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Abstract. This paper introduces a new Parseval frame of shearlets for the representation of 3–D data, which is especially
designed to handle geometric features such as discontinuous boundaries with very high efficiency. This new system of shearlets
forms a multiscale pyramid of well-localized waveforms at various locations and orientations, which become increasingly wafer-
like at fine scales. We prove that the new 3-D shearlet representation exhibits essentially optimal approximation properties for
tri-variate functions f which are smooth away from discontinuities along C2 surfaces. Specifically, the N-term approximation
fSN obtained by selecting the N largest coefficients of the shearlet expansion of f satisfies the asymptotic estimate

‖f − fSN‖22 ≍ N−1(logN)2, as N → ∞.

Up to the logarithmic factor, this is the optimal behavior for functions in this class and significantly outperforms wavelet
approximations, which only yields a N−1/2 rate. This result extends to the 3D setting the (essentially) optimally sparse
approximation results obtained by the authors using 2–D shearlets and by Candès and Donoho using curvelets. The result
presented in this paper is the first nonadaptive construction to provide provably optimal approximation properties (up to a
loglike factor) for a large class of 3-dimensional data.
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1. Introduction. Sparse representations of multidimensional data have gained more and more promi-
nence in recent years as a variety of applied problems require to process massive and multi-dimensional data
sets in a timely and effective manner. This is a major challenge in applications such as remote sensing,
satellite imagery, scientific simulations and electronic surveillance. Sparse representations allow not only to
accurately and reliably compress data and expedite their transmission and storage, but also to developed
more effective algorithms for tasks such as feature extraction and pattern recognition. In fact, constructing
sparse representations for data in a certain class entails the intimate understanding of their true nature and
structure [6].

Wavelets and other traditional multiscale methods have been extremely successful during the past 20
years thanks to their ability to provide optimally sparse representations for data with point singularities.
This was exploited to develop a number of impressive applications in signal and image processing. Wavelets
however fail to be equally efficient when dealing with distributed discontinuities, and this is a major limitation
in multidimensional applications where edges and boundaries of discontinuity are frequently the dominant
features of the objects to be analyzed. This inefficiency of wavelets in dealing with distributed singularities
is due to their isotropic nature, which makes them not very adapted to capture edges and other essential
geometric features of multidimensional data. To overcome these limitations, a new generation of multiscale
systems was introduced in recent years, most notably the curvelets [2] and the shearlets [9, 10], which are
especially designed to represent efficiently anisotropic features in images. The intuitive idea behind their
construction is that, in order to deal efficiently with the edges and the other geometric features which are
prominent in most images of practical interest, the analyzing elements must be defined not only at various
locations and scales, as traditional wavelets, but also at various orientations and with highly anisotropic
shapes. Thanks to their geometrical properties, the curvelet and shearlet representations turn out to be
essentially as good as an adaptive representation from the point of view of their ability to approximate images
containing edges. Specifically, for functions f which are C2 away from C2 edges, the N term approximation
fS
N obtained from the N largest coefficients in its curvelet or shearlet expansion, obeys

‖f − fS
N‖22 ≍ N−2(logN)3, as N → ∞. (1.1)
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Ignoring the loglike factor, this is the optimal approximation rate for this class of functions while, in compar-
ison, the wavelet and Fourier representations only achieve approximation rate N−1 and N−1/2, respectively.

The goal of this paper is to extend to the 3D setting the remarkable optimal approximation result
achieved for images with edges. This extension is highly nontrivial since, as it will be apparent from the
description below, the proof of the (almost) optimal sparsity does not follow directly from the arguments
used in the bivariate case. Notice that how to construct different versions of curvelets and shearlets in the 3D
setting has been already discussed in the literature (e.g., [10, 12]) and some useful properties of 3D shearlets
have been recently analyzed by the authors in [12]. In addition, a discrete implementation of 3D curvelets,
which extends the corresponding 2D implementation, was introduced in [1]. However, no rigorous analysis
of the sparsity properties of curvelets or shearlets (or any other related system) in the 3D setting has been
published so far. The main contribution of this paper is to construct a new Parseval frame of shearlets
and prove that this new shearlet representation exhibits essentially optimal approximation properties for
tri-variate smooth functions with discontinuities along C2 boundaries. This is the first published result of
this type. Specifically, denoting by fS

N the shearlet approximation of f which is obtained from the N largest
coefficients of its shearlet representation, we will show that the approximation error satisfies

‖f − fS
N‖22 ≍ N−1(logN)2, as N → ∞. (1.2)

Up the logarithmic factor, this is the optimal approximation rate for this type of functions [5] in the sense that
no orthonormal bases or Parseval frames can yield approximation rates than are better than N−1. Indeed,
even if one considers finite linear combinations of elements taking from arbitrary dictionaries, there is no
depth-limited search dictionary that can achieve a rate better than N−1 [5]. In particular, it significantly
outperforms wavelet and Fourier approximations, whose asymptotic approximation rates are of the order of
N−1/2 and N−1/3, respectively.

Finally, it is important to emphasize that the approach presented in this paper is purely non-adaptive. A
different approach, which uses adaptive constructions, was recently proposed by Le Pennec, Mallat and Peyre
[19, 20, 23, 24]. Remarkably, for the class of functions considered in this paper, the shearlet approach is as
effective as an adaptive representation with respect to its ability to approximate 3D data with discontinuous
boundaries.

Remark. During the final editing of this paper, we found that a similar (essentially) optimal sparsity
result was recently announced by Kutyniok, Lemvig and Lim, based on a new remarkable construction of
compactly supported shearlet frames [18] (see also [15] for the corresponding 2D case).

1.1. Outline. The paper is organized as follows. The construction of the new 3D Parseval frame of
shearlets is presented in Section 2. The main results of the paper are given in Section 3. The technical
constructions needed for the proofs are collected in Section 4. Finally, Section 5 contains additional remarks
about the extension of our sparsity results to the situation where the boundary surface is piecewise smooth.

2. The shearlet representation. The shearlet representation, which is derived within the framework
of wavelets with composite dilations introduced by the authors and their collaborators in [13, 14], provides
a general method for the construction of representation systems made up of functions ranging not only at
various scales and locations, as traditional wavelets, but also at various orientations. Thanks to the ability of
the shearlet system to deal with directionality and anisotropy, the geometric content of multivariate functions
and data is captured much more efficiently than using wavelets and other more traditional methods. In
addition, thanks to its affine structure, the elements of the representation systems are obtained from the
action of the affine group on a single or finite collection of generators. This property provides not only
greater flexibility and mathematical simplicity with respect to other directional representations, but it also
ensures that there is a natural transition from the continuum to the discrete setting. These unique features
have been exploited in several imaging applications such as those described in [3, 7, 8, 22, 26].

In dimension d = 3, a shearlet system is defined as an affine system associated with the action of the
affine group A = {(Mj,ℓ, k) ∈ GL3(Z) × Z

3}, where the matrices Mj,k are obtained from the composition
of anisotropic dilation and shear matrices. Namely, for ψ ∈ L2(R3), a shearlet system is a collection of
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Fig. 2.1. Frequency support of a representative shearlet function ψj,ℓ,k, inside the pyramidal region DC . The orientation
of the support region is controlled by ℓ = (ℓ1, ℓ2); its shape is becoming more elongated as j increases (j = 4 in this plot)

functions of the form

{ψj,ℓ,k = | detA|j/2 ψ(BℓA
jx− k) : j ∈ Z, ℓ ∈ L ⊂ Z

2, k ∈ Z
3}, (2.1)

where

A =



4 0 0
0 2 0
0 0 2


 Bℓ =



1 ℓ1 ℓ2
0 1 0
0 0 1


 , and ℓ = (ℓ1, ℓ2) ∈ Z

2.

As in the 2-D case, we are interested in systems whose elements are well localized and form a Parseval frame.
To achieve this, for ξ = (ξ1, ξ2, ξ3) ∈ R

3, we define ψ by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(ξ2
ξ1

)
ψ̂2

(ξ3
ξ1

)
,

where ψ1 and ψ2 satisfy the following assumptions:
(i) ψ̂1 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1

2 ,−
1
16 ] ∪ [ 1

16 ,
1
2 ] and

∑

j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥

1

8
; (2.2)

(ii) ψ̂2 ∈ C∞(R̂), supp ψ̂2 ⊂ [−1, 1] and

|ψ̂2(ω − 1)|2 + |ψ̂2(ω)|
2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1. (2.3)

It was shown in [10] that there are several examples of functions satisfying these properties. It follows from
equation (2.3) that, for any j ≥ 0,

2j∑

m=−2j

|ψ̂2(2
j ω +m)|2 = 1, for |ω| ≤ 1. (2.4)
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Notice that, in the frequency domain, the elements ψj,ℓ,k, given by (2.1), have the form

ψ̂j,ℓ,k(ξ) = | detA|−j/2 ψ(ξA−jB−ℓ) e
2πiξA−jB−ℓk.

Hence, using equations (2.2), (2.4) and the observation that

(ξ1, ξ2, ξ3)A
−jB−ℓ = (2−2jξ1,−ℓ12

−2jξ1 + 2−jξ2,−ℓ22
−2jξ1 + 2−jξ3),

a direct computation gives that:

∑

j≥0

2j∑

ℓ1=−2j

2j∑

ℓ2=−2j

|ψ̂(ξ A−jB−ℓ)|
2 =

∑

j≥0

2j∑

ℓ1=−2j

2j∑

ℓ2=−2j

|ψ̂1(2
−2j ξ1)|

2 |ψ̂2(2
j ξ2

ξ1
− ℓ1)|

2 |ψ̂2(2
j ξ3

ξ1
− ℓ2)|

2

=
∑

j≥0

|ψ̂1(2
−2j ξ1)|

2
2j∑

ℓ1=−2j

|ψ̂2(2
j ξ2

ξ1
− ℓ1)|

2
2j∑

ℓ2=−2j

|ψ̂2(2
j ξ3

ξ1
− ℓ2)|

2 = 1,

for (ξ1, ξ2, ξ3) ∈ DC , where DC = {(ξ1, ξ2, ξ3) ∈ R̂
2 : |ξ1| ≥

1
8 , |

ξ2
ξ1
| ≤ 1, | ξ3ξ1 | ≤ 1}. This equation, together

with the fact that ψ̂ is supported inside [− 1
2 ,

1
2 ]

3, implies that the collection of “horizontal” shearlets

S(ψ) = {ψj,ℓ,k(x) = 22j ψ(BℓA
jx− k) : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j, k ∈ Z

3} (2.5)

is a Parseval frame for L2(DC)
∨ = {f ∈ L2(R3) : supp f̂ ⊂ DC}. Similar to the corresponding 2–D case

[10], the shearlet elements ψj,ℓ,k are well-localized waveforms (in fact, ψ̂j,ℓ,k ∈ C∞
0 (R̂2)), at various scales

depending on j ∈ Z, with frequency support contained on parallelepipeds of approximate size 22j × 2j × 2j ,
defined at various orientations controlled by the two–dimensional index ℓ = (ℓ1, ℓ2) ∈ Z

2 and spatial location
k ∈ Z

3. These support regions become increasingly more elongated at finer scales (See Figure 2.1).
Our construction, so far, only provides a Parseval for the subspace L2(DC)

∨ of functions in L2 whose
frequency support is contained in the pyramidal region DC . To obtain a Parseval frame for L2(R3), one
can construct a second Parseval frame of shearlets with frequency support in the pyramidal region DC2 =

{(ξ1, ξ2, ξ3) ∈ R̂
2 : |ξ2| ≥ 1

8 , |
ξ1
ξ2
| ≤ 1, | ξ3ξ2 | ≤ 1}; similarly, a third Parseval frame of shearlets can be

constructed with frequency support in the pyramidal region DC3 = {(ξ1, ξ2, ξ3) ∈ R̂
2 : |ξ3| ≥

1
8 , |

ξ1
ξ3
| ≤

1, | ξ2ξ3 | ≤ 1}; Finally, one can easily define a Parseval frame (or an orthonormal basis) for V0 = L2([− 1
8 ,

1
8 ]

3)∨.

Then any function in L2(R3) can be expressed as a sum f = PCf + PC2f + PC3f + PV0f , where each
component corresponds to the orthogonal projection of f into one of the 4 subspaces of L2(R3) described
above.

Concerning the comparison of shearlet and curvelet representations, it is important to recall that, while
both methods extend the classical multiscale analysis by introducing a notion of directionality, the shearlets
have a fundamentally different mathematical structure. In fact, they are an affine system, where all elements
are generated by the action of translations, dilations and shear transformations on a single or finite set of
generators. This not true for curvelets. An important consequence is that there is Multiresolution Analysis
associated with shearlets. In addition, thanks to the use of shear matrices rather than rotations, the shearlet
approach ensures a natural transitions from the continuum to the discrete and digital settings [11, 14, 16, 17].

2.1. Significance. Before presenting the proof of the main sparsity result, it is useful to describe a
simple heuristic argument to justify why a 3-D shearlet system like the one constructed above should be
effective in providing very sparse representations for functions of 3 variables with discontinuous boundaries.
In fact, let us consider a bounded function f , defined on a bounded domain, which is smooth away from a
discontinuity along a smooth surface. We will examine the behavior of the shearlet coefficients of f , which are
given by Sj,ℓ,k(f) = 〈f, ψj,ℓ,k,〉, where the shearlet elements ψj,ℓ,k are defined by (2.1). The first observation
is that, thanks to their localization properties, at scale 2−2j, the elements ψj,ℓ,k, are essentially supported
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on a parallelepiped of size 2−2j × 2−j × 2−j , with location controlled by k, and orientation controlled by ℓ.
Also, notice that, since

∫

R3

|ψj,ℓ,k(x)| dx = 22j
∫

|ψ(BℓA
jx− k)| dx = 2−2j

∫

R3

|ψ(y)| dy,

at scale 2−2j , all these shearlet coefficients are controlled by

|Sj,ℓk(f)| ≤ ‖f‖∞ ‖ψj,ℓ,k‖L1 ≤ C 2−2j. (2.6)

At fine scales (j “large”), it is reasonable to assume that the only significant coefficients are those corre-
sponding to the shearlet elements which are tangent to the surface of discontinuity. Since there are O(22j)
coefficients of this type and they are bounded by (2.6), it follows that the N -th largest shearlet coefficient
|SN (f)| is bounded by O(N−1). This implies that, if f is approximated by taking the N largest coefficients
in the shearlets expansion, the L2–error approximately obeys the estimate:

‖f − fN‖2L2 ≤
∑

ℓ>N

|Sℓ(f)|
2 ≤ C N−1. (2.7)

A rigorous analysis of the behavior of the shearlet coefficients is the main goal of this paper and will be
presented below. This requires a careful examinations of the terms which were neglected in our heuristic
argument and – as this analysis will show – this produces an additional logarithmic factor to our estimate,
finally yielding estimate (1.2).

3. Main Results. Before stating our main results, let us define the class of functions that will be
considered in this paper. Fix a constant A > 0. We will consider a class M(A) of indicator functions of sets
B ⊂ [0, 1]3 whose boundary Σ = ∂B is a C2 2-manifold which can be written as

⋃
α Σα, where α ranges

over a finite index set and Σα = {(v, Eα(v)), v ∈ Vα ⊂ R
2}, such that ‖Eα‖C2(Vα) ≤ A for all α. Also, let

C2
0 ([0, 1]

3) be the collection of twice differentiable functions supported inside [0, 1]3. Hence, we define the
set E2(A) of functions which are C2 away from a C2 surface as the collection of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈ C2
0 ([0, 1]

3), B ∈ M(A) and ‖f‖C2 =
∑

|α|≤2‖D
αf‖∞ ≤ 1. Notice that the set E2(A) contains

the class of “cartoon-like” images introduced by Donoho [4].
For simplicity of notation, let {ψµ}µ∈M denote our Parseval frame of shearlets, described in Section 2,

where M is the set of indices {(j, (ℓ1, ℓ2), k) : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j, k ∈ Z
2}. The shearlet coefficients of

a given function f are the elements of the sequence {sµ(f) = 〈f, ψµ〉 : µ ∈M}. We denote by |s(f)|(N) the
N -th largest entry in this sequence. We can now state the following results.

Theorem 3.1. Let f ∈ E2(A) and {sµ(f) = 〈f, ψµ〉 : µ ∈ M} be the sequence of shearlet coefficients
associated with f . Then

sup
f∈E2(A)

|s(f)|(N) ≤ C N−1 (logN). (3.1)

Using Theorem 3.1, we are just one step away from our main result about shearlet approximations.
Indeed, let fS

N be the N–term approximation of f obtained from the N largest coefficients of its shearlet
expansion, namely

fS
N =

∑

µ∈IN

〈f, ψµ〉ψµ,

where IN ⊂M is the set of indices corresponding to the N largest entries of the sequence {|〈f, ψµ〉|2 : µ ∈M}.
The approximation error satisfies the estimate:

‖f − fS
N‖22 ≤

∑

m>N

|s(f)|2(m).
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Therefore, from (3.1) we immediately have:
Theorem 3.2. Let f ∈ E2(A) and fS

N be the approximation to f defined above. Then

‖f − fS
N‖22 ≤ C N−1 (logN)2.

3.1. Arguments and constructions. The general structure of the proof of Theorem 3.1 follows the
overall structure of the corresponding 2-dimensional sparsity result in [10]. However, as it will be clear
below, the core of the proof requires the introduction of a fundamentally new approach which is significantly
different from the 2D case.

As in [10], it will be convenient to introduce the weak–ℓp quasi–norm ‖·‖wℓp to measure the sparsity of
the shearlet coefficients {〈f, ψµ〉 : µ ∈M}. This is defined by

‖sµ‖wℓp = sup
N>0

N
1
p |sµ|(N),

wheret |sµ|(N) is the N -th largest entry in the sequence {sµ}. One can show (cf. [25, Sec.5.3]) that this
definition is equivalent to

‖sµ‖wℓp =

(
sup
ǫ>0

#{µ : |sµ| > ǫ} ǫp
) 1

p
.

To analyze the decay properties of the shearlet coefficients {〈f, ψµ〉}µ∈M at a given scale 2−j, j ≥ 0,
we will smoothly localize the function f near dyadic cubes. Namely, for a scale parameter j ≥ 0 fixed,
let Mj = {(j, ℓ, k) : −2j ≤ ℓ1, ℓ2 ≤ 2j, k ∈ Z

3} and Qj be the collection of dyadic cubes of the form
Q = [k1

2j ,
k1+1
2j ]× [k2

2j ,
k2+1
2j ]× [k3

2j ,
k3+1
2j ], with k1, k2, k3 ∈ Z. For w a nonnegative C∞ function with support

in [−1, 1]3, we define a smooth partition of unity

∑

Q∈Qj

wQ(x) = 1, x ∈ R
3,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1 − k1, 2
jx2 − k2, 2

jx3 − k3). We will then examine
the shearlet coefficients of the localized function fQ = f wQ, i.e., {〈fQ, ψµ〉 : µ ∈Mj}.

As it will be shown below, for f ∈ E2(A), the coefficients {〈fQ, ψµ〉 : µ ∈ Mj} exhibit a different decay
behavior depending on whether the surface intersects the support of wQ or not. Let Qj = Q0

j ∪ Q1
j , where

the union is disjoint and Q0
j is the collection of those dyadic cubes Q ∈ Qj such that the surface intersects

the support of wQ. Since each Q has sidelength 2 · 2−j, then Q0
j has cardinality |Q0

j | ≤ C0 2
2j , where C0 is

independent of j. Similarly, since f is compactly supported in [0, 1]3, |Q1
j | ≤ 23j + 6 · 22j .

Using this notation, we can now state the basic results that are needed to prove Theorem 3.1. For
simplicity, in the following, we will use the same letter C to denote different uniform constants.

Theorem 3.3. Let f ∈ E2(A). For Q ∈ Q0
j , with j ≥ 0 fixed, the sequence of shearlet coefficients

{〈fQ, ψµ〉 : µ ∈Mj} obeys

‖〈fQ, ψµ〉‖wℓ1 ≤ C 2−2j,

for some constant C independent of Q and j.
Theorem 3.4. Let f ∈ E2(A). For Q ∈ Q1

j , with j ≥ 0 fixed, the sequence of shearlet coefficients
{〈fQ, ψµ〉 : µ ∈Mj} obeys

‖〈fQ, ψµ〉‖ℓ1 ≤ C 2−4j,

for some constant C independent of Q and j.
The proofs of Theorems 3.3 and 3.4 are rather involved. Theorems 3.3, in particular, is the “hardest” part

of the new sparsity result, and requires a fundamentally new approach with respect to the 2-dimensional case.
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Concerning Theorem 3.4, it also shows that 3–D shearlets are as effective as traditional isotropic wavelets in
dealing with smooth functions. 1 Before presenting the proofs of Theorems 3.3 and 3.4, we show how these
two theorems are used to prove Theorem 3.1. Indeed, we have the following simple corollary.

Corollary 3.5. Let f ∈ E2(A) and, for j ≥ 0, sj(f) be the sequence sj(f) = {〈f, ψµ〉 : µ ∈ Mj}.
Then there is a constant C independent of j such that:

‖sj(f)‖wℓ1 ≤ C.

Proof. Using Theorems 3.3 and 3.4, by the triangle inequality for weak ℓ1 spaces, we have

‖sj(f)‖wℓ1 ≤
∑

Q∈Qj

‖∂fQψµ‖wℓ1

≤
∑

Q∈Q0
j

‖〈fQ, ψµ〉‖wℓ1 +
∑

Q∈Q1
j

‖〈fQ, ψµ〉‖ℓ1

≤ C |Q0
j | 2

−2j + C |Q1
j | 2

−4j

≤ C(22j 2−2j + 23j 2−4j) ≤ C.

Here we used the facts that |Q0
j | ≤ C 22j , where C is independent of j, and |Q1

j | ≤ 23j + 6 · 22j.

We can now prove Theorem 3.1

Proof of Theorem 3.1. By Corollary 3.5, we have that

R(j, ǫ) = #{µ ∈Mj : |〈f, ψµ〉| > ǫ} ≤ C ǫ−1. (3.2)

Also, observe that, since ψ̂ ∈ C∞
0 (R2), then

|〈f, ψµ〉| =

∣∣∣∣
∫

R2

f(x) 22j ψ(BℓAjx− k) dx

∣∣∣∣

≤ 22j ‖f‖∞

∫

R2

|ψ(BℓAjx− k)| dx

= 2−2j ‖f‖∞

∫

R2

|ψ(y)| dy < C′ 2−2j. (3.3)

As a consequence, there is a scale jǫ such that |〈f, ψµ〉| < ǫ for each j ≥ jǫ. Specifically, it follows from (3.3)
that R(j, ǫ) = 0 for j > 2 (log2(ǫ

−1) + log2(C
′)) > 2 log2(ǫ

−1). Thus, using (3.2), we have that

#{µ ∈M : |〈f, ψµ〉| > ǫ} ≤
∑

j≥0

R(j, ǫ) =

2 log2(ǫ
−1)∑

j=0

R(j, ǫ) ≤ C ǫ−1 log2(ǫ
−1),

and this implies (3.1). �

4. Proofs of Main Theorems.

4.1. Proof of Theorem 3.3. Let us consider a function f ∈ E2(A) which contains a C2 surface of
discontinuity. For j > j0 sufficiently large, the scale 2−j is small enough that, over a cube of side 2−j, the
surface of discontinuity can be parametrized as x1 = E(x2, x3) or x2 = E(x1, x3) or x3 = E(x1, x2). For
simplicity, we will assume that this surface, denoted by Σ, satisfies the equation

x1 = E(x2, x3), −2−j ≤ x2, x3 ≤ 2−j.

1Furthermore, an argument similar to Theorem 8.2 in [2] can be used to analyze the estimate the Sobolev norm of a smooth
function using shearlet coefficients.
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Also we assume that the surface contains the origin (0, 0, 0) and the normal direction of the surface at (0, 0, 0)
is (1, 0, 0), which is equivalent to assuming that E(0, 0) = Ex2(0, 0) = Ex3(0, 0) = 0. As we will show in
Section 4.5, there is no loss in generality in analyzing this case only, since the situation where the surface
does not contain the origin or has a different normal direction can be easily converted into the case where
E(0, 0) = Ex2(0, 0) = Ex3(0, 0) = 0. To further simplify the notation, throughout the remainder of the
paper, for a function g(x) with x ∈ R

2 and m = (m1,m2) with 0 ≤ |m| = m1 +m2 ≤ 2, we will write ∂m

∂xm g

as gm.
From Taylor’s Theorem we have that E(x2, x3) =

1
2 (E(2,0)(c)x

2
2 + 2E(1,1)(c)x2x3 + E(0,2)(c)x

2
3), where

c = (c2, c3) is some point in [−2−j, 2−j ]2. It follows that

|E(x2, x3)| ≤ 2−2j(‖E(2,0)‖∞ + ‖E(1,1)‖∞ + ‖E(0,2)‖∞).

Thus, the surface is locally nearly flat near the origin. Notice that this only holds for j > j0. The situation
when j ≤ j0 is much simpler and will be handled separately in Section 4.6.

x1=E(x2,x3)
Surface

��

��x

x3

x2

x1

~Lφ′

~L⊥
φ′

Σ

Fig. 4.1. The surface of discontinuity Σ of equation x1 = E(x2, x3). A line with direction ~Lφ′ through the point x
intersects the surface at most in one point.

The key step in the following argument is based on the estimate of the decay of the function f near the
surface of discontinuity. In order to define this localized version of f , let w0 be a nonnegative C∞ window
function with support in [−1, 1]3. Hence, for j ∈ Z, a surface fragment is a function of the form:

f(x) = w0(2
jx) g(x)χ[x1>E(x2,x3)](x), x ∈ [−2−j, 2−j]3, (4.1)

where g ∈ C2
0 ((−1, 1)3). After re-scaling, we have

F (x) = f(2−jx) = w0(x) g(2
−jx)χ[x1>E(j)(x2,x3)](x), x ∈ [−1, 1]3, (4.2)

where E(j)(x2, x3) = 2j E(2−jx2, 2
−jx3). In particular, we have that F̂ (ξ) = 23j f̂(2jξ), and, thus,

∫

|λ|∈Ij

|f̂(λΘ)|2 dλ = 2−5j

∫

|λ|∈2−jIj

|F̂ (λΘ)|2 dλ. (4.3)
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For simplicity of notation, without loss of generality we may assume that (‖E(2,0)‖∞+‖E(1,1)‖∞+‖E(0,2)‖∞) =
1, which yields that |E(x2, x3)| ≤ 2−2j and |Em(x2, x3)| ≤ 2−j for |m| ≤ 2 for all (x2, x3) ∈ [−1, 1].

4.2. Analysis of the Surface Fragment. The main goal of this section is to obtain an estimate for
the integral of the surface fragment (4.3). In this section, as well as in the following, we will only consider
the analysis on the frequency region defined in the pyramidal region DC , where the shearlet system (2.5) is
employed. Since the other regions can be handled in exactly the same way, there will be no need to consider
the shearlet systems defined in the other pyramidal regions.

It will be convenient to express ξ ∈ R
3, using spherical coordinates, as ξ = (ρ cos θ sinφ, ρ cos θ sinφ, ρ cosφ),

where ρ > 0, θ ∈ [0, 2π) and φ ∈ [0, π]. Since we are only dealing with the frequency region contained in DC ,
we will assume that φ ∈ [π4 ,

3π
4 ] and θ ∈ [−π

4 ,
π
4 ]. Also notice that, since the variables ξ2, ξ3 are symmetric

in the construction of the shearlets in DC , we may assume that |ℓ1| ≤ |ℓ2|.
For ξ = (ξ1, ξ2, ξ3) ∈ DC , j ≥ 0, |ℓ1| ≤ |ℓ2| ≤ 2j , let

Γj,ℓ(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j
ξ2

ξ1
− ℓ1

)
ψ̂3

(
2j
ξ3

ξ1
− ℓ2

)
. (4.4)

We have the following important result:
Theorem 4.1. Let f be the surface fragment given by expression (4.1). Then, for each ξ ∈ DC , j ≥ 0

and −2j ≤ ℓ2 ≤ 2j, the following estimate holds:
∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|
2 dξ ≤ C 2−4j(1 + |ℓ2|)

−5. (4.5)

The proof of these results is based on the computation of the Ray Transform of the surface fragment f
which is presented below.

4.3. Ray Transform And Fourier Slice Theorem. While the Radon and Ray transforms of bivari-
ate functions are equivalent, this is not true in the three-dimensional setting [21]. Namely, the 3-dimensional
Ray Transform maps a function on R

3 into the sets of its line integrals; this is different from the Radon
transform which maps a function on R

3 into the sets of its integrals over planes in R
3. More precisely, if

Θ ∈ S2 and x ∈ R
3, then the Ray Transform of g ∈ S(R3) is defined by

Pg(Θ, x) =

∫

R

g(tΘ+ x) dt.

This is the integral of g over the straight line through x with direction Θ (see Figure 4.2). Notice that
Pg(Θ, x) does not change if x is moved in the direction Θ. Hence, x is normally restricted to Θ⊥ so that Pf
is a function on the tangent bundle {(Θ, x) : Θ ∈ S2, x ∈ Θ⊥}. It is useful to recall the Fourier Slice Theorem
which establishes that following relationship between the Ray Transform of g and its Fourier transform:

F2[Pg](Θ, η) =

∫

Θ⊥

Pg(Θ, x) e−2πiηx dx = ĝ(η), η ∈ Θ⊥,

where F2 denotes the Fourier transform over the second variable. We refer the reader to [21] for this and
additional properties of the Ray Transform.

In order to deduce an estimate for the integral of the surface fragment given by the expression (4.3),
we will analyze the Ray Transform of the surface fragment F , given by (4.2). Let φ′ ∈ [−π

4 ,
π
4 ]. The Ray

transform of F in the direction ~Lφ′ = (sinφ′, 0, cosφ′) is given by

PF (φ′, x) =

∫

R

F (tLφ′ + x) dt (4.6)

where x ∈ R
3. This is the integral of F over the straight line through x with direction Lφ′ . Notice that

PF (φ′, x) does not change if x moves along the direction ~Lφ′ . Hence, x is effectively restricted to ~L⊥
φ′ so
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x

Θ

Θ⊥

x1

x3

x2

Fig. 4.2. The Ray transform is defined by integration over the lines through the point x with direction Θ.

that PF is a function on the tangent bundle {(~Lφ′ , x) : ~Lφ′ ∈ S2, x ∈ ~L⊥
φ′}. By introducing the vectors

~L1 = (0,−1, 0) and ~L2 = (cosφ′, 0,− sinφ′), we can express x ∈ L⊥
φ′ as

{x ∈ ~L⊥
φ′} = {s~L1 + w~L2 : s, w ∈ R}. (4.7)

It follows that

PF (φ′, s, w) =

∫

R

F


ρφ′



t

s

w




 dt, (4.8)

where ρφ′ =

(
sinφ′ 0 cosφ′

0 −1 0
cosφ′ 0 − sinφ′

)
.

By the Fourier Slice Theorem, we have that

F2[PF ](φ
′, η) =

∫

~L⊥

φ′

PF (φ′, s, w) e−2πiη·(s,w) ds dw = F̂ (η, φ′), η ∈ ~L⊥
φ′ .

Hence, by the properties of the Fourier transform (Plancherel and differentiation theorems), we obtain the
following identity:

‖(PF )ss‖
2 + 2‖(PF )sw‖

2 + ‖(PF )ww‖
2 = (2π)4

∫

R2

|η|4 |F̂ (η, φ′)|2 dη, (4.9)

where η = η1 ~L1 + η2 ~L2.

4.3.1. Ray Transform of the Surface Fragment. For brevity, let us introduce the following nota-
tion:

Fφ′

(t, s, w) = F


ρφ′



t

s

w




 , gφ

′

(t, s, w) = g


2−jρφ′



t

s

w




 , wφ′

(t, s, w) = w


ρφ′



t

s

w




 .
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Using this notation, we will rewrite the Ray transform of the surface fragment, given by expression (4.8), as

PF (φ′, s, w) =

∫

R

Fφ′

(t, s, w) dt. (4.10)

As described above, this is an integral over the lines Λs,w,φ′ = {y ∈ R
3 : y · ~L1 = s & y · ~L2 = w}, where

~L1 and ~L2, given by (4.7), depend on φ′. Depending on the values of (s, w, φ′), the lines Λs,w,φ′ may or
may not intersect the surface Σ = {(E(j)(u, v), u, v) : |u|, |v| ≤ 1}. In the following, we will analyze the two
situations separately.

Case 1: No Intersection.

When the line Λs,w,φ′ does not intersect the surface Σ, the Ray transform of F takes the form:

PF (φ′, s, w) =

∫

R

gφ
′

(t, s, w)wφ′

(t, s, w) dt. (4.11)

In this case we have the following result.
Proposition 4.2. The function PF is twice differentiable as a function of s and w and admits the

decomposition

(PF (φ′, s, w))ss (φ
′, s, w)+(PF (φ′, s, w))sw (φ′, s, w)+(PF (φ′, s, w))ww (φ′, s, w) = F 0(φ′, s, w)+F 1(φ′, s, w),

where

‖F 0(φ′, s, w)‖2 ≤ C 2−2j,

‖
(
F 1(φ′, s, w)

)
s
‖2 + ‖

(
F 1(φ′, s, w)

)
w
‖2 ≤ C.

Proof. With an abuse of notation, in the following we will write g for gφ
′

and w0 for wφ
0 . By direct

computation we have:

(PF )ss(φ, s, w) =

∫

R

∂2

∂s2
(g(t, s, w)w(t, s, w)) dt = F 0(φ′, s, w) + F 1(φ′, s, w),

where F 0(φ′, s, w) =
∫
R
(gss w0 + 2gsw0s) dt and F

1(φ′, s, w) =
∫
R
g w0ss dt.

Recalling that g(t, s, w) = gφ
′

(t, s, w) = g
(
2−jρφ′

(
t
s
w

))
, a direct computation yields that |gs| ≤ C 2−j

and |gss| ≤ C 2−2j . It follows that |gsw0s| ≤ C 2−j and |gssw0| ≤ C 2−2j. Since w0 (and hence PF ) has
compact support, it follows that

∫
R
|gss w0|dt ≤ C 2−2j , and

∫
R
|gsw0s|dt ≤ C 2−j . This implies that

‖F 0(φ′, s, w)‖2 ≤ C 2−2j.

For F 1(φ′, s, w), we have

∂

∂s
(F 1(φ′, s, w)) =

∫

R

∂

∂s
(g w0ss) dt =

∫

R

(gswss + g wsss) dt.

Using the same argument as the one used for F 0(φ′, s, w), it follows that ‖
(
F 1(φ′, s, w)

)
s
‖2 ≤ C. Simi-

larly it follows that ‖
(
F 1(φ′, s, w)

)
w
‖2 ≤ C. The proof is completed by repeating the same argument for

(PF )sw(φ, s, w) and (PF )ww(φ, s, w).

From Proposition 4.2, using the Fourier Slice Theorem for the Ray transform and the Plancherel theorem,
it follows that

∫ ∞

0

∫ 2π

0

|F̂ (r, θ′, φ′)|2 r5 dθ′ dr ≤ C 2−2j
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and, hence, that

∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, φ′)|2 dθ′ dr ≤ C 2−7j.

Since F (x) = f(2−jx), we have F̂ (ξ) = 23j f̂(2jξ). Thus, the above inequality implies the following one:

∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, φ′)|2 dθ′ dr ≤ C 2−12j. (4.12)

This completes the analysis in the case where there is no intersection.

Case 2: Intersection.

In order to find the intersection of the line Λs,w,φ′ and the surface Σ, one has to solve the equation

ρ′φ



t

s

w


 =



E(j)(u)

u

v


 ,

which leads to the system:

t = E(j)(u, v) sinφ′ + v cosφ′, (4.13)

s = −u, (4.14)

w = E(j)(u, v) cosφ′ − v sinφ′. (4.15)

To compute the solution of this system, we will use the Implicit Function Theorem to express t as a function
of s and w. In order to do that, we first check that the conditions of the Implicit Function Theorem are
satisfied. A direct computation gives:

su = −1,sv = 0,

wu = E(j)
u (u, v) cosφ′,wv = E(j)

v (u, v) cosφ′ − sinφ′,

and

∆(φ′) = det

(
su sv
wu wv

)
= sinφ′ − E(j)

v cosφ′ (4.16)

The following proposition deals with the case when | sinφ′| ≤ 21−j.
Proposition 4.3. Assume that | sinφ′| ≤ 21−j. Then, for each fixed j and φ′, we have that

∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, φ′)|2 dθ′ dr ≤ C 2−7j ,

where where C is independent of j and φ′.

Proof. Since |E
(j)
v | ≤ 2−j (from the assumption that ‖E′′‖L∞ = 1), it follows that |∆(φ′)| ≤ C2−j with

C independent of j and φ′. Let A be the region defined by {(s(u, v), w(u, v)) : (u, v) ∈ [−1, 1]2}. Since∫
A ds dw =

∫ 1

−1

∫ 1

−1 |∆(φ′)| du dv ≤ C| sinφ′| and F is bounded (and hence PF is bounded), it follows from

a direct calculation that ‖(PF )‖2L2 ≤ C
∫ 1

−1

∫ 1

−1
|∆(φ′)| du dv ≤ C2−j. Using the Fourier Slice Theorem for

the Ray transform and the Plancherel theorem, we have that

∫ ∞

0

∫ 2π

0

|F̂ (r, θ′, φ′)|2 r dθ′ dr ≤ C 2−j
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and, hence, that

∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, φ′)|2 dθ′ dr ≤ C 2−2j.

Since F (x) = f(2−jx), we have F̂ (ξ) = 23j f̂(2jξ). Thus the above inequality gives

∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, φ′)|2 dθ′ dr ≤ C 2−7j .

This finishes the proof of Proposition 4.3.

For the case when | sinφ′| ≥ 21−j , we have that 2−j ≤ 1
2 | sinφ

′| ≤ |∆(φ′)| ≤ 2| sinφ′|. Thus, we can
apply the Inverse Function Theorem and use equations (4.14) and (4.15) to derive the functions u = u(s, w)
and v = v(s, w). Inserting these functions into (4.13), we obtain the intersection point in terms of t as

t0(s, w, φ
′) = E(j)(u(s, w), v(s, w)) sin φ′ + v(s, w) cos φ′. (4.17)

This shows that there is at most one point of intersection for each fixed (s, w) and φ′.

We can write η ∈ ~L⊥
φ′ as η = (η2 cosφ

′,−η1,−η2 sinφ′) = (r sin θ′ cosφ′,−r cos θ′,−r sin θ′ sinφ′), where
η1 = r cos θ′, η2 = r sin θ′. Then (4.9) can be rewritten as

‖(PF )ss‖
2 + 2‖(PF )sw‖

2 + ‖(PF )ww‖
2 =

∫ ∞

0

∫ 2π

0

r5|F̂ (r, θ′, φ′)|2 dθ′ dr. (4.18)

Since the same η can also be expressed in spherical coordinates as η = (ρ cos θ sinφ, ρ sin θ sinφ, cosφ), it
follows that we must have ρ = r and

sin θ′ cosφ′ = cos θ sinφ,

cos θ′ = sin θ sinφ,

− sin θ′ sinφ′ = cosφ.

From the first and the third identities, we have tanφ′ = − cotφ sec θ, which implies that φ′ is equivalent to
φ − π

2 , that is, there is are constants 0 < C1(θ) ≤ C2(θ) < ∞ such that C1(θ)φ
′ ≤ φ − π

2 ≤ C2(θ)φ
′. Also

since |φ− π
2 | ≤

π
4 and |θ| ≤ π

4 , we see that |∂φ
′

∂φ | ≤ C and |∂φ
′

∂θ | ≤ C and hence

|φ′1 − φ′2| ≤ C (|φ1 − φ2|+ |θ1 − θ2|). (4.19)

Also, we have

us =
E

(j)
v (u, v) cosφ− sinφ

∆(φ′)
,uw = 0, (4.20)

vs = −
E

(j)
u (u, v) cosφ

∆(φ′)
,vw = −

1

∆(φ′)
. (4.21)

From (4.20) and (4.21), it is easy to verify the following proposition.
Proposition 4.4.

|us| ≤ C
1

| sinφ′|
, |us2 | ≤ C

2−j

| sinφ′|3
, |usw| ≤ C

2−j

| sinφ′|3
, |uw2| ≤ C

2−j

| sinφ′|3

|vs| ≤ C
1

| sinφ′|
, |vs2 | ≤ C

2−j

| sinφ′|3
, |vsw| ≤ C

2−j

| sinφ′|3
, |vw2 | ≤ C

2−j

| sinφ′|3
,
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where the constant C is independent of (u, v) ∈ [−1, 1]2, φ′ ∈ [−π
4 ,

π
4 ] with | sinφ′| ≥ 21−j.

Using the expression (4.17) that was found for the intersection point, from (4.6) and (4.8) we obtain the
following formulation of the Ray transform PF (φ′, s, w):

PF (φ′, s, w) =

∫ t0(s,w,φ′)

−∞
F


ρφ′



t

s

w




 dt. (4.22)

From Proposition 4.4, one can use essentially the same argument as the 2-dimensional case (see Lemma 6.2
in [2]) to prove the following proposition. For completeness, a sketch of its proof will be provided.

Proposition 4.5. The Ray Transform of F is twice differentiable as a function of s and w and admits
the decomposition

(PF (φ′, s, w))ss (φ
′, s, w)+(PF (φ′, s, w))sw (φ′, s, w)+(PF (φ′, s, w))ww (φ′, s, w) = F 0(φ′, s, w)+F 1(φ′, s, w),

where

‖F 0(φ′, s, w)‖2 ≤ C 2−2j| sinφ′|−5,

‖
(
F 1(φ′, s, w)

)
s
‖2 + ‖

(
F 1(φ′, s, w)

)
w
‖2 ≤ C| sinφ′|−5.

Proof (Sketch). We will adopt the same notations as in Proposition 4.2.
From (4.22), we have that

PF (φ′, s, w) =

∫ t0(s,w,φ′)

−∞
F


ρφ′



t

s

w




 dt =

∫ t0(s,w,φ′)

−∞
g(t, s, w)w0(t, s, w) dt.

This implies that

(PF )s(φ
′, s, w) = g(t0, s, w)w0(t0, s, w) t0s +

∫ t0(s,w,φ′)

−∞
(gs(t, s, w)w0(t, s, w) + g(t, s, w)w0s(t, s, w)) dt

(PF )ss(φ
′, s, w) = T1 + T2 + T3 + T4,

where T1 = gt w0 (t0s)
2+gsw0 t0s+g w0 t0ss, T2 = gw0t (t0s)

2+g w0s t0s, T3 =
∫ t0(s,w,φ′)

−∞ (gss w0+2gsw0s) dt,

T4 =
∫ t0(s,w,φ′)

−∞ g w0ss dt.

From t0(s, w, φ
′) = E(j) (u(s, w), v(s, w)) sinφ′ + v(s, w) cosφ′, using Proposition 4.4, it is easy to ver-

ify that |t0s| ≤ C 1
| sinφ′| , |t0ss| ≤ C 2−j

| sinφ′|3 . It follows that |T1| ≤ C 2−j

| sinφ′|3 and, hence, ‖T1‖
2 ≤

C 2−2j

| sinφ′|6
∫
A
dsdw ≤ 2−2j

| sinφ′|5 since
∫
A
dsdw ≤ C| sinφ′|. Using the assumption that | sinφ′| ≥ 22−j , one

can verify that |(T2)s| ≤ C 1
| sin φ′|3 . Similarly one can verify that |T3| ≤ C2−j , and (T4)s| ≤ C. Thus, it

follows that ‖T3‖2 ≤ C 2−2j

| sinφ′|5 , and ‖(T4)s‖2 ≤ C | sinφ′|5 since | sinφ′| ≤ 1.

Now the argument is completed by letting F 0(φ′, s, w) = T1 + T3 and F 1(φ′, s, w) = T2 + T4. �

As a direct corollary of Proposition 4.5, it follows that

∫ ∞

0

∫ 2π

0

r5|F̂ (r, θ′, φ′)|2 dθ′ dr ≤ C 2−2j | sinφ′|−5,

which implies that

∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, φ′)|2 dθ′ dr ≤ C 2−7j | sinφ′|−5. (4.23)
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Using again the identity F̂ (ξ) = 23jf(2jξ), from (4.23) it follows that

∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, φ′)|2 dθ′ dr ≤ C 2−12j | sinφ′|−5. (4.24)

We can now prove Theorem 4.1

Proof of Theorem 4.1.

Recall that we are assuming that ξ = (ξ1, ξ2, ξ3) ∈ DC , j ≥ 0, |ℓ1| ≤ |ℓ2| ≤ 2j. In addition, the

assumptions on the support of ψ̂1 and ψ̂2 imply that

supp ψ̂1(2
−2jξ1) ⊂

{
ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1]

}
,

supp ψ̂2(2
j ξ2
ξ1

− ℓ) ⊂
{
(ξ1, ξ2, ξ3) : |2

j ξ2

ξ1
− ℓ1| ≤ 1

}
,

supp ψ̂2(2
j ξ3
ξ1

− ℓ) ⊂
{
(ξ1, ξ2, ξ3) : |2

j ξ3

ξ1
− ℓ2| ≤ 1

}
.

By representing (ξ1, ξ2, ξ3) using spherical coordinates as (λ cos θ sinφ, λ sin θ sinφ, λ cosφ), we can write the
last two expressions as

supp ψ̂2(2
j ξ2
ξ1

− ℓ) ⊂
{
(λ, θ, φ) : 2−j(ℓ1 − 1) ≤ tan θ ≤ 2−j(ℓ1 + 1)

}
,

supp ψ̂2(2
j ξ3
ξ1

− ℓ) ⊂
{
(λ, θ, φ) : 2−j(ℓ2 − 1) ≤

cotφ

cos θ
≤ 2−j(ℓ2 + 1)

}
.

Notice that |θ| ≤ π
4 , so that 1 ≤ | cos θ| ≤

√
2
2 .

Since λ2 = ξ21 + ξ22 + ξ23 = ξ21 (1 + (tan θ)2 + (cotφ)2

(cos θ)2 ) and |ℓ1| ≤ |ℓ2| ≤ 2j , it is easy to verify that

22j−4 ≤ |λ| ≤ 22j+2.

Thus, using the fact that tanφ ≥ 2−j cos θ (ℓ2− 1), it follows that the support of Γj,ℓ is contained in the set:

Wj,ℓ = {(λ, θ, φ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 − 1)) ≤ θ ≤ tan−1(2−j(ℓ1 + 1)),

cot−1(2−j(ℓ2 − 1)) ≤ φ ≤ cot−1(2−j(ℓ2 + 1))}. (4.25)

When (λ, θ, φ) is contained in the set Wj,ℓ, the variables θ and φ are contained in intervals of length
C 2−j, which, in the following, will be denoted by Iθ and Iφ, respectively. Hence, from (4.19), it follows that
φ′ is contained in an interval Iφ′ of length C 2−j. Furthermore, if (λ, θ, φ) ∈ Wj,ℓ and | sinφ′| ≥ 21−j , then
2j| sinφ′| is equivalent to |ℓ2|, so that ℓ2 6= 0.

Let ξ1 = r sin θ′ cosφ′, ξ2 = −r cos θ′, ξ3 = −r sin θ′ sinφ′. A direct computation shows that the
Jacobian of (ξ1, ξ2, ξ3) with respect to (r, θ′, φ′) is −r2 sin2 θ′. It follows that

∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|
2 dξ ≤

∫

Wj,ℓ

|f̂(ξ)|2 dξ

≤

∫

Iφ′

∫ 22j+4

22j−2

∫ 2π

0

|f̂(r, θ′, φ′)|2r2 sin2 θ′ dr dφ′

≤ C 24j
∫

Iφ′

∫ 22j+4

22j−2

∫ 2π

0

|f̂(r, θ′, φ′)ξ)|2 dθ′ dr dφ′ (4.26)

We can now use the estimates from Propositions 4.2, 4.3 and 4.5 to complete the proof. Namely, in the
non-intersection case, inequality (4.12) gives that

∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|
2 dξ ≤ C 2−9j. (4.27)
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For the intersection case, with the assumption that | sinφ′| ≤ 21−j, Proposition 4.3 gives that
∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|
2 dξ ≤ C 2−4j

Finally, for the intersection case, with the assumption that | sinφ′| ≥ 21−j, inequality (4.24) yields
∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|
2 dξ ≤ C 2−8j

∫

Iφ′

| sinφ′|−5 dφ′

≤ C 2−4j |ℓ2|
−5.

Since |ℓ2| ≤ 2j , the proof of Theorem 4.1 is completed by combining the three inequalities given above. �

Before proving Theorem 3.3, we need some additional estimates involving the derivatives of the surface
fragment.

Let m = (m1,m2,m3) and, let us adopt the usual multi-index notation where |m| = m1 + m2 + m3,

xm = xm1
1 xm2

2 xm3
3 and ∂m

∂ξm f̂ = ∂m1

∂ξ
m1
1

∂m2

∂ξ
m2
2

∂m3

∂ξ
m3
3

f̂(ξ). For a surface fragment f , we may rewrite xmf(x) as

xmf(x) = 2−j|m|fm(x),

where fm(x) = g(x)(2jx)m w(2jx)χ[x1≥E(x2,x3)](x) is another surface fragment. Since the Fourier transform

of xmf(x) is im ∂m

∂ξm f̂ , the inequalities (4.5) and (4.27) imply the following estimates:
∫

R̂3

|
∂m

∂ξm
f̂(ξ)|2 |Γj,ℓ(ξ)|

2 dξ ≤ C 2−j|m| 2−4j(1 + |ℓ2|)
−5, if there is an intersection,

∫

R̂3

|
∂m

∂ξm
f̂(ξ)|2 |Γj,ℓ(ξ)|

2 dξ ≤ C 2−j|m| 2−9j, if there is no intersection.

Notice that, for the non-intersection case, the estimate 2−j|m|2−9j is the best possible one. However, for the
intersection case, the estimate 2−j|m|2−4j(1 + |ℓ2|)−5 can be improved if m1 > 0. The reason is that, on the
surface, |x1| = |Ej(x2, x3)| ≤ C 2−j . Indeed, using the argument of Proposition 4.5 for the surface fragment
Fm(x) (recall that Fm(x) = fm(2−jx)), if the derivatives don’t involve x1, then one obtains the additional
factor 2−jm1 . On the other hand, when one takes one derivative with respect to xm1

1 , this only produces
a factor 2−j(m1−1). However, in this last case, one can compute one additional derivative with respect to
the the remaining function in the expression of Fm(x) so that the missing factor 2−j can be compensated,
thanks to Plancherel theorem and the observation that, in the Fourier domain, the domain is restricted to
the region where 2j−1 ≤ |ξ| ≤ 2j+2. Indeed this is the key idea in the proof of Lemma 6.2 in [2] (and hence
in the proof of Proposition 4.5).

Using these observations, we obtain the following refinement of Proposition 4.5 valid for Fm(x), in the
case where m1 = 2. The behavior for other values of m1 is similar.

Proposition 4.6. The Ray Transform of Fm is twice differentiable as a function of s and w and admits
the decomposition

(PF (φ′, s, w))ss (φ
′, s, w) + (PF (φ′, s, w))sw (φ′, s, w) + (PF (φ′, s, w))ww (φ′, s, w)

= F 0(φ′, s, w) + F 1(φ′, s, w) + F 2(φ′, s, w) + F 3(φ′, s, w),

where, for q = (q1, q2) and |q| = q1 + q2, we have that

‖F 0(φ′, s, w)‖2 ≤ C 2−2jm12−2j| sinφ′|−5,

‖
(
F 1(φ′, s, w)

)
s
‖2 + ‖

(
F 1(φ′, s, w)

)
w
‖2 ≤ C2−2jm1 | sinφ′|−5,

∑

|q|=2

‖
(
F 2(φ′, s, w)

)
sq1wq2

‖2 ≤ C2−2j(m1−1)| sinφ′|−5,

∑

|q|=3

‖
(
F 3(φ′, s, w)

)
sq1wq2

‖2 ≤ C2−2j(m1−2)| sinφ′|−5.
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From the assumption on the support of ψ̂1 and ψ̂2 and the assumption that |ℓ1| ≤ |ℓ2|, one can easily
verify the following inequality (see the proof of Lemma 2.5 in [10] for a similar argument):

|
∂m

ξm
Γj,ℓ(ξ)| ≤ Cm 2−m1j2−|m|j(1 + |ℓ2|)

m1 .

Since the sets Wj,ℓ1,ℓ2 and Wj,ℓ1′ ,ℓ2 are essentially disjoint for ℓ1 6= ℓ1′ (that is, each point lies in a finite
number of sets Wj,ℓ1,ℓ2), using the last inequality we obtain that

|ℓ2|∑

ℓ1=−|ℓ2|
|
∂m

∂ξm
Γj,ℓ(ξ)| ≤ Cm 2−m1j2−|m|j(1 + |ℓ2|)

m1 . (4.28)

Finally, letting mf = (mf1,mf2,mf3), mγ = (mγ1,mγ2,mγ3), using Proposition 4.6 and inequality (4.28)
we obtain:

|ℓ2|∑

ℓ1=−|ℓ2|

∫

R̂3

|
∂mf

∂ξmf
f̂(ξ)|2 |

∂mγ

∂ξmγ
Γj,ℓ(ξ)|

2 dξ

≤ C 2−2j|mf | (2−2jmf12−4j (1 + |ℓ2|)
−5 + 2−9j

)
2−mγ1j2−|mγ |j (1 + |ℓ2|)

mγ1 . (4.29)

Let L be the second order differential operator defined by:

L =

(
I −

(
22j

2π (1 + |ℓ2|)

)2
∂2

∂ξ21

) (
1−

(
2j

2π

)2
∂2

∂ξ22

) (
1−

(
2j

2π

)2
∂2

∂ξ23

)
. (4.30)

From inequality (4.29), a routine calculation gives the following theorem which extends the result in Theo-
rem 4.1 (again using the fact that |ℓ2| ≤ 2j).

Theorem 4.7. Let f be the surface fragment given by expression (4.1) and Γj,ℓ be given by (4.4). Then,
for each ξ ∈ DC , j ≥ 0 and −2j ≤ ℓ2 ≤ 2j, the following estimate holds:

|ℓ2|∑

ℓ1=−|ℓ2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,ℓ(ξ)

)∣∣∣
2

dξ ≤ C 2−4j (1 + |ℓ2|)
−5.

4.4. Proof of Theorem 3.3. Using the preparatory work from the previous sections, we are now ready
to provide the proof of Theorem 3.3.

Fix j ≥ 0 and, for simplicity of notation, let f = fQ. For µ ∈ Mj, the shearlet coefficients of f can be
expressed as

〈f, ψµ〉 = 〈f, ψj,ℓ,k〉 = | detA|−j/2

∫

R̂2

f̂(ξ) Γj,ℓ(ξ) e
2πiξA−jB−ℓk dξ,

where A and B are given after equation (2.1). By the equivalent definition of weak ℓ1 norm, the theorem is
proved provided we show that

#{µ ∈Mj : |〈f, ψµ〉| > ǫ} ≤ C 2−2j ǫ−1. (4.31)

Observe that

ξA−jB−ℓk =
(
ξ1 ξ2 ξ3

)


2−2j 0 0
0 2−j 0
0 0 2−j





1 −ℓ1 −ℓ2
0 1 0
0 1 1





k1
k2
k3




= (k1 − k2ℓ1 − k3ℓ2) 2
−2jξ1 + k22

−jξ2 + k32
−jξ3. (4.32)
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Let L be the second order differential operator defined by (4.30). It is easy to check that

L
(
e2πiξA

−jB−ℓk
)
=

{(
1 + ( |ℓ2|

(1+|ℓ2|))
2( k1

|ℓ2| −
k2ℓ1
|ℓ2| ± k3)

2
)
(1 + k22)(1 + k23) e

2πiξA−jB−ℓk if ℓ2 6= 0

(1 + k21)(1 + k22)(1 + k23) e
2πiξA−jB−ℓk if ℓ2 = 0,

(4.33)

where we have ±k3 depending on whether ℓ2 is positive or negative. Using integration by parts, we have:

〈f, ψµ〉 = | detA|−j/2

∫

R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
L−1

(
e2πiξA

−jB−ℓk
)
dξ.

To analyze this quantity, we will consider separately the case ℓ 6= 0 and ℓ = 0.

Case 1: ℓ2 6= 0. In this case, using (4.33), we have that

L−1
(
e2πiξA

−jB−ℓk
)
= G(k, ℓ)−1 e2πiξA

−jB−ℓk, (4.34)

where G(k, ℓ) =
(
1 + ( |ℓ2|

(1+|ℓ2|))
2( k1

|ℓ2| −
k2ℓ1
|ℓ2| ± k3)

2
)
(1 + k22)(1 + k23). Thus, we have that

〈f, ψµ〉 = | detA|−j/2G(k, ℓ)−1

∫

R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e2πiξA

−jB−ℓk dξ,

or, equivalently, that

G(k, ℓ) 〈f, ψµ〉 = | detA|−j/2

∫

R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e2πiξA

−jB−ℓk dξ.

Let K = (K1,K2,K3) ∈ Z
3 and define RK = {k = (k1, k2, k3) ∈ Z

3 : k1

|ℓ2| ∈ [K1,K1 + 1], −k2ℓ1
|ℓ2| ∈

[K2,K2 + 1], k3 = K3}. Since, for j, ℓ fixed, the set {| detA|−j/2 e2πiξA
−jB−ℓk : k ∈ Z

2} is an orthonormal
basis for the L2 functions on [− 1

2 ,
1
2 ]A

jBℓ, and the function Γj,ℓ(ξ) is supported on this set, then

∑

k∈RK

G(k, ℓ)2 〈f, ψµ〉|
2 ≤

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,ℓ(ξ)

)∣∣∣
2

dξ.

This implies that

|ℓ2|∑

ℓ1=−|ℓ2|

∑

k∈RK

G(k, ℓ)2 〈f, ψµ〉|
2 ≤

|ℓ2|∑

ℓ1=−|ℓ2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,ℓ(ξ)

)∣∣∣
2

dξ.

From the definition of RK , it follows that

|ℓ2|∑

ℓ1=−|ℓ2|

∑

k∈RK

|〈f, ψµ〉|
2 ≤ C

(
1 + (K1 −K2 ±K3)

2
)−2

(1+K2
2)

−2(1+K2
3)

−2

|ℓ2|∑

ℓ1=−|ℓ2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,ℓ(ξ)

)∣∣∣
2

dξ.

Thus, by Theorem 4.7, we have that

|ℓ2|∑

ℓ1=−|ℓ2|

∑

k∈RK

|〈f, ψµ〉|
2 ≤ C L−2

K 2−4j(1 + |ℓ2|)
−5, (4.35)

where LK =
(
1 + (K1 −K2 ±K3)

2
)
(1 +K2

2 )(1 +K2
3).



Optimally Sparse Representations of 3D Data 19

For j, ℓ fixed, let Nj,ℓ,K(ǫ) = #{k ∈ RK : |ψj,ℓ,k| > ǫ}. Since |ℓ1| ≤ |ℓ2|, it is clear that Nj,ℓ,K(ǫ) ≤

C (1+ |ℓ2|)2 (C is independent of ℓ1) and, hence,
∑|ℓ2|

ℓ1=−|ℓ2|Nj,ℓ,K(ǫ) ≤ C (1+ |ℓ2|)3. Using the new notation,

from (4.35) we have that

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) ≤ C L−2

K 2−4j ǫ−2(1 + |ℓ|)−5.

This implies that

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) ≤ C min

(
(|ℓ|+ 1)3, L−2

K 2−4j ǫ−2(1 + |ℓ|)−5
)
. (4.36)

Using (4.36) we will now show that:

2j∑

ℓ2=−2j

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) ≤ C L−1

K 2−2j ǫ−1. (4.37)

In fact, let ℓ∗2 be defined by (ℓ∗2 + 1)3 = L−2
K 2−4j ǫ−2(1 + ℓ∗2)

−5. That is, (ℓ∗2 + 1)4 = L−1
K 2−2j ǫ−1. Then

2j∑

ℓ2=−2j

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) ≤

∑

|ℓ2|≤(ℓ∗2+1)

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) +

∑

|ℓ2|>(ℓ∗2+1)

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ)

≤
∑

|ℓ2|≤(ℓ∗2+1)

(|ℓ2|+ 1)3 +
∑

|ℓ2|>(ℓ∗2+1)

L−2
K 2−4j ǫ−2(1 + |ℓ2|)

−5

≤ Cℓ∗2 + 1)4 + CL−2
K 2−4j ǫ−2(1 + ℓ∗2)

−4 ≤ C (ℓ∗2 + 1)4,

which gives (4.37).
Since

∑
K∈Z3 L

−1
K <∞, using (4.37) we then have that

#{µ ∈Mj : |〈f, ψµ〉| > ǫ} ≤
∑

K∈Z3

2j∑

ℓ2=−2j

|ℓ2|∑

ℓ1=−|ℓ2|
Nj,ℓ,K(ǫ) ≤ C 2−2j ǫ−1

∑

K∈Z3

L−1
K ≤ C 2−2j ǫ−1,

and, thus, (4.31) holds.
Case 2: ℓ2 = 0. In this case, we also have ℓ1 = 0. It follows that

L−1
(
e2πiξA

−jk
)
= (1 + k21)

−1(1 + k22)
−1(1 + k23)

−1 e2πiξA
−jk.

Let Lk = (1 + k21) (1 + k22) (1 + k23). It is clear that also in this case
∑

k∈Z3 L
−1
k <∞. We have

〈f, ψj,k〉 = | detA|−j/2L−1
k

∫

R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e2πiξA

−jk dξ,

or, equivalently, that

〈f, ψj,k)〉Lk = | detA|−j/2

∫

R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e2πiξA

−jk dξ,

It follows that
∑

k∈Z3

L2
k |〈f, ψj,k〉|

2 =

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,ℓ(ξ)

)∣∣∣
2

dξ ≤ C2−4j .

In particular, for each k ∈ Z
3, we have |〈f, ψj,k〉| ≤ C L−1

k 2−2j and hence
∑
k ∈ Z

3|〈f, ψj,k〉| ≤ C 2−2j, or
‖〈f, ψj,k〉‖l1 ≤ C 2−2j which implies ‖〈f, ψj,k〉‖wl1 ≤ C 2−2j.

This completes the proof of the theorem. �
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4.5. Remark on the proof of Theorem 3.3. In the proof of Theorem 3.3, it was assumed that the
boundary surface contains the origin and has normal direction (1, 0, 0) at the origin. In general, if this is not
the case, one can “transform” any given surface into one which satisfies the above assumptions by using a
combination of translation and rotation. Obviously the translation has no impact on the proof which was
given above. It only remains to explain the effect of rotations, since the shearlet system is not invariant with
respect to rotations.

As in the proof of Theorem 4.1, for ξ = (ξ1, ξ2, ξ3) ∈ DC , let

Γj,ℓ(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j
ξ2

ξ1
− ℓ1

)
ψ̂3

(
2j
ξ3

ξ1
− ℓ2

)
.

Recall that the support of Γj,ℓ is contained in a set Wj,ℓ which, using spherical coordinates, is given by:

Wj,ℓ = {(λ, θ, φ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 − 1)) ≤ θ ≤ tan−1(2−j(ℓ1 + 1)),

cot−1(2−j(ℓ2 − 1)) ≤ φ ≤ cot−1(2−j(ℓ2 + 1))}.

Hence, using spherical coordinates, a rotation can be realized by the mapping (λ, θ, φ) → (λ, θ− θ0, φ− φ0),
where θ0 and φ0 are the two rotation angles. Also recall that, inside Wj,ℓ, we have 2j sin θ ≈ ℓ1 and
2j cosφ ≈ ℓ2, which implies that there are ℓ1, ℓ2 such that 2j sin θ0 ≈ ℓ1, 2

j cosφ0 ≈ ℓ2. Let Γ
0
j,ℓ(ξ), W

0
j,ℓ and

f̂0 be the images of Γj,ℓ(ξ), Wj,ℓ and f̂ under the rotation by θ0 and φ0. Then it is easy to see that

W 0
j,ℓ ≈ {(λ, θ, φ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 + ℓ1 − 1)) ≤ θ ≤ tan−1(2−j(ℓ1 + ℓ1 + 1)),

cot−1(2−j(ℓ2 + ℓ2 − 1)) ≤ φ ≤ cot−1(2−j(ℓ2 + ℓ2 + 1))}

From these observations, using the same argument as in the proof of Theorem 4.1, one can show that
∫

R̂3

|f̂0(ξ)|2 |Γ0
j,ℓ(ξ)|

2 dξ ≤ C 2−4j(1 + |ℓ2 + ℓ2|)
−5.

The rest of the argument is exactly the same as in the proof of Theorem 3.3, where ℓ2 is replaced by ℓ2 + ℓ2.

4.6. Analysis of the coarse scale. At the beginning of Section 4.1, we assumed that the scale
parameter j is large enough, i.e., j > j0 for some j0 > 0. The situation where j ≤ j0 is much simpler. In
fact, if fQ is an edge fragment, then a trivial estimate shows that

‖fQ‖2 =

(∫

suppwQ

|fQ(x)|
2 dx

)1/2

≤ C |suppwQ|
1/2 = C 2−

3
2 j .

It follows that ‖〈fQ, ψµ〉‖ℓ2 ≤ C ‖fQ‖2 ≤ C 2−
3
2 j . To deduce an ℓ1 type estimate, we notice that

‖〈fQ, ψµ〉‖ℓp ≤ N
1
p
− 1

2 ‖〈fQ, ψµ〉‖ℓ2 ,

is valid for any sequence {〈fQ, ψµ〉} of N elements. Since, at scale 2−j, there are about 22j shearlet elements
in Q0

j , it follows that

‖〈fQ, ψµ〉‖ℓ1 ≤ C 2j 2−
3
2 j = C 2−

1
2 j .

This satisfies Theorem 3.3 for j ≤ j0.

4.7. Proof of Theorem 3.4. The proof of Theorem 3.4 follows essentially the idea from the 2-
dimensional case in [10]. We start by proving the following lemmata which will be useful in the following.

Lemma 4.8. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j and Wj,ℓ be given by (4.25). Then

∫

Wj,ℓ

|f̂(ξ)|2 dξ ≤ C 2−11j. (4.38)
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Proof. The following proof adapts [10, Lemma 2.6].
The function f belongs to C2

0 (R
3) and its second partial derivative with respect to x1 is

∂2f

∂x21
=
∂2g

∂x21
wQ + 2

∂ g

∂x1

∂ wQ

∂x1
+ f

∂2wQ

∂x21
:= h1 + h2 + h3.

Using the fact that wQ is supported in a square of sidelength 2 · 2−j , we have

∫

R̂3

|ĥ1(ξ)|
2 dξ =

∫

R3

|h1(x)|
2
dx ≤ C 2−3j .

Next, observe that ‖ ∂
∂x1

h2‖∞ ≤ C 22j . Using again the condition on the support of wQ it follows that

∫

R̂3

|2πξ1 ĥ2(ξ)|
2 dξ =

∫

R3

∣∣∣∣
∂

∂x1
h2(x)

∣∣∣∣
2

dx ≤ C 2j ,

and thus, for ξ ∈ Wj,ℓ (hence ξ1 ≈ 22j),

∫

Wj,ℓ

|ĥ2(ξ)|
2 dξ ≤ C 2−3j .

Finally, observing that ‖ ∂2

∂x2
1
h3‖∞ ≤ C 24j, it follows that

∫
R̂3 |ĥ3(ξ)|

2 dξ ≤ C 25j and, thus,

∫

Wj,ℓ

|ĥ3(ξ)|
2 dξ ≤ C 2−3j .

Since −(2π)2 ξ21 f̂(ξ) = ĥ1(ξ) + ĥ2(ξ) + ĥ3(ξ), it follows from the estimates above that

∫

Wj,ℓ

|f̂(ξ)|2 dξ ≤ C 2−11j.

This completes the proof.
Lemma 4.9. Let m = (m1,m2,m3) ∈ N×N×N, ξ = (ξ1, ξ2, ξ3) ∈ R̂

3 and Γj,ℓ be given by (4.4), where
ℓ = (ℓ1, ℓ2). Then

2j∑

ℓ1=−2j

2j∑

ℓ2=−2j

∣∣∣∣
∂m

∂ξm
Γj,ℓ1,ℓ2(ξ)

∣∣∣∣
2

≤ Cm 2−2|m|j,

where Cm is independent of j and ξ and |m| = m1 +m2 +m3.
Proof. Observe that Wj,ℓ ∩Wj,ℓ+ℓ′ = ∅, whenever |ℓ′1| ≥ 3 or |ℓ′2| ≥ 3. Since |ℓ1|, |ℓ2| ≤ 2j, the lemma

then follows from (4.28).
Lemma 4.10. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1

j and set

T =

(
I −

2j

(2π)2
∆

)
, (4.39)

where ∆ = ∂2

∂ξ21
+ ∂2

∂ξ22
+ ∂2

∂ξ22
. Then

∫

R̂3

2j∑

ℓ1=−2j

2j∑

ℓ2=−2j

∣∣∣T 2
(
f̂ Γj,ℓ1,ℓ2

)
(ξ)
∣∣∣
2

dξ ≤ C 2−11j.
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Proof. Observe that, for N ∈ N,

∆N
(
f̂ Γj,ℓ

)
=

∑

|α|+|β|=2N

Cα,β

(
∂α

∂ξα
f̂

) (
∂β

∂ξβ
Γj,ℓ

)
,

where α = (α1, α2, α3), β = (β1, β2, β3), and αi, βi ∈ N. Also notice that, by Lemma 4.9, we have that

∫

R̂3

2j∑

ℓ1,ℓ2=−2j

∣∣∣∣
∂α

∂ξα
f̂(ξ)

∣∣∣∣
2 ∣∣∣∣

∂β

∂ξβ
Γj,ℓ(ξ)

∣∣∣∣
2

dξ ≤ Cβ 2
−2|β|j

∫

Wj,ℓ

∣∣∣∣
∂α

∂ξα
f̂(ξ)

∣∣∣∣
2

dξ.

Recall that f(x) is of the form g(x)w(2jx). It follows that xα f(x) = 2−j|α| g(x)wα(2
jx), where wα(x) =

xαw(x). By Lemma 4.8, g(x)wα(2
jx) obeys the estimate (4.38). Thus, observing that ∂α

∂ξα f̂(ξ) is the Fourier

transform of (−2πix)αf(x), we have that

∫

Wj,ℓ

∣∣∣∣
∂α

∂ξα
f̂(ξ)

∣∣∣∣
2

dξ ≤ Cα 2−2j|α| 2−11j.

Combining the estimates above we have that, for each α, β with |α|+ |β| = 2N ,

∫

R̂3

2j∑

ℓ2=−2j

2j∑

ℓ1=−2j

∣∣∣∣
∂α

∂ξα
f̂(ξ)

∣∣∣∣
2 ∣∣∣∣

∂β

∂ξβ
Γj,ℓ(ξ)

∣∣∣∣
2

dξ ≤ Cα,β 2
−11j 2−4jN . (4.40)

Since T 2 = 1− 2 2j

(2π)2 ∆+ 22j

(2π)4 ∆
2, the lemma now follows from (4.40) and Lemma 4.9.

We can now prove Theorem 3.4.
Proof of Theorem 3.4.
For T given by (4.39) and ℓ = (ℓ1, ℓ2), a direct computation gives that

T
(
e2πiξA

−jB−ℓk
)
=
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)
e2πiξA

−jB−ℓk. (4.41)

Hence,

T 2
(
e2πiξA

−jB−ℓk
)
=
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)2
e2πiξA

−jB−ℓk. (4.42)

Fix j ≥ 0 and let f = fQ, with Q ∈ Q1
j . Then, using integration by parts as in the proof of Theorem 3.3,

from (4.42) it follows that

〈f, ψµ〉 = | detA|−j
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)−2

∫

R̂2

T 2
(
f̂(ξ) Γj,ℓ(ξ)

)
e2πiξA

−jB−ℓk dξ.

Let K = (K1,K2,K3) ∈ Z
3 and RK be the set

RK = {(k1, k2, k2) ∈ Z
3 : k2 = K2, k3 = K3, 2

−j(k1 −K2ℓ1 −K3ℓ2) ∈ [K1,K1 + 1]}.

Observe that, for each K and each fixed ℓ, there are only 1 + 2j choices for k1 in RK . In fact, RK =
{k1 : 2jK1 ≤ k1 − K2ℓ1 − K3ℓ2 ≤ 2j(K1 + 1)}. Hence the number of terms in RK is bounded by 1 + 2j .
Also notice that, as in the proof of Theorem 3.3, we can take advantage of the fact that, for j, ℓ fixed,

the set {| detA|−j/2e2πiA
”−jBellk : k ∈ Z

3} is an orthonormal basis for the L2 functions supported in the
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set [− 1
2 ,

1
2 ]

3AjBℓ. Thus, using this observation and the fact that the function Γj,ℓ is supported on the set
[− 1

2 ,
1
2 ]

3AjBℓ, we have that

∑

k∈RK

|〈f, ψµ〉|
2 ≤ C

(
1 +K2

1 +K2
2 +K2

3

)−4
∫

R̂3

∣∣∣T 2
(
f̂ Γj,ℓ

)
(ξ)
∣∣∣
2

dξ.

From this inequality, using Lemma 4.10, we have that

2j∑

ℓ2=−2j

2j∑

ℓ1=−2j

∑

k∈RK

|〈f, ψµ〉|
2 ≤ C (1 +K2)−4

∫

R̂2

2j∑

ℓ2=−2j

2j∑

ℓ1=−2j

∣∣∣T 2
(
f̂ Γj,ℓ

)
(ξ)
∣∣∣
2

dξ

≤ C (1 +K2)−4 2−11j . (4.43)

For any N ∈ N, the Hölder inequality yields:

N∑

m=1

|am| ≤

(
N∑

m=1

|am|2

) 1
2

N
1
2 . (4.44)

Since the cardinality of RK is bounded by 1 + 2j , it follows from (4.43) and (4.44) that

2j∑

ℓ2=−2j

2j∑

ℓ1=−2j

∑

k∈RK

|〈f, ψµ〉| ≤ C
(
23j
) 1

2 (1 +K2)−2 2−
11
2 j ≤ C 2−4j .

Thus, for f = fQ, with Q ∈ Q1
j , we have that:

∑

µ∈Mj

|〈f, ψµ〉| ≤ C 2−4j.

5. Extension to the Piecewise C2 Setting. We briefly outline how to extend Theorem 3.2 to the
situation where the surface boundary is not C2 but piecewise C2. For reason of space, only a brief sketch of
the argument can be presented in this paper. In particular, for simplicity, we will only describe the argument
in the bivariate case: the same ideas can be carried over from the bivariate to the trivariate case without
significant changes.

Let S be the boundary curve and let us assume that S has a corner point centered at the origin. Assume
that, near the origin, the curve is parametrized as S = {(E(x2), x2), x2 ∈ (−1, 1)} and that (0, 0) is the only
corner point of S. Let x1 = L1 x2, where x2 ∈ [0, 1), and x1 = L2 x2, where x2 ∈ (−1, 0], be the two tangent
lines of S at (0, 0). The region G = {(x1, x2), x1 ≥ E(x2), x2 ∈ (−1, 1)}

⋂
[−1, 1]2 can be expressed as the

union of three subregions G1, G2 and G3, where

G1 = {(x1, x2), E(x2) ≤ x1 ≤ L1x2, x2 ∈ [0, 1)}
⋂

[−1, 1]2,

G2 = {(x1, x2), E(x2) ≤ x1 ≤ L2x2, x2 ∈ (−1, 0]}
⋂

[−1, 1]2,

G3 = {(x1, x2), x1 ≥ L1x2, x2 ∈ [0, 1); x1 ≥ L2x2, x2 ∈ (−1, 0]}
⋂

[−1, 1]2

For G1, an argument similar to Section 4.5 can be used to translate and rotate the domain so that, in the
new domain, the tangent line is given by the equation x1 = 0. Next, one can use the same argument valid for
the smooth surface to prove the desired result. Similarly one can deal with G2. For G3 a different argument
is needed since it contains a corner edged by two straight lines with (possible) different slopes. In this case,
however, one can follow the argument in [2, Sec. 9] to complete the proof.
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