
Article

Have I seen this place before? A fast and robust loop
detection and correction method for 3D Lidar SLAM

Michiel Vlaminck1, Hiep Luong1, and Wilfried Philips1

1 Department of Telecommunications and Information Processing, Ghent University, imec, Belgium
* Correspondence: michiel.vlaminck@ugent.be; Tel.: +32-473413613
† Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

Academic Editor: name
Version November 21, 2018 submitted to Sensors

Abstract: In this paper we present a complete loop detection and correction system developed for1

data originated from lidar scanners. Regarding detection, we propose to combine a global point2

cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective3

way. The registration method can deal with point clouds that are largely deviating in orientation4

while improving the efficiency over existing techniques. In addition, we accelerated the computation5

of the global point cloud matcher by a factor 2 to 4, exploiting the GPU to its maximum. Experiments6

demonstrated that our combined approach is more reliable to detect loops in lidar data compared7

to other point cloud matchers as it leads to better precision-recall trade-offs: for nearly 100% recall,8

we gain up to 7% in precision. Finally, our loop correction algorithm is leading to an improvement9

by a factor 2 on the average and median pose error while at the same time only needing a handful10

seconds to complete.11

Keywords: Loop detection; Lidar; Point Clouds.12

1. Introduction13

Mapping the environment using mobile mapping robots is a topic that by now has been studied14

for almost two decades. Still, it can be considered as a highly active research area as the ultimate goal15

of livelong mapping is far from reached. In the ideal case, livelong mapping comprises a solution in16

which the map of the world is continuously updated at a pace equalling the one at which the world17

is changing itself. During the past years many techniques have been introduced that can perform18

incremental mapping using both regular cameras and depth sensing technologies based on either19

structured light, ToF or pulsed lidar. As novel and more accurate sensors with increasing resolutions20

are continuing to come to the market, the performance of these mapping solutions is still increasing.21

However, even tough these sensing technologies are producing more accurate depth measurements,22

they are still far from perfect and as a result, the proposed solutions suffer - and will continue to suffer23

- from the drift problem. These drift errors could be corrected by incorporating sensing information24

taken from places that have been visited before. This requires both algorithms that can recognize25

revisited areas as well as algorithms that can close the loop and propagate errors back in the pose26

graph. Unfortunately, existing solutions for loop detection and closure for 3D data are computationally27

demanding. In this work, we focus on speeding up both loop detection and loop correction in scanning28

lidar data. We propose a technique that is able to automatically detect and correct loops in 3D lidar29

data in a highly efficient way, thereby exploiting the power of modern GPU’s.30

Submitted to Sensors, pages 1 – 16 www.mdpi.com/journal/sensors

http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Version November 21, 2018 submitted to Sensors 2 of 16

2. Related work31

Techniques to conduct loop detection in 3D data can roughly be categorized into three main32

classes: local keypoint detection and matching in combination with a Bag-of-Words (BoW) approach,33

global descriptor matching and a remainder category based on geometric primitives or whole objects.34

The first class is generally detecting salient keypoints in a point cloud, computing signatures for35

these keypoint positions, building a BoW and finally matching them in different scans [1]. Many36

keypoint detectors have been proposed in literature, such as the intrinsic shape signatures (ISS) [2],37

Harris 3D [3], Sift 3D [4], NARF [5], as well as many descriptors such as spin images [6], SHOT [7],38

etc. However, despite this abundance of choice, the detection of distinctive keypoints with high39

repeatability remains a challenging problem in 3D point cloud analysis. One way of dealing with this40

lack of high repeatability is by using global descriptors which usually come in the form of histograms:41

the fast point feature histogram (FPFH) [8] or Viewpoint Feature Histogram (VFH) [9] are a few examples.42

Recently, He et. al. [10] presented a novel global 3D descriptor for loop detection, named multiview43

2D projection (M2DP), that is very promising regarding both accuracy and efficiency. However, this44

global descriptor matching along with its local counterpart continues to suffer from respectively the45

lack of descriptive power or the struggle with invariance. As a result, many loops are not detected or46

too many false positives are present which on its turn imposes a restriction on fast and reliable loop47

closure. More recently, researchers tend towards the application of convolutional neural networks48

(CNNs) to learn both the feature descriptors as well as the metric for matching them in a unified49

way [11–14]. A severe limitation of these methods on the other hand is that they need a tremendous50

amount of training data. Moreover, they don’t generalize well when trained and applied on data51

with varying topographies or acquired under different conditions. A model that was trained on data52

originated from traffic environments, might perform poorly on indoor scenes and vice versa. Finally,53

a third group of methods focus on place recognition based on either complete objects or planes. In54

[15], Moral et. al. presented a place recognition algorithm based on plane-based maps. Unfortunately,55

their approach is only suitable for indoor man-made environments and is not scalable to outdoor56

scenes. Dube et. al. [16] on the other hand proposed a method based on segments for which they57

compute several descriptors that are integrated in a learning framework. Before feeding the segment58

descriptors to the recognition model, they first subject them to a geometric verification test. As their59

method is relying on all kinds of segments, it is more scalable than the work of Moral et. al.. However,60

when used in man-made environments such as buildings, some scans (e.g. parts of corridors) might61

lack geometrical features and may jeopardize the loop detection. Besides the three aforementioned62

categories, there are also 3D lidar SLAM systems that just use visual information to detect and close the63

loop, such as the work of Zhu et. al. [17]. Regarding the actual loop correction, many solutions have64

been presented in the literature as well [18–20]. Unfortunately, a severe drawback of these methods is65

their high complexity and computational burden, especially when the optimal solution is sought for.66

Some algorithms therefore opt to conduct the loop closure in 2D, such as the work of Hess et. al. [21] in67

which they propose a real-time loop closure algorithm for 2D lidar SLAM and which is part of Google’s68

cartographer. Another approach was taken in [22], where the authors propose a heuristic suitable for69

large-scale 6D SLAM. Their idea is to conduct the optimization without any iteration between the70

SLAM front- and back-end, yielding a highly efficient loop closing method. In this work we decided71

to use the same strategy as we want to end up with an online - hence very fast - solution. In [23],72

the authors propose to adopt a hierarchical approach instead by subdividing the 3D map into local73

sub-maps. In order to incorporate corrections, the individual 3D scans in the local map are modelled74

as a sub-graph and graph optimization is performed to account for drift and misalignments only at the75

level of the local maps.76

3. Contributions77

The loop closure method developed in this work is part of an entire 3D mapping system that78

was presented in [24] and [25]. As in that work, we use lidar data originated from Velodyne scanners,79

Version November 21, 2018 submitted to Sensors 3 of 16

including the VLP-16, HDL-32E and HDL-64E. One of the main contributions of [24] was a scan80

matching framework that aligns newly acquired point clouds with an online built 3D map. As stated81

in the introduction this procedure is prone to error accumulation and for that reason we improve it by82

actively detecting loops, i.e. locations that the robot or mobile platform is visiting more than once, in83

order to propagate the error back in the SLAM pose graph. The main contributions of this work can be84

summarized as follows:85

1. We accelerated the computation of a global 3D descriptor to detect strong loop candidates in lidar86

data. Compared to many other 3D descriptors, ours is not depending on the estimation of surface87

normals in the point cloud. The main motivation for this is the high difficulty of estimating these88

normals accurately given the sparse and inhomogeneous point density of lidar point clouds.89

Our 3D descriptor is thus leading to more robust loop detections. A compiled version of our90

algorithm has been made available to the community through a GitHub repository, allowing91

future use 1.92

2. We propose a global registration technique based on 4-points congruent sets, inspired by the93

work of Mellado et. al. [26]. We improved the efficiency significantly by omitting its randomized94

component which leads to faster execution times. Moreover, our improvements make the95

registration technique more robust for sparse and inhomogeneous 3D data.96

3. We propose and evaluate a loop correction algorithm that omits the iteration between the SLAM97

front- and back-end, leading to a very fast computations of the solution.98

4. Approach99

As mentioned in the previous section, our loop closure pipeline consists of two main steps. Prior100

to these two steps, we additionaly perform a quick selection of loop candidates by testing for each101

newly computed position whether or not it is close to a place we already visited. By assuming that the102

local registration is quite accurate, we set a threshold on the distance between two poses, equalling103

10% of the total trajectory since the last loop closure. For instance, when we travelled for 100 meter104

since the last loop closure, we consider a location to be matchable if its computed pose is within 10105

meter. Once such a potential loop is detected, the next step deals with the matching of the ‘start’ and106

‘end’ point cloud. As briefly mentioned in the previous section, this matching is done using a global107

signature that we compute for each of the two point clouds. The signature is based on the projection of108

the point cloud on several 2D planes, similar as the method described in [10]. If the matching residual109

of this method is sufficiently low, we consider it as a strong loop candidate. To guarantee that we are110

not dealing with a false positive, the next step seeks for the transformation that aligns the two point111

clouds. In case the loop candidate is a true positive, we expect the overlap of the two point clouds112

after registration to be very high. To this end, we adopt a global alignment technique, based on 4-points113

congruent sets, to obtain a rough estimate of the transformation between the two ends of the loop.114

The alignment of the two ends is essential to eventually close the loop, as it can happen that the same115

position is revisited from an entirely different direction. Thus, the lidar scans can be acquired from116

different viewpoints. The use of an ICP-based method is in this case not appropriate as it will converge117

to a wrong local minimum. After the rough alignment, we still refine the transformation estimate118

using a variant of the ICP algorithm. After this step we eventually do a quick geometric verification119

check to see if the objects in the two (transformed) point clouds are relatively still located at the same120

position. Figure 1 depicts a schematic overview to summarize our approach.121

4.1. Multiview 2D-projection122

Our global point cloud descriptor is inspired by the method of multiview 2D-projection (M2DP),123

first presented by He et. al. in [10]. The algorithm is summarized as follows. In order to achieve124

1 https://github.com/Shaws/m2dp-gpu

Version November 21, 2018 submitted to Sensors 4 of 16

Distance between poses
(< threshold)

4-PCS ICP

Geometric verification

Rough
transformation

Correct relative
position of segments

Small residual
Loop correction

M2DP

Loop
candidate

Match found

Figure 1. Our loop detection and correction pipeline, consisting of 5 main algorithms. The global
descriptor MD2P detects loop candidates, after which the 4-PCS and ICP algorithm try to align both
ends of the loop. Finally, the geometric verification step checks if the different segments in the scene
are relatively still at the same position.

rotation invariance, we first compute the centroid of the point cloud - denoted by P - and shift it125

towards this centroid to achieve zero mean for the points. Second, we define a reference frame by126

estimating two dominant directions of the point cloud using PCA. The two principal components are127

then set as the x- and y-axis of the descriptor reference frame. The third step consists of generating128

several 2D signatures by defining different planes on which we project the 3D data. Each plane can129

be represented using the azimuth angle θ and elevation angle φ. Thus, each pair of parameters [θ, φ]130

leads to a unique plane Xj with normal vector nj = [cos θ cos φ, cos θ sin φ, sin θ]>. The projection of a131

point pi ∈ P on Xj is then given by pj
i = pi −

p>i nj

||nj ||22
nj. To describe the structure of the points on Xj,132

the 2D plane is further divided into bins as follows (cfr. Figure 2). Starting from the projected centroid133

on Xj, l concentric circles are generated, with radii [r, 22r, l2r] and the maximum radius is set to the134

distance of the centroid and the furthest point. Each ring is divided in t bins, hence defining l × t135

different bins. For every bin, the number of projected points lying in it are counted, generating a lt× 1136

signature vector vj describing the points projected on plane Xj. The main benefit of this projection is137

that it is not relying on the estimation of surface normals for the points. This latter procedure is usually138

time consuming and often times inaccurate for lidar data given their sparse and inhomogeneous point139

density. The signature is computed for p different azimuth angles and q different elevation angles140

where the stride on azimuth is π
p and the one on elevation π

2q . Hence, there are pq different planes,141

leading to a signature matrix A of size pq× lt, for which each row corresponds with a single signature142

vector vj. Finally, a SVD decomposition is run on the matrix A and the first left and right singular143

vectors are concatenated to form the final descriptor. Many parts of this algorithm lend themselves144

to be computed in parallel, allowing us to exploit the multi-core nature of modern GPU’s. To ease145

the implementation, we made use of Quasar, a language and computing platform facilitating GPU146

programming that was presented in [27]. Specifically, three major parts were accelerated, the first one147

being the determination of the two dominant directions of the point cloud computed using PCA. Our148

PCA implementation uses a parallelized version of the SVD algorithm. The second part deals with the149

projection of the points on the different planes Xj, j = 1 . . . pq, all of which can be computed in parallel.150

This leads to a speed up for this part of pq× N, N being the number of points in P , compared to a151

serial version of the algorithm. Finally, once the projections are computed for all planes and all points,152

the numbers of points belonging to each bin can also be determined in parallel.153

Version November 21, 2018 submitted to Sensors 5 of 16

furthest point

x-axis

y-axis

1

2
3

t

…

t+1
r

22r

l2r

(l-1)t+1

Figure 2. The generation of a 2D signature by projecting the 3D data onto a plane. The plane is
divided into bins as follows: starting from the projected centroid, l concentric circles are generated and
the maximum radius is set to the distance between the centroid and the furthest point. Each ring is
subsequently subdivided into t bins, generating a lt× 1 signature vector. Finally, the number of points
lying in each bin are counted.

4.2. 4-points congruent sets154

The algorithm described in the previous section provides us some loop candidates. However,155

its outcome is insufficient to be able to close the loop. As the descriptor is rotation invariant, we156

need to find out the transformation between the two point clouds in order to discard it from the error157

back propagation. To this end, we need a registration algorithm that can deal with large variations158

in orientation. Figure 3 depicts a bird’s-eye view of the point clouds at both ends of the loop and159

demonstrates why the registration is necessary. The black and gray point clouds are respectively the160

start and end point of a loop. The green point cloud is the transformed version of the gray one. If161

after registration the overlap between the two point clouds (green and black) is sufficiently high, we162

accept it is a true loop. Another key thing to keep in mind is that it can happen that a part of the scene163

has been changed in the mean time. Think about parked cars along the road that disappear or other164

ones that have taken their place. The use of local feature descriptors in a BoW approach would most165

likely fail in these cases. For that reason, our global registration technique takes into account the main166

geometry of the scene instead of relying on keypoint positions. The core of our registration technique167

is based on 4-points congruent sets (4-PCS), an idea initially proposed by Aiger et. al. [28] and later168

improved by Mellado et. al. [26]. Our 4-PCS method is thus a global point cloud registration technique169

that does not rely on the extraction of features. Instead it is matching congruent sets in both point170

clouds thereby adopting a generate-and-test paradigm, known from RANSAC-based solutions. In its171

most simple form, RANSAC randomly selects three points from both the source point cloud P and the172

target point cloud Q and subsequently computes the rigid transformation using these points. Next,173

it tries to verify this transformation by determining how many points from P are within a δ-distance174

from points in Q after applying the transformation. If this count - usually referred to as the size of the175

consensus set - is sufficiently high, the transformation is accepted as a good solution. Otherwise, the176

process is repeated by randomly selecting another triplet of points. The transformation with the largest177

consensus set is finally accepted as the best fit. The 4-PCS method builds on this randomized alignment178

approach, but instead of exhaustively testing all the triplets from Q, it introduces the concept of planar179

Version November 21, 2018 submitted to Sensors 6 of 16

Figure 3. Bird’s-eye view of two locations originated from the KITTI 00 sequence. The black and gray
scans have been selected by the M2DP algorithm as the start and the end point of a potential loop. The
two point clouds are however slightly rotated. Our registration technique aligns both (the green one is
the transformed version of the gray point cloud) and determines their overlap. When the overlap is
sufficiently high, the loop candidate is eventually selected as a true loop.

congruent sets to select only a small subset of bases from Q that can potentially match a given base180

from P . The first step in the 4-PCS method thus consists of selecting a 4-point coplanar base B from181

the source point cloud P . Next, from the target point cloud Q, all 4-point sets {U1, . . . , UN} = U that182

are approximately congruent to B are determined. Third, for all sets Ui, the rigid transformation Ti183

that aligns B and Ui is computed and verified according to the largest common point set (LCP) criterion.184

This latter criterion denotes the set of points Si ∈ P that are within δ-distance from a point in Q after185

applying the transformation. Finally, the best transformation Topt, i.e. the one leading to the set Sk186

with the highest cardinality is kept. In summary, the aforementioned algorithm consists of four major187

steps: 1) selecting a coplanar base in one point cloud, 2) find the (approximate) congruent sets in the188

second point cloud, 3) compute the rigid transformations and 4) test the rigid transformations and189

select the best one.190

4.2.1. Selecting a coplanar base191

One of the main limitations of the original method by Aiger et. al [28] is its random search for192

coplanar points which is leading to a lot of unnecessary computational burden. Instead, we propose to193

cluster the 3D points and subject them to a plane fitting process. As the point clouds are generated by194

a scanning lidar device with 16 to 64 colinear lasers, we can project the 3D laser points onto a regular195

2D grid, as described in [24]. Doing so, we can exploit the known adjacency of the points to quickly196

perform clustering. More specifically, we adopt a region growing algorithm using two comparator197

functions to determine whether or not two neighbouring points are belonging to the same cluster.198

The first one is the Euclidean 3D distance between the two points, the second one the deviation of199

their surface normal. After applying this region growing process we obtain a set of clusters, which we200

subsequently feed to a plane fitting algorithm. Once we have eventually found some clusters to be201

part of a plane, we can extract coplanar bases very easily as any four points lying in the same plane are202

by definition coplanar. Following this procedure, we can omit the randomized base selection process203

of the original 4-PCS method. Obviously, it is still beneficial to pick wide bases (by selecting points204

that are located far from each other) as they are in general leading to more stable alignments. To this205

end, we prioritize points lying at the boundaries of the planar cluster to serve as a base. Of course, the206

base should still lie in the overlap region between the two point clouds in order not to miss the desired207

solution. As we are considering point clouds that are captured at more or less the same position (but at208

different moments in time) we assume that the overlap will be quite large. Only in the case that a large209

object close to the scanner is causing a huge occlusion in one of the point clouds, this assumption might210

be violated. Therefore, we propose to compute for each planar region its convex hull and to select211

a coplanar base by picking four points that are close to this convex hull. Figure 4 depicts two point212

Version November 21, 2018 submitted to Sensors 7 of 16

Figure 4. The process of selecting a coplanar base. First, several objects in the scene are clustered after
which they are subjected to a plane fitting algorithm. In case a few planes have been detected, their
convex hulls are computed. A coplanar base is then selected by picking four points close to the convex
hull.

clouds from sequence ’05’ of the KITTI benchmark together with the convex hulls of the estimated213

planar regions.214

4.2.2. Finding congruent sets215

Once a coplanar base is selected, the next step consists of finding 4-points sets in the other point
cloud that are congruent to this base. This matching step is based on a specific property of affine
invariants of 4-points congruent sets. In a nutshell, given 4 points, we can compute two independent
ratios between the line segments they are defining that are preserved under affine transformations.
Given a set of coplanar points B = {a, b, c, d} from point cloud P that are not all collinear. Let ab and
cd be the two lines that intersect at an intermediate point e. The two ratios

r1 =
||a− e||
||a− b|| , r2 =

||c− e||
||c− d|| (1)

are invariant under affine transformation, and uniquely define 4-points up to affine transformations.
Now, for each point q1, q2 ∈ Q, we can compute two intermediate points:

e1 = p1 + r1(p2 − p1), e2 = p1 + r2(p2 − p1). (2)

Any two pairs whose intermediate points e1 and e2 are coincident, potentially correspond to a 4-points216

set that is an affine transformed copy of B. Of course, as these sets of 4-points are the affine invariants217

of the base B, it is a superset of the 4-points set that are a rigid transformation of the base. For that218

reason, we also check the angle between the two line segments to determine if the 4-points set is a219

rigid transformation of the base B. Naturally, the intermediate points e1 and e2 will never exactly be220

coincident due to noise and other inaccuracies. Instead, they will end up on being nearby points. For221

that reason, we set up a k-d tree search data structure that allows for fast spatial queries. We then222

accept the set as being congruent to the base B in case the distance of the two intermediate points e1223

and e2 are within δ-distance from each other. Another limitation of the original method of [26] is that224

it computes and tests for all possible combinations of points their intermediate points e1 and e2. This225

is leading to a tremendous amount of unnecessary computations. Instead, we propose to only process226

the points of clusters that are lying in a physical plane, i.e. a plane that is present in the scene. Only227

these points qualify to be matchable with a given coplanar base, as the bases themselves were picked228

on the detected planar regions.229

4.2.3. Test rigid transformation230

The final step in the 4-PCS method is to test the rigid transformation computed using the base231

and its congruent sets. One way of verifying the transformation is by using the largest common point232

set (LCP) criterion. This criterion states that one should count the number of points from the source233

Version November 21, 2018 submitted to Sensors 8 of 16

point cloud that are within a δ-distance from any point from the target point cloud after alignment. The234

transformation that yields the largest LCP is considered as the true transformation. We emphasize that235

we only compute the transformation and LCP criterion for the congruent sets that we have selected in236

the previous step. This group of congruent sets is thus a lot smaller than the original method proposed237

by [26] et. al.. Our algorithm can thus be summarized as follows. First, select a few strong coplanar238

bases from P based on the estimated planes in the scene. Second, given a selected coplanar base from239

P , determine only a few strong 4-points sets in Q that are approximately congruent. For all these240

selected 4-points sets, compute the transformation that aligns the two point clouds and eventually241

pick the transformation with the largest common point set. In other words, pick the transformation for242

which the most points of P are within δ-distance from a point in Q.243

4.3. Verification through ICP and geometrical consistency244

The 4-PCS method yields a rough transformation from source to target point cloud but it will not245

perfectly align them. We therefore refine the transformation by using an ICP-based algorithm that246

was described in [24]. This ICP algorithm offers an additional verification to conclude that the two247

point clouds yield a true loop. If the residual of ICP - defined as the average distance between all248

corresponding points - is too large we still discard the loop candidate. Finally, the object clustering249

mentioned in previous section also provides a means of verification as we can check if all the object250

clusters are relatively still at the same position. To that end, we compute for each cluster its centroid251

and compute a bipartite matching using the Hungarian algorithm. In case these two verification steps252

are positive we can eventually proceed to the actual loop correction.253

4.4. Loop correction254

As stated in the introduction our goal is to implement loop closure as an online process. Therefore,
we adopt a heuristic approach that is extremely fast, though leading to a sub-optimal solution. The
idea is to avoid the iteration between the SLAM front- and back-end. The front-end is referring to the
scan matching process whereas the back-end deals with the global consistency of the 3D map and
hence the correction of the loops. In that iteration, the outcome of the SLAM back-end, being the
pose error, is given to the front-end to re-investigate its outcome thereby taking into account all the
known relations between neighbouring poses and matched correspondences. After this, the outcome
is feeded back to the back-end to check if this re-investigation has lead to a better result. This process is
repeated for all poses and all correspondences, up untill the optimal solution is found. It goes without
saying that all this is inherently time consuming and therefore we propose to bypass this iterative
behaviour. Instead, we pass the local information from the scan matching just once to the back-end, but
not the other way round. In a nutshell, we investigate how much each pose is contributing to the final
accumulated error, thereby considering the residual score of the scan matching process. The actual
correction is then done as follows. Consider the mapping platform travelling along the trajectory
V0, . . . , V1, . . . Vn where at each pose Vi the lidar scanner is capturing a point cloud Pi during a full
rotation of its head, also referred to as a sweep. We assume that the loop detection method provided us
with two point clouds, resp. the start and end of the loop and let us denote their poses as respectively
Vs and Ve. Next, the difference in pose, i.e. the loop transform, is given by ∆ = (Rs,eVe)

−1Vs. Note
that the rotation Rs,e denotes the one we have computed using our registration algorithm. It should
be discarded from the loop correction process as it does not yield an error. This loop transform ∆ is
considered as an error as both poses Rs,eVe and Vs should be equal. It should thus be projected back in
the pose graph. As mentioned before, we use the residual of the scan matching process, i.e. final cost
after transformation, to assign a weight ci,j to each edge in the pose graph. We assign a higher weight
for those transformations that yield a high residual in the scan matching step. The idea is that a high
residual indicates that two consecutive point clouds were potentially inaccurately aligned. In addition,
we assume that the scan matching process will have already been converging in the right direction.

Version November 21, 2018 submitted to Sensors 9 of 16

Table 1. Computation times of our GPU implementation of the M2DP descriptor compared to the CPU
version implemented in Matlab by [10]. The speed-up factor for data originated from the HDL-64E is
almost x4 whereas for the VLP-16 and HDL-32E the speed-up factor is rather x2.5.

Sensor avg. |P| Matlab ([10]) in ms GPU (ours) in ms
VLP-16 25446 250 110

HDL-32E 51687 273 121
HDL-64E 62594 476 127

Next, we define the distance between two poses Vk and Vl as d(Vk, Vl) = ∑i,j ci,j. Herein, {i, j} denotes
the set of all edges in the path from Vk to Vl . Finally, we define a weight

wi =
d(Vs, Vi)

d(Vs, Ve)
(3)

for each pose in the graph that specifies the fraction of the matrix ∆ by which the pose has to be255

transformed. The poses Vk are than updated replacing tk by tkwk∆ and Rk by slerp(Rk, wk∆), slerp256

denoting the spherical linear interpolation function as described in [29].257

5. Evaluation258

The evaluation covers three main parts. First, we conduct an analysis to qualify the speed-up259

of our GPU-accelerated descriptor computation. Second, we compare our loop detection accuracy260

to other state-of-the-art methods. Finally, the quality and the speed of the loop closure module are261

analysed.262

5.1. Speed analysis global descriptor computation263

In order to compare our GPU implementation of the M2DP descriptor against the CPU version264

implemented in Matlab by [10], we ran several experiments using data originated from several265

Velodyne scanners. To indicate the performance on point clouds of different sizes, we used data from266

both the VLP-16, HDL-32E and HDL-64E containing resp. 16, 32 and 64 lasers. More specifically, we267

used several sequences from the KITTI benchmark [30] which are all captured by a HDL-64E in urban268

environments. We extended this dataset with own recorded sequences in both indoor and outdoor269

scenes using the HDL-32E and VLP-16. The experiments were conducted on a computer with an Intel270

Core i7-7820X @ 3.60Ghz, 128GB RAM and an nVidia GeForce GTX 1080ti inside. The results are271

summarized in Table 1. As can be seen, our GPU implementation scales well for larger point clouds.272

The overhead of copying data to the GPU memory is relatively lower for larger point clouds, hence273

yielding a larger speed-up. For point clouds originated from the HDL-64E scanner our implementation274

only takes 127 ms on average compared to 476 ms for the Matlab implementation of [10] which is a275

speed-up factor of nearly 4. For smaller point clouds - captured with the VLP-16 or HDL-32 - we notice276

a speed-up factor of almost 2.5.277

5.2. Loop detection accuracy278

In order to evaluate the accuracy of our final loop detector against the state-of-the-art, we279

conducted several experiments on the Kitti benchmark [30]. More specifically, we used the sequences280

‘00’, ‘05’ as these contain the most ‘revisited’ locations. To generate ground truth we used the known281

trajectories and considered a loop to be present when the distance between two poses is less than 1282

meter. Thereby, we used a threshold of 100 poses to avoid that two subsequent poses would wrongly283

be classified as a loop. In Figure 5 the ‘ground truth’ revisited locations in the two trajectories are284

depicted as green dots. For some sequences the same road has been taken multiple times, hence the285

whole part of the road is considered as a loop. However, as can be seen, sometimes there are green286

Version November 21, 2018 submitted to Sensors 10 of 16

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300

z
[m

]

x [m]

Trajectory
Loops

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Trajectory
Loops

Figure 5. The ground truth loops in the sequences ‘00’ and ‘05’ of the Kitti benchmark [30]. We consider
a loop to be present when the distance between two poses is less than 1 meter.

dots missing along a road that has been taken multiple times, meaning that the difference in pose is287

larger than 1 meter. This could be due to the fact that some roads consist of multiple lanes and that a288

different lane was taken. We used four different descriptors to compare our results with. The first one289

is the original M2DP method described in [10]. The other descriptors are the ensemble of shape functions290

(ESF) [31], spin images [32] and SHOT [7]. The latter two are local descriptors so in order to use them291

as a global descriptor we computed the centroid of the point cloud and estimated the spin image and292

SHOT descriptor related to this centroid. Thereby we use the maximum distance from the centroid293

to any other point in the cloud as the radius to compute the descriptor. Furthermore, both the spin294

images and the SHOT descriptors are based on normal vectors. To compute these, we use a radius that295

equals five times the average distance of a point to its closest neighbour. Regarding spin images, the296

other parameters that need to be set are 1) the number of bins along one dimension, 2) the minimal297

allowed cosine of the angle between the normals of the input cloud and search surface (for the point to298

be retained in the support) and 3) the minimal number of points in the support to correctly estimate299

the spin image. We have set these parameters to respectively 8, 0.5 and 16. The SHOT descriptor does300

not have any other parameters to be set and for the ESF we again used the maximum distance of the301

centroid to any other point in the cloud. Finally, the M2DP method needs the number of bins for each302

plane (or expressed as the number of circles l and number of bins in one ring t) and the number of303

planes to use (or expressed as the azimuth p and elevation q). For our experiments we have set these304

values to l = 8, t = 16, p = 4 and q = 16 for all tests. The ROC curves for the different loop detectors305

are depicted in figure 6. We clearly see that our method along with the methods M2DP and SHOT306

are leading to the best detections. The performance of the ESF descriptor and spin images turns out307

to be insufficient to reliably recognize revisited areas. To obtain a recall of at least 90%, the precision308

drops to respectively 45% and 20% for the KITTI sequence ‘00’, which is unacceptable in an operational309

system. For the KITTI sequence ‘05’ the precisions corresponding to a recall of 90% are even worse,310

resp. 30% and 15%. On the contrary, the M2DP and SHOT descriptor are leading to a precision of 70%311

on the ‘00’-sequence and higher than 95% on the ‘05’-sequence for a 90% recall. In table 2, the exact312

precision is listed that corresponds to a recall of about 99.9%. We observe that our combined method313

further improves the performance of the M2DP detector. For the KITTI sequence ‘05’, to obtain 99.9%314

recall, we reach a precision of 90.4%, an improvement of more than 7.1%. For the KITTI sequence315

‘00’, we obtain a smaller improvement of 0.8% reaching a precision of 60.5% compared to 59.7 for the316

Version November 21, 2018 submitted to Sensors 11 of 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

KITTI 00

esf
m2dp
ours
shot
spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

KITTI 05

esf
m2dp
ours
shot
spin

Figure 6. ROC curves for the several loop detection methods on the KITTI sequences ‘00’ and ‘05’. As
can be seen, our method performs better than the original M2DP method, the second best performer
in our experiments. The SHOT detector also produces acceptable results, whereas the spin and ESF
detectors are too unreliable to be used in practise.

Table 2. Precision at 99.9% recall of the different loop detection methods for the KITTI dataset. Clearly,
only the detectors SHOT and M2DP are producing ‘acceptable’ results. Our combined algorithm
improves the original M2DP method by 0.8% and 7% for KITTI sequence ‘00’ and ‘05’ leading to a
precision of respectively 60.5% and 90.4%.

Sequence Spin Image SHOT ESF M2DP ours
KITTI00 0.025 0.575 0.143 0.597 0.605
KITTI05 <0.01 0.632 0.037 0.833 0.904

M2DP detector. The lower performance on the KITTI ‘00’ dataset is probably due to the inaccuracies317

in the ground truth. It goes without saying that a higher threshold on the distance for a pose to be318

considered as a ground truth loop affects the results tremendously. Thus, the value of this experiment319

is in the comparison between the different detectors rather than in the absolute numbers on the actual320

accuracy. Besides experiments on the Kitti benchmark, we acquired a lidar sequence ourselves in the321

city of Ghent (Belgium) thereby mounting the Velodyne VLP-16 lidar scanner on top of a car. While322

acquiring the lidar data we used a Garmin GPS to generate ground truth. The trajectory is shown in323

Figure 7. As can be seen, a part of the trajectory was taken twice, making all the poses along this part324

act as loops. This time we used 3 meters as a threshold for two poses to be considered as a loop as325

this threshold was leading to more coherent loops along roads that were taken twice. As the sequence326

was recorded in the historical city centre of Ghent, the GPS signal was often times inaccurate leading327

to a noisy trajectory. To deal with these anomalies, we used the Google API to clean-up the trajectory328

by computing the most likely roads that were taken. This eventually lead to resp. 843 loops on a329

trajectory of approx. 15.7km travelled in 47 minutes. The number of lidar point clouds is 31745. For330

this experiment we used the exact same parameters as for the KITTI sequences. The ROC curve is331

depicted in Figure 7. In this experiment, our loop detector is clearly outperforming the other point332

cloud matchers. For a recall of 93% we still obtain a precision of 100%, which is an improvement of333

5.2% compared to the SHOT descriptor. Only the latter along with the M2DP descriptor are generating334

acceptable results. The spin images are performing better than for the KITTI sequences, but the overall335

accuracy is still too low to be usable in an operational system. Finally, for the ESF descriptor it is very336

Version November 21, 2018 submitted to Sensors 12 of 16

3.720 3.725 3.730 3.735 3.740 3.745
51.0375

51.0400

51.0425

51.0450

51.0475

51.0500

51.0525

51.0550

51.0575 GPS trajectory
Ground truth loops

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

GHENT 01

esf
m2dp
ours
shot
spin

Figure 7. Left: the ground truth and estimated loops of the sequences recorded in the city center of
Ghent, Belgium. We consider a loop to be present when the distance between two poses is less than
3 meter. Right: the ROC curve for the sequence recorded in the city center of Ghent, Belgium. Our
loop detector is clearly outperforming the other methods. For a recall of 93% we still obtain a precision
of 100%, which is a 5.2% gain compared to the SHOT descriptor. This latter along with the M2DP
descriptor are the only two other point cloud matchers that are producing acceptable results. The loop
detection quality of the spin images descriptor and ESF are too limited.

difficult to achieve any acceptable precision, even for recall values. Due to inaccuracies of the GPS337

data, and hence the ground truth, it was not possible to reach 100% recall for any of the methods, as338

was the case for the KITTI.339

5.3. Quality and speed of the loop correction340

To assess the quality of our loop correction algorithm, we conducted an experiment using data341

that we captured in the Belgian city Hasselt. We mounted a Velodyne HDL-32e on a mobile mapping342

van together with a high-precision POS-LV inertial positioning system to acquire accurate ground truth.343

In order to obtain the initial trajectory we used our 3D reconstruction system described in [24]. In344

Figure 8, two images are depicted showing the result of this reconstruction process. In the left image,345

the resulting point cloud is shown before loop closure, whereas the right picture depicts the point346

cloud after loop closure. As can be seen in the left point cloud, the end of the loop is not connected347

Figure 8. The two resulting reconstructions for the ‘Hasselt’ dataset, before loop closure (left) and
after loop closure (right). After loop correction, the two ends of the loops are attached and the error is
propagated back in the pose graph.

Version November 21, 2018 submitted to Sensors 13 of 16

-100

-50

0

50

100

150

-50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-100

-50

0

50

100

150

-50 0 50 100 150 200

z
[m

]

Lidar Odometry

x [m]

Ground Truth

Figure 9. The two resulting trajectories for the ‘Hasselt’ dataset corresponding to the reconstructions
in Figure 8, before loop closure (left) and after loop closure (right). The estimated trajectory and the
ground truth trajectory are almost entirely overlapping after loop closure. The pose error before and
after loop correction is respectively 5.56 and 3.13 meter, hence proving the effectiveness of the loop
correction.

with the start of the loop. After correction the two ends are connected and the accumulated error348

is propagated back in the pose graph. In order to evaluate this quantitatively, we used the POS-LV349

positioning system as ground truth. Figure 9 depicts both the ground truth and the final trajectory after350

performing loop closure. As we do not have a complete ground truth 3D model, we measured the351

quality by means of comparing all the poses in the pose graph. To this end we computed the average352

distance from all poses in the estimated trajectory with its closest pose in the ground truth. The average353

distance between all poses before and after loop closure turned out to be respectively 5.65 meter and354

3.13. Furthermore, the median pose error before and after loop closure are respectively 3.98 meter and355

2.13. Hence, the loop closure process reduces the total error almost by a factor 2. The total time to356

correct the loop on an Intel Core i7-4712HQ CPU @ 2.30 GHz, was 11 milliseconds. This is extremely357

fast thanks to the omission of the iteration between the SLAM front- and back-end. During the SLAM358

front-end a residual score was computed that is later on used in the loop correction phase. The loop359

correction itself only involves one single manipulation of the poses. By means of a second example,360

we also closed the loop of sequence ‘09’ of the Kitti benchmark. The result is shown in Figure 10. The361

trajectory after loop closure (in green) and the ‘ground truth’ trajectory (in red) are almost entirely362

overlapping. On the right image, the point cloud at the start and end-point of the loop are shown.363

The poses are overlapping and little to no artefacts can be seen in the point cloud. For this dataset we364

also computed the average pose error before and after loop correction, which resulted in a value of365

respectively 9.89 meter and 4.80 meter. The median value before and after loop correction is 7.85 meter366

and 3.53 meter respectively. In summary, we can conclude that we reduce the error with a factor 2 after367

loop closure. The results of both experiments are summarized in Table 3.368

6. Conclusion369

In this paper a full loop detection and correction method was presented. The main contributions370

of this work were twofold. First, we accelerated the loop detection process by developing a371

GPU-accelerated version of a global feature descriptor for point clouds. Second, we presented a372

novel registration technique to align two point clouds with a large deviation in orientation. We373

improve over existing techniques regarding both robustness, accuracy and speed. We explained374

Version November 21, 2018 submitted to Sensors 14 of 16

0

100

200

300

400

500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Before LC

After LC

Figure 10. The resulting trajectory (left) of sequence ‘09’ of the Kitti benchmark, before loop closure
(blue) and after loop closure (green). The estimated and the ground truth trajectory are almost entirely
overlapping after loop correction. Right: the corresponding reconstruction at the start and end-point of
the loop after correction. Little to no artefacts can be seen in the reconstruction. The pose error before
and after loop correction is respectively 9.89 and 4.80 meter, hence proving its effectiveness.

Table 3. The average and median pose error before and after loop closure for the Hasselt and Kitti ‘09’
sequence. Our correction algorithm reduces the error by a factor of approximately x2 after closing the
loop.

Sequence total length (m) Average error (m) Median error (m)
before LC after LC gain before LC after LC gain

HASSELT 715 5.65 3.13 x1.81 3.98 2.13 x1.87
KITTI09 1705 9.89 4.80 x2.06 7.85 3.53 x2.22

Version November 21, 2018 submitted to Sensors 15 of 16

how this method can be used to align two point clouds that serve as the two ends of a loop in lidar375

data. Furthermore, we showed the effectiveness of incorporating this registration technique in the376

verification process of potential loop candidates. Experiments have demonstrated that we can gain up377

to 7% precision for the same recall value of 99.9%. Experiments also showed that our method works378

for data acquired with different Velodyne scanners, i.e. the one containing 64 lasers as well as the one379

containing only 32 or 16 lasers. In addition, we showed that our global feature descriptor is a factor380

2.5 to 4 times faster than the original version, depending on the number of points in the point cloud.381

Finally, we showed that our loop correction method reduces the average and mean pose error - defined382

as the distance of a pose with its closest neighbour in the ground truth trajectory - by a factor 2.383

References384

1. Steder, B.; Ruhnke, M.; Grzonka, S.; Burgard, W. Place recognition in 3D scans using a combination of bag385

of words and point feature based relative pose estimation. IROS. IEEE, 2011, pp. 1249–1255.386

2. Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. 2009 IEEE 12th387

International Conference on Computer Vision Workshops, ICCV Workshops, 2009, pp. 689–696.388

3. Sipiran, I.; Bustos, B. A Robust 3D Interest Points Detector Based on Harris Operator. Eurographics389

Workshop on 3D Object Retrieval; Daoudi, M.; Schreck, T., Eds. The Eurographics Association, 2010.390

4. Scovanner, P.; Ali, S.; Shah, M. A 3-dimensional Sift Descriptor and Its Application to Action Recognition.391

Proceedings of the 15th International Conference on Multimedia; ACM: New York, NY, USA, 2007;392

MULTIMEDIA ’07, pp. 357–360.393

5. Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. NARF: 3D Range Image Features for Object Recognition.394

Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ Int.395

Conf. on Intelligent Robots and Systems (IROS); , 2010.396

6. Johnson, A. Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics Institute,397

Carnegie Mellon University, Pittsburgh, PA, 1997.398

7. Salti, S.; Tombari, F.; di Stefano, L. SHOT: Unique signatures of histograms for surface and texture399

description. Computer Vision and Image Understanding 2014, 125, 251–264.400

8. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. Proceedings401

of the 2009 IEEE International Conference on Robotics and Automation; IEEE Press: Piscataway, NJ, USA,402

2009; ICRA’09, pp. 1848–1853.403

9. Rusu, R.B.; Bradski, G.R.; Thibaux, R.; Hsu, J.M. Fast 3D recognition and pose using the Viewpoint Feature404

Histogram. IROS. IEEE, 2010, pp. 2155–2162.405

10. He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure406

detection. IROS. IEEE, 2016, pp. 231–237.407

11. Dewan, A.; Caselitz, T.; Burgard, W. Learning a Local Feature Descriptor for 3D LiDAR Scans. Proc. of the408

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); , 2018.409

12. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric410

Descriptors from RGB-D Reconstructions. CVPR, 2017.411

13. Yin, H.; Ding, X.; Tang, L.; Wang, Y.; Xiong, R. Efficient 3D LIDAR based loop closing using deep neural412

network 2017. pp. 481–486.413

14. Yin, H.; Wang, Y.; Tang, L.; Ding, X.; Xiong, R. LocNet: Global localization in 3D point clouds for mobile414

robots. CoRR 2017, abs/1712.02165, [1712.02165].415

15. Fernández-Moral, E.; Mayol-Cuevas, W.W.; Arévalo, V.; Jiménez, J.G. Fast place recognition with416

plane-based maps. ICRA. IEEE, 2013, pp. 2719–2724.417

16. Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.I.; Siegwart, R.; Cadena, C. SegMatch: Segment based loop-closure418

for 3D point clouds. CoRR 2016, abs/1609.07720.419

17. Zhu, Z.; Yang, S.; Dai, H.; Li, F. Loop Detection and Correction of 3D Laser-Based SLAM with Visual420

Information. Proceedings of the 31st International Conference on Computer Animation and Social Agents;421

ACM: New York, NY, USA, 2018; CASA 2018, pp. 53–58.422

18. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph423

optimization. ICRA. IEEE, 2011, pp. 3607–3613.424

http://xxx.lanl.gov/abs/1712.02165

Version November 21, 2018 submitted to Sensors 16 of 16

19. Grisetti, G.; Stachniss, C.; Burgard, W. Non-linear Constraint Network Optimization for Efficient Map425

Learning. IEEE Transactions on Intelligent Transportation Systems 2009, 10, 428–439.426

20. Lu, F.; Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton. Robots427

1997, 4, 333–349.428

21. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. 2016 IEEE429

International Conference on Robotics and Automation (ICRA), 2016, pp. 1271–1278.430

22. Sprickerhof, J.; Nüchter, P.A.; Lingemann, K.; Hertzberg, P.J. A Heuristic Loop Closing Technique for431

Large-Scale 6D SLAM. Automatika 2011, 52, 199–222, [https://doi.org/10.1080/00051144.2011.11828420].432

23. Droeschel, D.; Behnke, S. Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping. 2018433

IEEE International Conference on Robotics and Automation (ICRA) 2018, pp. 1–9.434

24. Vlaminck, M.; Luong, H.; Goeman, W.; Philips, W. 3D Scene Reconstruction Using Omnidirectional Vision435

and LiDAR: A Hybrid Approach. Sensors 2016, 16.436

25. Vlaminck, M.; Luong, H.; Philips, W. Liborg: a lidar-based robot for efficient 3D mapping. APPLICATIONS437

OF DIGITAL IMAGE PROCESSING XL. SPIE, 2017, Vol. 10396.438

26. Mellado, N.; Aiger, D.; Mitra, N.J. SUPER 4PCS: Fast Global Pointcloud Registration via Smart Indexing.439

Computer Graphics Forum 2014.440

27. Goossens, B.; De Vylder, J.; Philips, W. Quasar: a new heterogeneous programming framework for image441

and video processing algorithms on CPU and GPU. IEEE International Conference on Image Processing442

ICIP. IEEE, 2014, pp. 2183–2185.443

28. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4pointss Congruent Sets for Robust Pairwise Surface Registration.444

ACM SIGGRAPH 2008 Papers; ACM: New York, NY, USA, 2008; SIGGRAPH ’08, pp. 85:1–85:10.445

29. Shoemake, K. Animating Rotation with Quaternion Curves. SIGGRAPH Comput. Graph. 1985, 19, 245–254.446

30. Geiger, A. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. Proceedings of447

the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE Computer Society:448

Washington, DC, USA, 2012; CVPR ’12, pp. 3354–3361.449

31. Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3D object classification. ROBIO. IEEE, 2011,450

pp. 2987–2992.451

32. Johnson, A. Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Carnegie Mellon452

University, Pittsburgh, PA, 1997.453

c© 2018 by the authors. Submitted to Sensors for possible open access publication under the terms and conditions454

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).455

http://xxx.lanl.gov/abs/https://doi.org/10.1080/00051144.2011.11828420
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Contributions
	Approach
	Multiview 2D-projection
	4-points congruent sets
	Selecting a coplanar base
	Finding congruent sets
	Test rigid transformation

	Verification through ICP and geometrical consistency
	Loop correction

	Evaluation
	Speed analysis global descriptor computation
	Loop detection accuracy
	Quality and speed of the loop correction

	Conclusion

