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ABSTRACT
In image denoising applications, noise is often correlated and the
noise energy and correlation structure may even vary with the
position in the image. Existing noise reduction and estimation
methods are usually designed for stationary white Gaussian noise
and generally work less efficient in this case because of the noise
model mismatch. In this paper, we propose an EM algorithm
for the estimation of spatially variant (nonstationary) correlated
image noise in the wavelet domain. In particular, we study additive
white Gaussian noise filtered by a space-variant linear filter. This
general noise model is applicable to a wide variety of practical
situations, including noise in Computed Tomography (CT). Results
demonstrate the effectiveness of the proposed solution and its
robustness to signal structures.

Index Terms— Noise estimation, Image restoration, Correlated
noise

I. INTRODUCTION

Gaussian noise processes are characterized entirely by their
second order statistical moments [1]. On the other hand recent
studies (e.g. [2], [3]) have shown that signal features in the bandpass
and highpass subbands of a given multiresolution representation
are not Gaussian and require the specification of the fourth order
moment, the kurtosis. This property can be exploited to distinguish
signal information from noise and this has succesfully been applied
to the estimation of stationary correlated noise [4]. However, in
practice, we encounter many situations where the noise energy
and correlation structure depends on the position in the image
(nonstationary noise). Even forlocal stationary Gaussian noise
processes, that have properties that change slowly in space, the
estimation is still difficult because only local information can be
used. Therefore it is useful to estimate the noise properties in well
structured bases that approximately diagonalize noise covariance
matrices, such that fewer observations are needed. An example are
the local cosine bases in [1].

In this work, we assume an additive noise process, that is
generated by sending white Gaussian noise through a linear spa-
tially variant filter. We employ a wavelet basis that has similar
”sparsifying” properties as the local cosine bases, but that are better
suited in representing nonstationarysignal features like edges and
textures. Wavelet bases provide a non-uniform partitioning of the
time-frequency plane which allows retrieving information both in
specific frequency bands and at spatial positions. We propose an
Expectation-Maximization (EM) algorithm for the wavelet domain
estimation of the noise covariance function. The estimated noise
properties can be directly plugged in into recent wavelet domain
denoising methods (e.g. [2], [5], [6], [7]). On the other hand,
this allows us to study noise properties in regions where we have
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no signal-free patches, e.g. in medical images. First we treat the
case where the noise Power Spectral Density (PSD) is the same
throughout the image but where the local noise energy is allowed
to vary (we will call this separablespace-varying spectrum, see
further). Next, we study the more general case where the local
PSD is position-dependent (denoted asnonseparable space-varying
spectrum).

The remainder of this paper is as follows: in Section II we
introduce some basic concepts that are used throughout this paper.
In Section III we explain the EM algorithm that is used in the
wavelet domain, for both separable and nonseperable space-varying
noise spectra. Implementation aspects are discussed in Section IV.
Results and a discussion are given in Section V. Finally, Section VI
concludes this paper.

II. BASIC CONCEPTS

II-A. Local stationarity and space-varying spectra
Let Y (t), t ∈ Z

2 be a real-valued zero-mean random process
with covariance function (r ∈ Z

2):

R(t, r) = E {Y (t)Y (t + r)} (1)

If the process isstationarythen the covariance only depends on the
distance between two points and not on their absolute positions:
R(t, r) = R(0, r). Furthermore, we say that a process islocally
stationary, if in the neighbourhood of anyv ∈ Z

2, there exists a
square windowδ(v) of sizel(v), centered at positionv, where the
process can be approximated by a stationary one : fort∈δ(v) and
for |r| ≤ l(v)/2, the covariance is well approximated by [1]

E {Y (t)Y (t + r)} ≈ E {Y (v)Y (v + r)} = R(v, r) (2)

We define the space-varying spectrum (SVS) ofY (t) as the
Discrete Time Fourier transform (DTFT) ofR(v, r) with respect
to r:

S(v, ω) =
X
r∈Z2

R(v, r) exp(−j〈r, ω〉) (3)

where〈·, ·〉 denotes the inner product. For stationary processes, the
SVS reduces to the Power Spectral Density (PSD). We say that the
SVS isseparableif it can be factored asS(v, ω) = S0(v)S1(ω)
with 1

2π

R π

−π
S1(ω)dω = 1. The first componentS0(v) represents

the variance at positionv while the second componentS1(ω)
denotes the normalized Power Spectral Density (PSD).

II-B. Spatially variant filtering of White Noise
A specific class of locally stationary processes is obtained by the

spatially variant filtering of white noise. Letǫ(t) denote a white
Gaussian noise process, thenY (t) is obtained as:

Y (t) =
X
v∈Z2

ǫ(v)K(t, t − v) (4)

with K(t, r) the impulse response of a linear spatially variant filter
with DTFT A(t, ω). The covariance function ofY (t) is then given



by:

R(t, r) = E {Y (t)Y (t + r)}

=
1

2π

Z +π

−π

A⋆(t, ω)A(t + r, ω) exp(j〈ω, r〉)dω (5)

The local stationarity assumption (2) imposes thatA(t, ω) has to
satisfy some smoothness conditions (see [1]). More specifically, if
|〈r, ∂A(t,ω)

∂t
〉| ≪ |A(t, ω)|, for |r| ≤ l(t)/2, we have approxi-

mately: A⋆(t, ω)A(t + r, ω) ≈ |A(t, ω)|2. In practice,R(t, r)
may have many non-zero elements. Therefore, it is useful to use
structural bases that compress the covariance function well. This
has the advantage that spatial variant correlations can be efficiently
estimated from relatively few observations. In this paper, we
use an (overcomplete) undecimated wavelet basis. LetH(s,o)(ω)
denote the frequency response of the cascaded wavelet filters at
scale s and orientationo ∈ {HL, LH, HH}, i.e. H(s,o)(ω) =Qs−1

i=0 H(2i
ω)G(2s

ω), with G(ω) and H(ω) respectively the
scaling and wavelet filters of each decomposition stage, then the
wavelet domain noise covariance function at scales and orientation
o is approximately given by:

R(s,o)(t, r) ≈ 1

2π

Z +π

−π

|H(s,o)(ω)|2|A(t, ω)|2 exp(j〈ω, r〉)dω

This means that in the wavelet domain, based on the local station-
arity assumption, we also have white noise, but now filtered by the
spatially variant filterA(s,o)(t, ω) = H(s,o)(ω)A(t, ω).

III. WAVELET DOMAIN NOISE ESTIMATION
Our goal is to estimate the noise covariance functionR(s,o)(t,v)

in the wavelet domain, in the presence of signal structures. Consider
one wavelet subband(s, o). For additive noise, we have the
following relationship between the noisy wavelet coefficientsy(t),
the noise-free coefficientsx(t) and the white noiseǫ(t) at position
t ∈ B:

y(t) = x(t) + K(t)ǫ(t) (6)

The vectorsx(t), ǫ(t) and y(t) are formed by column-stacking
the wavelet coefficients in local

√
d ×

√
d overlapping windows

centered at positiont. K(t) is a spatially variantd × d matrix
that correlates the noiseǫ(t) ∼ N(0, Id). To distinguish noise
from signal structures, we take prior knowledge about the noise-
free signalx(t) into account. More specifically, we modelx(t)
as a Gaussian Scale Mixture (GSM) [2], [6] with discrete hidden
multiplier z ∈ {z1, z2, ..., zK}: x

d
= z1/2u. Here,

d
= denotes

equality in distribution andu is GaussianN(0,Cu). As a result,
the covariance matrix ofx(t) is given by Cx = E {z}Cu.
With this model, estimatingR(s,o)(t, r) comes down to estimating
K(t)KT (t), for which we can use statistical estimation techniques.
In the following, we denoteαk = P(z = zk), k = 1, ..., K.

III-A. Noise with separable space-varying spectrum
In many denoising applications, the noise covariance matrix is

constant for the whole image, up to a spatially varying scale factor
σ2(t), representing the local noise variance. We have:

K(t)KT (t) = σ2(t)Cǫ (7)

It is clear thatCǫ can be estimated for thewholesubband, taking
advantage of all the information in the whole image, whileσ2(t)
can only be obtainedlocally. Let θ(t) = {Cu,Cǫ, σ

2(t)} ∪
{αk, k = 1, ..., K} denote the model parameters related to position
t. To estimate the total set of model parametersΘ =

S
t∈B

θ(t)
with hidden variablek, the EM algorithm [8] can be used. Unfor-
tunately, finding an exact solution for the noise covariance matrix,
using the classical EM algorithm, has proven to be difficult in

general, even for globally stationary noise [4]. Instead, we note
that y(t) is locally (for t ∈ δ(v)) distributed according to a
finite Gaussian Mixture with zero mean and covariancesCk(v) =
zkCu +σ2(v)Cǫ. We will call this the ”Scale Mixture” constraint.
Our approach then consists in updating the component covariances
Ck(v) such that the ”Scale Mixture” constraint is still satisfied.
Given a set of model parametersΘ(i) at iterationi, we optimize
the new parametersΘ in order to increase the objective function:

Q(Θ(i),Θ) = E

8<:log
Y
v∈B

Y
t∈δ(v)

f(y(t), k|θ(v))
��y,Θ(i)

9=;−

KX
k=1

X
v∈B

λk||Ck(v) − zkCu − σ2(v)Cǫ||2F

with the first term the expected complete-data log-likelihood func-
tion. The second term denotes the ”Scale Mixture” constraint added
to the problem using Lagrangian multipliersλk, k = 1, ..., K.
||A||2F = trace(AAT ) is the matrix Frobenius norm. It can be
shown that the EM update equations are given by:

α̂k =
1

N

X
v∈B

1

l2(v)

X
t∈δ(v)

P(k|y(t), θ(v)), k = 1, ..., K

Ĉk(v) =

P
t∈δ(v) P(k|y(t), θ(v))y(t)yT (t)P

t∈δ(v) P(k|y(t), θ(v))
, k = 1, ..., K�

Ĉu

Ĉǫ

�
=

�
Nµ2 µ1ν1

µ1ν1 ν2

�−1� PK
k=1 α̂kzk

P
v∈B

Ĉk(v)PK
k=1 α̂k

P
v∈B

σ2(v)Ĉk(v)

�
(8)
σ2(v) =

trace
�PK

k=1 α̂kCǫ(Ĉk(v) − Cu)T
�

trace (CǫCT
ǫ )

(9)

with µb =
PK

k=1 α̂kzb
k, b = 1, 2 andνb =

P
v∈B

σ2b(v), b = 1, 2
and withN the number of wavelet coefficients for the considered
wavelet subband. We note that update equations (8) and (9) depend
on each other and must be used alternatingly in subsequent EM
iterations in order to maximize the likelihood. The formulas above
must be iterated until convergence of the likelihood. In this iterative
process, theglobal noise and signal covariance matricesCu, Cǫ

as well as thelocal varianceσ2(v) are estimated jointly. It can be
shown that the above formulas are theexactclassical EM formulas
for two mixture components (i.e.K = 2). For K > 2, we obtain
a practical approximation to the classical EM algorithm.

III-B. Noise with nonseparable space-varying spectrum
In a more general scenario, the noise covariance matrix varies

spatially and has to be estimatedlocally: K(t)KT (t) = Cǫ(t). To
facilitate this, we will still estimate the signal covariance matrixCu

globally. The objective function now becomes:

Q(Θ(i),Θ) = E

8<:log
Y
v∈B

Y
t∈δ(v)

f(y(t), k|θ(v))
��y,Θ(i)

9=;−

KX
k=1

X
v∈B

λk||Ck(v) − zkCu − Cǫ(v)||2F

Maximizing this function yields the same update equations as in
Section III-A, except that (8) and (9) have to be replaced by:0BBBBBB� Ĉu

Ĉǫ(t1)

Ĉǫ(t2)
...

Ĉǫ(tN )

1CCCCCCA=

0BBBBB�Nµ2 µ1 µ1 . . . µ1

µ1 1
µ1 1
...

. . .
µ1 1

1CCCCCA−1
0BBBBBB�Pv∈B

PK
k=1 α̂kzkĈk(v)PK

k=1 α̂kĈk(t1)PK
k=1 α̂kĈk(t2)

...PK
k=1 α̂kĈk(tN )

1CCCCCCA
(10)



wheret1, ..., tN enumerate all spatial positions. Due to the sparsity
of the matrix in (10), the solution can be computed inO(N)
operations:

Ĉu =
1

N

KX
k=1

X
t∈B

α̂k

�
zk − µ1

µ2 − µ2
1

�
Ck(t) (11)

Ĉǫ(t) =

KX
k=1

α̂kĈk(t) − µ1Ĉu, t ∈ B (12)

III-C. Parameter initialization

The EM algorithm requires estimates of the initial set of pa-
rametersΘ(0). Due to the nonstationary character of the noise,
the initial signal and noise covariancesCu andCǫ are nontrivial
to estimate. Therefore, we simply useC(0)

ǫ = Id (or C
(0)
ǫ (t) =

Id in Section III-B) and C
(0)
u = Ĉy − C

(0)
ǫ , where Ĉy is

obtained using the Maximum Likelihood (ML) estimator (Ĉy =
1
N

P
v∈B

y(v)yT (v)). The local noise variance in Section III-A
is initialized to one:σ(0)(t) = 1, t ∈ B.

For the discrete values of the hidden multiplier, we select equidis-
tant samples on a logarithmic scale, similar to [2]:zk = exp(−3+
7 k−1

K−1
), k = 1, ..., K, which probabilitiesαk = zτ−1

k , k =
1, ..., K. With this choice, the finite GSM mixture approximates
the multivariate Bessel K Form prior with parameterτ (see [3],
[6]).

Another important choice is the size of the windowδ(t) where
the local stationarity is assumed to be valid. Whenσ2(t) is
sufficiently smooth, according to [1],l(t) should be choosen
proportional to1/ max(∆tσ

2(t)), with ∆t the discrete derivative
operator with respect tot. This means that the window becomes
smaller when the variations inσ2(t) are higher. On the other hand,
the estimates (8) and (10) may become unreliable due to insufficient
number of samples. For the results in this paper, we use a constant
l(t) for simplicity.

IV. IMPLEMENTATION ASPECTS

To speed up the likelihood computations in the EM update
formulas, it is useful to apply an extra diagonalisation as in [2].
For noise with separable space-varying spectrum from Section III-
A, we have:

Ck(t) = U
−1(σ2(t)Λ + zkId)U−T (13)

whereU = (SQ)−1, S−1CǫS
−T = QΛQT andCu = SST . As

a consequence, the determinant ofCk(t) is given by |Ck(t)| =
|Cu||σ2(t)Λ+ zkId| = |Cu|

Qd
i=1(σ

2(t)Λii + zk). Note that for
t∈δ(v), we havey(t)|k ∼ N(0,Ck(v)), such that:

log f(y(t)|k, θ(v)) = −d

2
log(2π) − 1

2
log |Cx|

− 1

2

dX
i=1

�
log(σ2(v)Λii + zk) +

[Uy(t)]2i
σ2(v)Λii + zk

�
BecauseUy(t) only needs to be evaluated once for different
k, the diagonalisation (13) yields an approximate speed up of a
factor d. However, log f(y(t)|k, θ(v)) still has to be computed
for v ∈ B and for t ∈ δ(v). Based on the assumption of local
stationarity, we linearizeσ2(t) in the neighbourhood ofv (t ∈
δ(v)), which means that we can writelog f(y(t)|k, θ(v)) in terms
of log f(y(v)|k, θ(v)) using the Taylor-series approximation:

log f(y(t)|k, θ(v)) ≈ log f(y(v)|k, θ(v))−
(σ2(t) − σ2(v))

2

dX
i=1

(σ2(t)Λii + zk − [Uy(t)]2i )Λii

(σ2(v)Λii + zk)2
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Fig. 1. (a) Wavelet subband of Lena with added artificial noise with
separable SVS (b) True local noise varianceσ2(t) (c) Estimated
local noise variance
σ2(t), using the MAD-estimator (MSE=0.682)
(d) Estimated local noise variance
σ2(t), using the proposed
method (MSE=0.451) (e) True noise PSD (f) Estimated noise PSD,
using the proposed method (g) Original noise-free wavelet subband
of Lena (h) Denoised wavelet subband of (a) using the estimated
noise PSD (f) and local variance (d)

The logarithm and the sum in this equation have to be computed
once for everyv ∈ B.

V. RESULTS AND DISCUSSION

In Fig. 1, visual results are given for the noise estimation of Sec-
tion III-A. First, the noise-free wavelet subband of Fig. 1g is cor-
rupted with additive noise, resulting from filtering white Gaussian
noise by the space variant filter with spectrum|A(t, ω)|2 ∼
t2y exp(−60((ωx − 0.34π)2 + (ωy − 0.20π)2)), see Fig. 1a. Here
ωx and ωy denote respectively thex- and y-components ofω
and ty is the y-component oft. We usel(t) = 32 and d = 9,
corresponding to a3×3 window for local correlations. The local
noise varianceσ2(t) ∼ t2y is depicted in Fig. 1b. In Fig. 1c the
local noise variance is estimated locally using the robust Median of
Absolute Deviations (MAD) estimator in a32×32-window. Fig. 1d
shows the estimated
σ2(t) using the proposed method with the
same window size. The EM estimate is clearly much more robust
to the presence of signal structures than the MAD estimate. This
is mainly due to the fact that our method takessignal correlations
into account whereas the MAD estimate does not. The estimated
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Fig. 2. (a) Pathological Thorax Computed Tomography (CT) image
of a 15-year old female, source: Sophia Children’s Hospital, EMC,
Rotterdam, the Netherlands (b) Denoised version of (a), using [5]
(c) Denoised version of (a), using [4] (d) Denoised version of (a),
using the proposed method. (e) Difference image between (d) and
(a) (contrast enhanced, intensity 128 corresponds to difference zero)

noise PSD in Fig. 1f. is obtained first by converting the estimated
noise covariance matrix̂Cǫ into an autocorrelation function of size
128×128 by averaging over correlations that correspond to the same
difference in position, putting correlations that cannot be captured
using a

√
d×

√
d window to zero and next by computing the Discrete

Fourier Transform. Despite the small window size3×3 used for
estimating local correlations, there is a very good resemblance
with the original noise PSD in Fig. 1e. Next, the estimated noise
parameters from Fig. 1d and Fig. 1f are used to denoise the wavelet
subband, with an extension of the algorithm presented in [6] (such
that it can deal with nonstationary noise, similar to the extension
presented in [9]), which results in Fig. 1h. Due to the reliable noise
estimation, the denoising algorithm reconstructs most of the signal
structures present in Fig. 1a.

In Fig. 2, we give visual results for the noise estimation of
Section III-B. Fig. 2a shows a low-dose Computed Tomography
(CT) image, that suffers from noisy streaking artifacts. It can be
shown that by the filtered backprojection in CT reconstruction, CT
noise can be modeled as being filtered by a space-variant filter.
We compare the proposed noise estimation combined with the
extension of the algorithm of [6] (Fig. 2d) (see above), to the blind
denoising methods of [5] (Fig. 2b) and [4] (Fig. 2c). The method
of [5] assumes white stationary noise and estimates the noise
variance from the highpass subband of the nondecimated spline
wavelet transform. Due to the noise model mismatch, noise artifacts
are left in the denoised image (Fig. 2b) in areas where the local
noise variance exceeds the estimated noise variance, whereas the
proposed method does not. The method of [4]1 assumes stationary
correlated noise and also because of the nonstationarity, not all parts
of the noise are removed. Our method uses the Dual-Tree Complex
wavelet transform from [10], with 3 scales,d = 9 and l(t) = 16.
Fig. 2d shows the difference image of Fig. 2c and Fig. 2a. It can
be noticed that some signal structures are present in the difference
image, for example at the edges of the bright areas in Fig. 2a.
Here, due to the saturation in the scanner at intensity 255, there is
a fast transition in the local noise variance. As a consequence, the
local-stationarity assumption is violated and the local noise variance

1Because an implementation of the method from [4] is not yet available
from the author, we developed and used our own implementation of [4].

is slightly overestimated, causing oversmoothing of the edges. To
deal with saturation effects from the scanner, we are currently
investigating the use of a pre-segmentation, such that the local-
stationarity assumption is still valid within each detected segment.
On Pentium IV 2 GHz processor, denoising a256× 256 image in
an unoptimized implementation takes 143 s, from which 110 s are
spent to noise estimation.

VI. CONCLUSION

In many practical situations, stationary white Gaussian noise
models are too restrictive and yield poor denoising performance
due to the noise model mismatch. White Gaussian noise filtered
by a spatially variant filter, as a specific class of locally stationary
processes, offers a much broader applicability and its parameters
can be estimated in a wavelet basis, which compresses the spatially
variant noise autocorrelation function well. We presented a new
algorithm for the noise parameter estimation of spatially variant
correlated image noise, which is not possible yet using current
existing techniques.
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