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ABSTRACT

The shearlet transform is a recent sibling in the family of geometric image representations that provides a traditional
multiresolution analysis combined with a multidirectional analysis. In this paper, we present a fast DFT-based analysis
and synthesis scheme for the 2D discrete shearlet transform. Our scheme conforms to the continuous shearlet theory to
high extent, provides perfect numerical reconstruction (up to floating point rounding errors) in a non-iterative scheme
and is highly suitable for parallel implementation (e.g. FPGA, GPU). We show that our discrete shearlet representation
is also a tight frame and the redundancy factor of the transform is around 2.6, independent of the number of analysis
directions. Experimental denoising results indicate thatthe transform performs the same or even better than several related
multiresolution transforms, while having a significantly lower redundancy factor.

Keywords: multiresolution transforms, wavelets, shearlets

1. INTRODUCTION

In many applications, such as image restoration, image reconstruction, compressed sensing, it is often assumed that the
“ideal” unknown image (i.e., the image that we want to recover) is sparse in a given basis (or frame). Sparseness means
that within this basis (or frame), the image can be represented by a number of nonzero coefficients that is much smaller
than the number of pixels in the image. Many techniques rely on the fact that such a “generic” sparsifying basis is already
available, or at least will become available in the future.

Finding a good sparsifying representation for a general class of images, such as photographic images, is far from
trivial. This is because images can be seen as a consequence of a complicated image formation process, consisting of
physical processes (e.g., light reflection, absorption by materials, light scattering in fluids etc.) which can be characterized
by high-levelfeatures, such as geometry, deterministic patterns (textures), material properties, lighting models, ... On
the other hand, images are subject to camera distortions, such as out-of-focussedness (blur), lens distortion and/or other
imperfections, ... Taking all these factors into account would yield overcomplicated and non-practical models.

Therefore, most authors focus the design of sparsifying transforms on exploitinglow-levelinformation, such as corre-
lations between pixel intensities. One important class arethe multiresolution transforms, which represent the imagein a
natural way by successively adding detail information in subsequent refinement steps. Classical tools such as the Fourier
transform and the short-time Fourier transform do not allowthe fine localization of image features in space, and it is not
possible to determine theexactposition of object edges. The discrete wavelet transform (DWT) offers a compromise
between spatial and frequency localization, however, the transform is unable to optimally adapt to non-horizontal or non-
vertical edge directions. For this reason, there has recently been a lot of interest in multiresolution representations that
better adapt to the edge directions, i.e., transforms that also perform amultidirectionalanalysis. A few examples are: steer-
able pyramids,1 dual-tree complex wavelets,2 Marr-like wavelet pyramids,3 2-D (log) Gabor transforms,4,5 contourlets,6

ridgelets,7,8 wedgelets,9 bandelets,10 brushlets,11 curvelets,12 phaselets,13 directionlets14 and surfacelets.15

The shearlettransform16–18 is one of the most recent siblings in this family. This transform provides a traditional
multiresolution analysis (such as the DWT) combined with a multidirectional analysis in arbitrary number of directions
and is an optimally sparse representation for cartoon-likeimages16 (more specifically, piecewise smooth functions with
discontinuities along smooth curves). While most existingimplementations of the discrete transform are either iterative or
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Figure 1. (a) Frequency tiling of the shearlet transform in trapezoidal shaped tiles (wedges).16 (b) Individual componentsΨ1(ωx) and
Ψ2(ωy/ωx) of the Fourier transform of the shearlet mother function andthe selection of orientations by the parameterk. (c) Partitioning
of the 2-D frequency plane into two cones (C1 andC2) and a square (C3) at the origin.

have a rather high redundancy factor, in this paper, we present a novel discrete transform that is self-invertible (which means
that the backward transform is simply the adjoint transform), that has a non-iterative analysis and synthesis scheme, and a
low redundancy factor. Our scheme also offers a number of other interesting features, such as alias-freeness, (approximate)
shift-invariance and the ability to control the spatial support of the basis functions.

The remainder of this paper is organized as follows: in Section 2 we give a general overview of the shearlet transform.
In Section 3, we present our DFT-based analysis and synthesis scheme for computing and inverting the shearlet transform.
To illustrate the effectiveness of our approach, some results are given in Section 4. Finally, Section 5 concludes this paper.

2. BACKGROUND INFORMATION: THE SHEARLET TRANSFORM

The shearlet transform is a generalization of the wavelet transform with basis functions well localized inspace, frequency
andorientation. Let ψ j ,k,l(x) denote the shearlet basis functions (or in the remainder simply called shearlets), then the
shearlet coefficients of an imagef (x) ∈ L2

(

R
2
)

are given by:19,20

wj ,k,l =
〈

f ,ψ j ,k,l
〉

=

ˆ

R2
f (x)ψ j ,k,l(x)dx, (1)

wherej ∈Z, k∈Z andl ∈Z
2 denote the scale, orientation and the spatial location, respectively. The idea behind the shearlet

transform is to combine geometry and multiscale analysis:17 shearlets are formed by dilating, shearing and translatinga
mother shearlet functionψ ∈ L2

(

R
2
)

, as follows:

ψ j ,k,l(x) = |detA| j/2 ψ
(

BkA jx− l
)

, (2)

whereA and B are invertible 2× 2 matrices, with detB = 1 and where|detA| j/2 is a normalization factor (such that
∥

∥ψ j ,k,l
∥

∥= ‖ψ‖). The shearlet functions are subject to a composite dilation A j and geometrical transformBk. In this paper,
we will use the following transform matrices:

A =

(

4 0
0 2

)

and B =

(

1 1
0 1

)

. (3)

Here,A is an anisotropic scaling matrix (in thex-direction, the scaling is twice the scaling in they-direction) andB is a
geometric shear matrix. These transforms are illustrated in Figure 2.

The shearlet mother function is a composite wavelet, which is defined in the Fourier transform domain as:

Ψ(ω) = Ψ1 (ωx)Ψ2

(

ωy

ωx

)

, (4)



(a) (b)
Figure 2. Geometric transformations used by the shearlet transform (a) anisotropic dilation (matrixA). (b) shear (matrixB).

with ω = [ωx ωy], Ψ1(ωx) the Fourier transform of a wavelet function andΨ2(ωy) a compactly supported bump function:

Ψ2(ωy) 6= 0⇔ ωy ∈ [−1,1]. (5)

By equation (5), the mother shearlet function is bandlimited in a hourglass-shaped region of the 2D frequency spectrum:

Ψ(ω) 6= 0⇔
∣

∣ωy
∣

∣< |ωx| . (6)

Noting that the basis functions are obtained through shearsand dilations of the mother shearlet function, this bandlimited
property also directly controls the directional sensitivity of the basis functions: a shear operation on the mother shearlet
function results in a shift in the argument ofΨ2(ωy/ωx):

Ψ
(

(

B−T)k ω
)

= Ψ1 (ωx)Ψ2

(

ωy

ωx
− k

)

, (7)

and correspondingly (see Figure 1(b)):Ψ
(

(

B−T
)k ω

)

6= 0⇔ ωy ∈ [kωx−|ωx| ,kωx+ |ωx|] . Hence the orientation of the

basis function is controlled by the shear parameterk (see Figure 1(b)). Similarly, the anisotropic scaling leads to:

Ψ
(

A− jω
)

= Ψ1
(

4− jωx
)

Ψ2

(

2 j ωy

ωx

)

. (8)

We see that changing the scale parameterj results in a scaling in the argument of the waveletΨ1, but it also affects
the support ofΨ

(

A− jω
)

: Ψ
(

A− jω
)

6= 0 ⇔ 2 j
∣

∣ωy
∣

∣ < |ωx| . More concretely, when the scale parameter is increased by
1 (corresponding to a finer scale), the bandwidth of the shearlet is halved. If we further require that the set of shearlet
functions cover the complete frequency spectrum, we can easily see that we will requiretwice as manyshearlet functions
ψ j ,k,l(x). Consequently, the number of analysis orientationsdoublesat every finer scale. Let us now consider composite
dilation and shearing:

Ψ
(

(

B−T
)k

A− jω
)

6= 0⇔ ωy ∈
[

2− j (kωx−|ωx|) ,2− j (kωx+ |ωx|)
]

. (9)

The last part of the equation corresponds to a wedge-shaped region in frequency space. Consequently, by changing the
shear and scale parametersk and j, arbitrary wedges of the frequency plane can be selected.

So far, we considered vertical shearing and anisotropic dilation, with a larger scaling factor in the x-direction than in
the y-direction. To obtain a more equal treatment of the horizontal and vertical directions, the frequency plane is usually
split into two cones (for the high frequency band) and a square at the origin (for the low frequency band), as shown in
Figure 1(c):

C1 =
{

(ωx,ωy) ∈ R
2| |ωx| ≥ ω0,

∣

∣ωy
∣

∣≤ |ωx|
}

,

C2 =
{

(ωx,ωy) ∈ R
2|
∣

∣ωy
∣

∣≥ ω0,
∣

∣ωy
∣

∣> |ωx|
}

,

C3 =
{

(ωx,ωy) ∈ R
2| |ωx|< ω0,

∣

∣ωy
∣

∣< ω0
}

.

with ω0 the maximal frequency of the center squareC3. To treat horizontal and vertical frequencies equally, in coneC2, the
x- and y-components forx need to be switched before applying geometric transforms. This comes down to the following
dilation and shear matrices in both cones:

A1 =

(

4 0
0 2

)

, B1 =

(

1 1
0 1

)

(coneC1) and A2 =

(

2 0
0 4

)

, B2 =

(

1 0
1 1

)

(coneC2). (10)
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Figure 3. Overview of the analysis algorithm. OF-FFT is the odd-frequency DFT implemented using fast Fourier transforms (FFTs).

Consequently, the horizontal cone is dilated horizontallyby factor 4 per scale, while the vertical cone is dilated vertically
by factor 4. In the following, we make the distinction between both cones explicit by assigning different shearlet basis
functions to each coned = 1,2:

ψ(d)
j ,k,l(x) = |detAd| j/2ψ(d)

(

Bk
dA j

dx− l
)

, (11)

whereψ(1)(x,y) = ψ(x,y) andψ(2)(x,y) = ψ(y,x). The resulting frequency tiling is illustrated in Figure 1(a).

3. THE NOVEL ANALYSIS AND SYNTHESIS ALGORITHM

3.1 Overview

Because the shearlet basis functions are bandlimited and directly defined in frequency domain (equation (4)), we will for-
mulate both the analysis and synthesis algorithm in the DFT domain.∗ This implementation was first proposed in ref,18

however in this paper we will present a number of refinements.Our discrete implementation is also different from other
proposed implementations17,20in the sense that it is specifically designed as tight frame (which is important when perform-
ing multiscale thresholding) in a way that the transform is self-invertible,without requiring an iterative analysis/synthesis
scheme. Our implementation also differs in the sense that itdecimates not only between scales, but also between orien-
tations, resulting in the possibility for a very low redundancy. The analysis algorithm consist of the following steps (see
Figure 3):

1. Compute the odd-frequency discrete Fourier transform (OF-DFT) of the input image.

2. Analyze the OF-DFT of the input image using a Laplacian pyramid-like filter bank (with subsampling).

3. Apply a directional filter bank to the resulting subbands.

4. (Optionally) shear the subbands such that the spectral content lies in a central rectangle in frequency domain.

5. Perform a one-dimensional subsampling to get rid of the remaining zero-DFT coefficients.

6. Compute the inverse OF-DFT of every resulting subband.

The synthesis algorithm will simply reverse each step of theanalysis algorithm, starting from step6 to step 1 . We will
now discuss every step somewhat more in detail.

∗Implementation in spatial domain is also possible, this will be the topic of a future paper.



3.2 Multiscale and multidirectional filter bank

The transform is conceived as a cascade of linear filters in the DFT domain. The concept of analysis and synthesis filter
bank is shown in Figure 4. First, an isotropic wavelet filterG0(ωr) and complementary scaling filterH0(ωr) are used, where
ωr =max(|ωx| ,

∣

∣ωy
∣

∣). Hereωx,ωy denote 2-D continuous frequency coordinates.ωr is the pseudo-radius in a pseudo-polar
coordinate system (see ref18). For simplicity of the notations, we will stick to DiscreteTime Fourier Transform (DTFT)
definitions, transition to the equivalent formulas in the DFT domain can be obtained by substitutingωy = 2πm/M and
ωx = 2πn/N, where(m,n) are discrete frequency coordinates.

In essence, for this filter bank, any wavelet filter can be used, since the analysis scheme can be implemented as a
Laplacian pyramid.21 However, we advice to use orthogonal filters in order to have atight frame.22 On the other hand,
the Laplacian pyramid can be made free of aliasing if the wavelet filters are bandlimited and if the decimation factors are
adapted to the bandwidths of the filters. An example of filtersobeying these conditions are Meyer wavelet filters:23

H0(ωr) =















1 |ωr |< π
4

cos
(

π
2 v
(

4|ωr |
π −1

))

π
4 ≤ |ωr | ≤ π

2

0 else

and G0(ωr) =















0 |ωr |< π
4

sin
(

π
2 v
(

4|ωr |
π −1

))

π
4 ≤ |ωr | ≤ π

2 ,

1 else

(12)

with the corresponding synthesis filters equal to the analysis filters G̃0(ωr) = G0(ωr), H̃0(ωr) = H0(ωr) and withv(x)
defined by:

v(x) =











3x2−2x3 0≤ x≤ 1

0 x< 0

1 1< x

Filters for subsequent (coarser) scales are defined recursively based on the relation:

H j(ωr) = H j−1(ωr)H0(4
jωr) and G j(ωr) = H j−1(ωr)G0(4

jωr), j = 1,2, ... (13)

Next, directional analysis is performed using a set of angular bump filtersR(ϑ):

R(ϑ) =































0 ϑ < 0

sin
(π

2 v
( ϑ

2α
))

0≤ ϑ ≤ 2α
1 2α ≤ ϑ < π
cos
(π

2 v
(ϑ−π

2α
))

π ≤ ϑ ≤ π +2α
0 else

(14)

whereα ∈ [0,π/2] is a parameter that controls the transition bandwidth of theshearlet filters in the angular direction, or
more precisely, the overlap between the frequency supportsof two neighboring directional shearlet filters. Forα = 0 we
obtain “ideal” angular bump filters, which usually suffer from ringing artifacts (which is a limiting factor in many practical
applications). The ringing can be reduced by makingα somewhat larger. Forα = π/2, every shearlet filter shares half of
its frequency support with a “neighboring” shearlet filter.

Based on these definitions, the resulting filters for directionk= 1, ...,K j and scalej are given by:

Gun
j ,k(ωx,ωy) =







G j(ωr)R
(

α + kπ −
(

1+ ωy
ωx

)

πK j
4

)

k= 1, ...,K j/2

G j(ωr)R
(

α + kπ −
(

1+ ωx
ωy

)

πK j
4

)

k= K j/2+1, ...,K j

(15)

where the rangesk = 1, ...,K j/2 andk = K j/2+ 1, ...,K j respectively correspond to conesC1 andC2 in Figure 1(c).

The superscript ’un’ denotes the fact that the filters are unnormalized: the condition∑
K j
k=1

∣

∣

∣
Gun

j ,k (ωr)
∣

∣

∣

2
=
∣

∣G j(ωr)
∣

∣

2
is not

satisfied near the bisectors of the frequency plane (i.e.ωx = ±ωy). Therefore, we normalize the filtersGun
j ,k(ωx,ωy) as

follows:

G j ,k(ωx,ωy) = Gun
k (ωx,ωy)

∣

∣G j(ωr)
∣

∣/

√

√

√

√

K j

∑
k=1

∣

∣

∣
Gun

j ,k (ωr)
∣

∣

∣

2
. (16)
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Figure 4. Shearlet analysis and synthesis filter bank.

Finally, note how the parameterK j controls the number of directions in each scale. To conform to the continuous
shearlet transform (Section 2), we chooseK j = K0 · 2− j ( j = 0,1,2, ...), such that the number of orientations doubles at
every finer scale.

3.3 Subsampling in frequency domain

Subsampling in frequency domain (or equivalently in spatial domain) - without special care - may destroy the perfect
reconstruction (PR) and self-invertibility properties ofthe transform as we will show next. In the following we will discuss
the subsampling of theshearletcoefficients in the DTFT domain. By changing the filters, the equations also apply to the
scaling coefficients.

Recall that subsampling a real-valued filtered image with DTFT X(ωx,ωy)G j ,k(ωx,ωy) by an integer factorD gives:

Yj ,k(ωx,ωy) =
1

√

DxDy

Dy−1

∑
m=0

Dx−1

∑
n=0

X

(

2πm
Dx

+ωx,
2πn
Dy

+ωy

)

G j ,k

(

2πm
Dx

+ωx,
2πn
Dy

+ωy

)

. (17)

This formula basically expresses the creation of aliasing copies of the spectrumX(ωx,ωy): the larger the subsampling
factor, the more aliasing copies that are being created. Because of the real-valuedness of the input image, the following
conjugate symmetry relationship holds:

X(ωx,ωy) = X(−ωx,−ωy) (18)

Things become slightly more complicated when considering the discretization of the frequency space, which is needed
when computing the DFT. Letωy = 2πm/M andωx = 2πn/N, then the conjugate symmetry property becomes:

X′(n,m) = X

(

2πn
N

,
2πm
M

)

= X′(N−n,M−m), m= 1, ...,M−1, n= 1, ...,N−1. (19)

Note that for the Nyquist frequency bins (corresponding tom= M/2 and/orn= N/2), the conjugate symmetry property
takes the following form:

ℑ
[

X′
(

N
2
,m

)]

= ℑ
[

X′
(

n,
M
2

)]

= 0. (20)

ℜ
[

X′
(

N
2
,m

)]

= ℜ
[

X′
(

N
2
,M−m

)]

and ℜ
[

X′
(

n,
M
2

)]

= ℜ
[

X′
(

N−n,
M
2

)]

(21)



whereℜ [·] andℑ [·] are respectively the real and imaginary part of a complex number. One of the main issues is that the
conjugate symmetry property ofY(ωx,ωy) (21) is destroyed by applying the filterGk(ωx,ωy), becauseGk(ωx,ωy) does not
satisfy (21). Consequently, by upsampling in the backward transform, the original image can not be recovered anymore!
Fortunately, this issue only affects the Nyquist frequencycoefficients, hence the influence on the reconstruction error is
fairly limited. Nevertheless, we considered this problem as significant for a number of applications (e.g. compressed
sensing), therefore we present three solutions:

• A first solution is to enforce filters satisfying (21) by partially sacrificing direction selectivity. This can be achieved
by choosingG

′
j ,k

(

N
2 ,m

)

= G
′
j ,k

(

n, M
2

)

= 1/
√

K j . This approach was taken in the implementation of the steerable

pyramid transform,1,24 however, because the bandlimitedness of the shearlet filters is lost, this solution makes it
impossible to apply the angular subsampling in step5 (otherwise PR would be lost).

• A second solution is to disregard the Nyquist frequency coefficients and to chooseG
′
j ,k

(

N
2 ,m

)

= G
′
j ,k

(

n, M
2

)

= 0
after extracting and storing the Nyquist frequency coefficients separately. This results in a very small (but overall,
negligible) amount of extra redundancy of the (final) shearlet transform coefficients. Because it is not so clear how
the corresponding processing of these Nyquist coefficientsshould be done in practical applications (because the
corresponding basis functions are not localized), this solution is considered to be rather dirty and tricky.

• Consider again the conjugate symmetry condition (19). If wewrite these conditions for allm and n as a linear
system, we see that the problem arises whenn = N−n or m= M−m, resulting in a different equation (i.e. (21))
than for other combinations of(m,n). The main idea is now to shift the frequency grids such that all the equations
have the same number of unknowns. Therefore, we use the following discretization of the frequency coordinates:
ωy = 2π(m+ 0.5)/M andωx = 2π(n+ 0.5)/N. This corresponds to using an even-time odd-frequency OF-DFT,
which is defined as follows:

X′(n,m) =
1√
MN

M−1

∑
m′=0

N−1

∑
n′=0

x(n′,m′)exp

(

−2π in′

N
(n+0.5)− 2π im′

M
(m+0.5)

)

=
1√
MN

M−1

∑
m′=0

N−1

∑
n′=0

[

exp

(

−π in′

N
− π im′

M

)

x(n′,m′)

]

exp

(

−π in′n
N

− π im′m
M

)

,

which is nothing more than the DFT of the pre-modulated imageexp
(

− π in′
N − π im′

M

)

x(n′,m′). Here,i is the imagi-

nary unit. For the OF-DFT, the conjugate symmetry property becomes much simpler:

X′(n,m) = X′(N−1−n,M−1−m), m= 0, ...,M−1, n= 0, ...,N−1. (22)

More importantly, there is no integer(n,m) for which (n,m) = (N−1−n,M−1−m), hence conjugate symmetry
does not impose real-valuedness on any of the OF-DFT coefficients. Consequently, it suffices to evaluateG

′
j ,k(ωx,ωy)

with the shifted frequency coordinates in order to ensure PR!

For this reason, we stick to the OF-DFT representation of ourinput image and the remaining operations (shearing) will be
implemented in this domain as well.

3.4 Digital shearing in the OF-DFT domain

The next step in the transform is to shear the filtered subbands, such that the spectral content of each subband is contained
in one central rectangle, as illustrated in step5 of Figure 3. Because of the bandlimitedness of the shearlet filters, most of
the OF-DFT coefficients will be zero and can be disregarded (by applying a proper decimation afterwards, see Subsection
3.5), without loss of information. The digital shearing step is optional and can be skipped if aliasing is not a major
problem. First, we will explain how the digital shearing is being performed. Therefore, note that this operation can easily
be expressed in the DTFT domain (omitting the scaling matrixA for simplicity):

Z j ,k(ω) =Yj ,k

(

(

B−T)sj,k ω
)

, (23)



wheresj ,k is the shearing factor for the specific orientationk and scalej. For our frequency partitioning, we use the shearing
factorssj ,k = sj ,k+K j /2 = [−(K j −2)+4(k−1)]/K j , with k = 1, ...,K j/2. Let us now consider shearing in coneC1 (see

Figure 1(c)). This shear matrix is
(

B−T
1

)sj,k =

(

1 0
−sj ,k 1

)

, such thatZ j ,k(ωx,ωy) =Yj ,k(ωx,ωy−sj ,kωx). Applying the

OF-DFT parametrization of frequency space gives:

Z
′
j ,k (n,m) =Yj ,k

(

2π
n+0.5

N
,2π

m+0.5
M

− sj ,k2π
n+0.5

N

)

=Yj ,k

(

2π
n+0.5

N
,2π

m+0.5−Msj ,k(n+0.5)/N

M

)

. (24)

BecauseMsj ,k(n+ 0.5)/N is generally not an integer,Z
′
j ,k (n,m) can not directly be related to the OF-DFTY

′
j ,k(n,m) =

Yj ,k(2π(n+0.5)/N,2π(m+0.5)/M), hence a fractional delay is required. A simple workaround would be to round the
fractional delayMk(n+0.5)/N to the nearest integer, however we found that this deteriorates the spatial localization of
the shearlet basis functions. Instead, several methods areavailable for performing a fractional delay.25,26 In this paper, we
will use bandlimited interpolation (also used in, e.g., ref27) because the bandlimited interpolation filter has a perfectlinear
phase response. The formula can be given in terms of the Dirichlet kernelρm,m′ (n):

Z
′
j ,k (n,m) =

M−1

∑
m′=0

Y
′
j ,k(n,m

′)ρm,m′ (n) =
M−1

∑
m′=0

Y
′
j ,k(n,m

′)
sin
(

π
(

m-m′-Msj ,k(n+0.5)/N
))

M sin
(

π
(

(m-m′)/M-sj ,k(n+0.5)/N
)) , (25)

and the practical implementation can be done using a DFT along theωy-axis (or similarly along theωx-axis, for the cone
C2). Let us denote byZ

′′
j ,k(n, l) andY

′′
j ,k(n, l) the DFT transforms of respectivelyY

′
j ,k(n,m) andZ

′
j ,k (n,m) along the second

dimension (ωy), then the interpolation simply amounts to a modulation of the phase of the complex coefficients:

Z
′′
j ,k (n, l) =Y

′′
j ,k(n, l)exp

(

2π i
N

sj ,k(n+0.5)r l

)

with r l =

{

l 0≤ l < M
2

M−1− l M
2 ≤ l < M

(26)

Afterwards, an inverse DFT along the same dimension is used to obtainZ
′
j ,k (n,m) again.

3.5 Fractional one-dimensional subsampling

The angular filtering step in the filter bank from Subsection 3.2 actuallyincreasesthe redundancy factor of the transform by
a factorK j per scale for square images. Luckily, by the bandlimitedness of the filtersG j ,k(ωx,ωy) the redundancy factor can
be made approximately† independent ofK j . This allows analyzing images with a large number of directional shearlet filters
without demanding extra redundancy. Note that by definition, the filtersG j ,k(2π(n+0.5)/N,2π(m+0.5)/M)are zero out-
side their frequency support. The maximal size of the frequency support in the vertical direction isq=2⌈M(1+α/π)/K⌉.‡
In the next step, we will subsample the resulting subbands bya factorM/q=M/(2⌈M(1+α/π)/K⌉) in the vertical direc-
tion. Remark that this subsampling factor is not necessarily integer! Hence, an adaptation of (17) is needed. The fractional
subsampling operation can be defined in the OF-DFT domain as follows:

U
′
j ,k(n,m) =

√

q
M

+∞

∑
m′′=−∞

Z̃
′′
j ,k(n,m+m′′q) with Z̃

′′
j ,k(n,m) =

{

Z
′′
j ,k(n,m) 0≤ m< M

0 else
, (27)

which is equivalent to (17) for integerM/q. Here, the factor
√

q
M is an energy normalization constant, this constant is

required in order to have a tight frame.

It is easy to check thatU
′
j ,k(n,m) satisfies the conjugate symmetry property (22):

U
′
j ,k(N−1−n,M−1−m) =

√

q
M

+∞

∑
m′′=−∞

Z̃
′′
j ,k(N−1−n,M−1−m−m′′q) =

√

q
M

+∞

∑
m′′=−∞

Z̃
′′
j ,k(n,m+m′′q) =U

′
j ,k(n,m).

†in the sense that a close upper bound for the redundancy factor can be written that is independent ofK j .
‡Here we roundedq upward to be a multiple of two in order to have even DFT dimensions.



Finally, we need to check if PR can be achieved with this subsampling and digital shearing scheme. Therefore, we express
that the shearing and subsampling does not affect the PR (which already held for the filter bank in Subsection 3.2). To
undo the subsampling of (27), it is sufficient to divide by thenormalization constant

√

q/M and to multiply the obtained

frequency response with the synthesis filterG
′
j ,k(n,m). Hence, for obtaining PR, this result should be equivalent to applying

both the analysis filterG
′
j ,k(n,m) and synthesis filterG

′
j ,k(n,m) to the input image. This directly leads to the following

equation:
√

M
q

G
′
j ,k(n,m)U

′
j ,k(n,m) =

∣

∣

∣
G

′
j ,k(n,m)

∣

∣

∣

2
X

′
(n,m). (28)

By substituting (27) and (25), the left hand side of (28) becomes:
√

M
q

G
′
j ,k(n,m)U

′
j ,k(n,m) = G

′
j ,k(n,m)

+∞

∑
m′′=−∞

M−1

∑
m′=0

G
′
j ,k(n,m

′)X
′
(n,m′)ρm+m′′q,m′ (n)

=
∣

∣

∣
G

′
j ,k(n,m)

∣

∣

∣

2
X

′
(n,m)+

+∞

∑
m′′=−∞

M−1

∑
m′=0

m−m′+qm′′ 6=0

[

G
′
j ,k(n,m)G

′
j ,k(n,m

′)ρm+m′′q,m′ (n)
]

X
′
(n,m′).

(29)

Because of the bandlimitedness of the filters, we have thatG
′
j ,k(n,m)G

′
j ,k(n,m

′) = 0 if |m−m′| > q/2. Consequently, the
second term in (29) becomes zero ifρm,m0(n) 6= 0⇔−q/2≤ m< q/2 with m0 fixed. Hence PR imposes afinite support
to ρm,m′(n) (in terms ofm andm′). We will now consider the following scenarios:

• No digital shearing(Subsection 3.4) is used. This is formally equivalent to using the Dirac-kernelρm,m′(n) =
δ (m−m′). Since this kernel has a finite support, PR is guaranteed.

• Digital shearing withrounding-to-nearest integerof the shifts. This can be expressed using the kernelρm,m′(n) =
δ (m−m′ − round(Msj ,k(n+0.5)/N)). Again, PR is guaranteed. As mentioned before, this is not a good option
since the spatial localization of the basis functions is partially destroyed.

• Digital shearing withfractional shifts. The Dirichlet kernelρm,m′(n) =
sin(π(m−m′−Msj,k(n+0.5)/N))

M sin(π((m−m′)/M−sj,k(n+0.5)/N))
has a support

of lengthM > q. However, this means that PR is not possible! To work around this problem, we use a trick: we split
the fractional shifts into an integer part and a fractional part:

Msj ,k(n+0.5)/N=
⌊

Msj ,k(n+0.5)/N
⌋

+ frac
(

Msj ,k(n+0.5)/N
)

. (30)

As shown above, PR holds for shifting with the integer part. To have overall PR, we perform the fractional shift
frac

(

Msj ,k(n+0.5)/N
)

using a“modified” Dirichlet kernel designed for a support of sizeq. This gives:

ρm,m′(n) =
+∞

∑
m′′=−∞

δ (m-m′-
⌊

Msj ,k(n+0.5)/N
⌋

)
sin
(

π
(

m′′-m-frac
(

Msj ,k(n+0.5)/N
)

q/M
))

qsin
(

π
(

m′′-m-frac
(

Msj ,k(n+0.5)/N
)

q/M
)

/q
) I
(

∣

∣m′′-m
∣

∣≤ q
2

)

(31)
whereI(x) is the indicator function. Asq→M, this modified Dirichlet kernel approaches the original Dirichlet kernel
from (25), see Figure 5. The novel digital shearing operation can efficiently be implemented as follows: 1) shear
the input DFT coefficientsY

′
j ,k(n,m

′) using an integer shift (which is very fast). 2) The obtained DFT coefficients
will be supported in a rectangle of sizeN×q in frequency domain (or of sizeq×M for coneC2). Perform a DFT of
lengthq along the second dimension (or first dimension for coneC2). 3) Apply the phase modulation step from (26).
4) Perform the inverse DFT of lengthq along the second dimension.

So we have shown that PR is possible in all three of the above scenarios. The redundancy factor of the resulting transform
can then easily be checked: for a fixed scalej, the redundancy is:

Rj = K j
(⌈

M(1+α/π)/K j
⌉

/M+
⌈

N(1+α/π)/K j
⌉

/N
)

≈ 2(1+α/π),
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Figure 5. Illustration of the Dirichlet kernel (solid line)and its modified version according to (31) forq= 6 (dashed line). The larger the
interval, the better the modified version will approximate the original kernel.

which is (approximately, due to the ceiling operation) independent of the number of orientationsK j , and proportional
to the angular transition bandwidth of the shearlet filtersα. The overall redundancy factor the transform is equal to the
redundancy factor of a Laplacian pyramid with extra redundancyRj applied to the highpass outputs of the pyramid:

R= R1+
R2

4
+

R3

16
+ ...≈ 8

3

(

1+
α
π

)

Since 0≤ α ≤ π/2, we find that the redundancy factor of transform is in the range 8/3= 2.66...≤ R≤ 16/3= 5.33....

3.6 Properties of the transform

It can be shown that the transform, implemented using the above algorithm, has the following properties:

• The transform is completely shift invariant for displacements perpendicular to the shearing direction. This means
that a shift in the input image in that particular direction results in the same shift in the subbands of the transform.
On the other hand, shifts in other directions depend on theshearing matrixfor the considered subband. In any
case, shifts can be compensated if necessary. E.g., some applications exploit inter-dependencies both spatially and
between multiresolution coefficients at different scales/orientations. By knowing how shifts in the input image affect
the transform subbands, local analysis is greatly facilitated. For digital curvelet transforms,12 this is not trivial
because the translation lattices are not fixed. The shearlettransform offers an improvement here. If the input image
is shifted by(∆n,∆m), then the subband at scalej and orientationk is shifted by:

(

∆n′

∆m′

)

= A− j
(

1 −sj ,k

0 1

)(

∆n
∆m

)

= A− jB−sj,k

(

∆n
∆m

)

We remark that, in case of using the modified Dirichlet kernel, equation (31), strictly speaking, the shift-invariance
property is lost. This can be alleviated by slightly increasing q (e.g. by 10%) to compensate the differences between
the modified Dirichlet kernel and the true Dirichlet kernel.

• It can be shown that the basis elements constitute atight (Parseval) frame. The shearlet basis is called a tight frame,
if for all f ∈ ℓ2(R2) the following equality holds:

‖ f‖2 = a0

(

∑
j ,k,l

∣

∣wj ,k,l
∣

∣

2
+∑

l
|vl |2

)

, (32)

wherea0 is a constant and wherevl is the scaling coefficient at positionl. The tight frame condition states that the
image energy in spatial domain and in transform domain is equal (up to a known constant factor).

• The size of the spatial support of the shearlet basis functions obeys theparabolic scaling law. Because the shearlet
filters are bandlimited, it is obvious that the basis functions are infinitely supported. Nevertheless, because of the
relative fast decay of the functions, it is useful to put someestimate on the size of the functions (for example the size



(a) Original image (b) noisy (σ = 25) (c) wavelets (d) FSP (e) shearlets (α = π/2)
PSNR=20.16dB PSNR=30.73dB PSNR=31.60dB PSNR=31.50dB

RED=1 RED=18.66 RED=5.66
Figure 6. BLS-GSM denoising results for several multiresolution transforms.

of the support that covers a certain percentage of the total energy of the basis function). To do so, we will consider
a shearlet supported in the central rectangle in coneC1 at scalej. The sizes of the supports of other shearlets can
then be obtained by scaling, shearing and/or rotating the size of the support of this single basis function. First, we
note that the height of the support of the function is proportional to 4j , due to anisotropic scaling. On the other hand,
we compute the vertical bandwidth of the shearlet function as the distance between the center transition frequencies.
This vertical bandwidth is given by:b j =

2− j

K j
(1+ α

π ) (see (8) and (15)). The width of the support of the function is

then inversely proportional tob j :

width ∝ 2 jK0 (1+α/π)−1 and height∝ 4 j

Consequently, the parabolic scaling law is found as follows: height≈ width2(1+ α
π
)

/K0. By this property, the
basis functions are elongated, which is a useful property for representing object edges in images. The directional
selectivity of the transform can be controlled by specifying K0, the number of orientations for the finest scale of
the transform. Furthermore,α, which controls the bandwidth of the shearlet filters, both influences the redundancy
factor of the transform and the support size of the basis functions.

These properties are particularly useful for applicationsthat make use of this transform. For example, in the context of
image denoising, it has been found that shift-invariant transforms consistently yield better performance (e.g., in terms of
image artifacts) than transforms that are not shift-invariant. Also, a Parseval relationship between the spatial domain and
shearlet domain coefficients ensures that a “small” energy correction on the shearlet coefficients (e.g., due to shrinkage) re-
sults in a correspondingly small correction of pixel intensities. Finally, the freedom in choosing the number of orientations
K0 for the finest scale and the parameterα allows to trade-off the directional adaptivity propertiesof the transform versus
the redundancy factor.

4. RESULTS

In Figure 6, we show denoising results for the removal of stationary white Gaussian noise from images, using three different
multiresolution transforms: 1) the decimated DWT with 5 scales and using the Daubechies’ wavelet with two vanishing
moments, 2) the full steerable pyramid transform (FSTP)28 with 5 scales and 8 orientations and 3) the shearlet transform
with 3 scales, 16 orientations for the finest scale (K0 = 16) andα = π/2. In each transform domain, we used the BLS-GSM
estimator with the same parameters as in ref28 (without inclusion of a parent coefficient in the local neighborhood vector),
and finally we obtained the denoised image by applying the backward transform. It can be seen that the shearlet domain
denoising method better reconstructs the edges and line-like structures in the images, leading to a very high visual quality
with a relatively low redundancy factor (compared to the FSTP). On an Intel Core 2 Quad Q9550 processor at 2.83 GHz,
the (single threaded) Matlab implementation of the forwardand backward shearlet transform each take about 4.1 sec. for
processing a 512×512 grayscale image. We also partially implemented our approach on a GPU (i.e., skipping steps4 - 5
of Figure 3) using CUDA and the cuFFT library. Processing times for a NVidia GTX560 Ti GPU are, on average, 32 msec
for the forward transform and 33 msec for the backward transform.



(a) Original image (b) noisy (σ = 50) (c) wavelets (d) FSP (e) shearlets (α = π/2)
PSNR=14.14dB PSNR=24.79dB PSNR=25.62dB PSNR=26.36dB

RED=1 RED=18.66 RED=5.66
Figure 7. BLS-GSM denoising results for several multiresolution transforms.

5. CONCLUSION

In this paper, we presented a fast DFT-based analysis and synthesis scheme for the 2D discrete shearlet transform. This
scheme implements the shearlet transform in such a way that it is consistent to the continuous shearlet theory and offersa
number of mathematical properties, such as supporting shift invariance, being a Parseval frame and parabolic scaling of the
basis functions. The transform has a low redundancy factor (2.6 to 5.2, fully controlled by the parameterα), independent
of the number of analysis directions.
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