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CHAPTER 1. INTRODUCTION

Chapter

1

Introduction

The Quasar Computation System is optimized to deal with “astronomical” numbers of data values or operations,

massively performed in parallel and/or distributed along several processors, hence its name. In the first place, the

system is intended to be used for processing of 2D or 3D images, and excels in iterative algorithms that allow for a

lot of parallelism. The system consists of three major components:

� Quasar compiler: compiles input code (.q files written in the Quasar scripting language) to an intermediate

format, which can either be directly interpreted or translated to Common Intermediate Language (CIL) code

(managed executable files). These managed executable files can then be run under Windows (.Net or MONO),

Linux (MONO) or Mac (MONO).

� Quasar interpreter: mostly used for debugging code.

� Quasar computation engine: a computation engine performs general (high-level) computations, such as mul-

tiplication of real-valued matrices, taking the imaginary part of a complex number, performing FFTs and

various built-in functions. Computation engines are substitutable, which means that one engine can take over

the work of another engine.1

1.1 Computation Engines

Different computation engines exists which take advantage of certain technology present on the system.

1. Generic CPU computation engine: makes use of an optimizing C++ compiler (such as GCC, Intel Compiler,

...) in the background and automatically uses OpenMP for multi-threading. This gives a speed up of typically

2x-8x compared to sequential execution.

2. CUDA computation engine: uses the CPU for small number of computations (e.g. operations with small

matrices), and dynamically switches to GPU computation for larger amount of data, and depending on

whether the data currently already resides in GPU/CPU memory.

1For GPU computation engines vs. Generic CPU computation engine (see section 1.1), this is done automatically and at any time.
For other computation engines, this is only possible by specifying command-line flags, in future versions this may be possible at runtime
as well.
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1.2. HOW TO USE? CHAPTER 1. INTRODUCTION

3. Hyperion computation engine: provides multi-GPU support and gives access to OpenCL devices.

The specific details and implementation of the computation engine are completely transparent to the user. More

concretely, the user can specify by command line which computation engine to use. For example -cpu specifies to

use the generic CPU engine, -gpu will give the “best”GPU engine for the given system (at least if CUDA/OpenCL

is installed). The computation engines perform automatic memory management, i.e. the user is relieved from

allocating/freeing memory, and copying memory from/to the GPU. The CPU computation engine (currently) uses

a garbage collector, while the CUDA computation engine has a custom fast memory allocator.

The Quasar compiler automatically invokes the NVidia CUDA compiler (CUDA computation engine) or the con-

figured C/C++ compiler (CPU computation engine) for compiling critical parts of the code (so-called device and

kernel functions, see further).

1.2 How to use?

One single executable program performs all the work (both compiling and running the code). The usage is as

follows:� �
. / Quasar . exe [−debug ] [−cpu |−gpu ] [− p r o f i l e ] [−double ] [−nogl ] s c r i p t . q�
where the parameters have the following meaning:

� -debug: use the interpreter for running the code. In case of failure, exact information on the lines which

triggered the error will be given (useful for debugging).

� -cpu: uses the generic CPU computation engine for running the code (default=-gpu)

� -gpu: uses a GPU computation engine (default choice)

� -profile: runs the code in interpreted mode, and collects profiling information. The profiling information is

then printed to the console at the end of the program.

� -double: instructs the computation engine to use the double precision floating point by default (see sec-

tion 2.2.1).

� -nogl: disables OpenGL support (used for visualization, e.g. the function imshow).

� script.q: a script file written in the Quasar programming language, containing the program to run.

When the -debug switch is not specified, the compiler produces an executable binary (.exe) which allows the

program to be run directly without compilation. The compiler is relatively fast, most (simple) algorithms take a

couple of milliseconds to compile.

Note that the GPU computation engine is often 10x to 100x faster then the CPU computation engine. Nevertheless,

it is useful to run the program on the CPU as well, to check the numerical accuracy/precision of the results.

Architecture: 32-bit/64-bit CPU or GPU

Quasar has been designed to operate correctly in the following conditions:

� 32-bit CPU (x86) - the CPU uses a 32-bit address space.

� 64-bit CPU (x64) - the CPU uses a 64-bit address space (useful for addressing more than 2GB of RAM).

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 6



1.3. QUASAR PROGRAMMING LANGUAGE CHAPTER 1. INTRODUCTION

� 32-bit GPU - the GPU uses a 32-bit address space.

� 64-bit GPU - the GPU uses a 64-bit address space (when the GPU has more than 2GB RAM, although devices

with less than 1GB RAM support it).

By default, the choice of 32-bit/64-bit CPU depends on the OS. If a 64-bit OS is installed, the 64-bit CPU version

of Quasar will be used. The mode in which the GPU is run, depends on the installed version of the GPU runtime

(e.g., 64-bit or 32-bit CUDA Runtime). The normal practice is to run the GPU in the same mode as the CPU.

Under some circumstances, some GPU devices do not support 64-bit yet. For CUDA, this can be solved by using a

special 32-bit version of the CUDA interoperability DLL (CUDA.Net.dll), instead of the default cross-architecture

DLL.

1.3 Quasar Programming Language

The emphasis of the Quasar programming language is on simplicity and practical usefulness. The syntax is similar

to MATLAB/Octave (this is mainly to keep the transition from Matlab to Quasar easy), although there are a

number of differences which encourage efficient programming:

1. Objects (such as matrices, cell matrices etc) are passed by reference rather than by value. This means that a

simple assignment a=b has negligible computation cost, since it only involves copying pointers. However, one

has to be careful with function calls: when passing a matrix as an input argument, the function is allowed to

modify the input parameter.2 This is mainly for efficiency reasons. On the other hand, scalar numbers (real

or complex) are passed by value at any time.

2. Zero-based indexing. All indices start with 0, similar to C/C++, Java, C#, ...

3. The presence of special parallelizable functions (called kernel functions and device functions). Implementation

note: parallelizable functions are compiled natively for the current platform (i.e., using CUDA NVCC, GCC,

MSVC or any other C++ compiler).

4. Transparent use of CPU / GPU resources. Essentially, no knowledge on GPU programming is required. GPU

functionality is even completely hidden. However, knowledge on parallel programming is a must!

5. Minimal runtime overhead. By design, the size of the compiler and runtime system is minimized (to a binary

of about 1 MB), as well as the involved runtime overhead.

6. Some improved syntax: lambda expressions, indexing of the results of a function call (like

imread(file)[0..100,0..100]), ...

2If the intention is to copy the values of objects, the function copy(.) can be used to perform a deep copy of objects.
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CHAPTER 2. GETTING STARTED

Chapter

2

Getting started

In this section, we will give you a little tutorial, to give you an idea of the Quasar programming language. First, a

number of high-level concepts are listed. These concepts are included mainly to ease programming in Quasar. The

most interesting parts are discussed in Section “writing parallel code” (section 2.4).

2.1 Quasar high-level programming concepts

1. Variables: Quasar variables are (by default) weakly-typed, although some mechanisms exist to enforce strong-

typing. Variable names and function names are case sensitive.

2. Data types: some of the built-in data types are listed here:

� scalar: specifies a floating-point number. The used precision depends on the settings of the computation

engine.

� cscalar: specifies a complex-valued scalar number

� vec: a (dense) vector (1D array) of arbitrary length (the size is limited by the system resources)

� mat: a (dense) matrix (2D array) of arbitrary size (the size is limited by the system resources)

� cube: a (dense) cube (3D array) of arbitrary size (the size is limited by the system resources)

� cvec: a complex valued dense vector

� cmat: a complex valued dense matrix

� ccube: a complex valued dense cube

� string: a string expression

� cell: a cell matrix object

� kernel_function: represents a reference to a kernel or device function (see further).

� function: a reference to a Quasar (user) function or lambda expression

� object: a user-defined object (see function object())

© 2016 Ghent University / iMinds / Gepura. Patented technology under WO patent 2015150342. 8



2.1. QUASAR HIGH-LEVEL PROGRAMMING CONCEPTS CHAPTER 2. GETTING STARTED

Note that specific functions (see further) need to be used to create variables of a given type. There are also

some special built-in datatypes: vecx and cvecx, with x=1,...,32 specify a vector of length x.

3. Scalar numbers: scalar numbers can be entered in decimal notation (5.678) as well as in scientific notation

(-1.9e-4). Imaginary numbers are defined by adding the suffix j (or i), hence 1+1j or 1-1j represent complex

numbers. Non-decimal numbers are also supported: for example, binary numbers 1011011b (suffix b or B),

octal numbers 123456o (suffix o or O) and hexadecimal numbers 1Fh or 0ECD3Fh (suffix h or H).

4. Integer numbers: Quasar supports integer numbers (type int). The bit length of the int type depends on the

computation engine, but is typically 32-bit. Also integer types with specified bit length exist: int8, uint8,

int16, uint16, uint32.

5. % Comments are cool

However, note that multi-line comments are currently not (yet) supported.

6. Assignment expressions:� �
cool = 1
quasar = cool�
The separation of lines using “;” is optional, and only mandatory when multiple statements are placed on the

same line. One can assign to multiple variables at once, similar to C/C++:� �
a = b = 1�
also, the result of an assignment is a value (in this case, 1). Multiple variable assignment is also possible (i.e.

assigning multiple values to multiple variables at once). For example:� �
[ a , b ] = [ 1 , 2 ]�
will assign 1 to a and 2 to b. It is equivalent to:� �
a=1; b=2�
The multiple variable assignment is mostly useful for 1) assigning multiple return values from functions, for

interchanging values:� �
[ a , b ]=[b , a ]�
will swap the values of a and b. In some cases, it may be useful to neglect a certain return value. This can be

done using the placeholder _:
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� �
[ a , ] = [ 1 , 2 ]
[ , b ] = [ 1 , 2 ]�

7. Arrays, matrices, cubes etc. Currently 1D, 2D and 3D matrix structures are implemented. The data type

used may depend on the settings of the computation engine (currently, only 32-bit floating point is allowed,

for efficiency). The following program illustrates how to create vectors and perform operations:� �
a = [ 0 , 1 , 2 , 3 ] + 4
b = [ 3 , 3 , 3 , 3 ]
print ”a = ” , a , ”a .* b = ” , a .* b , ”sum( a .*b) = ” , sum( a .* b)
print ”aˆ2 = ” , a .ˆ2�
String expressions are defined by double quotes (“”), the function “print” allows to print several comma

separated values to the console. The “sum” function computes the sum of all components of the vector. The

first line evaluates to� �
a = [ 4 , 5 , 6 , 7 ]�
i.e., 4 is added to every component of the vector. [4, 5, 6, 7] then represents a row vector. A 2D-matrix can

be defined as follows:� �
a = [ [ 1 , 2 ] , [ 2 , 1 ] ]�
Statements and expressions can be split across multiple code lines. The following is also valid:� �
a = [ [ 1 , 2 ] ,

[ 2 , 1 ] ]�
However, for readability, it is adviced to put an underscore at the line break:� �
a = [ [ 1 , 2 ] ,

[ 2 , 1 ] ]�
Similarly, a 3D matrix can be defined by:� �
a = [ [ [ 1 , 2 ] , [ 3 , 4 ] ] , [ [ 5 , 6 ] , [ 7 , 8 ] ] ]�
An alternative way of defining matrices is using the function zeros(.) or ones(.), which will initialize the

values of the matrix to 0 and 1, respectively:
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� �
a = zeros (5 )
b = zeros (6 , 4)
c = zeros (8 , 6 , 4)

d = ones (5 )
e = ones (6 , 4)
f = ones (8 , 6 , 4)�
Alternatively, a vector with the dimensions can be used:� �
dims = [ 4 , 5 , 6 ]
a = ones ( dims )�
The function size(.) returns the size of a vector/matrix/cube:� �
dims = size ( a )
dim y = s ize ( a , 0 )
dim x = s ize ( a , 1 )
dim z = s ize ( a , 2 )
[ dim y , dim x ] = s ize ( a , 0 . . 1 )
[ dim y , dim x , dim z ] = s ize ( a )�
Note that the dimensions are zero-based. By convention, y is the first dimension (corresponding to index 0),

x is the second dimension and z is the third dimension. Internally, matrices are stored in row-major order.1

An n× n identity matrix can be created by using the function eye(.):� �
Q = eye (n)�
Another example:� �
a = [ [ 1 , 2 ] , [ 2 , 1 ] ]
b = [ [ 3 ] , [ 4 ] ]
a [ 0 , 0 ] = 2
print a * b , ” , ” , eye (3 )
print a [ 0 , 0 ]
print ”size ( a )=”, s ize ( a ) , ”s ize ( a , 1 ) =”, s ize ( a , 1 )�

8. Operators: see table 2.1.

Notes:

� There are no bit-wise integer operators. For bit-wise integers operations, use the functions and (bitwise

conjunction), or (bitwise disjunction), xor (exclusive or), not (bitwise negation), shl (bit-wise left shift),

shr (bitwise right shift) instead.

1This is in contrast to MATLAB, which uses column-major order (i.e. FORTRAN order).
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Table 2.1: Some operators

= assignment ! inversion (of Boolean values)

+ add && Boolean AND

- subtract / negation || Boolean OR

* matrix multiplication (or multiplication of scalar values) ? : Conditional expression (similar to C/C++)

/ division of scalar values += a += b is a shorthand for a = a + b

.* point-wise multiplication (vec, mat, cube data types) -= a -= b is a shorthand for a = a - b

./ point-wise division (vec, mat, cube data types) *= a *= b is a shorthand for a = a * b

ˆ exponentiation (scalar values currently) /= a /= b is a shorthand for a = a / b

.ˆ point-wise exponentiation ˆ= a ˆ= b is a shorthand for a = a ˆ b

< smaller than .*= a .*= b is a shorthand for a = a .* b

<= smaller than or equal ./= a ./= b is a shorthand for a = a ./ b

> greater than .ˆ= a .ˆ= b is a shorthand for a = a .ˆ b

>= greater than or equal ˆˆ= Atomic maximum

== equality = Atomic minimum

!= inequality ˜= Atomic bitwise exclusive or (Xor)

.. Defines a sequence (see further) |= Atomic bitwise or

&= Atomic bitwise and

� Within kernel or device functions, the operators +=, -= have a special meaning: they specify atomic

operations (i.e. these operations are free from data races). There are currently 13 atomic operators (see

table below).

9. Sequences: a sequence defines a row vector:� �
a=0. .9
b=0 . . 2 . . 6�
The middle argument defines the step size. Generally, the sequence includes the specified lower and upper

bounds.2 Hence, the above statements are equivalent to:� �
a=[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
b=[0 ,2 , 4 , 6 ]�
The sequences can subsequently be used for matrix indexing:� �
A=randn (64 ,64)
A sub = A[ a , b ]�
Example:� �
a = 1 . . 2 . . 1 0
b = sum( a )
c = linspace (1 , 2 , 5)
print ”a = ” , a , ”c = ” , c
print sum = ” , [ b , sum( c ) ]�

2Except when the step size is too large, such as 0..2..3 = [0, 2] or 0..100..10 = [0].
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The linspace function creates an uniformly spaced row vector of 5 values between 1 and 2, hence c =

[1,1.25,1.5,1.75,2]. Implicit sequences (:) can be used to quickly index matrices:� �
print A[ : , 0 ] , A [ 0 , : ]�
This statement prints the first column of A, followed by the first row of A. Note that for the Matlab keyword

“end”, there is no Quasar equivalent. However, it is still possible to use A[0..size(A,0)-1,0].

10. Control structures: Quasar supports several control structures:� �
for a =0 . . 2 . . 4

break
continue

end

i f a==2
endif

i f a==2
. . .

e l s e i f a==3
. . .

else
. . .

endif

while expr
break
continue

end

repeat
break
continue

until expr�
Note that “if” is ended with “endif”. Also “if”, “endif” statements must be spread along several lines of

code. This is to improve readability of the code. The following is NOT allowed:� �
i f a==2; do something ( ) ; endif % Not al lowed !�
An example of a for-loop:� �
for i =1 . . 2 . . 1 0 0

j=i+1
print i , ” ” , j
i f i==1

print ” i i s one ”
e l s e i f i==3

print ” i i s three ”
endif

end�
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Non-uniform ranges can be specified as follows:� �
for powerOfTwo=[1 ,2 , 4 , 8 , 16 ,32 ,64 ,128 ]

print powerOfTwo
end�
or more conveniently as:� �
for powerOfTwo=2 . ˆ ( 1 . . 7 )

print powerOfTwo
end�

11. Switches are also possible, the syntax is a little different, for example:� �
match a with
| 1 −>

print ”a=1”
| 2 −>

print ”a=2”
| (3 , 4) −>

print ”a=3 or a=4”
| ”St r ing ” −>

print ”a=Str ing ”
| −> print

”a i s something else ”
end�
Note that different data types (i.e. strings and scalar numbers) can be mixed. Multiple case values can be

specified (grouped by parentheses).

12. Ternary operators: an inline if is also available, just like in C/C++:� �
y = cond i t i on ? t rue va lu e : f a l s e v a l u e
y = (x > T) ? x − T : 0�
When the condition is true, only the value for true is evaluated. Conversely, when the condition is false, only

the false-part is executed.

13. Lambda expressions: simply speaking, lambda expressions define inline functions, for example:� �
v = (x , y ) −> 2*x+y
u = x −> 2*x
w = x −> y −> x + y
z = w(10)
print v (1 , 2 ) , ” ” , z (5 )
a = [ [ 1 , 2 ] , [ 2 , 1 ] ]
print v (a , a )
print w(4) (5 )�
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Note that here, w is a lambda expression that returns another lambda expression (y -> x + y) when evaluated.

As such, partial evaluation is possible, e.g. z=w(10) (see further in section 4.8). Lambda expressions can

contain several sub-expressions and can be spread over several lines, as follows:� �
print sum = (a , b) −> (sum=a+b ;

print (sum) ; sum)�
The different expressions are separated using semicolons (’;’). The return value of the lambda expression is

always the last expression (in the above example, sum). Using ternary operators, it is fairly simple to define

recursive lambda expressions:� �
f a c t o r i a l = x −> x > 0 ? x * f a c t o r i a l ( x − 1) : 1�

14. Functions: the syntax for functions is different from the syntax for lambda expressions:� �
function [ outarg1 , . . . , outargM ] = name ( inarg1 , . . . , inargN )�
Here there are M output arguments (outarg1, ..., outargM) and N input arguments (inarg1, ..., inargN).

“name” is the name of the function. Note that all output arguments must be assigned, otherwise the function

call fails. An example:� �
function y = do something (x )

y = x * 2
end
a = [ [ 1 , 2 ] , [ 2 , 1 ] ]
b = do something ( a )
print b�
Calling a function with multiple output arguments requires multiple variable assignment:� �
function [ x , y ] = compute (a , b)

x = a + b
y = a * b

end
[ u , v ] = compute (2 , 3 )
print u , ” ” , v�
Functions can contain inner functions (up to arbitrary nest depths). The inner functions (direct childs, not

siblings) can then only be accessed from the outer function. For example:
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� �
function y = co l o r t r ans f o rm (x : vec3 , cname )

function a = hsv2rgb ( c )
h = f loor ( c / 60)
f = f r a c ( c / 60)
v = 255 * c
p = v * (1 − c )
q = v * (1 − f * c )
t = v * (1 − (1 − f ) * c )
match h with
| 0 −> a = [ v , t , p ]
| 1 −> a = [ q , v , p ]
| 2 −> a = [ p , v , t ]
| 3 −> a = [ p , q , v ]
| 4 −> a = [ t , p , v ]
| −> a = [ v , p , q ]
end

end
i f cname==”hsv2rgb”

y = hsv2rgb ( x )
else

error ”the s p e c i f i e d c o l o r trans form ” , cname , ” i s not supported ! ”
endif

end�
Argument types can optionally be specified, as shown above in x : vec3. Quasar will check at compile-time

(and run-time) if the arguments are of the correct type, otherwise an error will be raised. The presence or

absence of argument types has no further influence on the execution and end result of the program (except

when types do not match and an error is generated). However, specifying argument types can help the Quasar

optimizer to generate more efficient code.

Function handles can also be used, for example:� �
my func = co l o r t r ans f o rm
print my func ( [ 0 . 2 , 0 . 2 , 0 . 3 ] )�

15. Optional function arguments: functions can have optional arguments. In case an argument is missing, the

default value is used. For example:� �
function [ y , k ] = my func (b : mat , a : scalar = 4)

print a + b
y = k = 0

end
my func (2 )�
Since my_func is called with one argument, the default value for the second argument will be used (4 in this

case).

Hence, functions can have multiple outputs and optional arguments, whereas lambda expressions can not.

Note that the optional function arguments can - on their turn - be expressions and even function calls:
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� �
function [ y , k ] = my func (b : mat , a : mat = eye (4 ) )
function [ y , k ] = my func (b : mat , a : mat = A .* B)
function [ y , k ] = my func (b : mat , a : mat = 2 * b)�
Note that by default, variable references (if the name does not correspond to another input argument) refer to

the outer context in which the function is defined. They capture the value at the time the function is defined.

The variables are defined in the order that they are put as argument. The following would lead to an error:� �
function [ y , k ] = my func ( a : mat = 2 * b , b : mat)�
Here, b is not defined at the time a = 2 * b is evaluated.

16. Cell matrices: vectors, matrices and cubes can be grouped in a cell-structure. Cell matrices are either created

using the function cell or using the special designated quotes ‘’. copy(.) performs a deep copy of a cell

matrix (i.e. the function recursively applies copy(.) to all its elements). Some examples are given below:� �
A = ce l l (2 , 2 )
G = ce l l (3 )
A[ 0 , 0 ] = eye (4 )
A[ 1 , 1 ] = 3
A[ 0 , 1 ] = ce l l ( 1 , 4 )
A[ 0 , 1 ] [ 1 ] = ones (3 , 3 )
A[ 0 , 1 ] [ 1 ] [ 0 , 0 ] = 2
print A[ 0 , 1 ] [ 1 ] * 3
print size (A) *2
B = copy (A)
C = B−A
print C[ 0 , 0 ]
D = {A,B,C}
D names = {”A” , ”B” , ”C”}
print D names [ 1 ]
print size ( ' ' )�
One important special feature is that operations on cell matrices are supported when the different operands

have the same structure. It is possible to compute the sum of two cell matrices using:� �
C = B+A�
Althernatively, we can multiply all elements of a cell matrix by a constant:� �
C = B*4�
Or, we can use cell matrices in function calls (note that this is only allowed with built-in functions).� �
C = max(B, 4 )�
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17. Dynamic evaluation: string expressions can be parsed and evaluated at runtime using the eval(.) function:� �
va l = eval ( ”( x ) −> 3*eye ( x ) ”) (8 )�
Here, the eval function parses the string expression ”(x) -> 3*eye(x)´´ and returns a corresponding lambda

expression. This lambda expression can then be evaluated at the same speed as “regular” lambda expressions.

This can be useful for simulations (e.g. passing functions through the command line).

18. Reading an input image:� �
img in = imread ( ” l e na b i g . t i f ”)�
Grayscale images return a two-dimensional matrix, color images return a three-dimensional cube, in which

the length of the third dimension is either 3 (RGB) or 4 (RGBA - RGB with an alpha channel).

19. The spread operator: the spread operator “...´´ allows to unpack vectors to arbitrary indices or function

parameters. Using the spread operator, the following lines of code can be simplified:� �
pos = [ 0 , 1 , 2 ]
y = im [ pos [ 0 ] , pos [ 1 ] , pos [ 2 ] , 0 ] % Before
y = im [ . . . pos , 0 ] % After

luminance = (R,G,B) −> 0 .2126 * R + 0.7152 * G + 0.0722 * B
c = [128 , 42 , 96 ]
lum = luminance ( c [ 0 ] , c [ 1 ] , c [ 2 ] ) % Before
lum = luminance ( . . . c ) % After�
The spread operator is in particularly useful in combination with variadic functions (see section §4.6).

20. Importing .q files: .q files can contain multiple variable and function definitions which can be accessed from

other .q programs. To do so, the import keyword can be used. The import keyword should be used only at the

global scope (hence not within functions or control structures), and its meaning is the same as the C/C++

#include pragma: the content of the referenced .q file is processed in the current .q file at the position of the

import keyword. For example:� �
import ”system . q”
import ” im f i l t e r . q ”

% a l l d e f i n i t i o n s from system . q and im f i l t e r . q are now ava i l a b l e .

im = im f i l t e r ( imread ( ”img . t i f ”) ,ones (7 , 7 ) )�
There is one exception: “main” functions are completely skipped and hence not imported (see section 10.1).

Also, .q files are only to be imported once (multiple imports will have no effect and will be ignored by the

compiler), and the import definitions must be placed on the top of the program!
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Table 2.2: Quasar main primitive types. Note: to use the types with asterisk(*), it is required to import the module
“inttypes.q”

type 0-dim 1-dim 2-dim 3-dim n-dim

integer number int ivec(*) imat(*) icube(*) icube{n}(*)
shorthand for vec[int] mat[int] cube[int] cube{n}[int]

scalar number scalar vec mat cube cube{n}

shorthand for vec[scalar] mat[scalar] cube[scalar] cube{n}[scalar]

complex scalar number cscalar cvec cmat ccube ccube{n}

shorthand for vec[cscalar] mat[cscalar] cube[cscalar] cube{n}[cscalar]

2.2 A brief introduction of the type system

Note: a full depth explanation on the Quasar user-defined types will be given in section §3. Here we only give a

brief introduction.

Quasar has a special type system, that facilitates working with multi-dimensional data, which includes for example

conversions between vectors and matrices. In general, variable types are implicit (hence do in general not need to

be specified by the user). In contrast to the MATLAB/Octave compilers, the Quasar compiler obtains the types of

the variables through type inference. The type inference is not strict : if the compiler is not able to figure out the

type of a variable, this variable will considered to be of an unknown type (often denoted by ’??’ in warning/error

messages). The main primitive types of Quasar are summarized in table 2.2. The types vec, mat, cube, cvec,

cmat, ccube, ... are actually shorthands for their corresponding generic versions (see further in section §6). Also

the shorthands are listed in the table. Additional primitive types are given in table 2.3.

The relation between the “dimensional” types is defined as follows:

vec ⊂ mat ⊂ cube

ivec ⊂ imat ⊂ icube

cvec ⊂ cmat ⊂ ccube

Hence, every vector is a matrix, and every matrix is a cube. Whether a value A is vector, matrix, or cube, depends

on the number of dimensions of A:

Ahas type



vec if ndims(A)==1

mat if ndims(A)==2

cube if ndims(A)==3

cube{N} if ndims(A)==N

where ndims returns the total number of dimensions. Note that scalar numbers are not part of the relationship

(hence scalar * vec). This is mainly for implementation efficiency.

The consequence is that, functions defined for arguments of type cube can also accept arguments of type vec and

mat. E.g., for digital images, cube can both represent color images (with dimensions M × N × 3) and grayscale

images (with dimensions M ×N × 1).

Explicitly annotating the types of variables can bring performance benefits in certain cases, although for code

simplicity it is advised to only specify the type when necessary. Exceptions are kernel and device functions (see

section 2.4.1 and section 2.4.2), which often require explicit typing.
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It is possible to check at run-time whether a variable (or intermediate result) has a certain type, using the function

type(A:typename). Additionally, the check can be performed at compile-time at any point in the code using the

assert function, for example:� �
assert ( type ( va r i ab l e , ” icube ”) )
assert ( type ( 1 , ”scalar ”) )
assert ( type (1 i , ” cscalar ”) )
assert ( type ( zeros ( 2 , 2 ) , ”mat”) )
assert ( type ( ”Quasar ” , ” s t r i n g ”) )�
In case one of the above the type check fail, a compiler error will be generated. The file system.q defines a number

of lambda expressions for checking types:

� �
i s rea l = x −> type (x , ”scalar ”) | | type (x , ”vec ”) | | type (x , ”mat”)

| | type (x , ”cube ”)
iscomplex = x −> type (x , ”cscalar ”) | | type (x , ”cvec ”) | | type (x , ”cmat”)

| | type (x , ”ccube ”)
i s sca lar = x −> type (x , ”scalar ”) | | type (x , ”cscalar ”)
isvector = x −> type (x , ”vec ”) | | type (x , ”cvec ”)
ismatrix = x −> type (x , ”mat”) | | type (x , ”cmat”) | | isvector ( x )
iscube = x −> type (x , ”cube ”) | | type (x , ”ccube ”) | | ismatrix ( x )�
Under some circumstances, the Quasar compiler is not able to figure out the types of the variables through inference.

One example is the load function, which reads data from a file (through a process called deserialization) and stores

them into variables.� �
[A, B] = load ( ”myf i l e . dat ”)�
This operation is only performed at runtime, and correspondingly the compiler can not predict the types of the

variables. Then it makes sense to give the compiler some type information, such that it can perform some smart

optimizations when needed:� �
assert ( type (A, ”ccube ”) )
assert ( type (B, ”vec ”) )�
The assert function then has a two-fold purpose: 1) it gives the compiler information about the types of A and B

and 2) it performs a runtime check to validate the data read from“myfile.dat”.

An alternative (and perhaps cleaner) way to check the type of the variable is by using type annotations. The above

example then becomes:� �
[A : ccube , B : vec ] = load ( ”myf i l e . dat ”)�
In case the types do not match, the runtime system will generate an error message. Type annotations need to be

declared only the first time the variable is used.

Finally, type conversion is generally not needed in Quasar (avoided for computational performance reasons), al-

though a conversion table is given in table 2.4. Only for generic programming purposes (see section §6), an
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Table 2.3: Additional primitive types “first-class citizens”

Type Purpose

string Sequences of characters
lambda_expr Lambda expressions

function Function handles
kernel_function Kernel functions

object Objects
?? Unspecified type (i.e. determined at run-time)

Table 2.4: Type conversion table

From/To int/ivec/imat/icube scalar/vec/mat/cube cscalar/cvec/cmat/ccube

int/ivec/imat/icube - float(.) complex(.) / complex(re,im)

scalar/vec/mat/cube int(.) - complex(.) / complex(re,im)

cscalar/cvec/cmat/ccube int(real(.)) / int(imag(.)) real(.) / imag(.) -

Table 2.5: Overview of floating point representations

IEEE 32-bit (single precision) IEEE 64-bit (double precision)
Significand 23 bits 52 bits
Exponent 8 bits 11 bits

Minimum pos. value 1.17549435× 10−38 2.225073858507201× 10−308

Maximum pos. value 3.40282347× 1038 1.797693134862316× 10308

Exact integer repr. -224 + 1 to 224 − 1 (16, 777, 215) −253 − 1 to 253 − 1

overridable type conversion function cast(x, new_type) is available.

Lambda expressions can also be explicitly typed. Quasar follows typing conventions similar to the Haskell and ML

programming languages. For example:

� [int -> int]: a function that takes ”int” as input and gives “int” as output

� [(mat, scalar) -> (mat, mat)]: a function that takes two input arguments (of type mat and scalar) and

that has two output arguments (both of type mat)

� [int -> int -> int]: a function that projects an integer input onto a lambda expression of type int ->

int.

Lambda expressions (especially those that use closures, see section 4.2) are very powerful in Quasar.

2.2.1 Floating point representation

In Quasar, the internal representation of scalar numbers “scalar” (or complex scalar numbers “cscalar”), is not

specified at the code level. This allows the floating point representation to be changed on a global level. By default,

Quasar will use single precision floating point numbers (see table 2.5). However, it is possible to compile and run

the programs using double precision as well, by passing the -double command line option to Quasar, e.g.:� �
. / Quasar . exe −debug −double s c r i p t . q�
For performance reasons, it is recommended to use single precision. Note that some older GPUs have limited

double precision FP support. CUDA devices before compute capability 1.3 even do not have double precision FP

support. Moreover, using double precision FP numbers doubles the memory bandwidth. Consequently, programs
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using double precision may run up to 2x slower than programs with single precision FP. However, there are some

reasons to enable double precision in Quasar programs:

� When numerical accuracy is an issue: remark that results obtained using double-precision arithmetic may

differ from the same operations obtained using single-precision arithmetic, due to the greater precision and

due to rounding errors. Therefore, it is important to compare and express the results within a certain tolerance

rather than expecting them to be exact. Moreover, GPU devices typically flush numbers smaller than the

minimum representable value (in absolute sense) to zero. Correspondingly, by using double precision FP

numbers it may be possible to reduce some of the error introduced by underflow, as the minimal representable

value is of the order 10−308 for double, while 10−38 for single precision (see table 2.5).

� For comparing the results of the algorithms to MATLAB/C++ implementations using double precision FP

numbers.

Often it is useful to check whether the program is not suffering from floating point inaccuracies. This can simply

be done by running the program once in double precision mode.

Note: NVidia GPU’s GTX 260, 275, 280, 285, 295 chips (with compute capability 1.3) have a low performance in

double precision computations (about 1/8 of single precision performance). Devices of the NVidia Fermi architecture

(compute capability 2.0+) have 1/2 the performance of single precision operations. Performance is greatly improved

with either NVidia Tesla cards or the NVidia Titan (which is based on the Kepler architecture).

Finally, recall that FP math is not associative, i.e. the sum (A+B)+C is not guaranteed to be equal to A+(B+C).

When parallelizing computations, the order of the operations is often changed (and may be even unspecified), leading

to results which may differ each time the technique runs even with the same input data. This limitation is not

inherent to Quasar, but applies to all approaches that perform parallel computations using floating point numbers.

The example “Accurate sum” gives more information in this issue (see section 11.7).

The global constant “eps” is available for determining the machine precision (similar to FLT_EPSILON/DBL_EPSILON

in C or eps in Octave/Matlab). The functions maxvalue(scalar) and minvalue(scalar) can be used to determine

the maximum and minimum values representable in floating point format.

2.2.2 Integer types

Next to floating point numbers, Quasar has also (limited) support for integer types. The default integer type is

“int” (signed integer). Its bit length depends on the computation engine, but is guaranteed to be at least 32-bit.

There are also integer types with a pre-defined bit length, these are mainly provided 1) to enable more efficient

input/output handling (e.g. reading/writing of images in integer format), or 2) to write certain algorithm in which

memory usage/memory bandwidth should be as low as possible. Generally, the use of the integers with pre-defined

bit length should be avoided. For completeness, these types are listed below:

� int8: a signed 8-bit integer (with range -128..127)

� int16: a signed 16-bit integer (with range -32768..32767)

� int32: a signed 32-bit integer (with range −231..231 − 1)

� int64: (not fully implemented yet)

� uint8: an unsigned 8-bit integer (with range 0..255)

� uint16: an unsigned 16-bit integer (with range 0..65535)

� uint32: an unsigned 32-bit integer (with range 0..232 − 1)
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� uint64: an unsigned 64-bit integer (with range 0..264 − 1)

A matrix containing 8-bit integers can be obtained as follows:� �
A = mat [ i n t8 ] ( rows , c o l s )�
Note that, by default, arithmetic operations for integer matrices are disabled (e.g. summing, subtracting, conversion

to floating point etc.). These operations can be included by importing the inttypes library (import inttypes.q ).

Integer types can have special modifiers (the modifier can be added by writing a apostrophe ’ directly after the type

name). These modifiers indicate how the conversion from a floating point number / integer number with larger bit

depth to the considered integer type takes place.

� int’checked (default): generates an error when the integer can not be represented using the current type

(note: not implemented yet)

� int’sat: in case of overflow, the integer is saturated (clipped) to the highest (or lowest) possible value that

can be represented.

� int’unchecked: performs no integer overflow checking. This may often be the fastest.

The following function, which sums two 8-bit unsigned integer matrices, illustrates the usage of integer modifiers:� �
function y : mat [ uint8 ' sa t ] = add ( a : mat [ u int8 ] , b : mat [ u int8 ] )

for m=0. . s ize ( a , 0 )−1
for n=0. . s ize ( a , 1 )−1

y [m, n ] = a [m, n ] + b [m, n ]
end

end
end�
Here, integer saturation is used in case the sum of a[m,n] and b[m,n] does not fall in the range 0..255.

2.2.3 Higher-dimensional matrices

Higher-dimensional matrices (with dimension > 3) need to be specified using an explicit dimension parameter. For

example cube{4} denotes a 4-dimensional array. The array with the highest possible dimension that can currently

be specified in Quasar is cube{n}. This is useful for generic specialization purposes (see further in section §6).

2.2.4 User-defined types, type definitions and pointers

Quasar supports user-defined types (UDTs) and pointers: the user-defined types are defined as classes, as illustrated

below:� �
type point : class

x : scalar
y : scalar

end�
The type keyword is always followed by a type definition. The class point can be instantiated using its default

constructor:
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� �
p = point ( )�
or:� �
p = point (x :=4 , y :=5)�
Remark that the arguments of the constructor are named. The order of the arguments can then also be changed:� �
p = point (y :=5 , x :=4)�
By default, classes in Quasar are immutable. This means that, once initialized, the value of the class cannot be

changed (or a compiler error will be generated)! Classes can also be made mutable, as follows:� �
type point : mutable class

x : scalar
y : scalar

end�
Immutable classes allow for some optimizations to be applied. For example, they can be stored in constant device

memory, some memory transfers are eliminated, moreover, the Quasar runtime does not need to check if the value

of this class has been changed in device memory. For these reasons, it is recommended to use immutable classes

whenever possible.

Additionally, a UDT can contain other UDTs:� �
type r e c t ang l e : class

p1 : po int
p2 : po int

end�
Remark that the fields of the rectangle (p1, p2) are stored in-place. This means that the internal storage size of the

UDT is the sum of the storage sizes of its fields. In this case, using single precision FP, elements of the point class

will take 8 bytes and consequently elements of the rectangle class will contain 16 bytes.

Like in other programming languages (e.g. C/C++, Pascal), it is also possible to define a rectangle that stores

references to the point class. Therefore, Quasar supports Pascal-type pointers:� �
type p t r e c t ang l e : class

p1 : ˆ po int
p2 : ˆ po int

end�
Remark that in many programming languages, pointers can be a source of programming errors (e.g. dangling

pointers, uninitialized pointers etc). For this reason, the pointers in Quasar have special properties, that allow them

to be safe in usage:

� Multiple indirections (^^point) are not allowed.
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� All pointer values should be initialized, either used a constructor of the class, or using a null pointer (nullptr).

For example, the above class can be initialized using:� �
r = p t r e c t ang l e ( p1:=nullptr , p2:=point (1 , 2 ) )�

� Pointers are only allowed to be used for UDTs, not for scalars (scalar, cscalar, ...) or matrices (vec, mat,

cube, ...).

� All pointer values are typed. It is for example not allowed to declare a pointer to an unknown type (^??).

� Pointer arithmetic is also not allowed.

Internal detail: the pointers in Quasar rely on customized form of reference counting to help track allocation of

memory, including a technique to solve memory leaks caused by potential circular references. Moreover, the pointers

make an abstraction from the particular device: the object can reside either in CPU memory, GPU memory, or

both.

It is also possible to define (multi-dimensional) arrays of UDTs, using parametric types:� �
type po in t vec : vec [ po int ]
type point mat : mat [ po int ]
type point cube : cube [ po int ]
type r e c t ang l e v e c : vec [ r e c t ang l e ]
type p t r e c t ang l e v e c : vec [ ˆ p t r e c t ang l e ]�
Using UDT arrays is often more efficient than storing the individual elements of the UDT in separate matrices.

This is because 1) the indexing often only needs to be performed once and 2) because better memory coalescing

and caching. The UDT arrays can be initialized by zero (or using nullptr’s), in the following way:� �
a = po int vec (10)
b = point mat (4 , 5)
c = point cube ( [ 1 , 2 , 3 ] )�
Note that a type definition (type x : y) is required for this construction. The following is (currently) not

supported:� �
a = vec [ po int ] ( 1 0 )�
Moreover, the multi-dimensional arrays and UDTs may contain variables with unspecified types:� �
type point : class

x : ??
y : ??

end

type c e l l v e c : vec [ ? ? ]
type c e l l mat : mat [ ? ? ]
type c e l l c u b e : cube [ ? ? ]�
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One caveat is: variables with unspecified types do not support automatic parallelization (see further in section 2.3)

and can not be passed to kernel functions (see section 2.4.1).

UDTs can also contain vectors/matrices:� �
type wavelet bands : mutable class

LL : ˆwavelet bands
HL : mat
LH : mat
HH : mat

end�
The premise is that this class does not have a default constructor (wavelet_bands()), because there are no default

values for matrices. Also nullptr’s are not allowed. Hence, it is necessary to explicitly specify the value of

wavelet_bands:� �
bands = wavelet bands (LL:=nullptr ,

HL:=ones (64 ,64) ,
LH:=ones (64 ,64) ,
HH:=ones (64 ,64) )�

2.3 Automatic parallelization

The Quasar compiler automatically attempts to parallelize for-loops, depending on the matrix indexing scheme,

input/output variables, constants and data dependencies. For example, the sequential code fragment, demonstrating

a spatial filtering using a box filter (mask):� �
im = imread ( ” image big . t i f ”)
im out = zeros ( s ize ( im) )
N = 5
mask = ones (2*N+1,2*N+1)/(2*N+1)ˆ2

for m=0. . s ize ( im , 0 )−1
for n=0. . s ize ( im , 1 )−1

a = [ 0 . , 0 . , 0 . ]
for k=−N. .N

for l=−N. .N
a += mask [N+k ,N+l ] * im [m+k , n+l , 0 . . 2 ]

end
end
im out [m, n , 0 . . 2 ] = a

end
end�
automatically expands to the following equivalent parallel program:
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� �
im = imread ( ” image big . t i f ”)
im out = zeros ( s ize ( im) )
N = 5
mask = ones (2*N+1,2*N+1)/(2*N+1)ˆ2

function [ ]= kernel p a r a l l e l f u n c ( im : cube , im out : cube , mask :mat ,N: int , pos : ivec2 )
a = [ 0 . , 0 . , 0 . ]

for k=−N. .N
for l=−N. .N

a += mask [N+k ,N+l ] * im [ pos [0 ]+k , pos [1 ]+ l , 0 . . 2 ]
end

end
im out [ pos [ 0 ] , pos [ 1 ] , 0 . . 2 ] = a

end
parallel do ( size ( im , 0 . . 1 ) , im , im out , mask ,N, p a r a l l e l f u n c )�
In this program, first a kernel function is defined. Next, the parallel_do function launches the kernel function

in parallel for every pixel in the image im. The kernel function processes exactly one pixel intensity, and is called

repetitively by the function parallel_do. When compiling the Quasar program, the kernel functions and automat-

ically parallelized loops are compiled, depending on the computation engine being used, to CUDA or native C++

code (using OpenMP). This ensures optimal usage of the computational resources.

The Quasar optimizer may fail to extract a parallel program, for example because the type of certain variables

is not known. For mapping algorithms onto hardware, variable types need to be well defined. As explained in

section 2.2, when the variable type is not specified, Quasar uses type inference to derive the exact type from the

context. When this fails, warning messages are displayed on the console during compilation that can help to make

the program parallel, e.g. through assert(type(B,"vec")) statements. Quite often, it may be the intention of the

programmer to have a parallel loop. In this case, it is possible to interrupt the program compilation when the loop

parallelization fails (thereby generating a compiler error). This is possible by putting {!parallel for} directly

before the for-loop to be parallelized:� �
{ ! p a r a l l e l for }
for m=0. . s ize ( im , 0 )−1

for n=0. . s ize ( im , 1 )−1
end

end�
There are some scenarios that currently cannot be solved by the auto-parallelizer (for example situations in which

shared memory is necessary). Therefore, and also for full flexibility, it is also possible to perform the parallelization

completely manually. This is described in the following section.

2.4 Custom writing of parallel code

Any user should read this section, as this section is quite fundamental! Here, we describe two usages of writing

parallel code:

� basic usage (does not require any pre-knowledge on parallel programming) - see section 2.4.2.

� advanced usage (for “experienced” users) - see section 2.4.4.

Most algorithms can be efficiently implemented using the “basic usage” approach. The advanced usage generally

brings no further savings in terms of computation time (except for algorithms that can benefit from storing a lot
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of intermediate values). The advanced usage consists of synchronization, dealing with data races, sharing memory

across multiprocessors.

For beginning users, it is advised to get acquainted first with the basic usage techniques, before considering the

advanced usage.

2.4.1 Basic usage: kernel functions

A kernel function is a Quasar function with a special attribute __kernel__, that can be parallelized. Kernel

functions are launched in parallel on every element of a certain matrix, using the “parallel do” built-in function.

The __kernel__ attribute specifies that the function should be natively compiled for the targeted computation

engine (e.g. CUDA, CPU). Consequently, __kernel__ functions are considerably faster than host functions, not

only due to their parallelization. As example, consider the following algorithm:� �
function [ ] = kernel co lo r t empera ture (x : cube , y : cube , temp ,

co ld : vec3 , hot : vec3 , pos : ivec2 )

input = x [ pos [ 0 ] , pos [ 1 ] , 0 . . 2 ]
i f temp<0

output = lerp ( input , cold , ( −0 .25) *temp)
else

output = lerp ( input ,hot , 0 . 2 5* temp)
endif
y [ pos [ 0 ] , pos [ 1 ] , 0 . . 2 ] = output

end
hot = [ 1 . 0 , 0 . 2 , 0 . 0 ] * 2 5 5
co ld = [ 0 . 3 , 0 . 4 , 1 ] * 2 5 5
img out = zeros ( size ( img in ) )
parallel do ( size ( img out , 0 . . 1 ) , img in , img out , temp , cold ,hot , c o l o r t emperature )�
The kernel function is launched on a grid of dimensions “size(img_out,0..1)” using the parallel_do construct.

This means that every pixel in img_out will be addressed individually by parallel_do, and correspondingly the

function color_temperature will be called for every pixel position.

For a kernel function, all arguments need to be explicitly typed. Recall that untyped arguments (or arguments

without type) in Quasar are denoted by ??. Untyped arguments are not allowed because these arguments can not

be mapped onto a device architecture.

Kernel functions differ from “host” functions, in the sense that in addition to the standard data types, some special

data type specifiers are allowed:

� vecx : with x=1,2,...,32 corresponds to a vector of length x.

� ivecx : with x=1,2,...,32 corresponds to an integer vector of length x.

� cvecx : with x=1,2,...,32 corresponds to a complex-valued vector of length x.

� int: integer data type

The value x should be seen as an extra length constraint on the corresponding vector, and this length information

is used by the compiler for type inference purposes.

However, some datatypes can not be passed as arguments to kernel functions: cell matrices containing unknown

types (??) and strings. To pass cell matrices, use parametrized matrix types (vec[cube], mat[cube], mat[vec],

etc., see section §3). Strings need to be converted to vectors (using the functions fromascii, fromunicode). Device

functions (__device__) possibly containing closure variables (see section 4.2), can also be passed.
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When declaring parameters, for vectors of length ≤ 32, it is more efficient to add the length explicitly in the type,

as in vecx, ivecx, cvecx, with x=1,2,...,32. This is because vectors, with a length that is known at compile-

time, are treated in a special way: they are grouped together requiring less memory read/write requests, or they

are implemented using SIMD instructions if the underlying back-end compiler supports them. Note that inside

__kernel__ functions, it is recommended to use integers instead of scalars (when possible). This may yield a

speed-up of about 30% using the CUDA computation engine. When a scalar constant contains a decimal point

(e.g., 1.2), the compiler will consider this constant to be a floating point number, otherwise it will be considered to

be an integer.

The syntax of the parallel_do function is as follows:� �
parallel do ( dimensions , inarg1 , . . . , inargN , k e r n e l f un c t i o n )�
where dimensions is a vector. Note that normally kernel function cannot have output arguments (there is a special

advanced feature that allows kernel functions to return values of certain types, see section 4.5.3, but this feature is

only for specific use-cases). Instead, the return values should be written to the input arguments passed by reference,

i.e. arguments of types vec, mat, cube, cvec, cmat, ccube.

There are some special arguments that can be defined in the kernel function declaration, but that do not need to

be passed to parallel_do:

� pos (of type int, (i)vecx): the current position of the work item being processed. Note that a“work item”can

be either an individual pixel, or a “group of pixels”, depending on how you specify the “dimensions” argument.

� blkpos (of type int, (i)vecx): the current position within the block (advanced users only, see section 2.4.4)

� blkidx (of type int, (i)vecx): the block index (advanced users only, see section 2.4.4)

� blkdim (of type int, (i)vecx): the current dimensions a block (advanced users only, see section 2.4.4). Inter-

nally, the data is processed on a block-by-block basis. The dimensions of a block depend on the computation

engine in use. For example, for the CUDA computation engine (with CUDA compute capability 2.0), the

block dimensions can be as large as 16×32 or 32×16. For the CPU computation engine, the block dimensions

will rather be 1×#num processors.

� blkcnt (of type int, (i)vecx): the number of blocks in each dimension (advanced users only, see section 2.4.4)

� warpsize (of type int): the warp size of the device (advanced users only, see section 2.4.4)

The parallel_do function performs the following sequential program in parallel:� �
blkdim = choo s e op t ima l b l o ck s i z e ( k e r n e l f un c t i o n ) % done automat i ca l l y
for m=0. . dimensions [0]−1

for n=0. . dimensions [1]−1
for p=0. . dimensions [2]−1

pos = [m, n , p ]
b lkpos = mod( pos , blkdim )
b lk idx = f loor ( pos/blkdim )
k e r n e l f un c t i o n ( inarg1 , . . . , inargN , [ pos ] , [ b lkpos ] , [ b lk idx ] , [ blkdim ] )

end
end

end�
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Here, first optimal block dimensions (blkdim) for the given kernel function are being selected. Then, ker-

nel_function is run inside the three loops, prod(dimensions)=dimensions[0]×dimensions[1]×dimensions[2]
times.

Special modifiers are available for kernel function arguments. The modifiers are specified using the apostrophe-

symbol:� �
function [ ] = kernel im f i l t e r k e r n e l n on s e p m i r r o r e x t ( y : cube 'unchecked ,

x : cube 'unchecked , mask : mat 'unchecked ' const , c en t e r : ivec2 , pos : ivec3 )�
These modifiers specify how vector/matrix/cube elements are accessed, and in particular enable efficient boundary

handling in image processing:

� ’safe: disregards writes outside the data boundaries, reads outside the data boundaries evaluate to zero.

� ’circular: performs circular boundary handling

� ’mirror: mirrors when accessing outside the data boundaries.

� ’clamped: clamps (saturates) to the data boundaries (y[0] = y[-1] = y[-2] = ... and y[N-1] = y[N]

= y[N+1] = ...)

� ’unchecked (warning: dangerous usage - your computer will explode if not used properly): specifies no bounds

checking on the input/output data. In case of access outside the data boundaries, a runtime error will be

generated (or the program may crash). Specify this modifier in case you are sure your kernel/device function

is 100% correct, and when you want to enjoy a modest extra code speedup.

� ’checked: the opposite of ’unchecked: generates an error when indices are out of the data boundaries.

Quasar will give information on which matrices are the prime suspect.

The default access modes are currently ’safe (inside kernel/device functions) and ’checked outside of kernel/device

functions (for performance reasons). In case the output of the program depends on the access mode, it is best to

explicitly indicate the access mode in the code.

Finally, there are some rules w.r.t. the calling conventions for kernel functions:

� Kernel functions can not have optional arguments.

� A kernel function cannot call a “host” function.

� A kernel function cannot evaluate a lambda expression.

� A kernel function can call a “device” function (see section 2.4.2)

� A kernel function can call a lambda expression declared with the __device__ attribute (see section 2.4.2).

� A kernel function can call other kernel functions, through parallel_do (see further in section §4.4). A kernel

function cannot directly call another kernel function using a standard function call.

There are some special functions that can be used within kernel functions:

� periodize(x, N): periodizes the input coordinate, i.e. k + a ·N , with 0 ≤ k < N becomes k. This function

is used automatically when the modifier ’circular is specified.
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� mirror_ext(x, N): mirrors the input coordinate between [0, N−1]. This function is used automatically when

the modifier ’mirror is specified.

� clamp(x, N): clamps the input coordinates to [0, N]. This function is used automatically when the modifier

’clamped is specified.

� int(x): converts the input argument to integer (using type casting)

� float(x): converts the input argument to floating-point (using type casting)

� shared(dims), shared_zeros(dims): the function has a special meaning - allocation of shared memory (see

section 2.4.4).

2.4.2 Device functions

In the example in the previous section, the linear interpolation function lerp is defined as:� �
lerp = device ( a : scalar , b : scalar , d : scalar ) −> a + (b − a ) * d�
Device functions are the only functions (next to kernel functions) that can be called from a kernel/device function.

The __device__ function specifies that the function should be natively compiled for the targeted computation

engine (e.g. CUDA, CPU), however, in contrast to kernel functions, they can not be used as argument to a call of

the parallel_do function. Device functions are hence useful to aid the writing of kernel functions. For example, if

one often needs a 2D vector that is orthogonal to a given 2D vector, one can define:� �
orth = device ( x : vec2 ) −> [−x [ 1 ] , x [ 0 ] ]�
The function orth can then be used from other functions (also outside kernel/device functions).

table 2.6 lists whether functions of different types can call each other. Note that there are a number of combinations

that are not supported:

� A device function cannot call a host function. This is simply because “default” functions are, by default, not

natively compiled. However, in many cases, it is possible to convert the host function to a device function, by

adding the __device__ modifier.

� A device function cannot call a kernel function directly, nor can a kernel function call another kernel function

(unless parallel_do is used, see further in section §4.4). This is because kernel functions have special facilities
for parallelization (e.g. they can use OpenMP etc).

� However, a host function can call a device function. This is useful for declaring functions that can be used

both from host code as from kernel code. An example is the sinc function:� �
s i n c = device ( x : scalar ) −> x == 0 ? 1 .0 : sin ( x ) /x

print s i n c (0 ) % c a l l the dev i ce func t i on�
Remark: kernel and device functions have dedicated types. For the above definitions:
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Table 2.6: Quasar: which function types can call ...?

From/To “ host” __device__ __kernel__

“ host” Yes Yes parallel_do/serial_do only
__device__ No Yes No
__kernel__ No Yes No

� �
im f i l t e r k e r n e l n on s e p m i r r o r e x t :

[ kernel (cube , cube ,mat , ivec2 , ivec3 ) −> ( ) ]
lerp : [ device ( scalar , scalar , scalar ) −> scalar ]
orth : [ device (vec2 ) −> vec2 ]�
These types can be used for defining more general functions that use device/kernel functions as input argument.

For example:� �
add = device ( x : scalar , y : scalar ) −> x + y
sub = device ( x : scalar , y : scalar ) −> x − y
mul = device ( x : scalar , y : scalar ) −> x * y
orth = device ( x : vec2 ) −> [−x [ 1 ] , x [ 0 ] ]
i dent = device ( x : scalar ) −> sub ( add (x , 2*x ) , 2*x )

function [ ] = kernel my kernel (X : mat , Y : mat , Z : mat , pos : ivec2 )
Z [ pos ] = add (X[ pos ] , Y[ pos ] )
v = orth ( [X[ pos ] , Y[ pos ] ] )

end

X = ones ( 4 , 4 )
Y = eye (4 )
Z = zeros ( size (X) )
parallel do ( size (Z) ,X,Y, Z , my kernel )�
One special feature of device functions, is that they can be used as function pointers and passed to kernel functions.

This can be used to reduce the number of kernel functions, or as an alternative to dynamic code generation:� �
% De f i n i t i o n o f a d e v i c e func t i on type
type b ina ry func t i on : [ device ( scalar , scalar ) −> scalar ]

add = device ( x : scalar , y : scalar ) −> x + y
sub = device ( x : scalar , y : scalar ) −> x − y
mul = device ( x : scalar , y : scalar ) −> x * y

function [ ] = kernel ar i thmet i c op (Y : cube ,
A : cube , B : cube , fn : b inary func t i on , pos : ivec3 )
Y[ pos ] = fn (A[ pos ] , B[ pos ] )

end

A = ones (50 ,50 ,3 )
B = rand ( s ize (A) )
Y = zeros ( size (A) )
parallel do ( size (Y) ,Y,A,B, add )�
2.4.3 Memory usage inside kernel or device functions

There are three types of memory that can be used inside kernel or device functions:

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 32



2.4. CUSTOM WRITING OF PARALLEL CODE CHAPTER 2. GETTING STARTED

1. local memory : this is memory that is local to the function, and each parallel run of the kernel function (called

’thread’) contains a private copy of this memory. Below are a few examples of the creation of local memory:� �
A = [0 , 1 , 2 , 3 ] % Generates a va r i ab l e o f type ' ivec4 '

B = [ 0 . , 1 . , 2 . , 3 . ] % Generates a va r i ab l e o f type ' vec4 '

C = [1 + 1 j , 2 − 2 j ] % Generates a complex−valued va r i ab l e o f type ' cvec2 '

D = ones (6 ) % Generate a vec to r o f l ength 6 , f i l l e d with 1 .
E = zeros (8 ) % Generates a vec to r o f l ength 8 , f i l l e d with 0 .
F = complex ( zeros (4 ) ) % Generates a complex−valued vec tor o f l ength 4�
For the GPU computation engine, there are however a few limitations: first, local memory is internally

stored in device registers, is hence very fast, but also scarse. Therefore, the functions ones and zeros,

can only be used for allocating vectors (not cubes or matrices), and the maximum length of a vector is 32.

Second, the length of the vector must be constant. It is hence not possible to allocate dynamic memory (e.g.

zeros(some_variable)). This may however change in a future version of Quasar.

2. shared memory : this type of memory is shared across threads, and allocated using the functions shared and

shared_zeros. Its usage is discussed in section 2.4.4.

3. global memory : this type of memory can (currently) only be passed using the kernel function arguments. For

example:� �
function [ ] = kernel my kernel (X : mat , pos : ivec2 )

% X i s g l oba l memory
end

X = ones (4096 ,4096)
parallel do ( s ize (X) , my kernel )�
Here, X is allocated outside a kernel function. The values of X, in total 4×4096×4096 bytes (in case of 32-bit

floating point), are stored automatically in global memory in a linear way. The following formula is used for

translating the 3D index to a linear index:

index(dim1, dim2, dim3) = (dim1Ndims2 + dim2)Ndims3 + dim3

Global memory can reside either in CPU memory, GPU memory or both. However, when calling a kernel

function using parallel_do in the GPU computation engine, the global memory will automatically be trans-

ferred to the GPU. Because the maximum amount of local memory and shared memory that can be used is

limited by the hardware (do not expect more than 48K), global memory is the only way to pass large amounts

of data to a kernel function. The only premise is: a kernel/device function cannot allocate global memory,

the memory should be allocated in advance and passed to the function.

In some cases, a Quasar program may run out of global GPU memory. In that case, Quasar will automatically

transfer a non-frequently used memory buffer back to the CPU. This memory buffer can be later transferred

back to the GPU. By this technique, Quasar programs can use all the available memory in the system (both

CPU and GPU).

4. texture memory : texture memory is read-only global memory that is internally optimized for spatial access

patterns (whereas the global memory is more optimal for linear accesses). In particular, the data layout is

optimized for texture sampling using nearest neighbor interpolation or linear interpolation. It is generally
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believed that CUDA uses some sort of space filling curves3 for optimizing the data layout. See section 9.2 for

more information.

Finally, it is important to mention that local memory should be scarcely used (or at least: with care), because for the

GPU, the local memory is mapped directly onto the device registers. In CUDA, the total size of the device registers is

32K for compute capability 2.0 and 64K for compute capability 64K. However, the device registers are shared across

all computing threads: hence, when invoking 512 threads in parallel, the total amount of local memory available to a

kernel/device function is respectively 64 bytes and 128 bytes! When Quasar notes that the amount of local memory of

a kernel function exceeds 64 (or 128) bytes, the number of threads spawned is decreased (resulting in a computational

cost if some of the multi-processors get unemployed by this measure). The maximum number of threads that a

given kernel function uses, can be determined using the function prod(max_block_size(my_kernel)). Also see

section 2.4.4 for more information.

2.4.4 Advanced usage: shared memory and synchronization

Internally, chunks of data are processed in blocks, as follows:� �
pos = [m, n , p ]
b lkpos = mod( pos , blkdim )
b lk idx = f loor ( pos/blkdim )
blkcnt = ce i l ( size ( y ) . / blkdim )�
Within one block, a kernel function can access data from kernel functions running in parallel on this block. This is

very useful for implementing some special parallel algorithms, such as parallel sum, parallel sort, spatially recursive

filters etc. However, read/write operations can interfere (data races), so special care is needed.

Advanced usage consists of 1) using thread synchronization, 2) using shared memory, 3) dealing with data races.

Thread Synchronization The number of threads that run in parallel over one block can be calculated using

prod(blkdim), i.e., the product of the block dimensions. Sometimes, it is necessary that each threads wait until

a given operation is completed, by means of a thread barrier. All threads (within one block!) then wait until

completion of the operation. In Quasar, this is done using the syncthreads keyword:� �
function [ ] = kernel my kernel ( y : mat , z : mat , pos : ivec2 , idx : ivec2 )

y [ pos ] = 10* idx
syncthreads % a l l threads wait here un t i l the above operat i on has been completed .
z [ pos ] = y [ pos ]*2

end�
It is important to mention that the thread synchronization is performed on a block level, rather than on the full grid.

In the above example, when the syncthreads is first encountered, only values y[pos] with pos∈[0..blkdim[0]-1]
× [0..blkdim[1]-1] will have been computed, and not the complete matrix y!

Finally, the correct usage of syncthreads is that all threads effectively meet the barrier. It is for example not

allowed to put a synchronization barrier inside a conditional if...else... clause, unless it is sure that each

thread encounters the same number of barriers while running the kernel function. Not properly using syncthreads

may result in a deadlock.

3http://en.wikipedia.org/wiki/Space-filling_curve
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Shared Memory Shared memory, which is visible to all threads of a kernel function within one block, can be

allocated using the function shared(.) or shared_zeros(.). It’s usage is as follows:� �
var1 = shared (dim) ; % vector
var2 = shared ( dim1 , dim2 ) ; % matrix
var3 = shared ( dim1 , dim2 , dim3 ) ; % cube

var4 = shared zeros (dim) ; % vector i n i t i a l i z e d with 0 ' s
var5 = shared zeros ( dim1 , dim2 ) ; % matrix i n i t i a l i z e d with 0 ' s
var6 = shared zeros ( dim1 , dim2 , dim3 ) ; % cube i n i t i a l i z e d with 0 ' s
syncthreads % REQUIRED in case o f sha r ed ze ro s ! ! !�
Shared memory is visible and shared within one block. That means that, when going to another block (e.g. when

blkidx changes), the content of the shared memory cannot be relied on. Use shared_zeros only when you want

to initialize the memory with zeros. The shared memory allocated with shared is not initialized (like in C/C++).

This is often faster. IMPORTANT: when using shared_zeros, always put a syncthreads command at the end

of the allocations (as shown in the example below). This is because the memory initialization by shared_zeros

is performed in parallel. Hence, when all threads randomly start using the allocated memory it is necessary to

wait until the zero initialization operation has fully been completed. In fact, the (internal) implementation of

shared_zeros is as follows:� �
function [ ] = kernel shared mem example ( blkpos : ivec3 , blkdim : ivec3 )

A = shared (100) % One vecto r o f 100 e lements
% Compute the index o f the cur rent thread
threadId = ( blkpos [ 0 ] * blkdim [ 1 ] + blkpos [ 1 ] ) * blkdim [ 2 ] + blkpos [ 0 ]
nThreads = prod ( blkdim ) % Number o f threads with in one block

for i=threadId . . nThreads . . numel(A)−1 % Pa r a l l e l i n i t i a l i z a t i o n
A[ i ] = 0 .0

end
syncthreads % Make sure a l l threads have f i n i s h e d be f o r e cont inu ing !

% I s equ iva l en t to
B = shared zeros (100)
syncthreads % Make sure a l l threads have f i n i s h e d be f o r e cont inu ing !

end�
There are however two caveats when using shared memory:

1. For the CUDA computation engine, the amount of shared memory is limited to either 16K or 48K. On CUDA

architectures, shared memory is on-chip and much faster than other off-chip memory. Consequently the

amount of shared memory is limited. Taking into account that a (single precision) floating point value takes

4 bytes, the maximum dimensions of a square block of shared memory that you can allocate are 64× 64.

2. To obtain maximal performance benefits when using shared memory, it is important to make sure that the

compiler can determine statically the amount of memory that will be used by the kernel function. If not, the

compiler will assume that the kernel function will take all of the available shared memory on the GPU, which

prevents the hardware from processing multiple blocks in parallel. For example, if you request:� �
x = shared (20 , 3 , 6 )�
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the compiler will reserve 20×3×6×4 bytes = 1440 bytes for the kernel function. However, often the arguments

of the function shared are non-constant. In this case you can use assertions (see further in chapter 5):� �
3 . assert (M<8 && N<20 && K<4)
x = shared (M,N,K)�
Due to the above assertion, the compiler is able to infer the amount of required shared memory. In this case:

8× 20× 4× 4 bytes = 2560 bytes. The compiler then gives the following message:� �
In format ion : shared mem test . q − l ine 17 : Calcu lated an upper bound for the amount o f

shared memory : 2560 bytes�
Due to these restrictions, shared memory should be used in a “smart” way and with care.

Dealing with data races To solve data races, one can either use atomic operations (e.g., +=, -=,/=,*=,^=, ...).

Atomic operations are serialized, so the end result of the computation will always be correct. Atomic operations

are often used in combination with synchronization barriers (see above). For example:� �
function [ ] = kernel my kernel ( x : mat , y : vec , b lkpos : ivec2 , blkdim : ivec2 )

b ins = zeros ( blkdim ) % a l l o c a t e s shared memory
nblocks = ( s ize ( x )+blkdim−1) . / blkdim

% step 1 − do some computations
va l = 0 .0
for m=0. . nblocks [0]−1

for n=0. . nb locks [1]−1
va l += x [ blkpos + [m, n ] .* blkdim ]

end
end
bins [ b lkpos ] = va l
% step 2 − synchron ize a l l threads us ing t h i s b a r r i e r
syncthreads
% Now i t i s s a f e to read from the va r i ab l e b ins

end�
Specifying the block size The block size (blkdim) can be manually specified, through the function parallel_do.

This is done as follows:� �
sz = max block s i ze ( my kernel , my b lock s i z e )
parallel do ( [ dims , sz ] , . . . , my kernel )�

where dims and sz are both vectors of length 1, 2 or 3. my block size then typically depends on the amount of

shared memory you want to use within the kernel. The built-in function max block size computes the maximally

allowed block size for the given kernel function. Note that for:

� The CUDA computation engine, the maximum block size is limited by the maximum number of threads per

block. For CUDA compute capability 2.0, we should have that the maximum number of elements ≤ 1024. In

practice, this number is even lower, due to register usage and other internal details.
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� For the CPU computation engine, the maximum block size is unlimited, unless synchronization (syncthreads)

is used. In this case, the block size is limited depending on the number of multi-processors in the system.

� Also take into account that the actual maximum number of threads per block can be significantly lower

than 1024, because this number is also affected by the amount of shared memory that is used by the kernel

function. In case you guess and the number is too high, CUDA will generate an error like cudaErrorUnknown

or cudaLaunchOutOfResources.

Note that the above behavior is handled transparently by the function max_block_size(.). Hence one should

always call max_block_size, to determine the maximal block size for a given kernel function.

Block size not specified: what happens? In case the block size is not specified, it can be accessed from the

kernel function through the blkdim argument (at least, this argument should be added to the argument list). The

Quasar runtime system computes the block size that is estimated to be the most optimal for the given kernel,

according to some heuristics. Quite often, this will be 16 × 32 or 32 × 16. Note that the block size is always

a divisor of the dimensions “dims”. When necessary, the block size for a given kernel function can be retrieved

programmatically using opt_block_size:� �
sz = op t b l o c k s i z e ( my kernel )�
Note that opt_block_size uses an internal optimization method for determining the best possible block size for

the given data dimensions, taking into account the amount of shared memory that is used by the kernel function,

as well as the number of registers. Furthermore, it always returns a block size that the hardware can deal with.

Large vector/matrix dimensions that are not a power/multiple of 2. It is best to specify dimensions to

parallel_do that are a multiple of the maximal block size (e.g. 16 × 32 or 32 × 16). GPU computation engines

best work with input data dimensions that are a multiple of (a power of) two. The following example illustrates a

scenario in which this is not the case:� �
function [ ] = kernel my kernel ( y : vec 'unchecked , pos : int )

y [ pos ] = 1 .0
end
y = zeros (65535)
parallel do ( size ( y ) ,y , my kernel ) % e r r o r Inva l i dVa lue�
If Quasar would run the above program directly, the GPU would return errorInvalidValue. To ensure proper

functioning of the program, Quasar will internally pad the input dimensions to be a multiple of two, as follows:� �
function [ ] = kernel my kernel ( y : vec 'unchecked , pos : int )

i f pos >= 0 && pos < numel( y )
y [ pos ] = 1 .0

endif
end
y = zeros (65535)
pad = x −> ce i l ( x / BLOCK SIZE) * BLOCK SIZE % Block s i z e i s determined automat i ca l l y
parallel do ( pad (numel( y ) ) , y , my kernel ) % Success !�
Note that this is performed completely transparently to the user, but comes at a slight performance cost: 1) the

position checking if pos >= 0 && pos < numel(y), which is performed by all threads and 2) some threads (the
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ones for which the if-test fails) may be “unemployed” by this measure. The algorithm for computing the data

padding sizes is quite sophisticated. This algorithm attempts to minimize the number of “unemployed” threads.

Warp size The warp size is the number of threads in a warp, a subdivision that is used in GPU hardware

implementation for memory coalescing and instruction dispatch. The warp size is important for branching: branch

divergence occurs when not all threads within a warp follow the same execution path; this should be avoided as

much as possible. For recent GPUs, the warp size is typically 32. The warp size is also important to know when

accessing constant memory (see section §9.1): constant memory works the most efficient when all threads within

one warp access the same memory location at the same time.

In Quasar, the warpsize can be requested using the special kernel function parameter warpsize. In contrast to

other function parameters like blkdim, warpsize is always an integer.

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 38



CHAPTER 3. TYPE SYSTEM

Chapter

3

Type system

3.1 Type definitions

Although variable types in Quasar often do not need to be specified (the types are either determined at compile time

by type inference, or at runtime), it is always recommended to use strong typing. Strong typing has the immediate

advantage that the compiler can generate some more optimal code for the typed variables. In this section, a more

detailed overview of the Quasar type system is provided.

Types in Quasar can be classified into the following categories:

1. Class #1: Primitive types (scalar, cscalar, int, intx,uintx,string)

2. Class #2: vector/matrix/cube types (vec, mat, cube)

3. Class #3: Classes / user-defined types (class)

4. Class #4: Function types ([?? -> ??], [(??, ??) -> (??, ??)], [__device__ scalar -> scalar],

[__kernel__ () -> ()] ...)

5. Class #5: Type references (type_ref).

Class #2 types can be parametric, and can embed all other types. For example, mat[scalar] represents a matrix

type for scalar numbers, cube[[??->??]] represents a 3D array of functions with one input argument and one

output argument. The parameters can be nested: cube[cube[^T]] denotes a 3D array of 3D arrays of pointers to

objects of type T. By default, the default type arguments of vec, mat and cube is scalar. The ^-prefix cannot be

used on vectors/matrices: these objects are already passed by reference.

There also some derived types, which can be expressed directly in terms of the above types. Note that the following

definitions are already recognized by Quasar, so you do not need to define them yourself:

© 2016 Ghent University / iMinds / Gepura. Patented technology under WO patent 2015150342. 39



3.2. VARIABLE CONSTRUCTION CHAPTER 3. TYPE SYSTEM

� �
% Complex−valued matr i ce s
type cvec : vec [ cscalar ]
type cmat : mat [ cscalar ]
type ccube : cube [ cscalar ]

% In t eg e r matr i ce s
type ivec : vec [ int ]
type imat : mat [ int ]
type icube : cube [ int ]

% By de f au l t : the argument type o f vec [ . ] , mat [ . ] , cube [ . ] i s s c a l a r :
type vec : vec [ scalar ]
type mat : mat [ scalar ]
type cube : cube [ scalar ]

% Ce l l matr i ce s
type cellvec : vec [ ? ? ]
type cellmat : mat [ ? ? ]
type cellcube : cube [ ? ? ]�
Class #3 types are passed by value. It is possible to declare pointers to these types (e.g. in order to pass them by

reference). Therefore Pascal-style pointers can by used (e.g. ^T). There is only one level of indirection possible (in

contrast to C/C++), and also pointer values need to be explicitly initialized. It is not possible to declare pointers

to other types than class #3.

Class #2 types can contain parameters of class #3: for example mat[T], cube[T], vec[^T]. Especially vectors/ma-

trices/cubes of UDTs containing only primitive types are very efficient, because they use a sequential layout scheme

(i.e. they are stored contiguously in memory, with appropriate alignment depending on the machine/GPU).

Recall that cell matrix types containing unspecified sub-types ??, such as vec[vec[??]], mat[??], cannot be passed

to kernel or device functions. This is mainly for performance reasons: when the types of all variables are specified,

the compiler can generate more optimal code. On the other hand, not specifying types can be an advantage for

rapid-prototyping.

3.2 Variable construction

The construction of variables of a specified type depends on the type class:

1. Class #1: variables of class #1 are constructed using symbols: a number containing a decimal point (e.g.

1.4e3) will have type scalar. When the symbol contains the imaginary unit (1i or 1j) it will be a complex

scalar cscalar (e.g. 1+3i). Strings (string) can be defined using “quotation marks”. Note that it is not

possible currently to construct variable of type intx or uintx : these types are mainly intended to be used

for storage, and because for most computation engines default integer type (int) offer a better performance,

the types cannot be used for calculations.

2. Class #2: variables of vector, matrix, cube types can be created using the [] constructor. The type of the

result depends of the types of the operands (which should be the same for all operands, otherwise a compiler

error is generated). For example, [1,2,3,4] has type ivec, [[1.0,2.0],[3.0,4.0]] has type mat. If a,b,c

have a user-defined type T, then [a,b,c] will have type vec[T]. Similarly [[a],[b]] has type mat[T]. Real-

valued vectors, cubes and matrices of arbitrary dimenions can be constructed using the functions uninit,

zeros, and ones:
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� �
A = uninit (2 )
B = zeros ( 3 , 4 )
C = ones ( 1 , 2 , 3 )�
Here, the function uninit allocates a vector of length 2, without initializing the data. zeros creates a matrix

of 3 rows and 4 columns, and initializes each element to 0. ones creates a cube of dimensions 1 × 2 × 3 and

initializes each element to 1. Complex-valued versions can be obtained using the function complex, combined

with uninit, zeros or ones:� �
A = complex (uninit (2 ) )
B = complex ( zeros ( 3 , 4 ) )
C = complex (ones ( 1 , 2 , 3 ) )�
Variables of parametric vectors, matrices and cubes can also be constructed, however they require a type alias:� �
type my ce l l : mat [ cube ]
A = my ce l l ( 1 , 2 )
A[ 0 , 0 ] = uninit ( 4 , 2 )
A[ 0 , 1 ] = uninit ( 4 , 2 )�

3. Class #3: user-defined types are constructed either using the type name followed by (), or by explicitly

assigning values to all fields, as shown below:� �
type point : class

x : scalar
y : scalar

end
p = point ( )
q = point ( x :=1 ,y :=2)�

4. Class #4: variables of these types are created using either a lambda expression, or a function definition (see

section 4.5.2).

5. Class #5: use the type keyword to define types.

3.3 Class / user defined type (UDT) definitions

As already explained, it is possible to define user-defined types. Although Quasar currently does not support class

member functions, inheritance or interfaces, there are some ways to simulate this behavior.

Class member functions To define class member functions, the special reduction keyword (see section 4.7)

can be used. First, a general function should be defined using a lambda expression or function definition (e.g.

point_distance in the example below). Next, a reduction can be used to redirect the member function p.distanceto

to the point_distance function.
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Table 3.1: Overview of the variable passing conventions.

Type host function device function kernel function device function
(host call) (device call)

scalar, cscalar value value value value
vecx , ivecx , cvecx reference reference reference reference

vec, mat, cube reference reference reference reference
string reference reference N/A N/A
function reference reference reference reference
class value value value value
^class reference reference reference reference

object, type_ref reference reference N/A N/A
?? reference* reference* N/A N/A

*: unless the underlying value is scalar

� �
type point : class

x : scalar
y : scalar

end

reduction (p : point , q : po int ) −> p . d i s t anc e t o (q ) = po in t d i s t an c e (p , q )

p = point ( x :=4 , y :=5) ;
q = point ( x :=2 , y :=1)
print p . d i s t anc e t o (q )�
Interfaces Defining an interface can be achieved by defining a user-defined class of function variables:� �
type my inte r f ace : class

t ime s2 func t i on : [ scalar −> scalar ]
sum funct ion : [ ? ? −> ? ? ]

end

obj = my inte r f ace (
t ime s2 func t i on := (x : scalar ) −> 2*x ,
sum funct ion := (x ) −> sum( x )

)

print obj . t ime s2 func t i on (2 )
print obj . sum funct ion ( [ 1 , 2 , 3 ] )�
3.4 Passed by reference / Passed by value

In the current implementation of Quasar, the semantics of whether a given variable is passed to a function by

reference or by value, depends not only on the type of the variable, but also on whether it is passed to a host

function, device function or kernel function. This is due to some complications in the run-time system (the current

scheme implements the option that is computationally the fastest). The same also applies to reference copies of

the object, for example through the assignment a = b. An overview of the variable passing conventions is given in

table 3.1.
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4

Programming concepts

This section covers some extra advanced concepts that can help in writing efficient and easily readable Quasar

programs.

4.1 Polymorphic variables

In Quasar, the variable data types are usually deduced from the context. The data type of a variable usually

does not change. Polymorphic variables are variables for which the data type changes throughout the program. A

common example is the calculation of the sum of a set of matrices:� �
v = vec [ cube ] ( 1 0 )
a = 0
for k=0. .numel( v )−1

a += v [ k ]
end�
Here, the type of a is initially scalar, however, inside the for-loop the type becomes cube (because the sum

of variables of type scalar and cube has type cube). Polymorphic variables are particularly useful for rapid

prototyping. Note that for maximal efficiency, polymorphic variables should rather be avoided. When the compiler

knows that a variable is not-polymorphic, type-static code can often be generated (i.e. as if you have declared the

types of all the variables). The above example can be replaced by:� �
v = vec [ cube ] ( 1 0 )
a = v [ 0 ]
for k=1. .numel( v )−1

a += v [ k ]
end�
Another side issue of polymorphic variables is that the automatic loop parallelizer may have more difficulties

making assumptions with respect to the type of the variable at a given time. Therefore, the code fragment with the

polymorphic variable may not be parallelized/serialized (even though a warning will be generated by the compiler).
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Of course, it is up to the programmer to decide whether a variable is allowed to be polymorphic or not.

4.2 Closures

A closure allows a function or lambda expression to access those non-local variables even when invoked outside of

its immediate scope. In Quasar, its immediate use lies in the pre-computation of certain data, that is then used

repeatedly, for example in an iterative method. Consider the following example:� �
function f : [ cube−>cube ] = f i l t e r (name)

match name with
| ”Laplac ian ” −>

mask = [ [0 , −1 ,0 ] , [ −1 ,4 , −1 ] , [ 0 , −1 ,0 ] ]
f = x −> i m f i l t e r (x , mask )

| ”Gaussian ” −>
. . .

end
end
im = imread ( ”image . t i f ”)
y = f i l t e r ( ”Laplac ian ”) ( im)�
What happens: the filter mask“mask” is pre-computed inside the function filter, but is seen as a non-local variable

to the lambda expression f = x -> imfilter(x, mask). Now, when this lambda expression is initialized, it stores

a reference to the data of mask with it. The lambda expression is then returned as an output of the function filter,

which then appears as a generic function of type cube -> cube. This way, even when the function filter is called

repeatedly, mask only needs to be initialized once.

An even more interesting usage pattern, is to use closure variables inside kernel functions:� �
function y : mat = gamma correction (x : mat , gamma : scalar )

function [ ] = kernel my kernel ( pos : ivec2 )
y [ pos ] = x [ pos ] ˆ gamma

end
y = uninit ( s ize ( x ) )
parallel do ( size ( x ) , my kernel )

end�
Here, the kernel function my_kernel can access the variables x, y, gamma defined in the outer scope! The above

function can be written more compactly using a lambda expression:� �
function y : mat = gamma correction (x : mat , gamma : scalar )

y = uninit ( s ize ( x ) )
parallel do ( size ( x ) , kernel ( pos : ivec2 ) −> y [ pos ] = x [ pos ] ˆgamma)

end�
Device functions also support closure variables. Practically, this means that they can have a memory :
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� �
gamma = 2.4
l u t = ( ( 0 . . 2 5 5 ) /255) . ˆgamma*255
gamma correction = device ( x : scalar ) −> l u t [ x ]
function y : cube = pointwi se op (x : cube , fn : [ device scalar−>scalar ] )

y = uninit ( s ize ( x ) )
parallel do ( size ( x ) , kernel ( pos : ivec3 ) −> y [ pos ] = fn (x [ pos ] ) )

end

im=imread ( ” l e na b i g . t i f ”)
y = po intwi se op ( im , gamma correction )
imshow( y )�
Here, the lookup table lut is initialized, the gamma_correction function has type [__device__ scalar->scalar],

and performs the gamma correction using the specified lookup table. The advantage of this technique, is that the

function lut does not need to be passed separately to the function pointwise_op, which makes is somewhat simpler

to write generic code.

Correspondingly, a function definition defines the signature of a single function (which is similar to an interface

with one member function in other programming languages such as Java/C++):� �
type b ina ry func t i on : [ device ( scalar , scalar ) −> scalar ]�
The implementation can then still use internal or private variables, defined using function closures.

Closure variables are read-only An important remark: to avoid side effects, closure variables in Quasar are

read-only! When attempts are made to change the value of a closure variable, a compiler error will be raised. The

reason is illustrated in the following example:� �
a = 1
function [ ] = device accumulate (x : scalar )

a += x % COMPILER ERROR: a i s READ−ONLY
a = a + x % COMPILER WARNING: a i s a ”new” copy ,

changes are only v i s i b l e l o c a l l y
end

accumulate (4 )
print a % The r e s u l t i s 1�
In this example, the variable a, which is defined outside the function accumulate, is changed using the operator +=,

every time the function accumulate is called. This is not desirable, as this side effect can be very easily overlooked

by the programmer: firstly, all variable definitions in Quasar are implicit, making it even more difficult to detect

where the variable is actually declared. Secondly, the function accumulate may be passed as a return value to

another function, and then the variable a may not exist anymore (apart from its reference).

The second syntax (a = a + x), however, is legal, but will generate a compiler warning, suggesting the programmer

to choose another name for the variable a. In this case, the statement has to be interpreted as ainner
∆
= aouter + x,

where ’
∆
=’ defines a variable declaration, ainner is the local variable of the function, and aouter refers to the non-local

variable. This way, changes to a only happen locally, without causing side effects to the outer context.

Another benefit of the constant-ness of closure variables for GPU computation devices, is that the closure variable

values needs to be transferred to the device memory, but not back!
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4.3 Device functions, kernel functions, host functions

As already mentioned in section 2.4, there are three types of functions in Quasar: device functions, kernel functions

and host functions. There are strict rules about how functions of a different type can call each other:

� Both __kernel__ and __device__ functions are low-level functions, they are natively compiled for CPU

and/or GPU. This has the practical consequence that the functionality available for these functions is re-

stricted. It is for example not possible to load or save information inside kernel or device functions. On

the contrary, the print function is supported, but only for string, scalar, int, cscalar, vecX, ivecX and

cvecX datatypes.

� Host functions are high-level functions, typically they are interpreted (or Quasar EXE’s, compiled using the

just-in-time compiler).

� A kernel function is normally repeated for every element of a matrix. Kernel functions can only be called

using the parallel_do/serial_do functions.

� A device function can be called from host code or from other device/kernel functions.

� Kernel and device functions can call other kernel functions, through parallel_do/serial_do (nested paral-

lelism, see section §4.4).

The distinction between these three types of functions is necessary to allow GPU programming. Furthermore, it

provides a mechanism (to some extent) to balance the work between CPU/GPU. As programmer, you know whether

the code will be run on GPU/CPU, in the following way:

� Kernel functions are a candidate to run on the GPU. When the kernel function is sufficiently “heavy” (i.e.

data dimensions ≥ 1024, branches, thread synchronization), there is a high likelihood that the function will

be executed on the GPU.

� Device functions run on the GPU (when called from a kernel function that is launched on the GPU) or on

the CPU.

� Host functions run exclusively on the CPU.

4.4 Nested parallelism

A new feature (since Jan 2014) is that __kernel__ and __device__ functions can now also use the parallel_do

(and serial_do) functions. The top-level host function may for example spawn 30 threads (see figure 4.2), from

which every of these 30 threads spans again 12 threads (after some algorithm-specific initialization steps). There

are several advantages of this approach:

� More flexibility in expressing the algorithms

� The nested kernel functions are (or will be) mapped onto CUDA dynamic parallelism on Kepler devices such

as the GTX 780, GTX Titan. (Note: requires one of these cards to be effective).

� When a parallel_do is placed inside a __device__ function that is called directly from the host code (CPU

computation device), the parallel_do will be accelerated using OpenMP.

� The high-level matrix operations from the previous section are automatically taking advantage of the nested

parallelism.
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Figure 4.1: Relationship between the different function types in Quasar.

parallel_do
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parallel_do
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function

Kernel function 1 Kernel function 2

Kernel function 3

Figure 4.2: Illustration of nested parallelism.

Notes:

� There is no guarantee that the CPU/GPU will effectively perform the nested operations in parallel. However,

future GPUs may be expected to become more efficient in handling parallelism on different levels.

Limitations:

� Nested kernel functions may not use shared memory (they can access the shared memory through the calling

function however), and they may also not use thread synchronization.

� Currently only one built-in parameter for the nested kernel functions is supported: pos (and not blkpos,

blkidx or blkdim).
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4.5 Function overloading

To implement functions taking different argument with different types, the most simple approach is to check the

types of the function at runtime. Consider for example the following function that computes the Hermitian transpose

of a matrix:� �
function y = herm transpose (x )

i f i ssca lar ( x )
y = conj ( x )

e l s e i f i s rea l ( x )
y = transpose ( x )

e l s e i f iscomplex ( x )
y = conj ( transpose ( x ) )

else
error ”( herm transpose ) i n v a l i d type : ” , type ( x ) , ”! ”

endif
end�
Although this technique is legal in Quasar, it has two important disadvantages:

1. Type inference is difficult: the compiler cannot uniquely determine the type of the result of herm_transpose(x),

because the type depends on the type of x (and the conditions used in the if clauses). Instead, the compiler

will assume that the resulting type is unknown (‘??’). Hence, several optimizations (such as loop paralleliza-

tion) that apply to code blocks that make use of the result of herm_transpose(x), will be disabled.

2. Runtime checking of variable types creates some additional overhead, while in this case this could be handled

perfectly by the compiler.

For these reasons, Quasar supports function overloading. The above function could be implemented as follows:� �
function y = herm transpose (x : cscalar )

y = conj ( x )
end
function y = herm transpose (x : scalar )

y = x
end
function y = herm transpose (x : mat)

y = transpose ( x )
end
function y = herm transpose (x : cmat)

y = conj ( transpose ( x ) )
end�
In case none of the definitions apply, the compiler will generate an error stating that the function herm_transpose

is not defined for the given input variable types. The overload resolution (i.e. the method the compiler uses for

selecting the correct overload), follows the rules of the reduction resolution, which will be discussed in section 4.7.

Note that the function overloading has the following restrictions:

� all function overloads must be defined inside the same module.

� all function overloads must be defined at the global scope (i.e. not inside another functions).

� only “host” functions can be overloaded, not __kernel__, __device__ functions or lambda expressions.

� function overloads must differ in number of input arguments (or input argument types). Thereby, differences

in output arguments are ignored.
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� it is not possible to obtain a function handle of an overloaded function.

Finally, when the type of the input variables is not known to the compiler, the overload resolution will be performed

at runtime.

4.5.1 Optional function parameters

It is possible to declare values for optional function parameters. When the parameter is not used, the specified

default value is used. For example,� �
function y = func1 (x = eye (4 ) )
function y = func2 (x = eye (4 ) , y = [ [ 1 , 2 ] , [ 3 , 4 ] ] )

func1 ( ) % same as func1 ( eye (4 ) )
func1 (eye (5 ) )
func2 (x:=eye (3 ) , y:=randn (6 ) )
func2 (y :=4)�
Named optional parameters can be specified through the x:=value syntax. This is mainly useful when for example

the first optional argument will be omitted, but not the second.

As indicated in the above example, the optional values can be expressions. These expressions are evaluated when

the function is called and when no argument is used. It is recommended to only use functions with no other side

effects other than calculating the value of the optional parameter. The expressions may refer to other parameters,

but only in the order that the parameters are passed:� �
function y = func3 (x , y = 3*x )

func3 (eye (4 ) )�
Here, by default y = 3*eye(4), will be used.

4.5.2 Functions vs. lambda expressions

In Quasar, a function is defined as follows:� �
function y = fused mul t ip ly add (a , b , c )

y = a * b + c
end�
On the other hand, a lambda expression can be defined to compute the same result:� �
fu sed mul t ip ly add = (a , b , c ) −> a * b + c�
The question is then: what is the difference between functions and lambda expressions apart from their syntax?

From a run-time perspective, lambda expressions and functions are treated in the same way in Quasar: both are

functions of type (??,??,??) -> ??. The difference is only visible at compile-time:

� Functions can have optional arguments, whereas lambda expressions cannot.
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Table 4.1: Comparison of functions and lambda expressions

Function Lambda expression

Optional arguments Yes -
Multiple output arguments Yes -

Supports overloading Yes -
__kernel__, __device__ Yes Yes

Function closures Yes Yes
Function handles ((??,??)->??) Yes Yes

First-class citizen Yes Yes
Can contain nested functions Yes -

Can contain nested lambda expressions Yes Yes

� Functions are named, while lambda expressions are often anonymous.

� Functions can be overloaded (see section 4.5), in contrast to lambda expressions, which can not be overloaded.

� Functions can have multiple output arguments, while lambda expressions only have one output argument

(note: this may change in a future version of Quasar).

On the other hand, the definition of lambda expressions is more compact, and lambda expressions are more suitable

for inlining by the compiler.

Hence, the programmer may choose whether a function is preferable for a given situation, or a lambda expression.

A summary of the resemblances and differences between functions and lambda expressions is given in table 4.1.

4.5.3 Kernel function output arguments

To improve the syntax for kernel functions that have scalar output variables (e.g., sum, mean, standard deviation,

...), kernel output arguments are added as a special language feature to Quasar. The feature is special, because

kernel functions intrinsically generate multiple output values, as they are applied to a typically large number of

elements, while here there is only one value per output argument. The kernel output arguments are shared between

all threads and all blocks. Moreover, the kernel output arguments are restricted to be of the type scalar, cscalar,

int, ivecX, vecX and cvecX. The following example illustrates the use of kernel function output arguments:� �
function [ y : int ] = kernel any(A : mat , pos : ivec2 )

i f A[ pos ] != 0
y = 1

endif
end
i f parallel do ( s ize (A) ,A,any)

print ”At l e a s t one element o f A i s non−zero ! ”
endif�
The function any returns 1 when at least one element of the input matrix A is nonzero. The variable y is initialized

by zero by the parallel_do function, before the first call to any is made.

Kernel function output arguments are also subject to data races (see section 2.4.4), therefore atomic operations

should be used! Remark that atomic operations also cause some overhead, and are only useful when there are only

a small number of writes to the output arguments. In the following example, the sum of the elements of a sparse

matrix A is computed.
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� �
function [sum : scalar ] =

kernel s t a t s (A : mat , pos : ivec2 )

i f A[ pos ] != 0
sum += A[ pos ]

endif
end
sum = parallel do ( size (A) ,A, s t a t s )�
This output argument accumulation approach is only recommended when the number of nonzero elements of A is

small compared to the total number of elements of A (lets say, less than 1%). In other cases, implementation of the

sum using parallel reductions (see section 11.6) is more efficient!

4.6 Variadic functions

Variadic functions are functions that can have a variable number of arguments. For example:� �
function [ ] = func ( . . . a rgs )

for i =0. .numel( args )−1
print args [ i ]

end
end
func (1 , 2 , ”h e l l o ”)�
Here, args is called a rest parameter (which is similar to ECMAScript 6). How does this work: when the function

func is called, all arguments are packed in a cell vector which is passed to the function. Optionally, it is possible

to specify the types of the arguments:� �
function [ ] = func ( . . . a rgs : vec [ s t r i n g ] )�
which indicates that every argument must be a string, so that the resulting cell vector is a vector of strings.

Several library functions in Quasar already support variadic arguments (e.g. print, plot, . . . ), although now it is

possible to define your own functions with variadic arguments.

Moreover, a function may have a set of fixed function parameters, optional function parameters and variadic

parameters. The variadic parameters should always appear at the end of the function list (otherwise a compiler

error will be generated)� �
function [ ] = func (a , b , opt1=1.0 , opt2=2.0 , . . . a rgs )
end�
This way, the caller of func can specify extra arguments when desired. This allows adding extra options for e.g.,

solvers.

4.6.1 Variadic device functions

It is also possible to define device functions supporting variadic arguments. These functions will be translated by

the back-end compilers to use cell vectors with dynamically allocated memory (it is useful to consider that this may
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have a small performance cost).

An example:� �
function sum = device mysum ( . . . a rgs : vec )

sum = 0.0
for i =0. .numel( args )−1

sum += args [ i ]
end

end

function [ ] = kernel mykernel ( y : vec , pos : int )
y [ pos ]= mysum(11 . 0 , 2 . 0 , 3 . 0 , 4 . 0 )

end�
Note that variadic kernel functions are currently not supported.

4.6.2 Variadic function types

Variadic function types can be specified as follows:� �
fn : [ ( . . . ? ? ) −> ( ) ]
fn2 : [ ( scalar , . . . vec [ scalar ] ) −> ( ) ]�
This way, functions can be declared that expect variadic functions:� �
function [ ] = he lpe r ( custom pr int : [ ( . . . ? ? ) −> ( ) ] )

custom pr int ( ”Stage ” , 1)
. . .
custom pr int ( ”Stage ” , 2)

end

function [ ] = myprint ( . . . a rgs )
for i =0. .numel( args )−1

fpr intf ( f , ”%s ” , args [ i ] )
end

end

he lpe r ( myprint )�
4.6.3 The spread operator

Unpacking vectors The spread operator unpacks one-dimensional vectors, allowing them to be used as function

arguments or array indexers. For example:� �
pos = [ 1 , 2 ]
x = im [ . . . pos , 0 ]�
In the last line, the vector pos is unpacked to [pos[0], pos[1]], so that the last line is in fact equivalent with� �
x = im [ pos [ 0 ] , pos [ 1 ] , 0 ]�
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Note that the spread syntax ... makes the writing of the indexing operation a lot more convenient. An additional

advantage is that the spread operator can be used, without knowing the length of the vector pos. Assume that you

have a kernel function in which the dimension is not specified:� �
function [ ] = kernel co l o r t r ans f o rm (X, Y, pos )

Y [ . . . pos , 0 . . 2 ] = RGB2YUV(Y [ . . . pos , 0 . . 2 ] )
end�
This way, the colortransform can be applied to a 2D RGB image, as well as a 3D RGB image. Similarly, if you have

a function taking three arguments, such as:� �
luminance = (R,G,B) −> 0 .2126 * R + 0.7152 * G + 0.0722 * B�
Then, typically, to pass an RGB vector c to the function luminance, you would use:� �
c = [128 , 42 , 96 ]
luminance ( c [ 0 ] , c [ 1 ] , c [ 2 ] )�
Using the spread operator, this can simply be done as follows:� �
luminance ( . . . c )�
Passing variadic arguments The spread operator also has a role when passing arguments to functions. Consider

the following function which returns two output values:� �
function [ a , b ] = swap (A,B)

[ a , b ] = [B,A]
end�
And we wish to pass both output values to one function� �
function [ ] = proce s s ( a , b)

. . .
end�
Then using the spread operator, this can be done in one line:� �
proce s s ( . . . swap (A,B) )�
Here, the multiple values [a,b] are unpacked before they are passed to the function process. This feature is

particularly useful in combination with variadic functions.

Notes:

� Only vectors (i.e., with dimension 1) can currently be unpacked using the spread operator. This may change

in the future.
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� Within kernel/device functions, the spread operator is currently supported on fixed-length vectors vecX,

cvecX, ivecX (this means: the compiler should be able to determine the length of the vector statically).

� Within host functions, cell vectors can be unpacked as well

� The spread operator can be used for concatenating vectors and scalars:� �
a = [ 1 , 2 , 3 , 4 ]
b = [ 6 , 7 , 8 ]
c = [ . . . a , 4 , . . . b ]�
where c will be a vector of length 8. For small vectors, this is certainly a good approach. For long vectors, this

technique may have a poor performance, due to the concatenation being performed on the CPU. In the future,

the automatic kernel generator may be extended, to generate efficient kernel functions for the concatenation.

4.6.4 Variadic output parameters

The output parameter list does not support the variadic syntax .... Instead, it is possible to return a cell vector

of a variable length.� �
function [ a rgs ] = f un c r e t u r n i n g va r i a d i c a r g s ( )

args = vec [ ? ? ] ( 1 0 )
args [ 0 ] = . . .

end�
The resulting values can then be captured in the standard way as output parameters:� �
a = fun c r e t u r n i n g va r i a d i c a r g s ( ) % Captures the c e l l vec to r
[ a ] = f un c va r i a d i c a r g s ( ) % Captures the f i r s t element , and gene ra t e s an

% e r r o r i f more than one element i s returned
[ a , b ] = f un c va r i a d i c a r g s ( ) % Captures the f i r s t and second elements and

% gene ra t e s an e r r o r i f more than one element
% i s returned�

Additionally, using the spread operator, the output parameter list can be unpacked and passed to any function:� �
myprint ( . . . f u n c va r i a d i c a r g s ( ) )�
4.7 Reductions

Quasar implements a very generic compile-time graph reduction scheme, that is - as far as we are aware of - not yet

found in other programming languages. Reductions are defined inside Quasar programs through a special syntax

and allow the compiler to“reason”about the operations being performed in the program, without having to evaluate

these operations. The syntax is as follows:� �
reduction ( var1 : t1 , . . . , varN : tN) −> expr ( var1 , . . . , varN ) = sub s t i t u t e ( var1 , . . . , varN )�

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 54



4.7. REDUCTIONS CHAPTER 4. PROGRAMMING CONCEPTS

After the reduction has been defined, the compiler will attempt to apply the reduction each time an expression

that matches with expr has been found. Expressions can be regular Quasar expressions and are not restricted to

functions. For example, suppose that we have an efficient implementation for the fused multiply-add operation

a+b*c, called fmad(a,b,c), we can use this implementation for all combinations a+b*c that occur in the program.

This is done by defining the following reduction:� �
reduction ( a : cube , b : cube , c : scalar ) −> a+b*c = fmad (a , b , c )

where size ( a ) == s ize (b)�
Remark that we explicitly indicated the types of the variables a,b and c for which this reduction is applicable,

together with a restriction on the sizes of a and b (size(a) == size(b)).

Reductions can also be used to define an alternative implementation for a cascade of functions:� �
reduction ( x ) −> real ( i f f t 2 ( x ) ) = i r e a l f f t 2 ( x )�
Here, a complex->real (C2R) 2D FFT algorithm (implemented by irealfft2(x)) will be used to compute real(ifft2(x)).

Because the C2R FFT operates on half the amount of memory of a complex->complex (C2C) FFT, the performance

will be increased by roughly a factor of two!

Reductions are also ideal for some clever “trivial” optimizations:� �
reduction ( x :mat) −> real ( x ) = x
reduction ( x :mat) −> imag( x ) = zeros ( s ize ( x ) )
reduction ( x :mat) −> transpose ( transpose ( x ) ) = x
reduction ( x :mat) −> x [ : , : ] = x
reduction ( x :mat) −> real ( transpose ( x ) ) = transpose ( real ( x ) )�
Using the above reductions, the compiler will simplify the following expression:� �
f = (x : mat) −> transpose ( real ( i f f t 2 ( f f t2 ( transpose ( x ) ) ) ) )�
as follows:� �
Applied reduct ion i f f t 2( f f t 2( t ranspose (x ) ) ) −> t ranspose (x )
Applied reduct ion r e a l ( t ranspose (x ) ) −> t ranspose (x )
Applied reduct ion (x :mat) −> t ranspose ( t ranspose (x ) ) −> x
Result a f t e r 3 r educ t i on s : f=(x :mat) −> x�
Hence, the compiler finds that the operation f(x) is an identity operation! In this trivial example, we can assume

that the programmer would have found the same result, however there are some situations that we will describe

later in this section, in which the reduction technique can save a lot of time for the programmer.

Clearly, reductions bring the following benefits:

� Define once, optimal everywhere!

� More readable and clean optimized code compared to other programming languages that do not use reductions.
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� The compiler can indicate some places in the code suited for optimization, but where e.g., some of the types

of the variables is not known.

4.7.1 Symbolic variables and reductions

A special subset of the reductions are the symbolic reductions. Symbolic reductions often operate on variables that

are “not defined” using the regular variable semantics. An example is given below:� �
reduction ( x : scalar , a : scalar ) −> d i f f ( a , x ) = 0
reduction ( x : scalar , a : int ) −> d i f f ( xˆa , x ) = a*xˆ(a−1)
reduction (x , y , z : scalar ) −> d i f f ( x + y , z ) = d i f f (x , z ) + d i f f (y , z )
reduction ( x : scalar , y : scalar ) −> d i f f (x , y ) = 0
reduction (x , y : scalar ) −> d i f f ( sin ( x ) , y ) = cos ( x ) * d i f f (x , y )

f = x −> d i f f ( sin ( xˆ4)+2,x ) % S imp l i f i e s to 4* cos (xˆ4) *xˆ3�
To be able to calculate derivatives with respect to variables that have not been defined/initialized, symbolic variables

can be used, using the symbolic keyword:� �
symbolic x : int , y : scalar�
These variables have no further meaning during the execution of the program. As such, during runtime, they do

not exist. However, they help writing symbolic expressions:� �
reduction ( f , x : scalar ) −> argmin ( f , x ) = so l v e ( d i f f ( f , x ) = 0 , x )
symbolic x : scalar
print argmin ( ( x−2)ˆ2 , x )�
Here, the definition of x as a symbolic scalar is required, otherwise the compiler would not have any type information

about x. Then, in case the compiler is not able to determine the minimum argmin, an error will be generated:� �
Line 3 : Symbolic operat i on f a i l e d − no r educ t i on s a v a i l a b l e for ' argmin((x-2)^2, x) '�
4.7.2 Reduction resolution

This subsection describes how Quasar decides which reduction to use at a particular time, and also in which order

several reductions need to be applied. Suppose that we have an expression like:� �
reduction (A : mat , x : vec ' col ) −> A*x = f (x ) % RED #1
reduction (A : mat , B : mat) −> norm(A, B) = sum( (A−B) . ˆ 2 ) % RED #2
g = (x : vec ' col , b : vec ' col ) −> norm(A*x , b)�
Then, both RED#1 and RED#2 can be applied. Quasar will prioritize reductions that have larger number of

input variables (in this case RED#2, with input variables A and B). Reductions that having more variables are

generally more difficult to match (because they contain more conditions that need to be satisfied than reductions

with for example 1 variable). Moreover, it is assumed that, in terms of expression optimization, reductions with

more variables are designed to be more efficient. Therefore, the reduction will proceed as follows:
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� �
g = x −> sum( (A*x−b) . ˆ 2 )
g = x −> sum( ( f ( x )−b) . ˆ 2 )�
In this case, the result is actually independent of the order of reduction application. However, there are cases where

the order make play a role, such that the end result may differ. This is called a reduction conflict. Reduction

conflicts will be further treated in section 4.7.3.

When the number of variables of two reductions is equal. Another criterion is needed to decide which reduction

needs to be applied first. Quasar currently uses a three-level decision rule:

1. Prioritize reductions with the largest numbers of variables.

2. Prioritize exact matches. For example, A:vec may match a reduction with variables (x:mat), because vec ⊂
mat (see section 2.2). However, when a reduction exists that has as input x:vec, this reduction will be

prioritized.

3. Prioritize application to expressions with a higher depth in the expression tree representation. Sometimes the

same reduction may be applied twice within the same expression. For example, in� �
reduction x −> sum( x ) = my sum(x )
f = x −> sum(sum( x ) )�
the sum reduction can be applied twice. The order is then from right to left, which enables correct type

inference (the reduction to apply for the second step may depend on the type of my_sum(x). In terms of

an expression tree representation, this comes down to prioritizing applications with a higher depth in the

expression tree (root=depth 0, children=depth 1, ...). Hence, the reduction proceeds as follows:� �
f = x −> sum(my sum(x ) )
f = x −> my sum(my sum(x ) )�

By these rules, the reduction application will work as “expected”, and also for function applications (see section 4.5).

Overloaded functions are in fact internally implemented in Quasar using reductions:� �
reduction ( x : cscalar ) −> herm transpose (x ) = herm transpo s e c s ca l a r ( x )
reduction ( x : scalar ) −> herm transpose (x ) = herm transpos e s ca l a r ( x )
reduction ( x : mat) −> herm transpose (x ) = herm transpose mat (x )
reduction ( x : cmat) −> herm transpose (x ) = herm transpose cmat (x )�
4.7.3 Ensuring safe reductions

If not used correctly, reductions may introduce errors (bugs) in the Quasar program that may be difficult to

spot. To prevent this from happening, the Quasar compiler detects a number of situations in which the appli-

cation of a reduction is considered to be unsafe. The reduction safety level can be configured using the COM-

PILER_REDUCTION_SAFETYLEVEL variable (see table 13.1). This variable can take the following values:

� NONE: perform no safety checks
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� SAFE: perform safety checks and report a warning in case of a problem

� STRICT: generate an error in case “unsafe” reductions have been detected.

There are five situations in which a reduction is considered to be unsafe:

1. Free variables in reduction: the right handed side of the reduction contains a variable that is not present in

the left handed side. For example:� �
reduction x −> f ( x ) + y�
Here the variable y causes a problem because the compiler does not have any information on this variable. It

is hence unbound. The problem can be fixed in this case:� �
reduction (x , y ) −> f ( x ) + y�

2. Undefined functions in reductions: all functions in the right handed side of the reduction need to be defined

in Quasar, either through standard definitions, or through other reductions.

3. Reduction operands defined in non-local scope: when some of the operands to which a reduction is applied to,

are defined in a non-local context, side-effects maybe created in case these non-local variables are modified

afterwards. For example, a change of type may cause the reduction application to be invalid at run-time, even

though it seemed valid at compile-time. For example:� �
reduction x :mat −> i f f t 2 ( f f t2 ( x ) ) = x
A = ones (4 , 4 )
for k=1. .10

y = x :mat −> i f f t 2 ( f f t2 ( x + A) )
A = load ( ”myf i l e . dat ”) # may cause the reduction

# i f f t 2 ( f f t2 ( x ) )=x to be i n v a l i d .
end�

4. Reduction conflicts: sometimes, the result of the application of several reductions may depend on the order of

the reductions. Usually, this is a result of poor definitions of the reductions, as demonstrated in the following

example:� �
reduction (A : mat , B : mat , x : vec 'row) −> norm(A*x , B) = f (A, B, x ) % RED #1
reduction (A : mat , B : mat) −> norm(A, B) = sum( (A−B) . ˆ 2 ) % RED #2
g = (x : vec ' row , b : vec 'row) −> norm(A*x , b)�
In this example, we could either apply reduction #1 or reduction #2. According to the reduction resolution

results (see section 4.7.2), the Quasar compiler will choose reduction #1 because it has three variables, A, B

and x. However, applying reduction #2 would result in a completely different result sum((A*x-B).^2) and

it is not guaranteed that f(A, B, x)=sum((A*x-B).^2). The compiler detects this automatically and raises

the reduction conflict error/warning whenever there is a problem. Here, the reduction conflict can be solved

by defining:
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� �
reduction (A : mat , B : mat , x : vec 'row) −> f (A, B, x ) = sum( (A*x−B) . ˆ 2 )�

5. Reduction cross-references: circular dependencies may be created between reductions:� �
reduction (A, B) −> f (A, B) = g (A, B)
reduction (A, B) −> g (A, B) = f (A, B)�
This obviously is also not allowed and will generate a compiler error.

These rules allow to write safe Quasar reductions which cause no undesired side-effects.

4.7.4 Reduction where clauses

Reductions can also be applied in a conditional way. This is achieved by specifying a where clause. The where

clause determines at compile time (or at runtime) whether a given reduction may be applied. There are two main

use cases for where clauses:

1. To avoid invalid results: In some circumstances, applying certain reductions may lead to invalid results (for

example a real-valued sqrt function applied to a complex-valued input, derivative of tan(x) in π/2. . . )

2. For optimization purposes (e.g. allowing alternative calculation paths).

For example:� �
reduction ( x : scalar ) −> abs ( x ) = x where x >= 0 reduction ( x : scalar ) −> abs ( x ) = −x

where x < 0�
In case the compiler has no information on the sign of x, the following mapping is applied:� �
abs ( x ) −> x >= 0 ? x : ( x < 0 ? −x : abs ( x ) )�
And the evaluation of the where clauses of the reduction is performed at runtime.

However, when the compiler has information on x (e.g. assert(x = -1)), the mapping will be much simpler:� �
abs ( x ) −> −x�
Note that the abs(.) function is a trivial example, in practice this could be more complicated:� �
reduction ( x : scalar ) −> someop (x , a ) = supe r f a s top (x , a ) where 0 <= a && a < 1
reduction ( x : scalar ) −> someop (x , a ) = accurateop (x , a ) where 1 <= a�
There are also three special conditions that can be used inside reductions. These conditions are mainly used

internally by the Quasar compiler, but can also be useful for certain user optimizations:

� $ftype("__host__"): is true only when the outer function is a host (i.e. non-kernel/device function)
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� $ftype("__device__"): is true only when the outer function is a device function

� $ftype("__kernel__"): is true only when the outer function is a device function

These conditions reduce the applicability of the reduction depending on the outer function scope in which the

reduction is to be applied. For example, it is possible to specify reductions that can only be used inside device

functions, reductions for host functions etc.

4.8 Partial evaluation and recursive lambda expressions

Quasar has a complete implementation of lambda expressions, and also allows partial evaluation:� �
f = (x , y ) −> x + y
g = y −> x −> f (x , y )
print g (4 ) (5 ) % Wil l r e turn 9�
Here, the partial evaluation x -> f(x, y), returns a lambda expression that adds the free variable y to its input,

x. Consider for example a linear solver, that solves Ax = y, using the function x=lsolve(A, y). Suppose that we

have a large number of linear systems that need to be solved. Then we can define the partial evaluation of lsolve:� �
l s o l v e r = A −> y −> l s o l v e (A, y )
s o l v e r = l s o l v e r (A)
for k=1. .100

x [ k ] = s o l v e r ( y [ k ] )
end�
Similarly, we can have a lambda expression that solves a quadratic equation Ax2 +Bx+ C = y: x=qsolve(A, B,

C - y), by returning for example the largest solution:� �
q so l v e r = (A, B, C) −> y −> qso lve (A, B, C − y )
s o l v e r = qso l v e r (A, B, C)
for k=1. .100

x [ k ] = s o l v e r ( y [ k ] )
end�
Now, solver(y) is a generic solver that can be used in other numerical techniques, while lsolver and qsolver

can be used to create the desired solver.

It is also possible to define lambda expressions that have another lambda expression as input. The syntax is not f

= (x -> y) -> g(x), but:� �
h = (x : lambda expr ) −> f ( x (y ) )�
or, more type-safe versions:� �
h = (x : [ ? ? −> ? ? ] ) −> f ( x (y ) )
h = (x : [ cube −> cube ] ) −> f ( x (y ) )�
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For example, we can define a lambda expression that sums the output of two other lambda expressions f1 and f2,

again as another lambda expression:� �
f = ( f1 : [ ? ? −> ? ? ] , f 2 : [ ? ? −> ? ? ] ) = x −> f 1 ( x ) + f2 (x )�
or, even more generally, reductions:� �
reduction ( f 1 : [ ? ? −> ? ? ] , f 2 : [ ? ? −> ? ? ] , x ) −> f 1 + f2 = x −> f 1 ( x ) + f2 (x )
f 1 = x −> x * 2
f2 = x −> x / 2
f3 = f1 + f2 % Result : f 3 = x −> x * 2 + x / 2�
Recursive lambda expressions can be defined simply as:� �
f a c t o r i a l = (x : scalar ) −> ( x > 0) ? x * f a c t o r i a l ( x − 1) : 1�
One only needs to be careful that the recursion stops at a given point (otherwise a stack overflow error will be

generated).
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5

The logic system

As many other programming languages, Quasar has an assert function. The assert function will evaluate the

specified condition and will result in an error message when the condition is false. The assert function can be

called with either one or two arguments:� �
assert ( cond i t i on )
assert ( cond i t ion , ”cond i t i on i s f a l s e ”)�
In the second case, the error message is specified, which makes it easier for the user to resolve the issue. The assert

function also gives hints to the compiler system (see section 5.3). When the compiler is able to figure out that

the condition will never be true, a compiler error will be generated! Note that this is in contrast to most existing

programming languages, for which assert is simply a run-time function. The algorithm for evaluating assertions

is then as follows:

1. The compiler checks the condition of the assertion.

2. There are three possible outcomes: valid, satisfiable or unsatisfiable:

a) If the result is unsatisfiable, a compile-time error will be generated.

b) If the result is satisfiable, the compiler will take the condition as a hint.

c) If the result is valid, the compiler is certain that the condition will be met in all situations. Therefore,

the compiler may remove the assertion instruction from the program.

The compiler is either able to recognize the condition (see section 5.3) or not able to do so. In the former

case, a logic evaluation will be performed. In the latter case, the result is always satisfiable.

3. In case the result is satisfiable, the condition will still be checked at run-time.

The compiler is free to decide which assertions to take into account and also how to propagate information through

the various compilation phases. The exact behavior may be controlled using compiler settings. For example, the

following program may result in a compile-time error:
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� �
function [ ] = kernel ke rne l (b : scalar , pos : ivec3 )

assert (b==3)
end
parallel do ( size ( im) , 2 , k e rne l )�
Here, the constant parameter value for b, is passed through the parallel_do function to the kernel function kernel.

Through automatic specialization techniques (see section 6.6), the Quasar compiler will know in this case that the

value for b is 2, resulting in a compiler error. In the future, this behavior may be extended to even more complex

scenarios.

5.1 Kernel function assertions

It is possible to call the assert function from a kernel or device function:� �
function [ ] = kernel ke rne l ( pos : ivec3 )

b = 2
assert (b==3)

end�
Obviously, the above assertion fails. Quasar breaks with the following error message:� �
( parallel do ) t e s t k e r n e l − a s s e r t i o n f a i l e d : l ine 23�
Recall that the kernel function is typically called by many threads in parallel. Therefore, the following rules apply:

1. When the user program catches an assertion failure from a kernel function, there is at least one thread (or

position pos) for which the condition failed.

2. It is currently not possible to retrieve the position that corresponds to assertion failure.1

3. The output of the kernel function is undetermined. Some threads may have completely finished, others may

not have started. The order in which this happens is completely unspecified. In other words, when an assertion

fails, the output of the kernel function should be ignored.

Kernel function assertions provide a very useful mechanism for directly debugging and verifying code on a CPU or

GPU. The assertion system is also used internally by Quasar to perform vector and matrix boundary checking.

5.2 Built-in compiler functions

There are three meta functions that help with assertions. These functions are evaluated at compile-time (as indicated

by the $-prefix)

� ‘$check(proposition)’ checks whether the specified proposition can be satisfied, given the previous set of

assertions, resulting in three possible values: "Valid", "Satisfiable" or "Unsatisfiable".

1Note that the kernel function debugger in Quasar Redshift can bring a solution here.
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� ‘$assump(variable)’ lists all assertions that are currently known about a variable, including the implicit type

predicates that are obtained through type inference. Note that the result of ‘$assump‘ is an expression, so

for visualization it may be necessary to convert it to a textual representation using ‘$str(.)‘ (to avoid the

expression from being evaluated).

� ‘$simplify(expr)‘ simplifies logic expressions based on the knowledge that is inserted through assertions.

Usually, you will not need to call these functions directly from your code. Nevertheless, they can be useful for

testing (for example in interactive mode).

5.3 Assertion types recognized by the compiler

There are different types of assertions recognized by the Quasar compiler. These assertions can be combined in a

transparent way using the Boolean operators ! (inversion), && (and) and || (or).

5.3.1 Equalities

The most simple cases of assertions are the equality assertions a==b. For example:� �
symbolic a , b
assert ( a==4 && b==6)
assert ( $check ( a==5)==”Un s a t i s f i a b l e ”)
assert ( $check ( a==4)==”Valid ”)
assert ( $check ( a !=4)==”Un s a t i s f i a b l e ”)
assert ( $check (b==6)==”Valid ”)
assert ( $check (b==3)==”Un s a t i s f i a b l e ”)
assert ( $check (b!=6)==”Un s a t i s f i a b l e ”)
assert ( $check ( a==4 && b==6)==”Valid ”)
assert ( $check ( a==4 && b==5)==”Un s a t i s f i a b l e ”)
assert ( $check ( a==4 && b!=6)==”Un s a t i s f i a b l e ”)
assert ( $check ( a==4 | | b==6)==”Valid ”)
assert ( $check ( a==4 | | b==7)==”Valid ”)
assert ( $check ( a==3 | | b==6)==”Valid ”)
assert ( $check ( a==3 | | b==5)==”Un s a t i s f i a b l e ”)
assert ( $check ( a!=4 | | b==6)==”Valid ”)
print $ s t r ( $assump ( a ) ) , ” , ” , $ s t r ( $assump (b) ) % pr i n t s ( a==4) , ( b==6)�
Here, we use symbolic to declare symbolic variables (variables that are not to be ”evaluated”, i.e. translated into

their actual value since they don’t have a specific value). Next, the function assert tests whether the $check(.)

function works correctly (=self-checking).

5.3.2 Inequalities

The propositional logic system can also work with inequalities:
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� �
symbolic a
assert ( a>2 && a<4)
assert ( $check (a>1)==”Valid ”)
assert ( $check (a>3)==”S a t i s f i a b l e ”)
assert ( $check (a<3)==”S a t i s f i a b l e ”)
assert ( $check (a<2)==”Un s a t i s f i a b l e ”)
assert ( $check (a>4)==”Un s a t i s f i a b l e ”)
assert ( $check (a<=2)==”Un s a t i s f i a b l e ”)
assert ( $check (a>=2)==”Valid ”)
assert ( $check (a<=3)==”S a t i s f i a b l e ”)
assert ( $check ( ! ( a>3) )==”S a t i s f i a b l e ”)�
The idea is here that the inequality assertions can help the simplification of if conditions. For example,� �
assert ( x > 10)
i f x > 0

y = x
else

y = −x
endif�
In this case, the if-test can be completely eliminated thereby ignoring the else-block, because it is certain that x is

positive.

5.3.3 Type assertions

Type assertions are useful for 1) checking whether a variable has a given type and 2) for giving hints to the compiler.

For example, as mentioned in section 2.2, we may use a type assertion to make sure that data read from a file has

the right type:� �
[A, B] = load ( ”myf i l e . dat ”)
assert ( type (A, ”ccube ”) && type (B, ”vec ”) )�
Please note that assertions should not be used with the intention of variable type declaration. To declare the type

of certain variables type annotations can be used:� �
[A : ccube , B : vec ] = load ( ”myf i l e . dat ”)�
Type annotations should be used on the first occurrence of a variable. In this case, the type annotation prevents

A and B from becoming a polymorphic variable (see section 4.1). For type assertions, there is no such requirement

(they can be used in combination with a polymorphic variable).

5.4 User-defined properties

It is also possible to define ”properties” of variables, using a symbolic declaration. For example:� �
symbolic i s a h e r o , Jan Aelterman�
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Then you can assert:� �
assert ( i s a h e r o ( Jan Aelterman ) )�
Correspondingly, if you perform the test:� �
print $check ( i s a h e r o ( Jan Aelterman ) ) % Pr int s : Val id
print $check ( ! i s a h e r o ( Jan Aelterman ) ) % Pr int s : Un s a t i s f i a b l e�
If you then try to assert the opposite:� �
assert ( ! i s a h e r o ( Jan Aelterman ) )�
The compiler will complain:� �
assert . q − Line 119 : NO NO NO I don ' t b e l i e v e th i s , can ' t be t rue !
Asse r t i on ' !(is_a_hero(Jan_Aelterman)) ' i s c on t r ad i c t o ry with ' is_a_hero(Jan_Aelterman) '�
5.5 Unassert

In some cases, it is neccesary to undo certain assertions that were previously made. For this task, the function

‘unassert‘ can be used:� �
unassert ( p r opo s i t i o n s )�
This function only has a meaning at compile-time; at run-time nothing needs to be done. For example, if you wish

to reconsider the assertion ‘is_a_hero(Jan_Aelterman)‘ you can write:� �
unassert ( i s a h e r o ( Jan Aelterman ) )
print $check ( i s a h e r o ( Jan Aelterman ) ) % Pr int s : S a t i s f i a b l e
print $check ( ! i s a h e r o ( Jan Aelterman ) ) % Pr int s : S a t i s f i a b l e�
Alternatively you could have written:� �
unassert ( ! i s a h e r o ( Jan Aelterman ) )
print $check ( i s a h e r o ( Jan Aelterman ) ) % Pr int s : Val id
print $check ( ! i s a h e r o ( Jan Aelterman ) ) % Pr int s : Un s a t i s f i a b l e�
5.6 The role of assertions

In Quasar, the role of assertions is two-fold:

� It helps to early detect logical errors (mistakes by the programmer)
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� It serves as a technique used for optimization. Firstly, assertions can specified upper bounds for variables,

which help the compiler / code generator for the specific back-ends to generate more efficient code. Secondly,

assertions can help eliminating branches in the code that are never used, as in the following example:

�

� �
assert ( x > 0)
i f x > 20

y = x − 20
e l s e i f x < −20

y = x + 20
else

y = 0
endif�
In this case, the branch x < -20 can be completely eliminated, because it is known that x > 20.
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Generic programming

Often, functions need to be duplicated for different container types (e.g. ‘vec[int8]’, ‘vec[scalar]’, ‘vec[cscalar]’).

To avoid this duplication there is support for generic programming in Quasar.

Consider the following program that extracts the diagonal elements of a matrix and that is supposed to deal with

arguments of either type ‘mat’ or type ‘cmat’:� �
function y : vec = diag ( x : mat)

assert ( s ize (x , 0 )==size (x , 1 ) )
N = size (x , 0 )
y = zeros (N)
parallel do ( size ( y ) , kernel ( x :mat , y : vec , pos : int ) −> y [ pos ] = x [ pos , pos ] )

end
function y : cvec = diag ( x : cmat)

assert ( s ize (x , 0 )==size (x , 1 ) )
N = size (x , 0 )
y = cze r o s (N)
parallel do ( size ( y ) , kernel ( x :cmat , y : cvec , pos : int ) −> y [ pos ] = x [ pos , pos

] )
end�
Although function overloading here greatly solves part of the problem (at least from the user’s perspective), there

is still duplication of the function ‘diag’. In general, we would like to specify functions that can “work”irrespective

of their underlying type.In Quasar, this is fairly easy to do:� �
function y = diag [T ] ( x : mat [T] )

assert ( s ize (x , 0 )==size (x , 1 ) )
N = size (x , 0 )

y = vec [T ] (N)
parallel do ( size ( y ) , kernel ( pos ) −> y [ pos ] = x [ pos , pos ] )

end�
As you can see, the types of the function signature have simply be omitted. The same holds for the ‘__kernel__’

function.

In this example, the type parameter ‘T’ is required because it is needed for the construction of vector ‘y‘ (through
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the ‘vec[T]’ constructor). If ‘T==scalar’, ‘vec[T]’ reduces to ‘zeros’, while if ‘T==cscalar’, ‘vec[T]’ reduces to

‘czeros’ (complex-valued zero matrix). In case the type parameter is not required, it can be dropped, as in the

following example:� �
function [ ] = copy mat (x , y )

assert ( s ize ( x )==size ( y ) )
parallel do ( size ( y ) , kernel ( pos ) −> y [ pos ] = x [ pos ] )

end�
Remarkably, this is still a generic function in Quasar; no special syntax is needed here.

Note that in previous versions of Quasar, all kernel function parameters needed to be explicitly typed. This is now

no longer the case: the compiler will deduce the parameter types by calls to ‘diag’ and by applying the internal

type inference mechanism. The same holds for the ‘__device__’ functions.

When calling ‘diag’ with two different types of parameters (for example once with ‘x:mat’ and a second time with

‘x:cmat’), the compiler will make two generic instantiations of ‘diag’. Internally, the compiler may either:

1. Keep the generic definition (type erasion)� �
function y = diag ( x )�

2. Make two instances of ‘diag’ (reification):� �
function y : vec = diag ( x : mat)
function y : cvec = diag ( x : cmat)�

The compiler will combine these two techniques in a transparent way, such that: 1) for kernel-functions explicit

code is generated for the specific data types and 2) for less performance-critical host code type erasion is used (to

avoid code duplication).

The selection of the code to run is made at compile-time, so correspondingly the Quasar Spectroscope debugger

has special support for this. Of course, when calling the ‘diag’ function with a variable of type that cannot be

determined at compile-time, a compiler error is generated:� �
The type o f the arguments ( ' op ' ) needs to be f u l l y de f ined f o r t h i s func t i on c a l l !�
6.1 Type classes

Type classes allow the type range of the input parameters to be narrowed. For example:� �
function y = diag ( x : [mat |cmat ] )�
This construction only allows variables of the type ‘mat’ and ‘cmat’ to be passed to the function. This is useful

when it is already known in advance which types are relevant (in this case a real-valued or complex-valued matrix).

Equivalently, type class aliases can be defined. The type:
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� �
type Al l I n t : [ int | i n t8 | i n t16 | i n t32 | uint8 | uint32 | uint64 ]�
groups all integer types that exist in Quasar. Type classes are also useful for defining reductions:� �
type RealNumber : [ scalar | cube | Al l I n t | cube [ A l l I n t ] ]
type ComplexNumber : [ cscalar | ccube ]
reduction ( x : RealNumber ) −> real ( x ) = x
reduction ( x : ComplexNumber ) −> complex (x ) = x�
Without type classes, the reduction would need to be written 4 times, one for each element.

6.2 Parametrized functions

As already mentioned, generic functions can be defined by just omitting the type declarations for the function

parameters. For example, consider adding an item to a list (represented by a vector) at a given position.� �
function new l i s t = add item ( l i s t , item , pos )

. . .
end�
However, very often it is desirable that the type relation between list and item is specified. For example, the type

of list is ’vec[T]’ where T is some type. This can be achieved using parametrized functions:� �
function new l i s t = add item [T] ( l i s t : vec [T] , item : T, pos )

. . .
end�
then, when the function add_item is called, the compiler (or the runtime system) will check whether the types of

list and item match. The type variable is available within the context of add_item. This easily allows variables

to be defined with the same type as item or list:� �
function new l i s t = add item [T] ( l i s t : vec [T] , pos , item : T)

i f pos > numel( l i s t )
% extend the l i s t with new items
n ew l i s t = vec [T] ( pos+1)
n ew l i s t [ 0 . . numel( l i s t )−1] = l i s t

else
new l i s t = l i s t

end
new l i s t [ pos ] = item

end
l i s t 1 = vec [ int ] ( 1 0 )
l i s t 2 = vec [ s t r i n g ] ( 8 )
add item ( l i s t 1 , 5 , 4) %OK
add item ( l i s t 1 , 4 , ”text ”) %Type mismatch
add item ( l i s t 2 , 2 , ” l e t ' s t ry again ”) % OK�
In some cases (for example when T only determines the output parameters), we wish to select the “version” of

add_item that will be called. This can be done by filling in T explicitly (through a technique called generic function
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instantiation):� �
add item [ int ] ( l i s t 1 , 5 , 4)
add item [ s t r i n g ] ( l i s t 2 , 2 , ” l e t ' s t ry again ”)�
This is particularly useful when defining functions that return generic objects:� �
function l i s t = c r e a t e l i s t [T] ( i n i t i a l l e n g t h : int )

l i s t = vec [T] ( i n i t i a l l e n g t h )
end
my l i s t = c r e a t e l i s t [ int ] ( 1 0 )�
Parametric function themselves are variables and they have a certain type. In the above examples, the types of

add_item and create_list are:� �
add item : [ ( vec [ ? ? ] , ?? , ??) −> vec [ ? ? ] ]
add item [ int ] : [ ( vec [ int ] , ?? , int ) −> vec [ int ] ]
add item [ s t r i n g ] : [ ( vec [ s t r i n g ] , ?? , s t r i n g ) −> vec [ s t r i n g ] ]
c r e a t e l i s t [ int ] : [ int −> vec [ int ] ]�
Remarks:

� Kernel and device functions can also be parametric. For the device-specific code, only the reification technique

is used. The compiler will therefore rely on its type inference techniques to determine the types of all function

parameters.

� Functions can have multiple type parameters. When one of the type parameters is not used, a compiler

warning is given.

� In essence, generic programming in Quasar allows the programmer to write programs in which none of the

data types needs to be specified. Consider the following example:� �
x = imread ( ” l e na b i g . t i f ”)
function [ ] = kernel gamma correction (x , pos )

x [ pos ] = 255*(x [ pos ] /255 ) ˆ0 .5
end
parallel do ( s ize ( x ) , x , gamma correction )�
Here, the compiler is able to determine the type of x (’cube’) and from this information the compiler finds that

the type of the parameter ’pos’ in ’gamma_correction’ is ’ivec3’. When the function ’gamma_correction’

is later used in combination with a matrix of a different type (e.g. ’mat[uint8]’), the compiler will create a

second version of ’gamma_correction’ where ’pos’ will be of type ’ivec2’.

6.3 Parametrized reductions

Similar to functions, reductions can also be parametrized. This relieves the programmer from the extra work

in replicating reductions for different data types. Parametrized reductions frequently occur in combination with

parametrized functions.
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Suppose that we have a highly efficient multiplication function that works on a matrix (with an arbitrary data type)

and vectors (with the same element data type as the matrix). Then we want to define an operator * in order to

map expressions A*B onto this generic function. This can be achieved as follows:� �
function y = mat r i x mu l t i p l i c a t i on (A : mat [T] , B : vec [T ] )

. . .
end

reduction (T, A : mat [T] , B : vec [T ] ) −> A*B = mat r i x mu l t i p l i c a t i on (A,B)�
I.e., the type parameter acts as nothing more than an extra input parameter for the reduction. Optionally, the

reduction may include a where clause to impose additional constraints on T.

6.4 Parametrized types

In a type erasure approach, generic types can be obtained by not specifying the types of the members of a class:� �
type s tack : mutable class

tab
po in t e r

end�
However, this limits the type inference, because the compiler cannot make any assumptions w.r.t. the type of ‘tab’

or ‘pointer’. When objects of the type ‘stack’ are used within a for-loop, the automatic loop parallelizer will

complain that insufficient information is available on the types of ‘tab’ and ‘pointer’. This problem can be solved

by using parametrized types:� �
type s tack [T] : mutable class

tab : vec [T]
po in t e r : int

end�
An object of the type ‘stack’ can then be constructed as follows:� �
obj = stack [ int ] % or even :
obj = stack [ s tack [ cscalar ] ]�
Parametric classes are similar to template classes in C++.

It is also possible to define methods for parametric classes:� �
function [ ] = device push [T] ( s e l f : s tack [T] , item : T)

cnt = ( s e l f . po in t e r += 1) % atomic add f o r thread s a f e t y
s e l f . tab [ cnt − 1 ] = item

end�
Methods for parametric classes can be ‘__device__’ functions as well, so that they can be used on both the CPU

and the GPU. This allow us to create thread-safe and lock-free implementations of common data types, such as

sets, lists, stacks, dictionaries etc. within Quasar.
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6.5 Explicit specialization through meta-functions

Normally, generic functions are automatically specialized (which is called implicit specialization). This is a compiler-

decision that relies on a number of heuristics. However, there is also the possibility of explicitly indicating that

a given function need to be specialized and also in which way. This can be achieved using the meta-function

$specialize:� �
$ s p e c i a l i z e ( function name , c on s t r a i n t 1 && . . . && constra intN )�
In Quasar, there are three levels of genericity (for which specialization can be done):

1. Type constraints: a type constraint binds the type of an input argument of the function.

2. Value constraints: gives an explicit value to the value of an input argument

3. Logic predicates: additional assumptions on the input arguments (see chapter 5) that are not type or value

constraints

Example 1 As an example, consider the following generic function:� �
function y = device s o f t t h r e s h o l d i n g (x , T)

i f abs ( x )>=T
y = (abs ( x ) − T) * ( x / abs ( x ) )

else
y = 0

endif
end
reduction x : scalar −> abs ( x ) = x where x >= 0�
Now, we can make a specialization of this function to a specific type:� �
s o f t t h r e s h o l d i n g r e a l = $ s p e c i a l i z e ( s o f t t h r e s h o l d i n g , type (x , ” scalar ”) && type (T, ”

scalar ”) )�
But also for a fixed threshold:� �
s o f t t h r e sho l d i ng T = $ s p e c i a l i z e ( s o f t t h r e s h o l d i n g ,T==10)�
We can even go one step further and specify that ‘x>0‘:� �
s o f t t h r e s ho l d i n g P = $ s p e c i a l i z e ( s o f t t h r e s h o l d i n g , x>0)�
Everything combined, we get:� �
s o f t t h r e s ho l d i n g E = $ s p e c i a l i z e ( s o f t t h r e s h o l d i n g , type (x , ” scalar ”) && type (T, ” scalar ”)

&& T==10 && x>0)�
Based on this knowledge (and the above reduction), the compiler will then generate the following function:

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 73



6.6. IMPLICIT SPECIALIZATION CHAPTER 6. GENERIC PROGRAMMING

� �
function y = device s o f t t h r e s ho l d i n g E (x : scalar , T : scalar )

i f x >= 10
y = x − 10

else
y = 0

endif
end�
It can be noted that the function has now significantly been simplified.

Example 2 Explicit specialization can also be used to change the types of function parameters at compile-time.

This is legal as long as the parameter types are always narrowed by this operation. This is useful for example to

address the GPU hardware texturing units (see section 9.2) in a more general way. Below, the implementation of

a 1D spatial filter with variable directionality is given.� �
function [ ] = kernel f i l t e r k e r n e l ( x : mat , y : mat 'unchecked , a : vec , dir : ivec2 ,

pos : ivec2 )
o f f s e t = int (numel( a ) /2)
t o t a l = 0 .
for k=0. .numel( a )−1

t o t a l += x [ pos + (k − o f f s e t ) .* dir ] * a [ k ]
end
y [ pos ] = t o t a l

end

% Defau l t implementation − s imply pass a l l parameters to the ke rne l f unc t i on
parallel do ( size ( im) , im , im out , a , [ 0 , 1 ] , f i l t e r k e r n e l )

% Implementation I I − use the GPU hardware hardware t ex tu r ing un i t s (HTUs)
parallel do ( size ( im) , im , im out , a , [ 0 , 1 ] , $ s p e c i a l i z e ( f i l t e r k e r n e l , type (x ,mat ' hwtex nearest )

) )

% Implementation I I I − perform constant s ub s t i t u t i o n + use the HTUs
parallel do ( size ( im) , im , im out , $ s p e c i a l i z e ( f i l t e r k e r n e l , type (x ,mat ' hwtex nearest ) && a

==[1 ,2 ,3 ,2 ,1 ]/9 && dir==[0 ,1]) )�
On an NVidia Geforce 435M GPU, the third implementation is about two times faster than the first implementation

and 10% faster than the second implementation.

6.6 Implicit specialization

� �
function [ ] = kernel deno i s ing (x : mat , y : mat)

assert ( x [ pos ]>0)
y [ pos ] = s o f t t h r e s h o l d i n g (x [ pos ] , 10)

end�
6.7 Example of generic programming: linear filtering

A linear filter computes a weighted average of a local neighborhood of pixel intensities, and the weights are deter-

mined by the so-called filter mask.

In essence, 2D linear filtering formula can be implemented in Quasar using a 6 line __kernel__ function:
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� �
function [ ] = kernel f i l t e r ( x : cube , y : cube , mask : mat , c t r : ivec3 , pos : ivec3 )

sum = 0.0
for m=0. . s ize (mask , 0 )−1

for n=0. . s ize (mask , 1 )−1
sum += x [ pos+[m, n ,0]− c t r ] * mask [m, n ]

end
end
y [ pos ] = sum

end�
However, this may not be the fastest implementation, for two reasons:

� The above kernel function performs several read accesses to x (e.g. for 3x3 masks it requires 9 read accesses

per pixel!). As outlined in the Quick optimization guide, the implementation should use shared memory as

much as possible.

� In case the filter kernel is separable (i.e. mask = transpose(mask_y) * mask_x), a faster implementation

can be obtained by performing the filtering in two passes: a horizontal pass and a vertical pass. However, a

naive implementation of this approach may have a bad data locality and depending on the size of the filter

mask, it may even do more worse than good.

The best approach is therefore to combine the above techniques (i.e. shared memory + separable filtering). For

illustrational purposes, we will consider only the mean filter (with mask=ones(3,3)/9) in the following.� �
function [ ] = kernel f i l t e r 3 x 3 k e r n e l s e p a r a b l e (

x : cube , y : cube , pos : ivec3 , b lkpos : ivec3 , blkdim : ivec3 )
va l s = shared ( blkdim +[2 , 0 , 0 ] )
sum = 0 .
for i=pos [ 1 ] −1 . . pos [1 ]+1

sum += x [ pos [ 0 ] , i , b lkpos [ 2 ] ]
end
va l s [ b lkpos ] = sum
i f blkpos [0]<2

sum = 0 .
for i=pos [ 1 ] −1 . . pos [1 ]+1

sum += x [ pos [0 ]+ blkdim [ 0 ] , i , b lkpos [ 2 ] ]
end
va l s [ b lkpos+[blkdim [ 0 ] , 0 , 0 ] ] = sum

endif
syncthreads
sum = 0 .
for i=blkpos [ 0 ] . . b lkpos [0 ]+2

sum += va l s [ i , b lkpos [ 1 ] , b lkpos [ 2 ] ]
end
y [ pos ] = sum* ( 1 . 0/9 )

end
x = imread ( ”image . png ”)
y = zeros ( size ( x ) )
parallel do ( size ( y ) ,x , y , f i l t e r 3 x 3 k e r n e l s e p a r a b l e )
imshow( y )�
Remark that the above implementation is rather complicated, especially the block boundary handling code is

excessive. Through generic programming, it is possible to extend this code fragment, in order to be used in a wider

context. Quasar has two programming techniques:

1. Function variables and closure variables
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Suppose that we express a filtering operation in a general way:� �
type f : [ device (cube , ivec2 ) −> vec3 ]�
This is a type declaration of a function that takes a cube and a 2D position as input, and computes a 3D

color value.

Then, a linear filter can be constructed simply as follows:� �
mask = ones ( 3 , 3 ) /9
c t r = [ 1 , 1 ]
function y : vec3 = device l i n e a r f i l t e r ( x : cube , pos : ivec2 )

y = [ 0 . 0 , 0 . 0 , 0 . 0 ]
for m=0. . size (mask , 0 )−1

for n=0. . size (mask , 1 )−1
y += x [ pos+[m, n ,0]− c t r ] * mask [m, n ]

end
end

end�
Note that the body of this function is essentially the body of the kernel function at the top of this page.

Next, we can define a kernel function that performs filtering for any filtering operation of type f:� �
function [ ] = kernel g e n e r i c f i l t e r k e r n e l n o n s e p a r a b l e (

x : cube , y : cube , masksz : op : f , ivec2 , pos : ivec3 , b lkpos : ivec3 , blkdim : ivec3 )
va l s = shared ( blkdim+[masksz [0 ]−1 ,masksz [ 1 ] −1 , 0 ] )
va l s [ b lkpos ] = x [ pos − [ 1 , 1 , 0 ] ]
i f blkpos [0]<masksz [0]−1

va l s [ b lkpos+[blkdim [0 ] −1 ,−1 ,0 ] ] = x [ pos+[blkdim [0 ]−1 ,−1 ,0 ] ]
endif
i f blkpos [1]<masksz [0]−1

va l s [ b lkpos+[blkdim [1 ] −1 ,−1 ,0 ] ] = x [ pos+[blkdim [1 ]−1 ,−1 ,0 ] ]
endif
syncthreads
y [ pos ] = op ( vals , b lkpos )

end
x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
parallel do ( s ize ( y ) ,x , y , s ize (mask , 0 . . 1 ) , l i n e a r f i l t e r , g e n e r i c f i l t e r k e r n e l n o n s e p a r a b l e )
imshow( y )�
Here, masksz = size(mask,0..1) (the size of the filter mask). Now we have written a generic kernel function,

that can take any filtering operation and compute the result in an efficient way. For example, the filtering

operation can also be used for mathematical morphology or for computing local maxima:
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� �
function y : vec3 = device max f i l t e r ( x : cube , pos : ivec2 )

y = [ 0 . 0 , 0 . 0 , 0 . 0 ]
for m=0. . size (mask , 0 )−1

for n=0. . size (mask , 1 )−1
y = max(y , x [ pos+[m, n ,0]− c t r ] )

end
end

end�
The magic here, is to implicit use of closure variables: the function linear_filter and max_filter hold

references to non-local variables (i.e. variables that are declared outside this function). Here these variables

are mask and ctr. This way, the function signature is still [__device__ (cube, ivec2) -> vec3].

2. Explicit/implicit specialization

Previous point (1) is demonstrates a simple generic programming approach through function pointers. Some

people believe that generic programming leads to a loss in efficiency. One of their arguments is that by the

dynamic function call y[pos] = op(vals, blkpos), where op is actually a function pointer, efficiency is lost:

the compiler is for example not able to inline op and has to emit very general code to deal with this case.

In Quasar, this is not necessarily true - being a true domain-specific language, the compiler has a lot of

information. In fact, the optimization of the generic function generic_filter_kernel_nonseparable can be

made explicit, using the $specialize meta function:� �
l i n e a r f i l t e r k e r n e l = $ s p e c i a l i z e ( g e n e r i c f i l t e r k e r n e l n on s e p a r a b l e , op==max f i l t e r )
x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
p a r a l l e l d o ( size ( y ) ,x , y , size (mask , 0 . . 1 ) , l i n e a r f i l t e r k e r n e l )
imshow( y )�
The function $specialize is evaluated at compile-time and will substitute op with respectively linear_filter

and max_filter. Correspondingly these two functions can be inlined and the resulting code is equivalent to

the linear_filter_kernel function being completely written by hand. Now, in Quasar, function pointers

are avoided by default (through the compilation setting “enable function pointers in generated code”). This

is achieved exactly using this technique.

3. Datatype-independent implementation

We can also go one step further and generalize the data types of the above kernel function:
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� �
mask = ones ( 3 , 3 ) /9
c t r = [ 1 , 1 ]
function y : vec3 = device l i n e a r f i l t e r [T] ( x : cube [T] , pos : ivec2 )

y = [ 0 . 0 , 0 . 0 , 0 . 0 ]
for m=0. . size (mask , 0 )−1

for n=0. . size (mask , 1 )−1
y += x [ pos+[m, n ,0]− c t r ] * mask [m, n ]

end
end

end
function [ ] = kernel g e n e r i c f i l t e r k e r n e l n o n s e p a r a b l e [T] (

x : cube [T] , y : cube [T] , masksz , op : [ device (cube [T] , ivec2 ) −> vec3 ] , ivec2 , pos :
ivec3 , b lkpos : ivec3 , blkdim : ivec3 )

va l s = shared [T] ( blkdim+[masksz [0 ]−1 ,masksz [ 1 ] −1 , 0 ] )
va l s [ b lkpos ] = x [ pos − [ 1 , 1 , 0 ] ]
i f blkpos [0]<masksz [0]−1

va l s [ b lkpos+[blkdim [0 ] −1 ,−1 ,0 ] ] = x [ pos+[blkdim [0 ]−1 ,−1 ,0 ] ]
endif
i f blkpos [1]<masksz [0]−1

va l s [ b lkpos+[blkdim [1 ] −1 ,−1 ,0 ] ] = x [ pos+[blkdim [1 ]−1 ,−1 ,0 ] ]
endif
syncthreads
y [ pos ] = op ( vals , b lkpos )

end
x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
parallel do ( s ize ( y ) ,x , y , s ize (mask , 0 . . 1 ) , l i n e a r f i l t e r , g e n e r i c f i l t e r k e r n e l n o n s e p a r a b l e )
imshow( y )�
Here, the compiler will specialize the function genericfilterkernelnonseparable, as follows:� �
$ s p e c i a l i z e ( g e n e r i c f i l t e r k e r n e l n on s e p a r a b l e , op==l i n e a r f i l t e r ,T==scalar )�

Functions with closure variables are building blocks for larger algorithms. Functions can have arguments that are

functions themselves. Function specialization is a compiler operation that can be used to generate explicit code for

fixed argument values. In the future, function specialization may be done automatically in some circumstances.
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Chapter

7

Object-oriented programming

In Quasar, there are three types of classes:

� class: for creating constant objects with a fixed layout that can be marshalled to the target device (e.g., GPU)

� mutable class: for non-constant objects with a fixed layout that can be marshalled to the target device (e.g.,

GPU)

� dynamic class: Python-like classes, for which members can be added to the object at run-time

The distinction between class and mutable class enables the compiler and run-time to make stronger assumptions

on the constantness of the corresponding objects, potentially resulting in a more efficient execution.

Furthermore, classes of the type class and mutable class can be used from host, device and kernel functions.

Dynamic classes can only be used from host functions.

Another difference between class and dynamic class is in the null values. For dynamic class, a null reference null

is used. For class and mutable class, a null pointer nullptr needs to be used.

7.1 Mutable/non-mutable classes

Mutable/non-mutable classes require all members to be statically typed. Dynamically typed members are not

supported, because they can not be mapped onto static types on the computation device.

However, it is possible to define parametric types, in which the dynamically typed members are replaced by a

parameter type (see further). Then the parametric type needs to be instantiated (either directly, or via function

specialization), to be used on the computation device.

A example of a mutable class, with a few member functions is given below:� �
type point : mutable class

x : scalar
y : scalar

end�
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Recursive types can also be defined, although, the recursive member needs to be a pointer type (ˆ). For example,

the definition of a linked list of points can be as follows:� �
type point : mutable class

x : scalar
y : scalar
next : ˆ po int

end�
7.2 Constructors

A constructor can be added to the point class. The following constructor uses the default constructor point(x:=xval

, y:=yval) to initialize all object members.� �
function y = point (px : scalar , py : scalar )

y = point ( x:=px , y:=py )
end�
Constructors can be overloaded. A constructor that is intended to be used from kernel/device functions should have

the device modifier:� �
function y = device point (px : scalar , py : scalar )

y = point ( x:=px , y:=py )
end�
7.3 Destructors

Due to the automatic memory management, there are no destructors. Destructors may be added in a future version

of Quasar.

7.3.1 Methods

To define methods, Quasar uses a pattern similar to Google Go. A method is a function for which the first parameter

is self , referring to the object on which the method is called. The self object can be passed by-value (without a

pointer ˆ), or by reference (using the pointer ˆ).
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� �
function y = s c a l e ( s e l f : point , b )

y = point ( x:=b* s e l f . x , y:=b* s e l f . y )
end

% The method point . s e tLocat i on
function [ ] = se tLocat i on ( s e l f : ˆ point , x , y )

s e l f . x = x
s e l f . y = y

end

% The method point . t r a n s l a t e
function [ ] = t r a n s l a t e ( s e l f : ˆ point , dx , dy )

s e l f . x += dx
s e l f . y += dy

end

% The method point . t o s t r i n g
function y = t o s t r i n g ( s e l f : po int )

y = sprintf ( ”(%f ,% f ) ” , s e l f . x , s e l f . y )
end�
Methods can be called in the same way as in other object-oriented languages. For example:� �
p = point ( 1 . 0 , 2 . 0 ) % cons t ruc to r
print p . s c a l e (2 ) % method�
Finally, methods can be overloaded. A method that is intended to be used from kernel/device functions should

have the device modifier.

7.3.2 Properties

Properties can be added to the class, using reductions. The following reductions define a getter and setter for the

property length:� �
reduction ( a : po int ) −> a . length = sqrt ( a . x ˆ 2 + a . y ˆ 2)
reduction ( a : ˆ point , b : scalar ) −>

( a . length = b) = ( a = point (x:=b/a . length*a . x , y:=b/a . length*a . y ) )�
7.3.3 Operators

Similarly, operators can be defined. For example, to calculate the difference between two points, one could define:� �
reduction ( a : point , b : po int ) −> a − b = point ( a . x−b . x , a . y−b . y )�
7.4 Dynamic classes

Dynamic classes are very useful for scripting. Consider the following dynamic class definition:
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� �
type Bird : dynamic class

name : s t r i n g
c o l o r : vec3

end�
At run-time, it is possible to add fields or methods:� �
bi rd = Bird ( )
b i rd . p o s i t i o n = [ 0 , 0 , 10 ]
b i rd . speed = [ 1 , 1 , 0 ]
b i rd . i s f l y i n g = f a l s e
b i rd . s t a r t f l y i n g = ( ) −> bi rd . i s f l y i n g = true�
Dynamic classes are also enable easy interoperability with other languages (e.g., C#, Visual Basic). Dynamic classes

are also frequently used by the UI library (Quasar.UI.dll).

Despite the fact that dynamic classes can have properties that are added at run-time, the compiler still performs

type inference on them, resulting in efficient code.

One limitation is that dynamic classes cannot be used from within kernel or device functions. As a compen-

sation, the dynamic classes are also a bit lighter (in terms of run-time overhead), because there is no multi-device

(CPU/GPU/. . . ) management overhead. It is known a priori that the dynamic objects will “exist” in the CPU

memory.

7.5 Parametric types

A disadvantage of non-static types is that the compiler may not be able to determine the types of the members of

the class.� �
type s tack : mutable class

tab
po in t e r

end�
In this case, the compiler cannot make any assumptions w.r.t. the type of tab or pointer. When objects of the

type stack are used within a for-loop, the automatic loop parallelizer will complain that insufficient information is

available on the types of tab and pointer.

Parametric types can be used to solve this issue:� �
type s tack [T] : mutable class

tab : vec [T]
po in t e r : int

end�
An object of the type stack can then be instantiated as follows:� �
obj = stack [ int ] ( )
obj = stack [ s tack [ cscalar ] ] ( )�
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It is also possible to define methods for parametric classes:� �
function [ ] = device push [T] ( s e l f : s tack [T] , item : T)

cnt = ( s e l f . po in t e r += 1) % atomic add f o r thread s a f e t y
s e l f . tab [ cnt − 1 ] = item

end�
Methods for parametric classes can be device functions as well, so that they can be used on both the CPU and

the GPU.

The internal implementation of parametric types and methods in Quasar (i.e. the runtime) uses a combination of

erasure and reification.

Defining a constructor is based on the same pattern that we used to define methods. For the above stack class, we

have:� �
function y = stack [T] ( )

y = stack [T] ( tab :=vec [T] ( 1 0 0 ) , po in t e r :=0)
end

% Constructor with i n t parameter
function y = stack [T] ( capac i ty : int )

y = stack [T] ( tab :=vec [T ] ( capac i ty ) , po in t e r :=0)
end

% Constructor with vec [T] parameter
function y = stack [T] ( i tems : vec [T ] )

y = stack [T] ( tab :=copy ( i tems ) , po in t e r :=0)
end�
Note that the constructor itself creates an instance of the type, rather than that it is done automatically. Conse-

quently, it is possible (although it should be avoided) to return a nullptr value as well.� �
function y : ˆ s tack [T] = stack [T] ( capac i ty : int )

i f capac i ty > 1024
y = nullptr % Capacity too la rge , no can do . . .

else
y = stack [T] ( tab :=vec [T ] ( capac i ty ) , po in t e r :=0)

endif
end�
Operators/properties on parametric classes can be defined using parametric reductions. In a parametric reduction,

the type parameter itself is part of the parameter list of the reduction.� �
type point [T] : mutable class

x : T
y : T

end

reduction (T, a : po int [T] , b : po int [T] ) −> a − b = point [T] ( a . x−b . x , a . y−b . y )�
Note: it is currently not possible to define constraints on the type parameters. This functionality may be added in

a future version of Quasar.
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7.6 Inheritance

Inherited classes can be defined as follows:� �
type bi rd : class

name : s t r i n g
c o l o r : vec3

end

type duck : b i rd
. . .

end�
Inheritance is allowed on all three class types (mutable, immutable and dynamic).

Note: multiple inheritance is currently not supported.

As an example, consider the following point, line and circle classes:� �
type geometry : mutable class

c o l o r : scalar
end

type point : geometry
x : scalar
y : scalar

end

type l ine : geometry
p1 : po int
p2 : po int
x1 : scalar
y1 : scalar
x2 : scalar
y2 : scalar

end

type c i r c l e : po int
rad iu s : scalar

end

function y = d i s t an c e f r om o r i g i n (p : ˆ po int )
y = sqrt (p . xˆ2 + p . yˆ2)

end

c = c i r c l e ( c o l o r :=0 , rad iu s :=4 , x :=12 , y :=5)
g = geometry ( c o l o r :=1)
p = point (x :=4 , y :=3 , c o l o r :=1)

print ”po int d i s t ance from o r i g i n : ” , d i s t an c e f r om o r i g i n (p) % r e s u l t=5
print ” c i r c l e c ente r d i s t ance from o r i g i n : ” , d i s t an c e f r om o r i g i n ( c ) % r e s u l t=13�
7.7 Virtual functions, interfaces, abstract classes

Virtual functions, interfaces, abstract classes are currently not supported by Quasar. They may be implemented in

a future version.

As a simple alternative of an interface, function types can be used. This way, it is possible to ‘emulate’ interfaces

in Quasar:
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� �
type my inte r f ace : mutable class

t ime s2 func t i on : [ device scalar −> scalar ]
sum funct ion : [ device vec −> scalar ]
do something : [ ( ˆ my inte r f ace ) −> ? ? ]

end

obj = my inte r f ace (
t ime s2 func t i on := ( device ( x : scalar ) −> 2*x ) ,
sum funct ion := ( device ( x : vec ) −> sum( x ) ) ,
do something := ( s e l f : ˆmy inte r f ace ) −> print ( s e l f )

)

print obj . t ime s2 func t i on (2 )
print obj . sum funct ion ( [ 1 , 2 , 3 ] )
obj . do something ( obj )�
In the same way, abstract classes and virtual functions can be emulated. An advantage is that this technique works

across computation devices, with no additional compiler support.
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Chapter

8

Special programming patterns

8.1 Matrix/vector expressions

Operations on large matrices are grouped and automatically converted into a kernel function. For example:� �
x = randn (512 ,512 ,64)
y = 0 .1 + (0 . 8 * 255 * sin ( x/255) ) + 10 * w�
will automatically be translated to:� �
function [ out : cube]= opt auto opt imize1 (x : cube ,w: cube )

function [ ] = kernel op t au to op t im i z e1 ke rne l
( out : cube 'unchecked , x : cube 'unchecked ,w: cube 'unchecked , pos : ivec3 )
out [ pos ]=((0.1+(204* sin ( ( x [ pos ] /255 ) ) ) )+(10*w[ pos ] ) ) )

end
out = uninit ( size ( x ) ) )

parallel do ( size ( x ) , out , x ,w, op t au to op t im i z e1 ke rne l )
end
reduction ( x : cube , w: cube ) −> ( ( (0 .1+(204* sin ( ( x/255) ) ) )+(10*w) )=

opt auto opt imize1 (x ,w)

x = randn (512 ,512 ,64)
y = opt auto opt imize1 (x , w)�
which is faster, because intermediate results are directly computed in local memory, without accessing the global

memory (see section 2.4.3). Remark that this procedure depends on the success of the type inference. In some

cases, it may be necessary to give a hint to the compiler about the types of certain variables, through as-

sert(type(var,"typename")) (see section 2.2). Also, the expression optimizer generates a reduction to deal

with expressions of the form (((0.1+(204*sin((x/255))))+(10*w)). When the same expression appears several

times in the code, even in slightly modified version (e.g. sin(sinc(x)/255) instead of sin(x/255)), the generated

__kernel__ function will be re-used.

The expression optimization can be configured using the following pragma:
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� �
#pragma exp r e s s i on op t im i z e r ( on | o f f )�
8.2 Serializable and parallelizable loops

In Quasar, loop parallelization consists of 1) the detection of parallelizable (or serializable) loops and 2) the automatic

generation of kernel functions for these loops. The automatic loop parallelizer (ALP) attempts to parallelize for-

loops, starting with the outside loops first. The ALP automatically recognizes one, two and three dimenional

for-loops, and also maximizes the dimensionality of the loops subject to parallelization. There are however a

number of restrictions to the Quasar code:

1. All variables that are being used inside the loop must have a static type (i.e. explicitly typed as vec, mat, cube,

see section 2.2) or a static type can be inferred from the context (type inference or through explicit/implicit

specialization, see section §6). Practically speaking: only types that can be used inside __kernel__ or

__device__ functions are allowed.

2. The for-loops must be ideal (no code in between subsequent for statements, no dependencies between the loop

boundaries, no break, no continue) for example:� �
for m=0. . size (x , 0 )−1

for n=5. . size (y , 0 )−1
end

end�
This is an example of a non-ideal loop:� �
for m=0. . size (x , 0 )−1

for n=m. . size (y , 0 )−m
end

end�
3. Only the for keyword is recognized (not repeat or while, unless these keywords are used to mimick a

for-loop).

4. When host (i.e. non kernel/device) functions are called from a for loop, the for loop is not eligible for

parallelization/serialization.

5. Only a limited number of built-in functions are supported. Functions that interact with/take variables with

unspecified types (such as print, load, save, ...) are not supported.

6. Data dependencies/conflicts between different iterations are detected and not allowed. In case a dependency

is detected, the loop can be serialized. In this case, the for-loop will be natively compiled (in C++) and

executed on the CPU in single-threaded mode.

7. Advanced kernel function features such as shared memory and thread synchronization (see section 2.4.4) are

not supported, for the simple reason that these functions often require low-level access to the block position

(blkpos) and dimensions (blkdim).
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8. In case (non-fixed length) vectors or matrices are constructed inside the for-loop, it is required that the

compiler setting “enable dynamic kernel memory” is enabled (see further in section §8.3).

In case one of these conditions are violated, a warning message is generated (see section 13.1.1).

The ALP can be configured using the pragmas/code attributes (see section 13.2):� �
#pragma l o o p p a r a l l e l i z e r ( on | o f f )
{ ! p a r a l l e l for } % or . . .
{ ! s e r i a l for } % or . . .
{ ! i n t e r p r e t ed for}�
The loop parallelizer pragma allows to completely disable the ALP (which is not recommended!). {!parallel for}

forces the next loop to be parallelized. In case of failure, a detailed compiler error will be generated, giving the

user the opportunity to check the conditions of the ALP. {!serial for} forces the next loop to be serialized (i.e.

executed in single-threaded mode on the CPU), even when the loop is parallelizable. Finally, {!interpreted for}

forces the loop to be interpreted. This comes at a computational cost, but can still be useful for e.g., debugging

purposes

The Quasar compiler will generate warnings when the automatic for-loop parallelizer (serializer) is turned off.� �
For−loop w i l l be i n t e r p r e t ed . This may cause performance degradat ion . In case no matr i ce s

are c rea ted i n s i d e the for−loop , you may cons id e r automatic for−loop p a r a l l e l i z a t i o n /
s e r i a l i z a t i o n (which i s now turned o f f ) .�

Consider the following example:� �
im = imread ( ”image . t i f ”)
im out = zeros ( s ize ( im) )
gamma = 1.1
t ic ( )
{ ! p a r a l l e l for }
for i =0. . s ize ( im , 0 )−1

for j =0. . s ize ( im , 1 )−1
for k=0. . s ize ( im , 2 )−1

im out [ i , j , k ] = im [ i , j , k ] ˆgamma
end

end
end
toc ( )
f i g 1 = imshow( im)
f i g 2 = imshow( im out )
f i g 1 . connect ( f i g 2 )�
When no code attribute ({!parallel for}, {!serial for}) is used, the compiler will analyze the code, inspect

the variable dependencies and decide whether the loop can be parallelized or serialized. In fact, it is not neces-

sary to specify these code attributes, however, when it is done, the compiler will generate an error in case the

parallelization/serialization fails (e.g., due to some data dependency). This way, the programmer can improve the

code.

In the next section, dynamic kernel memory will be discussed, which greatly improves the ALP by allowing functions

such as zeros, uninit, transpose, reshape, to be used from within parallel loops or kernel/device functions.
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8.3 Dynamic kernel memory

Very often, it is desirable to construct (non-fixed length) vector or matrix expressions within a for-loop (or a kernel

function). Before Jan. 2014, this resulted in a compilation error “function cannot be used within the context of a

kernel function” or “loop parallelization not possible because of function XX”. The transparent handling of vector

or matrix expressions with in kernel functions requires some special (and sophisticated) handling at the Quasar

compiler and runtime sides. In particular: what is needed is dynamic kernel memory. This is memory that is

allocated on the GPU (or CPU) during the operation of the kernel. The dynamic memory is disposed (freed) either

when the kernel function terminates or at a later point.

There are a few use cases for dynamic kernel memory:

� When the algorithm requires to process several small-sized (3x3) to medium-sized (e.g. 64x64) matrices. For

example, a kernel function that performs matrix operations for every pixel in the image. The size of the

matrices may or may not be known in advance.

� Efficient handling of multivariate functions that are applied to (non-overlapping or overlapping) image blocks.

� When the algorithm works with dynamic data structures such as linked lists, trees, it is also often necessary

to allocate “nodes” on the fly.

� To use some sort of “/scratch” memory that does not fit into the GPU shared memory (note: the GPU

shared memory is 32K, but this needs to be shared between all threads - for 1024 threads this is 32 bytes

private memory per thread). Dynamic memory does not have such a stringent limitation. Moreover, dynamic

memory is not shared and disposed either 1) immediately when the memory is not needed anymore or 2) when

a GPU/CPU thread exists. Correspondingly, when 1024 threads would use 32K each, this will require less

than 32MB, because the threads are logically in parallel, but not physically.

In all these cases, dynamic memory can be used, simply by calling the zeros, ones, eye or uninit functions. One

may also use slicing operators (A[0..9, 2]) in order to extract a sub-matrix. The slicing operations then take the

current boundary access mode (e.g. mirroring, circular) into account.

8.3.1 Examples

The following program transposes 16x16 blocks of an image, creating a cool tiling effect. Firstly, a kernel function

version is given and secondly a loop version. Both versions are equivalent: in fact, the second version is internally

converted to the first version.

Kernel version� �
function [ ] = kernel ke rne l ( x : mat , y : mat , B : int , pos : ivec2 )

r1 = pos [ 0 ] *B . . pos [ 0 ] *B+B−1 % c r e a t e s a dynamical ly a l l o c a t e d vec to r
r2 = pos [ 1 ] *B . . pos [ 1 ] *B+B−1 % c r e a t e s a dynamical ly a l l o c a t e d vec to r

y [ r1 , r2 ] = transpose ( x [ r1 , r2 ] ) % matrix t ranspose
% c r e a t e s a dynamical ly a l l o c a t e d vecto r

end

x = imread ( ” l e na b i g . t i f ”) [ : , : , 1 ]
y = zeros ( size ( x ) )
B = 16 % block s i z e
parallel do ( size (x , 0 . . 1 ) / B, x , y ,B, k e rne l )�
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Loop version� �
x = imread ( ” l e na b i g . t i f ”) [ : , : , 1 ]
y = zeros ( size ( x ) )
B = 16 % block s i z e

#pragma f o r c e p a r a l l e l
for m = 0 . .B . . size (x , 0 )−1

for n = 0 . .B . . size (x , 1 )−1
A = x [m. .m+B−1,n . . n+B−1] % c r e a t e s a dynamical ly a l l o c a t e d vec to r
y [m. .m+B−1,n . . n+B−1] = transpose (A) % matrix t ranspose

end
end�
8.3.2 Memory models

To acommodate the widest range of algorithms, two memory models are currently provided (some more may be

added in the future).

1. Concurrent memory model

In the concurrent memory model, the computation device (e.g. GPU) autonomously manages a separate

memory heap that is reserved for dynamic objects. The size of the heap can be configured in Quasar and is

typically 32MB.

The concurrent memory model is extremely efficient when all threads (e.g. ≥ 512) request dynamic memory at

the same time. The memory allocation is done by a specialized parallel allocation algorithm that significantly

differs from traditional sequential allocators.

For efficiency, there are some internal limitations on the size of the allocated blocks:

� The minimum size is 1024 bytes (everything smaller is rounded up to 1024 bytes)

� The maximum size is 32768 bytes

For larger allocations, please see the cooperative memory model. The minimum size also limits the number of

objects that can be allocated.

2. Cooperative memory model

In the cooperative memory model, the kernel function requests memory directly to the Quasar allocator. This

way, there are no limitations on the size of the allocated memory. Also, the allocated memory is automatically

garbage collected.

Because the GPU cannot launch callbacks to the CPU, this memory model requires the kernel function to be

executed on the CPU.

Advantages:

� The maximum block size and the total amount of allocated memory only depend on the available system

resources.

Limitations:

� The Quasar memory allocator uses locking (to limited extend), so simultaneous memory allocations on

all processor cores may be expensive.

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 90



8.3. DYNAMIC KERNEL MEMORY CHAPTER 8. SPECIAL PROGRAMMING PATTERNS

� The memory is disposed only when the kernel function exists. This is to internally avoid the number of

callbacks from kernel function code to host code. Suppose that you have a 1024x1024 grayscale image

that allocates 256 bytes per thread. Then this would require 1GB of RAM! In this case, you should use

the cooperative memory model (which does not have this problem).

8.3.3 Features

� Device functions can also use dynamic memory. The functions may even return objects that are dynamically

allocated.

� The following built-in functions are supported and can now be used from within kernel and

device functions:� �
zeros , c ze ros , ones , uninit , eye ,
copy , reshape , repmat , shu f f l ed ims ,
seq , linspace , real , imag , complex ,
mathematical f unc t i on s matrix /matrix
mu l t i p l i c a t i o n matrix / vec to r mu l t i p l i c a t i o n�

8.3.4 Performance considerations

Dynamic kernel memory can greatly improve the expressibility of Quasar programs, however there are also a number

of downsides that need to be taken into account.

� Global memory access: code relying on dynamic memory may be slow (for linear filters on GPU: 4x-8x slower),

not because of the allocation algorithms, but because of the global memory accesses. However, it all depends

on what you want to do: for example, for non-overlapping block-based processing (e.g., blocks of a fixed size),

the dynamic kernel memory is an excellent choice.

� Static vs. dynamic allocation: when the size of the matrices is known in advanced, static allocation (e.g. outside

the kernel function may be used as well). The dynamic allocation approach relieves the programmer from

writing code to pre-allocate memory and calculating the size as a function of the size of the data dimensions.

The cost of calling the functions uninit, zeros is negligible to the global memory access times (one memory

allocation is comparable to 4-8 memory accesses on average - 16-32 bytes is still small compared to the typical

sizes of allocated memory blocks). Because dynamic memory is disposed whenever possible when a particular

threads exists, the maximum amount of dynamic memory that is in use at any time is much smaller than the

amount of memory required for pre-allocation.

� Use vecX types for vectors of length 2 to 16 whenever your algorithm allows it. This completely avoids using

global memory, by using the registers instead. Once a vector of length 17 is created, the vector is allocated

as dynamic kernel memory.

� Avoid writing code that leads to thread divergence: in CUDA, instructions execute in warps of 32 threads. A

group of 32 threads must execute (every instruction) together. Control flow instructions (if, match, repeat,

while) can negatively affect the performance by causing threads of the same warp to diverge; that is, to follow

different execution paths. Then,the different execution paths must be serialized, because all of the threads

of a warp share a program counter. Consequently, the total number of instructions executed for this warp

is increased. When all the different execution paths have completed, the threads converge back to the same

execution path.
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� To obtain best performance in cases where the control flow depends on the block position (blkpos), the

controlling condition should be written so as to minimize the number of divergent warps.

8.4 Atomic operations inside parallel loops

An often recurring programming idiom is the use of atomic operations for data aggregation (e.g. to calculate a sum).

In the most simple form, this idiom is as follows (called the JDV variant):� �
t o t a l = 0 .0
#pragma f o r c e p a r a l l e l
for m=0..511

for n=0. .511
t o t a l += im [m, n ]

end
end�
However, it could also be more sophisticated as well (called the HQL variant):� �
A = zeros ( 2 , 2 )
#pragma f o r c e p a r a l l e l
for i =0. .255

A[ 0 , 0 ] += x [ i , 0 ] * y [ i , 0 ]
A[ 0 , 1 ] += x [ i , 0 ] * y [ i , 1 ]
A[ 1 , 0 ] += x [ i , 1 ] * y [ i , 0 ]
A[ 1 , 1 ] += x [ i , 1 ] * y [ i , 1 ]

end�
Here, the accumulator variables are matrix elements, also multiple accumulators are used inside a for loop.

Even though this code is correct, the atomic add (+=) may result in a poor performance on GPU devices, due

to all adds being serialized in the hardware (all threads need to write to the same location in memory, so there

is a spin-lock that basically serializes all the memory write accesses). The performance is often much worse than

performing all operations in serial !

The obvious solution is the use of shared memory, thread synchronization in combination with parallel reduction

patterns (see section 11.6). In general it is quite hard to write these kind of algorithms, taking all side-effects in

consideration, such as register pressure, shared memory pressure. Therefore, the Quasar compiler now detects the

above pattern, under the following conditions:

� All accumulator expressions (e.g. total, A[0,0]) should be 1) variables, 2) expressions with constant numeric

indices or 3) expressions with indices whose value does not change during the for-loop.

� The accumulator variables should be scalar numbers. Complex-valued numbers and fixed-length vectors

are currently not (yet) supported.

� Only full dimensional parallel reductions are currently supported. A sum along the rows or columns can

not be handled yet.

� There is an upper limit on the number of accumulators (due to the size limit of the shared memory). For

32-bit floating point, up to 32 accumulators and for 64-bit floating point, up to 32 accumulators are supported.

When the upper limit is exceeded, the generated code will still work, but the block size will silently be reduced.

This, together with the impact on the occupancy (due to high number of registers being used) might lead to

a performance degradation.
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8.5 Meta functions

Note: this section gives more advanced info about how internal routines of the compiler can be accessed from user

code. Normally these functions do not need to be used directly, however this information can still be useful for

certain operations.

Quasar has a special set of built-in functions, that are aimed at manipulating expressions at compile-time (although

in the future the implementation may also allow them to be used at run-time). The functions are special, because

actually, they do not follow the regular evaluation order (i.e. they can be evaluated from the outside to the inside

of the expression, depending on the context). To make the difference clear with the host functions, these functions

start with prefix $.

For example, x is an expression, as well as x+2 or (x+y)*(3*x)^99. A string can be converted (at runtime) to an

expression using the function eval. This is useful for runtime processing of expressions for example entered by the

user. However, the opposite is also possible:� �
print $ s t r ( ( x+y) *(3*x ) ˆ99) % Pr int s ”( x+y) *(3*x ) ˆ99”�
This is similar to the string-izer macro symbol in C:� �
#de f i n e s t r ( x ) #x�
However, there are a lot of other things that can be done using meta functions. For example, an expression can be

evaluated at compile-time using the function $eval (which differs from eval)� �
print $eva l ( log (pi /2) ) % Pr int s 0 .45158273311699 , but the r e s u l t i s computed at compile−

time .�
The $eval function also works when there are constant variables being referred (i.e. variables whose values are known

at compile-time). Although this seems quite trivial, this technique opens new doors for compile-time manipulation

of expressions that are completely different from C/C++ but somewhat similar to Maple or LISP macros).

Below is a small overview of the meta functions in Quasar:

� $eval(.): compile-time evaluation of expressions

� $str(.): conversion of an expression to string

� $subs(a=b,.): substitution of a variable by another variable or expression

� $check(.): checks the satisfiability of a given condition (the result is either valid, satisfiable or unsatisfiable),

based on the information that the compiler has at this point.

� $assump(.): returns an expression with the assertions of a given variable

� $simplify(.): simplifies boolean expressions (based on the information of the compiler, for example constant

values etc.)

� $args[in](.): returns an expression with the input arguments of a given function.

� $args[out](.): returns an expression with the input arguments of a given function.
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� $nops(.): returns the number of operands in the expression

� $op(.,n): returns the n-th operand of the expression

� $ubound(.): calculates an upper bound for the given expression

� $specialize(func,.): performs function specialization

� $inline(lambda(...)): performs inlining of lambda expressions/functions

� $ftype(x) with x="__host__"/"__device__"/"__kernel__": determines whether we are inside a host, de-

vice or kernel function.

� $typerecon(x,y) : reconstructs the type of the specified function with a given set of (specialized) input pa-

rameters. For example, given a function f = x -> x, $typerecon(f,type(x,scalar)) will return [scalar-

>scalar]. This meta function is mainly used internally in the compiler.

Notes:

� Most of these functions (and in particular $eval, $check, $specialize, $typerecon and $inline) are only

provided for testing and should not be used from user-code.

� The function $ftype is useful in combination with reductions with where clause (section 4.7.4), to express

that the reduction may only be applied in a device/kernel or host function (also see [functions](Functions-in-

Quasar)). For example:� �
reduction x −> log ( x ) = x − 1 where abs ( x − 1) < 1e−1 && $ftype ( ” device ”)�

means that the reduction for log(x) may only be applied inside __device__ functions, when the condition abs(x

- 1) < 1e-1 is met. Here, this is simply a linear approximation of the logarithm around x==1.

Example: copying the type and assumptions from one variable to another

It is possible to write statements such as ”assume the same about variable ’a’ as what is assumed on ’b’”. This

includes the type of the variable (as in Quasar, the type specification is nothing more than a predicate).� �
a : int
assert (0 <= a && a < 1)
b : ??
assert ( $subs ( a=b , $assump ( a ) ) )
print $ s t r ( $assump (b) ) % Pr int s ”type (b , ” i n t ”) ) && 0 <= b && b < 1”�
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Chapter

9

Advanced GPU concepts

The GPU was originally designed for computer graphics and there are a lot of other facilities available to speed up

GPU applications. In this Section, we describe a number of advanced GPU techniques from which Quasar programs

can also potentially benefit. In this section, we describe several GPU specific optimization techniques that can easily

be used from Quasar programs.

9.1 Constant memory and texture memory

The GPU hardware provides several caches or memory types that are designed for dealing with (partially) constant

data:

� Constant memory: NVIDIA GPUs provide 64KB of constant memory that is treated differently from

standard global memory. In some situations, using constant memory instead of global memory may reduce

the memory bandwidth (which is beneficial for kernels). Constant memory is also most effective when all

threads access the same value at the same time (i.e. the array index is not a function of the position).

� Texture memory: texture memory is yet another type of read-only memory. Like constant memory, texture

memory is cached on chip, so it may provide higher effective bandwidth than obtained when accessing the

off-chip DRAM. In particular, texture caches are designed for memory access patterns exhibiting a great deal

of spatial locality.

For practical purposes, the size of the constant memory is rather small, so it is mostly useful for storing filter/weight

coefficients that do not change while the kernel is executed. On the other hand, the texture memory is quite large,

has its own cache, and can be used for storing constant input signals/images.

In Quasar, constant/texture memory can be utilized by adding modifiers to the kernel function parameter types.

The following modifiers are available:

� 'hwconst: the vector/matrix needs to be stored in the constant memory. Note: if there is not enough constant

memory available, a run-time error is generated!

� 'hwtex_nearest or 'hwtex_linear: the vector/matrix needs to be stored in the texture memory (see further, in

section 9.2).
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� 'hwtex_const - non-coherent texture cache. This option requires CUDA compute architecture 3.5 or higher -

as in Geforce GPUs of the 900 series, and allows the data still be stored in the global memory, will utilizing

the texture cache for load operations. This combines the advantages of the texture memory cache with the

flexibility (ability to read/write) of the global memory.

Note that for Fermi and later devices, global memory accesses (i.e., without 'hw* modifiers) are cached in the L2-

cache of the GPU. For Kepler GPU devices, using 'hwtex_const the texture cache is utilized directly, bypassing the

L2 cache. The texture cache is a separate cache with a separate memory pipeline and relaxed memory coalescing

rules, which may bring advantages to bandwidth-limited kernels.1

Starting with Maxwell GPU devices, the L1 cache and the texture caches are unified. The unified L1/texture cache

coalesces the memory accesses, gathering up the data requested by the threads in a warp, before delivering the data

to the warp.2

For using constant memory, we give the following guidelines:

� When your kernel function is using some constant vectors (weight vectors with relatively small length), and

when all threads (or more specifically, all threads within one warp) access the same value of the vector at the

same time (the index is not a function of the position!), you should definitely consider using 'hwconst. In case

different constant vector elements are accessed from different threads, the constant cache must be accessed

multiple times, which degrades the performance.

� When your kernel function is accessing constant images (vec, mat or cube) on Kepler/Maxwell devices with

compute architecture >= 3.5, it may be worthful to use hwtex const.

However, the best is to investigate whether the modifier improves the performance (e.g. using the Quasar profiler).

Example Consider the following convolution program:

Default version with no constant memory being used:� �
function [ ] = kernel ke rne l ( x : vec , y : vec , f : vec , pos : int )

sum = 0.0
for i =0. .numel( f )−1

sum += x [ pos+i ] * f [ i ]
end
y [ pos ] = sum

end�
Version with constant memory:� �
function [ ] = kernel kerne l hwconst ( x : vec , y : vec , f : vec ' hwconst , pos : int )

sum = 0.0
for i =0. .numel( f )−1

sum += x [ pos+i ] * f [ i ]
end
y [ pos ] = sum

end�
Version with constant texture memory for f:

1For more information, see Kepler tuning guide.
2For more information, see Maxwell tuning guide.
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� �
function [ ] = kernel kerne l hwtex cons t ( x : vec , y : vec , f : vec ' hwtex const , pos :

int )
sum = 0.0
for i =0. .numel( f )−1

sum += x [ pos+i ] * f [ i ]
end
y [ pos ] = sum

end�
Version with constant texture memory for x and f:� �
function [ ] = kernel kerne l hwtex cons t2 (x : vec ' hwtex const , y : vec , f : vec '

hwtex const , pos : int )
sum = 0.0
for i =0. .numel( f )−1

sum += x [ pos+i ] * f [ i ]
end
y [ pos ] = sum

end�
Version with HW textures (see section 9.2):� �
function [ ] = kernel ke rn e l t e x (x : vec , y : vec , f : vec ' hwtex nearest , pos : int )

sum = 0.0
for i =0. .numel( f )−1

sum += x [ pos+i ] * f [ i ]
end
y [ pos ] = sum

end�
For 100 runs on vectors of size 20482, with 32 filter coefficients, we obtain the following results for the NVidia

Geforce 980 (Maxwell architecture):� �
Defau l t : 513 .0294 ms
f : ' hwconst: 132.0075 ms
f: ' hwtex const : 128.0074 ms
x , f : ' hwtex_const: 95.005 ms
f: ' hwtex nearest : 169 .0096 ms�
It can be seen that using constant memory ( 'hwconst) alone yields a speed-up of almost a factor 5 in this case. The

best performance is obtained with hwtex const. Moreover, using shared memory (see section §11.5), the performance

can even further be improved to 85 ms.

9.2 Speeding up spatial data access using Hardware Texturing Units

The hardware texturing units are a part of the graphics-accelerating heritage of the GPU. Originally, texture

mapping was designed to enable realistically looking objects by letting the applications “paint” onto the geometry.

From the rendered triangles, texture coordinates were interpolated along the X, Y and Z coordinates, such that for

every output pixel, a texture value could be fetched (e.g. using nearest-neighbor or linear/trilinear interpolation).

Later, programmable graphics and non-color like texture data (e.g. bump maps, shadow maps) were introduced
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Limitation CUDA 2.x value

Maximum length for 1D texture 134217728
Maximum size for 2D texture 65536×65536
Maximum size for 3D texture 2048× 2048× 2048

Allowed element types scalar, int, int8, int16, int32
uint8, uint16, uint32

Access type locally read-only, changes visible in next
kernel function call

Access modifiers safe, circular, mirror and clamped

(no checked/unchecked)
Maximum number of textures/Quasar module 128 (or 256)

Table 9.1: Texture memory limitations

and also the graphics hardware became more sophisticated. The hardware performance was improved by using

dedicated hardware for transforming texture coordinates into hardware addresses, by adding texture caches and by

using memory layouts optimized for spatial locality.

There is also hardware support for some of the type modifiers explained in section 2.4, in particular “safe”,

“circular”, “mirror” and “clamped”.

More generally, in Quasar, there are two main use cases for textures:

� The first is to use the texture for more optimized spatial data access: as an alternative for coalescing, to use

the texture cache to reduce bandwidth requirements, ...

� The second is to make use of the fixed-function hardware that was originally intended for graphics applications:

– The use of boundary conditions (“safe”, “circular”, “mirror” and “clamped”)

– The automatic conversion of integer values to floating point

– The automatic conversion of 2D and 3D indices to addresses

– Linear interpolation of 2D and 3D data.

The hardware texture units can only be used in combination with texture memory. Texture memory is a read-only

part of the global memory (see section 2.4.3), that is cached on-chip (e.g. 6-8 KB per multi-processor) and ordered

using a space-filling curve optimized for spatial locality.

In table 9.1 there are a number of limitations listed for texture memory.

Using the hardware texture units in Quasar is quite simple: it suffices to add the following special modifiers to the

types of arguments of kernel functions:

� ’hwtex_nearest: use the hardware texturing unit in nearest interpolation mode for the specified argument

� ’hwtex_linear: use the hardware texturing unit in linear interpolation mode for the specified argument

Note that these modifiers are only permitted to vec, mat or cube types. Complex-valued data or higher dimensional

matrices are currently not yet supported.

The following image scaling example illustrates the use of hardware textures:
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� �
% Kernel funct ion , not us ing hardware t ex tu r e s
function [ ] = kernel in te rpo late nonhwtex (y :mat , x :mat , s c a l e : scalar , pos : ivec2 )

s c a l ed po s = s c a l e * pos
f = f r a c ( s c a l ed po s )
i = int ( f loor ( s c a l ed po s ) )

y [ pos ] = (1 − f [ 0 ] ) * (1 − f [ 1 ] ) * x [ i [ 0 ] , i [ 1 ] ] +
f [ 0 ] * (1 − f [ 1 ] ) * x [ i [ 0 ]+1 , i [ 1 ] ] +

(1 − f [ 0 ] ) * f [ 1 ] * x [ i [ 0 ] , i [ 1 ]+1 ] +
f [ 0 ] * f [ 1 ] * x [ i [ 0 ]+1 , i [ 1 ]+1 ]

end

% Kernel funct ion , us ing hardware t ex tu r e s
function [ ] = kernel i n t e rpo l a t e hwtex (y :mat , x :mat ' hwtex l inear ,

s c a l e : scalar , pos : ivec2 )
y [ pos ] = x [ s c a l e * pos ]

end�
Note that the use of the hardware textures (and in particular the linear interpolation) is quite simple. However, it

is important to stress that the hwtex modifiers can only be used for kernel function arguments. It is for example

not possible to declare variables using these modifiers (if you try so, the modifiers will not have any effect).

The hardware textures enable some performance benefit. For example, on a Geforce 435M, for the above program

the following results were obtained:� �
2D near e s t ne ighbor i n t e r p o l a t i o n without hardware t ex tu r ing : 109.2002 msec
2D near e s t ne ighbor i n t e r p o l a t i o n with hardware t ex tu r ing : 93 .6002 msec
3D near e s t ne ighbor i n t e r p o l a t i o n without hardware t ex tu r ing : 421.2007 msec
3D near e s t ne ighbor i n t e r p o l a t i o n with hardware t ex tu r ing : 312.0006 msec

2D Linear i n t e r p o l a t i o n without hardware t ex tu r ing : 156.0003 msec
2D Linear i n t e r p o l a t i o n with hardware t ex tu r ing : 109.2002 msec
3D Linear i n t e r p o l a t i o n without hardware t ex tu r ing : 873.6015 msec
3D Linear i n t e r p o l a t i o n with hardware t ex tu r ing : 312.0006 msec�
Especially, in 3D with linear interpolation, the performance is almost 3x higher than the regular approach. Textures

have also a number of limitations:

� For non-floating point textures, the texture width should be a multiple of 32. Otherwise a run-time error will

be generated. Note: for regular floating point textures there is no such limitation.

� The maximum size of the texture is limited (but increasing with newer GPU generations). The maximum size

is typically 65536× 65536 (2D) or 4096× 4096× 4096 (3D).

� The element types are restricted.

� It is possible to write to texture memory from a kernel function (see section §9.5), but the effects are only

visible in a next kernel function call.

� Textures cannot be used inside nested kernel functions (see section §4.4).

� The boundary condition ’checked cannot be used in combination with hardware textures.

Summarizing, hardware textures have the following advantages:

1. Texture memory is cached, this is helpful when global memory is the main bottleneck.
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2. Texture memory is efficient also for less regular access patterns

3. Supports linear/bilinear and trilinear interpolation in hardware

4. Supports boundary accessing modes (mirror, circular, clamped and safe) in hardware.

9.3 16-bit (half-precision) floating point textures

To reduce the bandwidth in computation heavy applications (e.g. real-time video processing), it is possible to specify

that the GPU texturing unit should use 16-bit floating point formats. This can be configured on a global level in

Redshift / Program Settings / Runtime / Use CUDA 16-bit floating point textures. Obviously, this will reduce the

memory bandwidth by a factor of 2 in 32-bit float precision mode, and by a factor of 4 in 64-bit float precision

mode. The option is also particularly useful when visualizing multiple large images.

Note that 16-bit floating point numbers have some limitations. The minimal positive non-zero value is 5.96046448e-

08. The maximal value is 65504. The machine precision (eps) value is 0.00097656. For these reasons, 16-bit floating

point textures should not be used for accuracy sensitive parts of the algorithm. They are useful for rendering and

visualization purposes (e.g., real-time video processing).

9.4 Multi-component Hardware Textures

Very often, kernel functions access RGB color data using slicing operations, such as:� �
x [m, n , 0 . . 2 ]�
When the accesses m and/or n are irregular compared to the kernel function position variable pos, it may be

useful to consider the use of multi-component hardware textures. These textures allow fetches of 2, 3 or 4 color

components in one single operation, which is very efficient. A multi-component hardware texture can be declared

by adding ’hwtex_nearest(4) to the access modifier of the cube type. The modifier is only permitted to mat,

cube or cube{4} types. Complex-valued data or higher dimensional matrices are currently not yet supported. An

example of a Gaussian filter employing multi-component textures is given below:� �
function y = g a u s s i a n f i l t e r h o r (x , fc , n )

function [ ] = kernel ke rne l ( x : cube ' hwtex nearest (4 ) , y : cube 'unchecked , f c :
vec 'unchecked , n : int , pos : vec2 )
sum = [ 0 . , 0 . , 0 . ]
for i =0. .numel( f c )−1

sum = sum + x [ pos [ 0 ] , pos [1 ]+ i−n , 0 . . 2 ] * f c [ i ]
end
y [ pos [ 0 ] , pos [ 1 ] , 0 . . 2 ] = sum

end

y = uninit ( s ize ( x ) )
parallel do ( s ize (y , 0 . . 1 ) , x , y , fc , n , k e rne l )

end�
In parentheses, the number of components is indicated. Note that the hardware only supports 1, 2 or 4 components.

In this mode, the Quasar compiler will support the texture fetching operation x[pos [0], pos[1]+i−n,0..2] and will

translate the slice indexer into a 4-component texture fetch.
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In combination with 16-bit floating point formats, the texture fetch even only requires a transfer of 64 bits (8 bytes)

from the texture memory. On average, this will reduce the memory bandwidth by a factor 2 and at the same time

reduces the stress on the global memory.

Finally, it is best to not use the same matrix value in ’hwtex_nearest(4) mode and later in ’hwtex_nearest mode

(or vice versa) in another kernel function, because a mode change requires the texture memory to be reallocated

and recopied (which affects the performance).

9.5 Texture/surface writes

For CUDA devices with compute capability 2.0 or higher, it is possible to write to the texture memory from a kernel

function. In CUDA terminology, this is called a surface write. In Quasar, it suffices to declare the kernel function

parameter using the modifier 'hwtex_nearest (or hwtex nearest(n)) and to write to the corresponding matrix.

One caveat is that the texture write is only visible starting from the next kernel function call. Consider the following

example:� �
function [ ] = kernel ke rne l ( y : mat ' hwtex nearest , pos : ivec2 )

y [ pos ] = y [ pos ] + 1
y [ pos ] = y [ pos ] + 1 % unseen change

end
y = zeros (64 ,64)
parallel do ( size ( y ) ,y , k e rne l )
parallel do ( size ( y ) ,y , k e rne l )
print mean( y ) % Result i s 2 ( in s t ead o f 4) because the su r f a c e wr i t e s

% are not v i s i b l e u n t i l the next c a l l�
This may be counterintuitive, but this allows the texture cache to work properly.

An example with 4 component surface writes is given below (one stage of a wavelet transform in the vertical

direction):� �
function [ ] = kernel dwt dim0 hwtex4 (x : cube ' hwtex nearest (4 ) , y : cube ' hwtex nearest

(4 ) , wc : mat ' hwconst , ctd : int , n : int , pos : ivec2 )
K = 16*n + ctd
a = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]
b = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]
t i l e p o s = int ( (2* pos [ 0 ] ) /n)
j 0 = t i l e p o s *n
for k=0. .15

j = j0+mod(2* pos [0 ]+k+K, n)
u = x [ j , pos [ 1 ] , 0 . . 3 ]
a = a + wc [ 0 , k ] * u
b = b + wc [ 1 , k ] * u

end
y [ j 0+mod( pos [ 0 ] , int (n/2) ) , pos [ 1 ] , 0 . . 3 ] = a
y [ j 0+int (n/2)+mod( pos [ 0 ] , int (n/2) ) , pos [ 1 ] , 0 . . 3 ] = b

end

im = imread ( ” l e na b i g . t i f ”)
im out = uninit ( size ( im) )
parallel do ( [ s ize ( im out , 0 ) /2 , size ( im out , 1 ) ] , im2 , im out , sym8 , 4 , s ize ( im out , 0 ) ,

dwt dim0 hwtex4 )�
On a Geforce GTX 780M, the computation times for 1000 runs are as follows:
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� �
without ' hwtex_nearest(4): 513 ms
with ' hwtex nearest (4 ) : 176 ms�
Here this optimization resulted in a speedup of approx. a factor 3 (!)

9.6 Maximizing occupancy through shared memory assertions

Kernel functions that explicitly use shared memory can be optimized by specifying the amount of memory that a

kernel function will actually use.

The maximum amount of shared memory that Quasar kernel functions can currently use is 32K (32768 bytes).

Actually, the maximum amount of shared memory of the device is 48K (16K is reserved for internal purposes). The

GPU may process several blocks at the same time, however there is one important restriction:

“The total number of blocks that can be processed at the same time also depends on the amount of shared

memory that is used by each block.”

For example, if one block uses 32K, then it is not possible to launch a second block at the same time, because 2 x

32K>48K. In practice, your kernel function may only use e.g. 4K instead of 32K. This would then allow 48K/4K

= 12 blocks to be processed at the same time.

Originally, the Quasar compiler either reserved 0K or 32K shared memory per block, depending on whether the

kernel function allocated shared memory. Shared memory is dynamically allocated from within the kernel function.

This actually deteriorates the performance, because N*32K < 48K requires N=1. So there is only one block that

can be launched simultaneously.

In the latest version, the compiler is able to infer the total amount of shared memory that is being used through

the logic system (see chapter 5). For example, when you request:� �
x = shared (20 , 3 , 6 )�
the compiler will reserve 20 x 3 x 6 x 4 bytes = 1440 bytes for the kernel function. Often the arguments of the

function shared are non-constant. In this case you can use assertions.� �
assert (M<8 && N<20 && K<4) x = shared (M,N,K)�
Due to the above assertion, the compiler is able to infer the amount of required shared memory. In this case: 8 x

20 x 4 x 4 bytes = 2560 bytes. The compiler then gives the following message:� �
In format ion : sharedmemtest . q − l i n e 17 : Ca lcu lated an upper bound f o r the amount o f shared

memory : 2560 bytes�
The assertion also allows the runtime system to check whether not too much shared memory will be allocated. In

case N would exceed 20, the runtime system will give an error message.

Note: the compiler does not recognize yet all possible assertions that restrict the amount of shared memory. For

example assert(numel(blkdim)<=1024); x = shared(blkdim) will not work yet. In the future, more use cases

like this will be accepted.
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9.7 Memory management

There are some problems operating on large images that do not fit into the GPU memory. The solution is to provide

a FAULT-TOLERANT mode, in which the operations are completely performed on the CPU (we assume that the

CPU has more memory than the GPU). Of course, running on the CPU comes at a performance hit. Therefore I

will add some new configurable settings in this enhancement.

Please note that GPU memory problems can only occur when the total amount of memory used by one single kernel

function > (max GPU memory - reserved mem) * (1 - fragmented mem%). For a GPU with 1 GB, this might be

around 600 MB. Quasar automatically transfers memory buffers back to the CPU memory when it is running out

of GPU space. Nevertheless, this may not be sufficient, as some very large images can take all the space of the GPU

memory (for example 3D datasets).

Therefore, three configurable settings are added to the runtime system (see Quasar.Redshift.config.xml):

1. RUNTIME_GPU_MEMORYMODEL with possible values:

� SmallFootPrint - A small memory footprint - opts for conservative memory allocation leaving a lot of

GPU memory available for other programs in the system

� MediumFootprint (default) - A medium memory footprint - the default mode

� LargeFootprint - chooses aggressive memory allocation, consuming a lot of available GPUmemory quickly.

This option is recommended for GPU memory intensive applications.

2. RUNTIME_GPU_SCHEDULINGMODE with possible values:

� MaximizePerformance - Attempts to perform as many operations as possible on the GPU (potentially

leading to memory failure if there is not sufficient memory available. Recommended for systems with a

lot of GPU memory).

� MaximizeStability (default) - Performs operations on the CPU if there is not GPU memory available.

For example, processing 512 MB images when the GPU only has 1 GB memory available. The resulting

program may be slower. (FAULT-TOLERANT mode)

3. RUNTIME_GPU_RESERVEDMEM

� The amount of GPU memory reserved for the system (in MB). The Quasar runtime system will not

use the reserved memory (so that other desktop programs can still run correctly). Default value = 160

MB. This value can be decreased at the user’s risk to obtain more GPU memory for processing (desktop

applications such as Firefox may complain. . . )

Please note that the “imshow” function also makes use of the reserved system GPU memory (the CUDA data is

copied to an OpenGL texture).
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Chapter

10

Best practices

10.1 Use “main” functions

Quasar programs are executed from the top to the bottom. This means that, if there are statement in between

function definitions, these statements will also be executed. This can be handy to define symbols at the global level,

such as constants, lambda expressions etc. However, it is advisable to put the main program logic in one function,

the function “main”. The function “main”will be called automatically by the runtime when the .q file is loaded. An

example of a main function is as follows:� �
function [ ] = main ( )

img = imread ( ” l e na b i g . t i f ”)
imshow( img )

end�
The main function may contain fixed and optional parameters:� �
function [ ] = main ( required param1 , opt param1=4.0)�
The required parameters must then be specified via the command-line (or via the set command line arguments

dialog box in Redshift). For example:� �
Quasar . exe myprog . q 1 2�
When not enough parameters are specified (or too many), a run-time error will be generated. Practically, there are

only two types that are allowed: scalar and string. In other to pass values of other types (e.g. matrices), it is

currently best to wrap them in a string, and to convert the string to the right data type using the function eval.

The following example illustrates this:
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� �
function [ ] = main ( mat r i x s t r i ng : s t r i n g )

matrix : mat = eval ( mat r i x s t r i ng )
print matrix

end
% Command l i n e
Quasar . exe ”[ [ 1 , 0 ] , [ 1 , − 1 ] ] ”
% Runtime system c a l l s the main func t i on as :
main ( ”[ [ 1 , 0 ] , [ 1 , − 1 ] ] ”)�
Additionally, the main function can be made to accept a variable number of parameters, by defining it as a variadic

function (see section §4.6):� �
function [ ] = main ( arg1 , arg2 , . . . o th e r a r g s )

print arg1
print arg2
for i =0. .numel( o the r a r g s )−1

print o the r a r g s [ i ]
end

end�
This permits great flexibility when passing various parameters to Quasar programs.

Important remark: function “main” has a special behavior when the .q file is imported (using the

import keyword, see earlier): in particular, the function definition is completely skipped, as if no

“main” function was present in the file. Hence, for .q modules that are only intended to be imported,

the “main” function can contain some testing code.

10.2 Shared memory usage

Shared memory (see section 2.4.4) is on-chip and fast, however, for the CUDA computation engine, recent GPU

devices use a global memory cache that has about the same efficiency as the shared memory. Consequently, the best

practice is to only use shared memory when it is needed, for example when there is communication needed between

the different kernel functions that are running in parallel on the same block. The reason is: copying from global

memory to shared memory also has a performance cost, and because shared memory is limited, kernel functions

often need to be restructured so that everything can fit into the shared memory. This “restructuring cost” often

outweighs the benefits of using shared memory. So only use shared memory when it is really necessary.

10.3 Loop parallelization

Suppose you want to parallelize several nested loops, such as:� �
for m=0. .M−1

for n=0. .N−1
for k=0. .K−1

for l =0. .L−1
. . .

end
end

end
end�
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The question is: which loops to parallelize? The answer is actually problem-specific (depends on the dimensions of

the variables and their dependencies), but in general, it is recommended to parallelize the outer loops as much as

possible, because this minimizes communication and synchronization with the computing device (e.g. GPU). For

example, the above loops would be best parallelized as follows:� �
function [ ] = kernel my kernel ( . . . )

for l =0. .L−1
. . .

end
end
parallel do ( [M,N,K] , . . . , my kernel )�
However, in many cases it is not necessary to perform this parallelization yourself: the Quasar compiler has an

efficient built-in auto parallelization routine, which checks variables and their dependencies, and chooses a paral-

lelization strategy that has the most benefit for the particular problem. The auto parallelizer is active by default,

but can be toggled on/off using the pragma:� �
#pragma l o o p p a r a l l e l i z e r ( on | o f f )�
For more info, see section 13.1.

10.4 Output arguments

Functions can have multiple arguments, as shown in the following example:� �
function [ band1 : mat , band2 : mat]= subband decomposit ion ( input : mat)

band1 = input .* G
band2 = output .* H

end�
Alternatively, the matrices are passed by reference (see section 1.3), and this can also be exploited for returning

processing results:� �
band1 = input % copy r e f e r e n c e
band2 = zeros ( size ( input ) )
function [ ] = subband decomposit ion ( band1 : mat , band2 : mat)

band2 [ : , : ] = band1 .* G
band1 = band1 .* H

end�
It is preferable to use the first approach (for readability of the code), however the second approach is also useful in

some cases: the difference is in the memory usage: in the first approach: memory needs to be allocated for input,

band1 and band2, while in the second approach, only memory is needed to store band1 and band2 (hence one

memory allocation is eliminated). For applications relying on huge matrix sizes (for example applications working

with digital camera images, or for real-time video applications), it is recommended to use the second approach.

Remark that simply using“band2 = band1 .* G” in the second approach would not give the correct result, because,

even though band2 contains a pointer to the matrix memory, the value of band2 itself is still passed by value. Instead,

adding [:,:] ensures that no new memory is allocated for band2.
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In case after a call, one output argument is not necessary in the subsequent code, the output argument can be

captured using a placeholder:� �
[ band1 , ] = subband decomposit ion ( input )�
This way, in future versions, the compiler may optionally specialize the function subband_decomposition, by

generating a version in which the second output parameter is not being calculated.

As mentioned in 4.6.3, the output arguments of functions can be chained using the spread operator ... For example,� �
function [ band1 out , band2 out ] = proce s s ( band1 , band2 )

. . .
end
proce s s ( . . . subband decomposit ion ( input ) )�
This way, it becomes unnecessary to store the output arguments in intermediate variables.

10.5 Writing numerically stable programs

Here, we consider numerical stability and software program stability. To ensure numerical stability, programs may

need to make use of the following functions:

� isfinite(x): checks whether variable x is finite (i.e. not infinite and not NaN “not a number”).

� isinf(x): returns true only if the variable x is infinite. Infinities are used to represent overflow and divide-

by-zero.

� isnan(x): returns true only if the variable x is “not a number”. The NaN encoded floating point numbers

have no numerical value. They are produced by operations that have no meaningful result, like infinity minus

infinity.

Remark that, by default, GPU computation engines, flush denormal floating point values to 0. Practically, this

means that if the result of a single-precision floating-point operation, before rounding, is in the range −2−126 to

+2−126 (or −1, 175×10−38 -1, 175×10−38), it is replaced by 0 (also see section 2.2.1). To avoid potential underflows,

it maybe necessary to pre-scale the input data to a good“working”range, before numerical operations are performed.

CPU computation engines may allow for denormal numbers (depending on the setting of the compiler, and whether

SIMD instructions are used etc.), yielding more accurate numerical results, but at a decreased performance: working

with denormal floating point numbers can be up to 100 times slower than in case of normalized numbers. Hence,

in case numerical problems are an issue, it may be good to compare the results of the CPU and GPU computation

engines.

Software stability: there are four causes for a Quasar program to be interrupted:

1. Errors (generated using the error statement or by Quasar runtime functions). Currently, error handling (e.g.

try-catch blocks) are not supported yet. Hence when an error is generated, the program is automatically

terminated.

2. Out-of-memory : when the system (or GPU) has not enough memory, the program will be halted. By default,

Quasar attempts to move memory from the GPU to the system memory when it detects that a memory

allocation may result in an out-of-memory error. In some cases, this may not be possible (e.g., a __kernel__

function that uses more memory than available on the GPU).
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3. Stack overflow : usually when a recursive function calls itself in an endless loop. For example, the function:� �
f = x −> f ( x )�
will result in a stack overflow error.

4. Abusing ’unchecked modifiers: the ’unchecked modifier (see section 2.4.1) is introduced for memory accesses

where it is completely certain that a kernel function will not go out of bounds of the vectors/matrices/etc. This

gives a performance benefit of up to 30% or more for certain functions. When the kernel function breaches the

boundaries, the program may either result an error (e.g. cudaUnknownError), or crash. To prevent this kind

of problems, one can 1) either remove the ’unchecked modifiers from the kernel function arguments, or 2)

run the program using the CPU computation engine, with the flag COMPILER_PERFORM_BOUNDSCHECKS=true

(see table 13.1). In the second case, Quasar will report an error and some information on the variables that

violate the boundary conditions, so that abuses of the ’unchecked modifier can be fixed.

An alternative solution is to temporarily replace ’unchecked by ’checked, this will instruct Quasar to perform

bounds checking at any time for the specified variable, irrespective of the COMPILER_PERFORM_BOUNDSCHECKS

variable.

To catch errors, it may be useful to place assertions inside kernel or device functions:� �
function [ ] = kernel ke rne l ( pos : ivec3 )

b = 2
assert (b==3)

end�
In this example, the assertion obviously fails. Quasar breaks with the following error message:� �
( parallel do ) t e s t k e r n e l − a s s e r t i o n f a i l e d : l ine 23�
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Chapter

11

Parallel programming examples

This section contains a number of useful parallel programming examples together with an explanation.

11.1 Gamma correction [basic]

As a first example, we demonstrate how a gamma correction can be programmed in Quasar.� �
x = imread ( ”image . png ”)
y = copy ( x )
gamma = 0.22
parallel do ( size ( y ) ,y ,gamma, kernel ( y : cube 'unchecked , gamma: scalar , pos : ivec3 ) −>

y [ pos ] = 255*(y [ pos ]* ( 1 . 0 / 255 ) ) ˆgamma)
imshow( y )�
The above approach makes use of __kernel__ lambda expressions, which allows to define __kernel__ functions in

just one line of code. Note that it is possible to put multiple statements inside a lambda expression, this is done as

follows:� �
kernel lambda = kernel ( y : cube 'unchecked ) −> ( statement1 ; statement2 ; . . . )�
Sometimes, it is useful to share functionality between different kernel functions. This can be achieved using a

__device__ function:� �
gamma correction = device ( x : scalar ,gamma: scalar ) −>

255*(y * (1 . 0/255) ) ˆgamma
gamma correct ion kerne l = kernel ( y : cube 'unchecked , gamma: scalar , pos : ivec3 ) −>

y [ pos ] = gamma correction (x [ pos ] , gamma)�
Device functions are defined in the same way as kernel functions, but they can not be directly executed using the

parallel_do function.
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11.2 Fractals [basic]

As a second example, we consider the calculation of the Mandelbrot fractal. In Quasar, this can be obtained using

quite simple code, by using complex arithmetic.� �
% Mandelbrot f r a c t a l with Normalized I t e r a t i o n Count a lgor i thm
function [ ] = kernel mande lb ro t f r a c ta l ( im : mat 'unchecked , s : scalar ,

t : cscalar , num it : int , pos : ivec2 )
p = ( f loat ( pos ) . / s ize ( im , 0 . . 1 ) )−0.5
c = t+s *complex (p [ 1 ] , p [ 0 ] )
z = 0 i
N = 2.0
for n=1. . num it

i f abs ( z )>N
break

endif
z = z*z + c

end
im [ pos ] = n−log2 ( log (abs ( z ) ) / log (N) )

end

x = zeros (768 ,768)
parallel do ( size ( x ) ,x , 1 0 , complex (−1.42) ,512 , mande lb ro t f r a c ta l )
imshow(x , [ ] )�
11.3 Image rotation, translation and scaling [basic]

The example below uses a __device__ function to perform linear interpolation. The main kernel function then

performs an affine transform on its position argument, pos. Boundary checking in the function linear_interpolate

is only performed once, using the test min(i) >= 0 && max(i-size(img_in,0..1)) < -1. Alternatively, the

modifier ’unchecked in img_in:cube’unchecked can be omitted, which would give the same result, but this would

result in 4 boundary checks (one for each img_in[...] access) instead of 1.
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� �
function [ ] = r o t a t e s c a l e t r a n s l a t e ( img in , img out , theta , s , tx , ty )

% Device func t i on f o r per forming l i n e a r i n t e r p o l a t i o n
function [ q : vec3 ] = device l i n e a r i n t e r p o l a t e ( img in : cube 'unchecked , p : vec2 )

i = f loor (p)
f = f r a c (p)
i f min( i ) >= 0 && max( i−size ( img in , 0 . . 1 ) ) < −1

q = img in [ i [ 0 ] , i [ 1 ] , 0 . . 2 ] * (1 − f [ 0 ] ) * (1 − f [ 1 ] ) +
img in [ i [ 0 ] , i [ 1 ]+ 1 , 0 . . 2 ] * (1 − f [ 0 ] ) * f [ 1 ] +
img in [ i [ 0 ]+1 , i [ 1 ] , 0 . . 2 ] * f [ 0 ] * (1 − f [ 1 ] ) +
img in [ i [ 0 ]+1 , i [ 1 ]+ 1 , 0 . . 2 ] * f [ 0 ] * f [ 1 ]

else
q = [ 0 . , 0 . , 0 . ]

endif
end

function [ ] = kernel t f k e r n e l ( img out : cube 'unchecked ,
img in : cube 'unchecked , A:mat 'unchecked ' const , t : vec2 , pos : ivec2 )

c ente r = s ize ( img in , 0 . . 1 ) /2
p = pos − cente r
p = [A[ 0 , 0 ] * p [ 0 ] + A[ 0 , 1 ] * p [ 1 ] , A[ 1 , 0 ] * p [ 0 ] + A[ 1 , 1 ] * p [ 1 ] ] + cente r + t
img out [ pos [ 0 ] , pos [ 1 ] , 0 . . 2 ] = l i n e a r i n t e r p o l a t e ( img in , p)

end

deg r e e s t o r ad i an s = theta −> theta *pi /180
theta = deg r e e s t o r ad i an s ( theta )
A = [ [ cos ( theta ) , −sin ( theta ) ] ,

[ sin ( theta ) , cos ( theta ) ] ] * 2ˆ s

parallel do ( size ( img out , 0 . . 1 ) , img out , img in ,A,− [ ty , tx ] , t f k e r n e l )
end�
11.4 2D Haar inplace wavelet transform using lifting [basic]

The following code demonstrates an inplace Haar wavelet transform, implemented using the lifting scheme (but

without normalization). The forward and backward transform respectively use the 2× 2 transform matrices:

A⃗ =

(
1/2 1/2

1 −1

)
and A⃗−1 =

(
1 1/2

1 −1/2

)
.

The main advantages of the Haar wavelet transform in the context of Quasar programs, is that the transform is

very fast (takes less than 2 ms to compute for a 512 × 512 × 3 input image on a NVidia Geforce 435M using the

CUDA computation engine). Moreover, for integer input data within the range [0, 255], this unnormalized transform

does not suffer from floating point rounding errors, hence the reconstruction (backward transform applied after the

forward transform) is exact.

Forward transform:

© 2016 Ghent University / iMinds / Gepura. Technology patented by WO patent 2015150342. 111



11.4. 2D HAAR INPLACE WAVELET TRANSFORM USING LIFTING [BASIC]CHAPTER 11. PARALLEL PROGRAMMING EXAMPLES

� �
function [ ] = haar fw (x , num scales )

function [ ] = kernel hor haa r fw ke rne l ( x : cube 'unchecked ,
y : cube 'unchecked , j : int , pos : ivec3 )

n = size (x , 1 ) /2ˆ( j +1)
i f mod( pos [ 1 ] , 2 )==0

[ a , b ] = [ x [ pos ] , x [ pos + [ 0 , 1 , 0 ] ] ]
y [ pos [ 0 ] , pos [ 1 ] / 2 , pos [ 2 ] ]=0 . 5 * ( a+b)
y [ pos [ 0 ] , pos [1 ]/2+n , pos [ 2 ] ]= a−b

endif
end
function [ ] = kernel ve r haa r fw ke rne l ( x : cube 'unchecked ,

y : cube 'unchecked , j : int , pos : ivec3 )
m = size (x , 0 ) /2ˆ( j +1)
i f mod( pos [ 0 ] , 2 )==0

[ a , b ] = [ x [ pos ] , x [ pos + [ 1 , 0 , 0 ] ] ]
y [ pos [ 0 ] / 2 , pos [ 1 ] , pos [ 2 ] ]=0 . 5 * ( a+b)
y [ pos [0 ]/2+m, pos [ 1 ] , pos [ 2 ] ]= a−b

endif
end

tmp = zeros ( size ( x ) )
for j =0. . num scales−1

sz = [ size (x , 0 ) /2ˆ j , size (x , 1 ) /2ˆ j , size (x , 2 ) ]
parallel do ( sz , x , tmp , j , ho r haa r fw ke rne l )
parallel do ( sz , tmp , x , j , v e r haa r fw ke rne l )

end
end�
Backward transform:� �
function [ ] = haar bw (x , num scales )

function [ ] = kernel hor haar bw kerne l ( x : cube 'unchecked ,
y : cube 'unchecked , j : int , pos : ivec3 )

n = size (x , 1 ) /2ˆ( j +1)
i f mod( pos [ 1 ] , 2 )==0

a = x [ pos [ 0 ] , pos [ 1 ] / 2 , pos [ 2 ] ]
b = x [ pos [ 0 ] , pos [1 ]/2+n , pos [ 2 ] ]
y [ pos ]=a+0.5*b
y [ pos +[0 ,1 ,0 ] ]=a−0.5*b

endif
end
function [ ] = kernel ver haar bw kerne l ( x : cube 'unchecked ,

y : cube 'unchecked , j : int , pos : ivec3 )
m = size (x , 0 ) /2ˆ( j +1)
i f mod( pos [ 0 ] , 2 )==0

a = x [ pos [ 0 ] / 2 , pos [ 1 ] , pos [ 2 ] ]
b = x [ pos [0 ]/2+m, pos [ 1 ] , pos [ 2 ] ]
y [ pos ]=a+0.5*b
y [ pos +[1 ,0 ,0 ] ]=a−0.5*b

endif
end

tmp = zeros ( size ( x ) )
for j=num scales −1. .−1. .0

sz = [ size (x , 0 ) /2ˆ j , size (x , 1 ) /2ˆ j , size (x , 2 ) ]
parallel do ( sz , x , tmp , j , hor haar bw kerne l )
parallel do ( sz , tmp , x , j , ve r haar bw kerne l )

end
end�
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11.5 Convolution [advanced]

As a fifth example, we will illustrate how a 3 × 3 local means filter can be implemented. There are different

possibilities: 1) using a non-separable filtering, 2) using separable filtering (but requiring extra memory to store the

intermediate values), or 3) using shared memory (see section 2.4.4).

1. Non-separable implementation� �
x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
parallel do ( s ize ( y ) ,x , y , kernel ( x : cube , y : cube , pos : ivec3 ) −>

y [ pos ] = (x [ pos+[−1 ,−1 ,0]]+x [ pos+[−1 ,0 ,0]]+x [ pos +[−1 ,1 ,0 ] ] +
x [ pos+[ 0 ,−1 ,0]]+x [ pos ]+x [ pos + [ 0 , 1 , 0 ] ] +
x [ pos+[ 1 ,−1 ,0]]+x [ pos+[ 1 ,0 ,0 ] ]+ x [ pos + [ 1 , 1 , 0 ] ] ) * ( 1 . 0/9 ) )

imshow( y )�
2. Separable implementation:� �

x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
tmp = zeros ( s ize ( x ) )
parallel do ( s ize ( y ) ,x , tmp , kernel ( x : cube , y : cube , pos : ivec3 ) −>

y [ pos ] = x [ pos+[−1 ,0 ,0]]+x [ pos ]+x [ pos + [ 1 , 0 , 0 ] ] )
parallel do ( s ize ( x ) , tmp , y , kernel ( x : cube , y : cube , pos : ivec3 ) −>

y [ pos ] = x [ pos+[0 ,−1 ,0]]+x [ pos ]+x [ pos + [ 0 , 1 , 0 ] ]* ( 1 . 0 / 9 ) )
imshow( x )�

3. Separable implementation, using shared memory:� �
function [ ] = kernel f i l t e r 3 x 3 k e r n e l s e p a r a b l e ( x : cube , y : cube , pos : ivec3 ,

b lkpos : ivec3 , blkdim : ivec3 )
[M,N,P] = blkdim +[2 ,0 ,0 ]
assert (M<=10 && N<=16 && P<=3) % sp e c i f y upper bounds f o r the amount o f shared memory
va l s = shared (M, N, P) % shared memory

sum = 0 .
for i=pos [ 1 ] −1 . . pos [1 ]+1 % step 1 − ho r i z on t a l f i l t e r

sum += x [ pos [ 0 ] , i , b lkpos [ 2 ] ]
end
va l s [ b lkpos ] = sum % sto r e the r e s u l t
i f blkpos [0]<2 % f i l t e r two extra rows ( needed f o r v e r t i c a l f i l t e r i n g )

sum = 0 .
for i=pos [ 1 ] −1 . . pos [1 ]+1

sum += x [ pos [0 ]+ blkdim [ 0 ] , i , b lkpos [ 2 ] ]
end
va l s [ b lkpos+[blkdim [ 0 ] , 0 , 0 ] ] = sum

endif
syncthreads
sum = 0 .
for i=blkpos [ 0 ] . . b lkpos [0 ]+2 % step 2 − v e r t i c a l f i l t e r

sum += va l s [ i , b lkpos [ 1 ] , b lkpos [ 2 ] ]
end
y [ pos ] = sum* ( 1 . 0/9 )

end
x = imread ( ”image . png ”)
y = zeros ( s ize ( x ) )
parallel do ( s ize ( y ) ,x , y , f i l t e r 3 x 3 k e r n e l s e p a r a b l e )
imshow( y )�
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Comparison of the computation times:

Implementation Time/run (NVidia Geforce 435M)

Non-separable 3.70 msec

Separable 4.24 msec

Separable, w. shared memory 3.51 msec

It can be noted that a separable implementation for a 3× 3 filter kernel, only brings a benefit when shared memory

is used.

Remarks:

� The out of bounds checking compilation (see section 13.2) option needs to be turned off in order to have this

benefit.

� Also important is that the upper bounds for using shared memory are specified. This can be done using the

assertion system. The compiler is then able to compute the maximal amount of shared memory that will be

needed by the kernel function (see section 9.6).

11.6 Parallel sum [advanced]

Note that the Quasar compiler will generate automatically code that performs a parallel sum (see sec-

tion §8.4). This section is mainly for educational purposes, for understanding the shared memory

and thread synchronization.

A parallel sum can be implemented in Quasar using a logarithmic algoritm of complexity log2 N . This consists of

first computing “partial” sums of groups of elements, stored in shared memory, followed by recursively adding of the

shared memory partial sums. A lot of information on this kind of algorithm can be found in literature. In Quasar,

the implementation for vectors is as follows:
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� �
function [ y : scalar ] = kernel my sum(x : vec 'unchecked ,

b lkpos : int , blkdim : int )

b ins = shared ( blkdim ) % Note − we assume that blkdim i s a power o f two !
nblocks = (numel( x )+blkdim−1)/blkdim
% step 1 − p a r a l l e l sum
val = 0 .0
for m=0. . nblocks−1

i f blkpos + m*blkdim < numel( x )
va l += x [ blkpos + m*blkdim ]

endif
end
bins [ b lkpos ] = va l
% step 2 − r educt ion
syncthreads
b i t = 1
while b i t < blkdim

i f mod( blkpos , b i t *2) == 0 && blkpos+bit<blkdim
bins [ b lkpos ] += bins [ b lkpos + b i t ]

endif
syncthreads
b i t *= 2

end
% wr i t e output
i f blkpos == 0

y = bins [ 0 ]
endif

end�

In

step 1, the input is split in a number of blocks, where each block has size “blockdim”. Then all blocks are summed

in parallel, the results are stored in “bins” (has one entry per block element). In step 2, all elements of bins are

added together, using an FFT-like butterfly. When blkdim = 16, the algorithm is as follows:� �
% i t e r a t i o n 1 ( subsequent s t ep s are performed in p a r a l l e l )
b ins [ 0 ] += bins [ 1 ]
b ins [ 2 ] += bins [ 3 ]
b ins [ 4 ] += bins [ 5 ]
b ins [ 6 ] += bins [ 7 ]
b ins [ 8 ] += bins [ 9 ]
b ins [ 1 0 ] += bins [ 1 1 ]
b ins [ 1 2 ] += bins [ 1 3 ]
b ins [ 1 4 ] += bins [ 1 5 ]
syncthreads
% i t e r a t i o n 2 ( subsequent s t ep s are performed in p a r a l l e l )
b ins [ 0 ] += bins [ 2 ]
b ins [ 4 ] += bins [ 6 ]
b ins [ 8 ] += bins [ 1 0 ]
b ins [ 1 2 ] += bins [ 1 4 ]
% i t e r a t i o n 3
b ins [ 0 ] += bins [ 4 ]
b ins [ 8 ] += bins [ 1 2 ]
% i t e r a t i o n 4
b ins [ 0 ] += bins [ 8 ]�
Finally, the end result (bins[0]) is stored in the kernel output argument y (see section 4.5.3).

The above example can be used to write a more generic parallel reduction, that can be used for multiplication,

maximization, minimization:
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� �
type accumulator : [ device ( scalar , scalar ) −> scalar ]
function y : scalar = kernel p a r a l l e l r e d u c t i o n (x : vec 'unchecked ,

acc : accumulator , va l : scalar , b lkpos : int , blkdim : int )
b ins = shared ( blkdim ) % Note − we assume that blkdim i s a power o f two !
nblocks = (numel( x )+blkdim−1)/blkdim )
for m=0. . nblocks−1 % step 1 − p a r a l l e l sum

i f blkpos + m*blkdim < numel( x )
va l = acc ( val , x [ b lkpos + m*blkdim ] )

endif
end
bins [ b lkpos ] = va l
syncthreads % step 2 − r educt ion
b i t = 1
while b i t < blkdim

i f mod( blkpos , b i t *2) == 0
bins [ b lkpos ] = acc ( b ins [ b lkpos ] , b ins [ b lkpos + b i t ] )

endif
syncthreads
b i t *= 2

end
y = bins [ 0 ] % wr i t e output

end
device sum = device ( x : scalar , y : scalar ) −> x + y
dev i ce prod = device ( x : scalar , y : scalar ) −> x * y
reduction ( x : cube ) −> sum( x ) = parallel do (512 , x , device sum , 0 , p a r a l l e l r e d u c t i o n )
reduction ( x : cube ) −> prod ( x ) = parallel do (512 , x , dev ice prod , 0 , p a r a l l e l r e d u c t i o n )�
Here, we define the accumulation functions (device_sum and device_prod), and we pass the functions dynamically

to the parallel_reduction function.

Note that the Quasar compiler is also able to recognize for-loops that could benefit from the parallel reduction

algorithm. In this case, the for-loop is automatically transformed to the above algorithm (see section §8.4).

11.7 A more accurate parallel sum [advanced]

As mentioned in section 2.2.1, floating point math is not associative, and the order of the summations may depend

on the GPU architecture (the used block dimensions, etc.). The code below illustrates a more accurate parallel

summation algorithm than in the previous section, combining Kahan’s algorithm, with the parallel sum reduction

reduction. The main idea of Kahan’s algorithm, is to accumulate small errors in a separate variable. Because the

operations do not require any extra global or shared memory, all operations are performed in local memory (see

section 2.4.3), yielding minimal overhead compared to the direct algorithm.
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� �
% Sum of a l l e lements in the s p e c i f i e d cube .
function y : scalar = r sum (x : cube ) concea led

function [ ] = kernel r sum kerne l ( x : vec , y : vec ,
nb locks : int , blkdim : int , b lkpos : int )

s = shared ( blkdim )
% step 1 − p a r a l l e l sum
sum = 0.0
c = 0 .0
for n=0. . nblocks−1

i f blkpos + n * blkdim < numel( x )
% Kahan ' s sum reduct ion
u = x [ blkpos + n * blkdim ] − c
t = sum + u
c = ( t − sum) − u
sum = t

endif
end
s [ b lkpos ] = sum
% step 2 − r educt ion
syncthreads

% now so r t a l l b ins from l a r g e to smal l magnitudes
b i t = 1
% use r e gu l a r summing
while bit<blkdim

i f and ( blkpos , 2* bit −1) == 0 && blkpos+bit<blkdim
t = s [ blkpos ] + s [ b lkpos+b i t ]
s [ b lkpos ] = t
syncthreads

endif
b i t *= 2

end
i f blkpos==0

y [ 0 ] = s [ 0 ]
endif

end
y = r agg r ega to r (x , r sum kerne l )

end

% Aggregator he lpe r func t i on ( dea l s with the computation
% of the block s i z e s )
function z = r agg r ega to r (x , k e rne l ) concea led

N = numel( x )
BLOCK SIZE = prod ( max b lock s i ze ( kerne l , N) )
nblocks = int ( (N + BLOCK SIZE−1) / BLOCK SIZE)
i f iscomplex ( x )

y = complex (uninit (1 ) )
else

y = uninit (1 )
endif
parallel do ( [ [ 1 , BLOCK SIZE ] , [ 1 ,BLOCK SIZE ] ] , x , y , nblocks , k e rne l )
z = y [ 0 ]

end

% Def ine a reduct ion to r ep l a c e the summing func t i on by our
% ”improved ” implementation .
reduction ( x : cube ) −> sum( x ) = r sum (x )�
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11.8 Parallel sort [advanced]

To implement a parallel sorting algorithm, several algorithms exist. For the bitonic sort algorithm, the Quasar

implementation is as follows:� �
function [ ] = sort ( x )

function [ ] = kernel b i t s o r t ( x : mat , n : int , blkdim : ivec2 ,
b lkpos : ivec2 , pos : ivec2 )
k = 2
% copy the row to the shared memory . . .
s = shared ( blkdim [ 0 ] , n )
for l = 0 . . blkdim [ 1 ] . . n−1

t i d = blkpos [ 1 ] + l
i f t i d < s ize (x , 1 )

s [ b lkpos [ 0 ] , t i d ] = x [ pos [ 0 ] , t i d ]
else

s [ b lkpos [ 0 ] , t i d ] = 1e37 % maximum f l o a t i n g po int value
endif

end
syncthreads

% pa r a l l e l b i t o n i c s o r t
while k <= n

% b i t on i c merge
j = int ( k / 2)
while j > 0

for l = 0 . . blkdim [ 1 ] . . n−1
t i d = blkpos [ 1 ] + l % thread id
i x j = xor ( t id , j )
i f t i d < i x j

i f and ( t id , k ) == 0
v = [ blkpos [ 0 ] , t i d ]
w = [ blkpos [ 0 ] , i x j ]

else
v = [ blkpos [ 0 ] , i x j ]
w = [ blkpos [ 0 ] , t i d ]

endif
i f s [ v ] > s [w]

[ s [ v ] , s [w ] ] = [ s [w] , s [ v ] ]
endif

endif
end
syncthreads
j /= 2

end
k *= 2

end

% Copy back the r e s u l t s
for l = 0 . . blkdim [ 1 ] . . n−1

t i d = blkpos [ 1 ] + l
i f t i d < s ize (x , 1 )

x [ pos [ 0 ] , t i d ] = s [ b lkpos [ 0 ] , t i d ]
endif

end
end

nextpow2 = x −> 2ˆ ce i l ( log2 ( x ) )
n = nextpow2( s ize (x , 1 ) )
sz = max block s i ze ( b i t s o r t , [ size (x , 0 ) ,min(n , 256 ) , 1 ] )
parallel do ( [ [ size (x , 0 ) , sz [ 1 ] , 1 ] , s z ] , x , n , b i t s o r t )

end�
A complete explanation of the bitonic sort algorithm can be found on http://en.wikipedia.org/wiki/Bitonic_
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sorter. Here, bitonic sorting is applied along the rows of the matrix.

The function handles input sizes that are not a multiple of two.

11.9 Matrix multiplication [advanced]

Matrix multiplication in CUDA is so much fun that some people write books on this topic (see http://www.shodor.

org/media/content//petascale/materials/UPModules/matrixMultiplication/moduleDocument.pdf). The fol-

lowing is the block-based solution proposed by NVidia. The solution exploits shared memory to reduce the number

of accesses to global memory.� �
g l o b a l void MatMulKernel (Matrix A, Matrix B, Matrix C)

{
// Block row and column
int blockRow = blockIdx . y , blockCol = blockIdx . x ;
// Each thread block computes one sub−matrix Csub o f C
Matrix Csub = GetSubMatrix (C, blockRow , blockCol ) ;
// Each thread computes 1 element o f Csub accumulating r e s u l t s i n to Cvalue
f loat Cvalue = 0 . 0 ;
// Thread row and column with in Csub
int row = threadIdx . y , col = threadIdx . x ;
// Loop over a l l the sub−matr i ce s o f A and B requ i r ed to compute Csub
for ( int m = 0 ; m < (A. width / BLOCK SIZE) ; ++m)
{

// Get sub−matr i ce s Asub o f A and Bsub o f B
Matrix Asub = GetSubMatrix (A, blockRow , m) ;
Matrix Bsub = GetSubMatrix (B, m, blockCol ) ;
// Shared memory used to s t o r e Asub and Bsub r e s p e c t i v e l y

sha r ed f loat As [BLOCK SIZE ] [ BLOCK SIZE ] ;
s ha r ed f loat Bs [BLOCK SIZE ] [ BLOCK SIZE ] ;

// Load Asub and Bsub from dev i ce memory to shared memory
// Each thread loads one element o f each sub−matrix
As [row ] [ col ] = GetElement (Asub , row , col ) ;
Bs [row ] [ col ] = GetElement (Bsub , row , col ) ;

sync th r eads ( ) ;
// Mult ip ly Asub and Bsub toge the r
for ( int e = 0 ; e < BLOCK SIZE ; ++e )
Cvalue += As [row ] [ e ] * Bs [ e ] [ col ] ;

s ync th r eads ( ) ;
}
// Each thread wr i t e s one element o f Csub to memory
SetElement (Csub , row , col , Cvalue ) ;

}�
(Note: some functions are omitted for clarity)

However, this implementation is only efficient when the number of rows of matrix A is about the same as the number

of cols of A. In other cases, performance is not optimal. Second, there is the issue that this version expects that

the matrix dimensions are a multiple of BLOCK_SIZE. Why use a 3x3 matrix if we can have a 16x16?

In fact, there are 3 cases that need to be considered (let n < N):

1. (n×N) × (N × n): The resulting matrix is small: in this case, it is best to use the parallel sum algorithm.

2. (N × N) × (N × N): The number of rows/cols of A are more or less equal: use the above block-based

algorithm.

3. (N × n) × (n×N): The resulting matrix is large: it is not beneficial to use shared memory.

The following example illustrates this approach in Quasar:
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� �
% Dense matrix mu l t i p l i c a t i o n − v2 . 0
function C = dense mul t ip ly (A : mat , B : mat)

% Algorithm 1 − i s we l l s u i t ed f o r c a l c u l a t i n g products o f
% l a r g e matr i ce s that have a smal l matrix as end r e s u l t .
function [ ] = kernel ke rne l 1 ( a : mat 'unchecked , b : mat 'unchecked , c : mat '

unchecked ,
blkdim : ivec3 , b lkpos : ivec3 )

n = size ( a , 1 )
b ins = shared ( blkdim )
nblocks = int ( ce i l (n/blkdim [ 0 ] ) )

% step 1 − p a r a l l e l sum
val = 0 .0
for m=0. . nblocks−1

i f blkpos [ 0 ] + m*blkdim [ 0 ] < n % Note − omitt ing [ 0 ] g i v e s e r r o r
d = blkpos [ 0 ] + m*blkdim [ 0 ]
va l += a [ blkpos [ 1 ] , d ] * b [ d , blkpos [ 2 ] ]

endif
end
bins [ b lkpos ] = va l

% step 2 − r educt ion
syncthreads
b i t = 1
while b i t < blkdim [ 0 ]

i f mod( blkpos [ 0 ] , b i t *2) == 0
bins [ b lkpos ] += bins [ b lkpos + [ bit , 0 , 0 ] ]

endif
syncthreads
b i t *= 2

end

% wr i t e output
i f blkpos [ 0 ] == 0

c [ blkpos [ 1 ] , b lkpos [ 2 ] ] = bins [ 0 , b lkpos [ 1 ] , b lkpos [ 2 ] ]
endif

end

% Algorithm 2 − the block−based algor ithm , as de s c r ibed in the CUDA manual
function [ ] = kernel ke rne l 2 (A : mat 'unchecked , B : mat 'unchecked , C : mat '

unchecked ,
BLOCK SIZE : int , pos : ivec2 , b lkpos : ivec2 , blkdim : ivec2 )
% A[ pos [ 0 ] ,m] * B[m, pos [ 1 ] ]

sA = shared ( blkdim [ 0 ] , BLOCK SIZE)
sB = shared (BLOCK SIZE, blkdim [ 1 ] )

sum = 0.0
for m = 0 . . BLOCK SIZE . . s ize (A, 1 )−1

% Copy submatrix
for n = blkpos [ 1 ] . . blkdim [ 1 ] . . BLOCK SIZE−1

sA [ blkpos [ 0 ] , n ] = pos [ 0 ] < s ize (A, 0 ) && m+n < s ize (A, 1 ) ? A[ pos [ 0 ] ,m+n ] :
0 . 0

end
for n = blkpos [ 0 ] . . blkdim [ 0 ] . . BLOCK SIZE−1

sB [ n , blkpos [ 1 ] ] = m+n < size (B, 0 ) && pos [ 1 ] < s ize (B, 1 ) ? B[m+n , pos [ 1 ] ] :
0 . 0

end
syncthreads
% Compute the product o f the two submatr ices
for n = 0 . . BLOCK SIZE−1

sum += sA [ blkpos [ 0 ] , n ] * sB [ n , blkpos [ 1 ] ]
end
syncthreads

end
i f pos [ 0 ] < size (C, 0 ) && pos [ 1 ] < size (C, 1 )

C[ pos ] = sum % Write the r e s u l t
endif

end

% Algorithm 3 − the most s t r a i gh t f o rwa rd algor i thm
function [ ] = kernel ke rne l 3 (A : mat 'unchecked , B : mat 'unchecked , C : mat '

unchecked ,
pos : ivec2 )
sum = 0.0
for m=0. . s ize (A, 1 )−1

sum += A[ pos [ 0 ] ,m]*B[m, pos [ 1 ] ]
end
C[ pos ] = sum

end

[M,N] = [ s ize (A, 0 ) , s ize (B, 1 ) ]
C = zeros (M,N)
i f M <= 4

P = prevpow2 ( max block s i ze ( kerne l1 , [ s ize (A, 1 ) ,M*N] ) [ 0 ] )
parallel do ( [P,M,N] ,A,B,C, ke rne l 1 )

e l s e i f s ize (A, 1 )>=8 && M >= 8
P = min(32 , prevpow2 ( s ize (A, 1 ) ) )
b l k s i z e = max block s i ze ( kerne l2 , [ 3 2 , 3 2 ] )
sz = ce i l ( size (C, 0 . . 1 ) . / b l k s i z e ) .* b l k s i z e
parallel do ( [ sz , b l k s i z e ] ,A,B,C,P, ke rne l 2 )

else
parallel do ( size (C) ,A,B,C, ke rne l 3 )

endif
end�
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Chapter

12

Built-in function quick reference

Some built-in functions are listed in table 12.1. More runtime library functions are given in table 12.2. For a

detailed explanation of the functions, we refer to the Documentation Browser (F1 in Redshift).
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Table 12.1: Built-in functions (most functions are self-explanatory). Functions with asterisk (*) are accessible from
__kernel__ and __device__ functions.

abs (*) absolute value/modulus sum (*) sum of the elements
acos (*) cumsum cumulative sum
atan (*) prod product of the elements
atan2 (*) cumprod cumulative product
ceil (*) mean
round (*) linspace
cos (*) lerp (*) linear interpolation
sin (*) dotprod (*) vector dot product
exp (*) zeros (*)
exp2 (*) power of two ones (*)
floor (*) rand uniformly distributed
mod (*) modulo randn normal distributed
frac (*) fractional part cell cell matrix
log (*) eye identity matrix
log2 (*) logarithm base 2 size (*) dimensions of object
log10 (*) logarithm base 10 numel (*) number of elements =prod(size(x))
max (*) complex (*) complex value
min (*) real (*) real part
saturate (*) clamps to [0,1] imag (*) imaginary part
sign (*) sign of the number float (*) conversion to float (kernel function)
sqrt (*) int (*) take integer part
tan (*) isnan (*) value is NaN (not a number)
angle (*) angle of a complex number isinf (*) value is infinite
transpose matrix transpose isfinite (*) value is finite
herm transpose Hermitian transpose maxvalue (*) maximum value for the specified type
conj (*) conjugate minvalue (*) minimum value for the specified type
copy performs a shallow copy repmat repeat matrix
deepcopy performs a deep copy reshape reshape matrix
squeeze removes singleton dimensions shuffledims swaps dimensions
fft1 / ifft1 1-dimensional (I)FFT type returns data type of object
fft2 / ifft2 2-dimensional (I)FFT object creates an empty structure
fft3 / ifft3 3-dimensional (I)FFT sprintf build a C-style format string
shared (*) allocation of shared mem. printf print a C-style format string
shared zeros (*) shared mem with zero init. strcat string concatenation
and (*) bitwise AND sscanf parses using a C-style format string
or (*) bitwise OR factorial the factorial function
xor (*) bitwise XOR inv matrix inverse
shl (*) bitwise left shift svd singular value decomposition
shr (*) bitwise right shift serial do serial execution
not (*) bitwise inversion parallel do parallel execution
mirror ext (*) mirroring extension max block size see section 2.4.4
periodize (*) periodic extension assert runtime assertion
tounicode converts vec to a UNICODE string schedule manual run-time scheduling function
toascii converts vec to an ASCII string mat2cell converts from matrix to cell matrix
fromunicode converts UNICODE string to vec cell2mat converts from cell matrix to matrix
fromascii converts ASCII string to vec

ind2pos converts linear index to n-D coords
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imread reads an image img=imread("filename.png")

imwrite writes an image imwrite("filename.png", data)

imwrite("filename.png", data, [minval,maxval])

imshow shows an image imshow(img)

imshow(img, [minval,maxval])

eval Quasar expression evaluation y=eval("x->2*cos(x)")

save Save variables to file save("out.dat",A,B,C)

load Load variables from file [A,B,C]=load("out.dat")

dir Lists files in a directory files=dir("/home/*.png")

tic start timer tic()

toc stop timer and print elapsed time toc()

fopen opens file for reading/writing f=fopen("out.dat","wb")

fread reads from a file data=fread(f,[24,8],"float32")

fwrite writes to a file fwrite(f,data,"float32")

fclose closes a file fclose(f)

fgets reads one line in text modus from a file y=fgets(f)

plot generates a plot plot(x,y)

title set title of the plot title("text")

xlim sets ranges for the x-axis xlim([0, 10])

ylim sets ranges for the y-axis ylim([-pi, pi])

xlabel sets the x-axis label xlabel("x")

ylabel sets the y-axis label ylabel("y")

legend displays a legend legend("serie 1", "serie 2")

disp display a matrix disp(A)

print print text to the console print A,...

error generate an error error A,...

pause pauses program execution for n msec. pause(0.5)

Table 12.2: Runtime library functions.
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Chapter

13

The Quasar compiler/optimizer

The Quasar compiler/optimizer often significantly improves the computation time of Quasar programs. Different

strategies are employed:

1. Constant folding : when programs contain constant expressions such as (pi*4)/3-4/5, some performance gain

can be obtained by computing the result during compile-time. In Quasar, the constant folding optimization

technique is implemented as follows:

� First, the meta-function $eval(...) performs compile-time evaluation of its input arguments. For

example, $eval((pi*4)/3-4/5) results in a constant 3.388790204786.

� Then, constant propagation of scalar values is by the following reductions:� �
reduction x : scalar ' const −> −x = $eva l (−x )
reduction ( x : scalar ' const , y : scalar ' const ) −> x+y = $eva l ( x+y)
reduction ( x : scalar ' const , y : scalar ' const ) −> x−y = $eva l (x−y )
reduction ( x : scalar ' const , y : scalar ' const ) −> x*y = $eva l ( x*y )
reduction ( x : scalar ' const , y : scalar ' const ) −> x/y = $eva l ( x/y )
reduction ( x : scalar ' const , y : scalar ' const ) −> xˆy = $eva l ( xˆy )�
Here, the modifier ’const expresses that the corresponding variable has a constant (and known value).

2. Type inference: this allows the compiler to determine the types of the variables used in a Quasar. Corre-

spondingly, the compiler can generate more optimal code for the given input variables (e.g. using specialized

reductions). The following example demonstrates how the type inference works:� �
A = ones ( 1 , 3 , 4 ) % A i s o f type 'mat '
sz = size (A) % sz i s o f type ' ivec3 ' , with sz [0]==1 , sz [ 1 ] !=1 , sz [ 2 ] !=1
B = randn( sz ) % B i s o f type 'mat ' , with s i z e ”1 , ? , ? ”
f = x −> 2*x % f i s o f type ' [??−>??] '
g = x : scalar −> 2*x % f i s o f type ' [ s c a l a r−>s c a l a r ] '
C = f (B) % C i s o f type 'mat ' with s i z e ”1 , ? , ? ”
D = g (B) % compi le r e r ror , B has type 'mat ' and not ' s ca l a r ' !�
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3. Reductions of expressions: details on reductions can be found in section 4.7. Reductions can be used to

significantly improve the computational performance of certain algorithms. For example, using the complex-

to-real (C2R) 2D-iFFT:� �
reduction ( x ) −> real ( i f f t 2 ( x ) ) = i r e a l f f t 2 ( x )�
a speed-up of approximately a factor 2 is obtained compared to the unoptimized version. There are a number

options to configure the reductions in Quasar:

� Reductions can be temporarily disabled or enabled using the following #pragma:� �
#pragma r educ t i on s ( on | o f f )�

� By default, the Quasar compiler reports when a specific reduction is being used. This can be toggled

on/off:� �
#pragma show reduct ions ( on | o f f )�

� These settings can also be modified on a global level, using the config settings COMPILER_PERFORM_REDUCTIONS

and COMPILER_SHOW_REDUCTIONS (see table 13.1).

4. Expression optimization: operations on large matrices are grouped and automatically converted into a kernel

function (see section §8.1). For example:� �
x = randn (512 ,512 ,64)
y = 0 .1 + (0 . 8 * 255 * sin ( x/255) ) + 10 * w�
The expression optimization can be configured using the following pragma:� �
#pragma exp r e s s i on op t im i z e r ( on | o f f )�
Alternatively, this setting can also be changed on a global level, using the config settings COMPILER_EXPRESSION_OPTIMIZER

(see table 13.1).

5. Automatic loop parallelization (ALP): a general overview of the automatic loop parallelizer can be found in

section 2.3. Some implementation details of this technique will be discussed in the next section.

13.1 Automatic loop parallelization (ALP)

The ALP attempts to parallelize for-loops in Quasar programs, starting the outside loops. The ALP program

automatically recognizes one, two and three dimenional for-loops, and also maximizes the dimensionality of the

loops subject to parallelization. There are however a number of restrictions to the Quasar code:
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� The types of all variables must be known (either explicitly as function argument types, or through type

inference, see section 2.2).

� For slicing operations A[a..b,2], the dimensions a and b must be constant and known at compile time (either

specified explicitly, or obtained through constant propagation).

� Currently, user functions and lambda expressions are not supported. This may change in a future version of

Quasar.

� Only a limited number of built-in functions are allowed. These are the functions that are also accessible from

within __kernel__ functions (see table 12.1).

� Only types that can be used inside __kernel__ or __device__ functions are allowed.

� Data dependencies/conflicts between different iterations are detected and not allowed.

� Advanced kernel function features such as shared memory and thread synchronization (see section 2.4.4) are

currently not supported.

In case one of these conditions are violated, a warning message is generated (see section 13.1.1), and the code is not

parallelized (often resulting in a much slower sequential program).

The ALP can be configured using the pragmas (see section 13.2):� �
#pragma l o o p p a r a l l e l i z e r ( on | o f f )
#pragma f o r c e p a r a l l e l�
and the global configuration setting COMPILER_AUTO_FORLOOP_PARALLELIZATION (see table 13.1).

13.1.1 Auto-parallelization warning messages

In case the auto-parallelization does not succeed, warning messages are outputted, to help fixing the problem.

Different messages are listed and discussed below:

1. Operator ’:’ can not be parallelized. Consider using [a..b] instead

Without dynamic kernel memory (see section §8.3), matrix expressions such as A[:,2], B[3,4,:] can not

be parallelized. This is because the size of the result is unknown to the compiler. When the result is a small

vector (of length ≤ 32), the problem can be solved using the sequence syntax, with constant lower and upper

bounds. For example: A[0..4,2], B[3,4,0..2].

2. Parallelization of the sequence a..b not possible: all operands should be constant!

Without dynamic kernel memory (see section §8.3), the compiler needs to know the size of the sequence,

therefore, a and b should be constants. See point 1.

3. Function zeros requires exactly one constant argument for parallelization!

Without dynamic kernel memory (see section §8.3), the function zeros (or uninit, ones) can only be used

to allocate vectors of a fixed length. Note that the memory can still be allocated outside the loop and used

inside the loop, which does not have this restriction. However, small vectors of fixed length ≤ 32, can be

allocated in local device memory. Hence zeros(8) allocates a vector of length 8 in parallel.
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4. Parallelization of ’xxx’ not possible: need to know the size of the result of type ’yyy’

The compiler needs to know the types and sizes of the variables. Here, the size of one of the variables is not

known.

5. Parallelization not possible due to the type of the variable

The variable type is either not supported or not known. Currently supported types for automatic paralleliza-

tion are: int, scalar, cscalar, ivecx, vecx, cvecx, vec, mat, cube, cvec, cmat, ccube.

6. Maximum vector length (32) for local memory is exceeded!

On GPU devices, local memory is very scarse (see section 2.4.3). Hence there is a limit on the maximum

length of vectors.

7. Operations involving strings can currently not be parallelized!

At present, there is no support for processing string operations in parallel.

8. Function call can not be parallelized!

Host function calls inside parallel for-loops are currently not supported, for the simple reason that the compiler

does not know yet how to handle them. There are a couple of exceptions: most of the built-in functions listed

in table 12.1 can still be used. The solution is often to turn the called function into a __device__ function.

9. Statement (print etc.) can not be parallelized. Consider placing this outside the loop.

It is not possible to parallelize prints, the computation engine (e.g. CUDA) does not support this.

10. Operations involving objects can currently not be parallelized!

There is no support yet for manipulation of objects inside parallel for loops.

11. Construction of cell arrays can not be parallelized!

Without dynamic kernel memory (see section §8.3), there is no support yet for cell arrays inside parallel for

loops.

12. Possible data dependency detected for variable ’xxx’!

In case of a detected data dependency (e.g. read after write, write after read, or write after write), the compiler

prints this message and refuses to perform the parallelization. The problem can often be solved by creating

auxiliary variables, restructuring the loops, or splitting the loops. Also see section 2.4.4 for a more detailed

explanation on how data races can efficiently be tackled in Quasar.

13.2 Compilation settings

Compilation settings can be configured in the config file Quasar.config.xml. A number of global settings are listed

in table 13.1. Some of the global settings can also be modified in the program, using the #pragma directive. The

following pragmas are available:

#pragma loop_parallelizer (on|off) Turns off/activates the automatic loop parallelizer

#pragma force_parallel Forces the next for-loop to be parallelized.

#pragma force_serial Forces the next for-loop to be serialized.

#pragma reductions (on|off) Turns off/enables reductions defined using the

reduction keyword

#pragma show_reductions (on|off) Enables/disables messages when reductions are applied.

#pragma expression_optimizer (on|off) Enables/disables the expression optimizer.
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Table 13.1: Global compilation settings

Setting Value Description

NVCC_PATH path Contains the path of the NVCC compiler shell script

(nvcc_script.bat or nvcc_script.sh)

CC_PATH path Contains the path of the native C/C++ compiler shell script

MODULE_DIR directory ’;’ separated list of directories to search for .q files (when using import)

INTERMEDIATE_DIR directory Intermediate directory to be used for compilation.

If none specified, the directory of the input file is used

COMPILER_PERFORM_REDUCTIONS True/False Enables reductions (reduction keyword)

COMPILER_REDUCTION_SAFETYLEVEL off, safe, strict Compiler safety setting for performing reductions (see section XX)

COMPILER_DISPLAY_REDUCTIONS True/False Displays the reductions that have been performed

COMPILER_DISPLAY_WARNINGS True/False Displays warnings during the compilation process

COMPILER_OUTPUT_OPTIMIZED_FILE True/False If true, the optimized .q file is written to disk (for verification)

COMPILER_EXPRESSION_OPTIMIZER True/False Enables automatic extraction and generation of __kernel__ functions

COMPILER_SHOW_MISSED_OPT_OPPORTUNITIES True/False Displays additional possibilities for optimization

COMPILER_AUTO_FORLOOP_PARALLELIZATION True/False Enables automatic parallelisation of for loops

COMPILER_PERFORM_BOUNDSCHECKS True/False Performs boundary checking of unchecked variables (CPU engine only)

Useful for debugging mistakes in the use of the ’unchecked modifier.

COMPILER_PERFORM_NAN_INF_CHECKS True/False Generates code that automatically checks for NaN or Inf values

(experimental feature)

COMPILER_PERFORM_NAN_CHECKS True/False Generates code that automatically checks for NaN values

(experimental feature)
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