b]).

In Section 5.3.5, we will discuss an alternative technique that is able to estimate
the noise level function σ(x) directly from an observed image.

4.5 Conclusion

Due to physical limitations of the acquisition, noise in digital images can gen-
erally not be avoided. Accurate modeling of noise in images is therefore very
important for image processing applications. In this chapter, we first discussed
a number of noise sources for digital images and the corresponding marginal
statistics. Next, we focused on stationary noise processes. We explained that
in practice individual noise samples are correlated. The noise Power Spectral
Density (PSD) describes the noise power distribution in frequency and is suited
to describe the noise correlations. We investigated the noise PSD in a num-
ber of practical situations such as PAL television, color interpolation, thermal
cameras, MRI. Thereafter, we presented a novel constrained EM algorithm for
estimating the noise correlations from an observed image in a multiresolution
transform domain. This EM algorithm was also extended to deal with locally
stationary correlated image noise, in which the correlation structure of the
noise samples varies slowly with the position in the image. We also considered
signal-dependent noise and we explained the advantages and disadvantages of
variance-stabilization transforms. To overcome some of the limitations, we
provided an alternative approach that seeks for an approximative description
of signal-dependent noise through conditional first and second order moments
of the joint distribution of a noise-free pixel intensity and the observed noisy
pixel intensity, which is called “Gaussian modeling” of signal-dependent noise.
We discussed how the signal-dependency characteristic of the noise is altered
by subsequent post-processing steps, such as a logarithmic transform, gamma
correction and clipping. The resulting models are of great importance for im-
age restoration techniques, that will be treated in Chapter 5. Finally, a few
extensions to signal-dependent noise models for color images are presented.

The work presented in this chapter has so far resulted in one book chap-
ter on the topic of colored noise [Aelterman et al., 2010b], one journal article
on the computation of autocorrelation functions from complex wavelet sub-
bands [Goossens et al., 2010a] and one conference publication on the estimation
of locally stationary noise in images [Goossens et al., 2008c]. One journal pub-
lication on the presented constrained EM algorithm is in preparation [Goossens
et al., 2010c].



5
Digital image restoration

Digital image restoration is the recovery of “original images” from observed de-
graded images. Many of the techniques developed for image restoration have
origins in the fields of applied mathematics, estimation theory, linear algebra
and numerical analysis [Banham and Katsaggelos, 1997]. In general, the re-
covery process comes down to solving a numerically complex ill-posed inverse
problem [Kirsch, 1996]. According to [Hadamard, 1923], a problem is classified
as ill-posed if either 1) a solution does not exist for certain input images, 2) the
solution is not unique, or 3) the solution differs significantly when small pertur-
bations are brought to the image. Image restoration techniques are ill-posed,
due to for example,

• Image noise, which may result in images that are inconsistent with any
natural scene [Luong, 2009]. In this case the original image cannot be
obtained directly from its observation.

• Blurring processes, which may significantly attenuate Fourier components
with higher spatial frequencies in the image, in a way that these compo-
nents can not be recovered uniquely. By directly “undoing” the atten-
uation of these components, the noise will also amplified tremendously,
causing the solution to become instable.

To overcome these problems, most restoration techniques apply a form of regu-
larization [Kirsch, 1996]. A possible way to achieve regularization is to encode
“general” prior knowledge about images and/or the degradation, in the form
of an image model (see Chapter 3) and a degradation model (e.g. noise mod-
els from Chapter 4). Restoration techniques attempt to exploit all available
information (i.e. the observed image itself and the prior knowledge) in order
to maximize the quality of the restored image. This is in contrast to image
enhancement methods which attempt to produce images that are pleasing to
the observer, without use of an explicit degradation model. Another clan of
related techniques are image reconstruction techniques. These are generally
treated separately from restoration techniques, since reconstruction techniques
typically operate on a subset of the data (e.g. demosaicing), despite solving
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the same mathematical problem, i.e. solving systems of linear or nonlinear
equations [Banham and Katsaggelos, 1997].

While image restoration techniques were initially developed for astronomical
imaging or for improving aging and deteriorated films, today, the application
area is much broader:

• Digital photography: as already explained in Chapter 4, digital still cam-
eras and video camcorders inevitably produce noise. Noise removal is
desirable not only to improve the visual quality of the images, but also
to improve the performance of digital compression.

• Video communication/transmission (e.g. over the internet), where com-
pression techniques are used to reduce the communication bandwidth.
For low bandwidths, the compressed images often contain disturbing
coding artifacts, such as quantization artifacts and block artifacts (e.g.
JPEG, MPEG). Deblocking is the process of suppressing block artifacts,
by smoothing over the block boundaries. Other examples are motion
compensation (digital image stabilization) and motion blur compensa-
tion.

• Medical imaging: noise and aliasing often cause artifacts in reconstructed
medical images (e.g. CT, MRI) which may potentially cause misdiagnosis
(e.g. when the physician misses certain lesions in the images).

• Biomedical imaging [Rooms, 2005]: images obtained with optical systems,
such as microscopes contain distortions, such as blurring and noise, which
causes loss of actual information. The goal here is to recover some of this
information, to facilitate post-processing, analysis...

• Other application areas include: the printing industry (inverse halfton-
ing, [Hein and Zakhor, 1995]), assembly line manufacturing [Banham and
Katsaggelos, 1997], industrial inspection and defense-oriented applica-
tions, such as the detection of land mines [Pižurica, 2002].

Many different application areas share the same problems. We briefly categorize
several restoration problems that will be treated in this chapter:

• Noise reduction (denoising) is the process of suppressing or entirely re-
moving noise from images. The noise is either introduced by the acqui-
sition device or the transmission process. The goal of image denoising is
therefore to reduce the noise while preserving original image details.

• Deconvolution (deblurring): imaging systems are non-ideal, i.e. they
images an ideal mathematical point as a smeared-out version of this
point. The image of this ideal point is called the Point Spread Func-
tion (PSF) [Rooms, 2005]. Image deblurring is the process of “undoing”
this PSF, either by exploiting prior knowledge with respect to the blur
kernel or by jointly estimating the PSF and the deblurred image [Luong,
2009].
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• Demosaicing (see Section 4.2): is the process of filling in missing pixel
intensities in a color filter array (CFA) of a digital still camera. Strictly
speaking, demosaicing is a reconstruction technique because it starts with
a subset of the data. However, because demosaicing creates several arti-
facts (such as color and zippering artifacts), we will consider joint demo-
saicing and denoising as a restoration technique.

In this chapter, we will consider three different classes of image restoration tech-
niques, as shown in Figure 5.1. In image domain methods, the image restora-
tion filter directly operates in the image domain, by manipulation of the pixel
intensities (without the use of multiresolution transforms or other transforms,
such as the FFT). Examples of such methods are Total Variation classes [Rudin
and Osher, 1994] (for image denoising), Bilateral filtering [Tomasi and Man-
duchi, 1998], anisotropic diffusion schemes (e.g. [Rudin et al., 1992,Chan et al.,
2001]), Non-local means denoising [Buades. et al., 2005], etc. In transform
domain methods, the restoration technique recovers the image by first per-
forming a forward transform, then by processing of the transform coefficients
and finally by applying the inverse transform. Examples are the Fourier domain
Wiener filter, various Richardson-Lucy based restoration techniques [Rooms,
2005] and wavelet-based techniques. Finally, in joint image domain/transform
domain methods, manipulate both image intensities and transform coefficients,
typically in an iterative scheme.

We remark that from a mathematical point of view, a distinction between
image domain restoration and transform domain restoration does not make
much sense, since many (if not all) image domain restoration techniques have
an equivalent implementation in transform domain and vice versa. However,
the difference is in the way the image model and degradation model are defined
and are being used : as we already discussed in Chapter 3, it is much easier
to model prior information with respect to the undegraded image in a sparse
(multiresolution) transform domain rather than directly in the image domain.
On the other hand, the degradation model is generally easier to express directly
in the image domain (see e.g. Chapter 4). Some techniques exploit the fact
that the degradation model in the image domain easily translates into an equiv-
alent wavelet domain degradation model (e.g. denoising methods for additive
white Gaussian noise), and consequently the transform domain technique can
optimally use all available information about the degradation.

However, this is not always trivial: for example, consider images contain-
ing missing pixels with known locations. An image domain degradation model
simply keeps track of the locations of the missing pixels, while an equivalent
wavelet domain degradation model would need to take into account that wavelet
coefficients at different scales and orientations may be missing or are incorrect.
Interpolation of these missing pixel intensities from e.g. neighboring pixel in-
tensities is generally not as straightforward in the wavelet domain as in the
image domain. A second example is blurring, which is defined as a convolution
in the image domain. A translation of this degradation model to the wavelet
domain inevitably leads to a multi-subband degradation model involving semi-
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(a) Image domain approach
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Figure 5.1: Three different designs of image restoration algorithms (a) Image domain
techniques directly apply a restoration filter based on a degradation model in the
image domain, (b) Transform domain techniques process the transform coefficients in
order to estimate the original image, a transform domain degradation model needs
to be used, (c) Joint domain techniques combine the advantages of the (a) and (b)
designs.
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block circulant matrices (see [Banham et al., 1994]), which is more complicated
than the corresponding image domain model (a convolution kernel).

Although (multiresolution) transform domain techniques are generally bet-
ter able to exploit sparseness properties of the underlying undegraded image, it
is not necessarily true that transform domain techniques offer a better restora-
tion performance (e.g. in SNR or visually) than image domain techniques.
Quite often, unrealistic assumptions with respect to the degradation model (or
image model) need to be made in order to obtain a reasonably practical trans-
form domain algorithm. For example, optimally removing Poisson noise in the
wavelet domain is considered to be a difficult task, due to the signal-dependency
of the noise (there are some recent successes, see e.g. [Hirakawa, 2007]). As al-
ready mentioned in Section 4.4.1, many denoising techniques therefore rely on
a variance stabilizing (VS) transform, such that the signal-dependent noise is
translated into additive noise in the transform domain. The nonlinearity of the
VS transform is then being completely ignored in the image model to keep the
algorithms simple.

To obtain the best of both worlds, we will also investigate joint image do-
main/transform domain designs, in which the degradation is naturally modeled
in the image domain, while the image model is defined in a multiresolution
transform domain. This decoupling has the very important consequence that
a restoration technique can be build by 1) selecting an appropriate multires-
olution transform from Chapter 2, 2) defining an image model from Chapter
3 for the selected representation and 3) by using e.g. a degradation model
from Chapter 4. The mechanism behind the joint transform domain design is
also very intuitive, as illustrated in Figure 5.1: conceptually, first the degraded
image is “checked” against the image model in transform domain and correc-
tions are made in places where the image model does not match. Subsequently,
the obtained image is “tested” against the degradation model, pixel intensities
that are “inconsistent” with the degradation model (e.g. due to oversmoothing)
are restored by adding back information from the degraded image. Then this
process is repeated, until no modifications are being performed to the restored
image. Mathematically, this is achieved by iteratively solving an appropriately
defined optimization problem. Later, we will see that a proper formulation of
this optimization problem can lead to guaranteed convergence.

In the next sections, we will discuss a number of restoration techniques for
all three of the above designs. Starting from “more simple” restoration prob-
lems we will gradually increase the complexity of the problems and illustrate
through examples how these problems can be solved efficiently. A list of novel
restoration algorithms is given in Table 5.1. For each of the methods, the
table lists the transform domain (Chapter 2), image model (Chapter 3) and
degradation model (Chapter 4) being targeted.
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Section Application Transform dom. Image model Degradation model

5.1.2 Image Denoising Image Domain Nonlocal Correlated Gauss. noise
5.2.2 Image Denoising Multiresolution BKF White Gauss. noise
5.2.3 Image Denoising Multiresolution Inter+intra Correlated Gauss. noise
5.2.4 Image Denoising Multiresolution MPGSM Correlated Gauss. noise
5.2.5 Demosaicing DT-CWT - Bayer pattern
5.3.3 Image Denoising Joint Laplace/BKF Correlated Gauss. noise
5.3.4 Denoising+ Joint Laplace/BKF Additive noise + blur

deblurring
5.3.5 Signal-dependent Joint Laplace/BKF Uncorrelated

noise removal signal-dependent noise

Table 5.1: Overview of the new restoration algorithms in this chapter.

5.1 Image domain restoration

5.1.1 Overview of existing techniques

For the restoration of images in the image domain, many techniques have been
proposed in the past. The Wiener-filter is theoretically optimal in the MMSE
sense for restoring images with Gaussian statistics corrupted with Gaussian
noise [Rooms et al., 2010]. Let x and y denote vectors of pixel intensities
of respectively the original image and the observed image. The Wiener filter
estimates the original image as follows:

x̂ = argmin
x
H (x;y) + J(x) (5.1)

with H (x;y) a so-called data fitting (or fidelity) function, which is a quadratic
function in case of the Wiener filter and with J(x) ∝ ‖x‖2 a regularization
term. Unfortunately, as we explained in Chapter 3, image statistics are rarely
Gaussian and consequently the Wiener-filter generally performs poorly.

The Tikhonov-Miller [Tikhonov et al., 1990] restoration method is an im-
provement to the Wiener filter in the sense that it imposes a smoothness con-
straint as a regularization functional to suppress oscillations and restoration
errors due to noise amplification. Tikhonov-Miller uses quadratic data fitting
and regularization terms:

H (x;y) =
µ

2
‖x − y‖2

2 and J(x) = ‖Sx‖2 , (5.2)

with S a linear “sparsifying” transform (generally a high-pass filter, although
generally any multiresolution transform from Chapter 2 can be used as well).
Solving the l2-regularized problem (5.2) leads to a system of linear equations,
from which the solution can efficiently be computed using the DFT, or Gauss-
Seidel methods [Kahan, 1958]. Alternatively, the solution can be computed
iteratively using the method of successive approximations [Banham and Kat-
saggelos, 1997]; the resulting algorithm is then known as iterative constrained
least squares (ICLS).

Both the Wiener filter and the Tikhonov-Miller restoration method are
linear methods that have the disadvantage that they can not recover frequency
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components of the image that are fully removed by the degradation process
(for example high frequencies in the image that are completely attenuated due
to blur).

To overcome these problems, l1-regularized problems have been studied,
where

H (x;y) =
µ

2
‖x − y‖2

2 and J(x) = |Sx|1 . (5.3)

The l1-regularized problem is difficult to solve numerically, because J(x) is
non-differentiable. A well-known example is Total Variation (TV) [Rudin and
Osher, 1994], where H (x;y) = µ

2 ‖x − y‖2
2 and J(x) = ‖x‖BV is the TV norm

(also known as the bounded variation norm):

‖x‖BV = |∇x|1 (5.4)

which is the magnitude of a discrete version of the spatial gradient of x. Com-
mon techniques to solve l1-regularized problems are steepest descent (which
is generally considered to be very slow by taking too many iterations before
convergence), various improvements on steepest descent, employing better op-
timized time steps, nonlinear conjugate gradient methods and (approximative)
Newton-based methods.

Other filters that are successful are Bilateral filtering [Tomasi and Man-
duchi, 1998], nonlinear diffusion schemes [Perona and Malik, 1990,Weickert,
1998,Black et al., 1998]. Nonlinear diffusion schemes compute solutions of a
set of coupled partial differential equations (PDEs) that are inspired by heat-
diffusion equations. The conductance coefficient that is used by [Perona and
Malik, 1990] is a function of the gradient magnitude (edge-stopping function)
and ensures that edges are preserved during the simulated diffusion process.
Here, the TV norm is sometimes also used as edge-stopping function, which
is called TV diffusion. In [Pižurica et al., 2006], a Bayesian formulation for
the edge-stopping functions is used, based on a mixture of truncated Laplace
distributions (see Section 3.2.2). In [Steidl et al., 2004], is shown that TV
diffusion, TV regularization and Haar-wavelet soft shrinkage (see further) are
equivalent under certain (but quite general) conditions.

For the restoration of blurred images with Poisson noise, the Richardson-
Lucy (RL) method has been proposed in [Richardson, 1972,Lucy, 1974]. An
iterative EM algorithm for RL has been presented in [Shepp and Vardi, 1982].
Because RL does not include regularization, extensions have been proposed,
such as RL with Tikhonov-Miller regularization [Dey et al., 2004], RL Conchello
[Conchello and McNally, 1996] and RL with TV regularization [Dey et al., 2004].

More recently, the NLMeans filter has been introduced in [Buades. et al.,
2005]. By its success, many improvements have been proposed (e.g. [Mahmoudi
and Sapiro, 2005,Kervrann and Boulanger, 2006,Kervrann et al., 2007,Bilcu
and Vehvilainen, 2007,Dauwe et al., 2008]). Most of the authors focus on the
removal of additive white Gaussian noise. In the next section, we will explain
our own improvements to the NLMeans filter and how the filter can be used
for the removal of correlated Gaussian noise.
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5.1.2 Improved Non-Local Means filter

As already mentioned in Section 3.7, the NLMeans filter estimates a noise-
free pixel intensity as a weighted average of all pixels in the image, where the
weights are proportional to the similarity between the local neighborhood of
the pixel being processed and local neighborhoods of the surrounding pixels:

[̂xj ]c =

∑N
j′=1 g (yj′ − yj)yj′
∑N

j′=1 g (yj′ − yj)
(5.5)

where g(·) is a weighting function that depends on the Euclidean distance
between the two local neighborhood vectors:

g (yj′ − yj) = exp

(
−‖yj′ − yj‖2

h2

)
(5.6)

with h a constant that is proportional to the noise variance. Since only the
central pixel intensity of the local neighborhood is estimated, we will refer to
this filter as the pixel-based NLMeans. A block -based NLMeans filter does also
exist [Buades et al., 2005,Goossens et al., 2008a], in this filter the weights of
different neighborhoods are accumulated before calculating the final weighted
average. The NLMeans filter in this form is intuitive and potentially very pow-
erful, however, there are two limitations: 1) the objective and visual quality are
somewhat inferior to other recent non-local techniques (e.g. [Elad and Aharon,
2006b, Dabov et al., 2007]) and 2) the NLMeans filter has a computational
complexity that is quadratic in the number of pixels in the image, which makes
the algorithm impractical in real applications. Therefore, several authors have
investigated better similarity measures [Azzabou et al., 2007,Kervrann et al.,
2007], use adaptive local neighborhoods [Kervrann and Boulanger, 2006], or
refine the similarity estimates in different iterations [Brox and Cremers, 2007].
In [Zimmer et al., 2008], rotationally invariant distance measures are used.
Other authors propose algorithmic acceleration techniques [Mahmoudi and
Sapiro, 2005, Wang et al., 2006, Bilcu and Vehvilainen, 2007, Dauwe et al.,
2008], based for example on neighborhood preclassification [Mahmoudi and
Sapiro, 2005,Dauwe et al., 2008] and FFT-based computation of the neighbor-
hood similarities [Wang et al., 2006].

In earlier work [Dauwe et al., 2008] we noted that the exponential form
of g(x) assigns positive non-zero weights to dissimilar neighborhoods. Even
though these weights are very small, the estimated pixel intensities can be
severely biased due to many small positive contributions. We therefore pro-
posed a preclassification based on the first three statistical moment to exclude
dissimilar blocks [Dauwe et al., 2008]. In [Goossens et al., 2008a] we have shown
that the NLMeans algorithm is equivalent to the first iteration of optimizing
the robust Leclerc loss function (for the Jacobi optimization method). This
makes it possible to replace the Leclerc loss function with other loss functions
(see Table 3.2) that are commonly used for robust estimation. We will now
look at the characteristics of these robust weighting functions in more detail.
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Figure 5.2: Comparison of the weighting functions g(y) for commonly used robust
functions. Here, y = ‖yi − yj‖ is the Euclidean distances between the vectors yi and
yj .

• The Cauchy weighting function has a very slow decay (see Figure 5.2(a)).
Larger weights are assigned to dissimilar blocks than the Leclerc robust
function, which will eventually lead to oversmoothing.

• The Leclerc weighting function has a faster decay, but still assigns positive
non-zero weights to dissimilar blocks.

• The Andrews weighting function imposes a hard threshold while com-
paring neighborhoods (the weight is zero as soon as a given threshold is
exceeded), while the Tukey and Bisquare weighting functions rather use
a soft threshold (Figure 5.2(b)). Experimentally we found that applying
a soft threshold often improves the visual quality.

• To improve upon the Tukey and Bisquare weighting functions, we also
modified the Bisquare robust function in order to have a steeper slope
(see Table 3.2 and Figure 5.2(b)).

Next, one iteration of the NLMeans filter may not remove all of the noise (e.g.
in case no other similar candidate neighborhoods are present in the image).
Theoretically, because the NLMeans estimate is an average, the filter requires
an infinite number of neighborhoods in order to completely suppress the noise,
which is not possible for finite image dimensions. Therefore, we successfully
applied a post-filter in [Goossens et al., 2008a] to remove the remaining noise.
The effect of this post-filter is shown in Figure 5.3. It can be seen that the
post-filter gives a significant improvement both in PSNR as in visual quality.

Further, we extended the NLMeans filter to images with correlated noise,
by considering the Mahalanobis distance instead of the Euclidean distance. For
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(a) Original (b) Noisy (20.16dB) (a) Original (b) Noisy (20.16dB)

(c) NLMeans-W without (d) NLMeans-W with (c) NLMeans-W without (d) NLMeans-W with
post-processing filter post-processing filter post-processing filter post-processing filter

(29.18dB) (30.53dB) (29.18dB) (30.53dB)

Figure 5.3: Denoising example of Barbara (two magnified portions of the image
are shown): the effect of using the proposed post-processing filter (a) Crop out of the
original image (b) Image corrupted by white Gaussian noise (σ = 25). (c) The result of
the NLMeans filter without post-processing filter (d) The result of the NLMeans filter
with post-processing filter. PSNR values (for the full image) are between parentheses.

the Leclerc weighting function1, this gives:

g (yj′ − yj) = exp

(
− (yj′ − yj)

T
C−1
w (yj′ − yj)

h2

)
, (5.7)

where Cw is the noise covariance matrix in the image domain. The distance
function (5.7) can be efficiently computed by first applying a prewhitening op-
eration to the observed neighborhood vectors (i.e. y

′

j = C
−1/2
w yj) and subse-

quently by using the Euclidean distance function on the prewhitened neighbor-
hood vectors. In practice, we “prewhiten” the whole image based on the noise
PSD, which is computationally more efficient than prewhitening all neighbor-
hood vectors individually. The PSD may not be invertible, in this case we
regularize the inversion using a small positive constant.

Equivalently, the NLMeans filter can be used to suppress non-stationary
Gaussian noise, by using the following weighing function:

g (yj′ − yj) = exp


− ‖yj′ − yj‖2

h2
(
σ2
j′ + σ2

j

)


 (5.8)

where σ2
j is the noise variance at position j in the image. Here the noise

variance of positions j and j′ is summed in the weight computation. This
1Other weighting functions can be extended analogously.
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Figure 5.4: 2D DWT of an image with white Gaussian noise.

distance function can be motivated by the Gaussianity of the noise: if yj′ and
yj are Gaussian distributed with variance σ2

j′ and σ2
j , respectively, then their

difference yj′ −yj will be Gaussian with variance σ2
j′ +σ2

j . A similar extension
of the NLMeans filter has been made for dealing with Poisson noise [Coupé
et al., 2008].

Finally, we proposed a modified implementation of the NLMeans filter,
yielding a significant speed up of the algorithm without sacrificing quality. Our
modification exploits the symmetry of the weighting function (i.e. g (yj′ − yj) =
g (yj − yj′ ) and uses a 2D moving average filter for computing the Euclidean
distances between neighborhood vectors. For 11×11-neighborhoods, the speed-
up factor is approximately 121, which brings down the computation time for
processing a 512×512 image from several minutes to approximately 10 seconds
on a recent PC.

5.2 Multiresolution image restoration

In this section, we will discuss a number of image restoration techniques that
are implemented in a multiresolution transform domain, following the design
of Figure 5.1(b).

5.2.1 Existing multiresolution techniques for noise reduc-

tion

Wavelet shrinkage by thresholding

Image denoising by wavelet shrinkage has attracted the interest of many re-
searchers in the field, due to its simplicity and effectiveness. Figure 5.4 shows
a 2D DWT decomposition of an image with artificial noise: the LL2 subband
clearly contains the most signal information, while the subbands LHi, HLi
and HHi are almost completely corrupted by the noise. Some image struc-
tures (mostly from the textures and edges) are still visible through the noise.
These structures correspond to wavelet coefficients with significant magnitudes
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Figure 5.5: Hard-thresholding of a signal. (a) Noisy signal, (b) Thresholded signal.

in the noiseless image. Noise reduction is then typically performed by shrink-
age-based approaches: wavelet coefficients with non-significant magnitudes are
mostly dominated by noise; by decreasing the coefficients in magnitude, the
noise can noticably be suppressed. Unfortunately, large coefficients also con-
tain noise, which is not removed by this method.

Hard-thresholding imposes a fixed threshold per subband in which all co-
efficients with magnitude smaller than this threshold are set to zero. Soft-
thresholding also reduces the magnitude of the significant coefficients but to
a lesser degree. In this respect, wavelet-domain thresholding is very similar
to noise gating, a much older technique that is commonly used to suppress
background noise in audio signals: the noise gate allows the signal to pass only
when its magnitude is above a given threshold. Below this threshold, the “gate”
is closed and nothing is passed. This principle is illustrated in Figure 5.5: in
this example the noise can be almost completely removed by simply discarding
all signal magnitudes that are below the threshold T .

To address the question of threshold selection, a number of techniques
have been specifically developed to optimize the threshold for hard and/or soft
shrinkage in terms of a given optimization criterion [Donoho, 1995,Vidakovic,
1998a,Vidakovic, 1998b,Chang et al., 2000b,Abramovich et al., 1998].

Bayesian techniques

Bayesian estimation techniques incorporate a prior distribution of noise-free
wavelet coefficients [Vidakovic, 1998a,Vidakovic, 1998b, Leporini et al., 1999]
and also often lead to shrinkage estimators. These methods minimize a specific
optimization criterion, called the Bayesian risk [Van Trees, 1968]. Let x and
y respectively denote a noise-free wavelet coefficient and the corresponding
observed noisy wavelet coefficient at position j, then the Maximum a posteriori
(MAP) estimate calculates the mode of the posterior distribution fx|y (xj |yj):

x̂MAP,j = argmax
xj

fx|y (xj |yj) , (5.9)

where the posterior distribution is obtained by applying Bayes’ rule (hence the
name Bayesian estimation). For example, if x follows a Laplace distribution
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Figure 5.6: Bayesian MAP and MMSE shrinkage for estimating a Laplacian dis-
tributed signal.

with parameter s (as defined in Section 3.2.1) and if y|x ∼ N
(
x, σ2

)
is Gaussian

distributed, then the MAP estimate for x is given by the soft-shrinkage rule:

x̂MAP,j = softshrink
(
yj ;σ

2/s
)

= sign (yj)max
(
0, |yj | − σ2/s

)
.

A second Bayesian estimate is the Minimum Mean Square (MMSE) error esti-

mate, which minimizes the quadratical cost function E
[
(x̂− x)

2
]
:

x̂MMSE,j = E [xj |yj] , (5.10)

which is the conditional expectation of the noise-free wavelet coefficient, given
its noisy observation. The MAP and MMSE2 estimates for a Laplacian distrib-
uted signal in Gaussian noise are illustrated in Figure 5.6. For large |x| both
estimates are approximately equal, while for small |x| the MMSE estimate
tends to shrink “less aggressively”.

For more complicated conditional PDFs fx|y (xj |yj), the MAP estimate (5.9)
may not be available in closed-form. In those cases, general optimization tech-
niques can be used, often leading to iterative techniques that are easy to im-
plement. On the other hand, the computation of the MMSE estimate requires
an integration, for which the use of numerical integration techniques may be
necessary, especially when considering vectors of wavelet coefficients. Never-
theless, the MMSE estimate is often preferred over the MAP estimate because
it naturally maximizes the Peak Signal To Noise Ratio (PSNR), defined by:

PSNR = 10 log10

2552

MSE
with MSE =

1

N

N∑

j=1

(x̂j − xj)
2
.

2A “simple” closed-form expression for the MMSE estimate is in this case not available
(see e.g. [Simoncelli and Adelson, 1996]), although we will go deeper into this in Section 5.2.2.
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Table 5.2: Overview of a few recent wavelet-based denoising techniques from liter-
ature. (For specific details, see text.)

“Classical” Thresholding Bayesian multivariate

[Donoho, 1995] [Strela et al., 2000]
[Vidakovic, 1998a] [Figueiredo and Nowak, 2001]
[Vidakovic, 1998b] [Şendur and Selesnick, 2002a]

[Chang et al., 2000b] [Portilla et al., 2003]
[Abramovich et al., 1998] [Portilla, 2005]

[Johnstone and Silverman, 1997] [Malfait and Roose, 1997]

Bayesian univariate Bayesian multivariate (cont.)

[Simoncelli and Adelson, 1996] [Pižurica et al., 2002]
[Chipman et al., 1997] [Scheunders, 2004]

[Abramovich et al., 1998] [Pižurica and Philips, 2006]
[Clyde et al., 1998] [Fan and Xia, 2001a]
[Crouse et al., 1998] [Benazza-Benyahia and Pesquet, 2004]

[Mihçak, 1999] [Benazza-Benyahia and Pesquet, 2005]
[Moulin and Liu, 1999] [Goossens et al., 2009d]

[Mallat, 1999] [Goossens et al., 2009c]
[Achim et al., 2001b]

[Fadili and Boubchir, 2005]

MSE and PSNR are extensively used in the literature to compare the perfor-
mance of restoration and compression algorithms. It can be shown that the
MSE, when computed as the sum of the squared differences between wavelet
and scaling coefficients x̂j and xj in all subbands, is invariant under orthonormal
transforms. Hence, for orthonormal multiresolution representations such as the
DWT, maximizing the PSNR in the wavelet domain as explained above, au-
tomatically maximizes the PSNR after wavelet reconstruction. For redundant
transforms this is not the case: maximizing the PSNR in transform domain
is strictly speaking sub-optimal in terms of image domain PSNR [Raphan and
Simoncelli, 2008].

Because the prior distribution encodes prior knowledge about noise-free im-
ages, the choice of the prior distribution is crucial in the design of Bayesian
denoising techniques. In fact, Bayesian estimators can be derived for any of the
parametric densities presented in Section 3.2. This fact, together with the good
time-frequency localization properties of the wavelet transform, recently led to
the birth of many denoising techniques (see the Bayesian section of Table 5.2):
[Simoncelli and Adelson, 1996] studied the MMSE estimates for a generalized
Laplace prior. [Moulin and Liu, 1999] investigate the Bayesian MAP estimate
for the same prior distribution. It was found that the MAP estimate for very
heavy tailed generalized Laplace distributions is equivalent to hard threshold-
ing. [Abramovich et al., 1998,Clyde et al., 1998] derive Bayesian estimates for
weighted mixtures of a Gaussian and a point mass at zero. [Chipman et al.,
1997,Crouse et al., 1998] use the MMSE estimate for a mixture of two univari-
ate Gaussian distributions, in particular [Crouse et al., 1998] use this model in
the context of a HMT tree (see Section 3.5.1).

In [Tan and Jiao, 2007], a great similary between the methods of [Mihçak,



5.2 Multiresolution image restoration 161

1999,Figueiredo and Nowak, 2001,Şendur and Selesnick, 2002a,Portilla et al.,
2003] was noted. These algorithms all employ elliptically symmetric prior dis-
tributions (see Section 3.2.3). It was found that the GSM model from [Por-
tilla et al., 2003], which aims to characterize the joint statistics of wavelet
coefficients in a local neighborhood through a GSM model, and the bivari-
ate shrinkage method of [Şendur and Selesnick, 2002a] offers a denoising per-
formance (in terms of PSNR) that is significantly better than the methods
from [Figueiredo and Nowak, 2001,Mihçak, 1999]. Many authors (e.g. [Chang
et al., 2000a, Pižurica et al., 2002, Tan and Jiao, 2007]) conclude that great
importance need to be attached to the joint dependence among wavelet co-
efficients. While [Şendur and Selesnick, 2002a] use a bivariate probability
density for modeling inter-scale dependencies, [Portilla et al., 2003] use higher-
dimensional (typically 9 or 10 dimensional) multivariate densities for character-
izing the wavelet coefficients in a local neighborhood and (optionally) a parent
coefficient.

The MMSE estimate for the GSM used in [Portilla et al., 2003] is particu-
larly interesting because the expression is a posterior weighted average of local
Wiener estimates for different values of the GSM-multiplier z:

x̂j = E [xj |yj ] =

ˆ +∞

0

fz|y (z|yj) zCu (zCu + Cw)
−1

yjdz, (5.11)

where Cw is the noise covariance matrix for the considered wavelet subband. In
practice, the integral in (5.11) must be evaluated using numerical techniques.
We will show in Section 5.2.2 that for a specific case of GSM model, the Bessel-
K Form density, closed form expressions can be found as well.

[Pižurica and Philips, 2006] propose to shrink a wavelet coefficient by multi-
plying it with the probability that it contains a significant noise-free component
(called hypothesis H1):

x̂j = P (H1|yj) yj

=

(
1 +

P (H0)

P (H1)

fy|H (yj |H0)

fy|H (yj |H1)

)−1

yj . (5.12)

A locally adaptive version of this approach was also introduced in [Pižurica and
Philips, 2006]. This technique attempts to exploit spatial correlations between
the wavelet coefficients within the same subband (also see Figure 5.7):

x̂j = P (H1|yj , vj) yj

=

(
1 +

P (H0)

P (H1)

fv|H (vj |H0)

fv|H (vj |H1)

fy|H (yj |H0)

fy|H (yj |H1)

)−1

yj (5.13)

where vj is the local spatial activity indicator (see Section 3.4.2). In this case,
the probability of signal presence is conditioned not only on the coefficient value
but also on the LSAI computed from the surrounding coefficients, to improve
the denoising performance. This locally adaptive version offers a denoising
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Figure 5.7: Illustration of the probabilistic shrinkage (ProbShrink) from [Pižurica
and Philips, 2006]. (a) Shrinkage rule formula and the different conditional densities,
(b) Shrinkage rule for different values of the Local Spatial Activity Indicator (LSAI).

performance close to the performance of [Portilla et al., 2003], but at a lower
computational complexity.

Similarly, a number of denoising methods have been devised for Markov
Random Field3 priors [Malfait and Roose, 1997, Jansen and Bultheel, 1999,
Jansen and Bultheel, 2001,Pižurica et al., 2002]. These techniques estimate
a significance map of the wavelet coefficients, typically using Metropolis sto-
chastic sampling [Malfait and Roose, 1997, Jansen and Bultheel, 1999, Jansen
and Bultheel, 2001] or using iterated conditional modes (ICM) [Pižurica et al.,
2002].

More recently, further improvements have been brought to the “traditional”
GSM method of [Portilla et al., 2003]: the orientation-adaptive GSM method
from [Hammond and Simoncelli, 2008] makes use of the steerability proper-
ties of the steerable pyramid transform to improve the denoising performance.
In [Guerrero-Colón et al., 2008a] the GSM covariance matrix is estimated lo-
cally in non-overlapping regions. Mixtures of GSMs [Guerrero-Colón et al.,
2008b] cluster the local covariance matrices globally, in order to exploit non-
local redundancy (or repetitivity) in images. Fields of Gaussian Scale Mixture
models (FoGSM) [Lyu and Simoncelli, 2008] combine the GSM model with a
Markov Random Field model and yield a slightly better denoising performance
than MGSM, on average.

Finally, denoising techniques increasingly employ “newer” multiresolution
transforms specifically designed to overcome some of the shortcomings of the
wavelet transform (see Chapter 2). These recent transforms analyze images
in a multidirectional fashion, which allows then to deal with line and curve
singularities [Tan and Jiao, 2007]. For example, in [Starck et al., 2000] it was
found that simple hard-thresholding rules in the curvelet domain yielded results
that were comparable to state-of-the-art methods, employing more complicated

3See Section 3.4.1.
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rules in the wavelet domain. A similar result was obtained for Ridgelet-biframes
in [Tan and Jiao, 2006]. In [Tessens et al., 2008], an extension of ProbShrink
from [Pižurica and Philips, 2006] is proposed for the curvelet transform, reach-
ing the same conclusion. In [Easley et al., 2009], the shearlet system is adopted
to this end.

5.2.2 Estimators for the univariate Bessel K distribution

As already mentioned in Section 3.2.5, the marginals of the BKF distribution
fit well with the observed histograms of wavelet coefficients. Because the BKF
distribution is a specific case of a Gaussian Scale Mixture, estimators for scalar
wavelet coefficients under the BKF prior can be more easily extended to wavelet
coefficient vectors than for e.g. non-GSM distributions.

In this section, we will derive exact expressions for the MMSE and MAP
estimates of a Bessel K Form (BKF) distributed signal, corrupted with addi-
tive white Gaussian noise. In [Fadili and Boubchir, 2005], an expression for
the MMSE estimator for the Bessel K distribution was derived, however, this
derivation is based on an asymptotic approximation of the Bessel K function.
For completeness, we give the exact results here. As far as we know, these
expressions have not been reported so far. We follow the same reasoning as
in [Selesnick, 2008].4

MMSE estimate

To simplify the notations, we will consider only one coefficient in a subband
of a given multiresolution transform and therefore we will omit the position
subscript j in the remainder of this section. Using the GSM representation of
the Bessel K Form, the MMSE estimate (5.10) yields:

x̂MMSE = E [x|y] =

ˆ +∞

0

fz|y (z|y)E [x|y, z] dz

where we can use Bayes’ rule fz|y (z|y) = fy|z (y|z) fz (z) /fy (y). To proceed,
we need to compute the likelihood function fy (y):

fy (y) =

ˆ +∞

0

fy|z (y|z) fz (z) dz

=
1

Γ (τ)

ˆ +∞

0

zτ−1e−z√
2π (zσ2

u + σ2)
exp

(
−1

2

y2

zσ2
u + σ2

)
dz

=
exp

(
σ2/σ2

u

)
√

2πσuΓ (τ)

ˆ +∞

σ2/σ2
u

(
t− σ2

σ2
u

)τ−1

t−
1
2 exp

(
−t− y2

2tσ2

)
dt,

4in [Selesnick, 2008], exact MMSE and MAP estimates are given for a special case of the
BKF, i.e. for τ = 1, which corresponds to a Laplace distribution and which yields simpler
expressions.
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with σ2 and σ2
u respectively the noise variance and variance of the Gaussian

(hidden) random variable u. Next, we apply the generalized Binomial theorem
(allowing non-integer values for τ):

(t+ a)τ−1 =
+∞∑

n=0

(
τ − 1
n

)
tτ−1−nan,

with a = −σ2/σ2
u and with

(
τ − 1
n

)
= (τ − 1) (τ − 2) · · · (τ − n) /n!. This

leads to:

fy (y) =
exp

(
σ2/σ2

u

)
√

2πσuΓ (τ)

+∞∑

n=0

(
τ − 1
n

)
an
ˆ +∞

σ2/σ2
u

tτ−n−
3
2 exp

(
−t− y2

2tσ2

)
dt

=
exp

(
σ2/σ2

u

)
√

2πσuΓ (τ)

+∞∑

n=0

(
τ − 1
n

)(
−σ

2

σ2
u

)n
Γ

(
τ − n− 1

2
,
σ2

σ2
u

;
y2

2σ2

)
,

(5.14)

where Γ(α, x;β) =
´ +∞
x

tα−1 exp
(
−t− β

t

)
dt is the generalized incomplete

Gamma function [Selesnick, 2008]. Based on (5.14), the MMSE estimate di-
rectly follows:

x̂MMSE = y − α(y)y where

α(y) =
σ2

σ2
u

∑+∞
n=0

(
τ − 1
n

)(
− σ2

σ2
u

)n
Γ
(
τ − n− 3

2 ,
σ2

σ2
u
; y2

2σ2

)

∑+∞
n=0

(
τ − 1
n

)(
− σ2

σ2
u

)n
Γ
(
τ − n− 1

2 ,
σ2

σ2
u
; y2

2σ2

) . (5.15)

Because the factor α(y) in the second term in y is between 0 and 1, the MMSE
estimate also corresponds to shrinkage. Interesting is the special case τ = 1
(Laplace distribution), for which (5.15) amounts to:

x̂MMSE = y − σ2

σ2
u

Γ
(
− 1

2 ,
σ2

σ2
u
; y2

2σ2

)

Γ
(

1
2 ,

σ2

σ2
u
; y2

2σ2

) y, (5.16)

This expression is identical to the result for the Laplace distribution given
in [Selesnick, 2008].

MAP estimate

An implicit form for the MAP estimate can be directly derived from the results
from [Selesnick, 2008]:

|x̂| = |y|
(

1 −
√

2
σ2

σu

K 3
2−τ

(√
2 |x̂| /σu

)

K 1
2−τ

(√
2 |x̂| /σu

)
)

+

(5.17)



5.2 Multiresolution image restoration 165

x

  x
est

0.4
0.5

0.6
0.7

0.8
0.9

1

x

  x
est

0.4
0.5

0.6
0.7

0.8
0.9

1

(a) (b)

Figure 5.8: (a) MMSE estimates for the Bessel K Form density according to (5.15),
(b) MAP estimates for the Bessel K Form density, using (5.17).

where (·)+ = max (0, ·). The rule (5.17) can be practically implemented by
successive substitution [Selesnick, 2008], i.e. by starting from x̂ = y and by
subsequently applying the right handed side of (5.17) iteratively. Note that for
τ = 1 we correctly get the soft-thresholding rule, as K1/2(u) = K−1/2(u).

In Figure 5.8, both the MAP and MMSE shrinkage rules are depicted,
for different values of the shape parameter τ . MMSE shrinkage rules are much
smoother, while the MAP estimate approximates hard-thresholding for small τ .
Recall that the kurtosis of the BKF distribution is given by 3+3/τ , hence small
τ correspond to highly kurtotic distributions. In this respect, we have reached
the same conclusion as for the generalized Laplace distribution in [Moulin and
Liu, 1999]. The advantage of using the BKF distribution over the generalized
Laplace distribution is that the estimates (5.17)-(5.15) can be easily generalized
to vectors when the distribution of the noise is spherically symmetric. More
specifically, if the covariance matrix Cu = σ2

uI and the noise covariance matrix
Cw = σ2I, then the multivariate MAP estimate is given by:

‖x̂‖ = ‖y‖
(

1 −
√

2
σ2

σu

K 3
2−τ

(√
2 ‖x̂‖ /σu

)

K 1
2−τ

(√
2 ‖x̂‖ /σu

)
)

+

. (5.18)

and a similar expression can be given for the MMSE estimate. In (5.18),
the shrinkage is applied to the coefficient magnitude, leaving the orientation
of the vector y untouched. This is an interesting generalization of shrinkage
to vectors. Unfortunately, in practice, the signal and noise pdfs are rarely
spherically symmetric. The reason is that most multiresolution transforms do
not yield uncorrelated coefficients, as already explained in Section 3.3. In the
next section, we will develop a vector-based shrinkage approach that works for
non-spherically symmetric signal and/or noise probability densities.
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Figure 5.9: Denoising example in shearlet domain (a) Original im-
age, (b) Noise image (PSNR=24.61dB), (c) Denoised using soft-thresholding
(PSNR=30.74dB), (d) MAP estimate (5.17) (PSNR=31.18dB), (e) MMSE estimate
(5.15) (PSNR=31.06dB). The parameter τ was estimated empirically for every shear-
let subband using a dedicated EM algorithm (see Chapter 3).

5.2.3 Vector-ProbShrink

In this section, we will derive a vector-based shrinkage rule for the joint intra-
/interscale probabilistic model from Section 3.6, called Vector-ProbShrink.
Similar as in [Pižurica and Philips, 2006], we will estimate the probability that
an observed noisy neighborhood vector y contains a significant noise-free com-
ponent (signal of interest present). For the additive signal-plus-noise model,

yj = xj + wj , (5.19)

the Vector-ProbShrink estimator is a generalization to vectors of ProbShrink
(5.12):

x̂j = P (H1|yj)yj . (5.20)

where P (H1|yj) is a so-called shrinkage factor. To ease the computation of
this shrinkage factor, we will write (5.20) in the following form:

x̂j =

(
1 − fy|H (yj |H0) P (H0)

fy (yj)

)
yj . (5.21)

The remainder of the derivation is simply to compute the different parts of
this equation: fy|H (yj |H0), fy (yj) and P (H0). First we note that the (con-
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ditional) pdfs of the observation can be expressed in terms of the (conditional)
pdfs of the noise-free signal vectors, as follows:

fy|H (yj |H0) =

ˆ

Rd

fy|x,H (yj |x, H0) fx|H (x|H0) dx, (5.22)

fy (yj) =

ˆ

Rd

fy|x (yj |x) fx (x) dx. (5.23)

Due to the additivity of the signal-noise model and the assumption of Gaussian
noise, the conditional densities fy|x,H (yj |x, H0) and fy|x (yj |x) are Gaussian
pdfs:

fy|x,H (yj |x, H0) = fy|x (yj |x) = N (y;x,Cw) . (5.24)

Consequently, equations (5.22)-(5.23) are d-dimensional convolutions. The
prior distribution fx (x) that we consider here, is the Bessel K Form density
(Section 3.2.5), as in the previous section. The conditional prior distribution
fx|H (x|H0), under the hypothesis H0 that the signal of interest is absent, is
given by (3.43). Unfortunately, closed analytical forms for (5.22)-(5.23) are not
trivial to find, which hampers the practical implementation. Instead, we mar-
ginalize the density fX(x) based on the GSM representation (see Section 3.2.5)
as fx (x) =

´ +∞
z=0 fX|Z(x|z)fZ(z)dz. We further remark that if fx|H (x|H0) is

the density of a Gaussian Mixture, the above convolution involves adding the
noise covariance matrix Cw to each component of the mixture. Therefore, we
approximate the indicator function in (3.43) using a Gaussian function:

fx|H (x|H0) ≈ C0fx (x) exp

(
−xTC−1

w x

2T 2

)
(5.25)

where C0 is a density normalization factor. This results in a Gaussian condi-
tional prior density on x:

fy|z,H (y|z,H0) = N
(
x;0,

(
(zCx)

−1 + (T 2Cw)−1
)−1
)

(5.26)

where N (x;0,C) denotes the Gaussian density evaluated in x. Next, to sim-
plify the dependency on z in (5.26), we use a trick used by [Portilla et al.,
2003], to reduce the computation time of the BLS-GSM method: we express
fx|z (x|z) and fy|z (y|z) in a new basis where Cx and Cw are both diagonal,
using:

zCx + Cw = UQ(zΛ + I)QTUT (5.27)

where UUT = Cw. Q and the diagonal matrix Λ are obtained by the diag-
onalisation U−1CxU

−T = QTΛQ. By applying the linear transform to the
observation vectors yj , i.e. vj = (UQ)−1yj , the conditional density of vj is
given:

fv|z (vj |z) = N (y;0, zΛ + I) (5.28)

In [Goossens et al., 2009d], we show that the conditional density fy|z,H (y|z,H0)
can also be expressed in this basis as:

fy|z,H (y|z,H0) = N
(
y;0, (z−1Λ−1 + T−2I)−1 + I

)
(5.29)
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Figure 5.10: Probability of signal presence P (H1) as function of τ , according to
(5.31) for different ratios σx/σw and for d = 9.

Since the linear transform matrix (UQ)−1 only has to be computed once per
subband, independent of z, this greatly reduces the computational complexity
of the proposed method, since the estimation rule (5.20) using only requires
the evaluation of Gaussian densities with diagonal covariance matrix in vj .

Finally, the probability P (H0) = 1−P (H1) globally estimates the absence
of the signal of interest on the whole subband:

P (H0) =

ˆ +∞

0

fz (z)

(
d∏

i=1

T 2

T 2 + zΛii

)1/2

dz. (5.30)

In case of diagonal covariance matrices (Cx = σ2
xI, Cw = σ2

wI) and for the
threshold T = 1, we find Λii = σ2

x/σ
2
w such that:

P (H0) = 1 − P (H1) =

ˆ +∞

0

fz (z)

(
σ2
w

zσ2
x + σ2

w

)d/2
dz. (5.31)

This is weighted average of the ratios of the volumes of the hyperspheres with
radiuses σw and

√
zσ2

x + σ2
w. It is interesting to note that the weighting func-

tion fz (z), which is the density of a Gamma distribution, inherently relates the
probability P (H0) to kurtosis of the coefficients in the considered subband: if
the kurtosis is low (τ → 1), many coefficients will contain a significant noise-free
component (P (H1) → 1). This is illustrated in Figure 5.10.

In Figure 5.11, the conditional densities fx|H (x|H0) and fx|H (x|H1) are
shown for a two-dimensional random vector x, corrupted with positively (in
2D) correlated Gaussian noise. In this case, the positive correlation between
the noise components and negative correlation between the noise-free signal
components cause a diagonal cut in fx|H (x|H1). In the absence of correlations
between the noise components and between the noise-free signal components,
this cut is ring-shaped. The shrinkage function and its contours are depicted in
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Figure 5.11(c)-(d). The contours are not elliptical, despite the signal and noise
pdfs having elliptically symmetric distributions. This is because the axes of
these ellipses are not aligned to each other in this example. Hence in contrast
to the MMSE/MAP estimates from Section 5.2.2, our probabilistic shrinkage
technique can deal with situations in which both the signal vector x and the
observation vector y are correlated.

In Figure 5.12, the experiment is repeated for spherical symmetric signal and
noise densities. As expected, the shrinkage factor P (H1|yj) has also spherical
isoprobability contours.

Furthermore, Vector-ProbShrink can be combined with the HMT interscale
model, simply by replacing the posterior probability P (H1|yj) with the one
predicted by the HMT model P

(
H1|y(i), ...,y(I)

)
:

x̂j = P
(
H1|y(i), ...,y(I)

)
yj . (5.32)

Further details with respect to the HMT model initialization and other imple-
mentation specific information are given in [Goossens et al., 2009d].

Finally, we remark that equation (5.20) can also be interpreted as an approx-
imation of MMSE estimator for our model from (3.6) with E [xj |yj , H1] ≈ yj
and E [xj |yj , H0] ≈ 0:

x̂j =E [xj |yj ] = P (H1|yj) E [xj |yj , H1] + P (H0|yj) E [xj |yj , H0] . (5.33)

In case we are (almost) certain that a given wavelet coefficient vector is purely
noise we select 0 as the estimate for the noise-free coefficient vector, hence
E [xj |yj , H0] ≈ 0. On the other hand, using this approximation, significant
structures like edges are preserved and no noise is suppressed: E [xj |yj , H1] ≈
yj . This results in the shrinkage rule (5.20).

5.2.4 MMSE estimation for MPGSM

Because the MPGSM model from Section 3.4.4 can account for the local vari-
ability of the covariance matrix of the noise-free coefficients, while the GSM
model from the previous section assumes that the covariance matrix is constant,
MPGSM is generally more powerful than GSM. In this section, we derive the
MMSE estimator for estimating local neighborhoods of noise-free coefficient
vectors from the observed noisy coefficient vectors using the MPGSM prior
model. In MPGSM, each noise-free signal vector xj is decomposed into two
parts (3.30):

xj = Vktj + V̄krj .

where we assume that Vk, k = 1, ...,K are orthogonal projection matrices and
that V̄k, k = 1, ...,K are the complementary orthogonal projection matrices
(see Section 3.4.4). Consequently, tj and rj are orthogonal projections of xj
onto the basis vector from Vk and V̄k, respectively (tj = VT

k xj and rj =
V̄T
k xj). In the following, we will consider one position in the subband and
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Figure 5.11: Illustration of the densities (non-spherically symmetric case), modeling
a wavelet coefficient x1 and its right neighbor x2. (a) Conditional density fx|H (x|H0),
(b) Conditional density fx|H (x|H1), (c) The shrinkage function P (H1|y) y1, (d) Iso-
contours of (c).

drop the position subscripts j, to simplify the notations. We consider the
estimation of this noise-free signal vector, in an additive noise model:

y = x + w.

By relying on this relationship and the prior distribution (3.36), the observation
model likehood function can be computed through several marginalizations over
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Figure 5.12: Illustration of the densities (spherically symmetric case), modeling a
wavelet coefficient x1 and its right neighbor x2. (a) Conditional density fx|H (x|H0),
(b) Conditional density fx|H (x|H1), (c) The shrinkage factor P (H1|y), (d) Isocon-
tours of (c).

its hidden variables (Hk and z):

fy (y) =
K∑

k=1

P (Hk) fy|H (y|Hk)

=

K∑

k=1

P (Hk)

ˆ

Rd

fx|H (x|H) fy|x,H (y|x, H) dx (5.34)

=

K∑

k=1

P (Hk)

ˆ +∞

−∞
dzfz(z)

ˆ

Rd

dxfx|H (x|z,Hk) fy|x (y|x) (5.35)

with fx|H (x|z,Hk) = fr|H(V̄T
k x|Hk)ft|z,H(VT

k x|z,Hk) (see (3.36)). To sig-
nificantly reduce the number of model parameters for MPGSM compared to
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Figure 5.13: Illustration of MPGSM denoising.

MGSM, we applied several restrictions to the signal covariance matrix Cx in
Section 3.4.4 (equation (3.31)). To fully enjoy the benefits of this parameter
reduction and to arrive at a denoising estimator with a lower computational
complexity than MGSM, we will apply the restrictions made to Cx to the noise
covariance matrix Cw as well. Therefore, we will assume that under hypothesis
Hk, the projected and complementary projected noise components, respectively
VT
kw and V̄T

kw are uncorrelated, such that the noise covariance matrix Cw

satisfies a specific property:

Cw = Vk

(
VT
kCwVk

)
VT
k + V̄k

(
V̄T
kCwV̄k

)
V̄T
k (under Hk)

where additionally V̄T
kCwV̄k is assumed to be a diagonal matrix. The integra-

tion in (5.35) is then fairly simple, as both conditional densities fx|H (x|z,Hk)
and fy|x (y|x) are Gaussian. Furthermore, every projected component VT

k y|Hk

is Gaussian Scale Mixture plus Gaussian noise distributed, while every comple-
mentary projected component V̄T

k y|Hk is Gaussian distributed. This allows us
to estimate the noise-free coefficients for each hypothesis Hk in both projection
domains (as x̂ = Vk t̂k + V̄kr̂k), followed by aggregation of the resulting esti-
mates according to the posterior probability of each hypothesis. Conditioned
on the hypothesis Hk, the MMSE estimator for the noise-free coefficients is
equivalent to that for the observation model in [Portilla et al., 2003]:

t̂k = E
[
t|VT

k y, Hk

]

=

ˆ +∞

0

fz|t,H (z|t, Hk) zCu,k

(
zCu,k + VT

kCwVk

)−1
VT
k ydz, (5.36)

which is a weighted average of local Wiener solutions for different z. If we
denote the covariance matrix of the projected noise component V̄T

kw as Ωk,
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we estimate r̂k in the complementary space as follows:

r̂k = E
[
rj |V̄T

k y, Hk

]
= Ψk

(
Ψk + V̄T

kCwV̄k

)−1
V̄T
k y (5.37)

By the assumed diagonality of the covariance matrices in (5.37) each compo-
nent can be estimated independently, which offers computational advantages
especially when q � d. Finally, x̂ is obtained by an overall optimization over
K models H1, ..., HK , by averaging over the solutions of all K MPGSM com-
ponents:

x = E [x|y] =

K∑

k=1

P (Hk|y)
(
Vk t̂k + V̄kr̂k

)
(5.38)

In (5.38), the presence of the posterior probability P (Hk|y) reveals the adapt-
ability of the model: the final estimate is a weighted mean of estimates accord-
ing to different projection spaces and covariance matrices.

Figure 5.13 illustrates the MPGSM-MMSE estimator: while MGSM is sim-
ply a mixture of GSM distributions (left), MPGSM components decompose
into GSM part t and a Gaussian part r (right). Denoising is performed by
estimating the different sub-components using (5.36) and (5.37) and finally by
averaging the results by applying (5.38). In Figure 5.14(c)-(d), the MMSE
estimate (5.38) is depicted for the densities fx (x), fy (y), which are shown
in respectively Figure 5.14(a)-(b). The prior density fx (x) clearly has a non-
symmetric shape, this manifests in asymmetric and inequal multivariate shrink-
age functions for [x̂]1 and [x̂]2.

5.2.5 Complex-wavelet based demosaicing

In the past, many techniques have been proposed for solving the demosaic-
ing problem. Some authors focus on the frequency domain interpretation
of the problem [Dubois, 2005, Alleysson and Susstrunk, 2005, Alleysson and
de Lavarene, 2008]: by noting the similarities with luminance and chrominance
demultiplexing in NTSC/PAL television [Alleysson and de Lavarene, 2008],
analogous schemes can be devised for demosaicing. These schemes consist
of linear filters that demultiplex luminance and chrominance signals and are
efficiently implemented in the Fourier domain. Other techniques directly op-
erate in the image domain because this domain allows for spatially adaptive
directional filtering (e.g. [Kakarala and Baharav, 2002, Hirakawa and Parks,
2005a, Lukac and Plataniotis, 2005b,Muresan and Parks, 2005, Li, 2005,Kim-
mel, 1999,Lee et al., 2006,Menon et al., 2007]).

The problem of demosaicing is not only a matter of interpolation of miss-
ing color intensities: as we already explained in Chapter 4, the data captured
by the sensors are also subject to a serie of image post-processing techniques,
which modifies the noise signal-dependency characteristics. Existing demosaic-
ing schemes attempt to preserve edge sharpness and textures, this is typically
done by adapting the interpolation to the edge direction. Despite the fact that
these techniques often give excellent results for noise-free images, their perfor-
mance in the presence of noise is often very poor. This is because noise may
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Figure 5.14: Probability densities and resulting shrinkage functions for MPGSM (a)
prior pdf fx (x), (b) likelihood function fy (y), (c) first component of the estimate
[x̂ (y)]1, (d) second component of the estimate [x̂ (y)]2, (e) iso-contours of (c), (f)
iso-contours of (d).
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(a) (c) (e)

(b) (d) (f)

Figure 5.15: Illustration of the influence of noise in demosaicing (a) Original, noise-
free image (b) CFA image corrupted with artificial white Gaussian noise (σ = 10),
(c) Demosaicing result using DL-MMSE [Zhang and Wu, 2005], (d) 3× enhanced
difference image between (c) and (a), (e) Image with white Gaussian noise (σ = 10)
added after demosaicing (for comparison to (c)), (f) 3× enhanced difference image
between (e) and (a).

lead to false edge structures which are visually very disturbing. Furthermore,
noise patterns may be correlated in such a complicated way that it becomes
very difficult to restore the image afterwards, even using state-of-the-art de-
noising techniques [Hirakawa, 2008b]. We illustrate this in Figure 5.15: due to
the presence of noise, the demosaicing technique is not able to correctly inter-
polate along the hairs of the badger, causing color artifacts in Figure 5.15(c).
Removal of these noise artifacts would require a sophisticated noise reduction
algorithm. However, noise reduction as post-processing is generally considered
to be impractical, as the underlying image models for demosaicing and denois-
ing are often quite different. Furthermore, the image model mismatch causes
many complicated interactions that are intractable to solve mathematically [Hi-
rakawa, 2008b].

More recently, Hirakawa extended the frequency-domain point of view to
the wavelet domain [Hirakawa, 2008b], to combine noise reduction with demo-
saicing [Hirakawa and Parks, 2006, Hirakawa et al., 2007, Hirakawa, 2008b].
This way, the demosaicing procedure can take noise properties into account
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(a) Bayer (b) Cyan-Magenta- (c) Lukac (d) Hirakawa - Pat. I
Yellow

Figure 5.16: Color Filter Array patterns used for demosaicing. (a) [Bayer, 1976],
(b) [Hirakawa and Wolfe, 2008], (c) [Lukac and Plataniotis, 2005a], (d) [Hirakawa and
Wolfe, 2008].

and the denoising can be optimized for the specific interpolation formulas be-
ing used, while still relying on the same image and noise model. Furthermore,
many efficient prior models and noise reduction techniques are available in the
wavelet domain, hence it is attractive to design the demosaicing method in this
domain as well.

Spectral analysis of Color Filter Arrays

The Bayer pattern CFA [Bayer, 1976], shown in Figure 5.16(a), uses a quincunx
sampling of the red, green and blue color components, in which the green com-
ponent are sampled twice as dense as the other color components. Although
the Bayer pattern is the de facto standard in industry, various alternative CFAs
have been proposed and/or studied. For example, the CMY pattern (Figure
5.16(b)) is often used in video-cameras because C/M/Y photosensitive elements
are less sensitive to noise and because video frame rates do not permit long in-
tegration times [Hirakawa, 2008b]. Other patterns are designed to improve the
characteristics of the Bayer pattern: the patterns in Figure 5.16(c) specifically
maximizes the demosaicing performance while keeping the computational com-
plexity low [Lukac and Plataniotis, 2005a]. The pattern in Figure 5.16(c) is
designed to jointly maximize the bandwidth of the luminance and chrominance
channels while maintaining perfect reconstruction [Hirakawa and Wolfe, 2008].
In the following, we will only consider the Bayer CFA because this pattern is
dominantly used in practice, although what follows is not restricted to Bayer
patterns.

Let c(p) ∈
{[

1 0 0
]T
,
[

0 1 0
]T
,
[

0 0 1
]T}

denote the vec-
tor of RGB-color intensities of the CFA at position p . The mosaic image
acquired by a DSC, ymosaic(p), can be expressed in terms of the original “ideal”
image x(p) by:

ymosaic(p) = cT (p)x(p). (5.39)

The goal of demosaicing is to recover the hypothetical “original” image x(p)
from the mosaic image ymosaic(p).5 Note that in the mosaic image ymosaic(p)

5In practice, ymosaic(p) is also corrupted by noise, but to keep the discussion simple, we
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Figure 5.17: Frequency spectra of the Red (a), Green (b) and Blue (c) channels in a
CFA. (d) Frequency spectrum of the mosaic image, which is a basically superposition
of (a), (b), (c).

neighboring pixel intensities are measured using different color filters, hence the
mosaic image should not be treated as a “photographic” image. Nevertheless,
investigating the spectrum of the mosaic image ymosaic(p) allows us to gain
some insight in the demosaicing problem.

First, we note that the spectrum of the mosaic image is a superposition of
the individual spectra of the images [c(p)]k [x(p)]k , k = 1, ..., 3. In Figure 5.17,
these spectra are depicted for an artificial image x(p) (for which we used a
monochrome Gaussian function for illustrative purposes). The subsampling of
the color components of the CFA causes the creation of frequency aliasing in
the frequency domain. By the aliasing, the spectrum of the center-band signal
is replicated at spatial frequencies (±π,±π) (green) or at (±π,±π), (0,±π)
and (±π, 0) (red and blue).6 Because the spectrum of the mosaic image is the
superposition of the spectra of the individual color channels, replications of the
center-band signals will also occur in the mosaic spectrum: if we take a closer
look at Figure 5.17(d) we note that the center-band is in fact the luminance
channel, while the red, green and blue channels can be found in the side-bands.
The demosaicing problem can then effectively be solved by demultiplexing the
spectra of the individual color channels from the spectrum of the mosaic image.
This is possible under appropriate bandwidth assumptions for the individual
color components.

Wavelet domain demosaicing scheme

To define these bandwidth assumptions, [Hirakawa, 2008b] considers the green
(G) channel as luminance channel and the difference between red and green
(R-G) and blue and green (B-G) as a crude approximation to the chrominance

will consider noise-free images for the moment.
6Due to the shifts of the blue and red color elements in the CFA, the angle of the Fourier

responses is rotated by 180° (i.e. the sign is switched) at either (±π,±π), (0,±π) or (±π, 0).
The sign is not shown in Figure 5.17, as only the magnitude is depicted.
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Figure 5.18: Normalized radially averaged PSDs over a set of six color photographs.
The photographs were first low-pass filtered and subsampled by a factor 2, to eliminate
effects of the demosaicing used during the acquisition of the images themselves.

channel. This defines the color transform:




Y = G

α = R−G

β = B −G

(5.40)

The reason for choosing this transform over better suited YCbCr or La*b*
transforms is merely because it will make the demultiplexing reconstruction
formulas simpler. For the new channels Y, α, β, the first assumption is that
the green channel signal (Y) is bandlimited to 3/4 of the Nyquist bandwidth.
The second assumption is that the red-green and blue-green differences α, β
are bandlimited to 1/4 of the Nyquist bandwidth. Both assumptions reflect
the fact that the human eye is less sensitive to details in the chrominance
information than in the luminance information (this assumption is also used
in e.g. the JPEG compression standard). Because the green channel is a
crude approximation to the luminance channel, we checked these assumptions
by computing normalized radially averaged PSDs of the Y, α, β-channels over
six color photographs. The result is shown in Figure 5.18. In general, the
approximation is quite good: almost over the whole frequency range the power
of the α- and β-channels is about 10dB lower than the power of the Y -channel.
Based on these assumptions, the mosaic spectrum (from Figure 5.17(d)) can
be schematically interpreted as in Figure 5.19(a). The relative phase shift
of the spectra of the α1- and α2-channels is visualized by the horizontal and
respectively vertical stripes pattern in Figure 5.19(a).
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(a) (b)

Figure 5.19: (a) Schematic interpretation of the mosaic image spectrum. The
Y -channel (green) is symbolized by the green disk. The α1- and α2-channels are
indicated by respectively the magenta disks and cyan disks. (b) Frequency bands of
the mosaic image spectrum that are not assumed to contain chromacity information.

Now, to separate the green from the red-green and blue-green difference
images under the bandwidth assumptions, Hirakawa proposes to use a two-
level wavelet packet transform (WPT). This is because each wavelet subband
in a two-level WPT has a frequency support of approximately 1/4 of the orig-
inal image bandwidth both horizontally and vertically, which easily allows to
demultiplex the different parts of the frequency spectrum of the mosaic image.

Let A(LL,LL)
j denote the scaling coefficient at position j of the (LL,LL)-

subband of the WPT of the mosaic image, then given the bandwidth assump-
tions, A(LL,LL)

j can be expressed in terms of the scaling coefficients of the lu-

minance channels channels, Y (LL,LL)
j , and the chrominance channels, α(LL,LL)

j

and β(LL,LL)
j :

A
(LL,LL)
j = Y

(LL,LL)
j + α

(LL,LL)
j + β

(LL,LL)
j . (5.41)

Our goal is to recover the individual luminance and chrominance channels
Y

(LL,LL)
j , α(LL,LL)

j and β
(LL,LL)
j from A

(LL,LL)
j . For the (HL,LL) subband

(see Figure 5.19(a)), we can write a similar expression:

A
(H?L,LL)
j = ρ1,1,0α

(LL,LL)
j + ρ2,1,0β

(LL,LL)
j (5.42)

where the superscript ’?’ in (H?L,LL) signifies time reversal of the row wavelet
filter for the first scale and where ρ·,·,· are modulation factors that depend on
the position of the invidual color sensor elements in the CFA. More specifically,
for the Bayer pattern, these modulation factors are defined as:

ρk,m,n = (−1)mPk(1,0)+nPk(0,1)+(m+n)Pk(1,1), (5.43)

where P1(m,n) and P2(m,n) are 1 if the Bayer Pattern has a red, respectively
blue value at location (m,n), and 0 otherwise. Finally, applying the same tricks
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to the HL,LL subbands gives:

A
(H?H?,LL)
j = ρ1,1,1α

(LL,LL)
j + ρ2,1,1β

(LL,LL)
j , (5.44)

with A
(H?H?,LL)
j a WPT coefficient of subband (HH,LL) in which both the

wavelet row and column filters have been time-reversed. Now, equations (5.41)-
(5.44) constitute a system of linear equations with a unique solution:

̂
α

(LL,LL)
j =

ρ2,1,0A
(H?H?,LL)
j − ρ2,1,1A

(H?L,LL)
j

ρ1,1,1ρ2,1,0 − ρ1,1,0ρ2,1,1

̂
β

(LL,LL)
j =

ρ1,1,1A
(H?L,LL)
j − ρ1,1,0A

(H?H?,LL)
j

ρ1,1,1ρ2,1,0 − ρ1,1,0ρ2,1,1

̂
Y

(LL,LL)
j = A

(LL,LL)
j − ̂

α
(LL,LL)
j − ̂

β
(LL,LL)
j . (5.45)

These formulas effectively demultiplex the scaling coefficients of the luminance
and chrominance channels of the image. Because the bandwidth of the lumi-
nance channel Y is assumed to be 3/4 of the Nyquist bandwidth while the
bandwidth of the chrominance channels α, β is 1/2 of the Nyquist bandwidth,
the high-pass and band-pass frequencies of the luminance channel Y can be
partially reconstructed by “filling in” the corresponding wavelet coefficients (see
Figure 5.19(b)):

̂
Y

(mm,nn)
j = A

(mm,nn)
j if (mm,nn) 6= (LL,LL) . (5.46)

Consequently, this demosaicing algorithm can be summarized as follows:

1. Compute a two-level wavelet packet transform of the mosaic image (the
(··, LL) are computed using time-reversal of the wavelet filters).

2. Use equations (5.45) and (5.46) to demultiplex the luminance Y and
chrominance α, β channels.

3. Apply the inverse color transform for (5.40) to obtain R,G,B channels.

4. Perform an inverse wavelet packet transform for each of the channels.

In Figure 5.20, a demosaicing result for the above image is shown. Enlargements
with more details are given in Figure 5.21. It can be noted that despite the
fact that the technique overall gives a very high visual quality (for example, the
fine cat hairs are reconstructed well), the method suffers from 1) discoloration
artifacts and 2) zippering artifacts.

Novel complex-wavelet based approach

Because of the potential of the wavelet-based demosaicing approach, we im-
proved this technique in our recent work [Aelterman et al., 2009]. First of all,



5.2 Multiresolution image restoration 181

(a) (b) (c)

Figure 5.20: A wavelet-based demosaicing result (a) original image, (b) mosaic
image, (c) wavelet-based demosaiced image.

(a) (b)

(c) (d)

Figure 5.21: Crop-out of the wavelet-based demosaicing result revealing color arti-
facts and zipperings: (a),(c) original image, (b),(d) demosaiced image.

the issues with the DWT discussed in Section 2.1.4, specifically shift variance
and aliasing, also negatively impact the above algorithm. The use of dual-
tree complex wavelet packets not only allows us to tackle these problems, but
also makes it possible to deal with discoloration artifacts and even to further
improve the quality of the reconstructed images, as we will show further.

We recall that the primary advantage of using wavelet-based processing in-
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(a) (b) (c)

Figure 5.22: Schematic representation of two different violations of the bandwidth
assumptions: (a)-(b) mosaic spectrum of an image with a sharp vertical (a) and
horizontal edge (b); (c) The chrominance bandwidth exceeds the maximal allowed
bandwidth (less common).

stead of Fourier demosaicing lies in the joint spatial and frequency localization
of the wavelet coefficients. By looking at the mosaicing spectra in Figure 5.19,
we note that the reconstruction formulas (5.46) are not unique! Under the
bandwidth assumptions, we have for example that A(H?L,LL)

j = A
(LH?,LL)
j .

This ambiguity stems from the fact that several aliasing copies of the chromi-
nance channels are present in the spectrum of the mosaic image. If the band-
width assumptions are perfectly fulfilled, it does not matter which aliasing copy
is being used to reconstruct the luminance channel. However, the discoloration
artifacts in Figure 5.21 occur when these assumptions are not correct: either
when the bandwidth of the luminance channel exceeds 3/4 of the Nyquist band-
width, or when the bandwidth of the chrominance channel exceeds 1/4 of the
Nyquist bandwidth. The former case occurs for example for sharp horizontal
and vertical edges (see Figure 5.21(b)). A schematical illustration is given in
Figure 5.22(a)-(b). In the latter case, chrominance information is incorrectly
transferred to the high-pass luminance frequencies of the demosaiced image (see
Figure 5.22(c)), causing the zipper artifacts in Figure 5.21(d).

The solution to this problem lies in 1) detecting these two artifacts, 2) cor-
recting for them. The use of wavelets gives a lot of advantages here: in contrast
to Fourier-based demosaicing techniques, we can easily make the demosaicing
formulas (5.45) and (5.46) adaptive to the local context.

Solving discoloration artifacts and reconstruction of luminance high-

pass frequencies

As already said, discoloration artifacts occur when the luminance channel vi-
olates its bandwidth assumption. This will most likely result in an increase
in the energy of either the A(H?L,LL)

j or A(LH?,LL)
j -coefficients. The complex

wavelet framework allows to detect high frequencies by using the magnitude
of the complex wavelet coefficients. For the DT-CWT, the magnitude is (ap-
proximately) alias-free and shift-invariant. This leads to the following edge
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detector7:




horizontal edge, if
∣∣∣A(H?L,LL)

j

∣∣∣
2

>
∣∣∣A(LH?,LL)

j

∣∣∣
2

+ T

vertical edge, if
∣∣∣A(H?L,LL)

j

∣∣∣
2

<
∣∣∣A(LH?,LL)

j

∣∣∣
2

+ T

no edge, else

(5.47)

with T a predefined threshold. Depending on the local outcome of the edge
detection, we have the situation of Figure 5.19(a), Figure 5.22(b) or Figure
5.22(b). In the first case, we proceed with the standard reconstruction for-
mulas (5.45). In the last two cases, we can recover the chrominance channels
exactly from the chrominance aliasing copies that do not have a spectral over-
lap with the luminance channel. Next, if we have the chrominance channels,
we can again reconstruct the luminance high-pass frequencies for the frequency
plane region in which the luminance and chrominance channels overlap. This is
achieved by a simple processing operations on the DT-CWT packet coefficients
of the mosaic image, thereby relying on the frequency localizing properties of
the complex wavelets.

In the results section (Section 5.4), we will show that these modifications
lead to a vast improvement in demosaicing performance, compared to the (non-
complex) wavelet-based demosaicing algorithm.

Because the demosaicing is completely performed in the DT-CWT domain,
the method can easily be combined with denoising. A straightforward approach
would be to first apply the reconstruction formulas, with our novel extensions.
Next, the wavelet coefficients can be processed using any of our denoising meth-
ods from the previous sections. The primary advantage of this solution is that
the DT-CWT only needs to be performed once, resulting in an efficient process-
ing algorithm that could be implemented on a DSC in the future. However, this
approach consists of two sequential steps and one may expect the performance
to increase further by performing joint denoising and demosaicing. [Hirakawa,
2008b] propose to solve the joint problem by reformulating the reconstruc-
tion formulas in a Bayesian framework. Even though Hirakawa used a wavelet
packet transform with cycle spinning, his joint technique can be seemlessly be
combined with our complex-wavelet based technique. Further exploring this
topic is one of the future research directions of our work.

7For mosaic images, traditional edge detection methods (e.g. Sobel, Canny) cannot be
used directly, because the CFA causes discontinuities everywhere in the mosaic image; hence
these methods would detect edges at every position in the image.
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5.3 Bregman framework for image restoration

In this section, we present a general framework that can be used for solving a
wide variety of image restoration problems. This framework emerged from a
technique presented in [Bregman, 1967] that searches for the common points
in two convex sets. Later, this technique has been applied to image restoration
in [Osher et al., 2008, Goldstein and Osher, 2008]. Bregman considered the
following generalized constrained optimization problem:

min
x
J(x), s.t. Ax = b0 (5.48)

where J(x) is a convex function. In general, this problem is very difficult to
solve directly if J(x) is non-differentiable. Therefore, continuation methods
approximately solve (5.48), by translating the problem into an unconstrained
optimization problem:

min
x
J(x) +

λi
2
‖Ax − b0‖2

2 , (5.49)

where λi, i = 1, ..., I is an increasing sequence of penalty weights λ1 < λ2 <
λ3 < · · · < λI . To fully enforce the constraint Ax = b0, it is necessary
to choose λI very large, such that the relative contribution of J(x) in (5.49)
becomes very small. Unfortunately, this causes computational instabilities in
many applications [Goldstein and Osher, 2008].

Bregman proposed another approach to solve the optimization problem
(5.48): by introducing the Bregman divergence, which is associated to the
convex functional J :

Dp
J (x,xi) = J (x) − J (xi) − pT (x − xi) (5.50)

where p is a subgradient8 of J in xi. The Bregman divergence is always positive
(Dp

J (x,xi) ≥ 0) and convex in its first argument (Dp
J (x,xi+1) ≥ Dp

J (xi,xi+1)
for xi on the line segment between x and xi+1). Further, the Bregman diver-
gence is not a distance measure because it is generally not symmetric.

An illustration of the Bregman divergence is given in Figure 5.23. From
the figure, it can be seen that the Bregman divergence is a measure for the
closeness to the optimum of the function J (x). Hence, by minimizing the
Bregman divergence, the optimum of the function can be found. Rather than
choosing λi very large, Bregman suggested to solve (5.48) iteratively:

xi+1 = arg min
x
Dp
J (x,xi) + λH (x;b0)

= arg min
x
J (x) − pTi (x− xi) + λH (x;b0) and

pi+1 = pi − ∇H
(
xi+1;b0

)
(5.51)

with pi a subgradient of J in xi and with λ now a constant. Such update from
xi → xi+1 is called a Bregman iteration. It can be shown that under weak

8A vector p is a subgradient of the convex function J in xi if J (x)−J (xi) ≥ pT (x − xi).
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Figure 5.23: Illustration of the Bregman divergence associated to a convex func-
tional J(x).

assumptions for J and H , the value of H (xi;b0) decreases in every iteration.
Because λ is kept constant, the numerical problems of the continuation methods
are avoided. Moreover, the algorithm will converge:: H (xi;b0) can be made
arbitrarily small by using more iterations: H (xi;b0) → 0 as i→ ∞.

For H (x;b0) = 1
2 ‖Ax − b0‖2

2, the Bregman iteration (5.51) can be com-
puted more efficiently using [Goldstein and Osher, 2008]:

xi+1 = argmin
x
J(x) +

λ

2
‖Ax − bi‖2

2 (5.52)

bi+1 = bi + (b0 − Axi+1) . (5.53)

where the vector bi in the constraint ‖Ax − bi‖2
2 is now updated iteratively.

This has an intuitive interpretation: in every iteration, the error term b0 −
Axi+1 is added back to the right handed side of the constraint Ax = bi. By
the convergence results, we have that Axi = b0 for i→ ∞. When we compare
(5.52) again with the original constrained problem (5.49), we note that the
primary advantage that we have over the continuation methods is that λ is no
longer increasing but constant. Instead, the right handed side of the constrained
is modified in every iteration and the stability problems are completely avoided.

5.3.1 Splitting the Bregman iteration

In the following, we will consider l1-regularization from (5.1) with J(x) = |Sx|1
and with general data fitting function H (x;y). Here, S is a linear “sparsifying”
transform (for which multiresolution transforms from Chapter 2 can be used).
For this functional, the first part of the Bregman iteration (5.51) is a complex
optimization problem. Because we are dealing with images here, the dimension
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of x is very high. To alleviate this problem, Split Bregman [Goldstein and Os-
her, 2008] converts (5.52) again in a second constrained optimization problem
by introducing a “split” variable d:

xi+1 = arg min
x

|d|1 +H (x;y) +
λ

2
‖Sx − d‖2

2 . (5.54)

This problem can be solved elegantly using the Bregman iteration from (5.52)-
(5.53), which gives:

(xi+1,di+1) = min
(x,d)

|d|1 +H (x;y) +
λ

2
‖Sx− di − bi‖2

2 , (5.55)

bi+1 = bi + (Sxi+1 − di+1) . (5.56)

Next, the l1 and l2-components of (5.55) are “split” by performing the mini-
mization with respect to x and d separately:

xi+1 = argmin
x
H (x;y) +

λ

2
‖Sx − di − bi‖2

2 , (5.57)

di+1 = argmin
d

|d|1 +
λ

2
‖Sx − di − bi‖2

2 . (5.58)

The minimization problems in (5.57)-(5.58) are now considerably easier: (5.58)
has a closed form solution, given by soft-shrinkage:

[di+1]k = softshrink

(
[Sxi]k + [bi]k ,

1

λ

)
, (5.59)

where [·]k denotes the kth component of a vector. Also, (5.57) can be solved
efficiently. For example, let H (x;y) = 1

2 ‖x − y‖2
2, then (5.57) becomes:

xi+1 =
(
I + λSHS

)−1 (
y + SH (di + bi)

)
. (5.60)

with (·)H the Hermitian transpose of a matrix. In some applications, S is a
diagonal matrix, such that the updated image xi+1 can be found using simple
point-wise operations. In case the sparsifying transform S has a block-circulant
structure, this system of equations can be solved using the 2D FFT, since a 2D
DFT matrix will diagonalize S. If the matrix I+λSHS is diagonally dominant,
which means that the magnitude of a diagonal entry is larger than the sum of
the magnitudes of all other entries in that row:

∣∣1 + λ
[
SHS

]
mm

∣∣�
N∑

n = 1,
n 6= m

∣∣λ
[
SHS

]
mn

∣∣ , (5.61)

then the Gauss-Seidel method [Kahan, 1958] can be used. In all other cases
it is adviced to use a few steps of the conjugate gradient method to reach an
approximate solution of the problem [Goldstein and Osher, 2008].
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In theory, (5.57) and (5.58) need to be applied alternately until conver-
gence, before applying (5.56) iteratively. In [Goldstein and Osher, 2008] it was
found that for many applications the algorithm still converges when only one
iteration of the inner iteration is being performed. The resulting algorithm is
summarized in Algorithm 5.1.

The Split-Bregman algorithm is in fact similar to various iterative threshold-
ing schemes (e.g. [Figueiredo and Nowak, 2003,Daubechies et al., 2004,Bioucas-
Dias and Figueiredo, 2007,Combettes and Pesquet, 2007]). Split Bregman has
several advantages compared to other approaches: 1) a relatively low memory
footprint [Goldstein and Osher, 2008], 2) simple and fast iteration steps and 3)
the technique is generally easy to implement, even for complex problems.

Solving the regularization problem (5.54) has one subtle issue: it requires
an initial choice of the regularization parameter λ. Although there exists exten-
sive literature on selecting the regularization parameter (see e.g. [Titterington,
1991,Kang and Katsaggelos, 1995]), for most applications, we are interested
in solving the following constrained problem, which does not contain such a
regularization parameter:

min
x
J(x), s.t. H (x;y) < ε (5.62)

with ε an upper bound for data fitting error of the solution (usually a small
positive number). Practically, starting from an initial solution with data fitting
cost H (x;y) ≥ ε, the search for the optimal solution will be stopped whenever
a candidate solution is found with H (x) smaller than a predefined threshold
ε. The idea from [Goldstein and Osher, 2008] is to solve (5.62) again using
Bregman iterations. For example, for quadratic data functions of the form
H (x;y) = ‖y − Ax‖2

2, the problem (5.62) can be reduced to a sequence of
unconstrained problems of the form

xi+1 = min
x
J(x) + µ ‖yi − Ax‖2

2 , (5.63)

yi+1 = yi + y − Axi. (5.64)

If we further specify J(x) in a sparsifying transform domain, we can add the
second constraint Sx = d, next to the constraint ‖y − Ax‖2

2 < ε. Then the first
Bregman step (5.63) can be replaced by the constrained problem (5.54), which
gives the Split Bregman algorithm from Algorithm 5.2. Now, as the constraints
Sx = d and yi = Ax will be perfectly fulfilled after each Bregman iteration,
the final result of the algorithm becomes independent of the parameter choice
for λ and µ. However, the computation time largely depends on the choice of
these parameters (and of course also the parameter ε). It is found in [Goldstein
and Osher, 2008] that when these parameters are properly chosen, the outer
loop of Algorithm 5.2 only needs to be performed a small number of times.
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Algorithm 5.1 Split Bregman algorithm minimizing |d|1 +H (x) s.t. Sx = d.

initialize x1 = y, d1 = 0, b1 = 0

while ‖xi+1 − xi‖2 > tolerance

xi+1 = arg minxH (x;y) + λ
2 ‖Sx − di − bi‖2

2 , (step I)

di+1 = argmind |d|1 + λ
2 ‖Sx − di − bi‖2

2 , (step II)

bi+1 = bi + (Sxi+1 − di+1) . (step III)

end

Algorithm 5.2 Split Bregman algorithm minimizing |d|1 s.t. Sx = d and
‖y − Ax‖2

2 < σ.
initialize x1 = y, d1 = 0, b1 = 0

while ‖y − Axi‖2 ≥ σ

while ‖xi+1 − xi‖2 > tolerance

xi+1 = argminx µ ‖yi − Ax‖2
2 + λ

2 ‖Sx − di − bi‖2
2 , (step I)

di+1 = argmind |d|1 + λ
2 ‖Sx − di − bi‖2

2 , (step II)
bi+1 = bi + (Sxi+1 − di+1) . (step III)

end

yi+1 = yi + y − Axi

end

5.3.2 Bayesian MAP estimation through Bregman opti-

mization

So far, we considered the Bregman framework as a generic technique for solving
l1-regularized problems where the regularization takes place in a sparsifying
transform domain. There is a lot of flexibility here:

• The function H (x) needs to be convex and differentiable, but other than
that there are no restrictions. It turns out that H (x) is naturally linked
with the degradation model (or noise model), as we will see further on.

• For the matrix S, any multiresolution transform presented in Chapter 2
can be used. Moreover, S does not even have to be an invertible matrix (or
even a square matrix): the update step (5.60) depends on the Hermitian
transpose SH , which is the adjoint transform, but not the inverse S−1.
This is beneficial when the inverse transform is more time-consuming than
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Degradation/noise model

Multiresolution transform

Image model (in multi-
resolution transform domain)

Split Bregman
Optimization

H(x)

S
|d| = |Sx|

Figure 5.24: Different components of the Bregman optimization framework.

the adjoint transforms (e.g. the Radon transform, non-uniform DFT...).

• Previously we used the l1-norm |d|1 in the formulation of (5.54). The
framework allows other norms to be used as well, as long as these func-
tionals are convex. |d|1 is naturally linked to the image model, as we will
see next.

Bregman optimization can be used to find the maximum of Bayesian posterior
distributions. The multivariate extension of the Bayesian MAP estimate (5.9)
from Section 5.2.1, is defined as:

x̂MAP = argmax
x

fx|y (x|y)

= argmax
x

log fy|x (y|x) + log fx (x) . (5.65)

Our goal is here to estimate a “clean” image x from an observed degraded
image y, using prior information with respect to x in the form of a probability
distribution. As we explained in Chapter 3, the prior distribution is usually
modeled in the transform domain. First, let d = Sx with S an invertible
matrix, then we have:

fx (x) dx = |detS| fd (Sx) dx. (5.66)

where we expressed the transform domain PDF fd (d) in terms of the image
domain PDF of x through a change of variables. The determinant of the
Jacobian matrix, |detS|, will not have any further influence in the optimization
problem, since this matrix is constant. In various intra-scale statistical models
from Section 3.4, the subband coefficients from different subbands were assumed
to be statistically independent. Let Dl denote a projection matrix that projects
the transform coefficients d onto the lth subband (l = 1, ..., L), such that the
coefficients for subband l are given by d(l) = DlSx, then we can write:

fx (x) ∝
L∏

l=1

fd(l) (DlSx) (5.67)
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and consequently, the MAP estimate becomes:

x̂MAP = argmax
x

−H(x;y) +
L∑

l=1

log fd(l) (DlSx) (5.68)

= argmin
x
H(x;y) −

L∑

l=1

log fd(l) (DlSx) (5.69)

with H(x;y) = − log fy|x (y|x) the data fitting function.
Now, the Split Bregman algorithm from Algorithm 5.1 can be used to

compute the MAP estimates. This has the advantage that the computation
is greatly simplified, independent of the multiresolution transform or image
model being used. In particular, for quadratic data fitting functions, the step
I of the Bregman iteration is an l2-regularized problem which is equivalent
to the (linear) Tikhonov-Miller restoration problem (see Section 5.1). Step
II of the Bregman iteration amounts to soft-thresholding if the distributions
fd(l) (DlSx) , l = 1, ..., L are Laplace distributions. Alternatively we can also
consider more heavy tailed distributions such as the Bessel K Form distribution
(Section 3.2.5). In this case, step II can be solved using the MAP estimation
presented in Section 5.2.2.

Hence, given an (arbitrary) image model, a sparsifying multiresolution
transform and a degradation/noise model, the Split Bregman technique offers
a generic approach for solving image restoration problems (see Figure 5.24).
In principle, any image model from Chapter 3, multiresolution transform from
Chapter 2 and noise model from Chapter 4 can be used for this. Even though
the global restoration problem can be quite complicated (as we will see further
on), the intermediate individual Bregman update steps are usually quite simple
and computationally efficient.

5.3.3 Split Bregman based removal of correlated noise

To illustrate the Bregman iteration technique in practical applications, we will
work out a simple denoising example before tackling the more difficult problems
in the next sections. We start from an observed image corrupted with additive
correlated Gaussian noise:

y|x ∼ N (x,Cw) . (5.70)

The coefficients for the band-pass and high-pass subbands l = 2, ..., L are as-
sumed to be Laplacian distributed with parameter sl. We further assume that
the noise is spatially stationary. This means that Cw is a Toeplitz matrix.
To facilitate implementation in the 2D Fourier domain, we approximate this
matrix by a block-circulant matrix. This means that we (artificially) assume
that noise on the left image border is correlated with noise on the right image
border. This simplification has only effect near the image border.
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Our goal is to estimate the original noise-free image x. The data fitting
term for (5.70) is given by:

H (x;y) = − log fy|x (y|x) =
1

2
(x − y)T C−1

w (x − y) .

For Split Bregman, the unconstrained MAP optimization problem can be for-
mulated as follows:

x̂MAP = argmin
x
H (x;y) +

L∑

l=1

∣∣∣∣
d(l)

sl

∣∣∣∣
1

+
λ

2

L∑

l=1

∥∥∥DlSx − d(l)
∥∥∥

2

2
, (5.71)

where the first term is the data fitting term, the second term imposes prior
knowledge to the transform coefficients d(l) and the third term expresses that
d(l), j = 1, ..., L are transform coefficients for subband l of the original noise-free
image x (recall that S is a sparsifying transform matrix and that Dl projects
the transform coefficients onto the lth subband). The optimization problem
can be efficiently solved using (5.55)-(5.58), which leads to:

xi+1 =

(
C−1
w + λ

L∑

l=2

DT
l SHSDl

)−1(
C−1
w y + λ

L∑

l=2

DT
l SH

(
d

(l)
i + b

(l)
i

))

(5.72)
[
d

(l)
i+1

]
k

= softshrink

(
[DlSx]k +

[
b

(l)
i

]
k
,

1

λsl

)
, j = 1, ..., L (5.73)

b
(l)
i+1 = b

(l)
i +

(
DlSxi+1 − d

(l)
i+1

)
, j = 1, ..., L. (5.74)

with b
(l)
i , j = 1, ..., L a sequence of Bregman splitting variables. The resulting

algorithm is in fact an iterative thresholding algorithm, in which the coefficients
of every subband are thresholded according to the given threshold for that
subband, i.e.: 1/sl. For a self-inverting transform with perfect reconstruction
(i.e.

∑L
l=1 DT

l STSDl = I) and for white noise (i.e. Cw = σ2I) the algorithm
can be further simplified to the algorithm presented in Algorithm 5.3. Bregman
step I (5.72) then corresponds to solving a diagonal system of linear equations,
which is computationally very efficient.

We remark that for orthonormal transforms S (i.e. STS = SST = I), the
whole optimization problem can be expressed in transform domain, as

‖Sx − Sy‖2
2 = (Sx− Sy)

T
(Sx − Sy)

= (x− y)
T

STS (x − y)

= ‖x − y‖2
2 .

It can easily be checked that in this case, applying solely one Bregman iteration
yields the optimal MAP solution. For non-orthonormal or redundant multires-
olution transforms, multiple iteration will be needed for convergence and the
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Algorithm 5.3 Split Bregman algorithm for multiresolution transform do-
main denoising for white noise (for correlated noise, simply use equation (5.72)
instead of the first equation).
initialize x1 = y, d1 = 0, b1 = 0

while H (x;y) ≥ ε

while ‖xi+1 − xi‖2 > tolerance

xi+1 =
1

1 + λσ2

(
y + λσ2

L∑

l=2

DT
l SH

(
d

(l)
i + b

(l)
i

))
, (step I)

[
d

(l)
i+1

]
k

= softshrink
(
[DlSx]k +

[
b

(l)
i

]
k
, 1
λsl

)
, j = 1, ..., L,

(step II)

b
(l)
i+1 = b

(l)
i +

(
DlSxi+1 − d

(l)
i+1

)
, j = 1, ..., L. (step III)

end

yi+1 = yi + y − xi

end

solution will be (slightly) different than for the equivalent transform domain
MAP estimation. The main difference then is that the data data fitting is
performed directly in the image domain instead of in transform domain. This
permits to easily include a wide variety of degradations (that are defined in the
image domain) into the model, as we will explain further.

5.3.4 Multiresolution joint denoising and deblurring

As a second example of Split-Bregman, we will now extend the degradation
model by including blur, which will lead to a novel restoration algorithm. A
classical restoration problem is the recovery of an original image after blurring
it and adding Gaussian noise:

y = Ax + w with w ∼ N (0,Cw) (5.75)

with w additive white Gaussian noise. The matrix A is a generally non-
invertible matrix that models the blurring operation. For simplicity, we will
assume that A is block-circulant (such that the blurring operation is expressed
as a circular convolution, which again facilitates implementation in the 2D
Fourier domain) and known in advance. The observations are conditionally
Gaussian distributed y|x ∼ N (Ax,Cw), such that the data fitting term is
given by:

H (x;y) =
1

2
(Ax − y)

T
C−1
w (Ax − y) . (5.76)
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Solving the joint deblurring and denoising problem only requires modifying
step I of the Bregman iteration (5.72), as now the matrix A is involved in the
optimization. Because A is block-circulant, ATA will also be block-circulant,
hence computing Bregman step I is best performed using the 2D DFT. The
resulting algorithm is shown in Algorithm 5.4.

Compared to Section 5.3.3, the main modification we made is a change of
the degradation model which resulted in a different formula of step I of the
Bregman iteration, leaving step II unaffected.

To illustrate that Split-Bregman allows for a lot of flexibility, we will now
consider the case that the blur operation A and/or the noise covariance matrix
C−1
w are unknown. Let us denote by X(m,n) and Y (m,n) the DFT of respec-

tively x and y, then the data fitting function (5.76) can be written in the DFT
domain:

H (x;y) =
1

2

M∑

m=1

N∑

n=1

|A(m,n)X(m,n) − Y (m,n)|2 (B(m,n))2 (5.77)

with M and N respectively the number of rows and columns in the image,
with A(m,n) the frequency response of the unknown blurring filter and with
B(m,n) the square root of the reciprocal of the noise PSD. We will now con-
sider the estimation of B(m,n) from a degraded image (the estimation of
A(m,n) is entirely analogous). Because for some (m,n), the data fitting cost
|A(m,n)X(m,n) − Y (m,n)|2 can become 0, this is again an ill-posed problem.
Therefore we add an extra regularization term to the problem:

min
x,{B(m,n)}

J(x) +
1

2

M∑

m=1

N∑

n=1

|A(m,n)X(m,n) − Y (m,n)|2 (B(m,n))2

+
µ

2

M∑

m=1

N∑

n=1

G(m,n) (B(m,n) −B0)
2 (5.78)

with B0 a constant parameter, G(m,n) > 0 a frequency dependent weight and
with µ a regularization constant. G(m,n) can be chosen to penalize certain
spatial frequencies of the noise PSD. Selecting G(m,n) = 1 would enforce the
noise PSD to be flat, i.e. B(m,n) = B0. In the following, we will assume
that the constant B0 (which is proportional to the noise standard deviation)
is known in advance, such that we can concentrate on estimating the noise
correlation structure instead of the noise variance.9 In many applications the
noise PSD has a low-pass or high-pass characteristic rather than a flat char-
acteristic (see Chapter 4). To incorporate this form of prior knowledge in the
noise estimation method, we can for example select the frequency response of
a high-pass filter, such as the spatial gradient:

G(m,n) = max
(
ε0,
√
m2 + n2

)
(5.79)

9If necessary, B0 can be estimated using separate techniques such as the techniques pre-
sented in Chapter 4.
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with ε0 a small positive constant. Next, B(m,n) can be estimated as the
minimum of (5.78), which gives:

B̂(m,n) =
µG(m,n)

|A(m,n)X(m,n) − Y (m,n)|2 + µG(m,n)
, (5.80)

which solely requires a point-wise division in the DFT domain. A blind de-
noising technique, assuming that A(m,n) is known in advance, can readily be
obtained as follows:

1. Start from an initial estimate of the noise PSD, e.g. B(m,n) = 1, which
corresponds to white noise.

2. Solve min
x
J(x) +

1

2

MX
m=1

NX
n=1

|A(m,n)X(m,n) − Y (m,n)|2 (B(m,n))2, for which

Algorithm 5.4 can be used.

3. Update the (reciprocal of the) noise PSD estimate using (5.80).

4. Repeat step 2 until convergence (e.g. ‖xi+1 − xi‖2 ≤ tolerance, with i
the iteration index).

Recall that step 2 can be implemented using the Split Bregman algorithm
from Algorithm 5.4. Because this algorithm already contains two loops, there
seems to be additional computational overhead due to the necessity of a third
loop. Fortunately, in practice this problem is not very significant, because the
Bregman iterative optimization can start from the solution xi from the previous
outer iteration (hence after every outer iteration, fewer inner iterations will be
necessary). Furthermore, the Bregman iterations are relatively simple and can
be efficiently implemented.

5.3.5 Joint signal-dependent noise and bias removal

The removal of signal-dependent noise is a nontrivial image processing problem
that is very significant for many applications. However, compared to the design
of algorithms for signal-independent (additive) noise, only limited effort has
been spent to tackle the problem of signal-dependent noise. As we already
mentioned, most techniques rely on variance stabilization (see Section 4.4.1).
Better is to approximate the signal-dependent noise into mixed additive and
multiplicative noise, as in [Hirakawa and Parks, 2005b]. The noise level function
(NLF) is then defined as:

σ (x) ≈ σ(x0) +
∂σ

∂x

∣∣∣∣
x=x0

x. (5.81)

Equation (5.81) comprises a first order Taylor approximation around the work-
ing point x0, where the working point is often chosen to be a dark intensity,
favoring the dark regions over the brighter regions. Another way to deal with
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Algorithm 5.4 Split Bregman algorithm for multiresolution transform domain
deblurring and denoising.
initialize x1 = y, d1 = 0, b1 = 0

while H (x;y) ≥ ε

while ‖xi+1 − xi‖2 > tolerance

xi+1 =
(
ATC−1

w A+λ
)−1
(
C−1
w ATy+λ

∑L
l=2 DT

l SH
(
d

(l)
i + b

(l)
i

))
,

(step I)[
d

(l)
i+1

]
k

= softshrink
(
[DlSx]k +

[
b

(l)
i

]
k
, 1
λsl

)
, j = 1, ..., L,

(step II)

b
(l)
i+1 = b

(l)
i +

(
DlSxi+1 − d

(l)
i+1

)
, j = 1, ..., L. (step III)

end

yi+1 = yi + y − Axi

end

signal-dependent noise is to estimate the noise variance locally at position j
as in e.g. [Johnstone and Silverman, 1997,Argenti et al., 2002,Goossens et al.,
2006] and to denoise the images using an algorithm for non-stationary noise.
The disadvantage here is that the noise variance estimate is often not very reli-
able, especially the presence of image discontinuities such as edges, textures...
Other approaches directly deal with signal-dependent noise (in particular, Pois-
son noise) in the wavelet domain [Hirakawa, 2007,Hirakawa and Wolfe, 2009],
unfortunately this turns out to be a very complicated task. In [Foi et al.,
2008, Foi, 2008], the NLF is first estimated in the wavelet domain, by maxi-
mum likelihood fitting of a parametric model for the NLF. Next, the estimated
NLF is used for denoising in a second processing step.

In this section, we will present a denoising technique for the signal-dependent
noise models defined in Section 4.4 within the Bregman optimization frame-
work. Again, Bregman optimization has the major advantage in this appli-
cation that the noise model and image prior models are decoupled and can
be defined in different transform domains. Compared to the method of [Foi,
2008], our approach estimates the noise variance of each pixel in the image
jointly with the “denoised” image.

Let xj = [x]j , wj = [w]j and yj = [y]j denote the jth component of
respectively x, w and y. For the signal-dependent noise models from Section
4.4, the conditional distribution of y given x is Gaussian:

yj |xj ∼ N
(
µ(xj), σ

2 (xj)
)
, (5.82)

where the bias function µ(x) and the noise level function σ (x) are obtained
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using the techniques discussed in Section 4.4. Our goal is then to estimate an
(approximately) “unbiased” version of the original image xj . Based on (5.82),
the data fitting term readily follows:

H (x;y) =
1

2

N∑

j=1

(
yj − µ(xj)

σ2 (xj)

)2

,

with N the number of pixels in the image. Step I of the Bregman iteration
becomes:

xi+1 = argmin
x

1

2

N∑

j=1

(
yj − µ(xj)

σ2 (xj)

)2

+
λ

2
‖Sx − di − bi‖2

2 . (5.83)

Unfortunately, because µ(x) and σ (x) are nonlinear functions in general, (5.83)
does no longer correspond to a quadratic problem. One way to proceed is to
use nonlinear optimization techniques, such as nonlinear conjugate gradients,
however, this may dramatically increase the computation time. An alternative
is to estimate a “nonlinearized” version of the signal directly, i.e. to estimate
x′ = µ(x) instead of x. Therefore we assume that µ(x) is monotonically increas-
ing on the range space of x (which is the case in all examples we encountered
in our work), such that the inverse µ−1(x) exists. Additionally, we will im-
pose the prior distribution on the signal in this “nonlinearized” domain as well.
Applying the variable substitution x′ = µ(x) to (5.83) then yields:

x
′

i+1 = argmin
x

1

2

N∑

j=1

(
yj − x

′

j

σ′2
(
x

′

j

)
)2

+
λ

2

∥∥∥Sx
′ − di − bi

∥∥∥
2

2
, (5.84)

where x′ =
[
x

′

1 · · ·x
′

N

]
and with the NLF warped to the nonlinear domain of

x′ using the de-biasing function µ−1 (x):

σ
′2
(
x

′

j

)
= σ2

(
µ−1

(
x

′

j

))
.

Solving (5.84) is then straightforward:

x
′

i+1 =
(
1 + λσ

′2 (x)
)−1 (

y + λσ
′2
(
x

′
)
S (di − bi)

)
(5.85)
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Algorithm 5.5 Split Bregman algorithm for multiresolution transform domain
removal of signal-dependent noise and debiasing.

initialize x
′

1 = y, d1 = 0, b1 = 0

while

∥∥∥x′

i+1 − x
′

i

∥∥∥
2
> tolerance

x
′

i+1 =
(
1 + λσ

′2
(
x

′

i

))−1 (
y + λσ

′2
(
x

′

i

)
S (di − bi)

)
, (step I)

[
d

(l)
i+1

]
k

= softshrink
([

DlSx
′

i

]
k

+
[
b

(l)
i

]
k
, 1
λsl

)
, j = 1, ..., L, (step

II)

b
(l)
i+1 = b

(l)
i +

(
DlSx

′

i+1 − d
(l)
i+1

)
, j = 1, ..., L. (step III)

end

xi+1 =
[
µ−1 ([xi]1) · · · µ−1 ([xi]N )

]

Equation (5.85) then constitutes a linear diagonal system of equations which
is trivial to solve. Finally, an estimate of the unbiased image is obtained as:

x̂j = µ−1(x̂
′

j) (5.87)

An example of such an de-biasing function µ−1(·) is depicted in Figure 5.25.
Here the de-biasing function expands the intensity range of the denoised image
from [0, 255] to [−64, 320]. This approach is elegant and effective in dealing
with signal-dependent noise, but the main drawback is that there is a poten-
tial risk that estimation errors in the low and high intensity ranges are being
amplified by the de-biasing function. This is particularly the case for low SNR.
Nevertheless, combined with an effective image prior, this effect is not very pro-
nounced as we will see in Section 5.4. The complete algorithm is summarized
in Algorithm 5.5.

Finally, we remark that it is also possible to estimate σ
′2
(
x

′

j

)
from the

observed image, in a similar manner as we did for the noise PSD in Section
5.3.4, yielding a generic denoising algorithm for signal-dependent noise. Unfor-
tunately, it is not evident to find the de-biasing function µ−1(·) simultaneously.
This will be explored in our future work.

5.4 Experimental results

In this section, we will present experimental results for the above image restora-
tion methods. Because of the large number of restoration methods in this chap-
ter, we will give extended quantitative results solely for the image denoising
methods, in order to make space for the more interesting visual results and also



198 Digital image restoration

0 50 100 150 200 250
−100

0

100

200

300

400

x’

µ−
1 (x

’)

Figure 5.25: Example of a de-biasing function that expands the intensity range
from [0, 255] to [−64, 320].

because the denoising technique are the underlying foundation of the more so-
phisticated restoration methods. As we discussed generic techniques for image
restoration in this chapter, the number of possible combinations (signal model,
noise model, multiresolution transform) is very high. Therefore, we will restrict
ourselves to a few interesting practical restoration applications.

5.4.1 Denoising results for white noise

First, we investigate the influence of different interscale and intrascale image
models on the denoising performance. Therefore, we compare the following
methods on the test set of 8 images shown in Figure 5.26:

• The method from [Crouse et al., 1998], which uses a HMT with a mixture
of Gaussians prior model in the decimated wavelet domain.

• ProbShrink from [Pižurica and Philips, 2006], which makes use of an
undecimated wavelet transform combined with an intrascale model based
on local spatial activity indicators (see Section 3.4.2).

• BLS-GSM from [Portilla et al., 2003], which is implemented using the full
STP transform with 8 orientations. The local neighborhood used consists
of a 3 × 3 local neighborhood and 1 parent coefficient.

• The method from [Romberg et al., 2001a], which is an extension of
[Crouse et al., 1998] to the DT-CWT.

• Bivariate Shrinkage from [Şendur and Selesnick, 2002a], in which the
DT-CWT parent-child dependencies are modeled using a bivariate distri-
bution (see Section 3.5.2).

• Vector-ProbShrink, presented in Section 5.2.3.



5.4 Experimental results 199

Lena (512 × 512) Peppers (512 × 512) Man (512 × 512) House (256 × 256)

Barbara (512 × 512) Hill (512 × 512) Boats (512 × 512) Couple (512 × 512)

Figure 5.26: Test images from the USC-SIPI database
(http://sipi.usc.edu/database/), used for the validation of the denoising
algorithms.

For all of the DT-CWT based methods we use Farras nearly symmetric filters
[Abdelnour and Selesnick, 2001] for the first scale and 10-tap Q-shift filters
[Kingsbury, 2003] starting from the second scale. We use overlapping 3 × 3
local neighborhoods to keep the computional overhead low. The noise variance
is assumed to be known to all the algorithms. Quantitative PSNR results for
different test images and different input noise levels are reported in Figure 5.27.
To increase the reliability of the results, the PSNR results are averaged over
50 runs for each of the denoising methods.

Averaged over all images of the test set, our combined inter/intrascale
method performs equally well as the BLS-GSM method of Portilla (see Fig-
ure 5.27(f)), but at a lower computational cost, since the redundancy factor of
the DT-CWT is 4, while the full STP transform with 8 orientations has redun-
dancy factor 56/3 ≈ 18.67. A comparison for the computation times of Vector-
ProbShrink and BLS-GSM is given in Table 5.3. By incorporating interscale
dependencies using a HMT model in the DT-CWT domain, Vector-ProbShrink
is approximately 3-4 times faster than BLS-GSM, while maintaining the same
PSNR performance.
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Figure 5.27: PSNR denoising results for different wavelet-based denoising tech-
niques. Reported is the increase in PSNR (i.e. the output PSNR after denoising
minus the input PSNR).
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Table 5.3: Comparison of the execution times of the BLS-GSM method and the
proposed method. To allow for a fair comparison, both methods are implemented in
C++ with the same level of optimization. Reported values are the execution times
averaged over 10 runs and their standard deviations (between parentheses).

Input image size

Method 256 × 256 512 × 512

BLS-GSM / Full STP 6.41s (0.03s) 25.89s (0.05s)

Vector-ProbShrink / DT-CWT 2.02s (0.01s) 6.99s (0.07s)

In Figure 5.28, a second set of results is generated for the same test set of
images, but now mainly for techniques that exploit non-local dependencies in
images. Some of the new techniques that are included in these results are:

• K-SVD Denoising [Elad and Aharon, 2006b], which makes use of a locally
trained dictionary of image patches.

• BLS-SVGSM [Guerrero-Colón et al., 2008a], which uses the SVGSM prior
model combined with an MMSE estimator (implemented with block sizes
of 32 × 32).

• BM-3D [Dabov et al., 2007], which first performs block-matching to group
similar patches. Then, 3D transform domain filtering is applied to the
resulting stacks. Finally, the denoised image is synthesized by aggregating
the 3D filtered patches.

• BLS-MPGSM (Section 5.2.4), using a 5 × 5 local neighborhood.

• The improved NLMeans filter from Section 5.1.2.

It can be seen that both BLS-MPGSM and the improved NLMeans filter are
competitive to BM-3D, but slightly under-performing in general. For BLS-
MPGSM, we believe the main reason is that non-local information is only
exploited partially (i.e. in the EM training phase and not the denoising phase).
On the other hand, the NLMeans filter tends to destroy “weak” edges, which
degrades the PSNR performance. However, we found that in terms of the visual
quality of the images, our methods are sometimes better, because BM-3D often
creates paint brush artifacts due to incorrect block-matching caused by the
presence of noise.

Visual examples for the different denoising techniques are shown in Figure
5.29, for the Peppers image with AWGN (σ = 80). BLS-MPGSM is omitted in
this comparison, as for a high noise level, this method only performs marginally
better than BLS-GSM. Even for this high noise level, the proposed methods are
able to reconstruct well most of the details of the image, well being competitive
to BM-3D in terms of PSNR.
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Figure 5.28: PSNR denoising results for different wavelet-based and non-wavelet-
based denoising techniques. Reported is the increase in PSNR (i.e. the output PSNR
after denoising minus the input PSNR).
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(a) Original (b) Noisy (c) [Crouse et al., 1998]
PSNR=10.10dB PSNR=24.66dB

(d) [Romberg et al., 2001b] (e) [Şendur and Selesnick, 2002b] (f) [Pižurica and Philips, 2006]
PSNR=25.36dB PSNR=25.68dB PSNR=25.28dB

(g) [Portilla et al., 2003] (h) [Guerrero-Colón et al., 2008a] (i) [Elad and Aharon, 2006b]
PSNR=26.05dB PSNR=25.61dB PSNR=25.46dB

(j) [Dabov et al., 2007] (k) Improved NLMeans (l) Vector-ProbShrink HMT
PSNR=26.48dB PSNR=26.59dB PSNR=26.05dB

Figure 5.29: Visual denoising results for different wavelet-based and non-wavelet-
based denoising techniques.
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5.4.2 Denoising results for colored noise

In Figure 5.30 and Figure 5.31, visual results are given for color images cor-
rupted with artificial colored noise. The noise was added independently to
the three RGB-color channels. To allow an easy comparison of the denois-
ing methods, no noise correlations between different color channels are being
considered in these results. The Vector-ProbShrink and BLS-MPGSM algo-
rithms are applied in the RGB-color space to each colour channel individually.
For the improved NLMeans filter, the block similarity is computed as a mean
square difference in RGB-space. Although for all three methods, the PSNR
increases by more than 8dB after processing, the visual performance perfor-
mance of the methods is quite different. For example, BLS-MPGSM generally
tends to generate more ringing artifacts than the other methods. We found
that this behavior can be improved by using 3 × 3 neighborhoods instead of
5 × 5 neighborhoods. However doing so, the PSNR performance may decrease
because we may be ignoring some significant correlations between coefficients.
On the other hand, the NLMeans filter overall produces sharper images. How-
ever, in flat regions (e.g. the skin) the NLMeans filter causes oversmoothing.
Furthermore, this filter fails to reconstruct the details around the eye of the
parrot in Figure 5.31. We believe this is caused by the high noise level and by
the lack of candidate similar patches for these image details.

Hence we can conclude that the presented image models and denoising
techniques already give a high PSNR and visual quality, in spite of the high
input noise levels used in these experiments. Apparently each of the methods
have their own advantages or disadvantages, which may suggest that there is
even more room for improvement.
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(a) (b)

(c) (d) (d)

Figure 5.30: Visual results for the removal of stationary correlated noise from im-
ages. (a) Original image, (b) Noisy image (PSNR=20.60dB), (c) Vector-ProbShrink
(PSNR=29.44dB), (d) BLS-MPGSM (PSNR=31.01dB), (e) Improved NLMeans
(PSNR=30.53dB).
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(a) (b)

(c) (d) (d)

Figure 5.31: Visual results for the removal of stationary correlated noise from im-
ages. (a) Original image, (b) Noisy image (PSNR=14.55dB), (c) Vector-ProbShrink
(PSNR=27.22dB), (d) BLS-MPGSM (PSNR=26.90dB), (e) Improved NLMeans
(PSNR=25.68dB).
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5.4.3 Demosaicing

In Figure 5.32, demosaicing results are shown for both the cycle-spinning
method and the proposed method. Here, the directional selectivity of the com-
plex wavelets, combined with the suppression of discoloration artifacts vastly
improves the visual quality of the reconstructed images. For the result in Fig-
ure 5.33 we reach similar conclusions. The difference images in Figure 5.33
reveal that the reconstruction errors are much smaller than DL-MMSE, which
is one of the state-of-the-art demosaicing methods.

The proposed demosaicing method is quite fast: demosaicing one 512× 512
image on a recent PC takes 1.5 s in an unoptimized Matlab implementation,
while DL-MMSE requires 24.0 s for the same task. This improvement in compu-
tation time is achieved here by 1) the simplicity of the reconstruction formulas
and 2) by the excellent space-frequency localizing properties of the complex
wavelets.

(a) (b)

(c) (d)

Figure 5.32: Demosaicing results (compare to Figure 5.21) (a),(c) wavelet-based
demosaicing with cycle-spinning, (b),(d) our complex-wavelet based demosaicing
method.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.33: Demosaicing results (a) Original image, (b) wavelet-based demosaicing
(PSNR=26.76dB) (c) DL-MMSE (PSNR=30.74dB) [Zhang and Wu, 2005], (d) our
complex-wavelet based demosaicing method (PSNR=32.36dB), (e) difference image
for (c), (f) difference image for (d).
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5.4.4 Image Restoration using Split Bregman techniques

Results for joint denoising and deblurring

In Figure 5.34 and Figure 5.35, we applied the Split Bregman based restoration
algorithm from Section 5.3.4 to a color image corrupted with artificial isotropic
Gaussian blur and white Gaussian noise. The degradation model parameters
are assumed to be known. We use two types of regularization: Total Variation
(TV) and shearlets. In spite of the fact that TV regularization is compu-
tationally much simpler than shearlet regularization, we see that TV creates
cartoon-like artifacts in the restored images. The images restored using shear-
lets have a more natural appearance and fine edge-like structures are better
reconstructed.

(a) (b)

(c) (d)

Figure 5.34: Joint denoising and deblurring results. (a) Original image, (b) de-
graded image with isotropic Gaussian blur (σblur = 2) and white Gaussian noise with
variance σ2

noise = 9, (c) Bregman-based restoration using the TV regularization, (d)
Bregman-based restoration using shearlet regularization.
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(a) (b)

(c) (d)

Figure 5.35: Joint denoising and deblurring results. (a) Original image, (b) de-
graded image with anisotropic Gaussian blur (σblur = 3) white Gaussian noise with
variance σ2

noise = 9, (c) Bregman-based restoration using the TV regularization, (d)
Bregman-based restoration using shearlet regularization.
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Results for blind denoising of correlated Gaussian noise

In Figure 5.36 and Figure 5.37, we processed two noisy grayscale PAL TV
images. As explained in Chapter 4, we can assume that these images are
degraded by additive stationary colored Gaussian noise. Because we do not
known the noise PSD in advance, we use the blind denoising algorithm for
correlated noise presented in Section 5.3.3 and Section 5.3.4. We do not include
an extra blurring operation in this experiment and set A = I. This allows us
to compare the following two restoration methods:

• The blind DT-CWT based denoising algorithm from Section 4.2.2.

• The Bregman based restoration algorithm from Section 5.3.4.

Recall that the blind DT-CWT based technique completely estimates the noise
covariance matrices in every subband of the DT-CWT individually. As such,
the technique can not directly provide an estimate of the noise PSD, since
this would also require estimating cross-correlations between complex wavelet
subbands. Because the Bregman-based algorithm can deal with blurring degra-
dations of the input image and can directly estimate the noise PSD and con-
volution kernel, this algorithm is inherently “more powerful” than the blind
DT-CWT denoising method.

For the Judy image (Figure 5.36), the estimated noise PSD is shown in
Figure 5.36(e). It can be noted that the estimated noise PSD has an isotropic
band-pass characteristic. The reason that the low-pass frequencies of the PSD
are attenuated is a combined effect of the regularization in estimating the PSD
(see (5.78)) and the TV regularization used for estimating the underlying noise-
free image. The Bregman optimization algorithm jointly estimates the noise
PSD and the noise-free image. The final denoising result is shown in Figure
5.36(c). Again, the image reveals many cartoon-like artifacts due to the use
of TV regularization. Because the algorithm gives an accurate estimate of
the noise PSD, we can in fact use other denoising algorithms for correlated
noise (that assume the noise PSD to be known) as well. In Figure 5.36(d), the
result of the NLMeans filter for correlated noise from Section 5.1.2 is depicted,
yielding slightly better results.

This experiment is repeated for the Boy image in Figure 5.37, reaching
similar conclusions. As the difference images (i.e. the difference between the
restored image and the noisy input image) are relatively free of signal struc-
tures, this indicates that the restoration methods correctly identify and remove
the correlated noise in the images.
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(a) (b)

(c) (d)

(e)

Figure 5.36: Blind denoising of a PAL TV image. (a) Recorded noisy image,
(b) Complex-wavelet based noise estimation and denoising (from Section 4.2.2), (c)
Bregman-based noise estimation and restoration using the TV norm, (d) Bregman-
based noise estimation using the TV norm and restoration using the NLMeans filter,
(e) The estimated PSD (black corresponds to low noise power, gray to high noise
power).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.37: Blind denoising of a PAL TV image. (a) Recorded noisy image, (b) The
estimated PSD (black corresponds to low noise power, gray to high noise power), (c)
Bregman-based noise estimation and restoration using the TV norm, (d) Bregman-
based noise estimation using the TV norm and restoration using the NLMeans filter.
(e) Contrast enhanced difference image between (a) and (c). (f) Contrast enhanced
difference image between (a) and (d).
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As a final experiment we consider the removal of signal-dependent noise and
de-biasing. In Figure 5.38(a), an original noise-free image is shown in which
the intensity range has been stretched to [−64, 320]. In Figure 5.38(b), white
Gaussian noise is added with standard deviation σ = 40. Next, the intensity
range of the noisy image is clipped to the range [0, 255]. This results in a re-
duced contrast, as can be seen in Figure 5.38(b). The goal is now to recover
the image in Figure 5.38(a) from the image in Figure 5.38(b). For this task,
we use the Bregman algorithm from Section 5.3.5. In in Figure 5.38(c), the
result is shown for TV regularization. We see that the algorithm is able to
reconstruct many details of the see waves and the cliffs in the background from
the noise information in Figure 5.38(b). Because the de-biasing function am-
plifies estimation errors in the low and high intensity ranges of the image, most
artifacts are visible in these ranges in Figure 5.38(b). Because the Bregman
algorithm gives an estimate of the noise variance for each position in the image
(σ

′2
(
x

′

1

)
), we can again plug these parameter values into an alternative de-

noising method, such as the NLMeans filter from Section 5.1.2, by employing
the weighting function (5.8). Finally, we remove the bias from the denoised
image using (5.87). The result is shown in Figure 5.38(d). It can be seen
that the NLMeans result suffers much less from the amplification of estimation
errors, giving a qualitatively better result. Despite the high variance of the
noise in the input image and the significant loss of information due to clipping,
both restoration methods are well able to recover the original image. In Figure
5.38(e)-Figure 5.38(f) the intensity histograms of the recovered image and the
original image are being compared. These histograms overlap well for a large
part of the intensity range.
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Figure 5.38: Removal of signal-dependent noise and de-biasing. (a) Original
image with intensity range [−64, 320], (b) Degraded image with Gaussian noise
added and clipped to [0, 255] (PSNR=13.87dB), (c) Restoration using the TV norm
(PSNR=22.69dB), (d) Restoration using NLMeans algorithm (PSNR=25.36dB), (e)
Intensity histogram of the denoised image (c), (f) Intensity histogram of the denoised
image (d) (the dotted line is the histogram of the original image).
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5.5 Conclusion

In this chapter, we have presented a number of novel image restoration algo-
rithms according to three different designs. First, we have further improved
the NLMeans filter, which exploits the self-similarity in images and is able to
attain a high denoising performance, both in PSNR as visually. Unfortunately,
the filter is sometimes not able to reconstruct well very fine structures, es-
pecially when these structures are not pronounced in the image. Therefore,
multiresolution-based restoration methods can bring a solution. We have de-
veloped MAP and MMSE estimation rules for the Bessel K Form density. This
brought us some extra insights in how thresholding rules are related to the
kurtosis of the subband coefficients. To deal with correlated noise, we pre-
sented the Vector-ProbShrink denoising method, which is based on our novel
joint inter/intrascale statistical model, yielding a denoising performance that
is comparable to current state-of-the-art multiresolution denoising techniques.

We also derived the MMSE estimator for the MPGSM model and we showed
that the MPGSM denoising method offers a vast improvement in PSNR espe-
cially for texture-rich images. Hence, both Vector-ProbShrink and MPGSM can
be considered to be improved versions of the ProbShrink and BLS-GSM meth-
ods. Both methods achieve this in a different manner: while Vector-ProbShrink
relies on a joint inter/intrascale model, MPGSM uses a more sophisticated in-
trascale model (but ignores interscale dependencies).

We remark that these model improvements are orthogonal, i.e. it is possi-
ble to combine MPGSM with an interscale model as well. However, for future
research, we believe that most improvement can be gained by further incorpo-
rating non-local concepts in the MPGSM model estimation. As we explained
in Section 3.4.4, by the nonlocal training, the model can capture similarities
present in the multiresolution subbands. However, the denoising process itself
is still local and cannot fully take advantage of the nonlocal information present
in images.

Next, we discussed a novel complex-wavelet packet based demosaicing al-
gorithm, that is particularly intriguing because it fully exploits the properties
of the complex wavelets in order to reconstruct fine details in the image and at
the same time it has a low computational complexity. The algorithm can be
easily extended to perform joint denoising and demosaicing.

Finally, we presented the Bregman optimization framework for image restora-
tion, which solves the restoration problem in an iterative way but allows to
tackle more complicated restoration problems. The great benefit of this ap-
proach is that it easily allows to combine one (or multiple) multiresolution
transforms from Chapter 2, a statistical image model from Chapter 3 and a
noise model from Chapter 4 to this end. We illustrated this through a few
restoration examples, such as joint denoising and deconvolution, blind restora-
tion of images in correlated noise and joint denoising and debiasing. The
Bregman framework has however a much wider applicability, especially in im-
age reconstruction applications. We are currently investigating Bregman-based
demosaicing schemes and MRI compressed sensing reconstruction for arbitrary
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non-uniformly sampled K-space trajectories [Aelterman et al., 2010c].
The contributions of this chapter have already resulted in the following

publications: [Goossens et al., 2008a] (on the improved non-local means fil-
ter), [Goossens et al., 2009d] (Vector-ProbShrink), [Goossens et al., 2009c] (the
MPGSM denoising method) and [Aelterman et al., 2009] (the complex wavelet-
based demosaicing algorithm).
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6
Noise models for CT images

In Computed Tomography, cross-sectional images (also called slices) are made
from an object by illuminating the object from many different directions. This
technique enables physicians to look inside the human body and allows easy
visualisation of various abnormalities. After the enormous success by the intro-
duction x-ray Computed Tomography in the 70’s, this image formation method
has been extended to magnetic resonance imaging, ultrasound and microwaves,
but also to nuclear medicine, e.g., positron emission tomography (PET) and
single photon emission computed tomography (SPECT). These new imaging
modalities are now also used on a daily basis since the early 90’s. Nevertheless,
by its greatly increased availability, x-ray Computed Tomography is still very
popular nowadays.

One important issue in Computed Tomography is that statistical random
noise can not be avoided because of the involved health risks of radiation ex-
posure. Typically, the radiation dose is kept as low as possible while keeping
an acceptable image quality. Nevertheless, noise artifacts can be very distract-
ing and may even cause wrong diagnosis. Because of the increasing number
of clinical applications of low-dose CT, the precise characterization of noise in
CT becomes even more important. This is not only for the analysis of the
CT images, but also for the restoration (increasing the SNR) and for devising
better reconstruction techniques. As already mentioned, the CT image quality
highly depends on the artifacts that can be found in these images.

Statistical models are also useful for defining image quality measures, to
study e.g. which reconstruction algorithm performs better and to optimize
reconstruction parameters. Another emerging field is Computer-assisted diag-
nosis (CAD), where computer-based techniques are used for identifying visually
subtle features. Knowledge of and understanding the noise properties in CT is
crucial and statistical noise characterization can help to further improve CAD
techniques.

In this chapter, we start from the traditional filtered backprojection (FBP)
reconstruction algorithm (Section 6.1) and we review a number of existing sta-
tistical models for CT noise (Section 6.4.1). Next, we present a novel, improved
statistical model for noise in CT images reconstructed with the FBP algorithm
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in Sections 6.4.2-6.6. Finally, experimental results are given in Section 6.7.

6.1 The Filtered Backprojection Algorithm

6.1.1 Parallel-beam CT

In this section, we briefly review the filtered backprojection algorithm, that is
still viable for todays commercial CT scanners. We only discuss main back-
ground information of importance for our further analysis of CT noise. For
comprehensive treatment of CT reconstruction algorithms, we refer to the many
textbooks on this topic, e.g. [Kak and Slaney, 2001,Hsieh, 2003].

In tomography, an image is formed by radiating an object from different
directions. Any objects present in the scanning plane attenuate the transmitted
x-rays. An array of detectors measures the x-ray photon energy in a particular
direction. Different projections of the image are obtained by measuring in
different directions. The computational aspect is then the reconstruction of
the image from its projections.

For monoenergetic x-ray photons (i.e. in the absence of beam hardening),
the x-ray intensities measured by the detectors for a single uniform material
follow the Lambert-Beers law [Kak and Slaney, 2001,Hsieh, 2003]:

Xm(ϑ, t) = Xref exp (−µ∆u) (6.1)

where Xref is the transmitted x-ray intensity, Xm(ϑ, t) is the measured data
by the detectors, ϑ is the projection angle, t is the sampling position along the
detector, µ is the linear attenuation coefficient of the material (in cm2/g) and
∆u is the thickness of the material. Typically, bones have higher attenuation
coefficients than tissues, which means that the measured data will have a lower
magnitude.

Of course, in practice materials being scanned are not uniform and the
attenuation coefficient varies with the position. To deal with this situation,
(6.1) can be extended as follows:

Xm(ϑ, t) = Xref exp

(
−
ˆ

L

µ(u sinϑ+ t cosϑ,−u cosϑ+ t sinϑ)du

)
(6.2)

where L is a line over which the integration takes place. In (6.2), the attenua-
tion distribution µ(x, y) depends on the position in the image. An illustration
is given in Figure 6.1.

Next, the projection data is obtained by taking the negative logarithm of
the measured data (which we will further call “logarithmic transform”):

Pm(ϑ, t) = − log

(
Xm(ϑ, t)

Xref

)
(6.3)

=

ˆ

L

µ(u cosϑ− t sinϑ, u sinϑ+ t cosϑ)du (6.4)
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Figure 6.1: (a) Acquisition of a parallel-beam CT image. The t axis denotes the
sampling position along the detector, ϑ is the projection angle. (b) Acquisition of a
fan-beam CT image. γ is the angle between the iso-ray and the line that connects
the source to the reconstructed pixel. L is the distance from the x-ray source to the
reconstructed pixel at position (x, y). D is the distance between the x-ray source and
the iso-center.

The transform that maps µ(x, y) onto Pm(ϑ, t) is called the Radon transform.
The goal of CT reconstruction is to recover the attenuation distribution µ(x, y)
from the projection data Pm(ϑ, t). We remark that the relationship from (6.3)
is only valid in ideal circumstances. In practice, the relationship generally
does not hold because of the polyenergetic nature of the x-ray beam, scattered
radiation and patient motion. These problems will be discussed in more detail
in Section 6.2. To deal with these acquisition imperfections, extra pre-/post-
processing steps are usually implemented in the scanner.

A widely used reconstruction technique is the FBP algorithm, because this
technique has proven to be highly accurate and is amenable to fast imple-
mentation. Here, a point (x, y) of the image is reconstructed by integrating
over all lines x cosϑ+ y sinϑ = t that go through this point [Kak and Slaney,
2001,Hsieh, 2003]:

µ(x, y) =

ˆ π

0

dϑ

ˆ +∞

−∞
dtPm(ϑ, t)q (t− (x cosϑ+ y sinϑ)) , (6.5)

where

q(t) =

ˆ +∞

−∞
|ω|G(ω) exp (jωt) dω (6.6)

is the impulse response of the FBP filter. Here, G(ω) is a smoothing filter. In
this technique, the projection data is filtered in the t-direction with the FBP
kernel q(t) and subsequently backprojected. The factor |ω|, also called “ramp
filter”, represents the Jacobian for a change of variables between polar and
Cartesian coordinates. Because the “ramp filter” amplifies high frequencies,
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Table 6.1: Smoothing filters and their corresponding impulse responses.

Smoothing Frequency and impulse
filter response

Sinc

Gsinc(ω) =
sinω

ω
I (|ω| ≤ π)

qsinc(t) =

(
1+cos πt

π(1−t2)
|t|2 6= 1

0 |t|2 = 1

Hann

Ghann(ω) =
1

2
(1 + cosω) I (|ω| ≤ π)

qhann(t) =

8><>: �
1
2
π2 − 2

� Æ
2π t = 0�

1
4
π2 − 2

� Æ
2π |t| = 1

(1−3t2) cos πt+(1−t2)πt sin πt+t2−2t4−1

2πt2(1−t2)2
else

noise at those frequencies is amplified. Therefore, a (low frequency) smoothing
filter with frequency response G(ω) is added for regularization purposes, to
balance noise in the reconstructed image and the spatial blur introduced by
filtering. Without loss of generality, we normalize the FBP filter as follows:

ˆ +∞

−∞
|ω|2 |G(ω)|2 dω = 1. (6.7)

This means that the FBP filter has noise gain 1, i.e. the variance of white
noise not affected by filtering. In Table 6.1, typical smoothing filters are given
together with their impulse responses. Later, we will see that the choice of the
smoothing filter mainly determines the noise characteristics. Consequently, the
noise characteristics can be improved by a proper design of G(ω). In Figure
6.2, the magnitude response of the FBP filters from Table 6.1, together with
their impulse response is shown.

The backprojection formula (6.5) is a technique to invert the Radon trans-
form, but is by no means exact and thus should not be called “inverse Radon
transform”! For example, the mean of the attentuation distribution can not be
recovered. To see this, consider adding a constant to the measured projection
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Figure 6.2: (a) Magnitude response of FBP filters: the sinc-filter and Hann-filter.
(b) The corresponding impulse responses.

data Pm(ϑ, t):

µ′(x, y) =

ˆ π

0

dϑ

ˆ +∞

−∞
dt (Pm(ϑ, t) + µ0) q (t− (x cosϑ+ y sinϑ))

= µ(x, y) + µ0

ˆ π

0

dϑ

ˆ +∞

−∞
q (t− (x cosϑ+ y sinϑ)) dt

= µ(x, y) + µ0

ˆ π

0

dϑ

ˆ +∞

−∞
q (t) dt

= µ(x, y)

where we relied on
´ +∞
−∞ q (t) dt = |0|G(0) = 0. In practice, the mean is

“recovered” by calibration with reference to water at a standard temperature
and air pressure. The intensities of CT images are usually rescaled to match
the Hounsfields scale [Hsieh, 2003]:

HU =
µ(x, y) − µH2O

µH2O
× 1000 (6.8)

By this definition, water has HU = 0. Air has the lowest attenuation value,
with definition (6.8), this corresponds to HU = −1000. Bones have HU ≈ 400
or more.

6.1.2 Discrete implementation

The reconstruction formulas that we have studied so far, are meant for pro-
jection data with a continuous domain. In practice, data is acquired for a
finite number of projection angles and detector positions. Now we will briefly
discuss the discrete implementation of the FBP reconstruction algorithm for
parallel-beam CT reconstruction. Let ϑk, k = 1, ...,K and tl, l = 1, ..., L re-
spectively denote the projection angles and detector positions. For the FBP
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algorithm, it is required that a sufficient number of projection angles ϑk are
available and that the angles span the range [0, π]. In particular, the number
of projection angles depends on the desired spatial resolution or voxel size of
the reconstructed image. After acquisition, the measured data Xm(ϑk, tl) is
obtained. The outline of the algorithm is then as follows:

1. Logarithmic transform: apply the logarithmic transform from (6.3) to the
measured data Xm(ϑk, tl) to obtain Pm(ϑk, tl).

2. Fourier transform: transform the mearured projection data Pm(ϑk, tl)
to the DFT domain (the DFT filtering takes place in the t-direction).

3. Ramp/smoothing filtering: filter the projection data in the DFT domain
with |ω|G(ω). The FBP filter |ω|G(ω) is evaluated in the frequency
points ωl = l/π, l = −L/2, ..., L/2−1. Let P f (ϑk, tl) denote the obtained
filtered projection data (after applying the inverse DFT).

4. Zero-padding and backprojection: evaluate the backprojection formula
(6.5), where the integral over ϑ is replaced by a finite sum (for m =
1, ...,M and n = 1, ..., N):

µ(m,n) =

K∑

k=1

P f (ϑk, round (m cosϑk + n sinϑk)) , (6.9)

where round (·) signifies rounding to the nearest integer. This regridding
is necessary because the sampling coordinates (ϑk,m cosϑk + n sinϑk) do
not coincide with the sampling grid for P f (ϑk, tl). Rounding to nearest
integer (or nearest neighbor interpolation) is computationally very effi-
cient, although this technique causes small aliasing artifacts to be visible
in the reconstructed images. Other interpolation methods, such as linear
or cubic spline interpolation, are used as well. In general, let h(t) denote
the interpolation kernel, then:

µ(m,n) =
K∑

k=1

L∑

l=1

P f (ϑk, tl)h (tl −m cosϑk + n sinϑk) . (6.10)

Ideally, assuming that the projection data is bandlimited, a sinc-
interpolation kernel with appropriate bandwidth needs to be used. Be-
cause this requires some time-costly computations, a more efficient al-
ternative is to ideally upsample P f (ϑk, tl) by padding with zeros in the
DFT domain in step 2 [Seppä, 2007]. Subsequently, a simpler interpola-
tion method (or even nearest neighbor interpolation) can be used in this
step.

This version of the discrete FBP algorithm is widely used, not only because of
the simplicity of the implementation (which allows the reconstruction algorithm
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to be easily ported to dedicated DSP chips), but also because the good quality
of the reconstructed images.

In most commercially available CT scanners, fan-beam based acquisition
(see Figure 6.1(b)) is used instead of parallel-beam acquisition. For fan-beam
CT, the x-ray tube, no longer needs to be translated. This significantly reduces
the scan time. The x-ray source is a single point source and all x-rays are
transmitted from this single point. To reconstruct the image, the fan-beam
data can either be reformatted into parallel-beam, such that the above FBP
algorithm can be used, or dedicated reconstruction formulas can be used [Hsieh,
2003, p. 76-86].

6.2 Sources of noise and imperfection in the mea-

surement data

In real-life situations, the measurements obtained by clinical CT scanners rarely
satisfy the conditions posed in Section 6.1 (i.e. monoenergetic x-rays, noise-free
measurements...). In practice, the measured data must be preprocessed before
any reconstruction technique can be applied [Hsieh, 2003]. To give a better
view on the complexity of the entire CT reconstruction chain, we mention a
number of sources of imperfection:

• Because of quantum mechanical effects during the measurement of photon
energy, the detector response varies from one measurement to another.
This statistical noise is usually called quantum or photon noise and can
not be avoided in the acquisition. As we will see further on, the noise en-
ergy can be reduced by increasing the tube current but this also increases
the radiation exposure.

• A second noise source is electronic noise introduced by electronic circuitry
(e.g. amplifiers) in the CT scanner. In normal circumstances, this kind of
noise only contributes to a small fraction of the statistical noise. Because
of the ramp-filtering in the FBP algorithm, both the photon noise and
the electronic noise are magnified after reconstruction. More concretely,
a deviation on one projection data sample causes a bright or dark straight
line in the reconstructed image (called streaking artifact).

• A third problem that affects the accuracy of the measurements is scat-
tered radiation. X-ray photons are partially diffracting and do not com-
pletely travel along straight lines. Consequently, the Lambert-Beers law
(equation (6.2)) does not hold exactly. Typically, scattered radiation
produces shading and streaking image artifacts [Hsieh, 2003] or results in
loss of resolution. This problem is even more pronounced in ultrasound
tomography (e.g. [Maleki et al., 1992]) or more recently microwave to-
mography [Van den Bulcke and Franchois, 2009], where the ultrasound
waves are scattered in all possible directions. In this case, completely
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different reconstruction techniques need to be used. For an overview of
these techniques, we refer to [Kak and Slaney, 2001].

• A fourth problem is the assumption that x-rays are monoenergetic, so
that x-ray photons emitted from the x-ray source all have the same en-
ergy, which is rarely satisfied in practice. For polyenergetic x-rays, there
is no linear relationship between the measured projection data and the
thickness of the object; this causes so-called beam-hardening artifacts in
the reconstructed image.

• A fifth problem is patient motion: the acquisition time is in the order of
tens of seconds and involuntary patient motions, such as breathing, are
inevitable. Because the basic assumptions for CT (equation (6.2)) are
violated, this inherently leads to image artifacts.

• Other sources are [Hsieh, 2003]: nonlinearity of the detector elements, off-
focal radiation of the x-ray source, the presence of metal objects, x-ray
photon starvation, CT gantry misalignment, x-ray tube arcing, deficiency
in the projection sampling, partial volume effect, focal spot drift. For a
detailed overview of these problems, we refer to [Hsieh, 2003].

In this work, we will mainly concentrate on the first two problems, i.e. electronic
and photon noise. The noise modeling consists of two steps:

1. Modeling of noise in the projection data, i.e. before reconstruction (Sec-
tion 6.3).

2. Investigation of the noise properties after FBP reconstruction (Section
6.4).

These steps are discussed in more detail in the following Sections.

6.3 Signal-dependency characteristics of the pro-
jection data noise

In this section, we will put forward a model for the signal-dependency of the
noise in the projection data. For this task, we build further on the signal-
dependent noise modeling techniques presented in Section 4.4.2. In Figure 6.3,
a simplified processing chain that converts an ideal (noise-free) input x-ray
intensities X(ϑ, t) into projection data Pm(ϑ, t) is shown. The input signal,
measured by the photon detectors Xd(ϑ, t), is first amplified electronically and
then converted to a digital signal by the analog to digital (A/D) converter.
Next, the logarithmic transform (6.3) is applied, which results in the measured
projection data Pm(ϑ, t). We will now discuss the noise sources in the indi-
vidual processing blocks of the chain. First, we assume that the measured
response of the x-ray detector Xd(ϑ, t) is directly proportional to the x-ray
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Figure 6.3: The processing chain for CT projection data and the introduction of
noise. Figure is based on the description in [Kak and Slaney, 2001, p. 190].

photon energy. This allows us to model the detected x-ray intensities using a
Poisson distribution:

Xd(ϑ, t) ∼ Poisson (X(ϑ, t)) . (6.11)

We further assume that the noise measured by one detector is statistically
independent of noise measured by other detectors.1 The response Xd(ϑ, t)
is amplified electronically, which introduces amplification noise. Also the A/D
conversion, which is subsequently applied, can be considered as a uniform noise
source. Because the amplification noise has a white Gaussian distribution with
variance that is typically larger than the variance of the quantization noise, the
joint contribution can be modeled by a white Gaussian noise source with mean
X(ϑ, t) and variance σ2

ε :

Xm(ϑ, t) ∼ N
(
X(ϑ, t), σ2

ε

)
. (6.12)

Recall that the measured projection data is obtained by taking the negative
logarithm of Xm(ϑ, t) (see equation (6.3)), hence a precise characterization of
the distribution of Pm(ϑ, t) is even more complicated. To simplify the problem
and to enable us to model the CT noise after backprojection (see further), we
will approximate the distribution of the projection data Pm(ϑ, t) using its first
and second order moments, i.e. with a Gaussian distribution. The Gaussian
approximation turns out to be very accurate for radiation doses used in practice
(which means that Xref is sufficiently large), as we will show further on. We
will now briefly outline the procedure to compute these moments.

First, note that the measured data can be expressed in terms of the noise-
free data, as follows:

Xm(ϑ, t) = Xd(ϑ, t) + ε(ϑ, t) (6.13)

= X(ϑ, t)

(
Xd(ϑ, t)

X(ϑ, t)
+

ε(ϑ, t)

X(ϑ, t)

)
(6.14)

1This assumption implies that cross-talk between detector elements is ignored. In practice,
cross-talk can not be completely avoided. However, by proper design specifications, the cross-
talk can be kept below an acceptable level. [Hsieh, 2003, p. 160]
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where we rely on the inequality 0 < X(ϑ, t) ≤ Xref . Next, a logarithmic
transform is applied, which converts the product into a sum:

Pm(ϑ, t) = P (ϑ, t) + log

(
Xd(ϑ, t)

X(ϑ, t)
+

ε(ϑ, t)

X(ϑ, t)

)
(6.15)

In essence, we can now adopt the strategy from Section 4.4.3 which consists
of computing the statistical moments of Pm conditioned on P . To arrive at
analytically tractable expressions, we apply a Taylor series expansion log(1 +

x) =
∑+∞

k=1
(−1)k+1

k xk in x = 0:

Pm = P +

+∞∑

k=1

(−1)k+1

k

(
Xd

X
+

ε

N
− 1

)k
(6.16)

where we dropped the coordinates (ϑ, t), to simplify the notations. In
(6.14)-(6.16), the working point is chosen suitably, relying on the fact that
E
[
Xd|P

]
= X and E [ε] = 0. The moments of Pm(ϑ, t) can be computed

based on the moments of the Poisson distribution E
[(
Xd
)k]

and the moments

of the Gaussian distribution E
[
εk
]
, up to a certain number of terms of the

Taylor series. For example, for the first moment, we find:

E [Pm|P ] = P +

+∞∑

k=1

(−1)k+1

k
E

[(
Xd

X
+

ε

N
− 1

)k]

= P +

+∞∑

k=1

(−1)k+1

k

k∑

l=0

(
k

l

)
E

[(
Xd

X

)l ( ε
N

− 1
)k−l

]

= P +
1

2X
+

(
5

12
+

1

2
σ2
ε

)
1

X2
+ O

(
1

X3

)
. (6.17)

Normally, we have X � 1,2 such that first and second order terms in N−1

are neglible and such that the projection data is in good approximation unbi-
ased (E [Pm|P ] ≈ P ). The variance of the projection data can be computed
similarly:

Var [Pm|P ] =
1

X
+

(
3

2
+ σ2

ε

)
1

X2
+ O

(
1

X3

)
(6.18)

With the substitution X = Xref exp (−P ), we can write the projection data
noise variance in terms of the ideal noise-free projection data:

σ2 (P ) ≈ eP

Xref
+

(
3

2
+ σ2

ε

)(
eP

Xref

)2

. (6.19)

This relationship is particularly interesting, because it tells us a number of facts
about the noise variance:

2Note that the x-ray intensity X is the expected number of photons detected per unit
time.
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Figure 6.4: Comparison of the approximation of the noise variance σ2 (P ) to the
estimated variance using numerical simulations (Xref = 255).

• The noise variance increases with the signal P , or equivalently de-
creases with X . The minimum noise variance (called noise floor), is(
Xref + σ2

ε + 3
2

) /
X2

ref . Hence, the variance can be kept low, by either re-
ducing the amount of electronic noise or by increasingXref . The reference
signal Xref (which can be measured through calibration), is proportional
to the tube current, but further also depends on the exposure time of the
detector elements and the size of the detector elements. Hence to increase
Xref , one can either 1) increase the tube current, i.e. the radiation dose,
2) increase the exposure time (which also leads to higher radiation dose),
3) increase the size of the detector elements (which will typically reduce
the resolution, i.e. fewer detector elements can be placed in the same
area).

• The maximal noise variance is reached for maximal P . This is caused by
a lower3 incidence of x-ray photons at the receiver for maximal P (e.g.
when scanning through bones).

• Because the electronic noise variance only appears starting from the sec-
ond term in 1/Xref , the contribution of the electronic noise to the total
noise variance is small compared to the photon noise variance.

In Figure 6.4, the approximated noise variance (6.18) is compared to the esti-
mated noise variance obtained using numerical Monte-Carlo simulations, i.e.,
by generating random noise samples according to (6.11)-(6.12), for different
electronic noise levels σε and for a fixed reference signal Xref = 255. In the ex-
periment, the reference signal is kept very low because the approximation error
increases for low Xref , simulating the effect of low dose CT. In more realistic
scenarios, the order of Xref is 105 to 106 or higher.

3Note that by the negative logarithm transform (6.3), P is logarithmically proportional
to the reciprocal of the x-ray intensity X.
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By modeling the measured projection data using a Gaussian distribution,
Pm(ϑ, t) is considered to be a Gaussian Random Field (GRF) with mean and
variance respectively given by equation (6.17) and (6.18). This simplification
will easily allow us to obtain analytical results with respect to the PSD of the
noise in a reconstructed CT image (see next section).

In the previous analysis, we silently assumed that the measured output at
the detector is equal to the detected number of x-ray photons. In practice, this
is not always true [Hsieh, 2003]: A/D converters have a limited dynamic range
which may cause the measurements to be clipped. Moreover, perfect linearity
over the whole dynamic range is difficult to accomplish in practice. Generally
speaking, we have Xm(ϑ, t) ∼ N

(
γ (X(ϑ, t)) , σ2

ε

)
, where γ(x) is a nonlinear

detector response function (DRF).4 The DRF can be obtained from theoretical
analysis and phantom experiments [Hsieh, 2003]. For our work, we assume that
g(x) is linear over a large part of its range:

γ(x) = γ(x0) + (x − x0)γ0 (6.20)

where γ0 = ∂γ
∂x (x0) is the system gain factor. Taking (6.20) into account, the

variance of the projection data now becomes:

Var [Pm] =
γ2
0

X2

[
X +

3

2
+
σ2
ε

γ2
0

]
+ O

(
1

X3

)
. (6.21)

Here, the system gain factor causes the noise floor to change. In case the linear-
ity assumption is not adequate enough but γ(x) can be precisely characterized,
the derivation of the first and second order moments can be repeated based on
a higher order Taylor series expansion of g(x). To avoid artifacts after FBP
reconstruction, the inverse DRF generally needs to be applied to the projection
measurements [Hsieh, 2003].

6.4 Noise modeling after FBP reconstruction

In this section, we present a noise model for CT images reconstructed with
the FBP algorithm. The model builds further on the first and second order
statistical moments of the projection data which were derived in Section 6.3.
We assume parallel-beam acquisition, however, the results can be extended to
fan-beam or cone-beam geometries as well (which will be published in later
work).

6.4.1 Existing models

In [Riederer et al., 1978,Hanson, 1981,Kak and Slaney, 2001], the noise power
spectral density (NSD) was derived for projection data corrupted with sta-
tionary AWGN with variance S0, using the continuous FBP reconstruction

4This function is in fact a CT analogue of the camera response function (CRF) used in
digital still cameras (see Chapter 4).
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algorithm. It was shown that the spectral density of the noise in this case only
depends on the radial frequency:

S (ω) = S0 |ω| |G(ω)|2 . (6.22)

Consequently, the shape of the NSD mainly depends on the smoothing filter
G(ω). The NSD is depicted in Figure 6.5(a) for the case of a ramp filter (i.e.
G(ω) = 1). Because the NSD is rotationally symmetric, the corresponding noise
is isotropic and does not show directional structures. However, we remark that
noise in CT images often contains directional streaks - this can not be explained
by an isotropic NSD model.

In [Hanson, 1981] the low frequency behavior of the NSD is characterized by
the density of noise-equivalent quanta (NEQ) detected in projection measure-
ments. The NEQ is defined as the total effective number of quanta detected
per unit distance along the projections. [Faulkner and Moores, 1984] derived
the NSD for the discrete backprojection algorithm. [Kijewski and Judy, 1987]
further improved the description of the NSD for the discrete backprojection
algorithm of [Faulkner and Moores, 1984], taking both angular sampling and
sampling within each projection into account. They showed that, because of
the aliasing that arises due to undersampling, the zero-frequency (DC) com-
ponent of the NSD is non-zero in general and that the aliasing destroys the
rotational symmetry of the NSD. [Wang and Vannier, 1993] derived analytical
expressions for the noise autocorrelation function and the noise variance for
helical CT under the assumption that the projection data noise is stationary,
white and Gaussian. [Hsieh, 1997] investigates the non-stationary characteris-
tics of noise in helical CT. The non-stationarity is there the combined effect
of the weights used for helical reconstruction and the scaling factors used in
fan-beam (instead of parallel-beam) backprojection, again assuming stationary
Gaussian projection data noise.

As we discussed in the previous section, an x-ray signal follows a Pois-
son distribution, and consequently the x-ray noise is not additive but signal-
dependent. This leads to noise streaking artifacts with a non-symmetrical PSD.
Recently, a number of authors have studied the signal-dependency of projection
data noise. In [Hsieh, 1998], a relationship between the projection data mean
and the noise variance is determined. This relationship is similar to (6.21),
up to the term 3γ2

0/2X
2, which is missing in [Hsieh, 1998] due to the approx-

imations under which the relationship is obtained. A filter operation on the
projection data is adapted to the local noise characteristics, in order to sup-
press noise. [Lu et al., 2001] experimentally found an alternative relationship
between the projection data mean and the noise variance. They propose a scale
transformation (i.e. variance stabilization) to undo the signal-dependency of
the noise.

More recently, a number of authors [Pan and Yu, 2003, Zhu and Starlack,
2007,Wunderlich and Noo, 2008,O’Connor and Fessler, 2007] have studied the
prediction of the noise variance and covariance in reconstructed CT images,
by taking the signal-dependency of the noise into account. In [Pan and Yu,
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2003], variance images are used to optimize the SNR of the reconstructed im-
ages. In [O’Connor and Fessler, 2007], expressions for the image covariance are
derived for fan-beam CT. [O’Connor and Fessler, 2007] provide an efficient com-
putation technique for predicting the noise variance based on the assumption of
local stationarity. In [Wunderlich and Noo, 2008], an alternative procedure for
computing the noise variance and covariance is proposed and used to optimize
the lesion detectability performance of a Channelized Hotelling observer. [Zhu
and Starlack, 2007] derive a straightforward technique for predicting the noise
variance that is a simple adaptation of the FBP algorithm with modified con-
volution kernels and weighting factors.

Despite the fact that many of the recent noise (co)variance prediction meth-
ods give accurate results on phantom data, there are a few problems when
trying to apply these methods in practice:

• The prediction formulas are often complicated, which does not only po-
tentially result in error-prone implementations but also incurs an associ-
ated large computational cost (often several times the CT reconstruction
time of one image). This makes these methods less practical.

• Except for the method proposed by [Zhu and Starlack, 2007], many meth-
ods assume that the variance of the projection data Var [Pm] is known
exactly in advance. For phantom data, this is the case and the tech-
niques can be used to optimize e.g. reconstruction parameters. However,
because σ2 (P ) is a function of the noise-free data P , for non-phantom
data this assumption is not very realistic. Indeed, if P is available in
advance, there is no reason to take a CT scan at all! Hence techniques
are needed to estimate σ2 (P ) from observed projection data.

In the next section, we will bring a potential solution to these problems.

6.4.2 Analytical formulation of the local NSD

The continuous FBP algorithm

To provide more insight in the structure and properties of CT noise in recon-
structed CT images, we will study the local NSD in polar frequency coordinates.
We use the term local NSD to refer to the space-varying spectrum (see Section
4.3) of the additive noise component of the observed signal. To this end, we
will derive a formula for the NSD as a function of the position in the image,
for the FBP algorithm. The main result is that for parallel-beam CT, the local
NSD is separable in the image domain. This leads to accurate (but simple)
techniques to estimate the noise properties.

First, consider the measurement of a single spike with intensity I0 captured
by a detector at position t0 under an angle ϑ0. According to the signal-plus-
noise model from Section 6.3, this gives the following projection measurements:

Pm(ϑ, t) ≈ δ (t− t0) δ (ϑ− ϑ0) (I0 − σ (I0) ν(ϑ, t)) , (6.23)
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Figure 6.5: (a) Isotropic NSD. (b) The NSD for a single projection measurement.
(c) Anisotropic NSD model obtained for many projection measurements.

where ν(ϑ, t) is white Gaussian noise with mean 0 and variance 1. The ap-
proximation in (6.23) is due to the Gaussianity assumption of the measured
projection data, but the advantage of this will be clear soon. When applying
the FBP formula (6.5), the reconstructed CT image of this spike is given by:

µ(x, y) = q(x cosϑ0 + y sinϑ0 − t0) (I0 − σ (I0) ν(ϑ0, t0)) . (6.24)

This is a line impulse with equation x cosϑ0 + y sinϑ0 = t0 and with intensity
(I0 − σ (I0) ν(ϑ0, t0)), which is filtered orthogonally by the FBP filter q(t). Here
we immediately see the streaking behavior of CT noise: for a small deviation
on I0 caused by the noise ν(ϑ0, t0), either a bright or dark streak is created in
the image. If we denote by

Q(t) =
1

2π

ˆ π

−π
|ω|2 |G(ω)|2 exp (jωt) dω (6.25)

the autocorrelation function of the FBP filter, we can compute the noise auto-
covariance function for a point (x′, y′) on the same line by ensemble averaging:

R(x, y) = E [(µ (x′, y′)−E [µ (x′, y′)]) (µ (x+x′, y+y′)−E [µ (x+x′, y+y′)])]

= σ2 (I0)Q(x cosϑ0 + y sinϑ0 − t0), (6.26)

or, in polar coordinates, R(ϑ, t) = σ2(I0)Q (t cos (ϑ− ϑ0) − t0). The NSD can
be found by taking the Polar Fourier transform of R(ϑ, t):

S (ϑ, ω) = σ2 (I0) δ (ϑ− ϑ0) |ω| |G(ω)|2 . (6.27)

We see that for a single spike, the NSD on each point of the line is separable in
polar frequency coordinates, with angular component δ (ϑ− ϑ0), radial com-
ponent |ω| |G(ω)|2 and scalar factor σ2 (I0). Figure 6.5(b) shows an illustration
of the NSD corresponding to (6.27) for a particular choice of the smoothing,
i.e. G(ω) = 1.

Now that we have the separability result for one projection measurement,
the question is if this result still holds for more measurements. In general, for
any reconstructed CT image, the reconstructed intensity at position (x, y) =
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Figure 6.6: Stationary synthetic noise generated for the NSDs from Figure 6.5. (a)
Isotropic noise. (b) The noise introduced by projection measurement for a fixed angle
of 90°. (c) Anisotropic noise for many projection measurements for different angles.

(r cosϕ, r sinϕ) is a sum of all lines that pass through this point. The line
bundle of all these lines, with parameter ϑ is given by:

r cos (ϕ− ϑ) = t (6.28)

with r ∈ R and ϑ ∈ [0, π]. In Appendix B, it is shown that the local NSD
created by one line of the bundle (i.e. for one particular ϑ) at position (r, ϕ)
is:

S
(ϑ)
(r,ϕ) (α, ω) = δ (ϑ− α) |ω| |G(ω)|2 ·

ˆ +∞

−∞
σ2 (P (α, t)) q2 (t− r cos (ϕ− α)) dt (6.29)

where the positional dependency of the NSD is made explicit by the subscript
(r, ϕ). The overall NSD is the sum of the NSD contributions of all lines of
the line bundle, which can be obtained by integrating over the line bundle
parameter ϑ:

S(r,ϕ) (α, ω) =

ˆ π

0

S
(ϑ)
(r,ϕ) (α, ω) dϑ

= |ω| |G(ω)|2
ˆ +∞

−∞
dt σ2 (P (α, t)) q2 (t− r cos (ϕ− α))

= |ω| |G(ω)|2 ψ(r,ϕ) (α) , (6.30)

with

ψ(r,ϕ) (α) =

ˆ +∞

−∞
σ2 (P (α, t)) q2 (t− r cos (ϕ− α)) dt. (6.31)

We see that the local NSD in (6.30) is again separable in polar frequency
coordinates. The angular component ψ(r,ϕ) (α) is the noise power at position
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(r, ϕ) in direction ±α. To see this, we integrate S(r,ϕ) (α, ω) over its radial
frequency range:

ˆ π

−π
S(r,ϕ) (α, ω) |ω| dω =

ˆ π

−π
|ω|2 |G(ω)|2 ψ(r,ϕ) (α) dω

= ψ(r,ϕ) (α) (6.32)

where we relied on proper normalization of the FBP filter (equation (6.7)). By
the signal dependency of the noise (see equation (6.31)), ψ(r,ϕ) (α) is typically
non-constant and consequently, the corresponding NSD S(r,ϕ) (α, ω) depends
on α. This leads to an anisotropic NSD, as illustrated in Figure 6.5(c). In some
directions, the noise power is higher than in other directions.

Finally, we calculate the local noise variance at position (r, ϕ) as the surface
integral of the local NSD over its domain:

v(r, ϕ) =

ˆ 2π

0

ˆ π

0

S(r,ϕ) (α, ω) |ω| dωdα

=

ˆ π

0

ψ(r,ϕ) (α) dα (6.33)

which equals the local noise power in direction ±α, integrated over all possible
directions α ∈ [0, π].

The discrete FBP algorithm

The above derivation can be extended to the discrete FBP algorithm as well,
using the same reasoning as in [Kijewski and Judy, 1987]. An extension to the
discrete FBP algorithm involves including sampling within the projections and
angular sampling. For the continuous FBP algorithm, the DC-component of
the NSD is always zero. By undersampling within the projections (i.e. along the
detector array), this DC-component is generally non-zero. On the other hand,
undersampling in the angular direction causes the NSD to become anisotropic
even if it was predicted to be isotropic by the continuous FBP noise model.
Hence the noise description for the discrete FBP algorithm which we will now
explain, is more accurate especially when undersampling comes in to play. For
our analysis, we will model every step of the discrete FBP algorithm discussed
in Section 6.1.2. As a first step, we consider the effect of sampling along
the detector array. According to the Nyquist-Shannon sampling theorem, the
spectrum (6.30) is replicated at multiples of the sampling frequency:

S
(1)
(r,ϕ) (α, ω) = ψ(r,ϕ) (α)

+∞∑

l=−∞
|G (ω − ωl)|2 |ω − ωl| (6.34)

with ωl = 2πl/(2a) = lπ/a, l = 1, ..., L, a is the sampling period along the
detector array. As explained in Section 6.1.2, the backprojection algorithm
does not use the projection samples directly because the required sampling
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coordinates do not coincide with the usual sampling grid. Therefore, the first
step is regridding using interpolation. Let H(ω) denote the Fourier transform
of the interpolation kernel h(t) (see Section 6.1.2), then the NSD is modified
as follows:

S
(2)
(r,ϕ) (α, ω) = |H(ω)|2 S(1)

(r,ϕ) (α, ω) . (6.35)

By the Fourier Slice Theorem, backprojecting from a discrete number of angles
K replicates the power spectrum along slices through the frequency space origin
at these angles. This only affects the angular component of the NSD:

S
(3)
(r,ϕ) (α, ω) = |H(ω)|2

(
K∑

k=1

ψ(r,ϕ) (α) δ (α− ϑk)

)

·
+∞∑

l=−∞
|G (ω − ωl)|2 |ω − ωl| (6.36)

with ϑk the projection angle. In particular, we note that the aliasing effect
causes the angular component of S(3)

(r,ϕ) (α, ω) to have a degraded orientation
selectivity.

The last step incorporates the discrete representation of the final recon-
structed image. This corresponds to convolving the spectrum in rectangular
frequency coordinates with a two-dimensional Dirac pulse train (also called
comb filter):

comb (bωx, bωy) =

+∞∑

n=−∞

+∞∑

m=−∞
δ

(
ωx −

2πn

b
, ωy −

2πm

b

)
(6.37)

with ωx and ωy respectively horizontal and vertical frequencies (i.e. ωx =
ω cosα, ωy = ω sinα) and with b the sampling distance of the discrete repre-
sentation (usually b = a).

6.5 The discrete NSD model and its relation to
directional multiresolution representations

We have shown that for both the continuous and discrete FBP algorithms, the
local NSD can be written in a polar-separable form (6.30). This expression has
a radial component that consists of the FBP filter and an angular component
ψ(r,ϕ) (ϑ) that describes the noise power in the direction ϑ. Our goal is now
to predict the NSD S(r,ϕ) (ϑ, ω) for each position in a CT image, reconstructed
using the FBP algorithm. This involves noise estimation.

First, we remark that, although the radial component depends on the back-
projection filter being used (which is considered to be known for our pur-
poses), the angular component ψ(r,ϕ) (ϑ) is an unknown continuous function of
ϑ ∈ [0, π]. Noise estimation then amounts to estimating this unknown function.
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To arrive at a computational technique to estimate ψ(r,ϕ) (ϑ) as a function
of ϑ, we sample ψ(r,ϕ) (ϑ) in the projection angles ϑk, i.e.:

ψ(r,ϕ) (ϑk) =

ˆ +∞

−∞
σ2 (P (ϑk, t)) q

2 (t− r cos (ϕ− ϑk)) dt. (6.38)

This results in a high number of parameters to estimate: the number of pro-
jection angles K times the number of pixels in the image. For typical medical
images, the dimensions are (at least) 512 × 512, and the number of projection
angles is roughly 512

√
2 ≈ 724. Fortunately, for most practical applications

(e.g. noise analysis, signal detection, ...), a discrete NSD model with an under-
sampled number of projection angles is sufficient to obtain a good description of
the local noise statistics. Therefore, we put forward the following NSD model:

S(r,ϕ) (ϑ, ω) =




K′∑

k=1

ψ(r,ϕ) (ϑk) f(ϑ− ϑk)


 |ω| |G(ω)|2 (6.39)

where f(ϑ − ϑk) ≥ 0 is a steerable function (see Section 2.3.1). This choice
not only permits a variable number of analysis angles K ′, but also allows to
accurately compute the NSD response in other angles ϑ /∈ [ϑ1, ..., ϑK′ ]:

ψ(r,ϕ) (ϑ) =

K′∑

k=1

ψ(r,ϕ) (ϑk) bk (ϑ) (6.40)

with bk (ϑ) interpolation functions as explained in Section 2.3.1. For uniformly
spaced projection angles ϑk, these interpolation functions are Dirichlet func-
tions (2.37), which means that for K ′ = K, the NSD model is exploiting the
bandlimitedness assumption of the projection data. As said before, this accu-
racy is not required, and we takeK ′ � K. We will illustrate this on an example
in Section 6.7. For the discrete NSD model, the local variance at position (r, ϕ)
can be expressed as:

v (r, ϕ) =

ˆ π

0

ψ(r,ϕ) (ϑ) dϑ

=

K′∑

k=1

ψ(r,ϕ) (ϑk)

ˆ π

0

bk (ϑ) dϑ

=
1

K ′

K′∑

k=1

ψ(r,ϕ) (ϑk) (6.41)

which is the average local noise power over all orientations. Once in a given
point (r, ϕ) the local noise power in each orientation ϑk is estimated, one can
obtain an estimate of the local variance in that point by averaging over con-
tributions of ψ(r,ϕ) (ϑk) in each direction. This is analogous to the continuous
formula (6.33).
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Now we turn to the actual parameter estimation of this statistical model.
Suppose we are given a variance image σ2 (P (ϑ, t)), e.g. estimated from the
projection data Pm(ϑ, t) (we will explain later how to obtain such a variance
image), then we want to estimate the noise model parameters ψ(r,ϕ) (ϑk) , k =
1, ...K ′. To do so, we start from (6.31) for continuous ϑ. By multiplying both
sides of (6.31) with f(ϑ− ϑk) and integrating over ϑ, we find:

ˆ π

0

ψ(r,ϕ) (ϑ) f(ϑ− ϑk)dϑ = Rk(r, ϕ) with

Rk(r, ϕ) =

ˆ +∞

−∞
dt

ˆ π

0

dϑσ2 (P (ϑ, t)) f (ϑ− ϑk) q
2 (t− r cos (ϕ− ϑ)) (6.42)

Next, we can substitute (6.40) into this equation, which results in a linear
system of equations in K ′ unknowns ψ(r,ϕ) (ϑl) , l = 1, ...,K ′:

K′∑

l=1

(A)k,l ψ(r,ϕ) (ϑl) = Rk(r, ϕ) with

(A)k,l =

ˆ π

0

f (ϑ− ϑk) bl (ϑ) dϑ.

Solving this system leads directly to an estimator for the noise power in the
orientation ϑk:

ψ̂(r,ϕ) (ϑk) =

K′∑

l=1

(
A−1

)
k,l
Rl(r, ϕ) (6.43)

The elements of the matrix A (and hence A−1) solely depend on the choice
of steering function and interpolation function, and can be precomputed. For
example, for uniformly spaced projection angles, K ′ = 3 and f (ϑ) = cos2 (ϑ),
we find:

A−1 =




10π
3 − 2π

3 − 2π
3

− 2π
3

10π
3 − 2π

3
− 2π

3 − 2π
3

10π
3


 . (6.44)

Hence, to estimate the noise model parameters, it suffices to compute
Rk(r, ϕ) according to (6.42). Then, a simple linear combination of Rk(r, ϕ)
gives the noise power in all orientations ϑk. The implementation of this esti-
mation method is fairly simple: first we recognize that (6.42) is in the same
form as the FBP reconstruction formula (6.5). Consequently, Rk(r, ϕ) is found
by backprojecting the weighted variance images σ2 (P (ϑ, t)) f (ϑ− ϑk) with a
modified reconstruction filter q2(t). As in [Zhu and Starlack, 2007], the same
result was found for variance prediction (i.e. for estimating the diagonal el-
ements of the local noise covariance matrix), our result can be considered to
be a generalization of the variance prediction method from [Zhu and Starlack,
2007] to off-diagonal elements of the local noise covariance matrix.

Furthermore, in our approach, the factor f(ϑ−ϑk) in (6.39) acts as a direc-
tional filter, which suggests the use of an directional multiresolution transform
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for the practical computation of the noise model parameters. More specifically,
if we analyze the reconstructed image using a set of filters defined in polar
frequency coordinates:

Hi,k(ω, ϑ) = Ri(ω)
√
f(ϑ− ϑk), (6.45)

where i is the multiresolution scale, then for a FBP reconstructed image, the
NSD after filtering is given by:

S
(i,k)
(r,ϕ) (ϑ, ω) = ψ(r,ϕ) (ϑk) (f(ϑ− ϑk)) |ω| |Ri(ω)|2 |G(ω)|2 ,

which is also of the form (6.39). Then, ψ(r,ϕ) (ϑk) represents the noise power
at position (r, ϕ) for orientation k, which can alternatively be estimated from
the multiresolution subband coefficients at scale i and orientation k. Hence,
multiresolution transforms lend themselves well for estimating the noise model
parameters.

6.6 CT noise characteristics

After estimating the parameters of the CT noise model (according to (6.43)),
we can study some derived noise characteristics such as the degree of noise
anisotropy and the noise streak orientation based on the estimates of the local
noise power ψ̂(r,ϕ) (ϑk) in the orientation ϑk. We define the (local) degree of
noise anisotropy as the normalized coefficient of variation of ψ̂(r,ϕ) (ϑk):

ξ(r, ϕ) =

√
1

K′−1

∑K′

k=1

(
ψ̂(r,ϕ) (ϑk) − 1

K′

∑K′

l=1 ψ̂(r,ϕ) (ϑl)
)2

√
K ′. 1

K′

∑K′

k=1 ψ̂(r,ϕ) (ϑk)
(6.46)

which is the standard deviation of the samples
{
ψ̂(r,ϕ) (ϑk) , k = 1, ...,K ′

}
di-

vided by their mean. The normalization constant 1√
K′

is chosen such that the
maximal anisotropy 1 is reached if for exactly one angle ϑl the local noise power
is positive (ψ̂(r,ϕ) (ϑl) > 0) and for all other angles, the local noise power is zero
(ψ̂(r,ϕ) (ϑk) = 0, k 6= l). The noise anisotropy is 0, if all ψ̂(r,ϕ) (ϑk) = ψ0 are
equal, with ψ0 a given constant. If the noise anisotropy is large, e.g. ξ(r, ϕ) ≈ 1,
then some orientations θk will contribute more to the NSD than other orienta-
tions. In this case, it is useful to define the noise streak orientation as:

θ0(r, ϕ) =
π

2
+ argmax

ϑk

ψ̂(r,ϕ) (ϑk) , (6.47)

which is the direction contributing most to the variance. The constant π/2
is added to compensate the rotation added by the Fourier transform (because
the Fourier transform of a line impulse is a line impulse that is rotated 90◦).
Figure 6.7 illustrates the derived noise characteristics. The noise spectra are
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Figure 6.7: Illustration of the derived noise characteristics (K = 11) (a)
Isotropic NSD: ψ(r,ϕ) = [1, 1, ..., 1], ξ(r,ϕ) = 0, θ0(r, ϕ) = undetermined, (b)
Anisotropic NSD: ψ(r,ϕ) = [0, 0, 1, 0, 1, 0, 1, 0, 0, ..., 0], ξ(r, ϕ) ≈ 0.52, θ0(r,ϕ) = 17π

22

(c) Anisotropic NSD: ψ(r,ϕ) = [0, 0, 0, 0, 1, 0, 0, ..., 0], ξ(r,ϕ) = 1, θ0(r,ϕ) = 17π
22

, (d)-
(f): artificial stationary Gaussian noise generated for the NSDs in (a)-(c) (see text).

synthesized according to the discrete NSD model (Section 6.5), with parameters
ψ(r,ϕ) as given in the figure caption. To visually show the anisotropy we also
generated artificial stationary correlated Gaussian noise, for each of the NSD
models. Figure 6.7(f) clearly shows that the noise contains line structures
(called streaking artifacts), while the isotropic noise in Figure 6.7(d) does not
show any orientation. In the next section, we will illustrate the estimation of
the noise characteristics for a synthetic image.

6.7 Experimental results

Noise estimation

As a practical example of the presented noise model for FBP reconstructed
images, we test the discrete NSD model on an artificial software phantom image.
Figure 6.8(a) shows an image of nine small disks with a high constant intensity,
corrupted with Poisson noise in the projection space as described in Section
6.3. The disks have increasing radii and are located at equal distances from
each other. Clearly, the visibility of the small disks is significantly reduced
by the noise, in practice this could mean that small lesions in the image are
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missed in the diagnostic process. To fully extract the available information in
the image, studying the noise characteristics is very important.

The CT image Figure 6.8(a) contains many noise streaking artifacts. These
artifacts are mostly concentrated near the disks. This is because the projection
data noise variance is maximal for projection data with high intensities (in
fact, the streaking artifacts are superpositions of lines that intersect with the
disks). As we explained in the previous sections, streaking artifacts locally
have an asymmetric NSD. The degree of “asymmetry” can be measured by
the anisotropy measure (6.46). Figure 6.8(b) shows this anisotropy measure
applied to the “ideal” standard deviation of the projection data σ (P (ϑ, t)),
obtained through (6.19), taking all projection angles into account (K ′ = K).
The figure reveals that the noise anisotropy is maximal for lines that intersect
with the disks, as predicted. On the other hand, inside the nine disks, the noise
anisotropy is very low.

Next, we computed the noise dominant streaking orientation (6.47) for each
position in the image (Figure 6.8(c)) and the local variance according to equa-
tion (6.41) (Figure 6.8(d),(f)). The predicted noise streaking orientations cor-
respond well to the visual observations in Figure 6.8(a). Of course, the noise
streaking orientation has no meaning in regions where the noise is isotropic.
This result predicts that the local noise variance (Figure 6.8(d)) is maximal
inside the disks and significantly lower outside.

To validate the correctness of the variance estimation, we also estimated the
local variance using Monte Carlo simulations (averaged over 1000 runs of the
FBP reconstruction algorithm). The local variance estimated using the Monte
Carlo simulations is shown in Figure 6.8(f). The predicted local variance from
Figure 6.8(d) agrees very well with the local variance estimated using Monte
Carlo simulations from Figure 6.8(f). We conclude that the presented NSD
model accurately predicts the local noise PSD.

We also tested the local variance estimation on the phantom image by
using an undersampled number of projection angles (K ′ < K) for the local
NSD characterization. Visual results are given in Figure 6.9 for K ′ = 61 and
K ′ = 31. In particular, the visual difference between Figure 6.9(a) and Figure
6.8(d) is very small, compared to a huge reduction of a factor 362/61 ≈ 5.93 of
the number of noise model parameters. We computed the estimation error for
an increasing number of projection angles fromK ′ = 31 to K ′ = 362. The MSE
of the local variance estimation for the phantom image is depicted in Figure
6.10. The MSE drops significantly: for K ′ = 61, the MSE is approximately
10% of the MSE for K ′ = 31. This result suggests that the NSD can be
well described by local noise powers ψ(r,ϕ) (ϑk) for relatively small number of
orientations K ′.
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Figure 6.8: Estimation of the CT noise characteristics. (a) Artificial CT image
with known σ2(P (α, t)), reconstructed from K = 362 projections, (b) estimated noise
anisotropy (6.46), (c) estimated dominant noise streak orientation, (d) local noise
variance, directly estimated from Figure 6.8(a) for K′ = K, (e) noisy projection data
Pm(θ, t); (f) local noise variance estimated using Monte Carlo simulations (averaged
over 1000 runs of the FBP reconstruction algorithm).
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Figure 6.9: Estimation of the local noise variance using an undersampled number
of projection angles. (a) for K′ = 61, (b) for K′ = 31.
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Figure 6.10: Estimation error (MSE) as function of the number of projection angles
K′.

Application to image denoising

As a second example, we apply the presented noise model to image denoising.
Exact details of this technique will be covered by a European patent applica-
tion, which is currently in preparation. Therefore, the details will be published
in our later work. Preliminary visual results are given in Figure 6.11. Us-
ing the CT noise model from this chapter, the denoising technique can even
better be adapted to the spatially variant noise. In particular, there is a less
stringent local stationarity requirement, which leads to less remaining noise
artifacts in the processed image. Our denoising technique using the specialized
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(a) (b) (c)

Figure 6.11: Denoising example using two different noise models for CT images: (a)
the CT image from Figure 4.12, (b) denoised using the spatially variant noise model
from 4.3.2, (c) denoised using the CT noise model presented in this chapter.

CT noise model is also much faster in computation time: while the technique
from Chapter 4 takes 143 s to denoise a 256 × 256 image, this technique only
requires 300 ms, which permits processing of large data sets (full CT image
volumes) in a relatively short time period.

6.8 Conclusion

In this chapter we have shown that signal-dependent measurement noise leads
to non-stationary and anisotropic noise after filtered backprojection, both for
the continuous and discrete FBP algorithm. We presented a novel spatially vari-
ant noise model to describe the position-dependent and orientation-dependent
properties of CT noise obtained after reconstruction. Next, we proposed a dis-
crete NSD model that allows efficient estimation of the noise model parameters
from a given image. We defined a number of local measures that characterize
the non-stationary noise properties, including the local noise anisotropy, the
dominant streaking orientation. Our preliminary result for an artificial im-
age indicates that the model describes the spatially variant properties of the
noise very well. A direct application of the presented theory is to increase the
SNR of low-dose CT images through image restoration, but the wider range of
applicability is in the field of computer aided diagnosis.

Contributions from this chapter have been presented in [Goossens et al.,
2007a,Goossens et al., 2008b]. One journal manuscript has been submitted for
publication [Goossens et al., 2010d]. On the application of the proposed model
to CT noise reduction (which is not presented here), one European patent
application is pending.



7
Models for measuring
medical image quality

In this chapter, we will discuss a number of models that can be used for
assessing medical image quality. In order to explain what “quality” actually
means, we first remark that medical image quality is entirely different from
(general) image quality:

• In (non-medical) image restoration, the goal is to produce images that
are “aestetically pleasing,” which often relies on a subjective impression:
one algorithm is better than the other algorithm if it creates images that
“look better”. Looking better is related to the visibility of errors (or
artifacts) in the image and is strongly influenced by the properties of
the human visual system (HVS). To deal with the subjectiveness, some
quality measures such as Mean Squared Error (MSE), Peak-Signal-To-
Noise-Ratio are often used. Because it has been found that these measures
not always correlate well with the human subjective perception of image
quality (because certain types or artifacts are not taken into account),
in the last decades, many researchers have incorporated properties of the
HVS into the image quality metric. An example of such a metric is the
Structural-Similarity-Index Metric [Wang et al., 2004].

• In medical image processing, the goal is not to create visually pleasing
images: a medical image has a specific purpose (e.g. to allow the physician
to diagnose a disease). To objectively assess medical image quality, first
we must specify the task and next we must determine quantitatively how
well the task is performed [Barrett, 1990]. The tasks being considered for
quality assessment are detection tasks, in which abnormalities in images
(e.g. tumors, vein calcifications, lesions...) are being detected. Image
quality can then be expressed objectively in terms of the detectability of
abnormalities.
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Image quality assessment is not only useful to determine how well image process-
ing algorithms perform the task for which they are designed (e.g. image restora-
tion or enhancement techniques), the metrics can also be used to optimize var-
ious settings and parameters of these algorithms. For example, in denoising,
often a trade-off between detail preservation and noise removal needs to be
made. In Section 5.2.3 this resulted in a threshold parameter that defines the
“signal of interest.” Here, a quality metric can be used to determine which value
to select for this parameter. From this perspective, image quality assessment
is essential for designing good image processing and reconstruction algorithms.
This also holds on a non-algorithmic level: for example, good image quality
metrics allow display development engineers to evaluate alternative technology
choices, e.g. concerning the type of backlights, glass and the LCD panels being
used, before building and testing the devices.

Traditionally, determining the image quality of medical images has often
been done by a panel of human observers: a small group of experienced physi-
cians is asked to do a small clinical study where the physicians are asked to make
a binary decision: an abnormality is either present in the diagnostic image, or
not. Because it is a very time-consuming and expensive process, mathemati-
cal model observers [Barrett et al., 1998,Barrett and Myers, 2004,Gallas and
Barrett, 2003] have been developed. These models predict the performance of
human observers doing the same task and may eventually replace humans in
quality assessment tasks.

At present, several studies indicate that there is in general a gap between
the performances of model observers and human observers. In our opinion, this
gap mainly stems from 1) the complexity of the problem and our incomplete
knowledge of the processing in the HVS and 2) the simplifying assumptions
made to arrive at practical processing algorithms.

In many studies in the literature, model observers have exact knowledge of
the abnormality shape and background statistics. For example, abnormalities
in medical images can range from very subtle to obvious. Furthermore, the
size of the abnormalities can vary. While many model observers assume that
the exact characteristics of the abnormality are known in advance (a training
phase is often used for this), in clinical practice, physicians do not have this
knowledge. This inherently leads to discrepancies between model observers
and human observers, in the sense that model observers generally outperform
human observers.

The main contribution of this chapter is the extension of two types of
model observers, the ideal observer (IO) and the channelized Hotelling observer
(CHO), to signal-known-statistically (SKS) tasks, in which the uncertainty with
respect to the abnormality (further called signal) is modeled. This way, the
new model observers are “handicapped” compared to model observers that have
full information about the signal, and potentially behave more similar to hu-
mans. We study four causes of signal uncertainty: uncertainty with respect to
signal strength, orientation, size and location. The cases will show how model
observers can be defined that can deal with these causes of uncertainty. The
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most striking result is that model observers that perform the signal detection
task in an optimal sense (which will be defined later) through linear dimension
reduction, need to make use of steerable multiresolution representations. This
also makes the connection of this topic with the other Chapters of this dis-
sertation. This work has already resulted into one conference paper [Goossens
et al., 2010f] and one journal paper is in preparation [Goossens et al., 2010e].

A second research direction to bridge the performance gap is to include tem-
poral information into the CHO model, because nowadays medical images are
often viewed in stack-browsing mode (i.e. slices of a medical volume are shown
sequentially). In collaboration with ir. Ljiljana Platiša (Ghent University)
and with the American Food and Drug Administration (FDA), this research
track resulted in the development of multi-slice CHO models in [Platiša et al.,
2009a,Platiša et al., 2009b,Platiša et al., 2010a,Platiša et al., 2010b].

In the first part of this chapter (Section 7.1), we briefly review existing
model observers. We present our novel extension to model observers for SKS
detection tasks in Section 7.2 and Section 7.3; this part of the work have been
contributed by the author. Experimental results are given in Section 7.4. Fi-
nally, we briefly present the multi-slice channelized Hotelling observer models
in Section 7.5. These models have been worked out by ir. Ljiljana Platiša, in
cooperation with dr. Ewout Vansteenkiste, prof. W. Philips, dr. Subok Park
(FDA), dr. Aldo Badano (FDA), dr. Brandon Gallas (FDA) and the author.

The work presented here has been performed within the context of the
IBBT-MEVIC1 project. The aim of “Medical Virtual Imaging Chain” (MEVIC)
was to simulate the complete imaging chain, from image acquisition (e.g. CT
or MRI) up to image processing, medical displays and eventually the human
observer.

7.1 Existing model observers for medical image
quality assessment

As said before, for medical purposes image quality is defined in terms of how
well a certain detection task can be performed. Clinically relevant tasks are,
e.g., tumor detection, bone metastatis and vein calcification detection in digital
medical images. For the detection tasks, a trade-off between the probability of
true positive detections (i.e. the true positive rate) and the probability of false
positive detections (i.e. the false positive rate) must be made. This trade-off is
quantified in the receiver operating characteristic (ROC), and useful measures
are the area under the ROC curve (AUC) and detection Signal-To-Noise-Ratio
(SNR) [Barrett, 1990].

One important “theoretical” numerical observer is the Bayesian Ideal Ob-
server (IO) [Barrett, 1990,Barrett et al., 1995,Barrett et al., 1998,Barrett and
Myers, 2004], which provides an upper bound of the detection performance in
terms of the ROC, because it makes use of all available information present in

1http://www.ibbt.be/en/project/mevic.
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the images or known about the images. The IO even theoretically outperforms
humans because it is not affected by imperfections in the HVS. Therefore it
can be argumented that the IO objectively measures the quality of medical
images [Barrett, 1990]. However, we call this observer a “theoretical” observer
because the IO is impractical and often impossible to implement, because the
observer needs the specification of probability models for both healthy and dis-
eased images [Gallas and Barrett, 2003]. For medical images, this is a very
challenging statistical modeling task. Hence practically, these models are not
available.

To alleviate this problem, the channelized Hotelling observer (CHO) was
introduced. It was inspired by psychophysical evidence of the HVS making
use of frequency selective channels [Gallas and Barrett, 2003]. Namely, studies
from [Hubel and Wiesel, 1959] in the 1950s and 1960s demonstrated that from
the responses of simple neural cells in the primary visual cortex (also known
as V1) of animals, local orientation and contrast of image features could be
distinguished. Later, it was found that other features, such as color, spatial
frequency, direction and motion are detected similarly, using single or complex
neural cells.

Based on these studies, a fairly well-agreed-on model for the V1 has emerged
[Olshausen and Field, 2005]. This model computes a linearly weighted sum
of input signals over space and time (typically using Gabor-like functions).
Subsequently, the weighted sum is either normalized by neighboring neuron
responses or passed through a pointwise nonlinear function (see Figure 7.1(a)).
The CHO applies a similar principle, in which the input image is first linearly
projected onto a set of basis functions (called channels), thereby performing
a dimensionality reduction. Next, a decision of signal presence or absence
is made based on the obtained projection coefficients (further called channel
responses).2

The CHO model is illustrated in Figure 7.1(b). Some authors have at-
tempted to incorporate nonlinearities or other characteristics of the HVS in the
CHO model as well: in [Zhang et al., 2006] it is found that a CHO model with
a number of nonlinear components predicts the human performance slightly
better than a linear CHO, although they found that the impact on medical
image quality evaluation in general is minimal. In general, mostly linear CHO
models are used.

Even though the CHO model has brought new interesting insights as predic-
tor of human performance (see e.g. [Gilland et al., 2004,Gifford et al., 2005,Shi-
dahara et al., 2006]), several studies have shown that human observers are inef-
ficient compared to the IO or CHO [Park et al., 2005]. As already mentioned,
one important source of the inefficiency is the intrinsinc uncertainty about the
signal characteristics of the human observer, such as the contrast, size, shape,
orientation and location of the signal [Park et al., 2005]. In many CHO studies,

2We remark that the goal of the CHO is not in the first place to mimick the HVS, as
this task is currently too complex. Instead, the goal is to approximate the performance of a
human observer performing the same task. Therefore, knowledge of the HVS helps to explain
several discrepancies in the results of model and human observer experiments.
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Figure 7.1: (a) Model for the V1 [Olshausen and Field, 2005], (b) The channelized
Hotelling observer [Gallas and Barrett, 2003].

it is assumed that exact information about the background images and signals
is available, the so-called background-known-exactly/signal-known-exactly or
(BKE/SKE) detection task. The model observer then exactly knowns “what to
look for”. Although this permits a straightforward design of equivalent human
observer studies to validate the model observers [Eckstein and Abbey, 2001],
this assumption is truly not valid for humans, as physicians do not know pre-
cisely in advance the location, shape and contrast of the abnormality they are
looking for. A possible solution would be to additionally reveal this information
to the physicians (in the form of markers), however, the risk is that the model
observers would eventually be tuned for a clinically non-relevant task. There
are also other sources of inefficiency of human observers, e.g., neural receptor
sampling errors, randomness of neural responses and loss of information during
neural transmission [Lu and Dosher, 1999]. Sometimes the inefficiency is just
due to visual fatigue of the human observer [Krupinski and Berbaum, 2009].

Hence image quality does not only depend on the images and on the task,
but also on the observer that performs the task [Barrett, 1990]. To design
mathematical model observers that serve as good predictors of the human ob-
server, it is crucial to learn about the discrepancies between these two types
of observers. Knowledge of these discrepancies allows us to better fine-tune
medical imaging systems, and may serve in the future as an computer assisted
diagnosis tool to aid physicians. As a starting point, in Section 7.2 we will de-
sign CHOs for SKS tasks, which incorporate intrinsic uncertainty with respect
to the signal characteristics.

In the remainder of this section, we will first review a number of background
and signal models that are used for the observer studies. Next, we will briefly
explain the ideal observer and the channelized Hotelling observer.
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7.1.1 Signal detection theory and the ideal observer

Given an image, the task of the model observer is to decide whether a certain
signal is present in the image or not. The presence of the signal could indicate
an abnormality. According to classical decision theory, this task is a binary
classification task with two hypotheses: the signal is absent (H0) or the signal
is present (H1). Let b denote a vector of intensities of the random-background.
In this notation, the images are column-stacked into vectors (such as in raster
scanning). x and y respectively denote the known signal and the image. In
the following, we will assume an additive relationship between the background
image b and the signal x. Although the signal detection theory also holds for
non-additive relationships between the background and signal, this assumption
is commonly used in literature because it facilitates analytical tractability of
the model observers’ performance. The hypotheses are formulated as follows:

{
y = b (H0)

y = b + x (H1)

Under H0, the observed image is only a background image, while under H1,
the observed image also contains a signal x. To perform the decision task, we
must also specify the observer and a figure of merit for measuring the observer
performance (such as AUC and SNR). One candidate observer is the Bayesian
ideal observer, which uses the following test statistic:

λ(y) =
fY|H(y|H1)

fY|H(y|H0)
(7.1)

where fY(y|H0) and fY(y|H1) are conditional probability distributions of the
data y, under the hypotheses of respectively signal absence and signal pres-
ence. Based on this test statistic, the ideal observer decides whether a signal
is present: {

H0 if λ(y) < T

H1 if λ(y) ≥ T
(7.2)

with T a predefined threshold. The performance of an observer can be quanti-
fied through the true positive rate (TPR) and false positive rate (FPR), which
are defined as follows:

TPR = P
(
Ĥ1|H1

)
, (7.3)

FPR = P
(
Ĥ1|H0

)
, (7.4)

where a true positive detection is made when the signal is correctly identified,
while a false positive detection denotes an errorneous detection of the signal.
By changing the parameter T , a trade-off between both probabilities can be
made. The ROC is a graphical plot of TPR as a function of FPR. Optimizing
the observer performance is done by minimizing FPR for a given TPR, or vice
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Figure 7.2: Three Receiver Operating Characteristics (ROC) corresponding to dif-
ferent detector performances. The higher the area under the ROC (AUC), the better
the performance.

versa. Consequently, the observer performance can be expressed by means of
the area under the ROC curve (AUC), see Figure 7.2.

For objective quality assessment, it is advocated to use the Bayesian ideal
observer whenever possible [Park et al., 2009]. Unfortunately, the performance
of this observer can not be computed easily, because exact probability density
functions of the background and the signal are required. For complex medical
images as encountered in clinical practice, this is a very difficult task. To
compute the test statistic of the ideal observer anyway, several restrictions are
imposed to the background and signal pdfs.

7.1.2 Background models

The backgrounds are designed to mimick clinically realistic images in a practical
manner, such that different observer strategies can easily be computed. In the
literature, both uniform and spatially inhomogeneous backgrounds are being
considered (see Figure 7.3):

• White Gaussian background (WGB): being one of the most simple sta-
tistical models for background images. Obviously this background model
can account for measurement noise up to certain extent, but is certainly
not clinically realistic.

• Correlated Gaussian background (CGB): this type of background is equiv-
alent to the correlated stationary Gaussian noise from Chapter 4. This
model is again not encountered in clinical practice, yet it has the advan-
tage that the ideal observer is calculable.

• Lumpy background (LB) [Rolland and Barrett, 1992]: is produced by
placing a random number of Gaussian functions (called lumps) at random
locations in the image. The locations of the lumps are often uniformly
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(a) (b) (c) (d)

Figure 7.3: Examples of background images. (a) White Gaussian noise background,
(b) Correlated Gaussian noise background, (c) Lumpy background [Rolland and Bar-
rett, 1992], (d) Clustered lumpy background [Bochud et al., 1999].

distributed over the image, while the number of lumps is drawn from a
Poisson probability distribution.

• Clustered lumpy background (CLB) [Bochud et al., 1999,Castella et al.,
2009]: is a spatially inhomogeous model that has been shown to mimmic
mammographical anatomical structures. The creation of the background
is similar as for LB, the main difference is that clusters of lumps are
formed, which are located close to each other. Moreover, the lump profile
in this background model is a generalized Gaussian functions instead of
a Gaussian function.

In this chapter, to easily compare the performance of different observers,
we will mainly consider Gaussian lumpy backgrounds,

b ∼ N(µb,Cb), (7.5)

with mean µb and covariance matrix Cb. Realistic values for the parameters
µb and Cb can be firstly estimated from a set of images, typically using an
assumption of spatial stationarity.3 This comes down to modeling the back-
ground through its second order statistics (see Chapter 3). In [Barrett et al.,
1995], it is found that for the Bayesian ideal observer, the AUC estimated under
the assumption that the background is Gaussian is the first order approximation
for the AUC of the true ideal observer. Hence the approximation gives us an
idea of the performance of the ideal observer for more complex backgrounds.

Nevertheless, for more realistic quality assessment tasks, more complex
background images, such as actual clinical medical images are desired. We
will see in Section 7.1.4 that the CHO will bring a possible solution here.

7.1.3 Signal models

We model the signal by a fixed profile with known or unknown location and
shape parameters. One specific example of such a signal is an elliptical Gaussian

3Most medical images are not spatially stationary. However, the assumption imposes
a certain structure to Cb with a much smaller number of free parameters, which can be
advantageous in most cases.
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Figure 7.4: Sample background images with asymmetric signals inserted in the
center of the image, for Gaussian lumpy backgrounds of different parameter setups.
Possible sources of signal uncertainty are: size and shape of the signal, the location
and the orientation.

profile:
[x]p = a exp

(
− (Aϑp− q)

T
D−1 (Aϑp − q)

)
(7.6)

where a is the signal amplitude, p is a 2D vector denoting the spatial position,

q is the position of the center of the profile and D =

(
2bσ2 0

0 2σ2

)
is a

diagonal matrix with b a fixed constant and σ a scale parameter. Aϑ is a 2D
rotation matrix:

Aϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)
. (7.7)

In case the diagonal matrix D has equal diagonal elements, the signal is rota-
tionally symmetric (or simply, symmetric) and invariant under rotations Aϑ.
Otherwise, the orientation of the main axis is ϑ.

We say that the detection task is signal-known-statistically (SKS) [Park
et al., 2005], if at least one of the parameters b, σ,q, ϑ is not known in advance
but specified by a probability density function. Otherwise, all parameters are
known which corresponds to a signal-known-exactly (SKE) task.

For notational convenience, we will denote the vector of unknown signal
parameters by α = {b, σ,q, ϑ} in the remainder of this chapter, the set of all
possible parameter values as Ω (i.e. α ∈ Ω) and we will explicitly show the
dependency of the signal x on the unknown parameters as xα.

In Figure 7.4, some sample background images and signals are shown, where
the signal is given by (7.6). It is clear that such signals are not very clinically
realistic. However, what follows is not restricted to this choice of signals: most
important is the parametrization in amplitude, scale and orientation. There-
fore, the elliptical Gaussian profile serves as a study object.

7.1.4 Channelized Hotelling observers

Based on the signal and background model above, it becomes possible to com-
pute the likelihood ratio (LRT) of the ideal observer (7.1). However, for more
complex backgrounds or signals, the ideal LRT is much more complicated or
even unknown. A practical solution is brought by the CHO, which makes use



254 Models for measuring medical image quality

(a)

(b)

Figure 7.5: Images of rotationally symmetric channels. (a) Laguerre-Gauss channels
[Gallas and Barrett, 2003], (b) DDOG channels [Abbey and Barrett, 2001].

of linear dimensionality reduction [Gallas and Barrett, 2003,Myers and Bar-
rett, 1987]. The images are linearly projected onto a small set of channels,
and an ideal linear observer4 (also called Hotelling observer) is applied to the
dimension reduced vector:

y′ = UTy (7.8)

where y′ is the dimension reduced observation vector and where U is an N ×S
projection matrix. Here, N is the number of pixels in the image, while S is the
number of channels being used.

Crucial here is the selection of the channels (and channel parameters), such
that the detection performance of the CHO does not deviate too much from the
performance of either the IO or the human observer. A second consideration is
that the same set of channels should be applicable in many situations [Gallas
and Barrett, 2003]. For these reasons, rotationally symmetric Laguerre-Gauss
channels [Gallas and Barrett, 2003] (Figure 7.5(a)) are often used because of
their efficiency, and Dense Difference-of-Gaussian (DDOG) channels [Abbey
and Barrett, 2001] as a model for the spatial-frequency selectivity in the human
visual system (Figure 7.5b)).

In the following, we will consider a number of signal-absent/signal-present
images y. As we only work with ensemble statistics of these images, we will
denote the sample ensemble mean under the hypothesis of signal-absent and
signal-present respectively as 〈y|H0〉 and 〈y|H1〉.

An implementation of the CHO consists of two phases [Gallas and Barrett,
2003]:

1. Training phase: in this phase the model parameters of the CHO are
trained for the specific task that one has in mind (e.g. lesion detection),
under ’ideal’ circumstances (no distortion applied to the images). The
training method is Linear Discriminant Analysis (LDA). For the training
set, the CHO processes a relatively large number of signal-absent/signal-
present pairs of images. More specifically, the signal is estimated as:

x̂ = 〈y′|H1〉 − 〈y′|H0〉 (7.9)
4An ideal linear observer is an ideal observer restricted to linear test statistics.
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Figure 7.6: The channelized Hotelling observer in action.

which is the difference between two sample averages (under both hy-
potheses) over all images from the training phase. According to LDA,
the intra-class covariance matrices are assumed to be equal, and are es-
timated as:

Ĉb =
1

2

〈
(y′ − 〈y′|H0〉) (y′ − 〈y′|H0〉)T |H0

〉
+

1

2

〈
(y′ − 〈y′|H1〉) (y′ − 〈y′|H1〉)T |H1

〉
. (7.10)

For linear discriminant analysis, the test statistic (see (7.2)) is linear:

λ(y′) = wT
CHOy′ (7.11)

where wCHO is the channel template matrix, which can be estimated as
follows:

ŵCHO =
(
Ĉb

)−1

x̂. (7.12)
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The channel template matrix is used in the testing phase, in order to draw
a conclusion about signal presence/absence. Remark that, for computing
the channel template matrix, the model observer needs to know which
images contain (H1) or do not contain (H0) the signal. In case real med-
ical images are used, this information can be extracted from annotations
made by a physician.

2. Testing phase: here, the trained CHO model is applied to a test set of
data, which again consists of signal-absent/signal-present pairs of images.
The most important difference with the training phase is that the model
observer now does not have the preknowledge about whether a signal
is present in the image. Hence the model observer effectively needs to
perform a detection. A signal is detected (H1) if the test statistic (7.11)
is larger than a predefined threshold, otherwise the signal is assumed to be
absent (H0). The ROC is estimated using the Mann–Whitney–Wilcoxon
test [Wilcoxon, 1945, Mann and Whitney, 1947] and subsequently the
AUC detection performance is computed from the ROC.

The workflow of the CHO is summarized in Figure 7.6. Perhaps one of the
most interesting features of the CHO is that detection performance can be
computed for arbitrary images with arbitrary signals. For example, in a pre-
vious study [Platiša et al., 2009c], we used real radiographic images of the
chest with simulated lung nodules (see Figure 7.7). For these images, a good
agreement was found between the CHO and the human observers.
However, there are also a number of shortcomings related to the CHO:

• First, the linear discriminant analysis assumes that the conditional prob-
ability density functions fy′ (y′|H0) and fy′ (y′|H1) are Gaussian. As
some of the channels are in fact filters with band-pass characteristics (see
Figure 7.8(b)), the Gaussianity assumption is inconsistent with the highly
kurtotic behavior of the filter responses that we studied in Chapter 3. An
interesting future research topic is to derive test statistics for the prob-
ability density distributions from Chapter 3 and to compare them with
human observer experiments. In the remainder of this chapter we will
stick to the Gaussian distributions, as these distributions are commonly
used within the context of medical image quality assessment.

• Second, the estimated AUC-values exhibit statistical fluctuations due to
the limited testing and training sets being used. To have a sufficiently
low AUC variance (which is necessary for comparing the image quality
between two display systems), thousands of images are needed. Gathering
image data is also a time-consuming and often expensive task. Moreover,
study designs used in practice often involve multiple physicians (readers),
and the variability between the different observers needs to be taken
into account. A common solution that permits to use a limited number
of image data, is to use multiple reader/multiple case (MRMC) studies
in which multiple CHO models are trained on subsets of the complete
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Figure 7.7: Chest lung nodules from the database [Shiraishi et al., 2000]. (left)
images with nodule inserted in the center of the image (the nodule is very subtle in
the image at the bottom), (right) images without nodule.
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Figure 7.8: (a) Laguerre-Gauss (LG) functions for different orders N , (b) Frequency
responses of the LG functions.

data set, in analogy to multiple physicians inspecting multiple cases. An
example is the one shot method (see e.g. [Gallas et al., 2007]), which
enables to analyze the variance on the AUC estimates, due to within-
reader variability and between-reader variability.

• Third, a CHO model using rotationally symmetric channels is not well
suited for detecting rotationally asymmetric signals, as the detector can
not distinguish directional features of the signal. An example is given in
Figure 7.9: here two artificial lesions are shown that all generate the same
channel responses for a set of LG channels. In other words: the CHO
can not distinguish the lesions from one another. A trivial solution would
then be to use asymmetric channels as in [LaCroix et al., 1999], however,
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rotationally asymmetric signals typically have an unknown dominant ori-
entation in most practical circumstances and a CHO model for SKE tasks
can not take this uncertainty into account. We will show in Section 7.2
that dealing with this form of uncertainty necessarily causes an optimal
observer (e.g. in the maximum likelihood sense) to use a nonlinear test
statistic.

In the next section, we will address the third issue, by extending the CHO
model to deal with asymmetrical signals with unknown (random) orientation.
However, the problem can be stated more generally, as the size or amplitude
of the signal can also be unknown. The detection task then becomes a signal-
known-statistically (SKS) task.

7.2 New model observers for SKS tasks

Signal-known-statistically (SKS) detection tasks are more complicated than
SKE tasks, simply because less information is available about the signal that
is to be detected.

The performance of human and model observers in SKS tasks has been
studied in [Eckstein and Abbey, 2001,Manjeshwar and Wilson, 2001,Castella
et al., 2009,Park et al., 2005]. [Eckstein and Abbey, 2001] compute the SKS
task perfomance by using different templates for different combinations of signal
parameter values, and subsequently the authors optimally combine (in max-
imum likelihood sense) the template outputs. Their results suggest that the
performance of SKE tasks could be used as a first order approximation to
performance in SKS tasks. [Manjeshwar and Wilson, 2001] conclude that the
human observer performance is severly limited in location uncertainty but the
detection performance can be improved by 77% by adding a marker around
the signal. [Park et al., 2005] estimate the human observer efficiency relative
to the IO. The authors find that the relative human efficiency for SKE tasks
is much lower than for SKS tasks, which indicates a great potential for SKS
model observers that behave closer to humans. [Castella et al., 2009] investigate
the influence of signal variations and uncertainty on human detection perfor-
mance. It is reported that the human observer is mostly sensitive to signal size
uncertainty, but not significantly to signal shape uncertainty.

Table 7.1 gives a summary of existing model observers. It shows whether
signal or background knowledge is required, and if the model is related to the
HVS. We remark that, opposed to SKE detection tasks, channelized Hotelling
observers for SKS tasks have not been studied extensively before.

In this section, we will develop new nonlinear model observers for detect-
ing signals with unknown (random) parameters, based on the theory of joint
detection and estimation (JDE) [Olmo et al., 2000]. These classes of observers
jointly estimate the unknown signal parameters and the signal presence, which
means that depending on the task for which they are designed, these observers
are also able to determine the location, orientation and size of signals on an
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Table 7.1: Brief summary of prior knowledge used by common model observers.
Knowledge Background Human

Model about signal knowledge Visual System
Ideal observer (IO) Full knowledge Full knowledge Not related
[Barrett et al., 1998]

Ideal linear observer (ILO) Full knowledge Full knowledge Not related
[Gallas and Barrett, 2003]
Channelized ideal linear Full knowledge Full knowledge Frequency or

observer orientation
[Park et al., 2007] selective channels

Channelized Hotelling Learned during Learned during Frequency or
observer (CHO) for SKE tasks training phase training phase orientation

[Gallas and Barrett, 2003] selective channels
CHO for SKS tasks Learned during Learned during Frequency,

(Section 7.2.2) training phase training phase orientation and scale
selective channels

image. To keep the ability to work with relatively small training sets of images,
we also explain the general framework in which channelized Hotelling imple-
mentations of these observers can be derived, while retaining the theoretical
performance of their non-channelized equivalents as much as possible.

One important result is that a number of specific detection tasks in which
some signal parameters are known and others are unknown, pose restrictions on
the choice of the channels. For example, if we want to optimally detect signals
with unknown orientations, then orientation-selective channels should be used
that are angularly steerable (see Chapter 2). On the other hand, if the size
(scale) of the signal is unknown, the channels should be frequency-selective and
shiftable in scale. For more complex tasks, e.g. the location, orientation and
size are unknown, the channel design constraints can seamlessly be combined,
resulting in channels that are both orientation and frequency selective and that
are at the same time localized in space.
The purpose of the developed JDE model observers is two-fold:

1. We show that the detection performance of the JDE model observers is
generally closer to the performance of the IO than the ideal linear ob-
server (ILO), which is constrained to linear decision boundaries. Hence,
the JDE model observers, or in particular the channelized implementa-
tions of these observers, are very practical in use while closely matching
the performance of the IO.

2. Our hope is that the new observers provide more insights into the discrep-
ancies between human observers and the IO, with respect to the intrin-
sic signal uncertainty. The need for frequency- and orientation-selective
channels for optimal detection also agrees with the presence of frequency-
and orientation-responsive neurons in the human V1.

7.2.1 A Variational approximation of the IO for SKS tasks

First, we will derive the IO test statistic for SKS tasks. As this will not give a
closed form expression for the test statistic (which makes it difficult to directly
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compute the IO performance), we will apply a variational approximation. This
will provide us some insights in the detection performance of the new observers
later.

For an SKS detection task, the observer has to deal with the presence of
hidden signal parameters α. According to (7.1), the test statistic of the ideal
observer can be computed by marginalizing the conditional densities over the
hidden parameters [Park et al., 2005]:

λ(y) =
fY|H(y|H1)

fY|H(y|H0)
=

´

Ω
fY|α,H(y|α,H1)fα(α)dα

fY|H(y|H0)
(7.13)

The ideal observer requires the specification of the conditional probability den-
sity functions of the data: fY|H(y|H0) and fY|H(y|H1). The conditional prob-
ability density function fY|H(y|H1) in (7.13) contains high-dimensional inte-
grals and computation of λ(y) is usually done through MCMC methods [Park
et al., 2003,Park et al., 2005]. Unfortunately, for the MCMC simulations it is
much more difficult to examine the influence of the unknown parameters on e.g.
the detection performance, unless many simulations are performed for different
combinations of parameters.

An alternative approach that is analytically tractable makes use of Bayesian
Variational approximation [Beal, 2003]. Using Jensens’ inequality, a lower
bound of the log-likelihood function logλ(y) is maximized in order to reach
a decision of signal presence:

logλ(y) = log

ˆ

Ω

fα(α)
fY,α|H(y, α|H1)

fα(α)
dα− log fY|H(y|H0)

≥
ˆ

Ω

fα(α) log
fY,α|H(y, α|H1)

fα(α)
dα− log fY|H(y|H0)

= KL
[
fα(α)‖ fα|y,H(α|y, H1)

]
− log fY|H(y|H0) (7.14)

with KL [ ·‖ ·] the Kullback-Leibler divergence between two probability den-
sity functions. Although this approach still faces high-dimensional integrals,
under the Gaussianity assumption of the background (Section 7.1.2), the log-
likelihood function has a simple form and the test statistic can be reduced
to:

tvar = logλ(y)

=

ˆ

Ω

fα(α)
(
xTαC−1

b y
)
dα

= Eα
[
xTα
]
C−1
b y (7.15)

where the subscript signifies that the mathematical expectation is taken with
respect to α, i.e. Eα [g(x)] =

´

Ω fα(α)g(x)dα. It can be shown that the SNR5

5For the definition of SNR for detection tasks, we refer to [Barrett et al., 1995]. We
remark that in the literature about model observers, the SNR is defined as the square root
of the power ratio between the signal and noise (in contrast to most electrical engineering
literature, where it is simply the power ratio). For consistency with the other Chapters in
this book, we stick to the EE definition.
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performance of the observer with test statistic (7.15) is given by:

SNRt,var =

(
Eα [xα]

T
C−1
b Eα [xα]

)2

Eα
[
xTαC−1

b xα
] . (7.16)

Furthermore, because the tvar is Gaussian distributed, the AUC is directly
related to the SNR [Barrett et al., 1998]:

AUCvar =
1

2
+

1

2
erf

(√
SNRt,var

2

)
. (7.17)

Because the Variational approximation (7.14) amounts to approximating the
probability density fΛ(λ) with a Gaussian distribution, the linear test statistic
tvar is also the discriminant function of the ILO. By comparing (7.15) to the
discriminant function for signal known exactly (SKE) tasks (see e.g. [Barrett,
1990]), we note that the only difference is that the signal profile is averaged over
all possible parameter values. Hence the ILO detects the expected signal, under
all signal uncertainty. For example, in case the orientation of an asymmetric
signal (see (7.1.3)) is unknown but uniformly distributed on [0, π], the ideal
linear observer will average the ensemble of signals for all possible orientations
and will attempt to detect this averaged symmetric signal. However, there are
two issues with the ILO to take into account:

1. The ILO does not provide estimates of the unknown signal parameters α
(which would be useful as an indication why a signal was detected in a
given image).

2. The log-likelihood function (7.14) is a (non-tight) lower bound for the
true log-likelihood function, due to the use of Jensens’ inequality. Maxi-
mization of the lower-bound does not necessarily give the global optimum
of the true log-likelihood function. For example, in [Park et al., 2005] it
has been experimentally found that ensemble averaging of the signal over
all possible signal locations (in a location-unaware task) yields a poor
signal detection performance. In general, the ILO can not distinguish
between two significantly different realizations of a signal with a given
ensemble average (over all possible values of the unknown parameters).
The same goes for different signals with the same ensemble average, but
with significantly different realizations at the time. Figure 7.9 shows an
example for orientation-unaware tasks. The ILO is often not adequate
in practice, and the above observations suggest that nonlinear decision
rules may perform closer to optimal since the IO in SKS tasks is generally
nonlinear.

Next, we will investigate an alternative solution that allows us to estimate of
the unknown signal parameters jointly with the signal presence. This will also
give a performance that is often closer to the ideal observer.
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(a) (b)

Figure 7.9: Example of two asymmetric signals with the same ensemble average
when averaged over all possible orientations (0°−180°), e.g. in an orientation-unaware
task. Even though the of appearance is quite different, the ILO can not distinguish
these two signals from each other.

7.2.2 Model Observer based on Joint Detection and Es-

timation

In the theory of joint detection and estimation (JDE) [Olmo et al., 2000], the
composite parameter estimation and hypothesis testing is seen as the joint
estimation of a mixed set of discrete and continuous parameters. The joint
approach is obviously independent of the order in which the detection and es-
timation are being performed, and generally yields better overall performance
(in the MAP sense) than when both detection and estimation are done in-
vidivually. Let us denote the a posterior distribution of the parameters as
ϕ(α,Hk) = fα,H|Y(α,Hk|y). For the background model (see Section 7.1.2),
the joint MAP estimation of the unknown parameters and the hypothesis is
performed as follows:

̂(α,Hk) = arg max
(α,Hk)

ϕ(α,Hk)

= arg max
(α,Hk)

−1

2
(y − kxα)

T
C−1
b (y − kxα) + log fα(α) + log P (Hk)

= arg max
(α,Hk)

kxTαC−1
b

(
y − 1

2
xα

)
+ log fα(α) + log P (Hk) (7.18)

where the statistical independence of α and Hk has been exploited. The de-
cision rule that provides the solution to (7.18), can be written as follows (see
Figure 7.10(a)):

Ĥk =

{
H1 if ∃α? : xTα?C

−1
b

(
y − 1

2xα?

)
≥ log P (H0)

P (H1)

H0 else
(7.19)

Important to note is that if α is fixed (as in SKE tasks) or if xα is a linear
function of α, the decision boundary (i.e. y = xα/2) becomes linear in xα.
Moreover, for the test statistic

tJDE = xTαC−1
b y, (7.20)
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Table 7.2: MAP estimators for unknown signal parameters. In this table, (·)+ =
max(0, ·). For the channelized observers (third and fourth row), see explanation in

Section 7.3. Here Uα is the channel matrix, C
′

b is the background covariance matrix
in the channel domain.

Observer /
distribution of α MAP-optimal estimate

non-channelized /
fα (α) uniform on Ω α̂ = arg max

α∈Ω
x

T
αC

−1
b

�
y − 1

2
xα

�
non-channelized /
fα (α) non-uniform on Ω

α̂ = arg max
α∈Ω

log fα(α)+

�
x

T
αC

−1
b

�
y − 1

2
xα

�
− log

P (H0)

P (H1)

�
+

channelized /
fα (α) uniform on Ω

α̂ = arg max
α∈Ω

 
xT

α

‖Uα̂‖2
F

�
UαC

′−1
b U

T
α

��
y − 1

2
xα

�!
channelized /
fα (α) non-uniform on Ω

α̂ = arg max
α∈Ω

log fα(α)

+

 
xT

α

‖Uα̂‖2
F

�
UαC

′−1
b U

T
α

��
y − 1

2
xα

�
− log

P (H0)

P (H1)

!
+

the decision rule has a clear interpretation: if tJDE is close to 0, the decision
will be H0, on the other hand, if tJDE is close to xTαC−1

b xα, the signal will be
detected (H1). The exact boundary depends on the prior probabilities P (H0)
and P (H1). According to (7.18), the estimation of α can also be done inde-
pendently from the signal detection. Because the found α̂ will automatically
be the best candidate for making a decision of signal presence (i.e. α? = α̂
in (7.19)), the JDE can be implemented using a simple sequential scheme (see
Figure 7.10b):

1. Estimate the set of unknown signal parameters α, in order to maximize
the conditional likelihood function:

α̂ = arg max
α

max (ϕ(α,H0), ϕ(α,H1)) (7.21)

Table 7.2 lists exact expressions for the estimation of α.

2. Use this estimate in order to detect signal presence, using the test statistic
tJDE = xTα̂C−1

b y evaluated in α̂. The final decision is H1 if and only if
tJDE >

1
2x

T
α̂C−1

b xα̂ + log P (H0)
P (H1) , otherwise the decision is H0.

These findings have a number of practical consequences: 1) the detector is
clearly nonlinear, however, the nonlinearity is mainly in the estimation part of
the scheme (and in particular in the dependence of xα on α). Once the signal
parameters are estimated, the test statistic is linear in xα̂ (decision part). This
finding will allow use to derive a channelized Hotelling implementation of this
scheme in Section 7.3.



264 Models for measuring medical image quality

α

ϕ(H$, α)
ϕ(H%, α)

α̂
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Figure 7.10: (a) Illustration of the joint MAP detection and estimation of one single
parameter α. Shown are the objective functions ϕ(H0, α) and ϕ(H1, α) for hypotheses

H0 and H1, respectively. The MAP estimate is ̂(α,Hk) = arg max ϕ(Hk, α). The
decision is H1 if and only if there exists α? : ϕ(H1, α

?) > ϕ(H0, α
?) (the decision

boundaries are indicated using dashed lines). If so, and if α? is abscis of the maximum
of ϕ(H1, α

?), the estimate of the parameter α̂ is given by α?. (b) Sequential scheme
that gives the optimal JDE estimation.

Detection performance

Next, we will investigate the detection performance of the JDE scheme. First
of all, conditioned on α̂, the test statistic is the same as for SKE tasks. For
SKS, the performance is highly influenced by the quality of the estimate α̂,
or more particularly, the joint density function fα,α̂ (α, α̂). For example, one
may expect that the lower the estimation error on α̂, the better the detection
performance will be. To derive the SNR, the first and second order conditional
moments of the test statistic are required:

E [tJDE |α, α̂,H0 ] = 0,

E [tJDE |α, α̂,H1 ] = xTα̂C−1
b xα, and

Var [tJDE |α, α̂,Hk ] = xTα̂C−1
b xα̂.

From these expressions, the detection SNR can be directly computed [Barrett,
1990]:

SNR2
t,JDE =

(E [tJDE |H1 ] − E [tJDE |H0 ])2

(Var [tJDE |H1 ] + Var [tJDE |H0 ]) /2

=

(
Eα̂,α

[
xTα̂C−1

b xα
])2

Eα̂
[
xTα̂C−1

b xα̂
] . (7.22)

Now, it is interesting to note that if α and α̂ are statistically independent, but
identically distributed, (7.22) is the same expression as (7.16). This suggests
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that if the estimator would select α̂ randomly from the probability density
function fα (α), the SNR performance would be equal to the SNR performance
of the ideal linear observer. Moreover, if one does a better job than guessing α̂
randomly (e.g. by using (7.21)), the SNR performance of the JDE scheme will
be higher than that of the ideal linear observer.

Summary

For SKS tasks, the JDE scheme has the following advantages compared to the
ideal observer:

1. The scheme provides an explicit estimate of the unknown parameters α̂.

2. High dimensional integrals are generally avoided. The integration task
is replaced by solving an optimization problem (7.21), for which more
efficient techniques exist.

3. The test statistic is still linear, which has the most practical consequence
that, depending of the parameters that are known or unknown, it is
often possible to devise an efficient channelized Hotelling scheme for the
considered problem, as we will explain in the next section.

4. The JDE scheme generally outperforms the ideal linear observer, as we
will show later, and can attain a performance that is close (or equal) to
the IO.

The JDE observer can be considered a practical approximation to the IO for
SKS tasks. However, in practice, complete probability density functions of the
images are not available. Therefore in the next section, we will extend the JDE
observer to use linear channels and this will allow some interesting perspectives
with respect to the channel choice and design.

7.3 Channelized Hotelling observers for SKS de-

tection tasks

As we explained in Section 7.1.4, for more realistic scenarios (like more complex
non-Gaussian backgrounds), we would like to train the observer from a limited
set of images. Unfortunately, the JDE detection scheme from the previous
section can not directly be used for this. Therefore, similar to the CHO for
SKE tasks (Section 7.1.4), we constrain the observer to a small set of linear
channels. Recall that the test statistic of the JDE observer is given by:

tJDE = xTα̂C−1
b y. (7.23)

Next, we introduce linear projections onto a set of K channels (i.e. y is mapped
to UT

α̂y, with Uα̂ a N×K matrix). This is a projection from the N -dimensional
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space RN (spatial domain) to the K-dimensional space RK (channel domain).
In the channel domain, the test statistic can be written as:

t
′

JDE =
xTα̂

‖Uα̂‖2
F

(
Uα̂C

′−1
b UT

α̂

)
y (7.24)

with ‖Uα̂‖2
F a channel matrix energy normalization factor, which will prove

useful later. The notation indicates that the channels are adaptive to the signal
parameters. For example, if one uses Laguerre-Gauss channels for detecting
rotationally symmetric Gaussian signals with known scale parameter σ (see
(7.6) with b = c = 1), then it is common to tune the channels so that the first
order Laguerre-Gauss function matches the signal (aLG =

√
2πσ, see [Gallas

and Barrett, 2003]). If the scale parameter σ is unknown, we also keep the
Laguerre-Gauss parameter aLG variable. Once the estimate of σ is available
(through (7.21)), we can use this value to tune the channel parameter âLG =√

2πσ̂.
Ideally, we would like that t

′

JDE ≈ tJDE, such that t
′

JDE is a approx-
imately a sufficient statistic, and such that the influence of the dimension
reduction by channel projection is minimal. For this, the covariance ma-
trix C

′−1
b and the channel matrix Uα̂ need to be chosen suitably, such that

C−1
b ≈ Uα̂C

′−1
b UT

α̂/ ‖Uα̂‖F . Now, we would like to estimate the unknown
signal parameters in the channel space as well, for reasons of elegance and
computational efficiency. In analogy to (7.24), we replace the MAP estimates
α̂ by their channelized equivalents, which are listed in Table 7.2. For example,
if α is uniformly distributed in Ω, we have

α̂ = arg max
α∈Ω

(
xTα

‖Uα̂‖2
F

(
UαC

′−1
b UT

α

)(
y − 1

2
xα

))
. (7.25)

In general, the objective function in (7.25) is highly nonconvex and may contain
many local but non-global maxima, which practically means that projections
need to be performed using a whole set of channel matrices Uα with varying
parameters α. Because the search space and the dimensionality of the data are
still huge, this technique would not be very practical. The key to the solution
for this problem is to choose the channels suitably, such that a transform on
the signal in the spatial domain can be expressed as an equivalent transform
on the signal in channel domain. Instead of searching for parameter estimates
in the spatial domain, the optimization (7.25) can then completely take place
in channel domain, without loss of accuracy. Therefore we will add an extra
requirement for designing the channel matrix:

Uα = AT
αU0 = U0A

′T
α (7.26)

where U0 is a fixed channel matrix, which does not depend on the unknown
parameters α. One can think of Aα as a linear transform matrix that maps
xα onto the reference signal x0 in the image space (i.e. a signal constructed
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Figure 7.11: Illustration of the channel design condition (equation (7.26)): a rota-
tion by 72° in the image domain corresponds to a matrix multiplication in the channel
domain. The channel matrix U0 and the matrices Aα, A

′

α need to be chosen suitably,
such that in the figure the end result for transiting from xα to x

′

0 is the same, inde-
pendent of the path being followed. The problem of orientation-unaware detection is
discussed in more detail in Section 7.3.2.

from known reference parameters): Aαxα = x0. Similarly, A
′

α does the same
in the channel space by mapping UT

0 xα onto UT
0 x0. Figure 7.11 illustrates

the case of the orientation-unaware detection of a signal. Before explaining the
design of fixed channel matrices satisfying (7.26), we will first show that the
estimation part now completely takes place in channel space. Therefore, we
substitute (7.26) into the estimator (7.25):

α̂ = arg max
α

1

‖AT
αU0‖2

F

x
′T
0 C

′−1
b

(
A

′T
α y

′ − 1

2
x

′

0

)
(7.27)

with y
′

= UT
0 y and x

′

0 = UT
0 x0 the projected observed image and the projected

reference signal, respectively. Now we see that both the reference signal x0 and
the observed image y are projected only once, using the fixed channel matrix.
Exactly the same applies to test statistic from equation (7.24), which becomes:

t
′

JDE =
1

‖AT
αU0‖2

F

xTα̂AT
α̂U0C

′−1
b A

′

α̂U
T
0 y

=
1

‖AT
αU0‖2

F

x
′T
0 C

′−1
b A

′

α̂y
′

. (7.28)

Because y
′

and x
′

0 can be precomputed prior to the optimization in (7.27),
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both the estimation of α and the detection task are done in channel space. The
decision of signal presence is given by:

Ĥk =




H1 if t

′

JDE ≥ x
′T
0 C

′−1
b x

′

0

‖AT
αU0‖2

F

+ log P (H0)
P (H1)

H0 else
(7.29)

where the right hand of the inequality in (7.29) is constant and independent of
the observed image. The consequences are huge:

• As already mentioned, it is advocated to use channels that are applicable
in a wide range of situations. Through Figure 7.11 we end up with a con-
stant channel matrix U0, which is independent of α (but which depends
on the type of SKS task, as we will see). Hence, this would allow us to
use a fixed channel matrix for a given SKS task (also see further). From a
computational point of view, the channelization (UT

0 y) can immediately
take place as a first step in processing the data.

• Because the JDE can be split up in a nonlinear estimation part and a
linear detection part (see Section 7.2.2), the decision boundaries for the
mapped observation vector A

′

α̂U
T
0 y are linear ! Hence we can immedi-

ately obtain a CHO implementation for SKS tasks, which can be used
for arbitrary signals and backgrounds. The details will be explained in
Section 7.4.

The only remaining question is: how to design channel matrices and mapping
transforms that satisfy the channel design constraint from equation (7.26)?
Briefly, the design procedure can be summarized as follows:

• First fix the reference signal x0: i.e. choose reference parameter values,
perhaps arbitrarily.

• Define the transform Aα that maps any signal xα onto the reference
signal.

• Choose the channel matrix suitably, such that there exists a transform
matrix A

′

α in channel space satisfying (7.26).

Because the third step is a difficult task in general, we will treat each unknown
parameter (signal amplitude, rotation, scale and location) at the time in the
following subsections.

7.3.1 Detection of signals with random amplitude

First we consider the case where only the signal amplitude a > 0 is unknown
and uniformly distributed on [amin, amax], and α = [a]. For clinical applications,
this problem with variable signal amplitude (or contrast-to-noise ratio of the
signal) is a very relevant. To proceed, we apply the design procedure outlined
before. For the reference signal, it is convenient to choose a0 = 1, such that
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Figure 7.12: Illustration of the JDE amplitude estimation.

Aa = a−1I is simply a diagonal matrix. To satisfy (7.26) it is sufficient to
choose A

′

a = a−1I so there are no further restrictions necessary on the channel
matrix. Using (7.27), the JDE amplitude estimate is as follows:

â = min

(
amax,max

(
amin,

x
′T
0 C

′−1
b y

′

x
′T
0 C

′−1
b x

′

0

))
. (7.30)

This estimator is linear in the domain [amin, amax], and saturates outside this
domain. An illustration of (7.30) is given in Figure 7.12. Next, (7.30) can be
put into (7.38) to yield the final test statistic:

t
′

JDE =





�
x
′T
0 C

′−1
b y

′
�2

x
′T
0 C

′−1
b

x
′
0

, if amin < â < amax

aminx
′T
0 C

′−1
b y

′

, if â = amin

amaxx
′T
0 C

′−1
b y

′

if â = amax

(7.31)

Hence the final test statistic saturates at the points aminx
′T
0 C

′−1
b y

′

and
amaxx

′T
0 C

′−1
b y

′

, consistent with the fact that the signal amplitude can not
exceed the interval [amin, amax].

Similar estimators can be derived for other prior distributions. Suppose a
has an exponential distribution with mean 1/λ, according to JDE theory the
amplitude is estimated as follows:

â =





(
x
′T
0 C

′−1
b y

′−λ
x
′T
0 C

′−1
b x

′
0

)

+

if t
′

JDE =

�
x
′T
0 C

′−1
b y

′−λ
�2

2x
′T
0 C

′−1
b x

′
0

≥ log P (H0)
P (H1) (H1)

undefined else (H0)

(7.32)
which is again linear on x

′T
0 C

′−1
b y

′ ∈ [λ,+∞[. In case the result is undefined,
the observed signal is too weak to obtain a reliable estimate of the amplitude.
This case corresponds to signal absence (H0).
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As can be seen, the estimation of the signal amplitude is a task that does
not rely on a particular choice of the channels. This allows us the freedom
to design specific channels for more difficult SKS tasks, some of which we will
discuss in the next subsections.

7.3.2 Orientation-unaware detection

Now we assume that the signal orientation angle ϑ is unknown and uniformly
distributed on [0, π], and α ≡ [ϑ]. Extensions to non-uniform prior distributions
for ϑ are also possible. As a reference orientation angle, we choose ϑ = 0. The
matrix Aϑ should rotate the spatial plane and transform xϑ into x0. Because
of the discrete sampling, the construction of the matrix Aϑ could be done
based on bandlimited resampling, in order to obtain an “ideal” rotation matrix.
Fortunately, because we completely work in the channel space, the practical
problem of the computation of Aϑ is avoided. The main problem becomes
the design of the channels, according to (7.26). In the context of orientation-
unaware detection, equation (7.26) states that rotating the image in the image
space should correspond in a linear operation (“steering”) in channel space.
Hence we should use channels that can be “steered” to any orientation in the
image space, based on a linear sum of a fixed set of channels. The solution is
provided by the steerable filters from Section 2.3.2.

We therefore design channels that are both sensitive to specific scales as
to specific orientations, as a product of steerable functions f (ϑk)

steer(r, ϕ) and a
rotationally symmetric (RS) function f

(s)
RS (r, ϕ) (e.g. LG functions or DDOG

functions):

f (ϑk,s)(r, ϕ) = f
(ϑk)
steer(r, ϕ)f

(s)
RS (r, ϕ), k = 1, ...,K and s = 1, ..., S. (7.33)

To construct the channel matrix U, it suffices to sample the channel func-
tions (7.33) and store the samples in an N × (KS)-matrix where every column
contains one sampled channel function. Some examples of steerable LG func-
tions are shown in Figure 7.13(a), for K = 5 orientations. For simplicity, we
will use only one scale (S = 1) and f (s)

RS (r, ϕ) = 1 in the remainder of this text.
The theory can be easily extended to multiple scales.

Estimation of the unknown orientation angle

By opting for steerable channels, the transform matrix A
′

ϑ, which we will call
“steering” matrix from now on, is also automatically determined:

[
A

′

ϑ

]
mn

= bm−n(ϑ) =
1

K

sin (π(m− n) − ϑK)

sin (π(m− n)/K − ϑ)
.

For an odd numbers of orientations K, the steering matrix has the interesting

property of being unitary (A
′T
ϑ A

′

ϑ = I), such that
∥∥∥A′T

ϑ U0

∥∥∥
2

F
= ‖U0‖2

F .
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Moreover, A
′

ϑ is a circulant matrix, which means that it can be diagonalized
by the DFT matrix FK :

A
′

ϑ = FKDϑF
H
K (7.34)

with Dϑ a diagonal matrix depending on ϑ. We will exploit this property for
estimating ϑ̂ in a computationally efficient manner. It can be shown that the
diagonal elements of Dϑ are given by:

[Dϑ]kk =

{
exp (2jϑ (k − 1)) 1 ≤ k ≤ (K + 1) /2

exp (2jϑ (k − 1 −K)) (K + 1) /2 < k ≤ K
(7.35)

Following equation (7.27), ϑ can be estimated as follows:

ϑ̂ = arg max
ϑ∈[0,π]

g(ϑ), (7.36)

with g(ϑ) = x
′T
0 C

′−1
b A

′T
ϑ y

′

. Based on the diagonalization (7.34), we can alter-
natively write g(ϑ) as:

g(ϑ) =
∑

k

b̃k [Dϑ]kk , (7.37)

with b̃k = x
′T
0 C

′−1
b [FK ]:,m

[
FHK
]
m,:

y
′

. Consequently, g(ϑ) is a trigonometric
polynomial in ϑ of degree K (and period π), with at most 2K extrema in the
interval [0, π[ [Powell, 1981, p. 150]. Finally, the test statistic is given by:

t
′

JDE = g(ϑ̂)/ ‖U0‖2
F (7.38)

We remind the reader that the range of possible values ϑ̂ is continuous and
does not depend on the choice of the number of orientations K. In fact, even if
the number of orientations K is very low (e.g. K = 2), it is possible to detect
signals with arbitrary orientations.

7.3.3 Scale-unaware detection

In the case of scale-unaware detection, we consider signals with unknown size σ,
but for example uniformly distributed on [σmin, σmax], and α ≡ [σ]. We prefer
to express σ on a logarithmic scale because a relative change of the size of the
signal, aσ, then results in a translation of the scaling variable in a logarithmic
scale (log a+log σ). In the following, we will refer to this as shiftability in scale.
In [Freeman and Adelson, 1991, Simoncelli and Freeman, 1995], shiftability in
scale is developed in the context of periodic signals. Applied to frequency scales,
this means that upshifting the high-frequency selective channels results in low-
frequency selective channels (hence causing aliasing and hampering the scale
estimation). The solution is to design scale-shiftable channels in continuous
radial frequency, and to apply ideal low-pass filtering prior to sampling, to
suppress aliasing. In polar-frequency coordinates we have:

f
(σ)
scale−shiftable(ω, ϕ) = sinc

(
sign (ω) log2

( |ω|
π

+ ε

)
− σ

)
I(|ω| < ωmax)

(7.39)
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with ω the radial frequency, ϕ the angular frequency, ωmax the maximal radial
frequency, ε a small positive number to make sure the result is defined for ω = 0

(e.g. ε = 10−6) and sinc (·) the sinc-function. The function log2

(
|ω|
π + ε

)
de-

fines a logarithmic warping of the radial frequencies to dyadic scales. A plot of
this function is shown in Figure 7.14a. and the 1-d radial magnitude responses
of the scale-shiftable channels (equation (7.39)) are given in Figure 7.14b. The
elements of the transform matrix A

′

σ are given by:
[
A

′

σ

]
mn

= sinc (((m− n) − σ)) .

The scale estimate is given by (see equation (7.27)):

σ̂ = arg max
σ∈[σmin,σmax]

x
′T
0 C

′−1
b A

′T
σ y

′

. (7.40)

In contrast to Section 7.3.2, A′ now has a Toeplitz structure. To find the
maximum in (7.40), we first apply a brute-force search for a fixed number of
uniformly spaced scales in [σmin, σmax]. Next, the estimate is refined using
iterative Newton-Raphson optimization. Because the number of channels is
usually relatively low (less than 10), the impact on the computation time is
minimal.

7.3.4 Location-unaware detection using a scanning CHO

For the location unaware detection (where only q is unknown, α ≡ {q}), we
will restrict ourselves to integer translations (q is an integer vector), although
extensions to non-integer translations are also possible, based on e.g. bandlim-
ited interpolation. As a reference position, we choose the center of the image:
q = qc. The matrix Aϑ should translate the spatial plane and transform xp
into x0 (i.e. move the signal from position q to position qc). In essence, it
is possible to use the same trick as we did for rotation and scale unaware de-
tection, based on steerable channels (in this context these channels are called
time/space-shiftable). However, if we would like to have a fine spatial resolu-
tion, the required number of channels increases rapidly: for example, to build
a grid of 20 × 20 spatially selective channels, 400 channels are needed. For
the CHO this also requires at least 400 training images in order for C

′

b to be
even invertible, while the actual number of images needed for correct operation
may be 10 to 100 times larger. Moreover, channels that are shiftable in space
can not be shiftable in scale at the same time (or vice versa) [Simoncelli and
Freeman, 1995], as this would require channels that are simultaneously ban-
dlimited and compactly supported, which is not possible [Daubechies, 1992].
So we conclude that constructing channels based on the same technique as in
previous subsections is impractical.

Nevertheless, with a simple workaround it is possible to approximate the
JDE observer. The first step of the sequential scheme is again the estimation
of the missing parameters, in this case the unknown center position q of the
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signal. Equation (7.25) amounts to:

q̂ = arg max
q

xT0 C
′−1
b UT

p (y) . (7.41)

Because Up represents shifted versions of the same channel matrix U0, we can
efficiently compute channel responses for different positions in the image, as
the projection operation UT

p (y) for all q can be performed using Fast Fourier
Transforms. The location estimator then exhaustively scans the whole image
for the highest test statistic, using the same set of channels. For this reason we
will call this the scanning technique. The highest test statistic is subsequently
used for making the decision of signal presence. Because the CHO basically
scans the whole image to perform its detection task, this type of CHO is known
as “scanning CHO” [Park et al., 2005].

We remark that compared to the JDE estimator, the position estimator
(7.41) is based on a constant covariance matrix C

′

b in channel space. This
is only efficient in case the image is spatially (wide-sense) stationary, while
most medical image are not. An alternative would be to make the matrix
C

′

b position-dependent, thus would again require a large number of training
images.

7.3.5 More complex detection tasks

Now that we have described the channel selection in detail, we can have a
look at more complicated SKS problems, in which multiple signal parameters
are unknown. First of all, a brief summary of the channel choices is given in
Table 7.3. Listed are various detection tasks, the type and number of channels
to use, and the profile that needs to be changed for every situation. In general,
the channels can be designed in polar coordinates as follows:

f (k,s)(r, ϕ) = f
(k)
angular(r, ϕ)f

(s)
radial(r, ϕ),

with f
(k)
angular(r, ϕ) the angular profile (impulse response) of the channels and

with f
(s)
radial(r, ϕ) the radial profile. For every detection task in Table 7.3, it is

specified which profile needs to be changed. For example, in case the signal size
is unknown, we should use the scale-shiftable radial profile, or f (s)

radial(r, ϕ) =

f
(s)
scale−shiftable(ω, ϕ). If, on top of that, the signal orientation is unknown, a

steerable angular profile should be used: f (k)
angular(r, ϕ) = f

(ϑk)
steer(r, ϕ). This way

we obtain channels that are jointly shiftable in scale and in orientation (also
see the discussion in [Simoncelli et al., 1992] on this topic). For the tasks listed,
there never occur conflicts when several tasks are being combined.
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Table 7.3: Overview of the proposed channels to use for specific detection tasks.
Detection task Proposed channels Profile Number of channels

SKE Laguerre-Gauss, DOG Radial K
SKS, signal amplitude Laguerre-Gauss, DOG Radial K

unknown
SKS, signal steerable Laguerre-Gauss, Angular K

orientation unknown steerable DOG K
SKS, signal rotationally symmetric Angular S

size unknown scale-shiftable channels
SKS, signal Any from the above N/A Any

location unknown
SKS, all parameters steerable scale- Radial+angular KS

unknown shiftable channels

7.4 Results

7.4.1 Detection performance experiment

As a first experiment, we generated two sets of 10 000 simulated 2D Gaussian
correlated background (CGB) images with variance 1 and with power spectral

density P (ω) ∝ exp
(
−‖ω‖2 /(2σ2

BK)
)

where the parameter is given by σBK =

10. One set contains signal-free BK images, a second set contains BK images
with an asymmetric elliptical signal inserted in the center (see (7.6)), with
parameters D11 = 1, D22 = 10 and with a uniformly distributed orientation
ϑ ∈ [0, π]. We trained different CHO models to this training set, and generated
a third and fourth sets with the same parameters, for the testing phase. The
different CHO models used in this experiment are:

1. CHO with the first 10 rotationally symmetric LG channels, with para-
meter6 aLG = 1.9 (LG-symmetric),

2. The CHO for SKS tasks (Section 7.3), with 10 · K steerable LG chan-
nels and with aLG = 1.9, for different number of orientations K (LG-
steerable).

Here, LG-symmetric is trained on a signal that is averaged over all possible
orientations (it can be shown that this is an approximation to the ideal linear
observer for the considered SKS task). We give results for the test sets in terms
of Area Under the ROC curve (AUC) (Figure 7.15(a)) and estimation perfor-
mance (MSE in estimating ϑ, Figure 7.15b). We also compare the detection
performance to the performance of the ideal observer which has full knowledge
of ϑ in order to have a theoretical upper bound of the detection performance.

We note that for signal amplitudes > 0.0075, the LG-steerable significantly
outperforms LG-symmetric both in terms of detection performance and esti-
mation performance. The detection performance even improves when using
more orientations. In this case, the orientation selectivity is increased, how-

6This constant has been chosen experimentally to maximize the detection performance in
terms of AUC.
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ever, one should take into account that the number of required training images
also becomes larger.

For signal amplitudes < 0.0075, LG-symmetric has a slightly better detec-
tion performance. We remark that in this case the signal amplitude is extremely
low and the signal is completely invisible to the human eye, hence this ampli-
tude range is not very suited for human observer experiments. We conclude
that a significant improvement in detection performance is obtained when these
models are extended to deal properly with SKS tasks.

7.4.2 Artificial asymmetric lung nodule detection exper-

iment

As a second experiment, we train the new CHO model on real radiographic
images of the chest [Shiraishi et al., 2000], with simulated lung nodules. We
use 5 scales of LG channels (S = 5, aLG = 1.9) and 5 orientations of steerable
channels. This gives a total of 25 channels. The CHO is trained on 200 non-
overlapping 256×256 patches extracted from the radiographic images, to obtain
pairs of signal-absent and signal-present images. For the signal-present images,
simulated lung nodules with parameters D11 = 2, D22 = 10 (see Section 7.1.2)
are added to the center of the image. The anisotropy of the nodule is a bit
exaggerated compared to clinically realistic cases, for illustrative purposes. For
training, we selected the signal amplitude such that the AUC value is in the
range 0.90-0.95. This resulted in an amplitude a = −0.1 for a background
intensity range of [0, 1]. Note that the amplitude is chosen to be negative
(i.e. nodules are darker than the background), as this is the case for real lung
nodules in radiographic images.

Next, we selected an image for testing and we added 10 simulated nodules
to the image (see Figure 7.16(a)), with the same parameters as in the training
phase, but now added at random positions and with uniformly distributed
orientation ϑ ∈ [0, π]. A scanning CHO is then applied to the image. The
resulting decision variables are shown in Figure 7.16(b). Finally, based on the
decision variables, a decision of signal presence is drawn. The detected nodules,
together with their estimated orientations are shown in Figure 7.16(c). By
looking at Figure 7.16(c) it seems that there is one false detection in a darker
area of the image, however, this is not of importance here because this detected
nodule is located in an irrelevant part of the image and could alternatively be
omitted by simple thresholding techniques.

In the bottom row of Figure 7.16, the experiment is repeated for another
image and with larger nodules. Again the CHO model is able to detect the
nodules well, with only one missed detection. Figure 7.16(e) confirms that the
nodule is correctly detected, it is simply not shown in Figure 7.16(f) because
it overlaps with another nodule. Hence, the CHO gives accurate positions and
orientation angles of the nodules in the image.
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7.5 Multi-slice Observer Models

In the previous sections, we focused on the processing of 2D images, i.e. the
detection of planar signals in projection images. In clinical practice there is a
trend toward volumetric imaging in CT, MRI, PET/SPECT, 3D breast imag-
ing. Consequently, it becomes more and more important to assess and optimize
the image quality for volumetric images as well. Volumetric images are often
presented to a physician as a stack of slices in which each slice is viewed for
a fixed amount of time. The browsing speed and browsing position can be
adjusted by the physician; in this sense this is similar to a video imaging ap-
plication. To assess volumetric images, one can think of CHO model designs
for mimicking humans, e.g. by including temporal information in the detection
process. For example, several studies (see e.g. [Dan et al., 1996]) have shown
that the lateral geniculate nucleus (LGN) in the visual system of cats has spe-
cific temporal responses which tend to decorrelate the visual signals. Hence we
could develop a CHO model that acts similarly. However, it is not clear yet
how the HVS processes these visual signals when the images are presented in
a stack browsing mode.

Given the complexity of this problem and the limited amount of information
available on this topic in the literature, we use a bottom-up approach in our re-
search: motivated by psychophysical evidence, we apply incremental extensions
to the existing CHO model. Subsequently these extensions will be validated
using psychovisual experiments in the near future. Several factors need to be
taken into account here, such as anatomical properties of the information in the
images, image acquisition parameters (e.g. slice thickness, spatial resolution),
browsing speed, display technology being used (since LCD displays often have
a slow temporal response), etc.

The architectures of two multi-slice CHO models, msCHOa from [Chen
et al., 2001] and our proposed models msCHOb and msCHOc [Platiša et al.,
2009b, Platiša et al., 2010b], are shown in Figure 7.17-Figure 7.18. To incor-
porate temporal information into the multi-slice CHOs, a sequential design is
used: in the first stage, a 2D CHO is applied to the individual slices of the med-
ical volume (Figure 7.17), yielding decision variables which indicate whether
there is a signal present in each of the slices. In practice, we often know in
advance that the support of the signal in the temporal direction is limited.
Therefore, we define a temporal region of interest (ROI) containing the sup-
port of the signal. In a time-aware detection task, the exact time when the
signal reaches a maximum amplitude is also known. In that case, the ROI is
centered around that point in time and only the decision variables for the ROI
are further given consideration. In the second stage, the decision variables of
the 2D CHO in the ROI are passed to a 1D HO.

The three multi-slice CHO models differ in their use of the channel template
matrix wCHO. For msCHOa, a channel template matrix is computed for each
slice and applied to the same slice. On the other hand, for msCHOb, only one
channel template matrix is calculated (typically for the slice where the signal
amplitude is maximal). Subsequently this channel template matrix is applied to
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all slices in the ROI. msCHOa is motivated by the common assumption in the
literature that humans tune signal-matched filters to the varying background
information and consequently use a separate filter for each individual slice in
the stack. This is in contrast to msCHOb, which assumes that humans are
more likely to examine (a number of) multiple consecutive slices of the stack
with a unique signal matched filter. For msCHOc, the channel template matrix
is calculated for all channels and slices.

Our simulation results in [Platiša et al., 2010b] indicate that msCHOa and
msCHOb perform equally well, while msCHOc generally outperforms msCHOa

and msCHOb in the detection signals with exactly known parameters. How-
ever, by its design msCHOa and msCHOb are less susceptible to dimensionality
problems and less sensitive to the number of training samples than msCHOc.
Because the number of training volumes available is often very limited in prac-
tice, robustness to small training sets also plays an important role in the model.
To investigate which multi-slice model best corresponds to the human observer,
psychovisual experiments are required. This is currently the topic of ongoing
research.

Finally, in the multi-slice models, there is also uncertainty associated with
the signal properties (e.g. the spread in time) and we can again consider SKS
detection tasks. Because of the sequential design of our multi-slice CHOs,
these detection tasks can be efficiently solved using the techniques presented
in Section 7.3.

7.6 Conclusion

As an objective approach to medical image quality assessment, studies with
mathematical model observers promise to eventually replace time-consuming
human observer studies. The quality of images is usually assessed for a given
task of interest, such as the detection of abnormalities in an image. The ideal
observer (IO) and the channelized Hotelling observer (CHO) are good candi-
dates for this, the IO for providing an upper bound for the detection perfor-
mance and the CHO as a practical approximation to the IO. One major draw-
back of these model observers is that they do not take intrinsic uncertainty
with respect to the signal properties into account.

In this chapter, we explained a new theoretical framework for deriving CHOs
in signal-known-statistically (SKS) tasks, i.e. when the signals have unknown
parameters. We showed that the ideal linear observer is often inadequate for
this task and that the optimal observer is nonlinear. Joint estimation and de-
tection theory has proven to be very useful for this, as this allowed to split
up the task in a nonlinear estimation part, and a linear detection part. We
have derived CHOs for these tasks, and we have explained that the SKS task
poses some additional requirements on the channel design. For example, for
scale-unaware detection, the channels need to be shiftable in scale, while for
rotationally-unaware detection, the channels should be steerable. The combina-
tion of location- and orientation unaware detection leads to optimal estimation
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in the steerable pyramid domain (Chapter 2). This opens the way for more
general multiresolution representations, as presented in Chapter 2 to be used
for medical image quality assessment. Furthermore, it could be interesting to
introduce the image models from Chapter 3 as well, even though this requires
some further investigation.

Coincidentally or not, the findings of scale- and orientation-selective chan-
nels also agree with the presence of frequency- and orientation-responsive neu-
rons in the human primary visual cortex. Hence this may suggest that the new
model observers behave similar to humans in detection tasks, as the intrinsic
uncertainty of the signal is taken into account.

Finally, we also explained two designs of two multi-slice CHO models for
assessing the quality of volumetric images. These designs are again driven by
properties of the HVS. Although psychophysical validation studies with human
observers are outside the scope of this dissertation, these studies will be the
topic of our future work.

Our contributions to CHOs for SKS tasks have already resulted into one
conference paper [Goossens et al., 2010f], one journal paper is currently in
preparation [Goossens et al., 2010e]. The work on multi-slice CHO models has
resulted in five publications as co-author [Platiša et al., 2009c,Platiša et al.,
2009b,Platiša et al., 2009a,Platiša et al., 2010a,Platiša et al., 2010b].
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(a)

(b) (c)

Figure 7.13: Examples of channels used for projections. (a) Orientation-steerable
LG channels - for SKS tasks with unknown signal orientation (b) Rotationally
symmetric scale-shiftable channels - for SKS tasks with unknown signal size (c)
Orientation-steerable and scale-shiftable channels - for SKS tasks with unknown signal
orientation and size. Gray corresponds to intensity 0, white with positive intensities
and black with negative intensities.
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Figure 7.14: (a) The function log2

�
|ω|
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+ ε
�

which maps radial frequencies to dyadic

scales (b) Magnitude responses of the filters f
(σ)
scale−shiftable(ω,ϕ) for different scales

σ listed in the legend. The dotted line is the interpolated magnitude response for
dyadic scale σ = 0.2.
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Figure 7.15: Comparison of the detection and estimation performance of different
CHO models: (a) AUC detection performance, (b) Mean square error (MSE) of the
estimated angle ϑ̂.
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(a) (b) (c)

(d) (e) (f)

Figure 7.16: (a),(d) Two chest radiographs from the database from [Shiraishi et al.,

2000] with simulated lung nodules. (b),(e) Decision variables t
′

JDE of a scanning CHO
applied to the chest images (white corresponds to high values, gray to low values).
(c),(f) Detected lung nodules with their estimated orientation.
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Figure 7.17: Multi-slice CHO - part I. The slices y(1), ...,y(N) are first processed us-

ing 2D-LG channels, to obtain the channel outputs y
′

msCHO =
n
y

′

(1), ...,y
′

n

o
. Figure

taken from [Platiša et al., 2010b].
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Figure 7.18: Multi-slice CHO - part II. msCHOa applies a CHO to each slice in the
ROI, with a different channel template matrix wCHOa(r) per slice. Next, a Hotelling
observer with channel template matrix wHOa computes the final channel responses.
msCHOb is identical to msCHOa except that the same channel template matrixwHOb

is used for all slices of the stack. Figure taken from [Platiša et al., 2010b].
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8
Concluding remarks

Because of physical limitations and cost restrictions, noise, originating from
sensors or detectors and electronic amplifiers in the acquisition devices and
other image degradations can not be avoided in digital imaging applications.
Fortunately, by the advent of powerful computers and availability of computa-
tional resources in the last decades, more sophisticated and intelligent image
processing techniques, prove to be useful to significantly improve the quality of
digital images.

The key solution for designing efficient image restoration algorithms lies
in 1) accurate modeling of noise in digital images and 2) incorporating prior
knowledge with respect to the ideal, undegraded image. The more prior knowl-
edge that can be utilized, the better the performance of the image processing
algorithms will be. Multiresolution geometrical transforms play an important
role here, since these transforms enable representing images using a small num-
ber of significant coefficients. Consequently, the statistical image modeling task
for images is much easier in a multiresolution transform domain. Also, the fre-
quency and orientation analyzing properties of a multiresolution transform can
be exploited in order to describe and estimate the characteristics of noise in
images. We illustrated this for the estimation of (non)stationary colored noise
in images and also for the more complicated modeling of noise in CT images.

To demonstrate how statistical models for images and noise can be utilized
in image processing applications, we considered various image restoration ap-
plications. We saw that many restoration tasks, such as the estimation and
suppression of colored noise in images, can directly be performed in a multires-
olution transform domain. For other, slightly more complicated restoration
tasks, we discussed an iterative optimization strategy that is based on Breg-
man iterations. The Bregman framework can be seen as a generic restoration
methodology, in which an arbitrary image model can be combined with an ar-
bitrary noise model for a given multiresolution transform. This approach is
very flexible and powerful in the sense that complicated restoration problems
can be solved with limited effort with only a relatively small number of lines
of programming code.

In some situations, a clever choice of a multiresolution transform and process-
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ing strategy enables devising sophisticated but computationally efficient tech-
niques. As an example, we discussed the complex-wavelet based demosaicing
algorithm that can seamlessly be combined with denoising. To arrive at such a
solution, we judiciously exploited spatial, directional and frequency localization
properties of the complex wavelets.

We found another interesting example of this phenomenon in the quality
assessment of medical images, where again multiresolution concepts come into
play. In the literature, one specific model observer, the Channelized Hotelling
observer has proven to be very useful for the automatic task of detection of ab-
normalities in images. However, recent studies have shown that this mathemat-
ical model observer generally outperforms human observers. By incorporating
uncertainty with respect to the abnormality (e.g. tumor size, contrast...) we
developed a more complex model observer that can be efficiently implemented
in a directional multiresolution transform domain while still performing opti-
mally in MAP sense.

Many models that we encountered in this dissertation are inspired by (or
related to) properties of the human visual system (HVS). For example, the
presence of orientation and frequency selective responses of simple neurons is a
motivation for the use of directionally selective representations. The knowledge
of the HVS may provide extra insights for developing efficient image processing
algorithms and conversely we “may” learn more about the human visual system.

Brief summary of the main contributions

The main novelties and contributions presented in this dissertation are the
following. In Chapter 2 we presented a novel design technique for complex
wavelet filters for the first scale of the DT-CWT in order to improve the di-
rectional selectivity of the transform. Next, we proposed a novel design of
a discrete shearlet transform that combines low redundancy, shift invariance
and directional analysis properties. In Chapter 3, we developed two new sta-
tistical models for image multiresolution transform coefficients: an improved
intra-scale model (MPGSM), which captures the variability of the spatial co-
variance matrix, and a joint intra/inter-scale model, which also incorporates
dependencies between transform coefficients within different scales.

In Chapter 4 we presented novel EM algorithms for the estimation of both
stationary and non-stationary correlated noise in images. We established an
approximate analytical relationship between the camera response function and
the noise level function, which is useful for modeling and estimating signal-
dependent noise in images.

In Chapter 5 we presented an improved non-local means (NLMeans) algo-
rithm. A different robust weighting function combined with a post-processing
filter resulted in a significant improvement both visually and in PSNR. We
also discussed how the NLMeans filter can be used for denoising images cor-
rupted with non-stationary and correlated noise. We derived exact MAP and
MMSE estimation rules for the Bessel K Form density; the Bessel K Form MAP
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estimator is particularly suited for use within the Bregman-based restoration
framework.

Next, we introduced the Vector-ProbShrink denoising method, which is
based on the joint inter/intra-scale statistical model from Chapter 3. The
proposed MMSE estimator for the MPGSM model offers a vast improvement
in PSNR compared to existing wavelet-based denoising methods, especially
for texture-rich images. Both the Vector-ProbShrink and MPGSM denoising
are currently among the state-of-the-art wavelet-based denoising techniques,
where MPGSM generally outperforms Vector-ProbShrink, but at a much higher
computational cost.

We also presented a complex wavelet-packet based demosaicing method,
which is an improved version of the wavelet-packed based method of Hirakawa.
In particular, we provided a solution for dealing with the discoloration artifacts
and the loss of high-pass luminance frequencies of the method of Hirakawa. We
have further shown how the Bregman optimization framework can be used for
solving more “difficult” image restoration problems. This resulted in a new
technique for joint denoising and deblurring, a new technique for estimating
the Power Spectral Density of stationary Gaussian noise from an image jointly
with denoising, and a technique to remove signal-dependent noise from images.

In Chapter 6 we introduced a new non-stationary model for noise in com-
puted tomography images (CT) reconstructed by the filtered backprojection
algorithm. In Chapter 7 we derived new Channelized Hotelling observers for
detecting signals with unknown parameters in medical images.

Current progress of the research and directions for future

work

Several directions are open for future research or are currently under further
investigation. For image restoration, the most promising approach seems to
be the use of the Bregman optimization framework, because 1) the framework
is very generic, powerful and can be adapted to many applications, 2) the
resulting Bregman-based algorithms are relatively simple to implement. One
disadvantage is that this approach is computationally very intensive on a Cen-
tral Processing Unit (CPU). It can take several minutes on a PC to process one
single grayscale image. Fortunately, the Bregman class of algorithms tend to
transfer well to parallel computing architectures, such as Graphical Processing
Units (GPU). As a proof of concept, we already implemented one of the Breg-
man algorithms, in combination with the DT-CWT, on a recent GPU, for which
the total processing time is in the order of a few seconds for a high-definition
television color image.

In this dissertation, we presented several image models, noise models and
multiresolution transforms. In fact, any combination of an image model, noise
model and transform can be used to solve certain practical problems. In Chap-
ter 5 we focused on the most interesting applications to illustrate the proposed
solution methodology. During the writing of this dissertation, in our research
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group, we have also been investigating Bregman-based demosaicing schemes,
the use of the non-local prior from Chapter 3 for Bregman-based image restora-
tion and MRI compressed sensing reconstruction techniques for arbitrary non-
uniformly sampled K-space trajectories [Aelterman et al., 2010c]. This last
technique allows to significantly reduce the acquisition time of an MRI image
while maintaining image quality.

There is also a lot of room to improvement to the statistical image models.
We believe that most gain can be achieved by efficiently incorporating non-
local dependencies in the multiresolution transform models (see our discussion
in Chapter 3). Promising in this respect are Bayesian network, Markov Random
Field approaches with message passing schemes.

Next, another interesting application is the use of the proposed CT noise
model to improve the reconstruction quality of low-dose CT images, for which
we have shown one visual result at the end of Chapter 6. Within the context
of the IBBT-ICA4DT project, we initiated a small preliminary study involving
physicians. The study indicated that the prototype performed better than
other existing techniques and even resulted in images of better quality than
the unprocessed image in some cases. By this encouraging success, the method
has been subject to further development and a European patent application is
now in preparation.

Finally, the mathematical model observers deserve some extra attention. In
the near future, we will perform a validation study of the presented CHO models
by comparing to human observer experiments. We are also planning a study
on the application of the proposed CHO models to MRI quality evaluation for
the detection of multiple-sclerosis, in collaboration with the Ghent University
Hospital and Université d’Angers in France. Within the context of the IBBT-
CIMI project, our research group is also extending the CHO models to color
data, as the use of color information for visualization becomes more and more
important in medical imaging.
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Appendix A: convergence of

the EM algorithm for GSMs

In Appendix A, we will proof that for the constrained EM algorithm from
Section 4.2.2 with

∑K
k=1 λk = 1 (which we can accomplish by the degrees of

freedom we have), the update direction of the EM update equations (4.11)-
(4.14) has a positive projection onto the gradient of the likelihood function,
such that the likelihood function increases in every iteration. Convergence
properties are then entirely the same as for the (unconstrained) EM algorithm
for Gaussian Mixtures [Dempster et al., 1977]. The proof is similar as the proof
for the EM algorithm for Gaussian Mixtures [Xu and Jordan, 1996], with a few
modifications that we will describe more into detail below. In the following, we
will simplify the notations by denoting by Θi = {Cx,Cw,Ck, αk} the set of

parameters at iteration i, and by denoting by Θi+1 =
{
Ĉx, Ĉw, Ĉk, α̂k

}
the

set of parameters at iteration i + 1. We will consider the EM maximization
step from iteration i to i+ 1. First, we note that according to (4.16) we have
the following relationship:

Ĉk = zkĈx + Ĉw =
K∑

l=1

Ĉ
(1)
l βk,l (A.1)

with

βk,l =
zl (µ1 − zk) + µ1zk − µ2

µ2
1 − µ2

λk (A.2)

where we assume that µ2
1 6= µ2 (see Section 4.2.2). The matrix β = [βk,l] has a

number of interesting properties that are fairly easy to show: 1) the matrix is
positive semidefinite (SD) matrix with eigenvalues either 1 or 0, 2) the matrix
is idempotent (β2 = β) with rank 2, 3)

∑K
l=1 βk,l = 1 and 4) for K = 2, β is

the identity matrix (β = I).
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Equation (4.10) can then be equivalently written as:

Q(Θ,Θi) = E
[
log fy,k|Θ (y, k|Θ) |y,Θ

]
−

K∑

k=1

λk

∥∥∥∥∥
K∑

l=1

βk,lCk − zkCx − Cw

∥∥∥∥∥

2

F

,

(A.3)
such that the solution (Cx,Cw) that maximizes Q(Θ,Θi) automatically satis-
fies the constraint zkCx + Cw =

∑K
l=1 βk,lCk. Next, the gradient of Q(Θ,Θi)

with respect to Ck is given by:

∂

∂Ck
Q(Θ,Θi) = −1

2

N∑

j=1

P (z = zk|yj)C−1
k

(
Ck − yjy

T
j

)
C−1
k . (A.4)

where the partial derivative of the second term in (A.3) with respect to Ck is
zero because the constraint holds at any time. Consequently, the EM update
equation for Ck (equation (4.12)) can be written as:

Ĉk = Ck +

∑N
j=1 P (z = zk|yj)yjyTj∑N

j=1 P (z = zk|yj)
− Ck (A.5)

= Ck +

(
2Ck∑N

j=1 P (z = zk|yj)
∂

∂Ck
Q(Θ,Θi)

)
Ck (A.6)

By denoting vec (·) the operation that stacks the columns of the matrix into a
vector, (A.6) can also be written as (see [Xu and Jordan, 1996]):

vec
(
Ĉk

)
= Bkvec

(
∂

∂Ck
Q(Θ,Θi)

)
with Bk =

2Ck ⊗ Ck∑N
j=1 P (z = zk|yj)

(A.7)
where ′⊗′ denotes the Kronecker product. Furthermore, it has been shown
in [Xu and Jordan, 1996] that Bk is positive definite with probability 1, if
N is sufficiently large. Due to the idempotency of β and the constraint∑K

l=1 βk,lCk = zkCx + Cw, it follows that:

vec
(
Ĉk

)
=

K∑

l=1

βk,lvec
(
Ĉl

)
(A.8)

= vec (Ck) +

(
K∑

l=1

βk,lBl

)
vec

(
∂

∂Cl
Q(Θ,Θi)

)
. (A.9)

If we group all parameters Ĉk, k = 1, ...K into a column vector

C? =

[
vec
(
Ĉ1

)T
· · ·vec

(
ĈK

)T]T
,

we will have that:
Ĉ? = C? + B? ∂

∂C?
Q(Θ,Θi) (A.10)



291

where B? =
∑K
k,l=1 βk,l (Ek ⊗ Bl). Here, Ek is a diagonal matrix with [Ek]ll =

δ (k − l). Since the convex combination of positive SD matrices
∑K

l=1 βk,lBl is
positive SD, and because the Kronecker product and the sum of two positive SD
matrices are positive SD, B? is positive SD as well. Similarly, for the mixture
weights α = [αk] it holds that [Xu and Jordan, 1996]:

α̂ = α + A
∂

∂α
Q(Θ,Θi) (A.11)

with A a positive definite matrix (with probability 1). Now, if we combine
(A.10) and (A.11), we can write for the complete parameter set:

Θi+1 = Θi + P
∂

∂Θ
Q(Θ,Θi)

∣∣∣∣
Θ=Θi

(A.12)

where P is a positive definite matrix (with probability 1). Next, by projecting
the update direction Θ̂−Θ onto the gradient direction and by using the positive
definiteness of P we find that:

(
∂

∂Θ
Q(Θ,Θi)

∣∣∣∣
Θ=Θi

)T (
Θi+1 − Θi

)
> 0, (A.13)

such that every update step Θi+1 −Θi has a positive projection onto the gra-
dient of the likelihood function. Consequently, every EM update step increases
the likelihood function of the data. �
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B
Appendix B: Derivation of
the local NSD for parallel

beam CT

In Appendix B, we derive the local NSD created by one line of the line bundle
r cos (ϕ− ϑ) = t; i.e. for one particular ϑ = ϑ0. First, we consider the FBP
algorithm for parallel beam CT (see Section 6.1.1). Therefore, we introduce:

Pmϑ0(ϑ,t) = δ (ϑ− ϑ0)P
m(ϑ, t)

= δ (ϑ− ϑ0) [P (ϑ, t) − σ (P (ϑ, t)) ν(ϑ, t)] (B.1)

In (6.27), we found that for one spike, the local NSD in orientation ϑ, is
proportional to δ (ϑ− ϑ0) |ω| |G(ω)|2. Under the condition that the projection
data Pmϑ0(ϑ,t) is locally stationary in the t-direction, the local NSD at position
(r, ϕ) has a radial component that only depends on the FBP filter and is given
by:

S
(ϑ0)
(r,ϕ) (ϑ, ω) = U (r, ϕ, ϑ) δ (ϑ− ϑ0) |ω| |G(ω)|2 (B.2)

with U (r, ϕ, ϑ) an unknown function that we still need to determine. Now,
if we denote µϑ0 (r, ϕ) as the FBP reconstruction of Pmϑ0(ϑ,t), the variance of

µϑ0 (r, ϕ) is given by the volume under to NSD S
(ϑ0)
(r,ϕ) (ϑ, ω):

Var [µϑ0 (r, ϕ)] = U (r, ϕ, ϑ)

ˆ π

0

dϑδ (ϑ− ϑ0)

ˆ +∞

−∞
dω |ω| |G(ω)|2 (B.3)

= U (r, ϕ, ϑ)

where we used the normalization imposed to the FBP filter (6.7). The variance
of µϑ0 (r, ϕ) can also be computed alternatively using ensemble statistics:

Var [µϑ0 (r, ϕ)] = Var

[
ˆ +∞

−∞
dtPm(ϑ, t)q (t− r cos (ϕ− ϑ))

]

=

ˆ +∞

−∞
σ2 (P (ϑ, t)) q2 (t− r cos (ϕ− ϑ)) dt (B.4)
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By combining equations (B.2), (B.3), (B.4), we arrive at the following expres-
sion for the local NSD:

S
(ϑ0)
(r,ϕ) (ϑ, ω) = δ (ϑ− ϑ0) |ω| |G(ω)|2 ·

ˆ +∞

−∞
σ2 (P (ϑ, t)) q2 (t− r cos (ϕ− ϑ)) dt (B.5)

which is separable in the polar frequency coordinates (ϑ, ω).
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