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Abstract. In this paper we will study the Continuous Shearlet
Transform from a wavelet point of view, and show how this per-
spective can be used to derive a new geometric interpretation of this
transform providing the possibility for FFT-based fast methods to
compute the Continuous Shearlet Transform.

§1. Introduction

One main focus of current research is on the development of sparse direc-
tional representation systems, which not only provide the means to detect
orientations of objects in the data such as curvilinear singularities, but
also to lead to sparse representations, i.e., with most coefficients of the
expansion being close to zero. In the past, several new representation sys-
tems were proposed, including the directional wavelets [1], the complex
wavelets [11], the ridgelets [2], the contourlets [7], and the curvelets [3].

A very recent approach are shearlets, which not only possess all above
mentioned properties, but are moreover equipped with a rich mathemati-
cal structure similar to wavelets. In fact, we will point out that shearlets
can be seen as an appropriate shear and inverse shear operator applied
to an anisotropic wavelet transform, so that theory and algorithms from
the Continuous Wavelet Transform can be carried over. In other words,
while still being conceptually close to wavelets, shearlets offer a flexible
enough extension to precisely detect the position and orientation of singu-
larities [12] and to provide optimally sparse representations [10]. For more
and up–to–date information on this rapidly expanding area, we refer the
interested reader to [16].

In this paper we will focus on the Continuous Shearlet Transform.
Since both transformations, the Continuous Shearlet Transform as well as
the Continuous Wavelet Transform, can be understood as specializations
of the general concept of affine systems, it will be illustrating to study the
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precise relation. Therefore, after having provided an elaborate introduc-
tion to the Continuous Shearlet Transform from a wavelet point of view
in Section 2, the second part of the paper (Section 3) is concerned with
“returning back to wavelets” in the sense of expressing the Continuous
Shearlet Transform in terms of an anisotropic Continuous Wavelet Trans-
form. We will also briefly discuss how this idea can be used to generate
FFT–based fast methods for computing the Continuous Shearlet Trans-
form.

§2. From Wavelets to Shearlets

The purpose of this section is to provide an elaborate introduction
to the Continuous Shearlet Transform and to regard it from a wavelet
point of view. For more details on the 2-dimensional Continuous Wavelet
Transform we refer to [6], whereas information on the Continuous Shearlet
Transform can be found in [12].

2.1. Continuous Wavelet Transform in 2-D

The 2-dimensional Continuous Wavelet Transform is based on affine
systems generated by one single function ψ ∈ L2(R2) by means of

{ψAt = TtDAψ = | detA|− 1
2 ψ(A−1( · − t)) : A ∈ G, t ∈ R2},

where G is a subgroup of the regular 2 × 2 matrices, GL(2,R), and we
use Ttf(x) = f(x − t), t ∈ R2 and DMf(x) = |det M |− 1

2 f(M−1x),
M ∈ GL(2,R), to denote the translation and dilation operator on L2(R2),
respectively. Recall that the wavelet system {ψAt}A,t can also be inter-
preted as being generated by a special group representation. Let A =
GL(2,R) × R2 be the affine group endowed with multiplication given by
(A, t)(A′, t′) = (AA′, t + At′), and let π : A→ U(L2(R2)) denote the rep-
resentation of A defined by π(A, t)ψ(x) = |det A|−1/2ψ(A−1(x− t)). This
allows us to write the elements of a wavelet system as

ψAt = π(A, t)ψ.

Let A ∈ GL(2,R) be an expanding matrix, i.e., all eigenvalues of A are
larger than one in modulus. Since the inverse of such a matrix is contrac-
tive, the family {Ma = A− log a : a > 1}, is a subgroup of contractions of
GL(2,R). Recall that the canonical choice for A is λI, for some λ > 1,
and therefore Ma = diag

(
a− log λ

)
. The Continuous Wavelet Transform

Wψf : R+ × R2 → C of some f ∈ L2(R2) is defined as

Wψf(a, t) = 〈f, ψat〉 = | detMa|− 1
2

〈
f, ψ

(
M−1

a (· − t)
)〉

.
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Provided ψ is chosen to be a wavelet, i.e., ψ satisfies the admissibility
condition ∫

R

|ψ̂(ω)|2
|ω| dω < ∞,

each function f ∈ L2(R) can be reconstructed from its wavelet coefficients
{〈f, ψat〉 : (a, t) ∈ R+ × R2}.

2.2. Continuous Shearlet Transform
Let us now turn our attention to shearlets. Having recalled the defini-

tion and basic properties of the 2-dimensional Continuous Wavelet Trans-
form in the subsection before, it will become evident that there are similar-
ities in spirit between this transform and the Continuous Shearlet Trans-
form.

The Continuous Shearlet Transform is also based on special affine sys-
tems generated by one single function ψ ∈ L2(R2), but the dilation matri-
ces are now designed for detecting directions. For each a > 0 and s ∈ R,
let Aa denote the parabolic scaling matrix and Ss denote the shear matrix
of the form

Aa =
(

a 0
0

√
a

)
and Ss =

(
1 s
0 1

)
,

respectively. Then the (continuous) shearlet system generated by ψ ∈
L2(R2) is defined by

{ψast = TtDSsAaψ = a−
3
4 ψ(A−1

a S−1
s ( · − t)) : a ∈ R+, s ∈ R, t ∈ R2},

and the associated Continuous Shearlet Transform of some f ∈ L2(R2) is
given by

SHψf : R+ × R× R2 → C, SHψf(a, s, t) = 〈f, ψast〉.
A function ψ ∈ L2(R2) is called a continuous shearlet, if it satisfies the
admissibility condition

∫

R2

|ψ̂(ξ1, ξ2)|2
ξ2
1

dξ < ∞.

In this case, each function f ∈ L2(R2) can be reconstructed from its
shearlet coefficients {〈f, ψast〉 : (a, s, t) ∈ R+ × R× R2}.

We wish to mention that the shearlet systems can also be viewed from
a group theoretic point of view. The associated locally compact group
– the so-called Shearlet group S – is defined to be the set R+ × R × R2

endowed with the multiplication

(a, s, t) · (a′, s′, t′) = (aa′, s + s′
√

a, t + SsAat′).



4 G. Kutyniok and T. Sauer

Notice that this group is isomorphic to the semi-direct product G n R2

with G being defined by G = {SsAa : a ∈ R+, s ∈ R}. Letting σ : S →
U(L2(R2)) be the unitary representation of this group given by

σ(a, s, t)ψ(x) = a−
3
4 ψ(A−1

a S−1
s (x− t)),

the link with shearlet systems is established by the relation

ψast = σ(a, s, t)ψ.

2.3. Directionality

In [12] it was proven that the directions of singularities in a distribu-
tion f can be detected by considering the decay of the associated Contin-
uous Shearlet Transform. The shearlet coefficients 〈f, ψast〉 always decay
rapidly, i.e., faster than any polynomial, as a → 0 except when t is on the
singularity and s points in the direction perpendicular to the singularity.
In this section we will illustrate this behavior also by means of figures.

For our analysis – as in [12] – we choose a particular continuous shear-
let ψ. Intuitively, the shearlet itself should already be stretched in one
direction. The main ingredient in the definition of ψ are two univariate
functions ψ1, ψ2 ∈ L2(R) such that

(C1) ψ1 is a continuous wavelet, ψ̂1 ∈ C∞(R), and supp ψ̂1 ⊆ [−2,− 1
2 ] ∪

[ 12 , 2], and

(C2) ψ2 is such that ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1].
Then we define ψ ∈ L2(R2) almost as a tensor product by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

). (1)

Here the quotient ξ2
ξ1

is natural for the shear operation. The computation

∫

R2

|ψ̂(ξ1, ξ2)|2
ξ2
1

dξ =
∫

R

|ψ̂1(ξ1)|2
ξ2
1

∫

R
|ψ̂2( ξ2

ξ1
)|2 dξ2 dξ1

=
∫

R

|ψ̂1(ξ1)|2
ξ1

∫

R
|ψ̂2(η)|2 dη dξ1 < ∞

now proves that ψ is indeed a continuous shearlet.
To illustrate directionality of the analyzing functions ψast, we choose

ψ1 and ψ2 as follows. Let bn, n > 0, denote the nth cardinal B-spline,
defined recursively by b1 = χ[0,1) and bn = bn−1 ∗ χ[0,1) for n > 1. Then
we define ψ1 and ψ2 by

ψ̂1(ω) = b2( 4
3 (−ω − 1

2 )) + b2( 4
3 (ω − 1

2 )) (2)
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and
ψ̂2(ω) = b8(4(ω + 1)). (3)

(C1) and (C2) are satisfied, except for the infinite differentiability, which
we give up for the benefit of fast implementation.

Figures 1(c) and 1(d) show the function ψ0.3,0,0 in frequency domain.
We clearly see that it is stretched in x-direction. In the time domain
(Figures 1(a) and 1(b)), this function is stretched in y-direction, which
is the direction perpendicular to the x-direction. The function ψ0.3,−0.5,0

with shear parameter equal to − 1
2 is illustrated in Figure 2. Images (c)

and (d) can clearly be seen as a sheared version of Figures 1(c) and 1(d),
and images (a) and (b) show this function in time domain. Again we
notice that the direction, in which ψ0.3,−0.5,0 is stretched, it precisely the
direction perpendicular to the direction, in which ̂ψ0.3,−0.5,0 is stretched.

(a) (b)

(c) (d)

Fig. 1. This figure shows the function ψ0.3,0,0 with ψ defined by (1), (2), and

(3) in the time ((a) and (b)) and frequency ((c) and (d)) domain.

Now suppose a distribution f has a singularity in y-direction at the
origin. For simplicity, we consider the linear singularity f = δ(x2 − px1),
p ∈ R \ {0}. Then the Fourier transform satisfies f̂ = δ(ξ2 + 1

pξ1). Notice
that ξ2 = − 1

pξ1 is the line perpendicular to the line x2 = px1 along which f
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(a) (b)

(c) (d)

Fig. 2. This figure shows the function ψ0.3,−0.5,0 with ψ defined by (1), (2),
and (3) in the time ((a) and (b)) and frequency ((c) and (d)) domain.

is stretched. The analyzing elements of the shearlet system have “maximal
overlap” with f̂ , if ψ̂ast is stretched along the line ξ2 = − 1

pξ1. But this
is precisely the case if s = − 1

p , which can be seen in Figures 2(c) and
2(d) for the case p = 2. Hence the shearlet coefficients 〈f, ψa,−0.5,0〉,
i.e., those shearlet coefficients with the correct t and for which the shear
parameter attains the slope of the line perpendicular to the direction of
the singularity, would give a strong response.

We remark that we entirely focussed on the role of the shear param-
eter s, and thereby the role of the translation parameter t was ignored.
However, the translation parameter has the same interpretation as for the
Continuous Wavelet Transform, i.e., it detects the location of singularities.

§3. From Shearlets back to Wavelets

To obtain a relation between the 2-dimensional Continuous Wavelet
Transform and and the Continuous Shearlet Transform, we have to slightly
modify the definition of the wavelet transform by using anisotropic scaling
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instead isotropic scaling as follows. We define the (anisotropic) Continu-
ous Wavelet Transform of some f ∈ L2(R2) by

W̃ψf : R+ × R2 → C, W̃ψf(a, t) = 〈f, TtDAaψ〉.

Notice that this definition is indeed a special case of the Continuous
Wavelet Transform as introduced in Section 2.1.

To formulate the simple connection between shearlets and sheared
anisotropic wavelets, we find it convenient to employ the notation (g ◦
Ss)(x) = g(Ssx) for g ∈ L2(R2) and s ∈ R.

Lemma 1. Let ψ ∈ L2(R2). Then, for all f ∈ L2(R2) and (a, s, t) ∈ S,

SHψf(a, s, t) = W̃ψ◦S−1
s/
√

a
f(a, t) (4)

and
SHψf(a, s, t) = W̃ψ(f ◦ Ss)(a, S−1

s t). (5)

Proof: Let f ∈ L2(R2) and (a, s, t) ∈ S be given. To prove (4), we first
observe that

A−1
a S−1

s =
( 1

a 0
0 1√

a

)(
1 −s
0 1

)
=

( 1
a − s

a
0 1√

a

)
= S−1

s√
a
A−1

a .

From this we can deduce that

SHψf(a, s, t) = a−
3
4

∫

R2
f(x)ψ(A−1

a S−1
s (x− t)) dx

= a−
3
4

∫

R2
f(x)ψ(S−1

s/
√

a
A−1

a (x− t)) dx

= W̃ψ◦S−1
s/
√

a
f(a, t).

Relation (5) follows from

SHψf(a, s, t) = a−
3
4

∫

R2
f(x)ψ(A−1

a S−1
s (x− t)) dx

= a−
3
4

∫

R2
f(Ssx) ψ(A−1

a (x− S−1
s t)) dx

= W̃ψ(f ◦ Ss)(a, S−1
s t).

Equation (5) connects the Continuous Shearlet Transform to the 2-
dimensional Continuous Wavelet Transform and gives a geometric inter-
pretation of the Continuous Shearlet Transform and, in particular, of the
action of the shear parameter: first, a shear Ss is applied to the function
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f , then the anisotropic Continuous Wavelet Transform with scale param-
eter a is performed for the result and finally the transformed function is
sheared back by means of S−1

s . Note that the mutually inverse shear oper-
ations do not annihilate each other since the wavelet transform in between
is anisotropic and thus can be understood as “enhancing” the shear in one
direction. This observation can be used to implement an FFT–based Fast
Continuous Shearlet Transform by using the identity

̂SHψf(a, s, ·)(ξ) = a
3
4 f̂(ξ) ψ̂(AaST

s ξ), (6)

which follows by taking the Fourier transform of (5). So once more we can
make use of the FFT to accelerate the computation of a convolution–like
structure which is at least as old as the FFT itself and has been used in
various applications, even the fast multiplication of integers [15]; a nice
introduction on how to apply the FFT in a more general framework can
be found in [8].

The unavoidable technical details like discrete choice of scales and
shears as well as an implementation of such a Fast Continuous Shearlet
Transform will be elaborated in a forthcoming paper.
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