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Abstract: The advancement of artificial intelligence has brought visible-light positioning
(VLP) to the forefront of indoor positioning research, enabling precise localization without
additional infrastructure. However, the complex interplay between light propagation
phenomena and environmental factors in indoor spaces presents significant challenges for
VLP systems. Additionally, the pose of the light-emitting diodes is prior unknown, adding
another layer of complexity to the positioning process. Dynamic indoor environments
further complicate matters due to user mobility and obstacles, which can affect system
accuracy. In this study, user movement is simulated using a constructed dataset with
systematically varied receiver positions, reflecting realistic motion patterns rather than
real-time movement. While the experimental setup considers a fixed obstacle scenario, the
training and testing datasets incorporate position variations to emulate user displacement.
Given these dataset characteristics, it is crucial to employ robust positioning techniques
that can handle environmental variations. Conventional methods, such as received signal
strength (RSS)-based techniques, face practical implementation hurdles due to fluctuations
in transmitted optical power and modeling imperfections. Leveraging machine learning
techniques, particularly regression-based artificial neural networks (ANNs), offer a promis-
ing alternative. ANNs excel at modeling the intricate relationships within data, making
them well-suited for handling the complex dynamics of indoor lighting environments. To
address the computational complexities arising from high-dimensional data, this research
incorporates principal component analysis (PCA) as a method for reducing dimensionality.
PCA eases the computational burden, accelerates training speeds by normalizing the data,
and reduces loss rates, thereby enhancing the overall efficacy and feasibility of the proposed
VLP framework. Rigorous experimentation and validation demonstrate the potential of
employing principal components. Experimental results show significant improvements
across multiple evaluation metrics for a constellation comprising eight LEDs mounted
in a rectangular structure measuring a room dimension of 12 m × 18 m × 6.8 m, with a
photodiode (PD) receiver. Specifically, the mean squared error (MSE) values for the training
and testing samples are 0.0062 and 0.0456 cm, respectively. Furthermore, the R-squared
values of 99.31% and 94.74% for training and testing, respectively, signify a robust predic-
tive performance of the model with low model loss. These findings underscore the efficacy
of the proposed PCA-ANN regression model in optimizing VLP systems and providing
reliable indoor positioning services.

Keywords: visible light positioning (VLP); light-emitting diode (LED); received signal
strength (RSS); artificial neural network (ANN); principal component analysis (PCA)
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1. Introduction
The evolution of optical wireless communications (OWC) has revolutionized wireless

connectivity across a broad spectrum, from infrared to ultraviolet. Visible light communica-
tion (VLC) has emerged as a standout technology, offering immense potential for indoor
positioning and high-speed data transmission [1]. With the widespread use of light-emitting
diodes (LEDs) for illumination, integrating VLC capabilities into lighting infrastructure
has brought about improved efficiency and longevity [2]. VLC positioning techniques
include model-based and model-free methods. Model-based techniques, such as time-
of-arrival (ToA), time-difference-of-arrival (TDoA), angle-of-arrival (AoA), and received
signal strength (RSS) positioning, use mathematical models to estimate distances or angles
between transmitters (Tx) and receivers (Rx) [3,4]. These methods face challenges due to
mismatches between theoretical models and real-world conditions, such as non-Lambertian
radiation patterns, optical power fluctuations, unknown LED poses, reflections, blockages,
and shadowing [5,6]. Conversely, model-free techniques, like fingerprinting and proximity-
based methods, rely on empirical data [7]. Fingerprinting uses a database of measurements
taken at various positions, comparing real-time data to determine location. Although it
avoids some model-related issues, it struggles with maintaining an extensive and accurate
database in dynamic environments where lighting conditions change due to moving objects
or other factors. Proximity-based techniques estimate position by identifying nearby LEDs
but generally offer lower accuracy and are similarly affected by environmental changes.
Machine learning (ML) techniques extend model-free methods, particularly fingerprinting,
to handle dynamic scenarios better and improve data coverage and distribution, enhancing
the robustness and accuracy of indoor positioning systems [8]. These advancements in
VLC positioning reflect ongoing efforts to refine and optimize positioning technologies for
more reliable applications in various environments. To tackle these challenges, there is a
growing interest in leveraging machine learning (ML) techniques, notably artificial neural
networks (ANNs), which offer enhanced adaptability and resilience in real-world scenarios.
Various indoor positioning technologies have begun incorporating ML methods into their
localization engines to improve performance [9]. However, the existing approaches often
overlook the dynamic indoor environment and the influence of light propagation phe-
nomena and environmental factors on positioning accuracy. In their research, Long et al.
propose an indoor visible light positioning system using AI-driven point classification,
highlighting the limitations of traditional RSSI-based methods [8]. However, their method
does not adequately account for changes in light intensity due to obstacles, reflections,
and shadowing, leading to inaccuracies in positioning. Additionally, variations in LED
orientation and placement and fluctuations in optical power are insufficiently addressed,
compromising the system’s reliability. Long et al. suggest adopting AI algorithms with
faster convergence speeds and enhanced capabilities to improve the system. Our research
aims to advance VLP systems based on the work by Raes et al. [10]. Raes et al. previously
analyzed RSS-based VLP setups, comparing the multi-layer perceptron (MLP) to analytical
methods [11]. While their work demonstrated the potential of MLPs in positioning systems,
it did not integrate advanced dimensionality reduction techniques like principal component
analysis (PCA) into artificial neural networks (ANNs) to reduce the model complexity.
By incorporating PCA, we aim to capture significant data variances, thereby improving
model complexity, particularly in complex indoor environments. Additionally, Raes et al.’s
approach of using multiple less complex models for different regions (cells) may lead to
overfitting and higher positioning errors, highlighting the need for a more integrated and
robust approach. Dynamic indoor environments pose significant challenges for visible
light positioning systems, as user mobility, obstacles, and reflective surface alterations
introduce variability into received signals. This study addresses these challenges through
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the proposed PCA-ANN framework, which combines PCA for dimensionality reduction
and ANN for accurate regression. By isolating significant features and filtering noise, the
PCA-ANN model mitigates the impact of environmental variability, achieving robust and
precise positioning even under complex indoor conditions. The novelty of this study lies
in integrating PCA with ANN regression to enhance indoor VLP systems by reducing
computational complexity, minimizing overfitting, and improving predictive accuracy.
This hybrid approach addresses challenges in high-dimensional data and environmental
variability, setting a benchmark for precision and scalability in real-world VLP applications.

The paper follows this structure: Section 2 introduces the system model and commu-
nication channel characteristics. Section 3 discusses the neural network architecture and
learning algorithm. Section 4 presents simulation results and performance analysis. Finally,
Section 5 summarizes our contributions and concludes the work.

2. System Model
This paper presents the PCA-ANN regression model for an indoor visible light posi-

tioning system using intensity modulation and direct detection. The model aims to predict
the numerical output variable, i.e., the position, based on RSS measurements. Figure 1
illustrates the schematic representation of this system. The process begins with multiple
LEDs (transmitters, Tx) emitting visible light signals, which are received by a photodiode
(receiver, Rx) within its field of view (FOV). This results in RSS measurements that are col-
lected, labeled, and preprocessed for further analysis. To enhance efficiency and accuracy,
PCA is applied to reduce the dataset’s dimensionality while preserving essential features.
The dataset is then divided into two subsets: (i) Dataset 1 (training data), used to train
the ANN model offline and PCA is first applied to Dataset 1 to extract principal compo-
nents and streamline the dataset, and (ii) Dataset 2 (testing data), used in the online phase,
where the PCA transformation derived from Dataset 1 is applied to ensure consistency
and prevent data leakage. After preprocessing, the ANN is trained offline by optimizing
its weights, enabling real-time predictions during deployment. During the online phase,
the trained ANN model processes Dataset 2 and predicts the estimated receiver location
based on the learned patterns. This workflow ensures a strict separation between training
and testing datasets, guaranteeing reliable and unbiased model evaluation. Ultimately, the
estimated position is determined based on insights gained from the analysis.

Figure 1. Workflow of the PCA-ANN Regression Model for Indoor VLP.



Sensors 2025, 25, 1049 4 of 22

2.1. Communication Model

In this paper, we assume L LEDs are positioned at a height h above the observation
plane of the photodiode receiver (PD). Each LED l = 1, . . . , L emits an intensity-modulated
waveform with a distinct fundamental frequency fl . This modulation enables the differ-
entiation of light signals based on their respective frequencies. The intensity-modulated
waveform emitted by each LED is represented as

sl(t) =
Pt

2
[1 + sgn(sin(2π flt + ϕl))]. (1)

In this equation, sl(t) represents the transmitted signal, Pt is the optical power trans-
mitted by the LED, fl is the frequency transmitted by LED l, and ϕl is a random and
unknown phase offset that varies for each LED [12]. The PD receiver r(t) captures the sum
of the transmitted signals sl(t) and converts the optical signals into electrical signals, as
given by [13,14]

r(t) =
L

∑
l=1

αl Rpsl(t) + β + w(t), (2)

where Rp is the responsivity of the PD, L is the total number of LEDs, β is the DC contribu-
tion of ambient light sources, w(t) is the noise component, and αl is the channel attenuation,
expressed as

αl = f (dl , Ar, θl , γl). (3)

In (3), dl is the Euclidean distance between an LED l and the photodetector (PD), Ar is
the area of the photodetector at the receiver, θl is the inclination angle, and γl is the angle
of incidence at the PD [5,15].

In the existing literature, f (dl , Ar, θl , γl), which is represented by ul , is often modeled
mathematically based on a Lambertian radiation pattern [12]. This model assumes that
the emitted light intensity is proportional to the cosine of the angle from the normal,
simplifying the mathematical representation of the channel. However, real-world LEDs
often exhibit intensity patterns that deviate from the idealized Lambertian model because
of manufacturing imperfections and design considerations. These deviations are typically
characterized using luminous intensity distribution curves (LIDCs), which provide a
detailed representation of the emitted light’s angular intensity distribution. For instance,
most LEDs display lower intensity at wider angles than the Lambertian model predicts.
Such discrepancies can lead to a mismatch between the mathematical model and the true
channel characteristics, resulting in performance degradation in optical communication and
positioning systems. To avoid such a performance reduction, machine learning techniques
offer a compelling alternative. The model learns from data in machine learning rather
than relying solely on mathematical formulations. This data-driven approach enables the
model to capture complex relationships and adapt to variations in channel characteristics.
Considering the multivariate dependency of ul on variables such as the Euclidean distance
(dl), area (Ar) of the photodetector, angle of inclination (θl), and angle of incidence (γl),
it becomes evident that traditional mathematical models may not be able to capture the
intricacies of the channel. This motivates the application of principal component analysis
(PCA) in our research. PCA offers a systematic methodology for dimensionality reduction
while retaining the key features of the dataset [16]. Given the complex interplay of variables
influencing f (n), PCA enables us to distill the essential components of the data, thereby
facilitating a more concise representation of the channel characteristics. By leveraging
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PCA, we aim to address the challenges posed by the channel attenuation function f (n) and
contribute to enhanced performance and reliability in optical communication systems.

2.2. Principal Component Analysis (PCA)

PCA enhances ANN learning by reducing dimensionality by simplifying data into
orthogonal principal components. However, this reduction in complexity can come at the
cost of performance if dominant contributions are removed. To balance model complexity
and performance, selecting the optimal number of principal components is crucial. Figure 2
visually illustrates the flowchart for the PCA-ANN regression model, demonstrating the
integration of PCA in preprocessing data to improve the efficiency and learning outcomes
of the ANN.

Figure 2. PCA-ANN Flowchart.

In Algorithm 1, n observations represent the individual data points or instances in the
dataset X, each described by a row in the matrix. These observations encapsulate specific
measurements or attributes that characterize each data point. Conversely, p variables
denote the different intensities measured across all observations, typically represented as
columns in X. These variables collectively define the dataset’s dimensionality and complex-
ity. The algorithm utilizes X to preprocess the data by first normalizing it using mean and
standard deviation std_dev vectors calculated along the columns of X. Cov(X) represents
the covariance matrix of X, capturing relationships between variables. Eigenvalues λ and
eigenvectors µ of Cov(X) are extracted for principal component analysis (PCA), reducing
X’s dimensionality while retaining crucial variance information. Cumulative variance is an
array or list that contains cumulative variance values calculated from the eigenvalues of the
covariance matrix Cov(X). These cumulative variance values indicate the total variance ex-
plained by each successive principal component. The chosen threshold, 0.95, aims to retain
a significant portion of the variance in the original dataset while reducing its dimensionality.
Specifically, W is set to the smallest number of principal components needed to retain at
least 95% of the total variance, represented as min{k | cumulative_variance[k] ≥ 0.95}. This
notation means finding the smallest index k so that the cumulative variance up to the k-th
principal component is at least 95%. In other words, W is set to the principal components
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needed to retain at least 95% of the original dataset’s variance. The resulting transformed
data PCA_X is then fed into an ANN to reduce the complexity. Predictions from the ANN
are evaluated using mean squared error (MSE), and inverse-transformed to the original
scale using PCA_components, mean, and std_dev.

Algorithm 1 PCA-ANN Algorithm

Require: X—Data matrix of size n× p (n observations, p variables)
Ensure: Trained ANN with PCA preprocessing

1: Step 1: Normalize data
2: mean← calculate_mean(X, axis = 0)
3: std_dev← calculate_std_dev(X, axis = 0)
4: normalized_X ← X−mean

std_dev
5: Step 2: Compute Covariance Matrix
6: Cov(X)← 1

n−1 (normalized_XT · normalized_X)
7: Step 3: Compute Eigenvalues and Eigenvectors
8: [λ, µ]← eig(Cov(X))
9: Step 4: Determine the number of Principal Components

10: cumulative_variance← cumsum
(

λ
∑ λ

)
11: W ← min{k | cumulative_variance[k] ≥ 0.95}
12: Step 5: Perform PCA transformation
13: Select the top W eigenvectors (principal components)
14: PCA_components← µ[:, 0 : W]
15: Project the normalized data onto the principal components
16: PCA_X ← normalized_X · PCA_components
17: Step 6: Train ANN
18: trained_model ← train_ANN(PCA_X, labels)
19: Step 7: Evaluate model
20: predictions← trained_model.predict(PCA_X)
21: loss← calculate_MSE(predictions, labels)
22: Step 8: Inverse Transform the predicted output (if necessary)
23: predicted_output← inverse_transform(predictions, PCA_components, mean, std_dev)
24: return trained_model, loss, predicted_output

2.3. Artificial Neural Network Regression

In our system, we employ the ANN topology depicted in Figure 3, which consists
of an input layer, an output layer, and multiple hidden layers. Each node in our network
corresponds to a neuron, and matrices can represent the connections between neurons
across two layers. We require a topology characterized by robust synaptic connections for
precise positioning, ensuring that the combination of connection matrices is not sparse.
The functionality of the neural network is determined by the mathematical framework
illustrated in Equation (4).

y = g

(
N

∑
n=0

wN xN + b

)
(4)

In this context, g(x) represents the activation function, b represents the bias, w
represents the weights that encode the linear relationships in the connection matrices,
X = x1, . . . , xN represent the neuron inputs, and y = y1, . . . , yN is the output. Each layer of
the network intricately relies on its input, as depicted in Figure 3. The activation function
plays a crucial role in introducing non-linearity to the network’s dynamics, adjusting the
weighted sum from the input layer to the output layer across hidden layers [17]. When a
neuron surpasses a specific threshold, it activates and transmits information to the next
layer. Initially, all inputs traverse the input layer with random weights. The weighted sum
is computed by multiplying each weight by its corresponding input value and summing
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the results. Introducing a bias b into this weighted sum is critical, as the resulting value
undergoes the activation function. To dynamically adjust attributes of the neural network,
such as weights and learning rate [18], we are going to compare and select slightly better
optimization techniques in our results. This iterative process continues as activated neurons
are forwarded to subsequent layers, ultimately leading to the output layer where the final
prediction is generated.

Figure 3. ANN architecture and its mathematical structure.

3. Experimental Parameters
This section details experiments conducted using datasets from Raes et al. [11]. These

datasets encompass measurements taken in a single indoor setting, specifically a hallway
environment. Table 1 showcases the experimental system parameters. The experimental
setup, illustrated in Figure 4, features eight LEDs arranged in a rectangular formation
spanning 6 m by 12 m on the hallway ceiling, alongside various obstacles. To simulate real-
world conditions, obstacles in Figure 4 were placed at a height of 1.5 m, designed to partially
attenuate rather than completely block light signals. These obstacles introduce variations in
received signal strength, which is essential for evaluating positioning accuracy in dynamic
environments. The controlled inclusion of obstacles ensures the dataset captures realistic
challenges, improving model robustness. For the VLP receiver, a custom photodiode
module with a programmable system-on-a-chip (PSOC) was utilized.

Table 1. Experimental System Parameters [11].

System Parameters Parameter Value

Simulation Space

Room dimensions 12 m × 18 m
Room height 6.81 m
Receiver placement height 1.1 m
Distance between Tx and Rx 5.71 m
Dataset taken 5 cm inter-distance

Optical Transmitter

Number of LEDs 8
Dimension of LED grid 6 m × 12 m
LED power 25 W
LED bandwidth 3 MHz
Data rate 2 Mbps
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Table 1. Cont.

System Parameters Parameter Value

Optical Receiver

Photodiode area size 13 mm2

Transimpedance gain 40 k
DC-bias voltage 1.024 V
Low pass filter cut-off frequency 36 kHz
Sampling frequency 128 kHz
ADC range 2.048 V
ADC resolution 14-bit

Figure 4. Top view of the Experiment [11].

3.1. Datasets

The dataset utilized to evaluate the PCA-ANN model’s performance consists of
19,360 training samples and 16,771 testing samples, each representing the x and y co-
ordinates of the receiver’s position. The dataset includes RSS values collected from 8 LEDs,
with measurements in an experimental environment designed to simulate real-world con-
ditions. These conditions incorporate dynamic factors such as the movement of people,
shifting objects, and changes in obstacles, introducing variability reflective of practical
indoor scenarios. To ensure consistency, two distinct datasets were collected in the same ex-
perimental environment: Dataset 1, which contains 19,360 samples for training, and Dataset
2, which includes 16,771 samples for testing. These datasets were designed to maintain
the original feature distribution across both sets. Before applying PCA, partitioning was
conducted to preserve the integrity of the raw feature distribution and ensure compatibility
for subsequent model training and evaluation. The PCA-ANN model was trained using
the training set, while its performance was continually monitored on a validation set to
optimize learning and mitigate overfitting. Once training was completed, the testing set
was used to independently evaluate the model’s accuracy in predicting the receiver’s
position. This approach ensured a robust assessment of the PCA-ANN model’s ability to
leverage RSS values for precise coordinate estimation, even under dynamically varying
environmental conditions.

3.2. Pearson Correlation Coefficient

To emphasize the significance of PCA before training our dataset with ANNs, we
leverage the Pearson correlation coefficient (PCC) heatmap [19]. This visual tool serves
as a pivotal preparatory step, highlighting correlations between LED intensities and pose
coordinates within our visible light positioning system. By scrutinizing the PCC heatmap,
we discern intricate patterns and relationships among variables, which are essential for
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reducing dimensionality through PCA. Here, X represents input variables including times-
tamps and the intensities of eight lights, while Y denotes target variables consisting of pose
coordinates (posex, posey, poseyaw). The formula for rX,Y, i.e., the PCC between X and
Y, is

rX,Y =
∑n

i=1(Xi − X̄)(Yi − Ȳ)√
∑n

i=1(Xi − X̄)2
√

∑n
i=1(Yi − Ȳ)2

(5)

where rX,Y quantifies the correlation strength between X and Y, ranging from +1 to −1. A
value of +1 denotes a perfect positive linear correlation, −1 signifies a perfect negative linear
correlation, and 0 indicates no linear correlation between the variables. Understanding
rX,Y is pivotal as it offers quantitative insights into how variations in LED intensities
(represented by X) relate to changes in pose coordinates (represented by Y). This analysis
verifies data reliability and informs subsequent research steps, particularly the enhancement
of our visible light positioning system for improved accuracy and performance.

3.3. Performance Metrics

We use several metrics to measure accuracy, precision, and explanatory power to
evaluate the proposed PCA-ANN regression model’s performance. Among these, we have
the mean absolute error (MAE), mean squared error (MSE), and its root, the root mean
squared error (RMSE), which assesses precision by measuring the differences between the
predicted and actual values [20].

MAE =
1
m

m

∑
i=1
|ai − pi| (6)

MSE =
1
m

m

∑
i=1

(ai − pi)
2 (7)

RMSE =
√

MSE (8)

Here, m is the number of data patterns in the independent dataset, ai is the actual target
for data point i, and pi is the prediction of the target for data point i. Furthermore, the R-
squared (R2) value indicates the proportion of variance in the dependent variable explained
by the independent variables [21], and the explained variance score (EVS) quantifies the
proportion of variance in the target variable explained by the model [22].

R2 = 1− ∑n
i=1(ai − pi)

2

∑n
i=1(ai − ā)2 (9)

EVS = 1− Var(a− p)
Var(a)

(10)

Here, ei = ai − pi is the residual error between the actual value ai and predicted
value pi, Var(a− p) represents the variance of the residual error, and Var(a) denotes the
variance of the actual target values. Equations (6)–(10) define these metrics, enabling
rigorous evaluation.

4. Results and Discussion
In this section, we present the results of our analysis, focusing on the effectiveness

of our PCA-ANN-based approach in optimizing the visible light positioning system. We
compare dimensionality reduction techniques and explore the impact of various parameters,
such as optimizers, which adjust model weights to minimize loss, and learning rates, which
control the step size of weight updates to ensure efficient learning. Additionally, we
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examine the batch size [23], which refers to the number of training samples utilized in one
iteration of the training process, and epochs, which determine the number of complete
passes through the training dataset. Through optimizing these parameters, we aim to
enhance the system’s positioning accuracy and computational efficiency. We evaluate the
model’s predictive performance and analyze error metrics, including P50, which provides
the median error, and P95, which highlights performance in worst-case scenarios, offering
a comprehensive view of model accuracy.

4.1. PCA Analysis

VLP systems in dynamic indoor environments face challenges due to mobility, ob-
stacles, and environmental variability, which introduce noise and inconsistencies in RSS
measurements. To address these issues, experimental measurements in obstacle-rich set-
tings simulated real-world conditions. PCA was then employed to reduce the complexity of
high-dimensional data by isolating impactful features and mitigating noise. By preserving
essential patterns and discarding irrelevant information, PCA enhanced ANN training
efficiency and improved the system’s robustness to environmental changes, ensuring more
reliable and accurate positioning performance in dynamic environments. Referring to the
Pearson correlation coefficient section, we visualized the heatmap depicted in Figure 5,
encompassing nine features: the timestamp and eight intensity measurements (intensity 1
to intensity 8) and three positional measurements (posex, posey, poseyaw). The diagonal
elements exhibit a perfect correlation of 1, indicating that each feature is perfectly correlated
with itself. Notably, there are strong positive correlations between certain intensity measure-
ments, such as intensity 3 and intensity 4 (0.88) and intensity 6 and intensity 8 (0.75). These
strong correlations imply that these intensity measurements capture similar phenomena or
are influenced by the same factors. For instance, the intensity of LED 1 shows a positive
correlation with LED 2 (0.84) and LED 8 (0.45), reflecting their close spatial proximity and
collaborative illumination effects. Conversely, LED 1 exhibits a negative correlation with
LED 7 (−0.79) due to obstructed paths, indicating physical obstacles that hinder direct
illumination. These insights, visually represented in the Pearson correlation heatmap in
Figure 5 and further illustrated from a top view in Figure 4, lay the foundation for our
subsequent PCA. The heatmap effectively reveals the complex interrelationships between
features, identifying clusters of strongly correlated variables and significant positive or
negative correlations, which are essential for applying PCA before training an ANN.

Building on the findings from Figure 5, this study employed PCA for dimensionality
reduction. Table 2 presents the results of a PCA conducted on a dataset, summarizing
the explained variance by each principal component (PC), their eigenvalues, and both the
individual and cumulative variance contribution rates (CR and Cumulative CR). The first
principal component (PC1) accounts for 35.3% of the total variance with an eigenvalue of
2.757. Adding the second principal component (PC2), which explains an additional 32.8%
variance with an eigenvalue of 2.558, the cumulative variance reaches 68.1%. Including the
third component (PC3) brings the total to 85.4% with an eigenvalue of 1.350. The fourth
component (PC4) adds 11.1% variance, increasing the cumulative total to 96.4%, which
surpasses the 95% cutoff threshold we set for our analysis. This indicates that the first
four principal components are sufficient to capture over 95% of the total variance in the
dataset, making them a suitable choice for dimensionality reduction. This selection helps
to simplify the dataset while preserving most of the original information, facilitating more
efficient and effective modeling.
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Figure 5. Correlation strength of rX,Y between features.

Table 2. Explained Variance, Eigenvalues, and Contribution Rates.

PC Explained
Variance Eigenvalues CR (%) Cumulative CR

(%)
PC1 0.345 2.757 35.314 35.314
PC2 0.320 2.558 32.762 68.076
PC3 0.169 1.350 17.294 85.370
PC4 0.108 0.864 11.060 96.430
PC5 0.035 0.279 3.570 100.000

Table 2 presents the explained variance ratio for the first four principal components
(PCs), which meet the 95% cut-off threshold. A similar result is obtained for the total
variance, which is shown in Figure 6. Furthermore, here, four principal components
are required to have a total variance of over 90%. In other words, we can reduce the
dimensionality of the dataset from eight RSS measurements to four principal components
while retaining most of its variance. This simplification enhances the performance of ANN
by focusing on the most informative data aspects. Figure 7 compares data in its original
form with its transformed state after applying PCA. In the original data space plot, blue
dots represent observations based on two normalized features, forming a distinct arch-like
shape indicative of a non-linear relationship. This plot highlights the complexity and
structure of the raw data. In the component space (PCA) plot, red dots represent the same
observations transformed into a lower-dimensional space defined by x and y components.
This transformation simplifies the data, capturing the most significant variance while
retaining the underlying structure. The comparison illustrates PCA’s role in simplifying
complex data while preserving critical information.
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Figure 6. Cumulative explained variance ratio for the number of dimensions (PCA).

Figure 7. Original vs. Component Space.

4.2. Comparison of Dimensionality Reduction Techniques

Independent component analysis (ICA) and factor analysis (FA) are linear dimen-
sionality reduction techniques commonly applied in regression tasks, each with distinct
methodologies [24]. ICA focuses on decomposing a dataset into statistically independent
components, making it particularly useful for applications such as signal separation. In
contrast, FA models observed variables as linear combinations of underlying latent factors,
emphasizing the covariance structure of the data. While both techniques are effective
in specific domains, they are less efficient than principal component analysis (PCA) in
terms of variance capture and computational performance. As illustrated in Figure 8, PCA
consistently outperforms ICA and FA in reducing loss over 100 epochs when applied as a
dimensionality reduction method for a neural network model. PCA begins with a lower
initial loss of approximately 0.018 and quickly decreases to about 0.009 within the first
20 epochs. In comparison, ICA and FA start with slightly higher initial losses of approxi-
mately 0.019 and reduce more gradually, reaching 0.010 and 0.011, respectively, by the 20th
epoch. Over the full training period, PCA achieves a final loss of approximately 0.0085,
outperforming ICA (0.0095) and FA (0.0098).



Sensors 2025, 25, 1049 13 of 22

Figure 8. Dimensionality Reduction Technique Comparison.

This performance difference demonstrates that PCA achieves about a 10% lower final
loss compared to ICA and an approximately 13% lower final loss than FA. The faster
convergence and lower overall loss values underscore PCA’s superior ability to capture
variance, enabling it to extract more informative features for the neural network model.
Combined with its computational efficiency, PCA emerges as the preferred choice for
dimensionality reduction in this context, outperforming ICA and FA by significant margins
throughout the training process.

4.3. Effectiveness of PCA-ANN with Learning Rate

The learning rate is a hyperparameter in neural network training that determines the
step size for weight updates during optimization. It is essential to balance convergence
speed and stability, ensuring effective learning without overshooting or stagnating [25].
A high learning rate can cause instability, resulting in fluctuations or divergence, while
a low learning rate slows convergence or traps the model in suboptimal solutions [18].
Figure 9 shows the training loss over 100 epochs for a neural network trained with three
learning rates (0.0001, 0.001, and 0.01). Initially, all learning rates show a rapid decrease
in training loss, indicating effective initial learning. However, their behaviors diverge as
training progresses. A learning rate of 0.001 achieves the best balance between speed and
stability, stabilizing at the lowest training loss. This is because the moderate step size allows
the optimizer to make consistent progress toward the minima, navigating both sharp and
flat regions of the loss surface effectively. In contrast, a learning rate of 0.0001 results in
smaller weight updates, leading to slower progress and convergence at a higher loss value,
as the model struggles in flat regions or shallow gradients. Meanwhile, a learning rate
of 0.01 causes large weight updates that overshoot the minima, resulting in significant
fluctuations and difficulty in achieving convergence. These observations highlight the
importance of selecting an appropriate learning rate in the PCA-ANN framework. A
moderate learning rate of 0.001 ensures effective optimization by balancing step size and
stability, enabling smooth convergence. In contrast, excessively high or low learning
rates hinder the optimizer’s ability to navigate the loss surface efficiently, reducing the
model’s performance.
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Figure 9. Learning rate comparison.

4.4. Optimizer Selection

In this section, we compare the performance of various optimization algorithms,
including adaptive moment estimation(Adam), root mean square propagation (RMSProp),
Adagrad, and stochastic gradient descent (SGD), to determine which optimizer facilitates
quicker and more effective convergence during training. Optimizers are a crucial part
of the model training process, as they adjust the model parameters to minimize the loss
function, ultimately improving the model’s ability to learn from data and generalize to
new, unseen data. The optimization algorithm is applied during the training phase, after
initializing the model and setting up the architecture (in this case, the PCA-ANN model).
It operates in each iteration to adjust the weights and biases of the network in response
to the gradients calculated from the loss function, effectively driving the model toward
the optimal solution. Adam is particularly effective due to its adaptive learning rate and
momentum, which help it navigate the loss surface more efficiently [18]. RMSProp adapts
the learning rate based on the moving average of recent gradient magnitudes, making
it effective for handling non-stationary objectives. Adagrad, which adjusts the learning
rate based on gradient frequency, works well for sparse data by making larger updates
for infrequent parameters and smaller ones for frequent parameters. SGD, the most basic
optimization algorithm, uses the gradient of the loss function to update parameters based
on small mini-batches. Figure 10 illustrates the performance of these optimizers with
the MSE loss function across 100 epochs at a learning rate of 0.001. The results indicate
that Adam outperforms the other optimizers by achieving significantly lower MSE values,
particularly in the early stages of training. This is because Adam combines momentum,
which smooths the updates by incorporating past gradients, with adaptive learning rates,
allowing it to handle large and noisy gradients effectively. In the initial epochs, when
gradients are more volatile, Adam’s ability to adjust the step size dynamically ensures
faster convergence compared to other optimizers, such as SGD and Adagrad, which rely
on fixed or decaying learning rates. By maintaining stability in high-gradient regions
and avoiding oscillations in flat areas of the loss surface, Adam achieves both speed and
precision in optimization. This observation is consistent with Figure 10, where Adam’s
curve demonstrates the steepest initial drop in loss, stabilizing at the lowest final value. In
contrast, SGD exhibits the slowest convergence, maintaining relatively high loss values
throughout training. RMSProp and Adagrad show moderate performance, converging
faster than SGD but failing to match Adam’s efficiency. Although all optimizers eventually
converge to similar MSE values, Adam’s faster reduction in MSE highlights its efficiency
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in minimizing the loss function. As a result, Adam was selected for use in the PCA-ANN
model to ensure more efficient and effective optimization, ultimately enhancing model
performance and reducing training time.

Figure 10. Optimizer Comparison.

4.5. Batch Size Impact

The plot in Figure 11, illustrates the training loss (MSE) across epochs for different
batch sizes (16, 32, 64, and 128), highlighting how batch size influences the convergence
dynamics and the final performance. As the batch size increases, the loss curves become
smoother, with reduced variability and more stable convergence [26]. However, larger
batch sizes require more memory and computational resources, which can pose challenges
in constrained environments. Conversely, smaller batch sizes introduce greater variabil-
ity in gradient updates, aiding exploration of the loss surface and helping to find flatter
minima that generalize better [23]. However, this increased variability can lead to slower
and less consistent convergence due to noisier optimization. For our PCA-ANN model, a
batch size of 64 was selected as it strikes an effective balance between training stability and
efficient convergence. The plot shows that it provides smooth and steady convergence with
minimal fluctuations compared to smaller batch sizes such as 16 and 32, ensuring stable and
reliable gradient updates. It also avoids the poor generalization typically associated with
large batch sizes, like 128, which tend to converge to sharp minima. Additionally, a batch
size of 64 optimizes computational resource usage, making it suitable for our system con-
straints. This choice enables the model to achieve robust training performance and effective
generalization while maintaining convergence stability and computational feasibility.

4.6. Selection of Optimal Dropout Rate

Dropout is a regularization technique used in neural networks to prevent overfitting
by randomly deactivating a proportion of neurons during training. The dropout rate refers
to the fraction of neurons that are randomly set to zero during each training step. A higher
dropout rate deactivates more neurons, increasing the regularization effect, while a lower
rate retains more information in the network [27]. Based on the analysis of the dropout
rates shown in Figure 12, a dropout rate of 0.1 was selected as the optimal choice for our
PCA-ANN model. This decision was made because, among the tested rates (0.1, 0.2, and
0.3), the 0.1 rate consistently resulted in the lowest training loss over 100 epochs. It allowed
the model to generalize effectively without excessively discarding valuable information. As
the dropout rate increased to 0.2 and 0.3, stronger regularization was introduced, but this



Sensors 2025, 25, 1049 16 of 22

also led to higher training losses, particularly in the early epochs. This behavior suggests
that higher dropout rates hindered the model’s ability to capture important patterns in
the data. Since PCA already reduces dimensionality and minimizes noise, applying high
dropout rates on top of this was detrimental. These higher dropout rates restricted the
amount of information passed through the network, making it harder for the model to
learn important features. Thus, a dropout rate of 0.1 provided the best balance between
regularization and learning stability, promoting effective generalization while allowing the
network to retain its ability to capture meaningful patterns in the data.

Figure 11. Batch Size Performance.

Figure 12. Optimal dropout rate selection.

4.7. Hyperparameter Optimization

An extensive hyperparameter tuning process was performed to ensure optimal per-
formance of the PCA-ANN model. Various combinations of learning rate, batch size, and
dropout rate were tested to determine their impact on model accuracy and convergence
speed. The results of different hyperparameter configurations are summarized in Table 3.
The results indicate that a learning rate of 0.001, batch size of 64, and dropout rate of 0.1
achieved the lowest MSE of 0.005cm and the highest R-squared of 99.31%, making this
configuration the most optimal for training. Furthermore, increasing the dropout rate to
0.2 resulted in a slight decrease in performance, as seen in the increased MSE of 0.008 cm.
Notably, when the learning rate was increased to 0.01, model performance significantly
degraded, with an MSE of 0.095 cm. Similarly, reducing the batch size to 32 generally
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led to an increase in MSE and a slight reduction in the accuracy of the model, reinforcing
the importance of selecting an appropriate batch size. These comparisons highlight the
importance of hyperparameter tuning in maximizing model efficiency and accuracy, with a
careful balance between learning rate, dropout rate, and batch size to prevent overfitting
and underfitting.

Table 3. Impact of Hyperparameter Combinations on the PCA-ANN Model Performance.

Learning
Rate

Dropout
Rate Batch Size Mean Test

Score MSE R² Score

0.001 0.1 64 0.016 0.006 0.993
0.001 0.2 64 0.021 0.008 0.988
0.001 0.1 32 0.020 0.010 0.984
0.010 0.1 64 0.057 0.095 0.882
0.010 0.1 32 0.045 0.013 0.980
0.010 0.2 64 0.048 0.018 0.963

0.0001 0.1 64 0.031 0.010 0.986
0.0001 0.1 32 0.028 0.010 0.986

4.8. Model Evaluation

Table 4 presents the performance metrics for the ANN and PCA-ANN models evalu-
ated on training and testing datasets, as detailed in the performance metrics section. In the
training phase, the PCA-ANN model performs better with an R-squared value of 99.31%
compared to 97.14% for the ANN model. This indicates that our model explains a higher
proportion of the variance in the training data. Additionally, the model exhibits lower error
values across various metrics with an MSE of 0.0062 cm, MAE of 0.0532 cm, and RMSE of
0.0787 cm. In contrast, the ANN model shows an MSE of 0.0292 cm, MAE of 0.1124 cm, and
RMSE of 0.2225 cm. In the testing phase, the PCA-ANN model continues to outperform
the ANN model, achieving an R-squared value of 94.74% compared to 91.04% for the ANN
model. The error metrics also favor the PCA-ANN model, which has an MSE of 0.0456 cm,
MAE of 0.1456 cm, and RMSE of 0.1890 cm. In comparison, the ANN model records an
MSE of 0.0989 cm, MAE of 0.1567 cm, and RMSE of 0.2850 cm.

Table 4. Comparison of PCA-ANN and ANN Models.

Metrics PCA-ANN Train ANN Train PCA-ANN Test ANN Test

R-squared (%) 99.31 97.14 94.74 91.04
MSE (cm) 0.0062 0.0292 0.0456 0.0989
MAE (cm) 0.0532 0.1124 0.1456 0.1567
RMSE (cm) 0.0787 0.2225 0.1890 0.2850

Figure 13 shows the explained variance score (EVS) for the training and testing phases
of both models, highlighting the PCA-ANN model’s better predictive performance. EVS
measures how well the model explains the variability in the data, with higher values
indicating better model accuracy. The PCA-ANN model achieves an EVS of 99.71% for
training and 96.55% for testing, demonstrating strong data pattern recognition and predic-
tive accuracy. In comparison, the ANN model has slightly lower EVS values of 97.29% for
training and 91.80% for testing. These results confirm the PCA-ANN model’s enhanced
accuracy and reliability over the standard ANN model in both phases.
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Figure 13. Explained Variance Score Comparison.

4.9. Comparison of Actual and Predicted Values

The comparative plots in Figures 14 and 15 illustrate the performance of the PCA-
ANN model versus the traditional ANN model in predicting the test data set values. The
predictions of both models for the coordinates x and y are plotted alongside the normalized
actual values, which represent the ground truth values derived from the test dataset and
are scaled during pre-processing. In Figure 14, the actual values represent the ground
truth x coordinates obtained from the test dataset, which has been normalized during
pre-processing to ensure consistent scaling and compatibility with the model’s training
framework. These values are used as the benchmark for assessing the accuracy of the
model’s predictions. The predicted values are the output generated by the PCA-ANN
and ANN models, reflecting the estimated x coordinates based on the learned patterns
from the input data. The plot demonstrates that the PCA-ANN model aligns more closely
with the actual values compared to the ANN model, especially in regions with rapid
fluctuations, indicating its improved stability and accuracy in predicting test data. In both
figures, the PCA-ANN model consistently demonstrates smoother convergence toward the
actual values with fewer fluctuations than the ANN model. This indicates that PCA-ANN
captures patterns with greater stability, likely due to the dimensionality reduction provided
by PCA, which enhances generalization and reduces overfitting. For the y-coordinates
(Figure 15), the PCA-ANN predictions closely align with the actual values across most
data points, showing improved accuracy and reduced noise relative to the ANN model.
Similarly, for the x-coordinates (Figure 14), the PCA-ANN predictions exhibit a closer
match to the actual values, particularly in regions with rapid fluctuations. These results
validate the effectiveness of our model in enhancing predictive performance by balancing
accuracy and computational efficiency.

4.10. Comparison of PCA-ANN and MLP Cellular Model

The comparative analysis of the PCA-ANN and MLP Cellular models, proposed by
Raes et al. [11], is presented in Tables 5 and 6. The comparison highlights that while
both models share similar architecture (inputs, layers, and node configuration) and rely
on RSS for positioning, the PCA-ANN model significantly outperforms the MLP Cellular
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model regarding precision and scalability. By incorporating the principal component for
dimensionality reduction, the PCA-ANN model reduces complexity, prevents overfitting,
and enhances feature extraction. This results in a median error (P50) of 0.49 cm and a P95
error of 1.36 cm, compared to 4.3 cm and 16.6 cm, respectively, in the MLP Cellular model.
In addition, the PCA-ANN model utilizes a unified dataset and advanced optimization
techniques, such as the Adam optimizer with a learning rate of 0.001, ensuring faster
convergence and stability during training. In contrast, the MLP Cellular model requires
separate classifiers for each subspace, adding complexity and reducing scalability. More-
over, the higher parameter count of the PCA-ANN model (19,360 versus approximately
3218 in the MLP Cellular model) enables it to capture intricate relationships more effectively,
improving its predictive performance. Overall, the PCA-ANN approach represents a more
robust and scalable solution for visible light positioning, addressing the limitations inherent
in the cellular model.

Figure 14. Comparison of actual vs. predicted x-coordinates for the test dataset.

Figure 15. Comparison of actual vs. predicted y-coordinates for the test dataset.
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Table 5. Similarities Between PCA-ANN and MLP Cellular Models.

Model Property PCA-ANN Model MLP Cellular Model

Number of Inputs 8 8
Number of Hidden Layers 3 3
Nodes per Layer 64-32-16 64-32-16
Number of Hidden Nodes 112 112
Learning Type Supervised Supervised
Error Metric Euclidean Distance Euclidean Distance
Environment Size 12 m × 18 m 12 m × 18 m
Feature Source LED Signal Intensities LED Signal Intensities
LED Configuration Rectangular Grid (8 LEDs) Rectangular Grid (8 LEDs)
Receiver Device PD based PD based

Table 6. Comparison of PCA-ANN and MLP Cellular Models.

Aspect PCA-ANN Model MLP Cellular Model Key Advantage of PCA-ANN

Dimensionality Reduction PCA applied None Simplifies data, reducing complexity
and improving feature selection.

P50 Error (cm) 0.49 4.3 Reduces the median error by 88.3%,
showing significant precision.

P95 Error (cm) 1.36 16.6 Reduces the worst-case error by
91.8%, improving robustness.

Trainable Parameters 19,360 3218 Captures intricate patterns,
improving accuracy.

Optimizer Adam (LR: 0.001) Not specified Ensures faster and
stable convergence.

Dataset Unified dataset Divided by cells Simplifies training by eliminating the
need for separate datasets.

Classification None KNN (98.7%) Removes dependency on subspace
classifiers.

Scalability High Moderate
Scales better to larger or more
complex setups with
fewer adjustments.

Complexity Simple High Avoids the need for cell-specific
models and classifiers.

Overfitting Risk Low (due to PCA) Moderate Reduces overfitting by emphasizing
essential features.

Optimization Method PCA-enhanced ANN Direct MLP Balances complexity and accuracy
through preprocessing.

5. Conclusions
This study introduces a robust and scalable framework for indoor VLP systems by

integrating PCA with neural networks. The proposed model addresses critical challenges
in high-dimensional data processing and dynamic indoor environments, achieving higher
performance compared to traditional approaches. By leveraging PCA for dimensionality
reduction, the model preserves essential data features while significantly improving com-
putational efficiency and reducing overfitting risks. Experimental results demonstrate the
model’s remarkable accuracy, with R-squared values of 99.31% and 94.74% for training
and testing, respectively. Furthermore, the model achieves an MSE as low as 0.0062 cm
in training and 0.0456 cm in testing, along with substantial reductions in median (P50)
and worst-case (P95) errors compared to the MLP Cellular model. These findings confirm
the robustness and scalability of the PCA-ANN framework, which outperforms the MLP
cellular model in precision, error minimization, and operational simplicity. In addition to
performance gains, this study also provides a comprehensive analysis of hyperparameter
optimization. Through detailed tuning, the best configurations for the learning rate, batch
size, dropout rate, and optimization selection were identified. The findings confirm that the
Adam optimizer, with a learning rate of 0.001 and a dropout rate of 0.1, strikes the optimal
balance of stability, efficiency, and accuracy for training the model. This optimization
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ensures that the model is not only precise but also computationally efficient, contributing
to its scalability and adaptability in real-world applications. The proposed PCA-ANN
framework sets a new benchmark for precision and reliability in indoor VLP systems. It
offers robust predictive capabilities and seamless adaptability to varying conditions. This
work underscores the transformative potential of combining dimensionality reduction
techniques with machine learning to enhance the efficiency and scalability of positioning
systems. The promising results of this study open new avenues for further research. Future
work should explore extending the framework to support three-dimensional positioning
and incorporating advanced filtering methods like Kalman filtering for real-time tracking.
Additionally, investigating hybrid deep learning architectures that incorporate recurrent
or transformer-based networks could further enhance adaptability to dynamic environ-
ments. Integrating multimodal sensor data may also significantly improve localization
accuracy and system robustness. By establishing a scalable and precise VLP framework,
this study provides a critical foundation for future advancements in the field, facilitat-
ing the broader adoption of visible light communication and positioning technologies in
smart environments.
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