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ABSTRACT

The shearlet transform is a recent sibling in the family obrgetric image representations that provides a traditional
multiresolution analysis combined with a multidirectibaaalysis. In this paper, we present a fast DFT-based apalys
and synthesis scheme for the 2D discrete shearlet transfOun scheme conforms to the continuous shearlet theory to
high extent, provides perfect numerical reconstructigm t@ floating point rounding errors) in a non-iterative scleem
and is highly suitable for parallel implementation (e.g.G# GPU). We show that our discrete shearlet representation
is also a tight frame and the redundancy factor of the transie around 2.6, independent of the number of analysis
directions. Experimental denoising results indicate thatransform performs the same or even better than seedaited
multiresolution transforms, while having a significantyer redundancy factor.
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1. INTRODUCTION

In many applications, such as image restoration, imagengtagction, compressed sensing, it is often assumed that th
“ideal” unknown image (i.e., the image that we want to reepisesparse in a given basis (or frame). Sparseness means
that within this basis (or frame), the image can be represeby a number of nonzero coefficients that is much smaller
than the number of pixels in the image. Many techniques relthe fact that such a “generic” sparsifying basis is already
available, or at least will become available in the future.

Finding a good sparsifying representation for a generalscte# images, such as photographic images, is far from
trivial. This is because images can be seen as a consequeaamplicated image formation process, consisting of
physical processes (e.qg., light reflection, absorption btenials, light scattering in fluids etc.) which can be chtedzed
by high-levelfeatures, such as geometry, deterministic patterns fEtumaterial properties, lighting models, ... On
the other hand, images are subject to camera distortionb, asiout-of-focussedness (blur), lens distortion andtuero
imperfections, ... Taking all these factors into accountildyield overcomplicated and non-practical models.

Therefore, most authors focus the design of sparsifyingstams on exploitindow-levelinformation, such as corre-
lations between pixel intensities. One important classtaanultiresolution transforms, which represent the imiage
natural way by successively adding detail information ihsaquent refinement steps. Classical tools such as thesFouri
transform and the short-time Fourier transform do not alloevfine localization of image features in space, and it is not
possible to determine thexactposition of object edges. The discrete wavelet transfortW{Ip offers a compromise
between spatial and frequency localization, however,rdrestorm is unable to optimally adapt to non-horizontal @n-n
vertical edge directions. For this reason, there has rgcbaén a lot of interest in multiresolution representagidimat
better adapt to the edge directions, i.e., transforms thaferform anultidirectionalanalysis. A few examples are: steer-
able pyramidsg, dual-tree complex wavelefsMarr-like wavelet pyramids,2-D (log) Gabor transform$? contourlet$
ridgelets! 8 wedgelets, bandelets? brushletst! curveletst? phaseletd? directionlet$* and surfacelets

The shearlettransfornt®18is one of the most recent siblings in this family. This tramsf provides a traditional
multiresolution analysis (such as the DWT) combined with @dtigirectional analysis in arbitrary number of directn
and is an optimally sparse representation for cartoonititegesd® (more specifically, piecewise smooth functions with
discontinuities along smooth curves). While most existinglementations of the discrete transform are eithertitexar
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Figure 1. (a) Frequency tiling of the shearlet transfornrapézoidal shaped tiles (wedgé8)(b) Individual component&; («x) and
W (wy/ax) of the Fourier transform of the shearlet mother function gredselection of orientations by the paramétefc) Partitioning
of the 2-D frequency plane into two coné3; @ndC,) and a squareds) at the origin.

have a rather high redundancy factor, in this paper, we ptesgovel discrete transform that is self-invertible (Whiceans
that the backward transform is simply the adjoint transfothat has a non-iterative analysis and synthesis schende a
low redundancy factor. Our scheme also offers a number ef dtiteresting features, such as alias-freeness, (appade)
shift-invariance and the ability to control the spatial gag of the basis functions.

The remainder of this paper is organized as follows: in $eciwe give a general overview of the shearlet transform.
In Section 3, we present our DFT-based analysis and systhelseme for computing and inverting the shearlet transform
To illustrate the effectiveness of our approach, some teaué given in Section 4. Finally, Section 5 concludes thjsap.

2. BACKGROUND INFORMATION: THE SHEARLET TRANSFORM

The shearlet transform is a generalization of the wavedetsfiorm with basis functions well localized$pace frequency
andorientation Let ;| (X) denote the shearlet basis functions (or in the remaindeplgioalled shearlets), then the
shearlet coefficients of an imadéx) € L? (R?) are given by*9-2°

Wikt = (f, @jk1) = /]R , f(X)@j k1 (X)dX, (1)

wherej € Z, k € Z andl € Z? denote the scale, orientation and the spatial locatiopgwively. The idea behind the shearlet
transform is to combine geometry and multiscale anafl/sishearlets are formed by dilating, shearing and translating
mother shearlet functiop € L? (R?), as follows:

Wiki(x) = |detA|j/2w(Bkij—I), )

whereA andB are invertible 2< 2 matrices, with deB = 1 and Wherqd_etA|j/2 is a normalization factor (such that
|Wixi|| = lw]). The shearlet functions are subject to a composite difatioand geometrical transfor8k. In this paper,
we will use the following transform matrices:

A:(gg) and B:(é 1) 3)

Here,A is an anisotropic scaling matrix (in thedirection, the scaling is twice the scaling in thirection) andB is a
geometric shear matrix. These transforms are illustratétdgure 2.

The shearlet mother function is a composite wavelet, whiatefined in the Fourier transform domain as:

wiw) = a0 (o). @)
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Figure 2. Geometric transformations used by the sheadesform (a) anisotropic dilation (matri). (b) shear (matriB).

with w = [ewy wy], W1(wx) the Fourier transform of a wavelet function aifd(wy) a compactly supported bump function:

Wa(wy) #0 @ e [-1.1] (5)

By equation (5), the mother shearlet function is bandlichitea hourglass-shaped region of the 2D frequency spectrum:
W(w) # 0 |wy| < |wd. (6)

Noting that the basis functions are obtained through sheatglilations of the mother shearlet function, this banitéch
property also directly controls the directional sendijivof the basis functions: a shear operation on the motherkdte
function results in a shift in the argument(w, / w):

W((B*T)kw) =W () W2 (%—k), 7)

and correspondingly (see Figure 1(b‘)3:((B*T)kw) #0& wy € ko — |wy, kawx+ |wy]]. Hence the orientation of the
basis function is controlled by the shear paramki{see Figure 1(b)). Similarly, the anisotropic scaling et

WA ) =W (47 Twy) W, (ZJ%) : (8)

We see that changing the scale paramgtegsults in a scaling in the argument of the waveélgt but it also affects

the support otV (A*Jw): y (A*Jw) £0«< 2 ]wy] < |ax|. More concretely, when the scale parameter is increased by
1 (corresponding to a finer scale), the bandwidth of the $bteiarhalved. If we further require that the set of shearlet
functions cover the complete frequency spectrum, we catyese that we will requiréwice as manghearlet functions

Yj k) (x). Consequently, the number of analysis orientatidmsblesat every finer scale. Let us now consider composite
dilation and shearing:

W ((B’T)kA*jw) £0e ay e [277 (kax—|ax]), 273 (ko + |oad])] - 9)

The last part of the equation corresponds to a wedge-shagézhrin frequency space. Consequently, by changing the
shear and scale parametki@nd j, arbitrary wedges of the frequency plane can be selected.

So far, we considered vertical shearing and anisotropatidil, with a larger scaling factor in the x-direction than i
the y-direction. To obtain a more equal treatment of thezwomtial and vertical directions, the frequency plane is lgua
split into two cones (for the high frequency band) and a sgaarthe origin (for the low frequency band), as shown in
Figure 1(c):

G = {(wow) eR?[|a > an, @y <|wl},
C = {(ww)eR?|ay|>an, @y > |wl},
Cs = {(wnw)eR?|wx <, |w|<a}.

with ap the maximal frequency of the center squ@ge To treat horizontal and vertical frequencies equallydneC,, the
x- and y-components for need to be switched before applying geometric transforrhis domes down to the following
dilation and shear matrices in both cones:

AL = <g g),&(é i) (coneC;) and A2<g 2),Bz<1 (1)) (coneC,). (10)
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Figure 3. Overview of the analysis algorithm. OF-FFT is tdd-érequency DFT implemented using fast Fourier transfo(RFTs).

Consequently, the horizontal cone is dilated horizontaylfactor 4 per scale, while the vertical cone is dilatedizalty
by factor 4. In the following, we make the distinction betwdmoth cones explicit by assigning different shearlet basis
functions to each cong= 1, 2:

¢y () = [detAq| 2@ (BEALX 1), (12)

wherew® (x,y) = w(x,y) andy@(x,y) = @(y,x). The resulting frequency tiling is illustrated in Figurea)(

3. THE NOVEL ANALYSIS AND SYNTHESIS ALGORITHM
3.1 Overview

Because the shearlet basis functions are bandlimited aectl¢idefined in frequency domain (equation (4)), we wili-fo
mulate both the analysis and synthesis algorithm in the D&ffiain’ This implementation was first proposed in tf,
however in this paper we will present a number of refinemedts. discrete implementation is also different from other
proposed implementatiohs?Cin the sense that it is specifically designed as tight frantéaiwis important when perform-

ing multiscale thresholding) in a way that the transforme-gwvertible, withoutrequiring an iterative analysis/synthesis
scheme. Our implementation also differs in the sense tlttdimates not only between scales, but also between orien-
tations, resulting in the possibility for a very low redundg. The analysis algorithm consist of the following stegse(
Figure 3):

Compute the odd-frequency discrete Fourier transformDBT) of the input image.

Analyze the OF-DFT of the input image using a Laplaciarapyid-like filter bank (with subsampling).
Apply a directional filter bank to the resulting subbands.

(Optionally) shear the subbands such that the spectral content liesint@trectangle in frequency domain.

Perform a one-dimensional subsampling to get rid of theareing zero-DFT coefficients.

o o~ w N PF

Compute the inverse OF-DFT of every resulting subband.

The synthesis algorithm will simply reverse each step ofialysis algorithm, starting from sté@) to step(2). We will
now discuss every step somewhat more in detail.

*Implementation in spatial domain is also possible, thi$ mélthe topic of a future paper.



3.2 Multiscale and multidirectional filter bank

The transform is conceived as a cascade of linear filtersdDiT domain. The concept of analysis and synthesis filter
bank is shown in Figure 4. First, an isotropic wavelet fitg( «x ) and complementary scaling filtelp(cy ) are used, where

o =maxX(|wy, ]wy\). Herewy, w, denote 2-D continuous frequency coordinatasis the pseudo-radius in a pseudo-polar
coordinate system (see 8. For simplicity of the notations, we will stick to DiscreTéme Fourier Transform (DTFT)
definitions, transition to the equivalent formulas in theTD#omain can be obtained by substitutiag = 2rmm/M and

ox = 2rmm/N, where(m, n) are discrete frequency coordinates.

In essence, for this filter bank, any wavelet filter can be ysette the analysis scheme can be implemented as a
Laplacian pyramid! However, we advice to use orthogonal filters in order to hatighd frame?? On the other hand,
the Laplacian pyramid can be made free of aliasing if the Veaidters are bandlimited and if the decimation factors are
adapted to the bandwidths of the filters. An example of filtdmsying these conditions are Meyer wavelet filte¥s:

1 lax| < % 0 lax| < 7
Ho(wy) = cos(gv(‘”—n‘—l)) 1<lal <3 and Go(wr)= sin(’—gv(‘”—‘r‘r”—l)) 1<lal <3, (12)
0 else 1 else

with the corresponding synthesis filters equal to the aimafjiters C:o(wr) = Go(w), Ho(a),) = Ho(awy) and withv(x)
defined by:
-2 0<x<1

v(x)=1<0 x<0
1 1<x
Filters for subsequent (coarser) scales are defined reelyrbiased on the relation:
Hj(w) = Hj-1(@)Ho@ @) and Gj(w)=Hj-1(@)Go(dw), j=12,.. (13)

Next, directional analysis is performed using a set of aagolimp filtersR(3):

0 3 <0
sin(Zv(Z)) 0<8<2a
R®)=<1 2a<9<m (14)
cos(Fv(Z5r)) m<9 <m+2a
0 else

wherea € [0,711/2] is a parameter that controls the transition bandwidth oftiearlet filters in the angular direction, or
more precisely, the overlap between the frequency suppbttgo neighboring directional shearlet filters. For= 0 we
obtain “ideal” angular bump filters, which usually suffeoffin ringing artifacts (which is a limiting factor in many ptaal
applications). The ringing can be reduced by malkinsomewhat larger. Far = 11/2, every shearlet filter shares half of
its frequency support with a “neighboring” shearlet filter.

Based on these definitions, the resulting filters for dietki= 1, ...,Kj and scalg are given by:

Gj(w,)Rga—i—kn— El+ %; %; k=1,...K;/2

Gj(w)R (a+km— (142 ™) k=Kj/2+1,...K;

Gk (e, wy) = { (15)
where the rangek = 1,...,K;/2 andk = K;/2+1,...,K| respectively correspond to con€s andC; in Figure 1(c).

. 2
The superscript 'un’ denotes the fact that the filters areoumalized: the conditiorzfil‘ ‘J-’F((a),)‘ = ]Gj(w,)]z is not
satisfied near the bisectors of the frequency plane (be= +wy). Therefore, we normalize the fiIteGﬁ‘j‘((a&,wy) as

follows:
K
G0 &) = G0 ) |G ()] / kzl‘el;j‘k(m)‘z_ (16)
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Figure 4. Shearlet analysis and synthesis filter bank.

Finally, note how the paramet&; controls the number of directions in each scale. To confarthé continuous
shearlet transform (Section 2), we chod§e= Kq-27! (j =0,1,2,...), such that the number of orientations doubles at
every finer scale.

3.3 Subsampling in frequency domain

Subsampling in frequency domain (or equivalently in spat@main) - without special care - may destroy the perfect
reconstruction (PR) and self-invertibility propertiegioé transform as we will show next. In the following we wilkduss
the subsampling of thehearletcoefficients in the DTFT domain. By changing the filters, thheaions also apply to the
scaling coefficients.

Recall that subsampling a real-valued filtered image witfFDX (wy, wy) G k(wx, wy) by an integer factob gives:

Dy-1Dx-1  /omm 2mm 2mm 2mm
Ykl wy) = ZOX(—+wX,—y+w,) Gjk (—+wx,—y+ax/)- (17)
n—=

/DxDy HZO Dy D Dx D

This formula basically expresses the creation of aliasingjes of the spectrurX(wy, wy): the larger the subsampling
factor, the more aliasing copies that are being createdalecof the real-valuedness of the input image, the follgwin
conjugate symmetry relationship holds:

X (@, @) = X(—6x, — @) (18)
Things become slightly more complicated when considetigydiscretization of the frequency space, which is needed
when computing the DFT. Leb, = 2rim/M andwy = 2rm/N, then the conjugate symmetry property becomes:
2rm 2mm

n,m) = , = -nM-m), m=1.M-1n=1.. N-1
X’ X N M X'(N M 1,.M-1 1,...,N-1 19

Note that for the Nyquist frequency bins (correspondingite M/2 and/om = N/2), the conjugate symmetry property

takes the following form:
, (N _ , M\
D{X <—2,m = 0O|X"(n, > =0. (20)

e ()]l (uon)] o) ele(ent)]



whereld -] andO[] are respectively the real and imaginary part of a complexbarmOne of the main issues is that the
conjugate symmetry property ¥{ w, wy) (21) is destroyed by applying the filt€ (e, wy), becaus&y(wy, w,) does not
satisfy (21). Consequently, by upsampling in the backweadsform, the original image can not be recovered anymore!
Fortunately, this issue only affects the Nyquist frequecagfficients, hence the influence on the reconstructiorr &ro
fairly limited. Nevertheless, we considered this problesnsgnificant for a number of applications (e.g. compressed
sensing), therefore we present three solutions:

o Afirst solution is to enforce filters satisfying (21) by paily sacrificing direction selectivity. This can be achidve
by choosingﬁ/j,k (%,m) = G’j,k (n, %) =1/,/K;. This approach was taken in the implementation of the dbéera
pyramid transforn; 2 however, because the bandlimitedness of the shearlesfittdost, this solution makes it
impossible to apply the angular subsampling in §@potherwise PR would be lost).

« A second solution is to disregard the Nyquist frequency fiziefts and to choose; k(3.m) = G (n¥) =0
after extracting and storing the Nyquist frequency coedfits separately. This results in a very small (but overall,
negligible) amount of extra redundancy of the (final) shetaransform coefficients. Because it is not so clear how
the corresponding processing of these Nyquist coefficisintaild be done in practical applications (because the
corresponding basis functions are not localized), thigtgmi is considered to be rather dirty and tricky.

e Consider again the conjugate symmetry condition (19). Ifwviée these conditions for alh andn as a linear
system, we see that the problem arises winenN —n or m= M — m, resulting in a different equation (i.e. (21))
than for other combinations @¢f,n). The main idea is now to shift the frequency grids such tHahalequations
have the same number of unknowns. Therefore, we use thevinadiscretization of the frequency coordinates:
wy = 2r(m+ 0.5)/M and w, = 2r(n+ 0.5)/N. This corresponds to using an even-time odd-frequency 6F;D
which is defined as follows:

1 M—-1N-1 i/ 27m’
X'(n,m) = WZ x(n n’{)exp( 2rin (n+0.5) — m (m+0.5))
on'=
M_IN_1 min’  mim ) mn'n - mm'm
= exp( )xn,rrf}exp( ),
mzmz[ i os( Ay
which is nothing more than the DFT of the pre-modulated irnaqe(—% — —) x(n',m’). Here,i is the imagi-

nary unit. For the OF-DFT, the conjugate symmetry propeetydmes much simpler:

X'(nm=XN-1-nM-1-m), m=0,..M-1n=0,...N—1 (22)

More importantly, there is no integén, m) for which (n,m) = (N—1—n,M — 1 —m), hence conjugate symmetry
does notimpose real-valuedness on any of the OF-DFT caftii Consequently, it suffices to evaltﬁ'ﬁ(a&, wy)
with the shifted frequency coordinates in order to ensure PR '

For this reason, we stick to the OF-DFT representation ofrqaut image and the remaining operations (shearing) will be
implemented in this domain as well.

3.4 Digital shearing in the OF-DFT domain

The next step in the transform is to shear the filtered suldhauth that the spectral content of each subband is codtaine
in one central rectangle, as illustrated in sf8pof Figure 3. Because of the bandlimitedness of the shedttas{imost of

the OF-DFT coefficients will be zero and can be disregardg@fiplying a proper decimation afterwards, see Subsection
3.5), without loss of information. The digital shearingpsts optional and can be skipped if aliasing is not a major
problem. First, we will explain how the digital shearing isitg performed. Therefore, note that this operation caityeas
be expressed in the DTFT domain (omitting the scaling matrigr simplicity):

Zj k(w) =Yjk ((B*T)Sj‘k w) ) (23)



wheres; \ is the shearing factor for the specific orientaticand scalg. For our frequency partitioning, we use the shearing
factorss; k = sj ki, /2 = [~ (Kj — 2) + 4(k—1)] /Kj, with k= 1,...,Kj/2. Let us now consider shearing in codge(see

. . . -T sj.k _ 1 0
Figure 1(c)). This shear matrix {8; ' )" = ( sk 1

OF-DFT parametrization of frequency space gives:

) , such thaiZ; y (awy, wy) =Y k(awx, wy — sj kax). Applying the

| . _ 0.5— Ms;x(n+0.5)/N
n+05 m+05—jx29i9§)=%k(hmtf5, m+ Edn+ )/). (24)

ijk(n,m):Yj,k(er N- , 21T M 2

BecauseMs; x(n+ 0.5)/N is generally not an integeZ}‘k(n, m) can not directly be related to the OF—DF/rk(n,m) =
Y, k(2m(n+0.5) /N, 2r(m+0.5) /M), hence a fractional delay is required. A simple workaroundl be to round the
fractional delayMk(n+ 0.5)/N to the nearest integer, however we found that this deteesihe spatial localization of
the shearlet basis functions. Instead, several methodwailable for performing a fractional deldy.26 In this paper, we
will use bandlimited interpolation (also used in, e.g.2febecause the bandlimited interpolation filter has a petieear
phase response. The formula can be given in terms of thehiitikerneloy, v (n):

sin (1 (m-n'-Ms; k(n+0.5)/N))
ZJ (n.m) WZY (1) P (1 WZY m Msin(n((mm)/l\;l-sj,k(n—kO.5)/N))’ (25)

and the practical implementation can be done using a DFTg&luecy-axis (or similarly along thew-axis, for the cone

Cy). Let us denote by_ (1) andY «(n,1) the DFT transforms of respectlve‘iy (n,m) andZ « (n,m) along the second
dimension {v,), then the mterpolatlon simply amounts to a modulatiorhefphase of the complex coefficients:

| o<l
M—1-1 ¥<|

1

Zj(n,l) = (n I)exp(z—sJ k(n+0. 5)r|> with | = {

M
2

\ (26)

<
<
Afterwards, an inverse DFT along the same dimension is LusedtainZ}lk(n, m) again.

3.5 Fractional one-dimensional subsampling

The angular filtering step in the filter bank from Subsectiéhe®tuallyincreaseshe redundancy factor of the transform by
afactorK; per scale for square images. Luckily, by the bandlimitednéthe filtersG; «(ax, wy) the redundancy factor can
be made approximatelyndependent oKj. This allows analyzing images with a large number of dimwi shearlet filters
without demanding extra redundancy. Note that by definjtioa filtersG; \(2r1(n+0.5) /N, 2r(m+0.5) /M) are zero out-
side their frequency support. The maximal size of the fregusupport in the vertical directiondg= 2 [M(1+ a /m) /K].*

In the next step, we will subsample the resulting subbandsfhgtorM /q=M/ (2[M(1+ a/m)/K]) in the vertical direc-
tion. Remark that this subsampling factor is not necessiatiéget Hence, an adaptation of (17) is needed. The fractional
subsampling operation can be defined in the OF-DFT domaiolkasvk:

Zj (nm 0<m<M

, 27
0 else 27)

Ujk(nm Z Z «(n,m+m’qg) with Zik(n,m):{
r'd’:foo

which is equivalent to (17) for integé/qg. Here, the factor\/> is an energy normalization constant, this constant is
required in order to have a tight frame.

Itis easy to check thaljfyk(n, m) satisfies the conjugate symmetry property (22):

q
UJk(N 1-nM—-1-m) m{/z JkN 1-nM-1-m-nm'g) = Z ijnm+an) Ujk(nm)

Tin the sense that a close upper bound for the redundancy fzatde written that is independentkf.
*Here we rounded upward to be a multiple of two in order to have even DFT dimensi



Finally, we need to check if PR can be achieved with this suipdiag and digital shearing scheme. Therefore, we express
that the shearing and subsampling does not affect the PRlfvehieady held for the filter bank in Subsection 3.2). To
undo the subsampling of (27), it is sufficient to divide by ttemalization constany/q/M and to multiply the obtained

frequency response with the synthesis fi(Eéf\yq((n, m). Hence, for obtaining PR, this result should be equivalzapiplying

both the analysis fiIteG/j,k(n, m) and synthesis fiIteG'j’k(n, m) to the input image. This directly leads to the following

equation:
M—Z———
\ /an,k(nv mUj (n,m) =

By substituting (27) and (25), the left hand side of (28) bees:

Gjx(n,m)

‘ZX/(n, m). (28)

M—F——— - te M-l / /
\/ an,k(na mUj k(n,m) = G;  (n,m) m(/Z, rrZoGj,k(na m)X (0, 1) P g (1)

2, +00 M-1 — ,
\ X(nm+ 3 S [ mGu(n.m)pmmqm ()] X ().

li
= ’Gj,k(nv m)
m’'=—o

m'=0
m—m'+qm’£0
(29)

Because of the bandlimitedness of the filters, we haveGﬁ[Q(m, m)G/jyk(n, m') =0 if [Im—m| > q/2. Consequently, the

second term in (29) becomes zer@ifm, (N) # 0 < —q/2 < m < q/2 with mg fixed. Hence PR imposesfiaite support
t0 Py (N) (in terms ofm andnt). We will now consider the following scenarios:

¢ No digital shearing(Subsection 3.4) is used. This is formally equivalent tongsine Dirac-kernepy,y(n) =
d(m—m). Since this kernel has a finite support, PR is guaranteed.

¢ Digital shearing withrounding-to-nearest integesf the shifts. This can be expressed using the keppel (n) =
o(m—m' —roundMs; «(n+0.5)/N)). Again, PR is guaranteed. As mentioned before, this is naical gption
since the spatial localization of the basis functions idigtly destroyed.

o Digital shearing witHfractional shifts The Dirichlet kernepy, v (n) = M:I':((:((afn;;w,\;‘"S(n;:fgg;'/)&))
: — -5, .

of lengthM > g. However, this means that PR is not possible! To work arobisdaroblem, we use a trick: we split
the fractional shifts into an integer part and a fractioratp

has a support

Ms; k(n+0.5)/N = [Ms; x(n+0.5)/N| + frac(Ms; x(n+0.5) /N) . (30)

As shown above, PR holds for shifting with the integer pax. have overall PR, we perform the fractional shift
frac(Msj’k(nJr 0.5)/N) using a‘modified” Dirichlet kernel designed for a support of sizeThis gives:

+oo i ’_ .
()= S S(mvr- [Msj(n+ 05)/N)) s_ln(rr(r’dl mfrac(MS-J,k(n—i—O.S)/N)q/M)) | (\rrf’-m| - 9)
e . gsin (7 (m’-mfrac(Ms; (n+0.5)/N) g/M) /q) 2

(31)
wherel (x) is the indicator function. Ag — M, this modified Dirichlet kernel approaches the originai€itet kernel
from (25), see Figure 5. The novel digital shearing operatian efficiently be implemented as follows: 1) shear
the input DFT coefficientsfj"k(n,nf) using an integer shift (which is very fast). 2) The obtaindelxoefficients
will be supported in a rectangle of sikkex qin frequency domain (or of sizgx M for coneC,). Perform a DFT of
lengthg along the second dimension (or first dimension for dBsje 3) Apply the phase modulation step from (26).
4) Perform the inverse DFT of lengthalong the second dimension.

So we have shown that PR is possible in all three of the abamasivs. The redundancy factor of the resulting transform
can then easily be checked: for a fixed sdalthe redundancy is:

Rj =Kj ([M(1+a/m)/Kj| /M+ [N(1+a/m)/Kj| /N) = 2(1+a/m),
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Figure 5. lllustration of the Dirichlet kernel (solid linajd its modified version according to (31) fipe= 6 (dashed line). The larger the
interval, the better the modified version will approximate original kernel.

which is (approximately, due to the ceiling operation) ipeledent of the number of orientatioKs, and proportional
to the angular transition bandwidth of the shearlet fili@rsThe overall redundancy factor the transform is equal to the
redundancy factor of a Laplacian pyramid with extra reduogi&; applied to the highpass outputs of the pyramid:

R Rs 8

R:R1+Z+l—6+...z§(1+%)

Since 0< a < /2, we find that the redundancy factor of transform is in theyea8/3 = 2.66... <R < 16/3=5.33....

3.6 Properties of the transform
It can be shown that the transform, implemented using theeahlgorithm, has the following properties:

e The transform is completehhgt invariant for displacements perpendicular to the shearing directidns means
that a shift in the input image in that particular directi@sults in the same shift in the subbands of the transform.
On the other hand, shifts in other directions depend orsttearing matrixfor the considered subband. In any
case, shifts can be compensated if necessary. E.g., sorieatipps exploit inter-dependencies both spatially and
between multiresolution coefficients at different scalgshtations. By knowing how shifts in the input image affec
the transform subbands, local analysis is greatly fatéita For digital curvelet transforms, this is not trivial
because the translation lattices are not fixed. The shegatetform offers an improvement here. If the input image
is shifted by(An,Am), then the subband at scglend orientatiork is shifted by:

A\ i1 sk An Y\ ip-s, [ An
(Am>_A (o 1 )(Am)_A B Jk(Am)

We remark that, in case of using the modified Dirichlet kereglation (31), strictly speaking, the shift-invariance
property is lost. This can be alleviated by slightly inciagg) (e.g. by 10%) to compensate the differences between
the modified Dirichlet kernel and the true Dirichlet kernel.

e It can be shown that the basis elements constittitgha (Parseval) frameThe shearlet basis is called a tight frame,
if for all f € ¢2(IR?) the following equality holds:

|2 = il 2 32
[ 1] %(j%lle,kﬂ +Z|V||>v (32)

whereag is a constant and whekg is the scaling coefficient at positidn The tight frame condition states that the
image energy in spatial domain and in transform domain isle@y to a known constant factor).

e The size of the spatial support of the shearlet basis fungtideys th@arabolic scaling law Because the shearlet
filters are bandlimited, it is obvious that the basis funtsi@re infinitely supported. Nevertheless, because of the
relative fast decay of the functions, it is useful to put s@sémate on the size of the functions (for example the size
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Figure 6. BLS-GSM denoising results for several multiratioh transforms.

of the support that covers a certain percentage of the totalg of the basis function). To do so, we will consider
a shearlet supported in the central rectangle in c&nat scalej. The sizes of the supports of other shearlets can
then be obtained by scaling, shearing and/or rotating #eedfi the support of this single basis function. First, we
note that the height of the support of the function is prapogl to 4, due to anisotropic scaling. On the other hand,
we compute the vertical bandwidth of the shearlet funct®tha distance between the center transition frequencies.
This vertical bandwidth is given bya; = %(1+ 4) (see (8) and (15)). The width of the support of the function is

then inversely proportional tio;:
widthD 2IKo(1+a/m)™' and heightl4)

Consequently, the parabolic scaling law is found as follotsight~ width? (1+ %) /Ko. By this property, the
basis functions are elongated, which is a useful propertydpresenting object edges in images. The directional
selectivity of the transform can be controlled by specidyity, the number of orientations for the finest scale of
the transform. Furthermore, which controls the bandwidth of the shearlet filters, boftuiences the redundancy
factor of the transform and the support size of the basistfoms.

These properties are particularly useful for applicatithregd make use of this transform. For example, in the context o
image denoising, it has been found that shift-invariantdfarms consistently yield better performance (e.g., imgeof
image artifacts) than transforms that are not shift-irasatri Also, a Parseval relationship between the spatial doaral
shearlet domain coefficients ensures that a “small” enesgyection on the shearlet coefficients (e.g., due to shgakee-
sults in a correspondingly small correction of pixel intéies. Finally, the freedom in choosing the number of oréions

Ko for the finest scale and the parameateallows to trade-off the directional adaptivity propertashe transform versus
the redundancy factor.

4. RESULTS

In Figure 6, we show denoising results for the removal of@tatry white Gaussian noise from images, using three @iffer
multiresolution transforms: 1) the decimated DWT with 5lesaand using the Daubechies’ wavelet with two vanishing
moments, 2) the full steerable pyramid transform (F$S¥Rjth 5 scales and 8 orientations and 3) the shearlet tramsfor
with 3 scales, 16 orientations for the finest sc#lg=£ 16) anda = 11/2. In each transform domain, we used the BLS-GSM
estimator with the same parameters as iR&@fithout inclusion of a parent coefficient in the local ndigithood vector),
and finally we obtained the denoised image by applying thé&ward transform. It can be seen that the shearlet domain
denoising method better reconstructs the edges and kaestiiuctures in the images, leading to a very high visualityua
with a relatively low redundancy factor (compared to the PEOn an Intel Core 2 Quad Q9550 processor at 2.83 GHz,
the (single threaded) Matlab implementation of the forwamd backward shearlet transform each take about 4.1 sec. for
processing a 512 512 grayscale image. We also partially implemented ouragugron a GPU (i.e., skipping ste@s-(5)

of Figure 3) using CUDA and the cuFFT library. Processingetirfor a NVidia GTX560 Ti GPU are, on average, 32 msec
for the forward transform and 33 msec for the backward t@nsf
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Figure 7. BLS-GSM denoising results for several multiraoh transforms.

5. CONCLUSION

In this paper, we presented a fast DFT-based analysis anldesys scheme for the 2D discrete shearlet transform. This
scheme implements the shearlet transform in such a wayttisatonsistent to the continuous shearlet theory and offers
number of mathematical properties, such as supportingisb#riance, being a Parseval frame and parabolic scafitigeo
basis functions. The transform has a low redundancy fa2tért6 5.2, fully controlled by the paramete}, independent

of the number of analysis directions.
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