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Abstract—In this paper we investigate the anchor calibration
problem where we want to find the anchor positions when the
anchors are not able to range between each other. This is a prob-
lem of practical interest because in many systems, the anchors
are not connected in a network but are just simple responders
to range requests. The proposed calibration method is designed
to be fast and simple using only a single range-capable device.
For the estimation of the inter-anchor distances, we propose a
Total Least Squares estimator as well as a L1 norm estimator.
Real life experiments using publicly available hardware validate
the proposed calibration technique and show the robustness of
the algorithm to non-line-of-sight measurements.

Index Terms—anchor calibration, wireless localization, range-
based

I. INTRODUCTION AND MOTIVATION

In the last decade, wireless indoor localization has received

considerable attention in both academia and industry. By

now, a number of technologies exist that provide accurate

indoor localization either through angle-of-arrival, time-of-

arrival, received signal strength (RSS), or some other type

of measurement. Unfortunately, all the different technologies

have one drawback in common, being the requirement of

fixed infrastructure. This infrastructure generally consists of a

number of fixed nodes, called anchors, for which the positions

must be known by the user1. Hence, all positions of the

anchors should be measured first; this is referred to as the

calibration of the localization system. However, this requires

manual labor and is therefore costly, time consuming and may

require expensive professional tools.

A commonly used approach to roughly localize (indoor)

anchors is to collect a set of outdoor measurements from

with an associated GPS tag. We call the device that makes

measurements with the anchors the calibration unit (CU). The

final anchor positions are then estimated through traditional

localization algorithms where the GPS data points serve as the

references to localize the actual anchor. In [1] a technique is

proposed that locally looks for the direction of increasing RSS

to provide a set of vectors that all point towards the anchor. In

[2], the direction of the anchor is estimated by rotating the CU

around the body of a person. However, due to the large error

1For some localization schemes, this is not true. For example, in RSS based
fingerprinting the positions of the anchors (or access points) do not need to be
known. However, these systems still require some other type of calibration.

in GPS coordinates, it is obvious that these methods can only

provide very rough anchor information and estimation errors

in the order of tens of meters have been reported with these

approaches.

A more accurate solution is provided through SLAM (simul-

taneous localization and mapping) [3], where the calibration

procedure is performed live whilst the localization system is

running. Here the calibration unit is a robot that collects a

sequence of different measurements such that it is possible

to slowly but surely build up an increasingly accurate map

of the environment. In SLAM, no GPS coordinates or any

other absolute coordinates are used and consequently, only

relative coordinates can be obtained for the anchors. Well-

known methods such as EFK SLAM [4] or FAST SLAM [5]

rely on motion models and require the knowledge of the so-

called control vector that is controlling the CU: (i.e. ’move

forward 20cm’, ’turn 15° left’, ..). As a result, SLAM is only

applicable to automated devices and results in a (strongly)

decreased performance in non-automated devices.

In this paper, we want to search for a calibration technique

that requires, in contrast with the above-mentioned calibration

techniques, no additional sensors or equipment. We restrict

our attention to range-based calibration only. Consider a

localization system with M range-capable anchors placed at

some unknown positions xi ∈ R
η with η = 2 or η = 3

for 2D or 3D calibration, respectively. These anchors form

a graph G with as the vertices the anchors; two vertices are

connected with an edge whenever the distance between the

corresponding anchors dij = ‖xi − xj‖ is available. For

simplicity of presentation (but without loss of generality), we

show in Fig. 1 the case of 3 anchors.

When only range-measurements are available, the most

straightforward method to calibrate the anchors on a relative

map, is to let every anchor make range measurements with the

surrounding anchors. With the resulting range measurements,

it is then possible to estimate the relative anchor positions

using a cooperative localization algorithm such as MDS [6],

WLS [7] or SDP [8]. Although this approach seems the most

obvious one, this method has some shortcomings. First of all,

this calibration method requires that the anchors are connected

in a network, such that the ranging can be coordinated, and

that the measurement data is transferred to a central processing



node. However, most localization networks are user-oriented,

and the anchors are simple responders that reply to a range

request. This problem could be overcome by using additional

equipment as e.g. a wifi device connected with the anchors, but

this requires additional equipment, which is not favorable. A

second problem is the presence of multi-path and non-line-of-

sight measurements. Because the anchors are static, possible

obstructions make it impossible to accurately measure the

distance between two anchors. In the absence of one or more

ranges, the resulting graph may no longer be redundantly rigid

[9], and the localization of the anchors becomes impossible.

As an alternative, we could consider the use of calibration

units placed at fixed positions. The motivation of this approach

is that the presence of the calibration units (the dots in Fig. 1)

results in a larger localization network such that the resulting

larger graph becomes redundantly rigid, and anchor calibration

is possible. However, a first disadvantage of this technique is

that generally a large number of CU’s is needed to obtain

accurate calibration. A second disadvantage is that in many

cases the anchors are placed in such a way that they form the

largest possible convex hull. As a result, the CU’s will always

be placed inside this convex hull resulting in bad geometric

properties to localize the anchors (see Fig. 1 where the large

error ellipse is the result of this bad geometry)

In this paper, we present a novel technique for simple and

fast anchor calibration, which is in some way related to the

SLAM principle. However, in contrast to the SLAM method,

we do not require additional sensors or equipment. In the

proposed method, the system administrator moves around one

single range-capable calibration unit. Hence, in contrast with

the SLAM method, no predefined motion model is needed.

Further, as the administrator is moving around, the probability

of a network with bad geometric properties that hinder the

localization of the anchors, is reduced. The proposed method

is able to do calibration in 2D as well as in 3D. To assess

the accuracy of the proposed method, live measurements were

done with P410 UWB ranging devices [10]. In this live

measurement campaign, the administrator was walking at a

normal pace (ca. 1m/s), resulting in an average position error

of 8cm. Hence the proposed method is well suited for practical

anchor calibration.

II. ANCHOR CALIBRATION

The estimation of the anchor positions is obtained in two

steps. In a first step, the distances between all anchors are

estimated. For this step the system administrator has to be

charged with the simple task of walking from an arbitrary

point towards an anchor in a straight line, over a distance

Lpath, with a range capable device. During this procedure, the

range capable device makes range measurements with every

anchor. This must be repeated for every anchor such that all

the distances between the anchors can be estimated. After this

step, which is called the range collection, the anchor positions

are estimated in the second step with a traditional cooperative

localization algorithm.
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Figure 1. Range based anchor calibration methods. Anchors are represented
by squares and calibration units by dots. The ellipse represents the uncertainty
in the position of the anchor after calibration.
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Figure 2. Anchor calibration in 2D. Anchors are represented by squares, the
different positions of the calibration unit by a dot.

A. Range collection in 2D

The first step of the calibration method consists of finding

the distances dij between all combinations of anchors i and

j by performing some simple operations with the CU. It is

in this spirit that we consider the scenario where the CU

moves along an arbitrary straight line. Along this line, multiple

range measurements have to be made with every anchor (if

possible). The set of N �
i range measurements made along path

� with anchor i is denoted by d�
i =

[
d�i,1, d

�
i,2, ..., d

�
i,N�

i

]T

.

For each path � and set of anchors (i, j), we can introduce

some additional parameters a�ij , b
�
j and c�i which are defined

in Fig. 2. For notational convenience we drop the path index

�.
In the absence of errors, we find the following relation

between the distances di,k and dj,k for k = 1..Ni, and the

parameters aij , bj and ci:

b2j = d2j,k −
(√

d2i,k − c2i − aij

)2

= d2j,k − d2i,k + c2i − a2ij + 2aij

√
d2i,k − c2i . (1)

If there are sufficient measurements, it is possible to estimate

the parameters a2ij , b2j and c2i from this non-linear set of

equations. However, from Fig. 2 it can be observed that using

these parameters, it is not possible to uniquely estimate the

distance dij . This is due to the flip ambiguity of the anchors
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Figure 3. Anchor calibration in 2D with a path going straight to one anchor.
A direct measurement of the distance dij between anchors i and j is not
possible do to an obstruction (e.g. a wall).

around the path. However, if the calibration unit would move

in a straight line towards an anchor, the flip ambiguity of this

anchor disappears. The other anchor can now still flip without

affecting distance dij . Hence it becomes possible to make

an unambiguous estimation of dij . Moving towards anchor

i corresponds to setting ci = 0, resulting in the relation

d2ij = a2ij+b2j . Furthermore, under this condition, equation (1)

becomes linear in the unknown variables d2ij and aij , resulting
in

d2ij − 2aijdi,k = d2j,k − d2i,k. (2)

The scenario with ci = 0 is depicted in Fig. 3. From this figure

it becomes clear that, with this method, the distance dij can

be measured even if the direct path between the two anchors

i and j is obstructed.

Notice that we can rewrite equation (2) as follows

d2j,k = (di,k − aij)
2 − a2ij + d2ij . (3)

Hence, in order to estimate the unknown variables, we must fit

a parabola to the measured noisy data pairs
(
di,k, d

2
j,k

)
for

k = 1..N . The intersection of this parabola with the y-axis

gives the estimated squared distance d̂2ij .
In order to obtain the distances dij between all combinations

of anchors (i, j), we need to walk towards (at least) M − 1
different anchors. For the estimation of dij we can thus have

more than one path available (for example one towards anchor

i and another towards anchor j). Let us consider L available

paths moving towards either anchor i or j. This results in

L + 1 unknowns: d2ij and a�ij (one for each path) which we

group in the parameter vector x = [d2ij , a
1
ij , a

2
ij , .., a

L
ij ]

T. The

relationship of the parameter vector with the measurements is

given by (2). Let us introduce the matrix A�
→i gathering all

information for a single path � going in the direction of anchor

i, denoted by the subscript → i:

A�
→i =

[
1N�

i×1 0N�
i×(�−1) −2d�

i 0N�
i×(L−�)

]
, (4)

with 1m×n and 0m×n the all ones and all zeros matrix,

respectively. Further, b�
→i is a N �

ij dimensional vector with

elements:

[
b�
→i

]
n
=

([
d�
j

]
n

)2

− ([
d�
i

]
n

)2
. (5)

We can now write the system of equations as Ax = b where

A and b are obtained by stacking the different A�
→i and b�

→i.

This leads to an overdetermined system for which we can find

a solution in a number of ways. The most straightforward

estimation method is the well known Least Squares (LS)

method for which the estimate is given by:

x̂LS =
(
ATA

)−1
ATb. (6)

In Least Squares estimation, the L2 norm ‖Ax − b‖2 is

minimized, which implicitly assumes that the measurement

errors are confined to the vector b. However, because both

di,k and dj,k are subject to errors, the matrix A is in fact also

a random matrix and the LS assumption breaks. Because of

this we expect reduced performance when applying standard

Least Squares. To remedy this, we propose to employ Total

Least Squares (TLS) which accounts for errors in both A
and b. In TLS, the Frobenius norm ‖ [E f ] ‖F is minimized

where E and f are the errors in A and b respectively. It

is shown in [11] that the TLS solution to Ax = b can

be obtained by singular value decomposition (SVD) of the

augmented matrix [Ab] = UΣV∗. The TLS estimate is given

by x̂TLS = −VxyV
−1
yy with Vxx the upper right (L+ 1)× 1

block of V and Vyy the lower right element of V.

It is known that applying LS or TLS works well when the

errors are normally distributed and small. However from the

experiments we conducted (see subsection III-B), we observed

that the measurements contained a lot of outliers due to

non-line-of-sight (NLOS) which cannot be handled well by

these estimators. As an alternative, we minimized the L1

norm ‖Ax − b‖1 instead of the L2 norm in LS and TLS2

. Minimizing the L1 norm is more robust to outliers but does

not result in a closed form expression for the estimate. Rather,

it results in solving the following Linear Program in x ∈ R
L+1

and s ∈ R
(N1

i +..+NL
i )

minimize 1Ts

subject to Ax− b � s

Ax− b � −s
where � and � are elementwise inequality signs. The perfor-

mance of the above estimators is compared in section III-B.

B. Range collection in 3D

Next we explore the possibility of using the same simple

calibration procedure for anchors in a three-dimensional space.

Similarly as in 2D, this is possible by moving the CU in

a straight line towards the anchor. However, in general, this

straight line is no longer parallel to the floor. If we would use

a trajectory parallel to the floor, the possible anchor positions

are subject to a rotational ambiguity around the line of the

movement. Hence, as the possible anchors lie on a circle

around the path, it is not possible to obtain an unambiguous

distance dij . However, in case that the heights of the anchors

2The Frobenius norm is the “entrywise” L2 norm for matrices.
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Figure 4. Anchor calibration in 3D. The gray plane is a plane parallel to
the floor, where the CU is moving.

are known, the calibration method can still work with a few

adjustments.

By inspection of Fig. 4, we can reformulate the problem by

introducing the following variables. Consider the orthogonal

projection of the anchors i and j on the plane in which the CU

is moving, parallel to the floor. The distances ui,k and vj,k are

the distances between the CU at position k and the projections

of anchors i and j on this plane. Hence, u2
i,k = d2i,k − h2

i and

v2j,k = d2j,k − h2
j . In this plane we recognize the 2D scenario

and it follows from (2) that the distance between the projected

anchors equals β2
ij = v2j,k − u2

i,k + 2ui,kaij . Taking this into

account, we obtain the distance between anchors i and j:

d2ij = (hj − hi)
2 + β2

ij (7)

= d2j,k − d2i,k + 2h2
i − 2hihj + 2aij

√
d2i,k − h2

i (8)

In the special case where all anchors are at the same height,

this can be simplified to

d2ij = d2j,k − d2i,k + 2aij

√
d2i,k − h2 if hi = hj = h. (9)

Expression (8) results in a set of linear equations from which

the squared distance d2ij can be estimated in the same way as

described in the 2D case. By walking towards the M different

anchors, in a straight line parallel to the floor, it is possible to

obtain the complete distance graph which is fully connected.

C. Anchor localization

In the last step of the calibration procedure, the actual

anchor positions are estimated. Because we have a full distance

matrix (i.e. all pairs of distances are estimated), we can simply

use a cooperative localization algorithm that delivers the rela-

tive coordinates of the anchors. We formulate the localization

problem as a weighted least squares (WLS) problem such as in

[7] because this can easily be adapted to 3D localization with

known heights. The cost function to be minimized equals:

f(x1:M ) =

M∑
i

M∑
j

wije
2
ij , (10)

with eij = d̂2ij − (xi − xj)
T (xi − xj) the error in squared

Euclidean distance. Because all pairwise distance estimates

are available and all weights are equal, this reverts to a convex

problem with a unique solution (implying that no special care

must be taken to select an initial estimate). Minimization

of (10) can efficiently be done using the iterative Newton’s

method. Each iteration k, the estimate is updated according to:

x
(k+1)
1:M = x

(k)
1:M +Δx

(k)
1:M , where the superscript indicates the

iteration index and Δx
(k)
1:M = −

[
∇2f(x

(k)
1:M )

]−1

∇f(x
(k)
1:M )

is called the Newton step. For the calculation of the Newton

step, a closed form expression for the gradient and Hessian

of the cost function is required. For the two-dimensional case,

the gradient of f(x1:M ) is a 2×M matrix with components:

∇f(x1:M ) =
[

∂f(x1:M )
∂x1

∂f(x1:M )
∂x2

. . . ∂f(x1:M )
∂xM

]
,

(11)

where the partial derivatives are given by:

∂f(x1:M )

∂xi
= −8

M∑
j

wijeij(xi − xj). (12)

The 2M×2M Hessian matrix is constructed by 2×2 blocks:

[∇2f(x1:M )
]
ij
=

[
∂2f(x1:M )

∂xi∂xj

]
, (13)

where
∂2f(x1:M )
∂xi∂xj

are 2× 2 matrices defined as:

∂2f(x1:M )

∂xi∂xj

=

{
−8∑M

l wil

(
eilI− 2(xi − xl)(xi − xl)

T
)

i = j

−8wij

(−eijI+ 2(xi − xj)(xi − xj)
T
)

i �= j

For three-dimensional localization with known heights, the

above algorithm can be used by adding the height to the

parameter vector x1:M and setting the derivatives to the z-

coordinate equal to zero.

III. RESULTS

A number of simulation tests as well as real-live tests

were performed in order to investigate the performance of

the proposed calibration method. Furthermore we wanted to

study the impact of some parameters such as the length of

the path to walk or the number of measurements made along

each path. In order to evaluate the estimation errors on the

anchor positions it is necessary to convert the obtained relative

coordinates to absolute coordinates. This requires finding a

suitable rigid transformation (i.e. a rotation, reflection and

translation), which is achieved by performing the Procrustes

algorithm [12]. This algorithm returns a rigid transformation

that minimizes the squared error between the relative positions

and the true (absolute) positions of the anchors. The resulting

MSE corresponds to the error made in the calibration.
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Figure 5. Root Mean squared error (RMSE) of the distance estimates between
the anchors as a function of the number of measurements N .

A. Simulation results

In our simulation setup we placed 4 anchors in the corners of

a square 10m × 10m room. For each anchor, a random starting

point within the room at a distance Lpath from the anchor was

selected to start the path. In Fig. 5 the root mean squared error

(RMSE) of the distance estimates are shown as a function of

the number of measurements N and the path length Lpath such

that the distance between two measurements equals Lpath/N .

In these simulations, the range measurements were modeled

as Gaussian variables with zero mean and standard deviation

σn = 5cm. The estimations were obtained using the Total

Least Squares algorithm using a single path for each anchor.

From this figure it follows that with a reasonable number

of measurements and path length, the proposed algorithm

is able to estimate the distance with centimeter accuracy.

Furthermore, it is observed that the RMSE decreases with

N as well as Lpath. The fact that a longer path provides

more accurate results can be understood by considering that

the latent variable aij also plays an important role in the

estimation, and that this variable is more accurately estimated

when the measured points cover a longer distance.

Next we want to investigate the effect of the direction of

the path on the estimation of the distances. If we vary the

angle α of the path of the CU with the line between the two

anchors (see Fig. 4), we observe from Fig. 6 that depending on

the length of the path, some angles provide better estimation

accuracy than others. However, it always holds true that the

worst performance is obtained when α = 180°. The best result

is generally found around α ≈ 80°.

As a general rule of thumb, the CU should follow paths that

are inside of the convex hull of the anchors as this minimizes

the probability of unfavorable angles.
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Figure 6. RMSE of the distance estimates as a function of the path angle α
using N = 30.

B. Experimental results

To validate the proposed anchor calibration technique, real

life experiments were performed with the P410 RCM ultra-

wideband (UWB) modules [10] from Timedomain Corp.

These modules perform ranging using a two-way time of

arrival (TW-TOA) protocol providing 5 cm accuracy under

line-of-sight conditions. These modules simply respond to

ranging requests. In our test setup we placed 4 UWB devices

at chest-height in the corners of a rectangular 5m×9m room to

serve as anchors. The actual anchor positions were obtained

by measuring the orthogonal distances to the walls with a

laser-based distance meter (up to 2mm accurate). The distance

measurements were are always with respect to the phase center

of the UWB antenna. One additional UWB device served as

the calibration unit and was connected to a microcontroller

that initiated ranging with the anchors and saved the resulting

measurements. A button connected to this microcontroller was

used to indicate the starting and ending point of a path. In total

15 calibration runs were made, where in each run, the system

administrator walked once towards every anchor with the CU

in his hands. With the P410 module, range measurements take

around 40ms such that on a path of 4m, walking at a speed

of 1m/s, a total of 25 measurements can be made to each

anchor. Due to varying path lengths and walking speed in

our tests, the number of measurements for each path was

between 20 and 28. Further, the P410 module provides a

flag to indicate if a measurement is subject to non-line-of-

sight (NLOS). Although we used this flag to discard NLOS

measurements, we have noticed that still some heavily biased

range-measurements slipped through.

In Fig. 7, the paths resulting from a single calibration run

are shown. Here the positions of the CU are estimated using

the range measurements and for each path a line is drawn

indicating the average alignment of the path. Even though the

system administrator walked towards the anchors without any
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guidance, it can be seen that the average alignments of the

paths are indeed (almost) towards their corresponding anchor.

Furthermore, we observe in Fig. 7 that the anchor positions

estimated with the proposed method are very close to the

actual anchor positions. Notice that this figure also provides

good visual information about the quality of the calibration.

For example curving paths or widely spread points around the

path both indicate that the quality of the calibration is poor

and that the process should be redone.

In Fig. 8, the cumulative distribution function of the estima-

tion error on the distance is shown for the different algorithms

proposed in the paper. It can be seen that the L1-norm cost

function performs better than both the Total Least Squares

and the Least Squares. Even though the UWB device gives an

indication of a possible NLOS condition, it is by no means

correct all the time and the more robust L1-norm is capable

of dealing with these outliers, resulting in better performance.

Finally, we estimated the 2D anchor positions using the

WLS algorithm for each calibration run. As inter-anchor

distances we used the L1-norm estimated distances as these

yield the best estimation. For 15 calibration runs, we obtained

an average positioning error of 8cm.

IV. CONCLUSIONS

In this paper we propose a fast method to accurately esti-

mate the position of the anchors using only range information.

The calibration procedure simply requires that the system

administrator walks towards the anchors. With this approach,

the complete distance matrix for the anchors can be estimated

and the relative positions of the anchors can be obtained.

This procedure provides a practical alternative for anchor

calibration whenever the anchors cannot range themselves

(either by hardware restrictions or due to obstructions causing

NLOS). Both simulations and real-life experiments validate
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Figure 8. Cumulative Distribution Function for the distance error.

the proposed calibration method and using publicly available

hardware, an average error of 8 cm was found.
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