EM-BASED ESTIMATION OF SPATIALLY VARIANT CORRELATED IMAGE NOISE

Bart Goossens, AleksandraZRrica’, Wilfried Philips

Ghent University - TELIN - IPI - IBBT
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
bart.goossens@telin.ugent.be

ABSTRACT no signal-free patches, e.g. in medical images. First we treat the
In image denoising applications, noise is often correlated and thease where the noise Power Spectral Density (PSD) is the same
noise energy and correlation structure may even vary with théhroughout the image but where the local noise energy is allowed
position in the image. Existing noise reduction and estimatiorfo vary (we will call this separablepace-varying spectrunsee
methods are usually designed for stationary white Gaussian noiderther). Next, we study the more general case where the local
and generally work less efficient in this case because of the noideSD is position-dependent (denotechasiseparable space-varying
model mismatch. In this paper, we propose an EM algorithmSpectrun.
for the estimation of spatially variant (nonstationary) correlated The remainder of this paper is as follows: in Section II we
image noise in the wavelet domain. In particular, we study additivéntroduce some basic concepts that are used throughout this paper.
white Gaussian noise filtered by a space-variant linear filter. Thisn Section Il we explain the EM algorithm that is used in the
general noise model is applicable to a wide variety of practicawavelet domain, for both separable and nonseperable spacegaryin
situations, including noise in Computed Tomography (CT). Result$ioise spectra. Implementation aspects are discussed in Section IV.
demonstrate the effectiveness of the proposed solution and ifsesults and a discussion are given in Section V. Finally, Section VI
robustness to signal structures. concludes this paper.

Index Terms— Noise estimation, Image restoration, Correlated

noise II. BASIC CONCEPTS

II-A. Local stationarity and space-varying spectra
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| INTRODUCTION Let Y(t),t € Z° be a real-valued zero-mean random process

with covariance functionr{e€ Z?):
Gaussian noise processes are characterized entirely by their
R(t,r) =E{Y(t)Y(t + 1)} 1)

second order statistical moments [1]. On the other hand recent
studies (e.g. [2], [3]) have shown that signal features in the basdpa f the process istationarythen the covariance only depends on the
and highpass subbands of a given multiresolution representatiafistance between two points and not on their absolute positions:
are not Gaussian and require the specification of the fourth ordeR(t’r) = R(0,r). Furthermore, we say that a procesddsally
moment, the kurtosis. This property can be exploited to distinguisitationary, if in the neighbourhood of any € Z2, there exists a
signal information from noise and this has succesfully been appliedquare windowi (v) of sizel(v), centered at positiow, where the

to the estimation of stationary correlated noise [4]. However, inprocess can be approximated by a stationary onet ¢af(v) and
practice, we encounter many situations where the noise energyyr Ir| <I(v)/2, the covariance is well approximated by [1]

and correlation structure depends on the position in the image

(nonstationary noise). Even fdpcal stationary Gaussian noise E{Y(®)Y(t+1)} ~E{Y(V)Y(v+r)}=R(v,r) (2)
processes, that have properties that change slowly in space, thée define the space-varying spectrum (SVS) ¥6ft) as the
estimation is still difficult because only local information can be Discrete Time Fourier transform (DTFT) @t(v,r) with respect
used. Therefore it is useful to estimate the noise properties in wetp y:

structured bases that approximately diagonalize noise covariance S(v,w) = Z R(v,r) exp(—j(r,w)) 3)
matrices, such that fewer observations are needed. An example are rez2

the local cosine bases in [1]. .where(-, -) denotes the inner product. For stationary processes, the

In this work, we assume an a(_idmve_nmse Process, that VS reduces to the Power Spectral Density (PSD). We say that the
generated by sending white Gaussian noise through a linear spay, g is separableif it can be factored as(v, w) — So(v)Si(w)

,t,'a”y v.arllan’t’ filter. \t{Ve emt[?]IO)ll a \I/vavglet SaSIS tgatttgats S'mtllat;with i ffﬂ S1(w)dw = 1. The first componenf,(v) represents
sparsifying” properties as the local cosine bases, but that are be e variance at positiorv while the second componerf; (w)

suited in representing nonstayonas'rgnal fee_\tures Ilke_t_adg_es and denotes the normalized Power Spectral Density (PSD).
textures. Wavelet bases provide a non-uniform partitioning of the

time-frequency plane which allows retrieving information both in

specific frequency bands and at spatial positions. We propose dhB- Spatially variant filtering of White Noise
Expectation-Maximization (EM) algorithm for the wavelet domain A specific class of locally stationary processes is obtained by the
estimation of the noise covariance function. The estimated noisgpatially variant filtering of white noise. Lef(t) denote a white
properties can be directly plugged in into recent wavelet domaif3aussian noise process, thEiit) is obtained as:

denoising methods (e.g. [2], [5], [6], [7]). On the other hand, Y(t) = Z (VK (6,6 — ) 4)

this allows us to study noise properties in regions where we have g
v

*A. Pizurica is a postdoctoral researcher of the Fund for the 8en With K (t, ) the impulse response of a linear spatially variant filter
Research in Flanders (FWO) Belgium with DTFT A(t,w). The covariance function df (t) is then given



by: general, even for globally stationary noise [4]. Instead, we note
_ that y(t) is locally (for t € ¢§(v)) distributed according to a
R(t,r) =E {Y(?WY(t +r)} finite Gaussian Mixture with zero mean and covarian€agv) =
_ 1 A*(6,w) At + 1, w) exp(j(w, 1)) dw  (5) 2:Cu +0%(v)Ce. We will call this the "Scale Mixture” constraint.
2 ) Our approach then consists in updating the component covariances
The local stationarity assumption (2) imposes tHat,w) has to ~ Cr(v) such that the "Scale Mixture” constraint is still satisfied.

satisfy some smoothness conditions (see [1]). More specifically, i5iven a set of model paramete® at iterationi, we optimize

|(r, aAétt«w)H < |A(t,w)], for |r| < I(t)/2, we have approxi- the new parameter® in order to increase the objective function:

mately: A*(t,w)A(t + r,w) =~ |A(t,w)|%. In practice,R(t,r)
may have many non-zero elements. Therefore, it is useful to useQ(®”, @) = E{ log H H f(y (), kl0())|y. oW

structural bases that compress the covariance function well. This veBtes(v)

has the advantage that spatial variant correlations can be efficiently K

estimated from relatively few observations. In this paper, we ZZMHCk(V)—ZkCu—UQ(V)CEIIQF

use an (overcomplete) undecimated wavelet basis.H&t”) (w) k—1veB

denote the frequency response of the cascaded wavelet filters gjh the first term the expected complete-data log-likelihood func-
scale s and orientationo € {HL,LH,HH}, ie. H*?(w) = {jon. The second term denotes the "Scale Mixture” constraint added

[1;5, H(2'w)G(2°w), with G(w) and H(w) respectively the 1 the problem using Lagrangian multipliers,,k — 1, ..., K.
scaling and wavelet filters of each decomposition stage, then th|‘?A\|% = trace(AAT) is the matrix Frobenius norm. It can be
wavelet domain noise covariance function at sead@d orientation  shown that the EM update equations are given by:

o is approximately given by:

. 1 1
» R q=—2 5 > Plkly(t),0(v)),k=1,..K
RO er) 5o [ @) At explifw.r)do NI M &
o X P(kly(t),0 t)yT(t
This means that in the wavelet domain, based on the local station- ¢ (v) = Lisesw) PRIV (), 6())y(6)y” ( )7]@ =1, K
arity assumption, we also have white noise, but now filtered by the Zteé(v) P(kly(t),6(v))
spatially variant filterA*:?) (t,w) = H® (w)A(t, w). (Cu) < Nps )1 < S ek Y yes Cr(v)
Ce - Hivy 12 K7 A a2(v)Cr(v
lll. WAVELET DOMAIN NOISE ESTIMATION 2= 8 2oven © (VIOHY) ®)
Our goal is to estimate the noise covariance funcfioh (t, v) P ) -
in the wavelet domain, in the presence of signal structures. Consider — trace (Ek:l 6xCc(Cr(v) — Cu) ) @)
o“(v) =

one wavelet subbands,o). For additive noise, we have the
following relationship between the noisy wavelet coefficients),
the noise-free coefficients(t) and the white noise(t) at position
teB:

trace (C.CT)

with pp, = ZkK:I arzl,b=1,2 andu, = Y ves o?(v),b=1,2

and with N the number of wavelet coefficients for the considered
y(t) = x(t) + K(t)e(t) ®) wavelet subband. We note that update equqtions_ (8) and (9) depend

on each other and must be used alternatingly in subsequent EM

The vectorsx(t), ¢(t) and y(t) are formed by column-stacking iterations in order to maximize the likelihood. The formulas above

the wavelet coefficients in local/d x v/d overlapping windows must be iterated until convergence of the likelihood. In this iterative

centered at positiort. K(t) is a spatially varianid x d matrix  process, theylobal noise and signal covariance matric€s,, C.

that correlates the noise(t) ~ N(0,1;). To distinguish noise as well as thdocal varianceo?(v) are estimated jointly. It can be

from signal structures, we take prior knowledge about the noiseshown that the above formulas are thactclassical EM formulas

free signalx(t) into account. More specifically, we model(t)  for two mixture components (i.eX = 2). For K > 2, we obtain

as a Gaussian Scale Mixture (GSM) [2], [6] with discrete hiddena practical approximation to the classical EM algorithm.

multiplier z € {z1,22,...2x}: x = z'/?u. Here, £ denotes

equality in distribution andx is GaussianV (0, C,,). As a result,

the covariance matrix ok(t) is given by C, = E{z} C..

With this model, estimating(*) (t, r) comes down to estimating

K(t)KT (t), for which we can use statistical estimation techniques

In the following, we denotev, = P(z = z), k=1, ..., K.

III-B. Noise with nonseparable space-varying spectrum

In a more general scenario, the noise covariance matrix varies
spatially and has to be estimatiedally: K(t)K” (t) = C.(t). To
facilitate this, we will still estimate the signal covariance maftix
globally. The objective function now becomes:

. . . (1) — (2)
ll-A. Noise with separable space-varying spectrum QO",)=ESlog [[ [ r).k6M)y.©
In many denoising applications, the noise covariance matrix is vEBtEs(v)
constant for the whole image, up to a spatially varying scale factor K 5
o2(t), representing the local noise variance. We have: Z Z Al[Cr(v) = 2k Cu — Ce(v)l[r
k=1veB

K(t)KT(t) =" (t)C. @) Maximizing this function yields the same update equations as in
It is clear thatC. can be estimated for thehole subband, taking ~Section llI-A, except that (8) and (9) have to be replaced by:
advantage of all the information in the whole image, whifit) c, Npo g pin oo pnN s K 6r2Cr(v)
can only be obtainedocally. Let 8(t) = {C.,C.,o%(t)} U (t) o1 VEZBK kzlkék(tl)
{aw, k =1,..., K} denote the model parameters related to position (t2) 5 1 Z’iﬁ dka(tz)
t. To estimate the total set of model paramet@rs= | J, . 0(t) . = . =
with hidden variable:, the EM algorithm [8] can be used. Unfor- : . :
tunately, finding an exact solution for the noise covariance matrix,\C (tn) 1 1 Z}’::l dkék(t]\])
using the classical EM algorithm, has proven to be difficult in

Qo
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wheret, ..., ty enumerate all spatial positions. Due to the sparsity
of the matrix in (10), the solution can be computed GHN)
operations:

C., NZZ (Z’“_“1>ck(t) (11)

k=1teB M1

K
Ce(t) =) aCi(t) —mCu, teB (12)

I1I-C. Parameter initialization

The EM algorithm requires estimates of the initial set of pa-
rameters®©), Due to the nonstationary character of the noise,
the initial signal and noise covarianc€s, and C. are nontrivial
to estimate. Therefore, we simply uss” = I, (or C{” (t) =
I, in Section II-B) andCY” = €, — C”, where C, is
obtained using the Maximum Likelihood (ML) estimatc@; =
£ 3 esY(V)y"(v)). The local noise variance in Section IlI-A
is initialized to one:c (t) = 1,t € B.

For the discrete values of the hidden multiplier, we select equidis-
tant samples on a logarithmic scale, similar to [2]:= exp(—3+
7E-L),k = 1,..,K, which probabilitesax = 2z, ',k =
1, ..., K. With this choice, the finite GSM mixture approximates
the multivariate Bessel K Form prior with parameter(see [3],
(6.

Another important choice is the size of the windéyt) where
the local stationarity is assumed to be valid. Whef(t) is
sufficiently smooth, according to [1]i(t) should be choosen
proportional tol/ max(Aga?(t)), with A the discrete derivative
operator with respect to. This means that the window becomes
smaller when the variations i*(t) are higher. On the other hand,
the estimates (8) and (10) may become unreliable due to insufficient
number of samples. For the results in this paper, we use a constant
I(t) for simplicity.

() (h)

Fig. 1. (a) Wavelet subband of Lena with added artificial noise with
IV. IMPLEMENTATION ASPECTS separable SVS (b) True local noise variancgt) (c) Estimated

To speed up the likelihood computations in the EM updatgocal noise variance? (¢ ), using the MAD-estimator (MSE3682)
formulas, it is useful to apply an extra diagonalisation as in [2].(d) Estimated local noise variance?(t), using the proposed

For noise with separable space-varying spectrum from Section ll|ethod (MSE®.451) (e) True noise PSD (f) Estimated noise PSD,
A, we have: using the proposed method (g) Original noise-free wavelet subband

R o of Lena (h) Denoised wavelet subband of (a) using the estimated
Ci(t) =U " (o7(t)A + 2:14)U (13)  noise PSD (f) and local variance (d)
whereU = (SQ)~!, S7'C.S™7 = QAQ" andC, = SS”. As
a consequence, the determinant@f(t) is given by |Cy(t)| =
|Cullo?(t)A + 21a| = |Cu| [T, (02(t)Asi + 21). Note that for
ted(v), we havey(t)|k ~ N(0,Cyr(v)), such that:

The logarithm and the sum in this equation have to be computed
once for everyv € B.

V. RESULTS AND DISCUSSION

log f(y(t)|k,0(v)) = _d log(27r) - %log |Ca| In Fig. 1, visual results are given for the noise estimation of Sec-
tion lll-A. First, the noise-free wavelet subband of Fig. 1g is cor-
1 Z |:log +oa) o+ [Uy (t)]? rupted with additive noise, resulting from filtering white Gaussian

2 A o2(v)Aui + 2k noise by the space variant filter with spectrym(t,w)|® ~

2 2 2 H
BecauseUy(t) only needs to be evaluated once for different ¥ exp(—60((ws — 0.34m)" + (wy —0.20m)%)), see Fig. la. Here
w, and w, denote respectively the- and y-components ofw

k, the diagonalisation (13) yields an approximate speed up of and 1, is the y-component of. We usel(t) — 32 andd = 9,

factor d. H 1 k,0(v)) still has to b ted .
fﬁrc Srg B (;vr\:zvfeor; ;)gefg(‘(/))l E:as(ed))oz Itheaziss(l)JmStigﬁn(])guloecal corresponding to & x 3 window for local correlations. The local
: noise variancer”(t) ~ ¢ is depicted in Fig. 1b. In Fig. 1c the

stationarity, we linearizes*(t) in the neighbourhood of (t € local noi . . . d locall ina th b di f
0(v)), which means that we can writeg f(y(t)|k, 0(v)) in terms ocal noise variance Is estlmatg ocally using t ero ust Me lan o
of log f(y(v)|k, 8(v)) using the Taylor-series approximation: Absolute Deviations (MAD) estimator in&2 x 32-window. Fig. 1d
' shows the estimated?(t) using the proposed method with the
log f(y(t)|k,0(v)) ~ log f(y(v)|k,0(v))— same window size. The EM estimate is clearly much more robust
2 2 d 2 to the presence of signal structures than the MAD estimate. This
(o°(t) 5 o’ (v)) Z (" (t )1?;12? )z; _E_UZyg DA is mainly due to the fact that our method talgignal correlations
i sk into account whereas the MAD estimate does not. The estimated

=1



is slightly overestimated, causing oversmoothing of the edges. To
deal with saturation effects from the scanner, we are currently
investigating the use of a pre-segmentation, such that the local-
stationarity assumption is still valid within each detected segment.
On Pentium IV 2 GHz processor, denoisin@#6 x 256 image in

an unoptimized implementation takes 143 s, from which 110 s are
spent to noise estimation.

VI. CONCLUSION

In many practical situations, stationary white Gaussian noise
models are too restrictive and yield poor denoising performance
due to the noise model mismatch. White Gaussian noise filtered
by a spatially variant filter, as a specific class of locally stationary
processes, offers a much broader applicability and its parameters
can be estimated in a wavelet basis, which compresses the spatially

()

variant noise autocorrelation function well. We presented a new

algorithm for the noise parameter estimation of spatially variant

Fig. 2. (a) Pathological Thorax Computed Tomography (CT) image,
of a 15-year old female, source: Sophia Children’s Hospital, EMC
Rotterdam, the Netherlands (b) Denoised version of (a), using [5]
(c) Denoised version of (a), using [4] (d) Denoised version of (a),
using the proposed method. (e) Difference image between (d) and
(a) (contrast enhanced, intensity 128 corresponds to differemog ze (1]

noise PSD in Fig. 1f. is obtained first by converting the estimated
noise covariance matri€. into an autocorrelation function of size
128x128 by averaging over correlations that correspond to the same
difference in position, putting correlations that cannot be captured
using av/dxv/d window to zero and next by computing the Discrete
Fourier Transform. Despite the small window size 3 used for
estimating local correlations, there is a very good resemblance
with the original noise PSD in Fig. 1e. Next, the estimated noise
parameters from Fig. 1d and Fig. 1f are used to denoise the wavelet

orrelated image noise, which is not possible yet using current
existing techniques.
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