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pgf of the total number of per-slot arrivals

the fraction of class-1 load in the overall traffic load

the pgf of a busy period

the correlation coefficient between two stochastic variables
the covariance of two stochastic variables

delay of a random unit in steady-state

delay of a random class-j unit in steady-state

pgf of the delay of a random unit in steady-state

pgf of the delay of a random class-j unit in steady-state
the expected value operator

joint pgf of the number of class-1 and class-2 arrivals dur-
ing the service time of a class-j unit

the number of class-1 arrivals during the arrival-slot of a
tagged class-1 unit (slot £ by definition), served before this
tagged unit

the number of class-j arrivals during the arrival-slot of a
tagged class-2 unit (slot £ by definition), served before this
tagged unit

the total number of arrivals during the arrival-slot of a
tagged class-2 unit (slot k), served before this tagged unit

pgf of the number of class-1 arrivals during the arrival-slot
of a tagged class-1 unit, served before this tagged unit
joint pgf of the number of class-1 and class-2 arrivals dur-
ing the arrival-slot of a tagged class-2 unit, served before
this tagged unit
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F}Q)(z) pgf of the total number of arrivals during the arrival-slot
of a tagged class-2 unit, served before this tagged unit

iff if and only if

IP Internet Protocol

I(z) pgf of an idle period

Aj arrival rate of class-j units

Ar total arrival rate

iy mean service time of a class-j unit

NP Non-Preemptive

pef probability generating function

pmf probability mass function

PR Preemptive Resume

PRD Preemptive Repeat Different

PRI Preemptive Repeat Identical

Prob]. . ] the probability operator

QoS Quality of Service

Qj.k queue contents of class-j at the beginning of slot &

Q(z1,22) joint pgf of the steady-state queue contents of class-1 and
class-2 at the beginning of a random slot

P;j arrival load of class-j

oT total arrival load

P s the correlation coefficient of the steady-state class-1 and
class-2 system contents at the beginning of a random slot

85 service time of a class-j unit

S;(z) pgf of the service time of a class-j unit

t waiting time of a random unit in steady-state

t; waiting time of a random class-j unit in steady-state

T(z) pgf of the waiting time of a random unit in steady-state

T;(2) pgf of the waiting time of a random class-j unit in steady-
state

Uj steady-state system contents of class-j at the beginning of
a random slot

Uj ks system contents of class-j at the beginning of slot &

ur total steady-state system contents at the beginning of a
random slot

U ko total system contents at the beginning of slot &

Uk (21, 22) joint pgf of the system contents of class-1 and class-2 at the
beginning of slot &

U(z1,22) joint pgf of the steady-state system contents of class-1 and
class-2 at the beginning of a random slot

Uj(2) pgf of the steady-state system contents of class-j at the be-
ginning of a random slot

Ur(z) pgf of the total steady-state system contents at the begin-
ning of a random slot

v sub-busy period initiated by a unit
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sub-busy initiated by a class-j unit

pgf of a sub-busy period initiated by a unit

pgf of a sub-busy period initiated by a class-j unit
steady-state unfinished work of class-j at the beginning of
a random slot

joint pgf of the steady-state unfinished work of class-1 and
class-2 at the beginning of a random slot

number of class-2 arrivals during a sub-busy period initi-
ated by a random unit

number of class-2 arrivals during a sub-busy period initi-
ated by a class-j unit

pgf of the number of class-2 arrivals during a sub-busy
period initiated by a unit

pgf of the number of class-2 arrivals during a sub-busy
period initiated by a class-j unit
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Samenvatting

S.1 Inleiding

S.1.1 Wachtlijnen en buffers

Wachtlijnen maken deel uit van het dagelijks leven. Zo bv. kunnen we wacht-
liinfenomenen observeren op autowegen, in supermarkten, .... Wachtlijsten
in ziekenhuizen is een ander voorbeeld. Algemeen kunnen we een wacht-
lijnproces definiéren als het wachten alvorens het verkrijgen van een zekere
bediening.

Specifiek in telecommunicatienetwerken worden buffers gebruikt om infor-
matie op te slaan die niet onmiddellijk naar haar bestemming kan verstuurd
worden. Dit kan b.v. optreden doordat informatie van verschillende ingangs-
liinen gemultiplexeerd wordt op één uitgangslijn, informatie van een snelle
ingangslijn moet getransporteerd worden naar een tragere uitgangslijn, ....
Zonder buffers zou daardoor (te veel) informatie verloren gaan.

De entiteiten die aankomen in het wachtlijnsysteem, duiden we in het alge-
meen met de benaming eenheden aan doorheen dit proefschrift.

S.1.2 Belang van het wachtlijn- of buffergedrag

Het wachtlijngedrag is een belangrijk onderzoeksonderwerp. B.v., bij het ont-
werpen van nieuwe wegen kan het voordelig zijn om vooraf uit te zoeken
of een zeker ontwerp al dan niet aanleiding zal geven tot (grote) wachtlijnen
(files) en/of - als er een aantal mogelijke ontwerpen zijn - welk ontwerp de
kortste files veroorzaakt.

In het geval van een wachtlijst voor operaties kan het zijn dat sommige ingre-
pen zo vlug mogelijk moeten gebeuren wegens levensgevaar voor de patiént.
Het is dus belangrijk om de wachttijden te bestuderen zodat nodeloze sterf-
gevallen voorkomen kunnen worden.

In telecommunicatienetwerken tenslotte, is de manier waarop een buffer zich
gedraagt cruciaal voor de prestatie van het netwerk, aangezien de prestatie en
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de bedieningskwaliteit (Engels: Quality of Service of QoS) gerelateerd zijn aan
dit buffergedrag. Informatie kan b.v. verloren gaan doordat een buffer vol is,
of eenheden kunnen te veel vertragingstijd oplopen doordat ze te lang moeten
wachten in de netwerkknooppunten alvorens verder gezonden te worden. De
gevolgen voor de gebruikers zijn afhankelijk van de applicatie die zij gebrui-
ken. Zo zijn lange vertragingstijden niet acceptabel voor reéle-tijds-applicaties
(Engels: real-time applications) - zoals telefonie - maar meestal wel aanvaard-
baar voor data-applicaties (b.v. het versturen van bestanden). Omgekeerd zal
verlies van informatie tot op zekere hoogte aanvaardbaar zijn voor telefonie
terwijl dit onaanvaardbaar is voor de meeste data-applicaties.

S.1.3 Toevalsveranderlijken

Om het buffergedrag te bestuderen, definiéren we eerst een aantal ingangs-
en uitgangsveranderlijken. De ingangsveranderlijken beschrijven de karakte-
ristieken van het inkomende verkeer en worden bekend verondersteld door-
heen dit proefschrift. De uitgangsveranderlijken beschrijven het buffergedrag
en zijn dus te analyseren. Aangezien de verkeerskarakteristieken van een on-
zekere natuur zijn, definiéren we deze veranderlijken als toevalsveranderlijken.
Elke veranderlijke wordt gekenmerkt door een probabiliteitsdistributie.

S.1.4 Analysetechnieken

Er zijn verschillende technieken om buffergedragingen te analyseren. Ze zijn
ruwweg in te delen in vier verschillende categorieén: de analytische methode,
de numerieke methode, simulaties en experimenten. Bij de eerste twee wor-
den systeemvergelijkingen (uitgangsveranderlijken i.f.v. ingangsveranderlij-
ken) opgesteld en deze worden respectievelijk analytisch en numeriek opge-
lost. Bij de laatste twee worden respectievelijk een computerversie en een
ware versie van het desbetreffende (buffer)systeem geconstrueerd en worden
de nodige resultaten bekomen door metingen uit te voeren.

Deze methoden hebben alle hun eigen voor- en nadelen. Het voordeel van
de analytische methode is dat de athankelijkheid van de prestatie van de ver-
schillende ingangsparameters meestal onmiddellijk duidelijk is. Het grote na-
deel van deze techniek is dat er meestal gebruik moet gemaakt worden van
een vereenvoudigd wiskundig model zodanig dat het probleem analytisch
oplosbaar is. De voor- en nadelen van de experimentele techniek zijn juist
het tegenovergestelde, terwijl de numerieke techniek en de simulatie-aanpak
- qua voor- en nadelen - tussen beide andere technieken in liggen.

In dit proefschrift zullen we gebruik maken van een analytische methode
gebaseerd op probabiliteitsgenererende functies (Engels: probability generating
functions of pgf’s) om het desbetreffende wachtlijnmodel te analyseren.
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S.1.5 Verschillende types verkeer

In vele wachtlijnstudies wordt aangenomen dat alle verkeer van hetzelfde ty-
pe is. Het meeste verkeer is echter heterogeen van nature. Het verkeer kan
dus opgesplitst worden in verschillende klassen, zowel naar karakteristieken
als naar vereisten. Verkeerskarakteristieken kunnen inderdaad verschillend
zijn (monotoon verkeer t.o.v. grillig verkeer, eenheden van constante lengte
t.o.v. eenheden van variabele lengte, ...). Ten tweede kunnen ook de vereis-
ten verschillen, bv., verschillende verliesvereisten, verschillende vertragings-
tijdvereisten, .... Een veelgebruikte classificatie in multimedianetwerken is
dan ook reéle-tijds-verkeer t.o.v. niet-reéle-tijds-verkeer.

S.1.6 Schedulering van verschillende types verkeer

Als het verkeer (0.m.) geclassificeerd is op basis van vereisten, kunnen ver-
schillende types van verkeer op verschillende manieren ‘behandeld” worden
in de buffersystemen. Zo b.v. kunnen de eenheden worden opgedeeld naarge-
lang hun vertragingsgevoeligheid en kan verkeer van een vertragingsgevoe-
lige klasse (gemiddeld gezien) voorrang verkrijgen op vertragingsongevoelig
verkeer wat betreft het verzenden. In de Engelstalige tekst (sectie 1.6) worden
een aantal van deze ‘scheduleringsdisciplines’ besproken. In dit proefschrift
lichten we er één uit en analyseren deze grondig, nl., de prioriteitsdiscipline
(Engels: priority discipline). Bij deze discipline wordt het verkeer verdeeld
over een aantal klassen met verschillende prioriteit en eenheden van een be-
paalde klasse kunnen alleen maar bediend worden als er geen eenheden van
een klasse met hogere prioriteit aanwezig zijn.

S.1.7 Het wachtlijnmodel

We beschrijven de karakteristieken van het wachtlijnmodel dat we doorheen
dit proefschrift gebruiken. De modellering kan opgesplitst worden in 3 delen,
nl., de modellering van buffersysteem zelf, de modellering van het aankomstpro-
ces en de modellering van het bedieningsproces.

Het buffersysteem

We analyseren een discrete-tijd buffersysteem met twee klassen, één bedienings-
station, een oneindige bufferlengte en een prioriteitsdiscipline. Het bedienings-
station staat in voor de bediening van de eenheden. Eenheden die niet on-
middellijk kunnen verzonden worden, worden gebufferd. Aangezien we een
discrete-tijd systeem analyseren, nemen we aan dat alle toevalsveranderlijken
enkel discrete (niet-negatieve) waarden kunnen aannemen. De buffer is on-
eindig groot verondersteld, wat er op neerkomt dat er geen eenheden verlo-
ren kunnen gaan. Bediening kan enkel aanvangen op slotgrenzen. Daardoor



4 Samenvatting

kan de bediening van een eenheid ten vroegste starten bij het begin van het
slot na zijn aankomstslot. Het verkeer is verondersteld onderverdeeld te zijn
in 2 klassen. De prioriteitsdiscipline zelf zal op het einde van deze subsectie
in meer detail beschreven worden.

Het aankomstproces

Het aankomstproces wordt gekarakteriseerd door het aantal aankomsten per
slot. Het aantal aankomsten van klasse-j gedurende het k-de slot wordt aan-
geduid met a; 1, j = 1,2. Doorheen het proefschrift wordt aangenomen dat
de aantallen aankomsten van de verschillende klassen onafhankelijk en iden-
tisch gedistribueerd (Engels: independent and identically distributed of i.i.d.)
zijn van slot-tot-slot en deze worden met de volgende gezamenlijke probabi-
liteitsgenererende functie gekarakteriseerd:

Az, 22) £E [27" 257" ] . (S.1)

Belangrijk aan deze gezamenlijke pgf is dat ze incorporeert dat de aantallen
aankomsten van de twee klassen in 1 slot stochastisch afhankelijk kunnen
zijn. Dit soort aankomstprocessen wordt ook wel gestructureerde input (Engels:
structured input) genoemd. Uit deze gezamenlijke pgf kunnen de marginale
pgf’s van het aantal aankomsten van klasse-1 en klasse-2 berekend worden:

Aj(z) £E[z%*] (S.2)
=A(21,22)|2j=2,2=1,i%5> (5.3

j = 1,2, alsook de pgf van het totaal aantal aankomsten in een slot:

Ap(z) 2E[zt kT 02k] (S4)
=A(z,z2). (S.5)

De (gemiddelde) aankomstintensiteit van klasse-j wordt genoteerd met \; en
kan gevonden worden uit de corresponderende pgf als A’,(1). De totale aan-
komstintensiteit At is dan de som van de klasse-1 en klasse-2 aankomstinten-
siteiten. In dit proefschrift zullen we - als voorbeeld - doorlopend een (tweedi-
mensionaal) binomiaalverdeeld aantal per-slot aankomsten van beide klassen
veronderstellen, i.e.,

N

2
m%@:1+z%@—n : (S.6)
j=1

Dit is het aankomstproces dat waargenomen wordt aan de ingang van een
willekeurige uitgangsbuffer in een N x N schakelelement met uitgangsbuf-
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. N X N . .
. schakelelement .

Nl

Figuur S.1: Een N x N schakelelement met uitgangsbuffers

fers (zie Figuur S.1), waarbij de aankomstprocessen aan de ingangen van
het schakelelement gekenmerkt worden door (onafhankelijke en identische)
Bernoulli-processen met parameter A7 - een aankomende eenheid is van
klasse-j met probabiliteit A; /Ar, j = 1,2 - en waarbij alle eenheden onafhan-
kelijk en uniform naar de uitgangen geschakeld worden.

Het bedieningsproces

Het bedieningsproces heeft de volgende (algemeen gemaakte) beperkingen:
de bedieningstijden zijn onderling onafhankelijk en bedieningstijden van een-
heden van klasse-j zijn identisch gedistribueerd. Noteren we de bedienings-
tijd van een willekeurige klasse-j eenheid als s;, dan is de pgf van de klasse-j
bedieningstijden gegeven door

S;(z) £E[z%]. (S5.7)

De gemiddelde bedieningstijd van een klasse-j eenheid - genoteerd als p; - is
gegeven door S7(1). De aankomstbelasting van klasse-j is dus gegeven door
pj = Aju; en de totale aankomstbelasting pr is de som van de klasse-1 en
klasse-2 belasting.

De prioriteitsdiscipline

Tenslotte bespreken we de prioriteitsdiscipline. Er wordt aangenomen dat
klasse-1 eenheden voorrang hebben op de klasse-2 eenheden bij de bedie-
ning. Binnen één klasse nemen we aan dat de discipline FCFS (Engels: First
Come First Served) is, wat betekent dat de eenheden van een specifieke klas-
se bediend worden in volgorde van aankomst. Dus als het bedieningsstation
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vrijkomt, wordt een klasse-1 eenheid bediend en enkel als er geen klasse-1
eenheden zijn, kan de bediening van een klasse-2 eenheid aanvangen. Er
kunnen twee soorten prioriteitsdisciplines onderscheiden worden, nl., de niet-
preémptieve prioriteitsdiscipline en de preémptieve prioriteitsdiscipline. Bij de niet-
preémptieve (Engels: non-preemptive of NP) prioriteitsdiscipline worden be-
dieningen nooit onderbroken. Dus als er klasse-1 eenheden aankomen ge-
durende een klasse-2 bediening, kan deze bediening niet onderbroken wor-
den en moeten de klasse-1 eenheden (ten minste) wachten tot het einde van
die bediening. Bij de preémptieve prioriteitsdisciplines daarentegen, wordt
een klasse-2 bedieningstijd wel onderbroken door nieuwe klasse-1 aankom-
sten. Bij deze laatste kunnen nog drie soorten onderscheiden worden, nl., de
preémptieve met voortzetting (Engels: preemptive resume of PR), de pre¢mptieve
met verschillende herhaling (Engels: preemptive repeat different of PRD) en de
preémptieve met identieke herhaling (Engels: preemptive repeat identical of PRI)
prioriteitsdisciplines. Bij de eerste soort wordt de onderbroken bediening
voortgezet na de onderbreking, of m.a.w., enkel het nog niet bediende gedeel-
te van de eenheid moet na de onderbreking nog bediend worden. In de twee
preémptieve disciplines met herhaling moet de volledige eenheid opnieuw be-
diend worden. Bij deze met verschillende herhaling kan de bedieningstijd
veranderen na een onderbreking - er wordt dan een nieuw monster van de
klasse-2 bedieningstijden genomen - terwijl bij deze met identieke herhaling
de bedieningstijden identiek blijven na een onderbreking. Dus een eenheid
heeft telkens dezelfde bedieningstijd bij elke bedieningspoging.

Merk tenslotte op, dat als de bedieningstijden van klasse-2 deterministisch
gelijk zijn aan 1 slot, alle besproken prioriteitsdisciplines identiek zijn. Dit is
wegens het feit dat een klasse-2 eenheid het systeem sowieso verlaat op het
einde van zijn bedieningsslot, of er nu klasse-1 eenheden aankomen of niet
gedurende dat slot.

S.1.8 Typische resultaten
Toevalsveranderlijken

Voor de verschillende wachtlijnmodellen bestudeerd in dit proefschrift, wor-
den telkens een aantal toevalsveranderlijken gedefinieerd en geanalyseerd.
Deze toevalsveranderlijken worden allen in regime geanalyseerd in dit proef-
schrift. Een eerste is de systeembezetting bij het begin van een willekeurig slot.
Dit is het aantal eenheden dat aanwezig is in het systeem bij het begin van dit
slot. Hierbij worden zowel de systeembezettingen van beide klassen afzon-
derlijk - genoteerd met «; en uy - gedefinieerd als de totale systeembezetting
UT = U + Us.

Gerelateerde toevalsveranderlijken zijn de wachtlijnbezettingen bij het begin
van een willekeurig slot, i.e., het aantal eenheden in de wachtlijn bij het be-
gin van een willekeurig slot. Het verschil tussen de systeembezettingen en de
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wachtlijnbezettingen is dat bij de eerste de eenheid die in bediening is wordt
meegerekend, terwijl dit niet het geval is bij de laatste. Ook de wachtlijnbe-
zetting kan per klasse gedefinieerd worden - genoteerd met ¢; en ¢ - alsook
voor de totale wachtlijn - genoteerd met ¢r.

Een derde soort veranderlijke is het onvoltooid werk. Het totale onvoltooid
werk bij het begin van een slot wr is gedefinieerd als het aantal slots nodig
om de bediening van alle eenheden in het systeem bij het begin van dat slot af
te werken, waarbij men aanneemt dat er geen nieuwe eenheden meer zouden
aankomen. Het onvoltooid werk van klasse-j, w;, (j = 1,2) is dan het aantal
slots van dit totale onvoltooid werk dat gespendeerd wordt aan bedieningen
van klasse-j eenheden.

Tenslotte definiéren we nog de vertragingstijd en de wachttijd. De vertragings-
tijd van een eenheid wordt gedefinieerd als het aantal slots dat deze zich in het
buffersysteem bevindt, terwijl de wachttijd het aantal slots is dat de eenheid
zich in de wachtlijn bevindt. De bedieningstijd maakt dus deel uit van de ver-
tragingstijd terwijl deze geen deel uitmaakt van de wachttijd. We definiéren
dus zowel de klasse-j vertragings- en wachttijd - respectievelijk genoteerd als
d; ent; - alsook de vertragings- en de wachttijd van een willekeurige (klasse-1
of klasse-2) eenheid - respectievelijk d en ¢.

In deze Nederlandstalige samenvatting zullen we enkel ingaan op de analyse
van de systeembezettingen en vertragingstijden, maar in het Engelstalig deel
is er ook op de analyse van de andere gedefinieerde toevalsveranderlijken
(meestal kort) ingegaan.

Probabiliteitsgenererende functies (pgf’s)

In dit proefschrift maken we veelvuldig gebruik van probabiliteitsgenereren-
de functies. We zullen - voor de verschillende modellen - telkens de tweedi-
mensionale pgf’s berekenen van de klasse-1 en klasse-2 systeembezettingen
bij het begin van een willekeurig slot in regime. Uit deze tweedimensionale
pgf’s kunnen dan de marginale pgf’s van de toevalsveranderlijken berekend
worden, alsook de pgf van de som van beiden (of dus de pgf’s van de totale
systeembezetting, totale wachtlijnbezetting en totaal onvoltooid werk respec-
tievelijk). Verder zullen we de pgf’s van de vertragingstijden en wachttijden
van klasse-1, klasse-2 en willekeurig geselecteerde eenheden berekenen.

Momenten

Uit de verkregen pgt’s kunnen we uiteindelijk de effectieve prestatiematen
berekenen, te beginnen met de momenten van de verschillende toevalsveran-
derlijken. De gemiddelde waarde en variantie van een veranderlijke X met
pgf X (#) zijn respectievelijk gelijk aan

E[X] =X'(1) (5.8)
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Var[X] =X"(1) + X'(1) — (X'(1))% (S.9)

Dus door het afleiden van de genererende functies en het evalueren in z = 1
kunnen alle (centrale) momenten van de toevalsveranderlijken - waarvan de
genererende functies berekend zijn - gevonden worden. Verder kunnen van
toevalsveranderlijken waarvan de gezamenlijke genererende functie gevon-
den is de kruismomenten berekend worden. Zo worden b.v. de covariantie
en de correlatiecoéfficiént van twee toevalsveranderlijken X; en X5, met ge-
zamenlijke genererende functie X (z1, 2z2), respectievelijk gegeven door

Cov[X1, X] 2E[(X1 — E[X,))(Xs — E[Xa]) (5.10)
_82X(217 22) / ’
= 5n05 o - X1(1)X5(1) (5.11)
Corr[ X, X,] & —oV1X1 X2 (5.12)

/Var[X ] Var[X,]

Massafuncties en staartprobabiliteiten

Een nog belangrijkere prestatiemaat is de probabiliteitsmassafunctie (Engels:
probability mass function of pmf) van een toevalsveranderlijke X:

z(n) = Prob[X = n], (5.13)

voor n = 0,1,.... Merk op dat de pgf X(z) van X niets anders is dan de
z-getransformeerde van de pmf z(n), i.e.,

X(z) = Z x(n)2". (S.14)

Omgekeerd worden deze z(n) uit X (z) gevonden als:

1d"X(2)
n! dz"

x(n) =

: (S.15)
z=0

Dus eens X (z) berekend is, kan d.m.v. deze laatste formule x(n) (voor alle
n) in principe berekend worden. Aangezien we echter meestal geinteresseerd
zijn in de z(n) voor grote n, is dit geen praktisch werkbare formule, wegens
het feit dat X (z) n maal moet afgeleid worden voor de berekening van z(n).
Daarom worden in de bestaande literatuur meestal benaderende technieken
gebruikt die exact zijn voor n — oo (de zogenaamde staartprobabiliteiten). In
dit proefschrift zullen we veelvuldig gebruik maken van enkele theorema’s,
b.v., het theorema van Darboux (theorema 1.1 in de Engelstalige tekst), die de
staartprobabiliteiten geven als (een deel van) het gedrag van de pgf’s in hun
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dominante singulariteit(en) (dit zijn de singulariteiten met kleinste norm) ge-
kend is. Merk op dat 1 van die dominante singulariteiten op de positieve reéle
as ligt. In de literatuur wordt meestal verondersteld dat dit de enige dominan-
te singulariteit is. We hebben doorheen dit proefschrift deze veronderstelling
ook gemaakt.

In dit proefschrift worden de staartprobabiliteiten van de relevante toevals-
veranderlijken berekend voor aankomstprocessen en bedieningsprocessen die
aan bepaalde voorwaarden voldoen (die er meestal op neerkomen dat de
(marginale) pgt’s en hun afgeleiden naar oneindig moeten gaan voor z gelijk
aan hun convergentiestraal). Deze voorwaarden zijn voldaan voor de meeste
‘normale” aankomst- en bedieningsprocessen, maar indien dit niet zo is, zijn
de gebruikte technieken meestal uitbreidbaar.

S.1.9 Overzicht van dit proefschrift

We beéindigen deze inleidende sectie met een kort overzicht (van het Neder-
landstalig deel) van dit proefschrift. In de volgende sectie bespreken we het
geval van vaste bedieningstijden van 1 slot voor alle eenheden. Aangezien
de klasse-2 eenheden vaste bedieningstijden hebben van 1 slot, hoeven we in
dit geval dus geen opsplitsing te doen van de prioriteitsdisciplines. We zul-
len de invloed van de aankomstkarakteristieken op de prestatiematen nagaan
via enkele numerieke voorbeelden. In sectie S.3 bespreken we hoe de niet-
preémptieve prioriteitsbuffer, de preémptieve prioriteitsbuffer met voortzet-
ting en de preémptieve prioriteitsbuffer met verschillende en identieke herha-
ling geanalyseerd kunnen worden, als de bedieningstijden van de pakketten
algemeen gedistribueerd zijn (en eventueel verschillend voor beide prioriteits-
klassen). We tonen d.m.v. een aantal numerieke voorbeelden ook de invloe-
den van en de verschillen tussen de verschillende disciplines aan. Tenslotte
besluiten we deze Nederlandstalige sectie en belichten kort enkele mogelijke
uitbreidingen.

S.2 Deterministische bedieningstijden van 1 slot

In eerste instantie hebben we een model bestudeerd waarbij de bedienings-
tijden van beide klassen deterministisch gelijk zijn aan één slot. Dit is een
model dat veelvuldig gebruikt wordt in discrete-tijd wachtlijnmodellen, aan-
gezien het enerzijds het eenvoudigste model is voor de bedieningstijden en
aangezien het anderzijds in de praktijk vaak voorkomt dat alle eenheden de-
zelfde bedieningstijd hebben. In een telecommunicatiecontext b.v., wordt dit
soort model gebruikt om wachtlijngedragingen in ATM (Asynchronous Trans-
fer Mode) netwerken te bestuderen. In ATM netwerken zijn de cellen - in ATM
worden de eenheden aangeduid door cellen - allen van dezelfde lengte en de
tijd nodig om een cel te verzenden wordt als slotlengte genomen.
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Discrete-tijd prioriteitssystemen met bedieningstijden van één slot en geen
correlatie tussen de aankomstprocessen van de verschillende prioriteitsklas-
sen zijn bestudeerd door Hashida and Takahashi [1991], Schormans et al.
[1991], Takine et al. [1994b], Choi et al. [1998a], Shakkottai and Srikant [2001],
Xabier Albizuri et al. [2003] en Mehmet Ali and Song [2004], waarbij de
verschillende artikels zowel verschillen in de modellering van het aankomst-
proces als in de gebruikte oplossingstechnieken en behaalde resultaten.

Discrete-tijd prioriteitssystemen met bedieningstijden van één slot en correla-
tie tussen de aankomstprocessen van de verschillende prioriteitsklassen zijn
geanalyseerd in [Sidi and Segall 1983, Chang and Harn 1992, Khamisy and
Sidi 1992, Laevens and Bruneel 1998, Walraevens and Bruneel 1999] en [Wal-
raevens et al. 2003c], waarbij in al deze artikels de pgf-methode gebruikt is,
maar waarbij er onderling verschillen zijn in het aantal bedieningsstations en
in de behaalde resultaten.

Alhoewel dit initieel bestudeerde model - met bedieningstijden gelijk aan één
slot - een speciaal geval is van het model bestudeerd in [Laevens and Bruneel
1998] - waarin een prioriteitsbuffer met meerdere bedieningsstations geanaly-
seerd is - en van de verdere modellen bestudeerd in dit proefschrift - waarbij
meer algemene bedieningstijden aangenomen worden - vinden we het nuttig
om de analyse van dit model in dit proefschrift uitvoerig te beschrijven. Dit
geeft ons de kans om de technieken die we doorheen het proefschrift gebrui-
ken vooreerst uit te leggen voor een vrij eenvoudig model. Verder geeft dit
eenvoudig model ons ook de kans om de (pure) invloed van het aankomst-
proces op de prestatiematen te bestuderen, aangezien het aankomstproces de
enige ‘stochastische input’ is in dit model. De analyse van dit model is het
onderwerp van het tweede hoofdstuk in het Engelstalige gedeelte.

S.2.1 Berekening pgf’s
Systeembezettingen

Allereerst wordt de gezamenlijke pgf U(z1, 22) van de systeembezettingen van
klasse-1 en klasse-2 bij het begin van een willekeurig slot in regime berekend,
door uit te gaan van de systeemvergelijkingen (systeembezetting bij begin van
een slot i.f.v. de systeembezetting bij het begin van het vorige slot en de nieu-
we aankomsten gedurende dit laatste slot). Dit werkt aangezien de bedie-
ningstijden gelijk zijn aan één slot. Daardoor vormen de systeembezettingen
van klasse-1 en klasse-2 bij het begin van opeenvolgende slots een Markov ke-
ten of m.a.w. deze toevalsveranderlijken bij het begin van een slot zijn gekend
als we diezelfde toevalsveranderlijken kennen bij het begin van het vorige slot
- alsmede de ingangsveranderlijken (in dit geval zijn dit het aantal klasse-1 en
klasse-2 aankomsten gedurende het vorige slot). U(z1, z2) wordt dan gevon-
den, door onder meer gebruik te maken van Rouché’s theorema (zie Appen-
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dix) en de normalisatievoorwaarde (U(1, 1) = 1). We verkrijgen uiteindelijk

A(z1,22) (21 — Y (22))(22 — 1)
(21— A(21,22)) (22 — Y (22))

U(z1,22) =(1 = Ar) (S5.16)

waarbij
Y(2) £ A(Y(2), 2). (8.17)

Belangrijk hierbij is dat Y'(z) enkel impliciet gedefinieerd is (voor algemene
aankomstprocessen). Daardoor is U(z1, z2) niet expliciet berekend, maar we
tonen aan dat dit geen probleem vormt om de prestatiematen te berekenen
(zie verder). De gezamenlijke pgf U(z1,22) is vervolgens het uitgangspunt
van alle verdere berekeningen. Zo b.v. zijn hieruit de marginale pgf’s van de
klasse-1, klasse-2 en totale bufferbezettingen eenvoudig te vinden.

Vertragingstijden

Verder worden de pgf’s van de vertragingstijden van klasse-1 en klasse-2
cellen (afzonderlijk) berekend. Dit gebeurt door de vertragingstijden van
een willekeurige klasse-1 cel of willekeurige klasse-2 cel uit te drukken i.f.v.
de systeembezettingen bij het begin van hun aankomstslots en deze te z-
transformeren. Bij de klasse-2 vertragingstijd voeren we dan de notie van
de fundamentele periode (Engels: sub-busy period) in. Deze is ruwweg gede-
finieerd als het aantal slots dat nodig is om het aantal wachtende cellen die
bediend moeten worden v66r een bepaalde klasse-2 cel met één te verminde-
ren. Merk op dat deze fundamentele periode niet noodzakelijk gelijk is aan
1 aangezien klasse-1 cellen die aankomen terwijl de klasse-2 cel zich in de
wachtlijn bevindt voor deze cel bediend worden. Uiteindelijk verkrijgen we
de volgende pgf’s voor de klasse-1 en klasse-2 vertragingstijden:

:1 — )\1 Z(Al(Z) — ].)

Di() == (5.18)
Dy(z) =1 _A;T z‘f é;v(j; (_V‘(/Z()Z)) , (5.19)

met
V(z) = 244 (V(2)), (5.20)

de pgf van de fundamentele periodes. Merk op dat V'(z) - net als Y (z) - enkel
impliciet gedefinieerd is.
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S.2.2 Berekening prestatiematen

Zoals in de inleiding besproken kunnen uit de behaalde pgf’s de momenten
en staartprobabiliteiten van de verschillende toevalsveranderlijken berekend
worden. Het enige overblijvende probleem is het feit dat impliciet gedefinieer-
de functies voorkomen in de pgf’s van de klasse-2 toevalsveranderlijken. We
bespreken kort het effect hiervan op de berekening van momenten en staart-
probabiliteiten.

Momenten

Bij de berekening van de momenten moeten de genererende functies een aan-
tal maal afgeleid worden en vervolgens geévalueerd worden in z = 1. Aange-
zien Y (z) en V(z) pgf’s (blijken te) zijn, zijn deze gelijk aan 1 in z = 1. Doordat
we de expliciete waarde van deze functies dus weten voor z = 1, kunnen we
ook alle afgeleiden van deze functies, geévalueerd in 1, expliciet berekenen.
We besluiten dus dat de berekeningen van de momenten uit de pgf’s geen
probleem vormen.

Staartprobabiliteiten

Wat de berekening van de staartprobabiliteiten betreft, gaan we eerst in op de
staartprobabiliteiten van de toevalsveranderlijken waarbij zich geen impliciet
gedefinieerde functies bevinden (vooral de “klasse-1 toevalsveranderlijken”).
Noteren we de pgf van een toevalsveranderlijke met X (z). Deze heeft een
enkelvoudige dominante pool z, op de positieve reéle as (> 1). Deze pgf is
dus in de buurt van deze pool benaderend te schrijven als

K

)
Zyx — %

X(z) =

(S.21)

waarbij K berekend wordt door de limiet van X(z) te berekenen voor z —
Z.. Doordat we het benaderende gedrag van de pgf in zijn dominante pool
kennen, kunnen we de staartprobabiliteiten berekenen - gebruik makende van
Darboux’s theorema - en we verkrijgen het volgende geometrische staartgedrag

z(n) ~Kz;" 1, (5.22)

met z(n) de probabiliteitsdistributie horende bij X (z). Deze benadering wordt
beter naarmate n groter is en is exact voor n — oo.

De staartprobabiliteiten berekenen van een toevalsveranderlijke wiens pgf im-
pliciet gedefinieerd is, Y'(z) b.v., is gecompliceerder. Dit is vooral omdat deze
functies doorgaans dominante singulariteiten hebben die geen geisoleerde po-
len zijn. In hun dominante singularteit blijven deze functies zelf eindig, terwijl
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hun afgeleiden er oneindig worden. Dit punt is een vertakkingspunt. Gebrui-
ken we Y (z) hier verder als voorbeeld, dan kunnen we deze pgf in de buurt
van haar dominante singulariteit zp schrijven als

Y(2) &Y (z25) — Ky (25 — 2)"/2, (5.23)

waarbij Ky gevonden wordt door Y (z) en zijn afgeleiden te evalueren in zp.
Opnieuw gebuik makend van Darboux’s theorema vinden we het volgende
niet-geometrische gedrag voor de distributie behorende bij Y (z2):

Ky |z _3/9 _n
y(n) S el 3/223 . (5.24)

Uiteindelijk kunnen de staartprobabiliteiten van de toevalsveranderlijken be-
rekend worden wiens pgf’s een impliciet gedefinieerde functie - b.v. Y (2) -
bevatten. Noteren we zo een pgf opnieuw met X (z). Deze heeft dan twee
singulariteiten die een rol spelen, nl. een enkelvoudige pool - opnieuw ge-
noteerd met z, - en het vertakkingspunt zp van de impliciet gedefinieerde
functie. Drie gevallen kunnen zich dan onderscheiden, nl., z, is dominant,
Zy = zp is dominant en zp is dominant. In deze drie gevallen kan de gene-
rerende functie X (z) in de buurt van zijn dominante singulariteit geschreven
worden als

K®
als z, dominant
Ze — 2
X(2) = K® S.25
(2) — als z, = zp dominant ( )
(2p — 2)1/2

X(z5) — K® (25 — 2)'/? als zp dominant,

waarbij de K (i = 1,2, 3) kunnen berekend worden door de limiet van X (2)
voor z gaande naar zijn dominante singulariteit te bepalen. Door Darboux’s
theorema te gebruiken worden de staartprobabiliteiten gevonden:

KW zon-1 als z, dominant

K(Q)n—l/szn
— "B alsz, =z dominant
x(n) ~ VTZB (5.26)

K®)p=3/2,n

2\/7/zB

We besluiten dus dat de invloed van een impliciet gedefinieerde functie in de
uitdrukking van een pgf is dat het staartgedrag niet langer noodzakelijkerwijs
geometrisch is.

als zp dominant.
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Figuur S.2: Gemiddelde systeembezettingen versus de totale aankomstintensiteit

S.2.3 Numerieke voorbeelden

In deze paragraaf zullen we kort de invloed van enkele parameters op de
prestatiematen tonen. We zullen dit doen a.d.h.v. het schakelelement met uit-
gangsbuffers zoals eerder vermeld (zie Figuur S.1). De gezamenlijke pgf van
het aantal klasse-j aankomsten (j = 1,2) aan een willekeurige uitgangsbuf-
fer is gegeven door (S.6). We definiéren « als de fractie klasse-1 belasting van
de totale belasting (in dit model is dit gelijk aan A\;/Ar). Zonder andere ver-
melding veronderstellen we NV - het aantal ingangen van het schakelelement -
steeds gelijk aan 16.

Figuren S.2 en 5.3 tonen de gemiddelde waarden en varianties van de sys-
teembezettingen van klasse-1 en klasse-2 als functies van de totale aankomst-
intensiteit Ay voor verschillende waarden van «. We hebben deze groothe-
den ook uitgezet voor een FIFO discipline i.p.v. een prioriteitsdiscipline voor
a = 0.5. Merk op dat de gemiddelde waarden en varianties van de buffer-
bezettingen van beide klassen in dit geval gelijk zijn. Uit deze figuren kan
duidelijk de invloed gezien worden van de prioriteitsdiscipline: de gemiddel-
de waarde en variantie van de klasse-1 systeembezetting worden gereduceerd
door de prioriteitsdiscipline, terwijl het tegengestelde geldt voor de klasse-2
cellen, en dit vooral bij een hoge aankomstintensiteit.

Figuur S.4 toont de correlatiecoéfficiént p,,,, van de klasse-1 en klasse-2 sys-
teembezettingen bij het begin van een slot als een functie van Ap voor verschil-
lende waarden van « (alsmede diezelfde correlatiecoéfficiént als de discipline
FIFO is en = 0.5). py, 4, is licht negatief voor kleine Ay, maar wordt positief



S.2 Deterministische bedieningstijden van 1 slot 15

0 0.2 0.4 0.6 0.8 1

Figuur S.3: Varianties van de systeembezettingen versus de totale aankomstintensiteit

voor grotere Ar. De reden daarvoor is dat er twee tegenwerkende effecten
optreden. Het eerste is de negatieve correlatie tussen het aantal aankomsten
van klasse-1 en klasse-2 in een slot (aangezien het aantal ingangen van het
schakelelement eindig is) die doorgegeven wordt aan de correlatie tussen de
systeembezettingen. Dit effect is vooral belangrijk bij lage aankomstintensitei-
ten aangezien er dan zo goed als geen buffering optreedt. De correlatie tussen
de bufferbezettingen is dan zo goed als het directe gevolg van de correlatie
tussen het aantal klasse-1 en klasse-2 aankomsten binnen een slot. De tweede
invloed is de prioriteitsdiscipline zelf: als A; en Ay toenemen, komen er steeds
meer cellen aan en de aanwezigheid van klasse-1 cellen verhindert de bedie-
ning van klasse-2 cellen, waardoor de correlatie positief wordt: hoe groter de
klasse-1 systeembezetting, hoe groter de klasse-2 systeembezetting. Merk op
dat als Ay — 1 de buffer van klasse-2 onstabiel wordt en de systeembezetting
van klasse-2 naar oneindig gaat (onafhankelijk van de klasse-1 systeembezet-
ting). Daardoor gaat p,,, ., naar 0.

Figuur S.5 toont de gemiddelde klasse-1 en klasse-2 vertragingstijden als func-
ties van Ar voor verschillende waarden van . Opnieuw werd ook de vertra-
gingstijd getoond in het geval van een FIFO discipline (die aanleiding geeft tot
gelijk gedistribueerde vertragingstijden voor klasse-1 en klasse-2 in dit speci-
fiek geval). Het is duidelijk dat de gemiddelde klasse-1 vertragingstijd gere-
duceerd wordt, terwijl de gemiddelde klasse-2 vertragingstijd stijgt als gevolg
van de prioriteitsdiscipline. Dit is natuurlijk precies waarom een prioriteits-
discipline wordt ingevoerd. Tenslotte kunnen we ook opmerken dat zowel
de gemiddelde klasse-1 als klasse-2 vertragingstijden stijgen met stijgende «,
of m.a.w., dat de prioriteitsdiscipline het best werkt als het aantal cellen die
prioriteit krijgen zo klein mogelijk gehouden wordkt.
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Figuur S.4: Correlatiecoéfficiént van de klasse-1 en klasse-2 systeembezettingen versus
de totale aankomstintensiteit

Figuur S.5: Gemiddelde vertragingstijden versus de totale aankomstintensiteit
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Figuur S.6: Invloed van de tweede-orde momenten van het aankomstproces op de
gemiddelde systeembezettingen

In Figuur S.6 worden de gemiddelde systeembezettingen van klasse-1 en
klasse-2 getoond als functies van Ay voor o« = 0.25 en voor verschillende
waarden van N (het aantal ingangen van het bestudeerde schakelelement).
Door N te variéren worden de tweede-orde karakteristieken - varianties en
covarianties - van de klasse-1 en klasse-2 aankomsten in een slot gevarieerd.
Wanneer N stijgt, neemt de variantie van de klasse-1 en klasse-2 aankom-
sten toe en wordt de covariantie minder negatief. Daardoor stijgen ook de
gemiddelde systeembezettingen van klasse-1 en klasse-2 (zie figuur) en de-
ze toename is vooral belangrijk in het geval van de gemiddelde klasse-2
systeembezetting en wanneer N klein is (de stijging als het aantal schakelele-
mentingangen van 2 naar 4 gaat is b.v. een stuk groter dan wanneer deze van
16 naar oo gaat).

Tenslotte toont Figuur S.7 de staartprobabiliteiten van de klasse-1 en klasse-2
vertragingstijden voor A\; = 0.4 en A\, = 0.1,0.21 en 0.4. De A, zijn zodanig
gekozen dat de drie gedragingen van de staartprobabiliteiten voor de klasse-
2 vertragingstijden gerepresenteerd zijn, nl. respectievelijk niet-geometrisch
gedrag, het transitiegedrag en geometrisch gedrag. Aangezien de staartpro-
babiliteiten benaderingen zijn (voor eindige n) hebben we deze gevalideerd
door de distributies te berekenen uit simulaties (aangegeven door de marke-
ringen in de figuur). Deze tonen aan dat de benaderende waarden heel dicht
tegen de exacte waarden liggen.
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Figuur S.7: Staartprobabiliteiten van de klasse-1 en klasse-2 vertragingstijden voor een
aantal combinaties van klasse-1 en klasse-2 aankomstintensiteiten

S.3 Algemene bedieningstijden

In het vervolg van dit proefschrift veronderstellen we dat de klasse-1 en
klasse-2 bedieningstijden willekeurige distributies hebben. Deze kunnen te-
vens verschillend zijn, i.e., de distributie van de bedieningstijden van klasse-1
eenheden kan verschillend zijn van deze van de klasse-2 eenheden.

In hedendaagse multimedia pakketgebaseerde telecommunicatienetwerken
b.v., hebben de eenheden doorgaans niet allemaal dezelfde lengte. Het mo-
del met constante bedieningstijden van één slot is dan ook te restrictief om de
prestatiematen in deze netwerken te analyzeren. Prioriteitsdisciplines in de-
ze multimedianetwerken zijn een belangrijk onderzoeksonderwerp. In [Xiao
and Ni 1999] wordt bv. een prioriteitsdiscipline voorgesteld in het gedifferen-
tieerde bedieningsmodel (Engels: differentiated service model). Hierbij wordt
verkeer van één klasse (de Premium Bedieningsklasse) een hogere prioriteit
gegeven over het andere verkeer. We zullen in deze sectie de pakketgebaseer-
de terminologie overnemen en de eenheden "pakketten” noemen.

Zoals in subsectie S.1.7 vermeld is, kunnen verschillende soorten priori-
teitsdisciplines gedefinieerd worden wanneer de klasse-2 bedieningstijden
meer dan één slot kunnen bedragen, nl. de niet-preémptieve (NP) priori-
teitsdiscipline, de preémptieve prioriteitsdiscipline met voortzetting (PR), de
preémptieve prioriteitsdiscipline met verschillende herhaling (PRD) en de
preémptieve prioriteitsdiscipline met identieke herhaling (PRI). Bij de NP pri-
oriteitsdisciplines kan de bediening van eenheden niet onderbroken worden,
terwijl bij de PR, PRD en PRI prioriteitsdisciplines nieuw aankomende klasse-
1 eenheden een aan de gang zijnde klasse-2 bediening wel onderbreken. Bij
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de PR prioriteitsdiscipline wordt de onderbroken bediening van de klasse-2
eenheid voortgezet, terwijl deze herhaald wordt bij de PRD en PRI discipli-
nes. Het verschil tussen deze laatste twee is dat de herhaalde bediening een
nieuwe monsterwaarde aanneemt bij de PRD discipline terwijl deze identiek
blijft bij de PRI prioriteitsdiscipline. Deze vier prioriteitsdisciplines zijn elk
op hun beurt geanalyzeerd in dit proefschrift. In het Engelstalig gedeelte van
dit proefschrift zijn de analyses en berekeningen van de prestatiematen te
vinden. In hoofdstuk 3 hebben we de analyse van de NP prioriteitswachtlijn
beschreven, in hoofdstuk 4 de analyse van de PR prioriteitswachtlijn en in
hoofdstuk 5 de analyses van de PRD en PRI prioriteitswachtlijnen.

Discrete-tijd wachtlijnen met een prioriteitsdiscipline en zonder correlatie in
de aankomstprocessen van de verschillende prioriteitsklassen zijn bestudeerd
door o.a. Rubin and Tsai [1989], Chen and Guérin [1991], Mukherjee et al.
[1995], Choi et al. [1997], Lee et al. [1998], Wang et al. [2000], Lee [2001], Lee
et al. [2003], Fiems et al. [2004] en Fiems [2004]. In [Rubin and Tsai 1989] zijn
de (gemiddelde) wacht- en vertragingstijden geanalyzeerd in NP en PR pri-
oriteitswachtlijnen gebruik makend van pgft’s. ATM schakelelementen met
buffers aan de ingang en een PR prioriteitsdiscipline zijn bestudeerd in [Chen
and Guérin 1991] en [Lee et al. 1998]. In [Choi et al. 1997] is dit ook bestu-
deerd alsmede het geval dat een NP prioriteitsdiscipline gebruikt wordt i.p.v.
een PR prioriteitsdiscipline. In [Mukherjee et al. 1995] wordt een PRI (of PRD)
prioriteitssysteem met constante bedieningstijden (van meerdere slots) geana-
lyseerd. De lage prioriteitsbuffer wordt bestudeerd d.m.v. een wachtlijnmodel
met bedieningsonderbrekingen. Wang et al. [2000] berekenen de gemiddelde
vertragingstijden in een NP prioriteitswachtlijn en deze worden gebruikt voor
de prestatie-analyse van een ring netwerk met meerdere kanalen. Lee [2001]
en Lee et al. [2003] analyseren respectievelijk een PR en een NP prioriteits-
wachtlijn gebruik makend van pgf’s. Tenslotte bestuderen Fiems et al. [2004]
en Fiems [2004] de prestatiematen van de lage prioriteitsklasse in PR, PRD en
PRI prioriteitswachtlijnen. Dit wordt gedaan a.d.h.v. een wachtlijnmodel met
bedieningsonderbrekingen.

Verder zijn er een aantal discrete-tijd wachtlijnmodellen geanalyzeerd met
correlatie in de aankomstprocessen van de verschillende prioriteitsklassen,
nl. o.a. door Takahashi and Hashida [1991] en Walraevens et al. [2000b,c,a,d,
2001, 2002a,b, 2003a,b, 2004b]. In al deze artikels wordt gebruik gemaakt van
pgf’s. Takahashi and Hashida [1991] berekenen de gemiddelde vertragingstij-
den van de verschillende prioriteitsklassen in een NP en PR prioriteitswacht-
lijn, gebruik makend van vertragingstijdcycli. De analyses in deze sectie zijn
gebaseerd op [Walraevens et al. 2000b,c,d, 2002a, 2003b] - waarin NP priori-
teitswachtlijnen geanalyseerd zijn -, op [Walraevens et al. 2000a, 2001, 2002b,
2004b] - waarin PR prioriteitswachtlijnen bestudeerd zijn - en op [Walraevens
et al. 2003b] - waarin een PRD prioriteitswachtlijn aan bod komt. De behaalde
resultaten voor de PRI prioriteitswachtlijn zijn nog niet gepubliceerd.

In deze sectie bespreken we hoe we de vier prioriteitswachtlijnen met algeme-
ne bedieningstijden geanalyseerd hebben. Deze zijn in het Engelstalig gedeel-
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te van het proefschrift één voor één bestudeerd. In dit Nederlandstalig gedeel-
te richten we ons op de verschillen tussen de analyses van deze 4 wachtlijnen
alsmede op de verschillen in hun prestatiematen.

S.3.1 Bespreking van de gebruikte methodes

Aangezien de bedieningstijden van de pakketten willekeurig gedistribueerd
zijn, vormen de systeembezettingen van beide klassen bij het begin van op-
eenvolgende slots niet langer een Markov keten. Of m.a.w., de kennis van de
systeembezettingen bij het begin van een willekeurig slot (samen met het aan-
tal aankomsten van beide klassen in dat slot) is niet genoeg informatie om de
distributie van de systeembezettingen te kennen bij het begin van het volgend
slot. De oplossing bestaat erin nieuwe toevalsveranderlijken te definiéren zo-
dat een Markov keten kan opgesteld worden. Er zijn twee mogelijke manieren
om een Markov keten op te bouwen en deze worden beide in de volgende pa-
ragrafen besproken.

De eerste mogelijkheid is de systeembezettingen van beide klassen te be-
schouwen bij het begin van specifiek gedefinieerde slots i.p.v. bij het begin
van willekeurige slots. De op deze manier geconstrueerde Markov keten
wordt een ingebouwde Markov keten (Engels: embedded Markov chain) genoemd,
aangezien de Markov keten ingebouwd is in de keuze van de speciefieke tijd-
stippen. Het gebruik van deze methode beperkt zich niet tot prioriteitswacht-
liinen en zelfs niet tot discrete-tijd wachtlijnen, maar wordt voor allerhande
wachtlijnanalyses toegepast. Een veel gebruikte methode is bv. de systeem-
bezettingen eerst te analyzeren op opeenvolgende vertrektijdstippen (als deze
een Markov keten vormen) en de systeembezetting op willekeurig bepaalde
tijdstippen te berekenen uit deze op vertrektijdstippen.

De tweede mogelijkheid om een Markov keten op te bouwen is het definiéren
van bijkomende toevalsveranderlijken bij het begin van alle slots (naast de
bufferbezettingen van beide klassen), zodanig dat de systeembezettingen van
beide klassen en deze bijkomende toevalsveranderlijken bij het begin van op-
eenvolgende slots een Markov keten vormen. Deze techniek wordt de bijko-
mende veranderlijke techniek genoemd (Engels: supplementary variable technique)
en wordt - volgens o.a. Chaudhry and Templeton [1983] - toegeschreven aan
Kosten. Deze techniek wordt veelvuldig in discrete tijd gebruikt aangezien
het grote voordeel van discrete-tijd analyses net het beschouwen van opeen-
volgende slots is. In [Bruneel 1993] b.v., wordt een FIFO buffer met één klasse
en algemene bedieningstijden op deze manier geanalyseerd.

In dit proefschrift hebben we beide methoden gebruikt. De eerste methode
hebben we toegepast op wachtlijnen met een NP prioriteitsdiscipline, terwijl
we de bijkomende veranderlijke techniek gebruikt hebben om de PR, PRD en
PRI prioriteitswachtlijnen te bestuderen. Deze keuzes zijn natuurlijk niet toe-
vallig. Het definiéren van specifieke slots zodat de systeembezettingen van
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Figuur S.8: Monster van de tijdsas om de locatie van de startslots te tonen

beide klassen bij het begin van opeenvolgende van deze slots een Markov ke-
ten vormen, is een stuk eenvoudiger/natuurlijker voor het NP geval dan voor
de andere gevallen. Dit komt doordat bij de NP prioriteitsdiscipline geen be-
dieningstijden onderbroken worden. Daardoor is het aantal slots tussen twee
opeenvolgende slots waar een bediening start gelijk aan de lengte van een be-
dieningstijd en bevat de buffer bij het begin van deze specifiek gedefinieerde
slots enkel “complete” pakketten (voor meer details zie verder). Aangezien
bij de drie andere prioriteitsdisciplines de bedieningen van klasse-2 pakket-
ten onderbroken kunnen worden, is het definiéren van zulke specifieke slots
niet meer zo eenvoudig als bij het NP geval. Het definiéren van bijkomen-
de toevalsveranderlijken bij het begin van alle slots daarentegen zodanig dat
deze samen met de systeembezettingen van beide klassen bij het begin van
opeenvolgende slots een Markov keten vormen, is een vrij eenvoudige zaak
(zoals we verder zullen aantonen). Merk wel op dat het daarom niet nood-
zakelijk onmogelijk is om de verschillende prioriteitswachtlijnen ook op de
andere manier te analyseren.

S.3.2 Berekeningen van de pgf’s
NP prioriteitsdiscipline

We introduceren de notie van startslots in dit model als volgt: startslots zijn
gedefinieerd als die slots bij het begin van welke de bediening van een nieuw
pakket kan starten. Merk op dat uit deze definitie direct volgt dat slots bij
het begin van welke het systeem geen pakketten bevat startslots zijn. In Fi-
guur S.8 wordt een voorbeeld van een tijdsas getoond met aanduiding van de
startslots.

De systeembezettingen van beide klassen bij het begin van opeenvolgende
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startslots vormen een Markov keten. Inderdaad, de systeembezettingen van
klasse-1 en klasse-2 bij het begin van het [ + 1-ste startslot kunnen geschreven
worden als functies van de systeembezettingen van klasse-1 en klasse-2 bij het
begin van het [-de startslot en de ingangsveranderlijken (specifiek: de bedie-
ningstijd tussen beide startslots en het aantal klasse-1 en klasse-2 aankomsten
gedurende deze bedieningstijd). Uitgaande van deze systeemvergelijkingen
en gebruik makend van enkele wiskundige technieken (waaronder het theo-
rema van Rouché) vinden we de gezamenlijke pgf N(z1, z2) van de systeem-
bezettingen van klasse-1 en klasse-2 bij het begin van een willekeurig startslot
in regime. Deze gezamenlijke pgf N(z1,22) is vervolgens het uitgangspunt
van alle verdere berekeningen.

De gezamenlijke pgf U(z1, z2) van de klasse-1 en klasse-2 systeembezettingen
bij het begin van een willekeurig slot in regime wordt hier vooreerst uit bere-
kend en is gegeven door

El(Zl, 22)(21 — ].)
21 — Ey (21, 22)
ZlEg(Zl, ZQ)(El(Zl, 2’2) — 1)
(A(Yi(z2),22) — 1) {+22E1(21, 22)(1 — Ea(21, 22)) }
+2122(Fo (21, 22) — E1(21, 22))
(A(z1, 22) — 1)(21 — E1(21, 22)) (22 — Ya(22))

U(z1,22) =(1 = pr) + (1 —pr) (5.27)

X

met

Ej(21,22) £8;(A(21, 22)) (S.28)
Yi(2) 2B, (Vi) 2). (529)

Net als in de analyse in de vorige sectie is deze pgf U(z1, #2) niet volledig
expliciet gekend, aangezien Y7 (z) impliciet gedefinieerd is. Hieruit kunnen
dan de marginale pgf’s van de totale, klasse-1 en klasse-2 systeembezettingen
berekend worden.

Vervolgens worden de vertragingstijden van klasse-1 en klasse-2 pakketten
(afzonderlijk) bestudeerd. Dit gebeurt door de vertragingstijden van een wil-
lekeurig klasse-1 of willekeurig klasse-2 pakket uit te drukken if.v. de sys-
teembezetting bij het begin van het laatste startslot voor zijn aankomstslot
en deze te z-transformeren. Bij de klasse-2 vertragingstijd gebruiken we op-
nieuw de notie van de fundamentele periode. Bij algemene bedieningstijden
maken we echter onderscheid tussen twee soorten fundamentele periodes, nl.
fundamentele periodes gerniticerd door een klasse-1 pakket en fundamentele periodes
geinitieerd door een klasse-2 pakket. Een fundamentele periode geinitieerd door
een klasse-1 pakket wordt gedefinieerd als de periode (uitgedrukt in een aan-
tal slots) die nodig is om het aantal klasse-1 pakketten - vanaf het begin van
de bedieningstijd van het klasse-1 pakket - te verminderen met 1. Een funda-
mentele periode geinitieerd door een klasse-2 pakket start bij het begin van de
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bedieningstijd van dit klasse-2 pakket en eindigt wanneer de bediening van
een volgend klasse-2 pakket kan starten. Deze twee soorten fundamentele
periodes zijn verschillend gedistribueerd als de bedieningstijden van klasse-
1 en klasse-2 pakketten een verschillende distributie hebben. Daarom was
het in het vorige model - constante bedieningstijden van één slot - niet nodig
om het onderscheid te maken tussen deze twee types fundamentele periodes.
Uiteindelijk verkrijgen we de volgende pgt’s voor de klasse-1 en klasse-2 ver-
tragingstijden in de NP prioriteitswachtlijn:

_1—p1 Si(2)(z—1) A(S1(2)) =1 (1—pr = p2 Sa(2) -1
D =T AR S - (1 S R 1))
(S.30)
1= pr So(2)(A(Vi(2), Va(2)) — A1(Vi(2))) 2A1(Vi(2)) — 1
Da(2) =— A (Vi(2)) — A(Vi(2), Va(2)) Valz) -1 (5:31)
met
Vi(z) £58;(241(Vi(2))), (5.32)

j = 1,2, de pgf van een fundamentele periode geinitieerd door een klasse-
J pakket. Merk op dat Vi (z) - net als Y;(z) - enkel impliciet gedefinieerd is.
De pgf van de vertragingstijd van een willekeurig pakket is dan een gewogen
som van D1 (z) en Da(z) (met respectievelijke gewichten A1 /Ar en Az/A7).

PR prioriteitsdiscipline

Zoals al vermeld, maken we voor de analyse van de PR prioriteitswachtlijn
gebruik van de bijkomende veranderlijke techniek. We analyseren echter niet
onmiddellijk een wachtlijn met willekeurige bedieningstijden, maar starten
met een vereenvoudigd model dat we gaandeweg veralgemenen.

Eerst veronderstellen we de bedieningstijden geometrisch verdeeld. Het spe-
cifieke aan de geometrische distributie is het feit dat ze de geheugenloze eigen-
schap bezit. Toegepast op de bedieningstijden wil dit specifiek zeggen dat als
we een slot uitkiezen waarin een bedieningstijd aan de gang is, dat het resi-
duele deel van deze bedieningstijd niet afhangt van het aantal slots dat het
pakket al bediend is. M.a.w. de kans dat een pakket in bediening nog min-
stens een slot bediening nodig heeft, kan beschreven worden door één pa-
rameter, onathankelijk van hoelang dat pakket al in bediening is. Daardoor
vormen de systeembezettingen van beide klassen bij het begin van opeenvol-
gende slots een Markov keten en moeten er voor dit vereenvoudigd model
geen bijkomende toevalsveranderlijken gedefinieerd worden. Merk op dat de
parameters van de geometrische distributies van de klasse-1 en klasse-2 be-
dieningstijden verschillend kunnen zijn. De gezamenlijke pgf U(z1, z2) van
de systeembezettingen van beide klassen kan dan berekend worden.
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Figuur S.9: Monster van de tijdsas om de prioriteitsdiscipline en de bijkomende ver-
anderlijken te illustreren

Dit eerste model breiden we dan vooreerst uit naar algemene bedieningstijden
voor de klasse-1 pakketten. In dit geval vormen de systeembezettingen van
beide klassen bij het begin van opeenvolgende slots niet langer een Markov
keten. Daarom definiéren we een bijkomende veranderlijke, namelijk, het
overblijvend aantal slots dat het klasse-1 pakket nog in bediening is alvorens
het systeem te verlaten. Deze toevalsveranderlijke wordt de residuele bedie-
ningstijd van klasse-1 genoemd. Aangezien de klasse-2 bedieningstijden in dit
tweede model nog steeds geometrisch verdeeld zijn, is deze nieuwe bijkomen-
de stochastische veranderlijke - samen met de systeembezettingen van beide
klassen - voldoende voor een Markoviaanse beschrijving van het systeem. In
Figuur S.9 hebben we een voorbeeld van de tijdsas gegeven om de concepten
teillustreren: een klasse-1 pakket komt aan tijdens een klasse-2 bediening. De-
ze laatste wordt onderbroken en later voortgezet. De residuele bedieningstijd
van klasse-1 bij het begin van slot k is gelijk aan twee slots. De gezamenlij-
ke pgf van de residuele bedieningstijd van klasse-1, de systeembezetting van
klasse-1 en de systeembezetting van klasse-2 bij het begin van een willekeurig
slot in regime is dan berekend. Uit deze driedimensionale pgf kunnen alle
andere pgf’s van belang afgeleid worden.

De laatste uitbreiding is het veralgemenen naar algemene bedieningstijden
voor beide klassen. In dit geval wordt - naast de residuele bedieningstijd van
klasse-1 - nog een veranderlijke toegevoegd om een Markoviaanse beschrij-
ving van het systeem te bekomen, nl., het overblijvende aantal slots van de
bedieningstijd van het oudste klasse-2 pakket. (Het oudste klasse-j pakket
in het systeem bij het begin van een zeker slot is gedefinieerd als dit klasse-j
pakket dat - van alle klasse-j pakketten op dat tijdstip aanwezig - het eerst
aankwam.) Deze nieuw gedefinieerde toevalsveranderlijke wordt de residue-
le bedieningstijd van klasse-2 genoemd. De systeembezettingen en de residuele
bedieningstijden van beide klassen bij het begin van opeenvolgende slots vor-
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men dan een Markov keten. Bekijken we opnieuw als voorbeeld de tijdsas van
Figuur S.9: de residuele bedieningstijd van klasse-2 bij het begin van slot & is
gelijk aan twee slots. De vierdimensionale pgf P(z1, 21, 22, 22) van de residue-
le bedieningstijd van klasse-1, de systeembezetting van klasse-1, de residuele
bedieningstijd van klasse-2 en de systeembezetting van klasse-2 wordt bere-
kend.

Voor de drie besproken modellen kunnen dan alle verdere pgft’s van belang
afgeleid worden uit de berekende gezamenlijke pgf’s. In wat volgt, bespreken
we enkel de verdere analyse van het meest uitgebreide model, nl., algemene
bedieningstijden voor beide klassen.

Uitgaande van de uitdrukking voor de vierdimensionale pgf P(z1, 21, z2, 22)
wordt U(z, z2) verkregen als

U(Zl,ZQ) =P(1,zl,1,22) (833)
=(1- pﬂ% (S.34)
142 (A(z1,22) — A(Y1(22), 22)) (E1(21, 22) — 1)
VA(Yi(22), 22)(A(z1, 22) = 1) (21 — Ba(21,22))

met
Yj(z) £E;(Yi(2), 2). (S.35)

Merk op dat deze Y;(z) identiek gedefinieerd is als in de NP prioriteitswacht-
lijn. Uit U(z1, 22) kunnen dan de marginale pgf’s van de totale, klasse-1 en
klasse-2 systeembezettingen berekend worden.

De vertragingstijden van klasse-1 en klasse-2 pakketten zijn vervolgens gea-
nalyseerd. Dit gebeurt door de vertragingstijden van een willekeurig klasse-
1 of willekeurig klasse-2 pakket uit te drukken i.f.v. de veranderlijken in de
Markoviaanse beschrijving bij het begin van het aankomstslot van het pakket
en deze te z-transformeren. Daardoor verkrijgen we D1 (z) en D4 (z) als func-
ties van P(., ., .,.). Bij de klasse-2 vertragingstijd gebruiken we dan opnieuw
de notie van de fundamentele periodes. Deze zijn identiek gedistibueerd als
in de NP prioriteitswachtlijn. We verkrijgen

1 S A(Si(2) -1

D) == T A G ) Sl(z)— (5.36)
1 pr Va(2) (e (Vi(2) — 1) A(Vi(2),Va(2)) — Ar(Vi(2)

Do) ==, Amm<»ue@»—>zAmm®» AWV Va(z) )

met de pgf van een fundamentele periode geinitieerd door een klasse-j pakket
nog steeds gegeven door

Vi(2) £8;(2A1(Vi(2))), (5.38)
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Figuur S.10: Monster van de tijdsas in het PRD geval om de prioriteitsdiscipline en de
bijkomende veranderlijken te illustreren

J = 1,2. De pgf van de vertragingstijd van een willekeurig pakket is dan een
gewogen som van de D;(z) (met gewichten \; /A7 respectievelijk).

PRD en PRI prioriteitsdisciplines

In de analyses van de PRD en PRI prioriteitswachtlijnen - i.e. de preémptieve
prioriteitswachtlijnen met herhaling - maken we opnieuw gebruik van de bij-
komende veranderlijke techniek.

In het geval dat een nieuw monster van de klasse-2 bedieningstijden gekozen
wordt bij herhaling, i.e. in het PRD-geval, definiéren we de residuele bedienings-
tijd van het pakket in bediening bij het begin van een slot als de bijkomende veran-
derlijke om een Markoviaanse beschrijving van het systeem te bekomen. Deze
toevalsveranderlijke is gedefinieerd als het overblijvende deel van het pakket
(dat zowel van klasse-1 als klasse-2 kan zijn) in bediening bij het begin van
een willekeurig slot. Figuur S.10 geeft een voorbeeld van een tijdsas weer. De
onderbroken bediening van het klasse-2 pakket wordt later herhaald, maar de
lengte kan veranderen (in het voorbeeldje is deze lengte vier slots bij de eerste
poging en drie slots bij de tweede). Bij het begin van slot & is de residuele be-
diening van het pakket in bediening 2 slots. De gezamenlijke pgf P(z, 21, 22)
van de residuele bedieningstijd van het pakket in bediening en de systeem-
bezettingen van klasse-1 en klasse-2 bij het begin van een willekeurig slot in
regime is dan berekend.

In het geval van een PRI prioriteitsdiscipline, i.e., het geval waarbij een on-
derbroken klasse-2 bedieningstijd van dezelfde lengte blijft bij herhalingen, is
de residuele bedieningstijd van het pakket in bediening niet meer voldoende
als bijkomende veranderlijke om een Markov keten te vormen. Daarom defi-
niéren we naast deze eerste bijkomende veranderlijke een tweede, nl. de (vol-
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Figuur S.11: Monster van de tijdsas in het PRI geval om de prioriteitsdiscipline en de
bijkomende veranderlijken te illustreren

ledige) bedieningstijd van het oudste klasse-2 pakket. Figuur S.11 geeft opnieuw
een voorbeeld van een tijsdas. De onderbroken bediening van het klasse-2
pakket wordt later herhaald en de lengte blijft identiek. De nieuw gedefini-
eerde bijkomende veranderlijke is bij het begin van alle slots in de figuur gelijk
aan vier slots. We verkrijgen dan een uitdrukking voor de gezamenlijke pgf
P(x, 21,92, 22) van de residuele bedieningstijd van het pakket in bediening,
de systeembezetting van klasse-1, de bedieningstijd van het klasse-2 pakket
langst in het systeem en de systeembezetting van klasse-2 bij het begin van
een willekeurig slot in regime na vrij extensieve berekeningen.

Uitgaande van de uitdrukkingen voor P(z, 21, z2) en P(z, 1, Y2, 22) in respec-
tievelijk de PRD en PRI prioriteitswachtlijn berekenen we U(z1, 22) - de geza-
menlijke pgf van de systeembezettingen van klasse-1 en klasse-2 bij het begin
van een willekeurig slot in regime - voor beide prioriteitsdisciplines. We ver-
krijgen

Ya(22)(22 — 1)
2o — Yo (22)
" {1 t (A(z1, 22) — A(Y1(22), 22)) (B (21, 22) — 1) }
A(Y1(22), 22)(A(21, 22) — 1) (21 — Ei(21, 22))

U(z1,22) =(1 = presy) (S.39)

in beide gevallen met

PT.eff 2=P1+ Aaliz.efy (5.40)
2 A1(0)(1 — S2(A1(0)))
Fael ] 54 (0) (1~ A1(0))

(S.41)
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(1= A(0,2))A(Y1(2), 2) E2(0, 2)

Y2(2) S i) 2 — A, ) Eal0.7) — A0 A G e 1) o)

in het geval van PRD en
PTeff Sp1+ Aapioess (5.44)
252(1/A1(0)) -1 (S.45)

Helf =774, (0) — 1
i 52(4) (1 — A(0, 2)) A(Y1(2), 2) A(0, 2)°
(A(Yl(z)7 Z) - A(07 z))A(07 Z)i - A(O7 Z)(A(Yl(z)7 Z) - 1)

=1

Ya(z) £ , (S47)

in het geval van PRI. Merk op dat alhoewel Y;(z) en Y3(z) nog dezelfde 'rol’
spelen als in de NP en PR wachtlijnen, de uitdrukkingen voor Y»(z) in deze
gevallen een stuk ingewikkelder zijn. Dit komt doordat de bedieningstijden
herhaald moeten worden. Zo is ook de effectieve belasting pr ¢ niet langer
gelijk aan de aankomstbelasting pr - zoals het geval was in de NP en PR prio-
riteitswachtlijnen - aangezien de laatste geen rekening houdt met de mogelijke
herhalingen van de klasse-2 bedieningen. Uit de uitdrukkingen voor U(z1, 22)
kunnen dan opnieuw de marginale pgf’s van de totale, klasse-1 en klasse-2
systeembezettingen berekend worden.

Tenslotte berekenen we de vertragingstijden van klasse-1 en klasse-2 pakket-
ten voor de PRD en PRI prioriteitswachtlijnen. Dit gebeurt opnieuw door de
vertragingstijden van een willekeurig klasse-1 en willekeurig klasse-2 pakket
uit te drukken i.f.v. de veranderlijken in de Markoviaanse beschrijving bij het
begin van het aankomstslot van het pakket en deze te z-transformeren. Bijj
de klasse-2 vertragingstijd gebruiken we opnieuw de notie van fundamentele
periodes. Deze geinitieerd door een klasse-2 pakket zijn echter in dit geval
een stuk ingewikkelder om te analyseren (opnieuw wegens de mogelijke her-
halingen van klasse-2 bedieningstijden). Uiteindelijk verkrijgen we

_1-p1 S1(2)(z—1) A(Si(2)) — 1
Di(z) =— 2 A (Si(2) Si(z)—1

(S.48)

voor de pgf van de klasse-1 vertragingstijd in zowel de PRD als de PRI prio-
riteitswachtlijn. Merk op dat dit dezelfde uitdrukking is als voor D;(z) in de
PR prioriteitswachtlijn, aangezien klasse-1 pakketten geen hinder ondervin-
den van klasse-2 pakketten bij de drie preémptieve prioriteitsdisciplines en
het dus wat betreft de klasse-1 systeemkarakteristieken niet uitmaakt of een
klasse-2 bediening voortgezet of herhaald wordt na een onderbreking. De pgf
van de klasse-2 vertragingstijd wordt gegeven door

Dy(2) _L—presr Va(2) { (241 (V1(2)) = D(A(0, Va(2)) — 41(0))
Ar Ai(Vi(2)) U (Va(z) = 1(A1(0)z = A(0, Va(2)))
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L CAAG) — AN1(), B(E))CE)
AT (Va(2)). V(=)
(A1 (0)A(VA(2), Va(2)) — A1 (Vi(2))A(0, Vo)) (= — 1)
X (0(0)z — A0, Va(2)) (2 (Vi (2)) — <v1<z>7v2<z>>>}’ (546)
in beide prioriteitswachtlijnen met
. %(h(2)
O AVAB) (850
V1 (Z) éSl(zAl(Vl(z))) (851)
. (1~ A1(0)2) A1 (Vi(2))S(A, (0)2)
V() ST E) — A 0)Sa A (0)z) - MO AWE) 1) O
in het PRD geval en met
X5 () (Vaulz) — D¥ai(16(2)
S SR ATABNACE (5.53)
Vl(Z) éSl(zAl(Vl(z))) (854)
e (1~ A4(0)2) Ay (Vi (2))(4,(0)2)"
Vi) S W - M) A0 - AOCAME) ) )
éZSQ VVQ'L (856)
e (1= A(0,2))A(Y:(2), 2)A(0, 2
Y2il?) S A2 = 40, 2) A0, 5 — A0, ) AW ) =) &)
in het PRI geval.

Het is duidelijk dat deze uitdrukkingen een stuk gecompliceerder zijn dan
de (overeenkomstige) uitdrukkingen voor de NP en PR prioriteitswachtlijnen.
Dit is enerzijds te wijten aan de herhalingen van de onderbroken klasse-2 be-
dieningstijden en anderzijds aan de mogelijke correlatie tussen klasse-1 en
klasse-2 aankomsten in een slot. De pgf van de vertragingstijd van een wille-
keurig pakket is opnieuw een gewogen som van D;(z) en Ds(z) met respec-
tievelijke gewichten A\q /A en Ag/Ap.

S.3.3 Berekening prestatiematen

Uit de behaalde uitdrukkingen voor de pgt’s kunnen wederom de momenten
en staartprobabiliteiten berekend worden van de verschillende toevalsveran-
derlijken. De procedures voor de berekeningen van momenten en staartpro-
babiliteiten zijn heel gelijkaardig aan die uit de vorige sectie en we gaan er dan
ook niet dieper op in, maar verwijzen naar subsectie S.2.2 voor meer details
omtrent het berekenen van deze prestatiematen.
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Bij het berekenen van staartprobabiliteiten in de PRI prioriteitswachtlijn is er
echter een extra moeilijkheid, nl. het optreden van de oneindige sommen in
de uitdrukkingen voor Y3(z) en Va2(z) (respectievelijk uitdrukkingen (5.47) en
(5.56)). Het lijkt geen triviaal probleem te zijn om de dominante singulariteit
en het gedrag van de pgf’s in de buurt van deze singulariteit te bepalen. Daar-
om hebben we in het proefschrift geen staartprobabiliteiten kunnen berekenen
in het PRI-geval.

S.3.4 Numerieke voorbeelden

In deze paragraaf zullen we kort de invloed van enkele parameters op de pres-
tatiematen tonen. We concentreren ons op het schakelelement met uitgangs-
buffers zoals eerder vermeld (zie Figuur S.1). De gezamenlijke pgf van het
aantal klasse-j aankomsten (j = 1,2) aan een willekeurige uitgangsbuffer is
gegeven door (5.6). In het vervolg definiéren we « als de fractie klasse-1 be-
lasting van de totale belasting (dus gelijk aan p;/pr). We veronderstellen dat
N - het aantal ingangen van het schakelelement - gelijk is aan 16.

We zullen ons in deze subsectie vooral richten op de verschillen tussen de
prestatiematen in de verschillende prioriteitswachtlijnen. Eerst zullen we de
klasse-1 en klasse-2 prestatiematen in de NP en PR prioriteitssystemen ver-
gelijken. Vervolgens bekijken we wat de invloed van herhalingen is - t.o.v.
voortzetting - op de klasse-2 prestatiematen bij de preémptieve prioriteitsdis-
ciplines.

Vergelijking van de NP en PR prioriteitsdisciplines

De bedieningstijden zijn constant verondersteld doorheen deze paragraaf.

In Figuren S.12 en S.13 tonen we respectievelijk de gemiddelde klasse-1 en
klasse-2 systeembezettingen als functies van de totale belasting met p; =
e = 2en a = 0.25,0.5 en 0.75. In beide figuren, zijn de curven voor de
NP en PR prioriteitsdiscipline uitgezet. De gemiddelde klasse-1 systeembe-
zetting is groter in het geval van de NP prioriteitsdiscipline. Het omgekeerde
geldt voor de gemiddelde klasse-2 systeembezetting. Dit is logisch, aangezien
in de NP prioriteitswachtlijn aankomende klasse-1 pakketten een klasse-2 be-
diening niet onderbreken en dus hinder ondervinden van het klasse-2 verkeer,
terwijl dit in de PR prioriteitswachtlijn niet het geval is. In het PR geval kun-
nen de klasse-2 bedieningen meermaals onderbroken worden waardoor ze
langer in de buffer verblijven en daardoor is de gemiddelde klasse-2 systeem-
bezetting in dit geval groter.

Gelijkaardige verschillen in de invloeden van de NP en PR prioriteitsdisci-
plines kunnen gezien worden in Figuren S.14 en S.15, waarin respectievelijk
de gemiddelde klasse-1 en klasse-2 vertragingstijden als functies van de to-
tale belasting getoond zijn, voor dezelfde parameters als in de twee vorige
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Figuur S.12: Gemiddelde klasse-1 systeembezetting versus de totale belasting voor de
NP (bovenste curven) en PR (onderste curven) prioriteitsdisciplines (11 = p2 = 2)
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Figuur S.13: Gemiddelde klasse-2 systeembezetting versus de totale belasting voor de
NP (onderste curven) en PR (bovenste curven) prioriteitsdisciplines (u1 = p2 = 2)
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Figuur S.14: Gemiddelde klasse-1 vertragingstijd versus de totale belasting voor de
NP (bovenste curven) en PR (onderste curven) prioriteitsdisciplines (u1 = p2 = 2)

figuren. Uit deze figuren blijkt dat de verschillen significant kunnen zijn. Zo
kan b.v. voor o = 0.25 de gemiddelde klasse-1 vertragingstijd in het NP geval
ongeveer 25% groter worden dan in het PR geval.

Vervolgens hebben we de invloed van de lengte van de bedieningstijden op de
gemiddelde systeembezettingen en vertragingstijden bekeken. In Figuur S.16
tonen we de gemiddelde klasse-2 vertragingstijd als functie van de gemiddel-
de klasse-1 bedieningstijd voor zowel de NP als de PR prioriteitsdisciplines,
met po = 20 slots, pr = 0.75 en o = 0.25,0.5 en 0.75. Het is duidelijk dat
de gemiddelde klasse-2 vertragingstijden groter worden naarmate de klasse-1
pakketten langer worden. Dit is een direct gevolg van de prioriteitsdisciplines.
Om de invloed van de NP discipline op de gemiddelde klasse-1 vertragings-
tijd aan te tonen, zetten we in Figuur 5.17 de gemiddelde klasse-1 vertragings-
tijd uit als functie van de klasse-2 bedieningstijden voor ;; = 20 en de andere
parameters identiek aan deze uit de vorige figuur, voor zowel de PR als de
NP prioriteitsdisciplines. Aangezien de klasse-1 vertragingstijd in het PR ge-
val onafhankelijk is van het klasse-2 verkeer, is in dit geval de gemiddelde
klasse-1 vertragingstijd onafhankelijk van ps. In het NP geval daarentegen,
zien we dat de gemiddelde klasse-1 vertragingstijd stijgt met 5. Dit is omdat
aankomende klasse-1 pakketten (gemiddeld gezien) langer moeten wachten
wanneer een klasse-2 pakket in bediening is (de residuele bedieningstijd van
dit klasse-2 pakket bij aankomst van klasse-1 pakketten zal gemiddeld gezien
groter zijn naarmate de klasse-2 bedieningstijden zelf groter zijn). Het is dui-
delijk dat voor lange klasse-2 pakketten de klasse-1 vertragingstijd (te) hoog
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Figuur S.15: Gemiddelde klasse-2 vertragingstijd versus de totale belasting voor de
NP (onderste curven) en PR (bovenste curven) prioriteitsdisciplines (u1 = p2 = 2)

kan oplopen.

Vervolgens vergelijken we de staartprobabiliteiten van de klasse-1 en klasse-2
vertragingstijden in het NP en PR geval. Het is zo dat de dominante singula-
riteiten van D1 (z) en Dz(z) - de pgf’s van de klasse-1 en klasse-2 vertragings-
tijden respectievelijk - die een rol spelen in het overeenkomstig staartgedrag
gelijk zijn voor de beide prioriteitsdisciplines. De hellingen van de curves
worden nu net uitsluitend bepaald door deze singulariteiten en dus zullen de
hellingen voor de beide disciplines gelijk zijn. Figuren S5.18 en S.19 tonen de
staartprobabiliteiten van respectievelijk de klasse-1 en klasse-2 vertragingstij-
den voor beide types prioriteitsdisciplines. De klasse-1 belasting is voor alle
curven gelijk aan 0.4 terwijl de klasse-2 belasting de waarden 0.1, (ongeveer)
0.21 en 0.4 aanneemt. De bedieningstijden van alle pakketten zijn gelijk aan 16.
In Figuur S.18 is de onderste curve die voor de klasse-1 staartprobabiliteiten
in het PR geval. Aangezien voor deze discipline de klasse-1 vertragingstij-
den onafhankelijk zijn van de klasse-2 karakteristieken, krijgen we inderdaad
dezelfde curve voor de verschillende waarden van de klasse-2 belasting. In
Figuur S5.19 zijn de waarden van p, zodanig gekozen dat opnieuw de 3 types
staartprobabiliteiten getoond zijn: nl. niet-geometrische gedrag treedt op voor
p2 = 0.1, transitiegedrag voor p; = 0.21 en geometrisch gedrag voor p; = 0.4.
Verder kan uit deze twee figuren geconcludeerd worden dat het type van prio-
riteitsdiscipline een (niet te verwaarlozen) rol speelt in de staartprobabiliteiten
van de vertragingstijden van beide klassen.
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Figuur S.16: Gemiddelde klasse-2 vertragingstijd versus de gemiddelde klasse-1 be-
dieningstijden voor de NP (onderste curven) en PR (bovenste curven) prioriteitsdisci-
plines (pr = 0.75, u2 = 20)
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Figuur S.17: Gemiddelde klasse-1 vertragingstijd versus de gemiddelde klasse-2 be-
dieningstijden voor de NP (bovenste curven) en PR (onderste curven) prioriteitsdisci-
plines (pr = 0.75, 1 = 20)
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Figuur S.18: Staartgedrag van de klasse-1 vertragingstijden voor verschillende klasse-
2 belastingen voor zowel de NP (bovenste curven) als de PR (onderste curve) priori-
teitsdisciplines (p1 = 0.4, u1 = p2 = 16)
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Figuur S.19: Staartgedrag van de klasse-2 vertragingstijden voor verschillende klasse-
2 belastingen voor zowel de NP (onderste curven) als de PR (bovenste curven) priori-
teitsdisciplines (p1 = 0.4, u1 = p2 = 16)
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Figuur S.20: Gemiddelde klasse-2 vertragingstijd versus de totale belasting voor de
PR (onderste curven) en PRD en PRI (bovenste curven) prioriteitsdisciplines voor con-
stante bedieningstijden (1 = 2, 2 = 20)

Vergelijking van de PR, PRD en PRI prioriteitsdisciplines

Aangezien in al deze preémptieve disciplines de klasse-1 veranderlijken iden-
tiek zijn, focussen we enkel op de klasse-2 prestatie (en meer specifiek op de
gemiddelde klasse-2 vertragingstijden).

In Figuur S.20 tonen we de gemiddelde klasse-2 vertragingstijd als functie
van de totale aankomstbelasting voor constante bedieningstijden van 2 slots
voor de klasse-1 pakketten, voor constante bedieningstijden van 20 slots voor
de klasse-2 pakketten, voor o = 0.25,0.5 en 0.75 en voor de PR, PRD en PRI
prioriteitsdisciplines. Verder hebben we ook de verticale asymptoten van de
PRD en PRI curven getoond. Deze tonen voor welke aankomstbelasting de
effectieve belasting gelijk wordt aan 1. Deze twee soorten belastingen zijn
niet identiek aangezien de herhalingen aanleiding geven tot ‘extra’ belasting.
Rechts van deze asymptoten verliezen de PRI en PRD wachtlijnen dus hun
stabiliteit. Merk op dat voor deterministische klasse-2 bedieningstijden de
PRD en PRI disciplines aanleiding geven tot dezelfde discipline (aangezien
bij herhaling van de klasse-2 bedieningstijd een nieuw monster nemen en de
oorspronkelijke bedieningstijd behouden identiek zijn). De curven in Figuur
5.20 zijn dan ook identiek voor deze 2 disciplines. De figuur toont dat de
gemiddelde klasse-2 bedieningstijd significant groter kan zijn in het geval van
PRI en PRD t.o.v. het PR geval. Dit is een gevolg van de extra belasting die
door de herhalingen van de klasse-2 bedieningen wordt toegevoegd.
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Figuur S.21: Gemiddelde klasse-2 vertragingstijd versus de totale belasting voor de
PRD (onderste curven) en PRI (bovenste curven) prioriteitsdisciplines voor variabele
bedieningstijden (11 = p2 = 20)

Om de invloeden van de PRD en PRI prioriteitsdisciplines onderling te verge-
lijken veronderstellen we in de volgende figuren de klasse-2 bedieningstijden
variabel. In Figuur S.21 is de gemiddelde klasse-2 vertragingstijd uitgezet
voor de PRD en PRI prioriteitsdisciplines als functie van de totale aankomst-
belasting voor constante bedieningstijden van 20 slots voor de klasse-1 pak-
ketten. De klasse-2 bedieningstijden zijn gelijk aan 10 slots of 30 slots elk met
kans 1/2. Verder is oo = 0.25,0.5 en 0.75. Het is duidelijk dat de PRI priori-
teitsdiscipline aanleiding geeft tot (gemiddeld) langere vertragingstijden. Dit
komt doordat in de PRD prioriteitsdiscipline lange klasse-2 bedieningstijden
(30 slots) herbemonsterd kunnen worden tot korte bedieningstijden (10 slots)
bij onderbreking door klasse-1 pakketten. Het omgekeerde kan natuurlijk ook
maar de kans dat een lange bedieningstijd onderbroken wordt is groter dan
dat een korte onderbroken wordt. Daardoor is de 'netto” invloed van de her-
bemonstering op de prestatie van het systeem positief.

Figuur 5.22 tenslotte toont de gemiddelde klasse-2 vertragingstijd in het ge-
val van de PR, PRD en PRI prioriteitsdisciplines als functie van de gemid-
delde klasse-1 bedieningstijden. De klasse-1 en klasse-2 bedieningstijden zijn
constant met pp = 20 slots, pr = 0.75 en a = 0.25,0.5 en 0.75. Opnieuw
zijn de PRD en PRI disciplines identiek wegens de constante klasse-2 bedie-
ningstijden. In het geval van de PR discipline groeit de gemiddelde klasse-2
vertragingstijd met stijgende p;. In de PRD en PRI gevallen zijn er twee te-
genwerkende effecten: enerzijds geven langere klasse-1 pakketten aanleiding
tot langere ophopingsperiodes voor de klasse-2 pakketten in de buffer, waar-
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Figuur S.22: Gemiddelde klasse-2 vertragingstijd versus de klasse-1 bedieningstijden
voor de PR (onderste curven) en PRD en PRI (bovenste curven) prioriteitsdisciplines
voor constante bedieningstijden (pr = 0.75, 2 = 20)

door de gemiddelde klasse-2 vertragingstijd stijgt (dit is ook het effect dat
in het PR geval speelt). Anderzijds betekenen langere klasse-1 pakketten min-
der klasse-1 pakketten (aangezien we de (klasse-1) belasting constant houden)
waardoor de kans dat een klasse-2 bediening onderbroken wordt door nieuw
aankomende klasse-1 pakketten kleiner wordt. Dit heeft een dalend effect op
de gemiddelde klasse-2 vertragingstijd. Op de figuur kan gezien worden dat
- voor kleine klasse-1 bedieningstijden - de gemiddelde vertragingstijd spec-
taculair stijgt naarmate de pakketten korter worden. Dit komt wegens het
tweede effect: als ;1 klein is, komen heel veel korte klasse-1 pakketten aan
in het systeem waardoor de klasse-2 bedieningen veel onderbroken worden.
Aangezien deze steeds herhaald moeten worden na een onderbreking heeft
dit aanleiding tot heel grote vertragingstijden. Voor hoge 1, stijgt de gemid-
delde klasse-2 vertragingstijd met stijgende ;1 en dat is een gevolg van het
eerste effect. Het is ook duidelijk dat voor lange klasse-1 pakketten het ver-
schil tussen de PRD en PRI disciplines enerzijds en de PR discipline anderzijds
relatief klein is. Aangezien de klasse-1 pakketten lang zijn, komen er weinig
aan. Hierdoor worden onderbrekingen van klasse-2 bedieningen schaars en
is ook de invloed van voortzetten of herhalen van de bediening na een onder-
breking minder belangrijk. Door deze twee tegenwerkende effecten krijgen
we een optimum voor y; in de PRD en PRI prioriteitwachtlijnen waarvoor de
gemiddelde klasse-2 vertragingstijd minimaal wordt.
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S.4 Conclusies

In dit proefschrift hebben we een gedetailleerde studie beschreven van
discrete-tijd wachtlijnmodellen met verschillende types prioriteitsdisciplines.
Doorheen het proefschrift hebben we twee prioriteitsklassen beschouwd. Het
aankomstproces is i.i.d. van slot-tot-slot, alhoewel de aantallen aankomsten
in één slot van beide klassen gecorreleerd kunnen zijn. In een eerste model
hebben we ons beperkt tot constante bedieningstijden van één slot en dit is in
verdere modellen uitgebreid naar willekeurige bedieningstijden. Verder heb-
ben we in deze latere modellen geincorporeerd dat de bedieningstijden van
verschillende prioriteitsklassen verschillende distributies kunnen hebben.

We hebben dus eerst een prioriteitswachtlijn met constante bedieningstijden
van één slot bestudeerd (in hoofdstuk 2 van het Engelstalig gedeelte). Dit is
een vrij eenvoudig model en geeft aanleiding tot een gesimplificeerde ana-
lyse (t.o.v. de latere analyses) zodat de lezer voeling krijgt met het gebruik
van pgf’s in de analyse van wachtlijnen met prioriteiten en de manier waarop
de prestatiematen uit deze pgf’s kunnen gehaald worden. Maar dit (simplis-
tisch) model is ook bruikbaar in de praktijk, b.v., in telecommunicatienetwer-
ken waar de pakketten die door het netwerk getransporteerd worden alle van
dezelfde lengte zijn (b.v. ATM).

Vervolgens is dit model uitgebreid naar algemene bedieningstijden. Een aan-
tal verschillende prioriteitsdisciplines zijn beschreven en geanalyseerd. Ten
eerste de niet-preémptieve prioriteitswachtlijn. In deze wachtlijn worden be-
dieningen van pakketten niet onderbroken. De analyse van dit type wacht-
lijnen is in hoofdstuk 3 van het Engelstalig gedeelte van dit proefschrift be-
schreven. Vervolgens hebben we in hoofdstuk 4 van het Engelstalig gedeel-
te de preémptieve prioriteitswachtlijn met voortzetting geanalyseerd. Bij de-
ze discipline wordt de bediening van een lage-prioriteitspakket onderbroken
door nieuw aankomende hoge-prioriteitspakketten. De onderbroken bedie-
ning wordt later voortgezet. Uiteindelijk hebben we in hoofdstuk 5 twee
preémptieve prioriteitswachtlijnen met herhaling bestudeerd. Het verschil
met de vorige prioriteitsdiscipline is dat de onderbroken bediening in dit laat-
ste hoofdstuk herhaald wordt vanaf het begin. Het pakket moet dus opnieuw
volledig bediend worden.

Doorheen de verschillende bestudeerde wachtlijnmodellen, hebben we een
vrij algemene analytische methode gebruikt. Eerst hebben we een Markov
keten voor het desbetreffende systeem geconstrueerd. Vervolgens hebben
we een methode gebaseerd op probabiliteitsgenererende functies gebruikt om
de gezamenlijke pgf van de stochastische veranderlijken gedefinieerd in de
Markov keten (in regime) te berekenen. Startende van deze gezamenlijke pgf
worden dan alle verdere pgf’s die onze interesse wegdragen afgeleid. Uit de-
ze pgf’s verkrijgen we tenslotte de nuttige prestatiematen, zoals de momenten
en staartprobabiliteiten van verschillende toevalsveranderlijken.

Alhoewel we dit proefschrift als een afgewerkt geheel hebben voorgesteld, is
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onderzoek natuurlijk nooit voltooid. Er zijn dan ook nog velerlei mogelijke
uitbreidingen van de modellen en analyses gepresenteerd in dit proefschrift.
Zo kunnen de modellen uitgebreid worden naar meer dan twee prioriteits-
klassen, tijdscorrelatie in het aankomstproces, prioriteitssystemen met meer-
dere bedieningsstations, analyse van het uitgangsproces van prioriteitswacht-
lijnen, transiéntanalyses, ....



Chapter 1

Introduction

1.1 Queues and buffers

Queues are part of daily life. Queueing phenomena are observed on the roads,
when waiting in line in supermarkets, movie theaters, post offices, emergency
rooms in hospitals, when being on a waiting list for surgery, .... In general a
queueing process can be defined as the process of waiting before getting some
kind of service.

Specifically in telecommunication networks, buffers are used to store inform-
ation that cannot be sent instantly to its next destination. The cause of this is
the instantaneous overload of arriving information, i.e., during a time period
more information arrives than can be (simultaneously) transmitted. Examples
of causes are multiplexing of several input links/traffic streams to one output
link, switching from a link to a slower link, temporary errors in output links,
re-sequencing of information units, .... Without buffers, too much informa-
tion would get lost in the above described cases.

The entities that arrive in the queue are in general called units throughout this
dissertation. We will however also use - the telecommunications inspired -
cells or packets.

1.2 Importance of the queue/buffer behavior

The behavior of a queue (in time) is an important topic, e.g., when design-
ing new roads it is beneficial to know beforehand whether a certain design is
prone to the formation of queues.

In case of a waiting list for surgery, people with life-threatening injuries may
be part of the queue. It is thus important to study the behavior of the queue -
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or more specifically the amount of time a patient is on the waiting list before
surgery - in order to avoid unnecessary casualties.

In telecommunications, the way buffers behave is an important research topic
because the performance of the network and the Quality of Service (QoS) ex-
perienced by the users is closely related to the buffers” behavior. Information
can be lost because of buffer overflow or information units can suffer too long
delays. The consequences to the users will vary depending on the application.
For instance, large delays (and delay variations) are very bad for real-time ap-
plications (voice, video, ...), while they are more acceptable for non-real-time
applications (data). On the other hand, loss of information is devastating for
data, while it is to some extent acceptable for voice (because of redundancy).
Therefore, the consequences for the experienced QoS depend on the applica-
tion, but it is clear that the buffer behavior plays a major role in (how the user
evaluates) the performance of the network.

1.3 Stochastic variables

In order to study the queue behavior, first a number of input and output vari-
ables have to be defined. The input variables describe the characteristics of the
traffic offered to the queue. The output variables describe the queue behavior.
Since traffic behavior is of a non-deterministic, probabilistic nature - and thus
also the queue behavior is of an uncertain nature - these variables are defined
as stochastic variables. In this dissertation, the input variables will be assumed
to be known variables, while the output variables are the variables which have
to be analyzed. The input stochastic variables used in this dissertation will be
discussed in more detail in section 1.7. The output stochastic variables, i.e.,
the variables that describe the behavior of the particular queues that will be
analyzed in this dissertation, will be discussed in section 1.8.

1.4 Analysis techniques

There are several analysis techniques, all with their own specific advantages
and disadvantages. They can roughly be categorized in 4 groups. The first
technique is the analytical technique. System equations for the stochastic vari-
ables of interest are established and solved analytically. The second way of
analyzing queueing systems is through a numerical method. In this approach,
the system equations of the desired stochastic variables are also determined,
but they are solved numerically. The third method is solving the system
through simulations. In this method, a computer program is written to sim-
ulate the network/queueing system and results are calculated by running
the program. The last approach is the experimental approach. Instead of a
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computer-version of the (queueing) system the ‘real thing’ is built and experi-
ments are executed on this. The variables of interest are measured while run-
ning the experiments. In telecommunications, e.g., one can build a test-bed
version of the network to perform experiments on.

As already mentioned, each method has its own advantages and disadvant-
ages. The advantage of the analytical method is the obvious parameter-
dependence of the results. In general, formulas are obtained in which the
different parameters appear. Changing the value of a parameter gives the
(new) result immediately. The disadvantage of the analytical method is the
need to use simplified models in order to be able to analyze the system under
consideration. The important question is whether the simplified model is still
“rich” enough to model the real system in a satisfying way. The advantages
and disadvantages of the experimental method are the opposite of the analyt-
ical method. Its advantage is that the real system under consideration is built
and the obtained results are thus certainly reliable. The disadvantage is that
parameter-dependence is totally lacking. If a parameter has to be changed,
the experiment has to be repeated. Therefore, this method takes considerably
more time when the influence of certain parameters has to be studied. Fur-
thermore, this method is not always practically possible (e.g., when designing
roads) or too expensive. The numerical analysis and simulation approaches
lay between those two extremes, where the advantages and disadvantages
of the numerical analysis lean more to analytical analysis while those of the
simulations approach lean more to the experimental approach.

In this dissertation, we use an analytical technique based on probability gener-
ating functions (see further for more details). We will thus propose a mathem-
atical model and use this analytical technique to study this model. In order to
check some results which are only found through the use of an approximat-
ive solution technique, we will compare with simulations in order to test the
validity of the approximation.

1.5 Multiple types of traffic

In many queueing studies, traffic is assumed to be homogeneous, i.e., all traffic
is assumed to be of the same type. However, most traffic is heterogeneous in
nature. It can thus be subdivided in multiple classes, depending on both their
characteristics and requirements. Indeed, the traffic characteristics are diverse
(bursty traffic < monotonous traffic, long service times or short service times,
constant < variable service times, ...). Secondly, different traffic types can
have different requirements, e.g., different loss requirements (i.e., the probab-
ility of not receiving any service and “being lost” in telecommunication net-
works), different delay requirements, . ...

An example of a classification, which is frequently used in nowadays multi-
media telecommunication systems, is real-time traffic (e.g., voice) and non-real-
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time traffic (e.g., data). A similar classification can be used in case of a waiting
list for surgery: some patients’ treatment is extremely urgent, while other pa-
tient can sustain some time (days, weeks, ...) before receiving treatment. This
classification is the most obvious - in case of these two examples - but other
and/or more detailed classifications are possible.

1.6 Scheduling multiple types of traffic

As touched upon in the previous section, it is sometimes necessary to differen-
tiate traffic classes because of different requirements. In telecommunications,
different types of traffic need different QoS standards. For real-time applic-
ations, it is important that mean delay and delay-jitter are bound, while for
non-real-time applications, the loss ratio is the restrictive quantity.

In the remainder of this section, we will give a brief overview of schedul-
ing schemes that have been proposed - and analyzed - in order to guarantee
acceptable delay bounds to delay-sensitive traffic in multimedia networks.
Amongst these scheduling disciplines are some well-known strategies like
weighted round-robin (WRR), weighted fair queueing (WFQ) or generalized
processor sharing (GPS), earliest deadline first (EDF), probabilistic priority
(PP) and (strict) priority scheduling.

In a queueing system with WRR (see e.g. Liu et al. [1997] and references
therein), WFQ or GPS (see e.g. Parekh and Gallager [1994] and references),
the server serves a number of queues by a weighted schedule. Delay sensitive
traffic is assigned a higher weight, i.e., (on average) delay-sensitive traffic is
served earlier/longer than delay-insensitive traffic.

When the EDF scheduling is applied, deadlines are imposed on the packets
that have to be served (based on their QoS constraints) and packets are trans-
mitted in the order of their deadlines (see Liebeherr and Wrege [1999] and
references therein).

A PP scheduling discipline (see e.g. Tham et al. [2002]) serves a given number
of priority queues in a probabilistic manner. Each priority queue is assigned a
parameter p;, which determines the probability that a packet from that priority
queue is served when the server is ready to transmit a (new) packet.

All these scheduling disciplines try to give some kind of priority to delay-
sensitive traffic over delay-insensitive traffic. The most drastic in this re-
spect is the strict priority scheduling (which we analyze in this dissertation).
With this scheduling, as long as delay-sensitive (or high-priority) packets are
present in the queueing system, this type of traffic is served. Delay-insensitive
packets can thus only be transmitted when no delay-sensitive traffic is present
in the system. As already mentioned, this is the most drastic way to meet the
QoS constraints of delay-sensitive traffic (and thus the scheduling with the
most disadvantageous consequences on the delay characteristics of the delay-
insensitive traffic), but also the easiest to implement. E.g., in Shenker [1995]
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Figure 1.1: Conceptual representation of a queueing system

categorizing traffic in different service classes and using a priority scheduling
discipline in the routers to serve these classes are proposed as the best solution
in the nowadays and future Internet.

Note that the application of priority scheduling is not limited to telecommu-
nications. Basically all queues in which the delay requirements of the units
differ may profit from a priority scheduling discipline.

A last notable example is a waiting list for surgery. According to Wang [2004],
a story entitled “Surgeon can’t sleep as patients die waiting” appeared in the
Toronto Star newspaper on May 13, 1988. It is about a senior cardiovascular
surgeon who announced that there had been twelve or thirteen deaths on his
personal waiting list for open-heart surgery. One of the reasons was that pa-
tients (and their diseases) are not carefully evaluated and patients were picked
for surgery more or less on a First-Come-First-Served basis. This triggered a
change in the scheduling of the patients for surgery (see Hadorn [2000], Wang
[2004]): (the diseases of) the patients are evaluated and are put in a certain pri-
ority class according to the life-threatening nature of the disease. The patients
are scheduled for surgery according to their priority.

1.7 Queueing model

In this section, we describe the characteristics of the queueing model under
investigation in the remainder of this dissertation. Units arrive in the system,
wait a certain amount of time before starting to receive service and when their
service is completed, they leave the system. The modeling assumptions can
roughly be split in three parts (see Figure 1.1). Firstly, we specify the buffer
system itself. Secondly, the arrival process is modeled and finally the service
process is characterized. We will put special emphasis on the characterization
and impact of the priority scheduling discipline, studied in this dissertation.

1.7.1 System modeling

We consider a discrete-time single-server multi-class queueing system with infin-
ite buffer space and a priority scheduling discipline. Time is divided into slots
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of equal length. There is one server which transmits the units from the queue.
Units which cannot be transmitted instantaneously are stored in the queue.
Since we analyze discrete-time queueing systems, all stochastic variables en-
countered in this dissertation are assumed to only take discrete (non-negative)
values. The buffer space is assumed to be infinitely large, which means that
no units are lost. Service of units can only start at slot boundaries. Notice
that this means that an arriving unit cannot enter the server during its arrival
slot, even when the server is empty when the unit arrives. Traffic is generally
subdivided into M different classes, but we only discuss and analyze systems
with two priority classes in this dissertation, i.e., M = 2 throughout the dis-
sertation. This is done for a couple of reasons. The first is the fact that most of
the time two (priority) classes are sufficient, e.g. in telecommunications sys-
tems, one class represents the real-time traffic while the non-real-time traffic
is categorized by a second class. Secondly, although the techniques used for a
system with 2 classes are (more or less straightforwardly) extendable to a sys-
tem with a general number of classes, the formulas become more cumbersome
and give little extra information.

The priority scheduling discipline of the buffer will be thoroughly discussed
in subsection 1.7.4.

1.7.2  Arrival process

In most queueing studies, especially in continuous-time queueing analyses,
the arrival process is characterized by the interarrival time. This stochastic vari-
able is defined as the time between two consecutive arrival epochs of units. In
discrete-time queues, an alternative characterization can be used. In this char-
acterization, the number of per-slot arrivals is characterized. This equals the
number of units that arrive in a (random) slot. We use the latter characteriz-
ation of the arrival process throughout this dissertation. Since we only focus
on slot boundaries and on discrete stochastic variables (see further) the precise
moment a unit arrives in the slot is of no importance in our analysis, but this
can be altered if one does not want to restrict the analysis to slot boundaries
and/or discrete stochastic variables (see e.g. Bruneel [1993] for more details).

Units of two types of traffic arrive in the system, namely units of class-1 and
of class-2. We denote the number of arrivals of class-j during slot k by a;
( = 1,2). Both types of unit arrivals are assumed to be independent and
identically distributed (i.i.d.) from slot-to-slot and are characterized by the
joint probability mass function (pmf)

a(n1,n2) £Probla; x = n1, az r = nal, (1.1)
and corresponding joint probability generating function (pgf) A(z1, 22),

A(z1,22) 2E [zflkz;“] (1.2)
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= Z Z a(ny,ma)zyt 252, (1.3)

ny =0 na =0

We furthermore denote the total number of arriving packets during slot & by
ar. = a1 ) + azy and its pgf is defined as

Ar(z) 2E[7] (14)
=A(z,2). (1.5)

In the same way, we define the marginal pgf of the number of arrivals from
class-j during a slot by

Aj(z) 2E[2%*] (1.6)
:A(Zl,ZQ)| (17)

zj=2,2;=1,1#j)’

j = 1,2. We furthermore denote the (mean) arrival rate of class-j units by
Aj = A}(1) and the total arrival rate by Ar = A7.(1) = A1 + Aa.

Notice that equations (1.1) and (1.3) incorporate the possibility that the num-
bers of arrivals from different classes (within a slot) are correlated. This is
sometimes called a discrete structured batch arrival process or structured input.
Incorporating this correlation is for instance necessary in the case of a non-
blocking output-queueing switch with N inlets and N outlets (see Figure 1.2).
The numbers of arrivals on each inlet are assumed to be i.i.d., and generated
by a Bernoulli process with arrival rate Ay. An arriving unit is assumed to be
of class-j with probability A\;/Ar, 7 = 1,2 (with Ay + A2 = Ap). The incom-
ing units are then routed to the output queue corresponding to their destin-
ation in an independent and uniform way. Therefore, the output queues be-
have identically and we can concentrate on the analysis of one output queue.
The former arrival process assumptions lead to the fact that the arrivals of
both types of units to an output queue are generated according to a two-
dimensional binomial process. It is fully characterized by the following joint

pgf
N

2
M%@=1+Z%%—U : (1.8)
j=1

Obviously, the numbers of class-j arrivals at an output queue during a slot are
mutually correlated (for finite V). This is simply demonstrated by the follow-
ing observation: when m class-i units arrive at the tagged queue during a slot
(0 £ m < N), the maximum number of arrivals of the other class during the
same slot is limited by N —m. We note that for N going to infinity, expression
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Figure 1.2: An NxN output queueing switch

(1.8) becomes

3 Xz
1 - ' .
A(z1, z2) =e2i=t (1.9)
2
=[] M=, (1.10)
j=1

a product of two pgf’s of Poisson distributions with means A; (j = 1,2) re-
spectively, and as a result, the numbers of arrivals of both classes are mutually
uncorrelated. We use this type of switch extensively as a means to show the
applications of our results. The applications are however not limited to this
type of telecommunication device - and not even to telecommunications.

1.7.3 Service process
The service times of consecutive units are assumed to be independent. Fur-
thermore, the service times of the consecutive class-j units, j = 1,2, are as-
sumed to be i.i.d. Therefore, we define the stochastic variable s; as the service
time of a random class-j unit (expressed in slots). s; is characterized by its
pmf

s;(n) £Prob[s; = n slots|, n > 1, (1.11)

and pgf

Sj(z) £E[z*/] 1.12)
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= Z sj(n)z", (1.13)
n=1

with j = 1,2. Note that serving a unit requires at least one slot. We further-
more denote the mean service time of a class-j packet by u; £ E[s;] = S/(1).
We define the arrival load offered by class-j packets as p; = \ju; (j = 1,2).
The total load is then given by pr = p; + pa.

In this dissertation, a number of specific types of distributions for the service
times are important. Firstly, in chapter 2, we will consider packets with de-
terministic service times of 1 slot. Secondly, the shifted geometric distribution
will play an important role. The pmf z(n) and pgf X (z) of a random variable
X with a shifted geometric distribution with parameter [ are given by

z(n)=(1-3)"" n>1, (1.14)
and
X(2) = %7 (1.15)

respectively. The reason for using this specific distribution for the service
times as a first attempt to analyze a specific queueing system, is its memory-
less property. In our analysis, this property implies that at a certain time in-
stant the remaining number of slots that the unit in service still has to receive
service is independent of the number of slots it is already in the server. In the
corresponding analysis, we do not have to keep track of the latter variable, as
opposed to in a system with (more) general service times.

1.7.4 Priority scheduling discipline

Class-1 units are assumed to have priority over class-2 units and within one
class the service discipline is First Come First Served (FCES). Due to the prior-
ity scheduling mechanism, it is as if class-1 units are stored in front of class-2
units in the queue. So, if there are class-1 packets in the queue when the server
is ready to service a new unit, the class-1 unit with the longest waiting time
will start service. Only if there are no class-1 units, a class-2 unit - namely the
one with the longest waiting time - starts service.

In the case that the service time may be more than one slot, two types of pri-
ority scheduling are distinguished, namely, non-preemptive and preemptive pri-
ority scheduling. In the non-preemptive priority scheduling discipline, ser-
vice of a unit cannot be interrupted. So, when a unit of a certain class is
being served its service is not interrupted by newly arriving units, even if
they have higher priority. The latter units have to wait until the lower pri-
ority unit is totally served. In the preemptive priority scheduling discipline
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on the other hand, the service of that unit will be interrupted by newly ar-
riving higher priority traffic and the unit whose service time was interrupted
will have to go back to the queue. In the latter discipline, we can characterize
three categories, namely, the preemptive resume, the preemptive repeat different
(or repeat with resampling) and the preemptive repeat identical (or repeat without
resampling) priority scheduling disciplines. They differ from each other in the
way they handle a unit whose service was interrupted, at the moment it enters
the server for a second (or third, fourth,...) time. In the preemptive resume
priority scheduling discipline, the unit resumes service where it was interrup-
ted, i.e., only the part which was not yet served before the interruption, has
to be served afterwards. In the preemptive repeat priority scheduling discip-
lines, the whole unit has to be served after the interruption by higher priority
traffic, thus including the part that was already served before. The preemptive
repeat different priority discipline takes a new sample with the same distribu-
tion. The service time of that particular packet may thus change after an in-
terruption. The preemptive repeat identical on the other hand keeps the same
service time when re-attempting to transmit the unit.

In the remainder of this dissertation, we will use the following abbreviations
for the different priority scheduling disciplines: NP for the non-preemptive,
PR for the preemptive resume, PRD for the preemptive repeat different and
PRI for the preemptive repeat identical priority scheduling discipline.

1.8 Typical results

1.8.1 Output stochastic variables

As discussed in section 1.3, a number of output stochastic variables can be
defined and have to be analyzed. A first important stochastic variable is the
system contents at the beginning of a random slot. The system contents is
defined as the number of units in the system. In the two-class priority queues
we analyze in this dissertation, the system contents of class-j at the beginning
of slot k is denoted by u; ;, and equals the number of units of class-j in the
system at the beginning of slot k. The total number of units in the system - or
the total system contents - at the beginning of the k-th slot is denoted by ur
and is given by w1 ;, + ua k.

A related stochastic variable is the queue contents, which is defined as the num-
ber of units in the queue at a certain time instant. The difference between the
system contents and the queue contents is that the possible unit being served
at that time instant is not included in the latter. In the remaining chapters of
this dissertation, the queue contents of class-j at the beginning of slot £ will
be denoted by ¢; 1, and the total queue contents by g7 = q1,x + ¢2,%-

A third important characteristic is the unfinished work at a given time instant,
which is defined as the number of slots it takes to empty the system of all
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units stored at that time, if there are no new arrivals (from that time instant
onwards). The unfinished work of class-j is defined as the number of slots it
would take to serve all class-j units stored at that time, if there were no new
arrivals and if the server only served the class-j packets from that time instant
onwards. The unfinished work of class-j at the beginning of slot k is denoted
by w; ; and

Wr | =W1,k + W2k, (1.16)

is the total unfinished work at the beginning of the k-th slot. From expres-
sion (1.16) an alternative explanation of the unfinished work of a single class
(class-j) can be given: this unfinished work is the number of slots of the total
unfinished work that the server spends on serving class-j units.

In the analyses in this dissertation, we will concentrate on the steady-state
versions of these variables, i.e., we will find performance measures of the
stochastic variables defined so far for & — oo. In the remainder of this sub-
section we discuss some more stochastic variables, but we directly define the
steady-state versions of these stochastic variables (in contrast with the system
contents, queue contents and unfinished work).

The steady-state delay of a specific unit is defined as the time a unit spends in
the system, i.e., the time period between its arrival and departure instants. As
discussed before, in discrete-time queueing systems, it is common practice to
only consider the discrete-part of the delay. Or, more precisely, the delay of a
specific unit is defined as the number of slots between the end of the arrival
slot of this unit and the end of its departure slot. In the remaining chapters
of this dissertation, the steady-state delay of a class-j unit is denoted by d;,
while the steady-state delay of a random unit is denoted by d.

There is a related stochastic variable to the delay, namely the queueing or wait-
ing time, which is defined as the amount of time the unit stays in the queue
before starting service. t; is defined as the (steady-state) waiting time of a
class-j unit and ¢ is the waiting time of a random unit.

1.8.2 Performance measures
Probability generating functions

For the stochastic variables defined in 1.8.1, several specific performance char-
acteristics can be defined and calculated. Since we make extensive use of
probability generating functions in this dissertation, pgf’s of the stochastic
variables of interest will be calculated first. For the system contents, queue
contents and unfinished work, the joint pgf of these (steady-state) stochastic
variables of all classes will be calculated. If X;, j = 1,2 is the steady-state
stochastic variable (of interest) of class-j, then the joint pgf of the stochastic
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variables X; and X, is defined as
X(z1,22) 2E {zf‘zﬂ . 1.17)
From this joint pgf, the marginal pgf’s can be calculated as follows

X;(2) £E [27%7] (1.18)

:X(Zl,ZQ) (119)

zj=z2,zi=1,i#]

Also, the sum of the stochastic variables in question can be found from (1.17),
yielding

Xr(2) £E [2¥7] (1.20)
=E [z%X1 %] (1.21)
=X(z,2). (1.22)

For the two other types of stochastic variables, notably the steady-state delay
and waiting time, the pgf’s X;(z) of these stochastic variables of class-j, j =
1,2 and the pgf X(z) of the stochastic variable of a random unit will all be
calculated separately.

Moments

From the obtained pgf’s, the (central) moments of the variables can be calcu-
lated. For instance, the mean value and variance of a stochastic variable X with
pgf X (z) are given by

E[X] =X"(1) (1.23)
Var[X] 2E [(X — E[X])?] (1.24)
=X"(1)+ X'(1) — (X'(1))~ (1.25)

So, by calculating the derivatives of the pgf’s of the stochastic variables one
finds the moments of these stochastic variables. Note that this is not restricted
to the calculation of the mean value and the variance, but that, in principle,
all (central) moments of a stochastic variable can be derived once its pgf is
obtained. However, in order to obtain the n-th (central) moment up to the
n-th derivative of the pgf has to be calculated, which makes the calculation of
high moments practically infeasible. In this dissertation, we will restrict our
results to mean values and variances.
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For the stochastic variables of which the joint pgf is obtained (see expression
(1.17)), the concept of moments of the respective stochastic variables separ-
ately can be expanded to cross-moments of the respective stochastic variables.
For instance, the covariance of two stochastic variables X; and X is given by

Cov[X1, Xo] 2E[(X; — E[X1])(X2 — E[X3])] (1.26)
_82X(2172’2) , ,
= mom |, XX, (1.27)

with X (21, 22) the joint pgf of X; and X, and X;(z) the (marginal) pgf of X;
(j = 1, 2). The correlation coefficient is the normalized covariance and is defined
as

COV[Xl, XQ}
Var[X,]Var[X5]

Corr[ X1, Xo] & (1.28)

and is a real number between —1 and +1.

Probability mass functions and tail probabilities

Another important performance characteristic is the complete distribution or
the probability mass function of the stochastic variables. The distribution of a
(discrete) stochastic variable X is defined as

z(n) = Prob[X = n], (1.29)

for all non-negative discrete n. This pmf can, in principle, be straight-
forwardly derived from the corresponding pgf of the stochastic variable by
means of the so-called probability generating property of probability generat-
ing functions, yielding

1d"X(z)
n!  dz"

z(n) =

(1.30)

z=0

Since the n-th derivative of the pgf X (z) is required for the calculation of z(n),
this is in general not a practical method, especially for high n. Since we are
most of the time (only) interested in x(n) for high n, the so-called tail prob-
abilities of X, a more practical method has to be used. A possible solution is
the numerical inversion of pgf’s (using e.g. Discrete Fourier Transforms). In
this dissertation, we will use an approximate analytical technique which is
introduced in the remainder.

Quite some research has been done on finding (good) analytic approxima-
tions - which are easy to calculate - of the z(n) once (some information of)
X (z) is known. This is not only a research topic in queueing theory (see e.g.
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Bruneel et al. [1994], Laevens [1999] and others), but also in combinatorics (see
e.g. Bender [1974], Flajolet and Odlyzko [1990] and references therein). Basic-
ally, to calculate the complete distribution of a stochastic variable, we have to
find/know all singularities of its pgf, or more precisely of its analytic continu-
ation (for more details see Bruneel et al. [1994]). If we are only interested in
the tail probabilities on the other hand, it suffices to determine the dominant
singularities of the pgf, i.e., the singularities with smallest modulus. These
are nothing but the singularities on the circle of convergence of the pgf. We
will frequently make use of some basic (transfer) theorems in this dissertation.
Before we describe these theorems we first give some notations: F'(z) ~ G(z)
means that F'(z)/G(z) — 1 as z goes to a certain value (which should be clear
from the context). Similarly, f(n) ~ g(n) means that f(n)/g(n) — lasn — oo.
Finally, f(n) = o(g(n)) means that f(n)/g(n) — 0asn — oc.

The first theorem is Darboux’s theorem:

Theorem 1.1 (Darboux’s theorem) Suppose X (z) = > 7 x(n)z" with positive
real coefficients x(n) is analytic near 0 and has only algebraic singularities oy, on its
circle of convergence |z| = R, in other words, in a neighborhood of oy, we have

X(2) ~(1— aik)*wck(z), (1.31)

where wy, # 0,—1,—2,... and Gy(z) denotes a nonzero analytic function near cy,.
Let w = maxyRe(wy,) denote the maximum of the real parts of the wy,. Then we have

z(n) = Z %n“jla;" +o(n*"tR™™), (1.32)
i

with the sum taken over all j with Re(w;) = w and I'(w) the Gamma-function of w
(with T'(n) = (n — 1)! for n discrete).

So, once a pgf is explicitly calculated, it suffices to find all algebraic singu-
larities on the circle of convergence and use Darboux’s theorem. Following
theorem (see e.g. Laevens [1999]) gives one of those singularities:

Theorem 1.2 (Vivanti’s theorem) If X (z) is a power series with real positive coef-
ficients and with radius of convergence R, then z = R is a singularity of X (z).

This theorem is sometimes also attributed to the German mathematician
Pringstein.

The point of the circle of convergence on the real positive axis is thus always
a singularity of the corresponding pgf. In the remainder, we assume that this
singularity is the only singularity on the radius of convergence. Extensions
can be made to cases where this assumption is not valid (some extensions are
not straightforward though), but since this assumption seems to be valid for
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a whole range of “typical” distributions (or in other words, the underlying
distributions have to be of a very specific nature for the assumptions not to be
valid), we will not go into these cases. We then “translate” Darboux’s theorem
in this case as follows: if X (z) is explicitly known and in the neighborhood of
its dominant singularity R on the positive real axis we have

G(2)
X(2) ~ "= (1.33)
then
z(n) ~ Bx w1 pn—u (1.34)

I'(w) ’

for n large enough and with Kx = G(R). For example, when the dominant
singularity on the real axis is a pole with multiplicity 1, a case which we will
frequently have/assume, we get

z(n)~ KxR™™ L (1.35)

In this dissertation, we will frequently find pgf’s which are only implicitly
defined. If an explicit expression can be found, Darboux’s theorem can be used
to obtain the tail probabilities. If no explicit expression can be found however,
we cannot easily find an expression (1.33) and thus we cannot straightfor-
wardly use Darboux’s theorem. To cope with implicitly defined pgf’s, we will
make use of the following theorem:

Theorem 1.3 (Bender’s theorem) Assume that the series z(z) = Y .~ x(n)z"
with nonnegative coefficients satisfies F(z,x(z)) = 0. Suppose there exists real num-
bersr > 0and s > x(0) such that

1. for some & > 0, F(z, w) is analytic whenever |z| < r + § and |w| < s+ 6;
2. F(r,s) = Fy(r,s) =0;
3. F.(r,s) #0,and Fy.,(r,s) # 0, and

4. if|z| <7, |lw| < s, and F(z,w) = Fy(z,w) =0, then z = r and w = s.

Then

o\ V2
x(n) ~ (27:F ) n=3/2pm, (1.36)

for n — oo and where the partial derivatives I, and F,,,,, are evaluated at z = r,w =
s.
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Remark

The techniques used in this dissertation to calculate the tail probabilities will
not be (mathematically) correct for all possible pgf’s. Therefore we will some-
times restrict the pgf’s for which the obtained tail probabilities are correct.
However, we do not think that this restricts the possible application of our
results much, since our results are correct for most “typical” forms of gener-
ating functions (such as exponential or rational functions). So one should be
careful with using the techniques in this dissertation (and in queueing theory
in general) for ‘special” functions (and respective stochastic variables).

1.9 Overview of this dissertation

We will end this first chapter by briefly describing the contents of the fol-
lowing chapters. In chapter 2, we analyze a two-class priority queue where
the service times of all units are equal to 1 slot. Therefore, no subdivision
of the priority scheduling discipline (as described in subsection 1.7.4) has to
be made. In chapters 3, 4 and 5 we will analyze two-class priority queues
with (more) general service times and a non-preemptive, preemptive resume
and preemptive repeat priority scheduling respectively. Finally, we will draw
some conclusions in chapter 6.



Chapter 2

Single-slot service times

In this chapter, we analyze a priority queue as described in section 1.7 with
two priority classes and deterministic service times of one slot.

Deterministic service times equal to the slot length is a typical type of service
time frequently used in discrete-time queueing models. This is due to two main
reasons. Firstly, it is the easiest model to analyze. This is mainly due to the fact
that a unit will leave the system at the end of the slot that it has commenced
service. Secondly, constant service times frequently occur in practice. For ex-
ample in telecommunications, this model is extremely useful for analyzing
the performance of switches in an ATM (Asynchronous Transfer Mode) con-
text ([De Prycker 1991]). The main feature of the ATM technology is the fact
that all cells - in an ATM context, the information units are called cells - have
the same length (53 bytes) and the time necessary to transmit a cell is taken as
the slot length. We will follow the ATM terminology in the remainder of this
chapter.

Discrete-time priority queues with one slot service time and no correlation
between the arrival processes of the different priority classes have been ana-
lyzed in [Hashida and Takahashi 1991, Takine et al. 1994b, Choi et al. 1998a,
Shakkottai and Srikant 2001, Xabier Albizuri et al. 2003] and [Mehmet Ali and
Song 2004]. Hashida and Takahashi [1991] analyze a two-class priority system,
where the high-priority arrivals and low-priority arrivals are governed by a
two-state Markov modulated Batch Bernoulli Process and a Batch Bernoulli
Process (or vice-versa). Conservation laws and mean delay are found. In [Tak-
ine et al. 1994b], a two-class priority system is investigated. The numbers of
per-slot arriving high-priority cells are governed by an underlying Markov
chain and the numbers of per-slot low-priority arrivals are i.i.d. Using matrix
analytic techniques, moments of high-priority, low-priority and total system
contents and moments of high-priority and low-priority delay are calculated.
In [Choi et al. 1998a], a two-class priority queue with train arrivals is ana-
lyzed. Both priority arrival streams are modeled as fixed-length trains, i.e.,
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when the first cell of a train of length m arrives in a slot, m — 1 cells will arrive
in the next m — 1 slots at a rate of one cell per slot. Using pgf’s, it is shown
how moments of the queue length and waiting time of cells are calculated.
In [Shakkottai and Srikant 2001] bounds for the delay distribution are given
in a multi-server queue with a rather general arrival process. Xabier Albizuri
et al. [2003] study the delay of the low-priority traffic in a multi-server queue
by assuming that the number of servers available for the low-priority traffic is
variable (depending on the number of high-priority cells served at the time).
Finally, Mehmet Ali and Song [2004] analyze a queue with the arrival process
existing out of a number of two-state Markovian sources and by using pgf’s.

In [Sidi and Segall 1983, Chang and Harn 1992, Khamisy and Sidi 1992,
Laevens and Bruneel 1998, Walraevens and Bruneel 1999] and [Walraevens
et al. 2003c], discrete-time priority queues with one slot service time and
(some sort of) correlation between the arrival processes of the different prior-
ity classes are investigated. In [Sidi and Segall 1983] and [Khamisy and Sidi
1992], priority queueing systems with a general number of priority classes
are analyzed. In [Sidi and Segall 1983], the number of arrivals is i.i.d. from
slot-to-slot. Departing cells from one priority queue can leave the system or
can be switched to another priority queue. In [Khamisy and Sidi 1992], the
distribution of the number of per-slot arrivals depends on the state of a two-
state Markov chain. In both papers [Sidi and Segall 1983, Khamisy and Sidi
1992], the joint pgf of the system contents of all classes is calculated. From
this pgf, the mean system contents and - through (the discretized version of)
Little’s law (see [Little 1961, Fiems and Bruneel 2002]) - the mean delay of all
classes are derived. In [Chang and Harn 1992, Laevens and Bruneel 1998],
a two-class multiserver queue is analyzed with the number of arrivals i.i.d.
from slot-to-slot. The joint pgf of the system contents of both classes is calcu-
lated in both papers (although the analysis in [Chang and Harn 1992] is more
tedious as in [Laevens and Bruneel 1998]). The pgf’s of the delays of both
types of cells are also calculated in [Laevens and Bruneel 1998], while this is
not done in [Chang and Harn 1992]. From these pgf’s, moments of the ana-
lyzed stochastic variables are calculated in both papers. In [Chang and Harn
1992], pmf’s are furthermore numerically determined using the Fast Fourier
Transform, while these probabilities are analytically approximated for high
values of the stochastic variable (tail probabilities) in [Laevens and Bruneel
1998]. Walraevens and Bruneel [1999] and Walraevens et al. [2003c] basically
discussed the single-server variant of [Laevens and Bruneel 1998].

In this chapter, we discuss the analysis of a two-class ATM priority queue, as
in [Walraevens and Bruneel 1999] and in [Walraevens et al. 2003¢c]. Although
the model we study is a special case of the model in [Laevens and Bruneel
1998] and the models discussed further in this dissertation, we feel it is useful
to show the analysis of this simplified queueing model first in full detail. This
will permit us to show the techniques used throughout this dissertation in a
relatively simple setting.

In section 2.1, we will analyze the system contents. Furthermore, we will



2.1 System contents 19

briefly describe corresponding results for the queue contents and unfinished
work in sections 2.2 and 2.3. In section 2.4, we will concentrate on the cell
delays of both classes and briefly describe some results for the waiting times
in section 2.5. Some numerical examples will finally be shown in section 2.6,
before giving some concluding remarks in section 2.7.

2.1 System contents

2.1.1 Calculation of the joint pgf U(z1, 22)

In this subsection, we concentrate on the effect of the priority scheduling dis-
cipline on the joint probability generating function of the steady-state system
contents of both classes. As discussed in subsection 1.7.2, the number of cell
arrivals of class-j in slot k is denoted by a; , j = 1, 2. The joint pgf of a; ; and
as i, is denoted by A(z1, 22).

We denote the system contents of class-j at the beginning of slot k by u;
(j = 1,2) and the total system contents at the beginning of slot k by up .
Furthermore, the joint pgf of u;  and us j is denoted by U (21, 22), i.e.,

Ur(z1,22) 2 E[z;”’kz;‘z”"]. 2.1)

The system contents of both types of cells are characterized by the following
system equations:

Ut 1 =[ur g, — 11 + a1 (22)

—_ 11t 3 —
U pi1 = { [’U/QJ{; 1] + az . k if Ui,k 0 (23)

U2,k + A2 K if Uy > 0’

where [.|T denotes the maximum of the argument and 0. Equation (2.2) fol-
lows from the observation that class-1 cells are not influenced by class-2 cells.
So, when there are class-1 cells in the system at the beginning of slot k, a class-1
cell is served during slot k. The class-1 system contents at the beginning of slot
k + 1 is thus the superposition of the cells in the queue at the beginning of slot
k and the class-1 cells arriving during slot k. A class-2 cell on the other hand
can only be served, if there are no class-1 cells in the system, i.e., if u; ; = 0.
This leads to expression (2.3).

Calculation of the joint pgf of the system contents of both classes at the begin-
ning of slot k + 1, yields

Upt1(z1,20) 2E [z?l”““z?’k“] (2.4)
B [ =)

FE [ (> 0}, 25)
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with E[X{Y'}] £ E[X|Y]Prob[Y]. Using the system equations (2.2) and (2.3),
we form the following relation between U 1(.,.) and Uy(., .)

ZQU (21,22) + (Zl — ZQ)U (0,22)
A(Zl,22) {J’_ZIIZZQ _ 1)Uk(0,0) ¥ }

Ug+1(21,22) = o (2.6)
Notice that
Ur(0,22) =E [232"“{u11k = 0}] , (2.7)
and
Ui(0,0) = Prob [uy = uza g, = 0], (2.8)
by definition.

Since we are interested in the steady-state distribution of the system contents,
we define U(z1, 22) as

Ul(z1, 22) £ kli_}rglo Ui (21, 22).

Applying this limit in equation (2.6), we find the following expression for
U(Z 1 22)/

(21 — 22)U(0, z2) + z1(22 — 1)U(0,0)

U(217Z2) = A(ZhZQ) 22(21 — A(21 2’2))

(2.9)

There are two quantities yet to be determined in the right-hand side of equa-
tion (2.9), namely the function U(0, z2) and the constant U(0,0). Applying
Rouché’s theorem, it can be proven (see section A.1 and A.2 in the appendix
for this proof) that for a given value of 25 (|z2| < 1), the equation z; = A(z1, 22)
has one solution in the unit circle for z;, which will be denoted by Y (z) in the
remainder, and which is implicitly defined by Y (z) £ A(Y (z), 2). Since Y (22)
is a zero of the denominator of the right-hand side of (2.9) and since U(z1, 22)
is analytic for |z1| < 1 and |22| < 1 - since U(z1, 22) is a pgf - Y (z2) must also
be a zero of the numerator. We thus find

Y(ZQ)(ZQ — 1)-

U(0,22) =U(0,0 2.10
(0,22) =U(0,0) 7 2 Z (210)

Substituting this expression in equation (2.9) yields
Uz, ) =U(0,0) A0 22) (1 = Y(22))(z2 — 1) (2.11)

(21 — A(z1,22)) (22 = Y(22))
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Finally, U (0, 0) can be found by applying the normalization condition U (1, 1) =
1. Substituting z; and 25 by 1 in (2.11) and using de " Hopital’s rule gives the
expected result for the probability of having an empty system:

U(0,0) =1 — Ap, (2.12)

A
with Ay = dA(z,2) = A’.(1) the total arrival rate (as defined in sub-

z z=1
section 1.7.2). Using (2.12) in expression (2.11), we finally get the following
expression:

A(z1,22) (21 — Y(22)) (22 — 1)

Uler22) == M) s o) — Y ()

(2.13)

2.1.2 The function Y (z)

It can be proved that Y (z) is a pgf and as a result is analytic inside the unit
disk. It is however not easy to show - at this time - which stochastic variable
Y (z) is the pgf of, and we will therefore postpone this explanation until after
the analysis of the cell delay.

Notice furthermore that the function Y (z) = A(Y(2),2) is only implicitly
defined, and that it can only be explicitly calculated for specific arrival pro-
cesses. In the case of the binomial arrival process discussed in subsection 1.7.2
(see formula (1.8)) with N = 2 for instance, Y (z) can be explicitly calculated
as

220 F AT+ A (1= 2) — 201 =20 + AT 4 A Ag(1 - 2)

Y (2) 5 . (214)
M
For the binomial arrival process with N — oo, we find
Y (z) = eMY () mDra(z—1) (2.15)

which is a transcendental equation with respect to Y (z). An explicit expres-
sion for Y (z) cannot easily be obtained in this case. We will however show
further that this is not a problem for calculating the performance measures,
such as moments and tail probabilities.

2.1.3 The marginal pgf Ur(z)

From equation (2.13), we easily obtain an expression for the pgf Ur(z) describ-
ing the total system contents

Ur(z) 2 lim E[247*] (2.16)

k—o0
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Ar(z)(z - 1) 2.18)

This is the same pgf as the pgf of the system contents of a single-class buf-
fer system with Ar(z) the pgf of the number of per-slot arrivals, single-slot
service times and with a FIFO (First In First Out) scheduling discipline (see
Bruneel and Kim [1993]). Even more generally, this is the same pgf as the
pgf of the tofal system contents of a buffer system with Ap(z) the pgf of the
total number of per-slot arrivals, single-slot service times and with a (gen-
eral) work-conserving scheduling discipline. Indeed, when the service times of
all cells are equal to one slot, the total system contents is independent of the
chosen scheduling discipline, as long as it is work-conserving, i.e., as long as
the server serves cells when the system is non-empty.

2.1.4 The marginal pgf U,(z)

We furthermore calculate the pgf Uy (%) of the system contents of class-1 cells
as follows

Ui(z) = kllm E [z¥1F] (2.19)
—U(z,1). (2.20)

By substituting z; by 1 in expression (2.13) and using de 'Hopital’s rule, we
get

1=Xr A1(2)(z—-1)

U1(Z):1_YI(1) z—Al(z) : (221)

The first derivative of Y (z) evaluated in 1 can be found as follows. Taking the
first derivative of both sides of Y (z) = A(Y (z), z) yields

Y'(2) =AN(Y (2), 2)Y'(2) + AP (Y (2), 2) (2.22)
AB(Y (), 2)
e It (2.23)
with AU (z,y) £ W ,j = 1,2. Substituting z by 1 -and Y (1)
Zj

Z1=x,22=Y
by 1-in (2.23) gives Y’/ (1) as a function of the arrival rates:

Y'(1) =5 iQAl. (2.24)
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Substituting expression (2.24) in expression (2.21), we finally find

Al(Z)(Z — 1).

Ul(Z) :(1—)\1) z—Al(z)

(2.25)

From this expression, we see that the system contents of class-1 cells is not
influenced by class-2 cells and furthermore that its pgf has the same structure
as Ur(z). This is of course due to the priority scheduling discipline: the class-1
system contents is not influenced by the amount of arriving class-2 cells.

2.1.5 The marginal pgf Us(2)

Finally, we calculate the pgf of the system contents of class-2 cells, denoted by
Us(z), from expression (2.13) as follows

Us(z) & lem E [2%2%] (2.26)
=U(1,z) (2.27)

A (2)(z = DY (2) = 1)
(2 =Y (2))(A2(2) = 1) -

=(1— A7) (2.28)

Special case: uncorrelated numbers of per-slot class-1 and class-2 arrivals

In the special case that the numbers of arrivals of class-1 and class-2 cells are
uncorrelated, i.e. A(z1,22) = Aj(z1)Az(22), we can analyze the system con-
tents of class-2 cells in an alternative way. Since class-2 cells can only be served
when there are no class-1 cells in the system, we can model the system, with
respect to class-2 cells, in terms of a system with server interruptions. The
server is blocked for class-2 cells if there are class-1 cells waiting to be sent,
and it is available if there are none. We can then calculate the pgf’s of the
duration of busy and idle periods of class-1 cells, i.e., the time period during
which there are class-1 cells in the system (i.e., w1 > 0, with u, the steady-state
system contents at the beginning of a random slot) and the time period during
which there are no such cells (i.e., u; = 0), respectively. The duration of the
idle period is geometrically distributed with parameter A;(0), since the prob-
ability that the idle period lasts an additional slot is equal to the probability
that no class-1 cells arrive during that slot, i.e., equal to A;(0). The pgf of the
duration of the idle period is thus given by

(1—4,(0))z

G =20

(2.29)
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The analysis of the busy period is a bit more involved, and can be found in
Bruneel and Kim [1993] for a general service time distribution. In case of de-
terministic service times of one slot, its pgf B(z) is implicitly given by the
following formula:

A1(2((1 = 41(0)) B(2) + 41(0))) — 4:(0)

Bl) = 1— 41(0)

. (2.30)

Note that the lengths of consecutive busy and idle periods are statistically
independent. It is clear that when the system is busy with respect to class-1
cells, it is blocked for class-2 cells. Therefore, with respect to class-2 cells, the
system can be modeled as a single-server buffer with server interruptions, for
which the lengths of consecutive available and blocked periods are i.i.d. and
their respective pgf’s are given by equation (2.29) and (2.30) respectively. Such
a queueing system has already been analyzed in Bruneel [1983]. Translating
the results from this analysis to our case, the pgf of the system contents of
class-2 cells becomes

Ag(2)(z = 1) 1 = Az(2) [A1(0) + (1 — A41(0)) B(A2(2))]
1= As(2) z— Aa(2) [A1(0) + (1 = A1(0)) B(Az(2))]

UQ(Z) = (1 — )\T)

(2.31)
Defining
X(2) £ A2(2) [A1(0) + (1 — A1(0)) B(A2(2))] (2.32)
this leads to
Us(2) = (1 — Ar) Ai(i)(; (;)1) 11__ jf; ((ZZ )) . (2.33)
Combining (2.32) and (2.30), X (=) is also implicitly given by
X(2) = A1 (X(2))As(2). (2.34)

Equations (2.28) and (2.33) lead to the same result for Us(z), when X (z) =
Y (2). This is indeed the case when the numbers of class-1 and class-2 arrivals
during a slot are uncorrelated.

2.1.6 Calculation of moments

The moments of the total, class-1 and class-2 system contents are calculated by
taking the necessary derivatives of the respective pgf’s and evaluating for z =
1 (as explained in subsection 1.8.2). We will explicitly show the expressions of
the means. Higher (central) moments can also be calculated straight-forwardly,
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but expressions are not shown here, although we will show some figures of
variances in section 2.6.

The mean total system contents is given by (using expression (2.18))

Ar | Varlar]

Elur] = 5 30— A’ (2.35)
The mean class-1 system contents is given by (using expression (2.25))
M Var|a,]

The calculation of the mean class-2 system contents is a bit more involved,
because of the appearance of Y (z) in the expression (2.28) of Us(z). As men-
tioned in subsection 2.1.2, the function Y'(z) can only be explicitly found in
case of some simple arrival processes. Its derivatives for z = 1, necessary to
calculate the moments of the system contents and the cell delay, on the con-
trary, can be calculated in closed-form. This is because we know Y (1) = 1,
since Y (z) is a pgf. For example, Y'(1) is given by expression (2.24). Finally,
taking the first derivative of (2.28), substituting z by 1 and using expression
(2.24) yields

_ Ay Varfay] +2Covlay, ay] Ao Var[a]
Bl =5+ =0 Taiowa-ny &

for the mean system contents of class-2 cells, with Cov[X, Y], the covariance
between variables X and Y (as defined in subsection 1.8.2).

Since Var[X + Y] =Var[X]+Var[Y] + 2Cov[X, Y], and thus
Var[ar| = Var[a;] + Var[az] + 2Cov|aq, as], (2.38)

it is easily verified that equations (2.35), (2.36) and (2.37) satisfy E[ur] =
E[u1] + E[ug] (Which is expected since ur = uq + u2).

2.1.7 Calculation of tail probabilities

From the pgf’s of the total, class-1 and class-2 system contents, (approxima-
tions of) the tail probabilities can be derived using Darboux’s (Theorem 1.1)
or Bender’s theorem (Theorem 1.3).

Note that we assume for the reasoning in the remainder that the pgf’s of the
arrival processes (Ar(z), A1(z) and Ay(z)) and their derivatives go to infin-
ity for z equal to their radii of convergence or for z — oo (which is correct
for most 'normally” applied arrival distributions). For most pgf’s that do not
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fulfil this assumptions, the reasoning in this subsection can be adjusted, but
this is not the main topic of this dissertation. Our goal in this subsection is
twofold: firstly, we want to show that tail probabilities can be calculated - in
priority queues - from the obtained pgf’s. Secondly, we want to show that the
tail probabilities are not necessarily geometrically (or exponentially) decaying,
even for ‘simple’ (pgf’s of the) arrival processes.

Total system contents

First we concentrate on the total system contents. From (2.18), it can be seen
that the singularities of Ur(z) are composed of the zeros of z — Ap(z) and
the (possible) singularities of Ar(z). Under the assumptions mentioned in the
previous paragraph, we first prove that the dominant singularity of Ur(z) is a
pole with multiplicity 1 and is a zero of z — Ar(z).

From Vivanti’s theorem (theorem 1.2), we know that the dominant singularity
lies on the positive real axis. We first look at the zeros of f(z) £ z — Ar(2). Its
smallest zero on the positive real axis is z = 1. Since f'(1) = 1 — Ay > 0, this
is a zero with multiplicity 1. This is however not a pole of Ur(z) since pgf’s
remain finite in z = 1. Starting from z = 1, we look for the next zero of f(z)
by increasing z. It is seen that f(z) > 0 at first (since f(1) = 0 and f'(1) > 0).
However since A’.(z) is a strictly increasing function, f'(z) = 1 — A%.(z) is a
strictly decreasing function. Therefore f(z) reaches a maximum for z = z,
(with f’(z.) = 0) and then decreases again. For a certain zr, f(z) equals zero
(again) and f’(zr) < 0. Therefore zr is a zero with multiplicity 1 of z — Ap(2).
Since zr is inside the region of convergence of Ar(z), zr is smaller than the
(possible) dominant singularity of Ar(z) and is thus the dominant singularity
of UT(Z )

For example, if Ar(z) = (1 —Ar(1—2)/N)¥, z and Ar(z) are shown in Figure
2.1 for real positive values of z (for N = 16 and Ay = 0.5). z — Ap(z) has two
zeros on the real positive axis. The first one is z = 1 and the second one is z7.
Arp(z) is smaller than z for z €]1, zr[ leading to a positive f(z) = z — Ar(z) for
z in that particular range (as described above).

So, in the neighborhood of its dominant pole 27, we can approximate Ur(z)
by

Kr

)
Zr — 2

Ur(z) ~ (2.39)

since zr is a single pole of Ur(z). Kr can be found by substituting z = zr in
(2.39) and using the expression (2.18) for Up(z):

Kp = lim Up(2)(zr — 2) (2.40)
= (1 - Ap)zp(er — 1) lim —L 2

Jlim s (2.41)
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27

Figure 2.1: The functions z and Ar(z) for z real and positive

(1 — )\T)ZT(ZT — 1)
Al (zr) —1 ’

(2.42)

where we have used de 1'Hopital’s rule in the last step. Using Darboux’s the-
orem (or more precisely equations (1.33)-(1.34) with w = 1) the coefficients of
the power series Ur(z) can be found from expression (2.39):

ur(n) £Problur = n]

~ —n—1
NKTZT 5

for large enough n. Substituting (2.42) in this expression yields

(]. — /\T) (ZT — 1) Z;n
A/T(ZT) — 1 ’

ur(n) ~

(2.43)
(2.44)

(2.45)

A quantity of practical interest is the probability that the total system contents

exceeds a bound L. We find

Problup > L] z:T(Li
T —
(1—Ar)zp”

-~ Ah(er) - 17

(2.46)

(2.47)
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Expression (2.46) is found by noting that

:UT(Z) — 1.

Z Prob[ur > n]z" por

n=0

(2.48)

By using Darboux’s theorem on this expression - and since this expression
inherits the singularities of Ur(z) - expression (2.46) is found.

Note that we could have made the approximation of Ur(z) in (2.39) more ac-
curate by replacing the constant K with a function G(z). Since G(z7) = Krp
though and since G(zr) is ultimately the only value of G(z) that is important
for the calculation of the tail probabilities (see Darboux’s theorem), we have
directly replaced G(z) by Kr in the (approximate) expression of Ur(z). We
will do this in all calculations of the tail probabilities in this dissertation.

Class-1 system contents

Since the pgf of the class-1 system contents (expression (2.25)) is similar to the
one of the total system contents, the system contents of class-1 cells has an
identical tail behavior:

up(n) £ Problu; = n] (2.49)
N (I—X) (2 — 1) 25"
T e (2.50)

for large enough n, with zy the dominant singularity on the positive real axis
of Uy(z), i.e., zy is a zero of z — A1 (z).

The probability that the system contents of class-1 exceeds a bound L is given

by

(1-X)zy"

Prob[u; > L] ~ .
> L] Al(zg) — 1

(2.51)

The function Y(z)

The tail behavior of the system contents of class-2 cells is a bit more involved,
since it is not a priori clear what the dominant singularity is of Us(z). This is
due to the occurrence of the function Y'(z) in (2.28), which is only implicitly
defined.

First we take a closer look at that function Y'(z) on the (positive) real axis (see
also section A.3.2 for more details). The first derivative of Y'(z) is - as already
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mentioned in subsection 2.1.4 - given by

__ADY(2),2)
1= AM(Y(2),2)

Y'(2) (2.52)

Consequently, Y (z) has a singularity, denoted as zp, where the denominator
of Y'(z) becomes 0, i.e., A(Y(zp),zp) = 1. Note that Y (zp) is finite (for
more details see section A.3.2).

As will be proven later on Y'(z) is a pgf and thus can be written as a power
series with non-negative coefficients:

Y(z) = Z y(n)z", (2.53)

thus with y(n) a pmf. Since z; = Y (22) satisfies the equation z; — A(z1, z2) = 0,
we will make use of Bender’s theorem (Theorem 1.3) to obtain an approxima-
tion for the y(n) for n sufficiently high.

To be able to use Bender’s theorem, we have to check the four assumptions
in this theorem. This is not always an easy task (in general). Therefore, we
will not check them for general A(z1, z2), but we will - as an example - show
that the four assumptions are valid for A(z1, z2) equal to the two-dimensional
binomial pgf defined in the previous chapter, i.e., for

N

2
Az, 20) = (1+Z%(zj -l . (2.54)
j=1

1. for some § > 0, z; — A(z1,22) is analytic whenever |z3| < zp + ¢ and
|z1] < Y(zp) + ¢: indeed, z; and A(z1, z2) are analytic in the complete
complex plane for our example.

2. Y(z) — A(Y(2B),2B) = 1 — AN (Y (2p), zp) = 0: this follows directly
from the definition of Y(z2) and zp.

3. A®(Y(zB),25) # 0, and AV (Y (2p),2p) # 0. For our example, it is
easily seen that this holds true for N > 1, but for N = 1 it is seen that
AUY(Y(2),2) = 0 for all z. Note that for N = 1 only one packet can
enter the queue during a slot - which is served at the beginning of the
next slot - and thus there is no queueing at all. The tail probabilities of
the system contents are thus zero.

4. if |22‘ S ZB, ‘Z1| S Y(ZB), and zZ1 — A(Zl, 22) =1- A(l)(Z1,ZQ) = O, then
zo = zpand z; = Y(zp). 21 — A(z1,22) = 1 — A(l)(zl,ZQ) = 0 is in our
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example equal to

A N
2z — (1+2§_1 Wf(zj - 1)> -0

N-1 (2.55)
2 Aj
1—-X 1+Zj:1N(Zj—1) =0
This set of equations has N — 1 solutions (z{"™, 2{"™):
(m) 6j27rm 1/(N-1)
A=
1 . _ ) 2.56
Z(m)_l N—1 e]Qﬂm 1/(N 1)_1+)\_T ( )
> x| N A N

withm = 0,..., N—2. Note that the solution z§0), zéo) equals (Y (zg),zg).
Since —1 + Ar/N < 0 it is seen that |29| < |22| for all m > 0, which
means that this assumption is indeed valid.

Note that this last assumption is in general the hardest one to check. Basically,
it is equivalent with “Y (22) has no other singularities inside and on the circle
with radius zp”. Since zp is one of the dominant singularities, this condition
will be true for |z2| < zp. However, for special arrival processes, Y (z) could
have other singularities on that circle. More details on conditions for this as-
sumption to be true can be found in Meir and Moon [1989]. They prove for
instance that knowing in advance that y(m)y(n) > 0 for some m > n with
the greatest common devision of m and n equal to 1 is a sufficient condition.
However, once again, we stress that it is not always easy to check the assump-
tions and thus we advice - in respect with Bender’s theorem - to “handle with
care”.

Assuming these 4 conditions are met, Bender’s theorem gives the following
approximate values of y(n) (for large enough n):

N A (Y(zp),28) _ “n
y(n) ~ \/Q:A(u)(y(;),;)” 2 (2p) 7" (2.57)

An alternative method to obtain y(n) for large enough n is the following: if we
find an explicit function for Y (z3) which is correct in the neighborhood of zp,
we can use Darboux’s theorem to obtain the tail probabilities y(n). In Drmota
[1997] it is shown (in the more general context of a set of functional equations)
that in the neighborhood of 2, Y (2) is approximately given by

Y(2) ~Y (25) — Ky (25 — 2)"/2. (2.58)
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This can also be seen from the fact that zp is a (square-root) branch point of
Y (2) (see A.3.2). Ky can be found from expression (2.58) as follows:

(Y(zp) ~ Y (2))*

K% = lim a— (2.59)
zZ—zZpB B —
= Jim [2(Y(25) = Y (2)) Y'(2)] (2:60)

where we have used de 'l Hopital’s rule. Using expression (2.23) for Y'(z), we
obtain

Ky =2A%(Y (25), 25) Jim 1 iiﬁ% (_Y}(/z(;)z) (2.61)
=24 (Y (2p), z5) lim Y(z) (2.62)

mas AGD(Y (2), 2)Y(2) + A0 (Y (2), 2)

after using de '1 Hopital’s rule once more. Since Y'(z) — oo for z — zp, the
last term of the denominator of (2.62) is negligible. This ultimately leads too

- 2A(2)(Y(ZB),ZB)
Ky _\/A“l)(Y(zB),zB)‘ (2.63)

Using Darboux’s theorem on expression (2.58), we get

y(n) =— mn_?’/%B". (2.64)

Using expression (2.63) and the knowledge that I'(—1/2) = —2/7, we indeed
find expression (2.57). Both methods thus lead to the same result.

Class-2 system contents

Since Y (z) appears in the expression (2.28) of Us(z), zp is also a singularity of
Uz(z). Indeed, taking the first derivative of expression (2.28) yields

(z = D1 =Y (2)(z - Y(2))A5(2)
(1= A7) § +A2(2)(1 = Y (2))?(1 - Az(2))
Ul(z) = —Ax(2)(2 — 1)*(1 — As(2))Y"(2)

(2 = Y(2))2(1 — As(2))? ’

(2.65)

and it is easily seen that this expression goes to infinity as Y'(z) — oo, or, as
zZ— zZB.

A second potential singularity z;, of U(z) on the real axis is given by the
positive zero of the denominator z — Y'(z), and it is easily proved to be equal
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Y(z) (A;=0.05) ----—--
Y(z) (\=2/3) -
Y(2) A\ =0.75) v i

2.5

Figure 2.2: Types of behavior of Y (z)

to zp, if z;, exists. Figure 2.2 gives three typical types of behavior of Y (z) for
A(Zl722) = (1 — Al(l — Zl)/N — )\2(1 — ZQ)/N)N, for N = 2, )\T = 0.8 and
A1 = 0.05,2/3 and 0.75 respectively. For A\; = 0.05, Y (z) intersects z twice
(for z = 1 and for z = z1,), before reaching the branch point (not shown in the
Figure). For \; = 2/3, Y (z) intersects z once in z = 1 and equals z in its branch
point. When \; = 0.75 finally, Y(z) intersects z once in z = 1 and reaches its
branch point before it could intersect z a second time. In this case, no zy, is
found, or alternatively, z — Y (z) # 0 for real z > 1 (and for z for which Y (z)
exists), see Appendix for more details.

The tail behavior of the system contents of class-2 cells is thus characterized
by zp or zp, depending on which is the dominant (i.e., smallest) singularity.
Furthermore, 21 equals zr when it is dominant (or equivalently, when it ex-
ists). Three situations may thus occur, namely when z;, = 27 < zp, 2z, does
not exist, and z;, = zr = zp. We will discuss these three cases separately first,
or more precisely we will first study the (approximate) behavior of Us(z) in
the neighborhood of its dominant singularity for the three cases separately.

In the first case, the single pole z7 is dominant and thus

K

b
T — %

Us(2) ~ (2.66)

forz — z7. K. él) can be calculated by substituting expression (2.28) in the pre-
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vious expression and substituting z = zr (in a similar way as in the calculation
of (2.42)). This yields

(1= Ar)As(zr) (21 — 1)

(1) _
K = ) D (V) )

(2.67)

In the second case, i.e., when z;, does not exist, the branch point zp is dom-
inant. Using the definition of Y (z) (Y (2) £ A(Y (2), 2)), expression (2.28) can
be transformed in a functional equation. Using Bender’s theorem, it is then
possible to obtain the tail behavior. Alternatively, we first study the behavior

of Us(z) in the neighborhood of z5. Using expression (2.58) in (2.28), we find
A5(2)(z = 1) (Y (28) = Ky (25 = 2)/* 1)
(z ~Y(zp) + Ky (25 — 2)1/2) (As(2) — 1)

As(2) (2 — 1) (Y(ZB) Ky (25 —2)? - 1) }
(2.69)

X (z —Y(25) — Ky (25 — 2)1/2)

~(1—Ar)
U (Y ) - KR p - 2) (As(2) - )

This expression leads to
Us(2) = Ua(zp) = K3 (25 = 2)' 7, (270)

) instead of

in the neighborhood of zp - note that we have used the notation K §3
(the expected) K. 52) because we will switch the last two types of tail behavior

in the end formula’s - with

3 (1= A)KyAs(zp) (25 — 1)°

K = .
(A2(2p) — 1) (25 — Y(28))°

.71)

In the third case, zr and zp coincide. Again, we will study the behavior of
Us(z) in the neighborhood of this dominant singularity and use Darboux’s
theorem to calculate the tail probabilities of the class-2 system contents. The
approximation of Us(z) in the neighborhood of zg is again found by substi-
tuting expression (2.58) in expression (2.28):

As(2)(z—1) (zB — Ky (25 — 2)1/2 - 1)

Un(2) ~(1 - Ar)
U (e Ky (25— 2)72) (s() - )

2.72)
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As(2)(z — 1) (ZB Ky (25— ) = 1)

%(1 - /\T)
(25 =) (25 = )"/ + Ky ) (42(2) - 1)

, (2.73)

where we have also used the fact that Y (zp) = zp. This leads to the following
form of Us(z) in the neighborhood of its dominant singularity:

Us(2) =——— (2.74)

with

(1= Ar)As(zp) (25 — 1)2‘

(2)
K7 =
2 Ky (AQ(ZB) —1)

(2.75)

Summarizing, Us(z) can be approximated in the neighborhood of its dominant
singularity by:

e
Z2Z ifZL:ZT<ZB
T —

Us(2) ~ K _ (2.76)
W if Z[, = RT = ZB
zZB z

Us(zp) — Kég) (zp — z)1/2 if z7, does not exist,

where the constants K 2(’) (¢ = 1,2, 3) are given by expressions (2.67), (2.75) and
(2.71) respectively (note that we switched the second and third case). Using
Darboux’s theorem (see Theorem 1.1), we find the tail probabilities for the
three possible cases:

uz(n) £Prob[uy = n] (2.77)
(1= Ar)As(er) (2r — 1)* 27"
(Az(zr) = 1) (Y'(27) — 1)
1—-Ar)As(zp) (2 — 1 22,
~4 ! K)y (2372'((142(23)) ) 278
(1 =Ap)KyAs(zp) (2B — 1)2 n=3/22"
2/7/z5 (A2(z8) — 1) (25 — Y(28))*

for large enough n, if z;, = 27 < zp, if 21, = 2r = zp and if z;, does not exist,
respectively. The first expression constitutes a typical geometric (or exponential)
tail behavior, while the third expression is a typical non-geometric tail behavior.
The second expression exhibits a behavior in between the two other cases, and
we will thus call this tail behavior of transition type.
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Finally, the probability that the system contents of class-2 exceeds a bound L
is (approximately) given by

uz (L)
Ze — 17

Prob[us > L] ~ (2.79)

with z, the dominant singularity of Us(z) and for large enough L. This can be
found in the same way as (2.46).

2.2 Queue contents

The queue contents, defined as the number of cells in the queue (thus without
the one in the server if any), can be easily derived from the system contents.
We denote the queue contents of class-j at the beginning of the k-th slot by ¢; «
(4 = 1,2). We then get the following relation between the g; ;, and the u; j41:

Uj k+1 = G5,k + Q5 k, (2.80)

for j = 1,2. uj 41 and a; are still defined as the class-j system contents at
the beginning of slot k¥ 4+ 1 and the number of class-j arrivals during slot &
respectively. This relation can be understood as follows: the system contents
at the beginning of slot k£ + 1 exists out of the queue contents at the beginning
of the previous slot (the possible cell in the server during slot k£ has left the
system at the end of that slot) and the cells that arrived during slot k. Let us
denote the joint pgf of the steady-state queue contents by Q(z1, 22), i.e.,

Q(z1,22) :klirgoE [21" 237" ] . (2.81)

By z-transforming the system equations (2.80) and letting k¥ — oo, we find

_ U(Zlv 22)
Q(z1, 22) = Aoy o) (2.82)
Substituting U (21, z2) with its expression (2.13) finally yields:
Q(z1,22) =(1 = A7) (21— ¥(z))(z2 — 1) (2.83)

(21— A(21, 22)) (22 — Y (22))

From this expression, marginal pgf’s, moments and tail probabilities of the
total, the class-1 and the class-2 queue contents can be calculated as is done
in section 2.1 for the system contents. We will not give the expressions here,
because it results in basically the same expressions as in the previous section,
but without the factor introduced by the factor A(z1, z2) in (2.13).
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2.3 Unfinished work

In the case of single-slot service times, the system contents and the unfinished
work are equal. This is because every arriving cell in the queue adds one unit
to the system contents and adds orne slot to the unfinished work. So, denoting
W (z1, z2) as the pgf of the steady-state unfinished work at the beginning of a
random slot, or

W(z1,22) = kh_)n;oE (27" 252" ] (2.84)

with w; ;. (j = 1,2) the unfinished work of class-j at the beginning of slot £,
W (z1, z2) equals (see expression (2.13))

W (z1,22) =U(21, 22) (2.85)
A(21,22) (21 — Y(22))(22 — 1)
(21— A(z1,22)) (22 = Y(22)) -

=(1 - Ar) (2.86)

From this joint pgf, the same marginal pgf’s and performance measures can
be calculated as in section 2.1.

Note that the unfinished work and the system contents are equal because of
the single-slot service times. Since we will assume more general service times
in the other chapters, these two stochastic variables will have to be analyzed
separately in the following chapters (although they will obviously still be re-
lated).

24 Cell delay

In this section, we analyze the cell delay of the class-1 and class-2 cells respect-
ively. As stated in chapter 1, the delay of a tagged cell is - in a discrete-time
context - defined as the number of slots between the end of its arrival slot and
the end of its departure slot. In this section, we derive expressions for the pgf’s
of the steady-state cell delay of both classes and of the steady-state delay of a
random cell, and calculate the related performance measures.

2.4.1 Pgf D,(z) of the class-1 cell delay

We can analyze the cell delay of class-1 cells - the high-priority cells - as if they
were the only type of cells in the system. Indeed, when a class-1 cell arrives it
is served before all class-2 cells in the system at that time and thus the high-
priority cells do not “see” the low-priority cells. Therefore, the class-1 cell
delay is the same as in a corresponding single-class system with only class-1
cells arriving. This analysis is (obviously) already done in the past - in a more
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general context (see e.g. Bruneel and Kim [1993]), but to set the mind of the
reader we will reconstruct this analysis in the setting of this chapter. We tag a
class-1 cell and assume that the arrival slot of the tagged cell is the k-th slot.
The delay d; of this tagged cell is given by

di =[ure — 1"+ 10+ 1, (2.87)

with u; ;, the system contents of class-1 at the beginning of slot k£ and fl(lk) is
defined as the number of class-1 cells that arrive during the arrival slot of the
tagged cell, but which have to be served before it (or which arrive during the
same slot as the tagged cell but “before” it). Indeed, the tagged cell has to
wait in the queue until all class-1 cells that were already in the queue when
it arrives (i.e., all cells that were already in the queue at the beginning of its
arrival slot and all cells that arrived in front of the tagged cell in its arrival slot)
are served. The delay then equals this waiting time augmented with its own
service time, which equals 1 in this model. This leads to expression (2.87).
Note that we could express this expression also in terms of queue contents
instead of system contents (this would lead to a more “simplified” expression
in this case because [u1 1 — 1]+ = ¢1,%). This is a matter of choice, and we will
throughout this dissertation choose to express the delay as a function of the
system contents. Translating expression (2.87) into pgf’s yields

Di(2) £ lim E [2%] (2.88)
=FM(2) [U1(2) + (2 — DUL(0)], (2.89)

with
FY(2) 2E [Zfﬁi} . (2.90)

Notice that we have used the fact that u; ; and fl( 1,3 are uncorrelated - because

the arrival process is ii.d. from slot-to-slot - to obtain (2.89). Fl(l)(z) can be
calculated by taking into account that an arbitrary cell is more likely to arrive
in a larger bulk (e.g. Bruneel and Kim [1993]), yielding - we will describe the
calculation of a similar (but more general) pgf in more detail in the following
subsection -

Al(Z) -1

W)
FU(z) = NCEE (2.91)
Using expressions (2.25) and (2.91) in (2.89), we finally find
Dy(z) =12 AAi(z) = 1), (2.92)

)\1 z— Al(Z)
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Notice that U;(z) (expression (2.25)) and D (z) (expression (2.92)) fulfil the
following general relation (see Xiong and Bruneel [1993] or Vinck and Bruneel
[1995]):

U1 (Z) =1- )\1 + )\1D1(Z). (293)

2.4.2 Pgf Dy(z) of the class-2 cell delay

The analysis of the cell delay of class-2, denoted by ds, is more complicated.
Consider a logically equivalent queueing system where all class-1 cells are
stored in front of the class-2 cells, and let us tag an arbitrary class-2 cell that
arrives in the system. The amount of time it spends in the system equals

lur,x—1]" +f;2}c

dy = > vj + 1, (2.94)

j=1

where slot k is assumed to be the arrival slot of the tagged class-2 cell, ur, is

the total system contents at the beginning of slot k, ff,)c is defined as the total
number of cells that arrive during the arrival slot of the tagged cell, but which
have to be served before it, and v; is the length of the j-th sub-busy period
(from slot k onwards) initiated by the cells already in the queue when the
class-2 cell arrives. Note that, since all class-1 and class-2 cells have single-slot
service times, it is sufficient to know the total system contents at the beginning
of slot k in order to analyze the class-2 cell delay in this model. In the follow-
ing chapters, the distributions of the class-1 and class-2 service times may be
different and as a result u; ; and ug j will have to be known separately (in-
stead of only their sum urp ).

The notion of a sub-busy period initiated by a cell is widely used in queueing
analyses. Itis - in the context of our analysis - basically defined as follows: the
sub-busy period starts at the beginning of the slot the cell enters the server.
Assume that at that time instant, m cells are waiting in the queue in front of
the tagged class-2 cell (in the logically equivalent queueing system, i.e., all
class-1 cells are stored in front of the class-2 cells). The sub-busy period ends
at the beginning of the slot where - for the first time - the number of cells
waiting before the tagged class-2 cell equals m — 1, i.e., equals one less than at
the beginning of the sub-busy period. In case of a FIFO scheduling, v; would
equal 1 (see e.g. also expression (2.87)). For a priority scheduling, this is not
necessarily the case, since new class-1 cells can arrive while the tagged cell is
waiting in the queue and these class-1 cells have to be served before the tagged
cell. More specifically, assume that the tagged cell is stored in the j-th position
in the queue at the beginning of the [-th slot. If no class-1 cells arrive during
slot [, v; equals 1. If a1 ; (> 0) class-1 cells arrive during this slot on the other
hand, the tagged cell will move back to position j + a;; — 1 in the queue at
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the beginning of slot [ + 1, since these class-1 cells have to be served before all
class-2 cells, and thus before the tagged one.

Since the arrival process is i.i.d. from slot-to-slot it is obvious that the v; are
all i.i.d. stochastic variables. We denote their common pgf by V(z). Since

UT ks f;zl)c and the v; are all mutually independent variables, z-transforming
expression (2.94) yields

Dy(2) ékli_{n E [2%] (2.95)
zzF;Q)(V(z)) Ur(V(2)) +‘(/YZ()Z) - l)UT(O)’ (2.96)

with F}2) (%) the pgf of fq(?,)c and with Ur(z) the pgf of the total system contents
at the beginning of a random slot. Furthermore, ;2])6 is the sum of all the class-
1 cells that arrive during the same slot as the tagged one, and of the class-2 cells

that have arrived before it during its arrival slot. The pgf of f}Q,)c is calculated
first. We define

#12(n) 2Prob [ 3 = n] , 2.97)
and
a(m,n) £Prob [a1 = m, a2 = n], (2.98)

with @; the number of class-j arrivals in the arrival slot of a tagged class-2 cell.
Taking into account that an arbitrary tagged cell is more likely to arrive in a
larger bulk a(m,n) is given by

a(m,n) :%"{?"), (2.99)

with a(m, n) the probability mass function of the number of class-1 and class-
2 arrivals in a random slot. Note that a(m,n) and a(m,n) are not equal (see
Bruneel and Kim [1993] for more details). When fﬁ)c = n, the number of class-

1 arrivals is at most n and the total number of arrivals during slot & has to be
larger than n, leading to

ISOEDDEDY a(m, ) (2.100)

Substituting expression (2.99) in this expression and taking the z-transform
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yields
@, _Ar(z) — Ai(2)
F;(2) _—)\g(z - (2.101)
Using equations (2.18) and (2.101) in expression (2.96) gives

A2 V(z) = Ar(V(2))

It remains for us to determine V'(z). During the first slot of a sub-busy period,
class-1 packets arrive which all initiate sub-busy periods of their own, part
of the initial sub-busy period. The newly introduced sub-busy periods are
stochastically indistinguishable from the initial sub-busy period, so they (all)
have the same pgf V' (z). Thus, since the length of the initial sub-busy period
equals one (the first slot) added with the sum of the lengths of the sub-busy
periods (initiated by the class-1 arrivals during the first slot), V' (2) is implicitly
given by

V(z) =2zA1(V(2)). (2.103)
Expression (2.102) is then further transformed in

_ 1-— )\T ZAT(V( ) — V(Z)

)
Do) = =T Vo - arv )

(2.104)

with V(z) implicitly given by (2.103).

2.4.3 Pgf D(z) of the delay of a random cell

In this subsection, we will derive the pgf D(z) of a random cell arriving in the
system. Tagging a random arriving cell, it is of class-1 with probability A, /Ar
and of class-2 with probability A2 /Ar. We thus get

D(z) :j\\—;Dl(z) + /)\\—;Dg(z). (2.105)

Substituting expressions (2.92) and (2.104) in this expression leads to

_1- A 2(A1(z) = 1) 1= Ar2A7(V(2)) = V(2)
Ar 2= A(2) Ar V(z) = Ar(V(2)

D(2) (2.106)
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2.4.4 The function Y (z) revisited

We mentioned in subsection 2.1.2 that Y (2) - defined as Y () £ A(Y(2), 2) - is
a pgf. In this subsection, we will “define” a stochastic variable with pgf Y (z).

The function Y (z) is the pgf of the stochastic variable y, which is defined as
the number of class-2 cells that arrive during a sub-busy period (denoted by
v) initiated by a random cell (as defined in subsection 2.4.2), i.e.,

y=y al, (2.107)
=1

with agi) defined as the number of class-2 arrivals during the i-th slot of v.
We furthermore define the number of class-1 arrivals during the i-th slot of v

by agi). The sub-busy period v exists out of the first slot, needed to serve the

cell that initiates the sub-busy period, and agl) sub-busy periods (initiated by
the class-1 arrivals during the first slot), all with the same distribution as the
original sub-busy period. y is thus given by

oV

y=as"+ 3 ylV, (2.108)
m=1

with ¢ the number of class-2 cells that arrive during the sub-busy period
initiated by the m-th class-1 cell that arrives during the first slot of v. Natur-

ally, all 45 have the same distribution as y (since the lengths of all sub-busy
periods are also i.i.d.) and their pgf is thus indeed given by

Y(z) =AY (2), 2), (2.109)

as immediately follows by z-transforming (2.108).

Note that Y (z) not necessarily equals V(A3 (z)) as one would expect from the
definition of the stochastic variable y. Since v depends on the agz) and since -
for each i - a{” and a are correlated, v also depends on the a{”. Thus, since

v and agl) are correlated, Y (z) does not equal V' (A43(z)) in general. This will
be the case however, when the number of class-1 and class-2 arrivals in a slot
are mutually independent. Indeed, when A(z1, z2) = A1(21)A2(22), Y(2) and
V(A2(z)) are solutions of the same functional equation x = A;(x)A2(2) (as
can be seen from expressions (2.109) and (2.103) respectively) and thus since
they are both pgf’s Y'(z) = V(A2(z)) in this case.
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2.4.5 Calculation of moments

Taking the first derivative of equation (2.92) and substituting z = 1 yields the
mean delay of a class-1 cell:

1 Var|a,]
Eld] =5+ 2201 (1 = \y)

. (2.110)
Note that this expression is always at least equal to 1, since Var[aq] > A\ (1 —
A1). This can intuitively be seen as follows: in order for a discrete stochastic
variable to have a mean value of A\; < 1 and a minimal variance, it has to
be 1 with probability A; and 0 with probability 1 — A;. This distribution has a
variance of A\ (1— A1) and this is thus the least possible variance of the number
of per-slot class-1 arrivals. Note that this was intuitively expected since the
service time of a cell is always an integral part of the delay of that cell (and
thus E[d;] > 1). Thus the mean delay is at least the mean service time of a cell,
which equals 1 in this model.

The mean delay of a class-2 cell is found by taking the first derivative of ex-
pression (2.104) and substituting z by 1, yielding

_ 1 Varlag] +2Cov|ay, as] Var|a,]
Bl =5+ =i T oawa oy @M

for the mean cell delay of a class-2 cell. This expression is also at least one,
since for given mean arrival rates of class-1 and class-2 (A\; and A, respect-
ively), the minimal value of Vara,| is A;(1 — A;) (j = 1,2) and the minimal
value of Covlas,az] is —A1A2. These least possible values occur when one
class-1 cell and no class-2 cells arrive during a slot with probability A;, no
class-1 cells and one class-2 cell arrive with probability A, and no arrivals oc-
cur during a slot with probability 1 — Ap.

Finally the mean delay of a random cell equals

A A
E[d] ZﬁE[dl] + ﬁE[dz] (2.112)
_ 1 Var[ai] + Var|as] 4 2Cov]a, as]
=+ el =) . (2.113)

We have used expressions (2.110) and (2.111) to obtain this formula. Note that
this expression can (obviously) also be found by taking the first derivative of
expression (2.106) and substituting z by 1. Finally, since

Var|ar| =Var|a; + as] (2.114)
=Var[a;] + Var|az] + 2Cov]ay, as], (2.115)
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we find

1 Var|ar]
Bl =3+ 53— Ap) (2.116)

This expression is the same expression as in a single-class queue with a FIFO
scheduling discipline, or, in other words the mean delay of a random cell
is independent whether the scheduling discipline is FIFO or there is some
type of priority scheduling discipline. This is even extendable to every work-
conserving scheduling discipline. This can easily be proven by (the discretis-
ized version of) Little’s law (see Little [1961] and Fiems and Bruneel [2002]).
For each work-conserving scheduling discipline, the distribution of the (total)
system contents is identical and thus leads to the same pgf Ur(z) (expression
(2.18)), and to a same mean total system contents E[ur] (expression (2.35)).
Little’s law, in our model given by

Efur] =ArE[d], (2.117)

then gives a same mean delay for all scheduling disciplines. Indeed, expres-
sions (2.35) and (2.116) satisfy Little’s law.

Little’s law is not only valid for the “total” buffer, but can also be used on
“parts of the buffer/cells”. In a priority context, for instance, Little’s law is
also valid for each priority class separately. Or, more precisely,

for j = 1,2. It is easily verified that expressions (2.36)-(2.110) and expressions
(2.37)-(2.111) respectively satisfy Little’s law.

2.4.6 Calculation of tail probabilities

From the pgf’s of the delay of a class-1 cell, a class-2 cell and a random cell,
the tail probabilities can be derived using Darboux’s theorem (Theorem 1.1)
or Bender’s theorem (Theorem 1.3), in a similar way as for the system con-
tents (see subsection 2.1.7). Details about the methods used can be found in
that subsection. We will here only give a brief overview of the method and
obtained results.

Class-1 delay

The dominant singularity of D;(z) (expression (2.92)) is the same as the one
of Uy (z) (also with multiplicity 1), i.e., zg, the dominant zero of z — A;(z). In
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the neighborhood of this singularity, D;(z) is given by

(1 — )\1)ZH (ZH — 1)
(Ay(zm) = 1) (20 — 2)

D (2) N (2.119)

Using Darboux’s theorem, we approximate the tail behavior of the delay of
class-1 cells by

dy(n) £Prob|d; = n] (2.120)

(I—=X) (2w —1) 24"
~ ) 2121
NEHERE) @120
for large enough n. Summing this equation for alln = D 41, ..., 0o gives the
probability that the delay of a class-1 cell exceeds a bound D:

1 _ 7D

Probld; > D] ~ (1= A1)zy (2.122)

A (A (zm) — 1)

Sub-busy periods
The tail behavior of the delay of class-2 cells is again a bit more involved be-

cause of the appearance of the function V' (z) in (2.104), which is only implicitly
known by expression (2.103). The first derivative of V'(z) is given by

T A (2.123)

which, similar as for Y'(z), indicates that V(z) has a branch point 25, with
2pA1(V(2g)) = 1. In the neighborhood of 25, V(2) is approximately given by

V() ~V(ig) — Ky (35 — 2)"/?, (2.124)

[ 24:(V(2R))
Ky —‘/72%,1,(‘/(23)). (2.125)

Using Bender’s theorem on the functional equation (2.103) or Darboux’s the-
orem on (2.124) leads to the tail probabilities v(n) of a sub-busy period initi-

ated by a class-1 cell
_ AI(V(éB)) —3/25—n
v(n) =4/ 27TA’1’(V(23))n 25 (2.126)

with
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Class-2 delay

Since V' (z) appears in the expression of Ds(z), Zp is also a branch-point type
singularity of Ds(z). A second singularity of Dy(%) is given by the dominant

zero 21, of V(z) — Ar(V(z)) on the real axis. It is proved to equal %, if 21,
1\zT

exists.

So, similar as for Us(z) - see subsection 2.1.7 - D5 (z) can be approximated in
the neighborhood of its dominant singularity by:

J0
— 2 if 2, < Zp
z, — 2
~ (2
Dy(2) i _ N (2.127)
(28 — 2)
Ds(2p) — Kég) (2 — z)1/2 if 2, does not exist,

where the constants K’ éi) (¢ = 1,2, 3) can be found by investigating Ds(z) (ex-
pression (2.104)) in the neighborhood of its dominant singularity. Doing so,
we find

0 _ 0= nV(r) (5 1)

B V) (VG - D (2128

i@ _(1=Ar) (ZBAT( (¢8)) —V(2B))

: MoKy (A5 (V(z5)) 1)

UL R R CR ERHUC AT
% (V(25) — Ar(V (zp)

(2.129)

These are calculated in a similar way as the K éi) in expressions (2.67), (2.75)
and (2.71) respectively.

By using Darboux’s theorem on expression (2.127) the tail probabilities of the
delay of the class-2 cells are given by

do(n) £Prob[dy = n] (2.131)
2( )3 Zn 1 if 2, < Zp

k2(2)n—1/221§n o A

EY-~=a if 2, = Zp (2.132)

f(2(3)n73/22§n

2\/’7‘1’/7:’3

%

if 21, does not exist,




46 Single-slot service times

with K", i = 1,2,3, given by (2.128), (2.129) and (2.130) respectively. Again,
the first expression shows the typical geometric tail behavior, the third ex-
pression the typical non-geometric tail behavior and the second expression
the transition type behavior between the two other types.

The probability that a class-2 cell has a delay that exceeds a bound D is then
given by

if2 (n)

2, —1’

Prob[dy > D] ~ (2.133)

with Z, the dominant singularity of D;(z) for D large enough.

Delay random cell

Finally, we calculate the tail probabilities of the delay of a random cell. Its pgf
D(z) is given by expression (2.106). The dominant singularity of this function
is 21, or Zp, depending on which is smallest.

Note that zp is also a singularity of D(z), but we will show in this paragraph
that z > Zp and thus that zy is never dominant. Firstly, since Zp satisfies the
relation Zp A} (V(25)) = 1 and since 25 is bigger than 1

A\(V(2p)) <L. (2.134)

Furthermore, since A;(z) and z intersect in zg, A} (zx) > 1. This combined
with (2.134) and the fact that A/ (z) is assumed to be a strictly increasing func-
tion, it follows that

V(sp) <zm. (2.135)

Since V(z) = zA1(V(2)) and since A1(V (2g)) > 1 (since V(£5) > 1) it follows
from the previous inequality that 2g < zp, and thus zy is never a dominant
singularity of D(z). It is also intuitively clear that - because of the priority
scheduling discipline - the behavior of d(n) for high n will be dominated by
the delay of the class-2 cells.

We return to the calculation of the tail probabilities of D(z). From expres-
sion (2.105) and the fact that the dominant singularities of D(z) and D2 (z) are
equal, it is easily seen that

d(n) £Prob[d = n] (2.136)
zﬁdg(n), (2.137)
At

for large enough n. Since d2(n) is approximately calculated in expression
(2.132), d(n) is approximately determined.
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Finally, the probability that the steady-state delay of a random cell is larger
than a bound D is given by

Prob[d > D] i\—Prob[dg > DJ. (2.138)
T

2.5 Waiting time

The waiting time of a cell, defined as the number of slots a cell has to wait
in the queue before getting service, is easily analyzed using the result in the
previous section. Indeed since the service times of all cells are equal to one
slot, the waiting time of a cell equals the delay of that cell minus 1. Thus, the
pgf of the steady-state waiting time of a class-1 cell is given by

Ti(z) =2 1Z(Z) (2.139)
N 1-— /\1 Al(Z) -
-t (2.140)

Furthermore the pgf of the steady-state waiting time of a class-2 cell yields

Ty(z) =2 QZ(Z) (2.141)
1A Ar(V() - AV(2)
T V) - Ar(V() (142

Finally, the pgf of the steady-state waiting time of a random cell is given by

L-MAu(z) =1 1= A Ar(V(2)) = Au(V(2)

oA T A V() - Ar(V(2) 2.14)

T(z) =

From these pgf’s, performance measures can be calculated as is done in the
previous section. Similar expressions are found as in the previous section, so
we will not go further into detail here.

2.6 Numerical examples

In this section, we will show the influence of the system parameters on the
performance measures calculated throughout this chapter. We will specific-
ally focus on the performance measures of the system contents (analyzed in
section 2.1) and of the cell delay (analyzed in 2.4).
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2.6.1 Input processes

We use the example of the output queueing switch, discussed in section 1.7.2,
throughout this section. A conceptual model of such a switch is (again) shown
in Figure 2.3. Having (independently distributed) Bernoulli arrivals at the in-
lets of the switch and having an independent and uniform routing throughout
the switch, A(z1, z2), the pgf of the number of per-slot class-1 and class-2 ar-
rivals to one of the (output) queues, is given by - see section 1.7.2 -

Mt A o
A(z1,22) = (1 —ydma) - - 22)) ; (2.144)
with N the number of inlets and with \; the probability that a class-j cell
arrives at a randomly chosen inlet. The marginal pgf Ar(z) is then given by

Ap(z) = (1 - %(1 - z))N, (2.145)

with Ay = A1 + A2. The marginal pgf of the number of per-slot arrivals of
class-j is given by

Aj(z) = <1 - %(1 - Z))N, (2.146)

with j = 1,2. The means of the total, class-1 and class-2 number of per-slot
arrivals are thus given by Ar, A\; and \; respectively. The variances of these
three stochastic variables are given by

A

Var[a] =\ (1 - N) : (2.147)

with A equal to A7, A1 and A, respectively. Finally, the covariance of the num-
bers of per-slot class-1 and class-2 arrivals is given by

A A
Covlay,az] = — ?VQ. (2.148)

This covariance is always negative for finite NV, which is intuitively clear since
having more arrivals of one class in a slot, means that less arrivals of the other
class can occur (the maximum number of per-slot cell arrivalsis N). If N — oo,
the arrival processes of both classes are uncorrelated (distributed according to
Poisson processes), and the covariance thus tends to 0.
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Figure 2.3: An NxN output queueing switch

2.6.2 Influence of load on moments

Firstly, we will show the influence of the load characteristics on the means
and variances of the system contents and cell delays. The arrival process is
as defined in expression (2.144) with N = 16. We define « as the fraction of
class-1 arrivals in the overall traffic mix, i.e.,

aM

a 23 (2.149)

Mean values and variances of the system contents

In Figures 2.4 and 2.5, the mean values and variances of the system contents of
class-1 and class-2 cells are shown as functions of the total arrival rate, when
a = 0.25, 0.5 and 0.75 respectively. We have also shown the mean value and
variance of the system contents of one class (class-1 or class-2) for « = 0.5
when a FIFO scheduling discipline is applied. Note that in this case the sys-
tem contents of class-1 and class-2 are identically distributed. These values can
be easily calculated because - in the special case of the arrival process charac-
terized by (2.144) - the joint pgf of the numbers of arrivals of both classes has
the feature that it can be written as Ap(az; + (1 — a)z2). Le., looking at one
(arriving) cell, this cell is of class-1 with probability o and of class-2 with prob-
ability 1 — «, irrespective of the type of other arrivals. When the scheduling
discipline is FIFO, the order of service is random with respect to the type of
the cells and thus every cell in the system is also of class-1 with probability «
and of class-2 with probability 1 — a. The joint pgf of the system contents of
both classes is thus given by Ur(az; + (1 — a)z2), with Ur(z) the pgf of the
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Figure 2.4: Mean value of system contents versus the total arrival rate

total system contents (given by expression (2.18)), and the mean and variance
are thus easily obtainable from this pgf. From Figures 2.4 and 2.5, one can see
the influence of the priority scheduling discipline: the mean and the variance
of the number of class-1 cells in the system are severely reduced by the prior-
ity scheduling discipline; the opposite holds for class-2 cells. In addition, it is
also clear that the impact of the priority scheduling discipline on the system
contents is more important if the (total) load is high. Finally, it also becomes
apparent that increasing the fraction of class-1 cells in the overall traffic mix in-
creases the amount of class-1 cells in the system while decreasing the amount
of class-2 cells.

Similar conclusions can be drawn from Figures 2.6 and 2.7, which show the
mean value and variance respectively of the system contents of both classes
versus « for A\ = 0.3, 0.6 and 0.9. The mean value and variance of the class-
1 system contents increase with the fraction of class-1 cells in the traffic mix,
while the opposite holds for the mean value and variance of the class-2 system
contents. As can be seen from both figures, the difference between class-1 and
class-2 system contents for different values of a can be especially large when
the load is high. For high o, the mean and variance of class-1 system contents
can be larger than the mean and variance of the class-2 system contents. This is
due to the fact that most of the arriving cells are of class-1 for high « and thus
the class-1 queue builds up “more” than the class-2 queue (although class-1
cells are served with priority). The most extreme case is when o = 1 and thus
all cells are of type 1, which means that the class-2 buffer stays empty.
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Figure 2.5: Variance of system contents versus the total arrival rate
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Figure 2.6: Mean value of system contents versus the fraction of class-1 arrivals
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Figure 2.7: Variance of system contents versus the fraction of class-1 arrivals

Correlation coefficient of class-1 and class-2 system contents

In Figure 2.8, the correlation coefficient p,, ,,, which quantifies the correlation
between the number of class-1 and class-2 cells in the system at the beginning
of a slot, is shown as a function of the total arrival rate for a = 0.25, 0.5 and
0.75. We see that p,, ., is (slightly) negative when the total load is small, but
becomes positive when the total load is large. The reason for this are two
counteracting mechanisms. The first one is the switch structure: when more
class-1 cells arrive at the switch, there will be less class-2 cells arriving at the
same time (since the amount of inlets is limited), and vice versa. This negat-
ive correlation between cell arrivals of the two priority classes during a slot
shows for small values of Ap. For these parameter values, there is virtually
no queueing and the buffer behavior is mainly determined by the number of
arrivals during a single slot. The second mechanism is the priority scheduling
discipline. As Az (and A;) further increases, more and more cells are being
queued, and the presence of class-1 cells starts to seriously hinder the trans-
mission of class-2 cells, thereby leading to a positive correlation between w4
and uy. Finally, when Ar approaches 1, the total system contents (and the
number of class-2 cells) approaches infinity, due to the system becoming un-
stable. As a result p,,., approaches 0. We have also shown the correlation
coefficient for & = 0.5, when a FIFO scheduling discipline is applied. The
correlation coefficient is in this case larger than when a priority scheduling
discipline is applied (for & = 0.5). Since the system contents of both classes
go to infinity at the same pace (for a = 0.5) when Ar approaches 1, py,u,
approaches 1.
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Figure 2.8: Correlation coefficient of system contents versus the total arrival rate

In Figure 2.9, we show the correlation coefficient of the class-1 and class-2
system contents versus the fraction of class-1 cells a, with A\ = 0.3, 0.6 and 0.9
respectively. From this figure it is seen that the correlation coefficient increases
with increasing « for a not too high (as Figure 2.8 also indicated). This is
not true for high o though. For higher a the correlation coefficient decreases
with increasing «. This can be understood as follows: since for high « the
arriving cells are mainly from class-1, the class-2 queue does not build up
dramatically. Again, the extreme case is o = 1, i.e., there are no class-2 packets
arriving in the queue. For oo = 1, there is no correlation between the numbers
of class-1 and class-2 system contents (the class-2 system contents equals 0,
independently of the value of the class-1 system contents).

Mean values and variances of the cell delays

Figures 2.10 and 2.11 show the mean values and the variances of the cell delays
of both classes as functions of the total load for o = 0.25, 0.5 and 0.75. In or-
der to compare with FIFO scheduling, we have also shown the mean value
and variance of the cell delay of any cell in that case. The cell delay is in this
particular case the same for class-1 and class-2 cells (independently of «), and
can thus be calculated as if there were only one class arriving according to an
arrival process with pgf A(z, z). Note that the mean delay in the FIFO case
equals the mean delay of a random customer in the system with a priority
scheduling discipline. We observe that the influence of a priority scheduling
discipline is quite large. The mean delay and the variance of the delay of
class-1 cells reduce considerably compared to a queue with a FIFO schedul-
ing discipline. The price to pay is of course a larger mean and variance of the
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Figure 2.9: Correlation coefficient of system contents versus the fraction of class-1 ar-
rivals

class-2 cell delay. Also note that it follows from these figures that increasing
the fraction of class-1 cells in the overall traffic mix, increases the delay charac-
teristics of class-1 and class-2 cells. This is quite obvious: more class-1 cells in
the traffic mix means that the class-1 arrival rate increases and thus the delay
characteristics of the class-1 cells deteriorates too. Secondly, more class-1 cells
in the traffic mix means that more class-1 cells arrive while class-2 cells are
waiting in the queue. Since these have priority over the class-2 cells, the delay
of the class-2 cells increases as well.

In Figures 2.12 and 2.13, the mean values and variances of the delay of a class-
1, class-2 and random cell respectively are shown as functions of the fraction of
class-1 cells in the traffic mix, for a total load of 0.6. As expected (and already
explained) the mean delay of a random cell is independent of «. The mean
delay of the class-1 cells is always smaller than the mean delay of a random
cell, while the mean delay of a class-2 cell is always larger (except for the 2
boundary cases &« = 0 and o = 1: in these cases we have a single-class system
(all cells are of class-1 or of class-2 respectively)). The same is valid for the
variances. It is also seen from Figure 2.12 that the mean class-1 and class-2
delay are both increasing functions with « - as already discussed. From Figure
2.13, we conclude that the variance of the delay of a random cell is smallest
for o = 0 and o = 1. In these cases, we have a single-class system with a
FIFO scheduling discipline. For other « values, the variance of the delay of a
random cell is larger. This is intuitively clear: a priority scheduling discipline
is adopted to decrease the delay of a class of cells (class-1) by increasing the
delay of the other cells (class-2 cells). By applying the priority scheduling
discipline, the variance of the delay of a random cell will increase. As for the
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Figure 2.10: Mean value of cell delays versus the total arrival rate

Figure 2.11: Variance of cell delays versus the total arrival rate
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Figure 2.12: Mean cell delays versus the fraction of class-1 cells (A7 = 0.6)

mean values, it is seen that the variances of the delay of class-1 and class-2
increase with increasing o.

Concluding this subsection, it is clear that the priority scheduling discipline is
especially effective - in reducing the delay of the high-priority cells - when the
fraction of these high-priority cells in the traffic mix is (kept) small.

2.6.3 Influence of second order characteristics of the arrival
process on mean values

From the expressions of the mean class-1 and class-2 system contents and cell
delay, it is easily seen that the second order characteristics of the arrival pro-
cess (variances and covariances) have an influence on these mean values. For
example the mean class-2 system contents and mean class-2 cell delay are seen
to be linearly dependent of the variance of the number of per-slot class-1 ar-
rivals, the variance of the number of per-slot class-2 arrivals and the covari-
ance between the number of per-slot class-1 and class-2 arrivals. From ex-
pressions (2.147) and (2.148), it can be seen that increasing the parameter N
of the (two-dimensional) binomial distribution of the arrival process, Var[a4],
Var[az] and Cov|ay, as] are increased, while the arrival rates of both classes are
kept constant. In this subsection, we will thus change N in order to study the
influence of the second order characteristics of the arrival process.
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Figure 2.13: Variance of cell delays versus the fraction of class-1 cells (A7 = 0.6)

System contents

We show the mean system contents of class-1 and class-2 versus the total ar-
rival rate for « = 0.25 and N = 2, 4, 16 and oo in Figure 2.14. As can be seen
from this figure, the second order characteristics play a considerable role in the
mean system contents. Especially the mean class-2 system contents increases
considerably when N increases. This is because the variance of the number of
arrivals of both classes and the covariance between these two have impact on
the mean class-2 system contents, as opposed to the mean class-1 system con-
tents that is only influenced by the variance of the number of per-slot class-1
arrivals.

Cell delays

In Figure 2.15, the mean class-1 and class-2 cell delay are shown versus the
total arrival rate for o = 0.25 and N = 2, 4, 16 and co. Similar conclusions as
for the mean system contents can be drawn.

2.6.4 Tail probabilities

We have shown in subsections 2.1.7 and 2.4.6 that the tail probabilities of the
class-2 system contents and class-2 cell delay can have three types of behavior,
depending on which singularity of Uz (z) or D (z) respectively is dominant. In
case of the output queueing switch considered in this section (arrival process
given by expression (2.144) with N = 16), the curves in Figure 2.16 show for
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Figure 2.14: Influence of second order characteristics of arrival process on the mean
system contents for oo = 0.25

Figure 2.15: Influence of second order characteristics of arrival process on the mean
cell delay for oo = 0.25



2.6 Numerical examples 59

1 T T T T
0.8 Transition type behavior -
system contents -------
cell delay --------
0.6 - E
Az
0.4 | Geometric behavior B
02 | I — -
/ i Non-geometric behavior \‘\\\
0 a ! ! ! ! R
0 0.2 0.4 0.6 0.8 1
M

Figure 2.16: Regions for tail behavior as a function of the arrival rates of both classes

which combination of class-1 and class-2 arrival rates the transition type beha-
vior occurs for the system contents and cell delay respectively, i.e., for which
combinations of arrival rates the regular pole and the branch point coincide.
Above the curves, the tail behavior is geometric, while below the curves the
tail behavior is typically non-geometric. E.g. for the system contents curve in
Figure 2.16, having an arrival rate combination that is located above (below
respectively) the curves means that the regular pole (branch point respect-
ively) of Us(z) is dominant. For a (A1, A2)-combination on the curve, these
two singularities coincide. Note that in the area above the linear line (defined
by A1 + A2 = 1) in Figure 2.16, the total load is larger than 1, and as a result,
the system becomes unstable.

Figures 2.17 and 2.18 show the tail behavior of the system contents and cell
delay of class-1 and class-2 cells if A; = 0.4 and Ay = 0.1 (non-geometric be-
havior), approximately 0.21 (transition type behavior) and 0.4 (geometric be-
havior) respectively. The tail behavior of the system contents and cell delay of
class-1 cells is of course the same for the three cases, since the arrival process
of class-1 cells does not change. We have also compared our approximations
with simulation results (marks in the figures). The figures show that the ap-
proximations of the class-1, the geometric and transition type tail behavior of
system contents and cell delay are very good in these cases. The approxima-
tions of the tails of the non-geometric case are not as good, but still satisfactory.
Note that the fact that the non-geometric asymptotes are in general not nearly
as accurate as the geometric ones is also concluded in Abate and Whitt [1997]
- wherein the tail probabilities of the class-2 waiting time in a continuous-time
priority queue are approximated.
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Figure 2.17: Tail behavior of the class-1 and class-2 system contents for some combin-
ations of class-1 and class-2 arrival rates
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Figure 2.18: Tail behavior of the class-1 and class-2 cell delay for some combinations of
class-1 and class-2 arrival rates
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Figure 2.19: Tail behavior of the class-2 system contents near the transition from non-
geometrical to geometrical behavior

The approximations of the tails are not good in all cases though, as is illus-
trated in Figure 2.19. In this figure, the tail probabilities of the class-2 sys-
tem contents are shown, with the parameters of the transition type behavior
of the previous examples (\; = 0.4 and A, = 0.21). This can be under-
stood as follows: for A\; = 0.4 constant, we pick three values of \,, notably
A2 = 0.21 (transition type tail), A an infinitesimal amount lower than 0.21
(non-geometric) and Ay an infinitesimal amount higher than 0.21 (geometric
tail). These tail probabilities should be very near to each other, but the fig-
ure shows this is not the case. The incorrectness of the geometrical and non-
geometrical approximations is due to the single-singularity approximations
and/or the approximation of the respective pgf’s in their dominant singu-
larity. If both singularities lie near to each other, which is the case near the
transition from non-geometric to geometric behavior, the single-singularity
approximation is less accurate.

2.7 Concluding remarks

In this chapter, we studied a fairly easy priority queueing system with single-
slot service times. We will extend this model to more general service times in
the next chapters. The usefulness of this chapter is twofold.

Firstly, we have shown the basic principles of the analysis of a discrete-time
priority queue using pgf’s and we demonstrated how to calculate the basic
performance measures. By using a fairly easy model, the insight in the used
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method(s) has not been degraded by too many complexities in the model.
Furthermore, the analyses used in the remaining chapters will be highly based
on this analysis.

Secondly, although the performance measures of the priority queue in this
model are useful in their own right (e.g. in an ATM context), the (pure) influ-
ences of the arrival process on the performance measures are easily deduct-
ible. This is because the arrival process is the only “stochastic input” in this
model. The intuitive explanation of certain behavioral aspects of the prior-
ity queue when changing arrival parameters (load, fraction of priority cells in
the traffic mix, second order characteristics of the arrival process, ...) can thus
more easily be explained.



Chapter 3

Non-preemptive priority

In this chapter, we describe the analysis of a queue with a non-preemptive (NP)
priority discipline with two priority classes and generally distributed service
times. So, whenever the server becomes available, a high-priority (class-1)
unit will be scheduled next (if any). If no high-priority traffic is present, a
low-priority (class-2) unit is served (if any). The service of a unit cannot be
interrupted. Thus when class-1 units arrive while a class-2 unit is in service,
the class-1 units have to wait until the class-2 service is completely finished.

For example in telecommunications, the units are not necessarily all of the
same length in nowadays multimedia packet-based networks (IP networks for
instance). So the model with single-slot service times analyzed in the previous
chapter is a too restrictive model to accurately study the queueing phenom-
ena in such networks. Therefore, we will analyze priority queues with general
service times in this chapter (and the following chapters). Especially the NP
priority discipline has been proposed for packet-based networks, such as the
Differentiated Service model for IP networks (see [Xiao and Ni 1999], where
traffic of one class, the Premium Service traffic class, has NP priority over all
remaining traffic. We will furthermore adopt the packet networks termino-
logy, and call the units packets in this chapter. The service time of a packet
then equals the number of slots necessary to transmit the packet.

Continuous-time NP priority queues have been introduced by Cobham [1954],
according to Miller [1960]. In this latter paper, the pgf of the steady-state sys-
tem contents and the Laplace transform of the steady-state delay of all prior-
ity classes - a general number of priority classes are assumed - are found in
case of Poisson arrivals and generally distributed service times. The first two
moments of the stochastic variables are calculated from the obtained trans-
form functions. An overview of some other basic (non-)preemptive prior-
ity queueing models in continuous-time can be found in the monographs of
Kleinrock [1976] and Takagi [1991], and references therein.
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Continuous-time NP priority queues with infinite buffer space, one server and no
correlation between the arrival processes of the different priority classes are analyzed
in [Marks 1973, Miller 1981, Cidon and Sidi 1990, Takine et al. 1990, Stanford
1991, Takahashi and Miyazawa 1994, Takine et al. 1994a, Sugahara et al. 1995,
Takine 1996, 1999, Abate and Whitt 1997, Venkataramani et al. 1997, Boxma
et al. 1999, Subramanian and Srikant 2000, Iida et al. 2001, Drekic and Stafford
2002, Karam and Tobagi 2002] and [Isotupa and Stanford 2002]. Marks [1973]
gives an algorithm for the calculation of the state probabilities in a NP prior-
ity queue with negative exponential interarrival and service times. In [Miller
1981], an NP priority queue with Poisson arrivals and exponential service
times is analyzed. The state probabilities of the number of packets of each
class in the system are presented in explicit recursive formulas. In [Venkatar-
amani et al. 1997], an NP priority queue with a Markov-modulated Poisson
Process (MMPP) as arrival process and with constant service times is studied.
This model is applied in an ATM context (hence the constant service times, see
chapter 2 for more details). Sugahara et al. [1995] study an NP priority queue
with two priority classes, where high-priority packets arrive according to a
2-state Markov Modulated Poisson Process (MMPP) and low-priority packets
according to a Poisson process. The service times of all classes are generally
distributed and these distributions may differ for different classes. System
contents and waiting time are studied using the supplementary variable tech-
nique (which we will also use in chapters 4 and 5). Takine et al. [1990] study a
polling system and an NP priority system in parallel (with a general number
of priority classes/polling stations). The arrival process is a Poisson process
and the service times are assumed general. Mean waiting times are obtained.
In [Takine et al. 1994a], a NP priority queue with a general number of prior-
ity classes, a Markovian Arrival Process (MAP) and general service times (but
identically distributed for all priority classes) is studied. More precisely, using
matrix-analytic methods and generating function techniques, the mean sys-
tem contents and mean packet delay are obtained. This analysis is extended
to service times with different distributions for the different classes in [Takine
1996] - for two priority classes - and in [Takine 1999] - for a general number of
priority classes. Cidon and Sidi [1990] have proposed a recursive computation
of the steady-state probabilities of the system contents, using the generating
functions of the system contents obtained in [Miller 1960]. In [Takahashi and
Miyazawa 1994], a relationship between the distribution of the system con-
tents and the waiting time is obtained for an NP priority queue. Abate and
Whitt [1997] quantify the effect of the priority structure on the low-priority
steady-state delay tail probabilities (in NP and preemptive resume priority
systems). They show that the priority structure tends to make these tail prob-
abilities have a relatively long tail. Boxma et al. [1999] have derived a heavy-
traffic limit theorem for the low-priority waiting time when the service times
are heavy-tailed. Subramanian and Srikant [2000] calculate the tail probabil-
ities of the low-priority waiting times numerically - from the Laplace-Stieltjes
transform - in an NP priority queue with a Markovian Arrival Process (MAP)
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and general service times. From their numerical studies, they conclude that
these tail probabilities may be non-exponential. lida et al. [2001], Karam and
Tobagi [2002] analyze the delay of the high-priority packets in an NP priority
queue with the arrivals broadcasted by a number of multiplexed sources. The
interarrival times in the packet stream of each source and the service times of
the packets are deterministic. In [lida et al. 2001], this model is used to model
the CBR (Constant Bit Rate) traffic in ATM, while in [Karam and Tobagi 2002]
the delay of voice traffic in the Internet is studied. In both papers, the in-
fluence of the packet size on the delay is analyzed. In [Drekic and Stafford
2002], a symbolic computation procedure is proposed to calculate (higher or-
der) moments of the system contents and packet delay - starting from the pgf
or Laplace-Stieltjes transform of these variables - in (general) priority queues.
Isotupa and Stanford [2002] analyze an NP priority queue with Poisson ar-
rivals and phase-type service times. Using matrix-geometric solution tech-
niques, the joint distribution of the number of packets of all classes in the
system is derived.

Continuous-time multi-server NP priority queues with a general number of pri-
ority classes are analyzed in [Williams 1980, Wagner 1997, Altinkemer et al.
1998, Kao and Wilson 1999, Bose and Pal 2002]. In [Altinkemer et al. 1998,
Bose and Pal 2002], a Poisson arrival process and deterministic service times
are assumed. In [Altinkemer et al. 1998] the buffer space is infinite while the
buffer space is assumed to be finite in [Bose and Pal 2002]. In both papers,
approximate results of the mean waiting time of all classes are obtained, us-
ing the heavy-traffic assumption. In [Williams 1980, Wagner 1997], the service
times are assumed to be identical for all priority classes. These service times
are assumed to be exponentially distributed in [Wagner 1997] and generally
distributed in [Williams 1980]. In the latter paper the analysis is approximate
while it is exact in [Wagner 1997]. Kao and Wilson [1999] study an NP pri-
ority queue with Poisson arrivals and exponential service times (which may
be different for different classes). Using matrix-analytic methods, several per-
formance measures - such as the mean system contents and waiting times - are
derived. The Laplace-Stieltjes transforms of the waiting times of each priority
class are calculated.

In most “continuous-time papers” about priority queues, it is assumed that
the arrival processes of the different priority classes are all mutually uncor-
related. An exception is [Langaris and Katsaros 1995]. Langaris and Katsaros
[1995] perform a time-dependent analysis of an NP priority queue with a gen-
eral number of priority classes and batch arrivals. It is assumed that batches
arrive according to a Poisson distribution and that a batch consists of packets
from several classes. Laplace-Stieltjes transforms of the busy period of each
class and the general busy period as well as the pgf of the system contents are
calculated.

Discrete-time priority queues with an NP priority discipline and without correl-
ation between the arrival processes of the different priority classes are analyzed in
[Rubin and Tsai 1989, Schormans et al. 1991, Choi et al. 1997, Wang et al. 2000]
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and [Lee et al. 2003]. In [Rubin and Tsai 1989, Lee et al. 2003], waiting time
and delay of a two-class priority queue where the number of arrivals are i.i.d.
from slot-to-slot and the service times are generally distributed (and can be
different for both classes) are studied using pgf’s. In [Schormans et al. 1991],
unfinished work and waiting times are analyzed entirely in the probability
domain. The arrival process is such that of each class maximum one cell ar-
rives per slot. In [Choi et al. 1997], the NP and preemptive resume priority
disciplines are investigated in an ATM packet switch with input buffers and
two priority classes. Note that the service times are not deterministic (as one
would expect in an ATM context) because a cell at the head of the input queue
is not necessarily switched to the desired output directly, since several cells
can simultaneously request to be sent to the same output, while only one of
them will effectively be transmitted during that slot. The other cells have to
wait longer than one slot at the head of their queue - which is incorporated in
the service times in the queueing model - leading to service times of more than
one slot. A.o., the mean delay of both classes is obtained. Finally, Wang et al.
[2000] calculate the mean delay in an NP priority queue and use this in the
performance analysis of a multiple-channel slotted ring network with tunable
transmitters and fixed receivers.

Discrete-time NP priority queues with correlation between the arrival processes
of different priority classes are studied in [Takahashi and Hashida 1991] and
[Walraevens et al. 2000b,c,d, 2002a, 2003b]. In all these systems the service
times are generally distributed and can be different from class-to-class. In
[Walraevens et al. 2000b,c,d, 2002a] two-class priority system are analyzed
while the number of priority classes is equal to three in [Walraevens et al.
2003b] and assumed general in [Hashida and Takahashi 1991]. In [Takahashi
and Hashida 1991], the pgf of the delay of all priority classes is calculated,
based on delay-cycles. In [Walraevens et al. 2000b,c,d, 2002a, 2003b], the joint
pgf of the system contents of all classes at specific slots is calculated. From
this joint pgf, the joint pgf of the system contents of all classes at random slot
boundaries (in [Walraevens et al. 2000c,d, 2003b]) and the pgf’s of the delays
of all priority classes (in [Walraevens et al. 2000b, 2002a, 2003b]) are obtained.

In this chapter, we describe the analysis of a two-class non-preemptive prior-
ity buffer with a discrete structured batch arrival process and general class-
dependent service times, as in [Walraevens et al. 2000b,c,d, 2002a]. In section
3.2, we calculate the joint pgf of the system contents of both priority classes
at specific slot boundaries. All other pgf’s and performance measures will be
determined, starting from this joint pgf. This procedure is first explained in
more detail in section 3.1. The system contents, the queue contents and the
unfinished work at the beginning of random slots are analyzed in sections 3.3,
3.4 and 3.5 respectively. Further, the packet delay and waiting time are studied
in sections 3.6 and 3.7. Finally, we show the impact of the input parameters on
the performance measures through some numerical examples in section 3.8.
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3.1 Preliminaries

Since the service times of the packets are generally distributed, the system
contents of both classes at the beginning of random slots do not form a Markov
chain (as was the case for single-slot service times discussed in chapter 2). Or
in other words, the knowledge of the system contents at the beginning of slot
k is not enough information to know the system contents at the beginning of
slot k + 1. The solution is to describe the system such that it forms a Markov
chain.

There are 2 main directions: the first is defining a number of supplementary
stochastic variables at the beginning of all slots, so that the system contents
at the beginning of consecutive slots together with these supplementary vari-
ables form a Markov chain. This is called the supplementary variable technique
and is - according to e.g. Chaudhry and Templeton [1983] - first used by Kos-
ten in 1942. The name appears to be due to Cox [1955]. It is for instance used in
[Bruneel 1993] for the single-class (i.e. without priorities) version of the buffer
studied in this chapter. A second approach is to look at specific slot boundar-
ies instead of at all slot boundaries. These slot boundaries are chosen in such
a way that the system contents of both classes at the beginning of these (con-
secutive) specific slot boundaries form a Markov chain. This Markov chain is
called an embedded Markov chain, since the Markov chain is embedded in the
choice of the chosen slot boundaries.

We will use the latter technique in this section, while we will use the supple-
mentary variable technique in chapters 4 and 5 in the analysis of preemptive
priority queues. Note that this supplementary variable technique can also be
used in the case of the NP priority queue analyzed in this chapter (an example
is found in [Choi et al. 1997]).

3.2 System contents at the beginning of start-slots

We will thus first analyze the system contents at the beginning of so-called
start-slots. These slots are defined as slots at the beginning of which a service
of a packet (if one available) can start. Note that every slot during which the
system is empty, is also a start-slot. We denote the system contents of class-
J packets at the beginning of the I-th start-slot by n;; (j = 1,2). In Figure
3.1, a sample of the time axis is shown. Specifically, the location of the start-
slots is shown in this figure. The set {(n1,n2,),! > 1} forms a Markov chain,
since the numbers of arrivals of both classes are i.i.d. from slot-to-slot and only
random variables during start-slots are involved.

The joint pgf of the n;;, j = 1,2, is denoted by N;(z1, 22), i.e.,

Ni(z1, 20) 2E [2?1'127212’1] ) (3.1)
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Figure 3.1: Sample of the time-axis in order to show the location of start-slots

Let s; indicate the service time of the packet that enters service at the begin-
ning of start-slot / (which is - by definition - regular slot k) if n; ; +n2; > 0 and
equal to 1if ny; = ny; = 0. Or alternatively, s; indicates the number of slots
between the beginning of the [-th start-slot and the beginning of the [ + 1-th
start-slot. The following system equations are then established:

s;—1
e =l = U7+ Y anges (3.2)
i=0
ney — 17 + ?271(1 ifny; =0
N2 14+1 = [ 2,1 ]5;‘7121_0 2, k+1 . 1, ' (33)
nog+ 3 il A2k+i ifny; >0

These can be explained as follows: a packet of class-1 is served at the begin-
ning of start-slot [ if n;; > 0 and it leaves the system just before start-slot
I + 1. In this case no class-2 packet can be served between start-slots [ and
I + 1. A class-2 packet can only be transmitted in this time period if no class-1
packets are present in the system at the beginning of the i-th start-slot, i.e., if
n1,; = 0. The system contents at the beginning of start-slot / 4 1 are then equal
to the number of packets present at the beginning of the previous start-slot
minus the one served during the epoch between both start-slots, augmented
with the packets that arrive during this same epoch. Notice the similarity
between these system equations and the system equations (2.2)-(2.3) of the
previous chapter. Indeed, when the service times are equal to one slot (as as-
sumed in the previous chapter), all slots are start-slots and thus s; = 1 for all
l. Equations (3.2)-(3.3) then simplify to (2.2)-(2.3). The procedure followed in
this section to calculate the steady-state joint pgf of the n;;’s will thus also be
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similar to the analysis in subsection 2.1.1.

Using system equations (3.2)-(3.3), we derive a relation between N;(.,.) and
Nit1(., .). Taking into account the statistical independence of the random vari-
ables s}, (n14,n2,;) and (a1 k44, G2,k+:), ¢ > 0 respectively, we find - as before,
E[X{Y}] is defined as E[ X |Y|Prob[Y] -

Nii1(z1,22) 2E [z?l’l“z;““] (3.4)

*

:E |:le:ilo a1, k+i Z2z:1l:0 a2, k+i {nl,l — n27l — O}:| (35)

*
;-1

Esf_l a n +ZS a 1
e 1,kti M2, e 2 kdi—
+E {zl 0 i 2g 0 T {ny=0,n9; > O}}

sF—1 sF—1
ny g +> 0 ar kyri—1 no g +S 0L an ka
+ E |:Z1 1,1 ZL—D 1,k+1i Z2 2,1 ZL—D 2,k+ {TLL[ > 0} .

s} is a stochastic variable that equals 1if n; ; = no; = 0, that has a (conditional)
pef Sa2(z) if n1; = 0,n2,; > 0 and that has a (conditional) pgf Si(z) if ny; > 0.
This leads to

Niy1(z1, 22) =A(21,22)Prob [n1; = ngy = 0] (3.6)
Sa(A(z, n2,1
S1(A ) ni,i N2
I WE (27" 257" {n1,y > 0}]

Sa(A(21,22))

22

:A(Zl, ZQ)Nl(O, O) +
n S1(A(21,22))

21

[Nl(O, 22) — NZ(O, O)] (37)

[Nl(Zl, 2’2) — NI(O, 22)} 5

with A(z1, 22) the joint pgf of the numbers of per-slot class-1 and class-2 ar-
rivals and S;(z) the pgf of the service times of class-j packets (j = 1,2) as
defined in chapter 1. In the remainder we will furthermore use the following
notation:

Ej(z1,22) 25;(A(z21, 22)), (3.8)

with j =1,2.

We assume that the system is stable. Since the scheduling discipline is work-
conserving and since one server transmits the packets, this implies that the
total arrivalload pr < 1, with pr = A1 +A2pt2 (as a reminder, )\ is the arrival
rate of class-j and 1, is the mean service time of a class-j packet, j = 1,2). Ina
stable system, N;(21, z2) and N;11(z1, z2) converge both to a common steady-
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state value for | — oo:

N(z1,29) éllirgo Ni(z1, 22). (3.9)

By taking the [ — oo limit of equation (3.7), we obtain:

(ZlEQ(Zl, ZQ) — 22E1 (Zl, ZQ))N(O7 2’2) }
+21(224(21, 22) — Ea(21, 22))N(0,0)

22(z1 — E1(21, 22))

N(Zl,ZQ) :{ (310)

It now remains for us to determine the unknown function N(0, z3) and the
unknown parameter N(0,0). This can be done in two steps. First, we notice
that N(z1, 22) must be bounded for all values of z; and 25 such that 2| < 1
and |z2| < 1. In particular, this should be true for z; = Y7 (z2), with Y3 (22) £
E1(Y1(22), 22) and |z2| < 1 (as explained in the appendix). The above implies
that if we choose z; = Y7(22) in equation (3.10), where |z2| < 1, the denomin-
ator of the right-hand side of this equation vanishes. Since N(z1, 22) is a pgf,
the same must then be true for the numerator, yielding

ZQA(Yl (ZQ), 22) — YQ(ZQ)

N(0,22) =N(0,0) F LRI,

(3.11)
with
Ya(2) £E5(Yi(2), 2). (3.12)

An almost fully determined expression for N(z1, z2) can now be derived by
combining equations (3.10) and (3.11):

+A(Y1(22), 22) (21 E2(21, 22) — 22E1(21, 22))
(21 - E1(217 Z2)>(Z2 - Y2(22)>

21(22A(21, 22) — Ea2(21, 22))
N(0,0) § +Y2(22)(E1(21, 22) — 21A(21, 22))
N(Zl, Zg) (3 13)

Finally, in order to find an expression for N(0,0), we put z; = 2, = 1 and use
de I'Hopital’s rule in equation (3.13). Therefore, we need the first derivative
of Y1(2) (at z = 1). Y{(z) is given by

Y{(2) =BV (Y1(2), 2)Y{ (2) + E{* (Y1(2), ) (3.14)

<2>< Yi(2),2)
D (¥i(z),2)

(3.15)
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8E1 (Zl, 2’2)

82]-
Z1=x,22=Y
the fact that ¥7(1) = 1 - we will prove later on that Y7 (%) is a pgf - it follows
that

with Efj ) (z,y) = . Using the definition of E4(#1, 22) and

/\2/t1
Y/(1) = 1
1( ) 1— P ’ (3 6)
with p; = Ajp, the class-1 arrival load. We then obtain N (0, 0):
N(0,0) :1_7”’ (3.17)
1—pr+Ar

with Ar the total arrival rate. Substituting this expression in (3.13) finalizes
the calculation of N(z1, z3).

We will use expression (3.13) as a starting-point for the analysis of the system
contents at random slot boundaries and for the analysis of all other stochastic
variables studied in this chapter.

Note that expression (3.13) equals expression (2.13) when the service times are
deterministically equal to 1 slot (i.e., when E; (21, 22) = A(#1,22),j = 1,2), as
expected.

3.3 System contents at the beginning of random
slots

In this section, we analyze the system contents at the beginning of arbitrary
slots. First, we will determine the joint pgf of the steady-state system contents
of both classes. From this pgf, marginal pgf’s and performance measures are
calculated.

3.3.1 Calculation of the joint pgf U(zy, 25)
Denoting the class-j system contents at the beginning of slot & as u; i, the joint

pgf of the system contents of both priority classes at the beginning of slot & is
defined as:

U (21, 22) ZB[z/" " 257%]. (3.18)

In order to derive an expression for Uy(z1, z2), we have to know the status
of the server during slot k. There are 3 possibilities: the server can be idle, a
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class-2 packet or a class-1 packet can be in service during slot k. This yields

Uk(z1,22) =E [21"" 257" {no service}] + E [z " 25> {service class-2}]
+E [21"* 25" {service class-1}], (3.19)

with “no service” and “service class-;j” (j = 1, 2) short for the events that there
is no service during slot k and that a class-j packet is being served during slot
k respectively. If slot k is a start-slot, we will assume that it is start-slot I. If
slot k is not a start-slot on the other hand, the last start-slot preceding slot & is
denoted as start-slot [. Equation (3.19) then becomes

U,k U2,

Uk(z1, 22) =Prob[no service]E [z,"* 25> |ny; = nay = 0] (3.20)

+ Prob[service class-2]E [2zy""* 23*" [n1; = 0,n2; > 0]

+ Prob[service class-1]E [z,"* 23> [n1, > 0] .

This can be understood as follows: the server is idle during slot & if there
were no packets in the system at the beginning of start-slot /, a class-2 packet
is being served during slot k if there were no class-1 packets and at least one
class-2 packet in the system at the beginning of start-slot [ and a class-1 packet
is in service during slot k if there was at least one class-1 packet in the system
at the beginning of start-slot {. Thus the three conditions “no service”, “service
class-2 packet” and “service class-1 packet” imply “ni; = ngo; = 07, “ny; =
0,n2; > 0” and “n;; > 0” respectively. We denote the elapsed service time
of the packet in service (if any) during slot k by s;. This is thus the number
of slots between the beginning of start-slot [ and the beginning of slot k. The
system contents at the beginning of slot k is a superposition of the system
contents at the beginning of start-slot / and the arrivals during s}, yielding

Uk (z1, 22) =Prob[no service] + Prob[service class-2] (3.21)

s s
Sikiark—i n2a+dk az ks

x E |2 Zq [Py =0,n9; > 01

+ Prob[service class-1]

S+ S+
<« E Z;Ll,rFEiil al,k—iZ;LZ,lJFZiil a2 k—i

ni; > 0]

=Prob[no service] (3.22)

NZ(O, ZQ) — NZ(O, O)

Nl(Ov 1) - Nl(Ov 0)

Ni(z1, 22) — Ni(0, 22)
1-N(0,1)

+ Problservice class-2] S5, (A(z1, 22))

+ Problservice class-1]S7, (A(z1, 22))
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with Nj(z1, z2) the joint pgf of the system contents of both classes at the be-
ginning of start-slot [ (as defined in the previous section) and S;.fk(z) (=12
defined as the pgf of the elapsed service time of the class-j packet in service at
the beginning of slot .

We denote the steady-state version of Uy (z1, 22) by U(z1, 22), i.e.,

Uz, 22) = klingo Ui (21, 22)- (3.23)

We first determine the probabilities of the events “no service”, “service class-
1”7 and “service class-2” in steady-state, i.e., for a random slot in steady-state.
These are given by

Prob[no service] =U(0, 0) (3.24)

Prob|[service class-1] =(1 — U(0, 0))5—1 (3.25)
T

Prob|[service class-2] =(1 — U(0, 0))5—2 (3.26)
T

This is found as follows: the server is idle during a random slot iff the system
was empty at the beginning of that slot. This leads to the first expression. On
the other hand, if the server is busy during slot k£ (with probability 1—-U(0, 0)),
a class-j packet is being served with probability p;/pr (j = 1,2). Substituting
expressions (3.24)-(3.26) in the steady-state version of expression (3.22) (thus
for k — o0), we find

1-U(0,0)
pT

{PQS;(A(ZL »’«”2))]]\7\[((007 12)):5(%)’(;))) (3.27)

N(z1, 22) N(O,zQ)}’

U(Zl, 22) :U(O, 0) +

+
o157 (Alz1, 22)) ——— N{©.1)
with N(z1, z2) and S;L(z) (j = 1,2) the steady-state versions of N;(z1,z2) and
S .(2) respectively. Secondly, it is shown in e.g. Bruneel and Kim [1993] that

S;.L (2) yields - keeping in mind that choosing a slot in a larger service time has
a higher probability -

S*(2) :% (3.28)

for j = 1,2. We will show the calculations of this pgf - in a more general
setting - further in this chapter. Substituting this expression in (3.27), we find

1 - U(0,0) N(0, 25) — N(0,0)
AT e~ D M%)

U(z1,22) =U(0,0) +
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+A1(E1(21,22) — 1)

N(Zl, 22) — ]\T(O7 22) }
1-N(0,1)

Finally, we calculate U(0, 0). Keeping in mind that if the server is idle during
slot k, slot k is a start-slot, U(0, 0) is found as follows:

U(0,0) :klim Problu; j, = ua, = 0] (3.30)
= 1lim Prob[ni; = na; = 0 and slot & is a start-slot] (3.31)
= kllim Prob[ni; = na; = 0| slot k is a start-slot] (3.32)

x Prob][slot k is a start-slot]

There are three possibilities for slot & to be a start-slot: the system is empty
at the beginning of slot &, slot & is the first slot of the service time of a class-1
packet or slot k is the first slot of the service time of a class-2 packet. U(0,0)
then becomes

1 fU(0,0)p_l + 1 fU(0,0)&
H1 PT H2
=1 —pr, (3.34)

U(0,0) =N(0,0) |U(0,0) + (3.33)

where we used expression (3.17) for N(0,0). Finally, using equations (3.13)
and (3.34) in equation (3.29), we derive a fully determined version for U (z1, z2):

El(zl, 22)(21 — 1)
21— E1(21722)
{ZlEQ(Zl,ZQ)(El(Zl,ZQ) — 1) }
(A(Y1(22),22) = 1) § +22E1(21, 22)(1 — Ea (21, 22))
+2122(Ea (21, 22) — Ei(21,22))
(A(z1,22) — 1)(21 — E1(21, 22)) (22 — Ya(22))

U(z1,22) =(1 = pr) + (1 - pr1) (3.35)

X

From this two-dimensional pgf, we calculate some marginal pgf’s in the fol-
lowing subsections.

Note that for the special case of deterministic service times of one slot, expres-
sion (3.35) equals expression (2.13), as expected.

3.3.2 The marginal pgf Ur(2)

From the two-dimensional pgf U(z1, 22), we can derive an expression for the
pgf of the total system contents at the beginning of an arbitrary slot - denoted
by Ur(z) - yielding

Ur(z) £ lim E[z"7*] (3.36)

k—o0
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=U(z,z) (3.37)
B S1(Ar(2))(z—1)  AYi(2),2)—1
=(1=pr) z—ggAﬂ@)'* Ar(z) —1
2(z — 1)(S2(Ar(2)) — S1(Ar(2)))
(z = S1(Ar(2)))(z — Ya(2))

(3.38)

In the special case that S1(z) = S2(z)(= S(%)), i.e., when the distributions of
the service times of class-1 and class-2 priority packets are the same, Ur(z)
becomes

S(Ar(:)(z ~ 1)

Ur(z) =(1 - pr) z—S(Ar(2))

(3.39)

This is the expression of the pgf of the system contents in a single-class queue
with Ap(z) the pgf of the number of per-slot arrivals, S(z) the pgf of the ser-
vice times and with a FIFO scheduling discipline (see e.g. Bruneel [1993]). In-
deed, if all packets have the same service distribution, the scheduling discip-
line does not influence the total system contents, as long as the scheduling
discipline is work-conserving, independent of the actual service times, and as
long as service of packets cannot be preempted. It is also intuitively clear that
when S1(z) # Sa(z), the (total) system contents are not equally distributed
when applying a priority or a FIFO scheduling discipline.

3.3.3 The marginal pgf U;(z)

From the two-dimensional pgf U(z1, 22), we derive an expression for the pgf
of the system contents of class-1 packets at the beginning of an arbitrary slot -
denoted by U, (z) - yielding

Ur(2) £ lim B[] (3.40)
=U(z,1) (3.41)

i 3 Si(A(2)(z = 1) [1—pr p2 S2(Ai(2)) —
=TT @) Tom T prm(e) D)

(3.42)

which is found from expression (3.35) and using de I'Hopital’s rule.

The class-1 contents can be analyzed in an alternative way, namely by looking
at the class-1 system as a single-class system with (multiple) vacations. Indeed,
for class-1 packets it is as if the server goes on vacation when the class-1 sys-
tem gets empty. During this vacation, a class-2 packet is served, if any, or the
vacation only lasts for a slot when no class-2 packets are present in the system
at that time instant. Coming back from a vacation, the server starts serving the
class-1 system again, or takes another vacation when the class-1 system is still
empty, and so on. In the remainder of this subsection, we will call a vacation
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when the original system is empty a vacation of type-I and a vacation when a
class-2 packet of the original priority system is served a vacation of type-II. Thus
a vacation of type-I lasts one slot, while the length of a vacation of type-I1 has
the same distribution as a class-2 service time. Since our “constructed” vaca-
tion queue is part of a broader class of generalized vacation queues, we can use
the stochastic decomposition property of vacation queues (see e.g. Takagi [1991]
and Fiems [2004]). In the context of our system, this property states that the
pef Ui (z) of the system contents of the vacation system equals the product of

the pgt U 1(1) (z) of the system contents of the system without vacations and the

pef U 1(2) (z) of the system contents at the beginning of a random vacation slot.
The first pgf is given by - see e.g. Bruneel [1993] -

Si(A) - 1)

UM E) == ) G A )

(3.43)

The second pgf is calculated as follows: first a random vacation slot is tagged.
Since the system is in vacation iff the original priority system is not serving
a class-1 packet, the probability that the tagged vacation slot is a slot in a
vacation of type-/ equals:

Prob[vacation slot type-I] =Prob[no service|no service or service class-2]

(3.44)
_ Prokf [no servic'e] (3.45)
Prob[no service or service class-2]
1—
—- (3.46)
L—p1
and thus
. . l=pr
Prob[vacation slot type-II| =1 — 1 (3.47)
- P
P2 (3.48)

Cl-pr

When a vacation is of type-I, it lasts one slot and the vacation system is empty
at the beginning of that slot (the server of the original system is idle during
this slot). When a vacation slot is of type-I1, the original system is serving
a class-2 packet. Since the vacation system was empty at the beginning of
the vacation which the tagged vacation slot is part of, the system contents at
the beginning of the tagged vacation slot then equals the number of arrivals
during the elapsed part of the vacation (or - translated to the original system
- the number of class-1 packet arrivals during the elapsed part of a class-2
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service time). U1(2) (2) thus equals

U 1(2) () =Prob|vacation slot type-I] (3.49)
S2(A1(z)) — 1
p2(A1(z) — 1)
_l—pr p2 S2(Ai(z) — 1

S l-pr 1= prpe(Ai(z) = 1)

+ Prob[vacation slot type-II]

(3.50)

Using expressions (3.43) and (3.50) in the stochastic decomposition property
Ur(2) =U{ (2)U{P(2), (3.51)

then indeed yields expression (3.42) for U; (z).

3.3.4 The marginal pgf Us(2)

The pgf of the class-2 system contents is also calculated from Uz, 22) (expres-
sion (3.35)), yielding

Us(z) & leH;OE [2%2¥] (3.52)
—U(1,2) (3.53)
=(1—pr) Sz(fi(zi)/i(é)_ 2 A(Xz((z))’ i)l_ 3 (3.54)

3.3.5 Calculation of moments

In this subsection, we give the expressions of the mean total, class-1 and class-
2 system contents respectively.

The mean total system contents is found by taking the first derivative of ex-
pression (3.38) and substituting z by 1:

E[ur] =U7(1) (3.55)
_pr | mVarfar]  pida(pe — pa)Varlar] - (pe — pa)Varlas]
2 o) 20— (- ) —pr) O
i ()\1Var[51} + )\QVar[SQ})()\l(l — ,01) + )\2(1 — ,LLQ)\l))
2(1 = pr)(1 = p1)
n Aida(pz — 1) (p2 — 1)

2(1—p1)

Note that this expression simplifies considerably in the special case that the
service times of both classes are equally distributed, or more specifically - in
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the case of the mean total system contents - when 11 = p2(= 1) and Var[sq] =
Var[sq](= Var|s]), yielding

_pr  pVarlar] A\2.Var|s]
Flur] =59+ 2(1 - pr) " 25 —pr) (3:57)

As expected (see also the discussion in subsection 3.3.2), this is the same ex-
pression as for the mean system contents in a single-class queue with a FIFO
scheduling discipline with ar the number of arrivals in a random slot (with
mean Ar) and s the service time of a random packet (with mean ).

Furthermore, the mean class-1 system contents is found by taking the first
derivative of U; (z) and substituting z by 1:

Elw] =U{(1) (3-58)
_p1 | mVarfa] | AVar[si] | Aida(pz(pe — 1) + Var[ss]) (3.59)
T2 T ol—p) 20— p) 2(1—p1) -

The sum of the first three terms of this expression equals the mean system con-
tents in a single-class system with only class-1 arrivals (see also the resemb-
lance with expression (3.57)) while the last term of this expression represents
the influence of the class-2 traffic on the mean class-1 contents. It is seen that
the class-2 arrival rate and the mean and variance of the service times of class-
2 packets influence the mean class-1 system contents, while the variance of the
number of per-slot class-2 arrivals does not.

Finally, the mean class-2 system contents is given by

E[us] =Us(1) (3.60)
_p2 u3\oVar|a ] uoVarfas]  pu1Covlay, as] (3.61)
2 2(1-pr)(1—p1) 2(1-pr) 1—pr '
A2(A1Var[si] + AoVar[sa])  prAa(pz —1)
2(1 = pr)(1 = p1) 2(1 = p1)

It is easily verified that equations (3.56), (3.59) and (3.61) satisfy E[uy] =

In a similar way, expressions for the variance (and higher moments) of the
system contents can be calculated by taking the appropriate derivatives of the
respective pgf’s. As in chapter 2, we will not show the expressions of the
higher moments, but we will show figures of second order moments in the
numerical examples later on.
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3.3.6 Calculation of tail probabilities

In this subsection, we show (approximate) expressions of the tail probabil-
ities of the total, class-1 and class-2 system contents, i.e., we approximate
Probur = n], Prob[u; = n] and Prob[uz = n| for high enough n. We will not
go into (much) detail about the calculations, but we refer to the corresponding
subsection in the previous chapter (subsection 2.1.7).

Note that we assume for the reasoning in the remainder that the pgf’s of the
arrival and service processes (Ar(z), the A;(z) and the S;(z)) and their de-
rivatives go to infinity for z equal to their radii of convergence or for z — oo
(which is correct for most normally” applied arrival distributions). For most
pgf’s that do not fulfil these assumptions, the reasoning in this subsection can
be adjusted, but this is not the main topic of this dissertation (see also section
2.1.7).

Since in the expressions of the pgt’s Ur(z) and Us(z) the function Y;(z) ap-
pears, we will first show the behavior of this function in its dominant singu-
larity.

Behavior of Y;(z) and Y3(z) in the neighborhood of the dominant branch-
point
Y1(z) is implicitly defined as Y3 (z) = E1(Y1(%), 2). As discussed in subsection

2.1.7, this function has a dominant branch-point singularity zp where Y{(z)
becomes infinite, i.e.,

EXM (Yi(zp), 28) =1, (3.62)

_ OF1 (21, 22)

0z 5
Z21=T,22=Y
(dominant) singularity, Y7 (z) is approximately given by

with E%j )(3:, Y) , j = 1,2. In the neighborhood of this

Yi(2) aYi(2p) — Ky, (25 — 2)"/?, (3.63)
with
2B (Yi(28), 28)
Ky, =\| =5 , (3.64)
Ey(Yi(zp), 2B)

which is found by substituting z = zp in expression (3.63) and using the defin-
ition of Y7 (z). Using the definition (21, z2) = S1(A(21, 22)), this formula is
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transformed into

_ 2A(2)(Y1(ZB),ZB)
AUD(Y1(2B), 2B) + ST(A(Y1(2B), 2B)) (AV (Yi(2B), 2B))

Ky,

1

. (3.65)

zp is also a branch-point of Y5(z), since
Y3(2) =S5(A(Y(2),2)) [AD(Y1(2), 2)Y (2) + AP (1 (2),2)| . (366)

Thus in the neighborhood of zp, we find

Ys(2) =Ys(25) — Ky, V2B — 2, (3.67)
with
KYz :KYI Sé (A(Yl (ZB)v ZB))A(l) (YI(ZB)7 ZB)' (368)

Total system contents

We now concentrate first on the total system contents. In general, Y7 (z) ap-
pears in the expression of Ur(z). In the special case of Si(z) = Sa(z) for all z
(i.e., when S;(.) and S;(.) are identical functions), this is not the case though.
We will first concentrate on this special case and later on discuss the tail prob-
abilities of ur when S1(z) # Sa(2).

When Si(z) = S2(z), we have expression (3.39) for Ur(z). The dominant
singularity of this expression is the zero on the positive real axis (> 1) of z —
S1(Ar(z)), denoted as zp, and this is an ordinary pole with multiplicity 1. In
the neighborhood of this pole, Ur(z) is thus approximated by

Kr

Ur(z) zZT —

(3.69)

with

_ (I =pr)er(er —1)
i - S{(Ap(zr) AL (zr) — 1 (3.70)

Using Darboux’s theorem, the tail probabilities of ur are thus given by

ur(n) £Probur = n] (3.71)
=Krz;" 1, (3.72)
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and

ur (L)

Prob[ur > L] =1
T —

(3.73)

In the case that Si(.) # Sa(.), the behavior of Ur(z) is more complicated. In
this case, zp is also a (branch-point) singularity of Ur(z). Two more singular-
ities may play a role, namely the respective zeros of z — S1(Ar(z)), i.e., zr and
of z — Y3(z), denoted as zj, on the real positive axis (with z > 1). We may thus
have quite some more different cases depending on which singularities are
dominant. However since it is for general S; (z) and S2(z) not clear which sin-
gularities may (or may not) be dominant, we will not go in further detail about
this. For specific pgf’s of the service times however the tail probabilities of the
total system contents can be calculated by studying the behavior of Ur(z) in
the neighborhood of its dominant singularity and using Darboux’s theorem
(as is done in the previous chapter and as will be done in the remainder of this
section).

Class-1 system contents

The dominant singularity zy of Uy (%) is the dominant zero of z — S1(A1(2))
on the positive real axis (> 1) and this singularity is a pole with multiplicity
1 (for more details see subsection 2.1.7). In the neighborhood of this pole, we
approximate U, (z) by

(3.74)

with

(= pr)(Ar(zr) — 1) + Xa(S2(Ar(zm)) — D](2m — 1)z
e (A (zi) — 1)(S1 (A1 (ze) Ay (z1) — 1) . (3.75)

Using Darboux’s theorem on expression (3.74), we find

u1(n) =Problu; = n] (3.76)
~K 2t (3.77)

and

—L
Kle

Prob[u; > L] o
o —

(3.78)

for large enough n and L.



82 Non-preemptive priority

Class-2 system contents

From expression (3.54) it is seen that Us(z) has 2 important singularities, the
single pole z;, and the branch point zp, with z;, the (dominant) zero of z—Y>(z)
and zp the (dominant) branchpoint of Y3 (z) (thus with Eil) (Yi(zp),zB) = 1).
The tail behavior of the system contents of class-2 packets is thus characterized
by zp, or zp, depending on which is the dominant (i.e., smallest) singularity.
Three different types of tail behavior may thus occur, namely when zy, is dom-
inant, when z;, = zp and when zp is dominant. In those three cases, Us(z) is
approximated in the neighborhood of its dominant singularity by:

KW
2 if z;, dominant
zZ, — 2
Us(z) = K2 3.79
2(2) (ﬁ if z;, = zp dominant (379)
ZB — 2

Us(zp) — Kég) (zp — 2)1/2 if zp dominant,

with the constants K éi) equal to

1 (1= pr)S2(Aa(zr)) (20 — 1) (AVa(21),20) — 1)

e = (3(2) — 1) (Aslzr) — 1) (380
2 _ (1= pr)S2(A2(zp)) (25 — 1) (AVi(2B), 2B) — 1)

K = r ;;Yz ( Ai =1 BL=B (3.81)
(3) (1 —pr)S2(A2(2B)) (2B — 1) (3.82)

) (A2(2) — 1)
_ Ky, (AMi(zB),28) — 1) }
zp — S2(A(Y1(zB), 2B)) )

Using Darboux’s theorem once again, we find the tail probabilities of the class-
2 system contents for the three possible cases:

Kél)zgnfl if z;, dominant
(2),-1/2 ,—n
K
up(n) ~ Sz M Zp if z;, = zg dominant (3.83)
ZBT
K®
- Z—Bn*3/2z§” if 23 dominant,
2 T
and
L
Problus > £] ~ 2L (3.84)

ze — 17



3.4 Queue contents 83

with z, the dominant singularity and which is found by inverting (Uz(z) —
1)/(z — 1), the z-transform of the Prob[us > n], n > 0 (see subsection 2.1.7 for
more details).

3.4 Queue contents

The queue contents - defined as the number of packets in the queue (thus
without the possible one in the server), is easily derived from the system con-
tents. We denote the queue contents of class-j at the beginning of the k-th slot
by ¢; 1 (j = 1,2). We relate the queue contents at the beginning of the k-th slot
to the system contents at the beginning of the last start-slot preceding this slot.
We denote this start-slot by start-slot / (when slot & is a start-slot it is assumed
to be start-slot ). As in subsection 3.3, the server will be in one of three states:
no service during slot &, a class-1 packet is served during slot k or a class-2
packet is served during slot k. A similar analysis can thus be performed as
in subsection 3.3, leading to a similar expression as expression (3.29) for the
joint pgf Q(z1, z2) of the steady-state class-1 and class-2 queue contents at the
beginning of a random slot:

Q(z1,22) :klim E [ 23> (3.85)
- ].—U(0,0) )\2(E2(21,22)—1) N(O,Zz)—N(0,0)
=000+ ) = 1) { P N (0, 1) — N(0,0)

(3.86)

Al(El(Zl,ZQ) - 1) N(Zl,ZQ) - N(O722)
* P 1= N(0,1) }

This expression varies from expression (3.29) in the second and third term: in
the second (third respectively) term an extra division by z2 (by z1) respect-
ively is added. This is done because the second (third respectively) term gives
the partial pgf of the queue contents in case a class-2 (class-1 respectively)
packet is served during slot k£ (and thus the queue contents of class-2 (class-1
respectively) is one less than the class-2 (class-1 respectively) system contents).
Substituting N(z1, z2) by its expression (3.13) yields

Q(z1,22) =(1 — PT)#&ZQ) + (1= pr) (3.87)

R Y fo e R

. (A(21, 22) — 1) (21 — (21, 22)) (22 — Ya(23))

From this expression, marginal pgf’s, moments and tail probabilities of the
total, the class-1 and the class-2 queue contents can be calculated as is done in
section 3.3 for the system contents.
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Figure 3.2: Service time of the packet in service during slot &

3.5 Unfinished work

The total unfinished work at the beginning of slot k, denoted by wr, is
defined as the number of slots it takes to serve all packets in the system at the
beginning of slot k£, when no new packets arrive from slot £ on. Furthermore,
the unfinished work of class-j (j = 1,2) at the beginning of slot k, denoted
by wj x, is defined as the number of slots of the total unfinished work that are
effectively spent on serving class-;j packets.

As opposed to single-slot service times (see section 2.3), the unfinished work
and the system contents are not identical stochastic variables in this case. We
define Wy, (#1, 22) as the pgf of the unfinished work at the beginning of slot k,
or

Wi (21, 20) 2E [zf“kz;ﬂ”} . (3.88)

We relate the unfinished work at the beginning of the k-th slot to the system
contents at the beginning of the last start-slot preceding this slot. We denote
this start-slot by start-slot [ (when slot k is a start-slot it is assumed to be the
[-th start-slot). As explained in subsection 3.3, the server is in one of three
states: no service during slot k, a class-1 packet is served during slot % or a
class-2 packet is served during slot k. We denote the service time of the packet
in service during slot k by s} and its elapsed part by s;". The latter random
variable is the amount of service that the packet served has already received
at the beginning of slot k (see Figure 3.2).

The following relationships between the w; ; and the n;; can be obtained:

1. The server is idle during slot k yielding
wj ik =0, (3.89)

since the system is empty when the server is idle.
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2. A class-2 packet is in service during slot k (implying that n,; = 0,n9; >
0):

+
S A1,k—i

wip =y Y st (3.90)

1=1 m=1

na;—1 sk az k—q )
Wa k. = (Sz - S$) + Z 52 m + Z Z ékn—lz)’ (391)

i=1 m=1

with the 5 ,,, the service times of the class-2 packets already in the queue
at the begmmng of the ongomg service (thus without the packet in ser-
vice during slot k), the slk=i) s (1 <i < s{,j=1,2) the service times
of the class-j packets that arrived during slot k — 4. wy 3, equals the sum
of the service times of the class-1 packets that arrived during s;. wa,j;
equals the sum of the residual service time of the packet in service (the
first term), the superposition of the service times of the class-2 packets
present in the queue at the beginning of start-slot / (the second term) and
the superposition of the service times of the class-2 packets that arrived
during the elapsed service time (the third term).

3. A class-1 packet is in service during slot k (i.e., n1; > 0), yielding

ny;—1 Sk al,k—i

wlk— —sk Zslm+ZZslm (3.92)

i=1 m=1

na | é az k—i
wzk—ngm+§: S ost, (3.93)
i=1 m=1

with the §; ,, the service times of the class-1 packets already in the queue
at the beginning of the ongoing service.

Taking the z-transform of these equations, we find

Wi (21, 22)
=Prob[no service] + Prob[service class—2] (3.94)
[ 1k1(k i) st—s + "2k1(k i)
x E zlz Eos " zg DS LE *2m - service class-2
r ng -1 _
x E 222””=1 °2m service class-2

+ Prob[service class—l]

“1k1 g(k=4) a2, k—i _(k—1)
XE Zgg )+Z1 IZ S1,m Z‘L IEm 1 ’ 2m1

service class—l]
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ny -1

3 2,0 &
 E |zm=1 Shmp2ms S sarvice class-1 |

where we specifically used the independence between the n;; (j = 1,2) and
(si,si) (and the arrivals during s;) respectively under the condition that a
class-1 or class-2 service is ongoing. Since s; is the elapsed part of the service
time sj, both variables are mutually correlated and we define

Si(w, 2) = klim E [msizsﬂservice class-j} . (3.95)

We denote the steady-state version of Wi(z1, z2) by W (z1, 22), i.e.,

W(z1, 22) ékliir;c Wi (21, 22). (3.96)

Letting & — o0, using the definitions of S5 (x, z) and S} (z, 2) and substituting
expressions (3.24)-(3.26) and expression (3.34) in expression (3.94), yield

A(S1(21), 52(22)) N(0,82(22)) — N(0,0)

W (21, 22) =(1 = pr) + p253( P 225, () (N(0, 1) — N(0,0))
(3.97)

+ A(S1(21),92(22)) _ \ N(S1(21), S2(22)) — N(0, S2(22))

+ p1S; ( . ,#1) S1(z1)(1 = N(0, 1)) ’

with N(z1, 22) the joint pgf of the steady-state class-1 and class-2 contents at
the beginning of a randomly chosen start-slot. Note that we used the fact that
niy = 0,n2; > 0 (n1,; > 0 respectively) when a class-2 (class-1 respectively)
service is ongoing during slot k.

We still have to calculate the S5 (x, z) (j = 1, 2). First we note that

Prob[s = n,s; = m] = Prob[s;” = n|s} = m|Prob[s} = m]. (3.98)

Taking into account that an arbitrary class-j service slot is more likely to be
chosen in a larger service time, we find

Prob(s’ = m)] _msi(m). (3.99)
Hj

with s;(m) the pmf of the service times of class-j packets. Furthermore it is
easily seen that

, (3.100)
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forn =0,...,m — 1. Expression (3.98) thus becomes
+ * Sj (m)
Prob[s] =n,sj =m| = , (3.101)
Hj
forn = 0,...,m — 1 (and 0 for n > m). Taking the (two-dimensional) z-

transform of this expression leads to

Sj(zz) = 9j(2)

S =)

7 (3.102)

for j = 1,2. Note that S;“(z) defined in subsection 3.3.1 equals the marginal
pef S;f(z, 1). Thus it can be seen from (3.102) that expression (3.28) is indeed
valid.

Substituting this expression and expression (3.13) in (3.97), we find a fully
determined version for W(zy, z2):

W (1, 22) =(1— pr) Aﬁfﬁjﬁ’sfiij;)éjgz;;) +(1=pr) (3.103)
A(S1(21), 52(22)) (21 — 22) (A(Y1(S2(22)), S2(22)) — 1)
(21 = A(S1(21), S2(22))) (22 — A(S1(21), S2(22)))
y So(z2) — E2(S1(21), S2(22))
Sy(22) = Ya(Sa(22))

From this joint pgf, marginal pgf’s and performance measures can be calcu-
lated as is done in section 2.1. It is seen that substituting S1(z) = S2(2) = =2
in this equation yields the corresponding expression of W (z1, z2) in chapter 2
(expression (2.86)).

3.6 Packet delay

The packet delay is defined as the total time period a tagged packet spends
in the system, or more precisely, the number of slots between the end of the
packet’s arrival slot and the end of its departure slot. As before, we denote the
steady-state packet delay of a tagged class-j packet by d; and its pgf by D;(z)
(j = 1,2). Furthermore, the steady-state packet delay of a random packet is
denoted by d with pgf D(z). Before deriving expressions for D;(z), D2(z) and
D(z), we first define some notions and stochastic variables we will frequently
use in this section.

In the next subsections, we tag a packet. We denote the arrival slot of the
tagged packet by slot k. If slot k is a start-slot, it is assumed to be start-slot I. If
slot £ is not a start-slot on the other hand, the last start-slot preceding slot k is
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+ arrival
<k 3 |y tagged packet
— >
) k
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Figure 3.3: Service time of the packet in service during the tagged packet’s arrival slot

assumed to be start-slot /. We denote the number of class-j packets that arrive
during slot k, but which are served before the tagged packet by f; 1 (j = 1, 2).
We furthermore denote the service time of the tagged class-j packetby 3, (j =
1,2). We finally denote the service time and the elapsed service time of the
packet in service (if any) during the arrival slot of the tagged packet by s; and
s; respectively (see Figure 3.3). Note that these latter two stochastic variables
have the same distributions as the stochastic variables with the same notation
in section 3.5 (see Figure 3.2), since the arrival slot of a random tagged packet
is basically identical to a random slot (for i.i.d. per-slot arrivals). Therefore,
we use the same notations in this section as in the previous section.

3.6.1 Pgf D;(z) of the class-1 packet delay

We tag a class-1 packet. There are 3 possibilities when the tagged packet ar-
rives:

1. The server is idle during slot k, yielding

f1,x

=3 s s, (3.104)

m=1
with the slk> ’s the service times of the class-1 packets that arrived dur-
ing slot k, but that are served before the tagged class-1 packet.

2. A class-2 packet is in service during slot k, yielding

ER S fi,x

G=(si—sf -1+ Y0 3 s Zslzﬁsl, (3.105)

i=1 m=1

with sgk,; 2 0<i< 3-15) the service time of the m-th class-1 packet that
arrived during slot k—i. The residual service time of the packet in service
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during slot k contributes in the first term, the service times of the class-1
packets in the system at the beginning of slot k£ contribute in the second
term, the service times of the class-1 packets arrived during slot &, but
served before the tagged class-1 packet contribute in the third term, and
finally the service time of the tagged class-1 packet itself contributes in
the last term.

3. A class-1 packet is in service during slot £ yielding

ny—1 sEoan ks f1,k
* (k N
R S T YETED 3 ol R
m=1 i=1 m=1

(3.106)

The difference with the previous situation is that there may be multiple
class-1 packets in the buffer (apart from the one in service) at the be-
ginning of start-slot /, which contribute to the tagged packet’s delay. If
we denote by 37 ,,, the service times of the class-1 packets already in the
queue at the beginning of the ongoing service (thus without the packet
in service during slot k), then this condition is quantified by the second
term in the right-hand side of the above expression.

Using these equations, we derive an expression for D (z):

D1 (z) =E [z** {no service}] + E [z* {service class-2}] (3.107)
+ E [2" {service class-1}]
f1 K
=E {sz B 5,)%-%-&1} {1 — pr (3.108)

N
w_ o+ Sk a1 k—i _(k—i) .
+ p2E {zsk S Tz Xnst Sim [service class—Z]

ﬂlk i (k—1i)
+p1E{ stk 12 “1m - |service class- 1]

—1

Zm,z 3 .
xE |z&m=1 “t.m|service class-1|

where we used that Prob[no service]=1 — pr, Prob[service class-2]=p> and
Prob[service class-1]=p; (see section 3.3). In the third term, we also used the
independence of the number of class-1 packets in the queue at the beginning
of start-slot [ and the number of packets arriving between start-slots / and
I + 1 (under the condition that a class-1 packet is being served between the
start-slots). This expression can be further transformed by keeping in mind
thatn;; = 0,n2,; > 0 (n1,; > 0respectively) when a service of a class-2 (class-1
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respectively) packet is ongoing, yielding

Di(2) =F{"(81(2))81(2) { 1 = pr + p2 : (3.109)
 A1(51(2))
ST A NG, 1) - N(O,1)
S Si:0-NO.1) [
with

FY(z) 2 Jlim B[] (3.110)
Sy(x,2) & Jim E[z®* 2**|service class-2] (3.111)
Si(w,2) = Jim E[z* 2**|service class-1]. (3.112)

Fl(l) (2) was already calculated in subsection 2.4.1:

(1) _ Al(z) — 1
FY(z) = SwEE—E (3.113)
and the S7(z, z) (j = 1,2) were already calculated in section 3.5:
* $i(@2) = 5(2)
St (x, 2) =2 T 208 (3.114)

pi(z —1)

We now obtain a fully determined expression for D; (z) from equation (3.109)
together with equations (3.13), (3.113) and (3.114):

_1-p1 Si(x)(z—1) Ai(S1(2)) =1 (1—pr p2 Sa(z) —1
DA =TT AGR) Sk -1 (1—p1+1—muﬂz—D>'
(3.115)

Note that the stochastic decomposition property discussed in subsection 3.3.3 for
the class-1 system contents, is also apparent in this expression of the pgf of the
delay of the class-1 packets: the first factor of expression (3.115) equals the pgf
of the packet delay in a single-class system with a FIFO scheduling discipline
and the second factor equals the influence of the class-2 packets on the pgf of
the class-1 packet delay. This influence is zero with probability (1—pr)/(1—p1)
and equals a residual class-2 service time with probability ps/(1 — p1).
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3.6.2 Pgf D,(2) of the class-2 packet delay

Because of the priority discipline, finding an expression for D»(z) will be a
bit more involved. We now tag a class-2 packet that enters the buffer during
slot k. We will again use the notion of sub-busy periods to analyze the class-2
packet delay, as in the previous chapter. In this case, we define two kinds of
sub-busy periods, i.e., sub-busy periods initiated by a class-1 packet and sub-busy
periods initiated by a class-2 packet.

The first type is defined as follows: it starts at the beginning of the slot the
initiating class-1 packet enters the server. Assume that at that time instant m
other class-1 packets are present in the system. The sub-busy period then ends
at the beginning of the slot where - for the first time - the number of class-1
packets in the system equals m — 1, i.e., one less than at the beginning of the
sub-busy period. Or in other words, the sub-busy period initiated by a class-1
packet is the period necessary to decrease the number of class-1 packets in the
system by 1.

The second type - a sub-busy period initiated by a class-2 packet - is defined
as follows: it starts at the beginning of the slot the initiating class-2 packet
enters the server and it ends at the beginning of which a new class-2 packet
can enter the server (if there are any). It thus ends when the class-2 packet
left the system and when the system is emptied of class-1 packets (for the first
time).

In order to analyze the delay of a tagged class-2 packet, let us refer to the
packets in the system at the end of slot k, but that have to be served before
the tagged packet as the “primary packets”. So, basically, the tagged class-2
packet can enter the server, when all primary packets and all class-1 packets that
arrived after slot k (i.e., while the tagged packet is waiting in the queue) are
transmitted. To summarize, all primary class-j packets will add a class-j sub-
busy period to the delay of the tagged packet. Let ¢, ,, denote the length of
the m-th class-j sub-busy period added to the tagged packet’s delay by the
m-th class-j packet already in the queue at the beginning of start-slot [ and let
vj(l)n denote the length of the sub-busy period added to the delay of the tagged
class-2 packet by the m-th class-j packet that arrived during slot .

When the tagged class-2 packet arrives, the server can - again - be in one of
three possible states: the server is idle, a class-2 packet is in service or a class-1
packet is in service. In the following, we give the expressions for d, in the
three situations.

1. The server is idle during slot k, yielding

2 fik

d =3 o) + 5, (3.116)

j=1m=1
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with f; ;. the number of class-j packets arriving in the same slot as the
tagged packet but that are served before it. f; ; class-1 primary packets
and fo ) class-2 primary packets that arrived during slot k& have to be
served before the tagged class-2 packet and those primary packets all
add a sub-busy period to the tagged packet’s delay.

. A class-2 packet is in service during slot k, yielding

+
2 Sp Q5 k—i 2 fik
* —1 k
do :(sk—s;:—l)—i-z Z v )+ZZU() (3.117)
j=14i=1 m=1 j=1m=1
5275371 a1 kti ng,;—1
+ o 3T Ba B
1=1 m=1 m=1

The residual service time of the packet in service during slot & contrib-
utes in the first term; the sub-busy periods added to the tagged packet’s
delay by the class-1 and class-2 packets that arrived during the elapsed
service time contribute in the second term; the sub-busy periods added
to the tagged packet’s delay by the class-1 and class-2 packets arriving
during slot k, but that have to be served before the tagged class-2 packet
contribute in the third term; the sub-busy periods added to the tagged
packet’s delay by the class-1 packets arriving during the residual service
time contribute in the fourth term; the sub-busy periods added to the
tagged packet’s delay by the class-2 packets already in the queue at the
beginning of start-slot [ contribute in the fifth term; finally the service
time of the tagged class-2 packet itself contributes in the last term.

. A class-1 packet is in service during slot k, yielding

ny—1 Sk aj k—i 2 fik
k
IREEEN SN SETES 3 35 SRTLES 9) prtc)
m=1 j=1i=1 m=1 j=1m=1
(3.118)
sp— s: lay ki na,
k
+ 57:l)+zv2m+52
=1 m=1

The difference with the previous situation is that there may be multiple
class-1 packets in the buffer (apart from the one in service) at the begin-
ning of start-slot /, which will contribute to the tagged packet’s delay.
This condition is quantified by the second term in the right-hand side of
the above expression.
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Using equations (3.116)-(3.118), we derive an expression for Da(z):

Ds(z) =E [2*2{no service}] + E [2%{service class-2}] (3.119)
+ E [2% {service class-1}]
ﬁPilﬁg@wﬂ{LwT 6.120)

- + . -
* + 2 Sk aj ki (k—1)
Sk — Sk — 1+ Zj:l Zi:l m=1 Uj,m
o+ .
Sp=8k —1 gmarkyi , (k+i)
P +25 domet v

+ poE 1,m service class-2

'nz,Lfl -
X E |zXm=1 P2m|service class-2

_ + .
* + 2 Sk ajk—i , (k—i)
(Sk ) 1+ Zj:l Zi:l m=1 Yjm
o+ .

Sp—8k —1 gmat ket (k+i)
S S yotren

m=1 1,m

+ p1E service class-1

ny -

1 _ n -
«<E |:ZZ’"1 B m A2l B m

service class—l} } .

It is clear that the lengths of the sub-busy periods initiated by class-1 packets
are ii.d. and thus all have the same pgf Vi(z). Also the lengths of the sub-
busy periods initiated by class-2 packets are i.i.d., and their common pgf is
denoted by V2(z). Notice that f; ; and fs ) are correlated, since they depend
on a1 ; and asg i, respectively, which are assumed to be correlated throughout
this dissertation. Equation (3.120) then becomes

Do(z) =E [Vi(2) /14 Va(2) /2] SQ(Z){1 —pr (3.121)
. E (%)Gk (zA1(Vi(2)))%*|service Class—Z]
P2 2A (Vi(2))
E [VQ(Z)”2’Z |TL17[ = 0,771271 > 0]
Va(2)
o E (%)Sk (zA1(Vi(2)))®k|service class—l}

ZA1 (V1 (Z))
HW@W”MWWHU>W}
Vl(z)
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=F® (Vi(2),Va(2))S82(2)3 1 = pr (3.122)

5 (A(VA(<)V<V§>)) : ZA“V“Z”) N (0, Va(z)) — N(0,0)
NUA) (0, 1) — N(0,0))Va(2)
(AVE )
51( A I ”)
(i)
_ NUA(). V() ~ N(0.Va()
1-NO.DWG) [

+ p2

+p1

with
F® (2, 2) 2E {zlflkzg“} , (3.123)

and
Si(z,2) ékILH;oE [mszzsﬁservice class—j} : (3.124)

with j = 1,2. As in the previous chapter, the random variables f; ; and f>
can be shown to have the following joint pgf:

A(Zl, 22) — Al(Zl)
)\2(22 — 1)

F® (21, 2) = (3.125)

The S%(z,2)’s (j = 1,2) are already calculated in the previous subsection and
are given by equation (3.102).

Finally, we find expressions for V;(z) and V(z). Denote a (random) sub-busy
period of class-j by v; and the service time of the class-j packet initiating the
sub-busy period by s;, j = 1,2. Furthermore, denoting the class-1 arrivals

during the m-th slot of this service time by agm), we have

v =s; + Z S, (3.126)

with viT) defined as the class-1 sub-busy period added to the original sub-
busy period by the I-th class-1 packet arriving in the m-th slot of the service
time s;. Since v; and s; have pgf’s V;(z) and S;(z) respectively and since
(m)
N

the class-1 sub-busy periods v, ,” are i.i.d. and have a common pgf Vi(z), 2-
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transforming (3.126) yields
Vi(z) =S;(2A1(Vi(2))), (3.127)

with j =1,2.
Equation (3.122) together with equations (3.13), (3.102) and (3.125) leads to:

1 pr Sa(2)(A0A (), a(2) — A (Vi(2))) A1 (Vi(2)) — 1
DQ(Z) = (

Ne | 2A(Vi(2) — A(Vi(2), Va(2)) e 1 @1

with V;(z) (j = 1,2) implicitly given by equation (3.127).

In the special case of deterministic service times of 1 slot for both classes, ex-
pression (3.128) equals expression (2.104).

3.6.3 Pgf D(z) of the delay of a random packet

In this subsection, we derive the pgf D(z) of a random packet arriving in the
system. Tagging a random arriving packet, it is of class-1 with probability
A1/Ar and of class-2 with probability Ay /Ar. We thus get

D(Z) :))\\_;Dl (Z) +

Az

o Da(2). (3.129)

Substituting expression (3.115) and (3.128) in this expression leads to

_1—p1 Si(x)(z—1) Ai(Si(2)) =1 (1—pr p2 Sa(z) —1
D) = A s (T T o)
(3.130)

L L pr SEATIE). V() — A (EE) 24 () 1
Ar zA1(V1(2)) — A(Vi(z), Va(2)) Va(z) —1

3.6.4 The functions Y;(z) revisited

The functions Y;(z) (j = 1, 2) are the pgf’s of stochastic variables, namely the
stochastic variables y;, which are defined as the number of class-2 packets
that arrive during a sub-busy period initiated by a class-j packet. If at the
beginning of a random slot a class-j packet with service time s; enters the
server, a new sub-busy period starts (with length denoted by v;). Denoting
the number of class-2 packets that arrive during this sub-busy period by y;
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and denoting the number of class-i arrivals during the m-th slot of this sub-
busy period by a{™ (i = 1,2), we get

Vi

yi= ay" (3.131)

m=1
s; a(lnL)
=y (agm> +3 yi’f)) : (3.132)
m=1 =1

with yirf) the number of class-2 packets that arrive during the sub-busy period
added to v; by the I-th class-1 packet that arrives during the m-th slot of the
service time s;. Naturally, all yﬁl) have the same distribution as y; (since the
lengths of class-1 sub-busy periods are all identically distributed) and there-
fore the pgf of y; is thus indeed given by

Y;(z) =5;(A(Y1(2), 2)), (3.133)

for j = 1,2, as immediately follows from (3.132) assuming that a stationary
regime is reached.

When the number of class-1 and class-2 arrivals are independent stochastic
variables, it can be seen that v; and the agm) are also independent variables.
From expression (3.131), it then follows that

Y;(z) =Vj(4A2(2)), (3.134)

for j = 1,2. Note that this latter expression is not generally valid when the
number of class-1 and class-2 arrivals in a slot are correlated, since v; and the

a8"™"s both depend on the a{"™"s in this case.

3.6.5 Calculation of moments

Taking the first derivative of equation (3.115) and substituting z by 1 yields
the mean class-1 packet delay:

1 ulVar[al] /\1Vﬁ1‘[51] )\2(#2(#2 — 1) + Var[sz])
Bl =5 + 2M1 (1 = p1) * 2(1 - p1) * 2(1 - p1) - (3139)

Note that this expression is always at least equal to 1. Since Var[a;] > A;(1 —
A1) (for more details see subsection 2.1.6), the second term of (3.135) equals
u1/2 for Ay — 0 and Ay — 0 - and keeping Varfa1] = A1(1 — A1) -, thus
E[d1] > p1. This is also intuitively clear, since the service time of a packet is
an integral part of the delay of that packet. Thus the mean delay is at least the
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mean service time of a packet, i.e., y1 in this case. It can furthermore be seen
from expressions (3.59) and (3.135) that E[u;] = A\1E[d;], which is also found
from (the discretized version of) Little’s law.

The mean delay of a class-2 packet is found by taking the first derivative of
expression (3.128) and substituting z by 1, yielding

_H2 uiVar|a] poVarfas]  pu1Covlal, a2
B = S o) —p0) T 2= pr) T el pr)
)\1Var[sl] + AQV&T[SQ] _ pl(MQ — 1)
2(1 = pr)(1 = p1) 2(1—p1)

(3.136)

This expression is at least s, since for given mean arrival rates of class-1 and
class-2 (A\; and A, respectively), the minimal value of Var[a;] is A\;(1 — ;)
( = 1,2) and the minimal value of Cov|ay, as] is —A1 2. These least possible
values occur when one class-1 packet and no class-2 packets arrive during a
slot with probability A;, no class-1 packets and one class-2 packet arrive with
probability A, and no arrivals occur during a slot with probability 1—A7. With
these values, expression (3.136) equals p for A; and Ay going to 0. Little’s law
is again valid: E[us] = A2E[da].

Finally, the mean delay of a random packet is given by

Eld] :/)\\—;E[dl] + i\—;E[dg] (3137)
_pr  mVarlag]  pde(pp — pa)Varfar] | (p2 — p)Varfas]
2)\T 2>\T(1 - pT) 2>\T(1 - PT)(l - p1> 2>\T(1 - PT)

(3.138)
(A1 Var[s1] + A2 Var[sa]) (A1 (1 — p1) + A2(1 — pay))
2Ar(1 = pr)(1 = p1)
A Aa(p2 — 1) (p2 — i)
2>\T(]— — pl) ’

+

+

We have used expressions (3.135) and (3.136) to obtain this formula. Expres-
sions (3.56) and (3.138) clearly satisfy Little’s law.

3.6.6 Calculation of tail probabilities

In this subsection, we calculate the tail probabilities of the delay of a class-1
packet, of the delay of a class-2 packet and of the delay of a random packet.

Class-1 packet delay

The dominant singularity of D, (z) (expression (3.115)), denoted by %y, is the
dominant zero of z— A;(S1(z)) on the positive real axis (> 1). Itis a single pole
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and we can thus approximate the tail behavior of the delay of class-1 packets
by

dy(n) £Prob(d; = n] (3.139)
~K 25", (3.140)
and
5 =D
Probld, > D] ~ 5151 (3.141)
ZH — 1
for large enough n and D respectively, with
v, = 51Gn) Gr — DA = pr) (B — 1) + A2 (S2(2m) — D] (3.142)
A (S1(Zm) = 1) (A1(S1(2m)) 51 (2) — 1)

Behavior of V;(z) and V»(z) in the neighborhood of their dominant branch-
point

The tail behavior of the delay of class-2 packets is again a bit more involved
because of the appearance of the function Vi (z) in (3.128), which is (generally)
only implicitly known. We will first observe the behavior of V;(z) and Va(z).
The first derivative of V;(z) is given by

Vi) - SEATE) AA()

TS AW () AW ) (3.143)

which, similar as before, indicates that V1 (z) has a branch point 25, with
£pS1(2pA1(Vi(28))) A1 (Vi(2p)) = 1. (3.144)

In the neighborhood of Zp, Vi (%) is approximately given by

Vi) =M (es) ~ s G149
with
= 2A;(Vi(2B))
e _\/2BA’{(V1(2B)) ST G (Vi) CeAL(Vi(Ga)))? (3.146)

%p is also a branch-point of V;(z), since

V3 (2) =895(2A1(Vi(2))) [A1(Vi(2)) + 245 (Vi(2)) Vi (2)] (3.147)
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Thus in the neighborhood of 25, we find

Va(z) &Va(2p) — Kv, V2B — 7, (3.148)
with
Ky, =Ky, 95(2pA1(Vi(2R))) 2 A1 (V1 (2B)). (3.149)

Class-2 packet delay

%p is also a branch-point singularity of D2 (z). A second (potential) singularity
of Dy (z) is given by the dominant zero Zj, of zA; (V1(z)) — A(Vi(2), Va(2)). So,
D5(z) is approximated in the neighborhood of its dominant singularity by:

i-(1)
AKQ if 2; dominant
Zr, — %
Dy(z)={ K 5 — 5 dominant (3.150)
if 21, = 2 dominan
Ve —z Lo

Dy (25) — K{¥\/Z5 — 2 if 25 dominant,

with the constants K. éi) (i = 1,2,3) found by investigating D(z) in the neigh-
borhood of its dominant singularity, yielding

2 _ (L= pr)S () A (Vi(2n)) G — 1) GrAi(Vi(2n)) — 1)

= AV () 1 T (3.151)
X2 (Va(2) — 1) ( ( 1(2; 2(2)) 7 (z gz 1(2)))

) (1—pr) GeAi(Vi(Zp) — 1) o

e = Ao (Va(n) — 1) (3.152)

B—1)
)+ Kv, A® (Vi(2B), Va(2B))

" Sa (ZB)Al(Vl( B)) (2
KV1 (A(l)(‘/i(éB), V2(ZB)> — ZBA 2 )

7 _ (1- pT)Sz(ZB)
7 Ma(2Ai1(Vi(zs)) — A(Vi(Zs), Va(28)))?(Va(2p) — 1)

x { |41 2p)) (Kvi AV (Vi (), Vo) + K, AP (Vi (25), Va(2p)) )

- Ky, A(Vi(2B), ‘/2(23))14/1(‘/1(23))} (26 —1)(2pA1(Vi(2B)) — 1)

x (Va(2p) — 1) + [Kv, 2B A1 (Vi (2B))(Va(ZB) — 1) — Ky, (28A1(Vi(2B)) — 1)]
x (A(Vi(2g), Va(2B)) — A1(V1(2B))) (28A1(Vi(2B)) — A(Vi(2B), Va(ZB))) }

(3.153)
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Using Darboux’s theorem, we find

do(n) £Problds = n] (3.154)
I%Q(l)égnfl if 27, dominant
K2(2)n—1/22§n ' .
~{ f 21, = Zp dominant
e 1z =2p (3.155)
R [

—3/22—m :if 2 .
5 n=3/255" if 25 dominant,

and

da(D)

Prob[ds > D] R

(3.156)

with 2, the dominant singularity of D(z).

Delay random packet

Finally, we calculate the tail probabilities of the delay of a random packet.
Its pgt D(z) is given by expression (3.130). The dominant singularity of this
function is 21, or 25, depending on which is smallest.

Note that - similar as in the previous chapter - the dominant singularity of
Dy (z) - 2y - is also a singularity of D(z), but 2y is never dominant, since
Zg > Zp. We will first prove this latter inequality. Firstly, since Zp fulfils the
relation S7(2pA1(Vi(2B)))2pA 1 (Vi(2p)) = 1 and since Zp is larger than 1

S1(2pA1(Vi(28))) A1 (Vi(2p)) <1, (3.157)
or - by using the definition of V;(2) = S1(241(Vi(2))) -

dAl (Sl (Z))

1. 1
= < (3.158)

Z::%BAl(Vl(?:‘B))

Furthermore, since A;(S51(z)) and z intersect in 2y,

dAl(Sl (Z))

1. 1
s > (3.159)

ZZEH

This inequality combined with (3.158) and the fact that dA;(S1(z))/dz is a
strictly increasing function for the assumed pgt’s - for z positive real and in-
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side the region of convergence of the corresponding series - it follows that
ﬁBAl(Vl(éB)) <Zy. (3160)

Since A;1(V(2p)) > 1 it follows from the previous inequality that 25 < Zg,
and thus 2y is never a dominant singularity of D(z). It is also intuitively clear
that - because of the priority scheduling discipline - the behavior of d(n) for
high n will be dominated by the delay of the class-2 packets.

From expression (3.129) and the fact that the dominant singularities of D(z)
and D5(z) are equal, it is easily seen that

d(n) £Prob|d = n] (3.161)
~ i da(n), (3.162)

for large enough n. Since ds(n) is approximately calculated in expression
(3.155), d(n) is approximately determined from this expression. Finally, the
probability that the steady-state delay of a random packet is larger than a
bound D is given by

Prob[d > D] %i\—QProb[dg > D], (3.163)
T

for large D.

3.7 Waiting time

The waiting time of a packet, defined as the number of slots a packet has to
wait in the queue before starting service, is easily determined using the results
obtained in the previous section for the packet delay. Indeed, since the service
times of the packets are not interrupted, the waiting time of a packet equals
its delay minus its service time. Thus, the pgf of the steady-state waiting time
of a class-j packet is given by

Tj(2) =4~ (2) (3.164)

for j = 1, 2. Using expressions (3.115) and (3.128), we find

_1—p1 z—1 Al(Sl(Z))—l 1—pT P2 SQ(Z)—I
he =" T"AG0) &) -1 (1—p1 1—p1M2(Z—1)>’
(3.165)
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for the pgf of the class-1 waiting time and

1—pr A(Vi(2),V2(2)) = A1(N1(2)) 2A1(Vi(2)) — 1

Ty (2) = Ao 2A1(Vi(2) — A(Vi(2), Va(z))  Va(z)—1

(3.166)

for the pgf of the class-2 waiting time. Finally, the pgf of the steady-state
waiting time of a random packet is given by

T(z ):)}\\_;Tl( )+ Ta(2) (3.167)

:1—/)1 z—1 Al(Sl(Z))—l (1—pT P2 SQ(Z)—1>
Ar o z—Ai(S1(2))  Si(z) - L—p1  1—=p1pz(z—1)
(3.168)

1—pr A1(2), V2(2)) = A1 (Vi(2)) zA1(Va(2)) — 1
Aro 2A(Vi(2) — AVi(2),Va(2)) - Va(z) =1

From these pgf’s, performance measures can be calculated as is done in the
previous section.

3.8 Numerical examples

To conclude this chapter, we apply our results to an output queueing switch
with an NP priority scheduling discipline. We will specifically focus on the
performance measures of the system contents and of the packet delay (ana-
lyzed in sections 3.3 and 3.6 respectively).

Because of the rather large number of input parameters one can vary in this
model, the numerical examples discussed in this section are merely a (limited)
subset of the possible numerical examples. We will furthermore focus on one
type of arrival distribution (see further). This gives us a chance of limiting the
number of plots, without losing too much generality.

3.8.1 Input processes
The arrival process
We use the example of the output queueing switch, discussed in section 1.7.2,

throughout this section. The pgf of the number of per-slot class-1 and class-2
arrivals is given by

A (1-2q 22 g ! 3.169
(21,22) = —ﬁ(—zl) N( —z2) ] (3.169)
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with IV the number of in- and outlets of the output queueing switch and with
A; the probability that a class-j cell arrives at a randomly chosen inlet (for
more details see 1.7.2). We will briefly repeat the most important characterist-
ics of this arrival process: the marginal pgf Ar(z) is given by

N
Ar(z) = <1 - )\WT(I - z)) , (3.170)

and the marginal pgf of the number of per-slot arrivals of class-j is given by

Aj(z) = <1 - %(1 - z)>N, (3.171)

with j = 1,2. The means of the total, class-1 and class-2 numbers of per-slot
arrivals are thus given by Ar, A\; and A, respectively, while the variances of
these three stochastic variables are given by

A

Var|a] =\ (1 - N) , (3.172)

with X equal to Ay, A\; and A, respectively. The covariance of the number of
per-slot class-1 and class-2 arrivals is given by

AL
Covlay,as) = — }VQ. (3.173)

The service process

In this section, the service times of both classes are assumed deterministic in
most examples, i.e.,

Si(z) =21, (3.174)

j = 1,2, with p; the class-j service time.

In order to study the influence of the variance of the service times though
(since the variance of deterministic service times is obviously equal to 0), we

assume in some examples the class-j service times to be equal to ug-l) with

probability p; and equal to /J;-Q) with probability 1 — p;, i.e.,

Sj(2) =p; "+ (1—py)ehs . (3.175)

The mean value and variance corresponding with this distribution equal

pj =pinl? + (1 —py)ps?, (3.176)
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and

2
Varls;] =p; (1 = py) (1 = u{")" (3.177)

respectively. In order to study the influence of Var[s,], p;, ,um and ,u@) will
P Y- y 3l Pjr Hj J

be varied so that y; stays constant and Var([s;] is varied from 0 to infinity (in
discrete steps).

3.8.2 Influence of load on moments

Firstly, we show the influence of some load characteristics on the mean and
variance of the system contents and packet delay. The arrival process is
defined by expression (3.169) with N = 16 and the service times of class-j
packets are deterministically equal to 11;. We define « as the fraction of class-1
load in the overall traffic mix, i.e.,

adlL (3.178)
PT

with p; = \jp; (5 = 1,2) and pr = p1 + p2 (as before).

Since we have extensively studied the influence of the load on the means and
variances of the system contents and delays in subsection 2.6.2 - in the case
of deterministic service times of one slot - we limit the number of examples
in this subsection. However, all types of figures from subsection 2.6.2 can be
‘replicated’ in the context of this chapter.

System contents

In Figures 3.4 and 3.5, the mean values and variances of the system contents
of class-1 and class-2 packets are shown as functions of the total load, when
a = 0.25, 0.5 and 0.75 respectively and when the service times of both classes
are deterministically equal to 20 slots. We have also shown the mean value
and variance of the system contents of any class (class-1 or class-2) for o = 0.5
when a FIFO scheduling discipline is applied. These can be easily calculated
because - in the special case of the arrival process characterized by (3.169) and
equally distributed service times of both classes - the joint pgf of the number
of arrivals of both classes has the feature that it can be expressed as Ar(az; +
(1—a)z2). Thejoint pgf of the system contents of both classes is thus also given
by Ur(az + (1 — ) z2), with Ur(z) the pgf of the total system contents (given
by expression (3.39)) - for more details see subsection 2.6.2 - and the mean and
variance are thus easily obtainable from this pgf. From Figures 3.4 and 3.5,
one can see the influence of the priority scheduling discipline: especially for
high loads, the mean and the variance of the number of class-1 packets in the
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Figure 3.4: Mean values of system contents versus the total arrival rate (11 = p2 = 20)

system are reduced by the priority scheduling discipline; the opposite holds
for class-2 packets.

Packet delays

In Figures 3.6 and 3.7, the mean values and variances of the packet delay of
class-1 and class-2 packets are shown as functions of the total load pr, when
1 = po = 2 with aequal to 0.25, 0.5 and 0.75 respectively. In order to compare
with a FIFO scheduling discipline, we have also shown the mean value and
variance of the packet delay of any packet in that case. Because of the service
times of the class-1 and class-2 packets being equally distributed and because
of the specific arrival process considered in this section, the packet delay is
the same for class-1 and class-2 packets in case of FIFO scheduling, and can
thus be calculated as if there is only one class of packets arriving according to
an arrival process with pgf Ar(z). This situation has already been analyzed,
e.g., in Bruneel and Kim [1993]. One can observe the influence of the priority
scheduling discipline: mean value and variance of the delay of class-1 packets
reduce significantly. The price to pay is a larger mean value and variance
of the delay for class-2 packets. Also, for this parameter set, the smaller the
fraction « of class-1 packets in the overall traffic mix, the lower the mean value
and variance of the packet delay of both classes will be. This is not always the
case however as can be deduced from Figure 3.8, which shows the mean delay
of class-1 and class-2 packets as a function of pr, when p; = 2 and ps = 20.
« is again 0.25, 0.5 and 0.75 respectively. In this case, if the load is smaller
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Figure 3.5: Variances of system contents versus the total arrival rate (11 = p2 = 20)

than ~ 0.9, the smaller the fraction of class-1 packets in the overall traffic mix,
the higher the mean packet delay of both classes will be. For loads higher
than 0.9, the opposite holds. This can be explained as follows. For low and
moderate values of the load - due to the long service times of class-2 packets
- the delay of class-1 packets will be determined by the probability of having
to wait for a class-2 residual service time upon arrival and is therefore highest
when the share of the class-2 packets in the overall traffic mix is highest. The
same holds for the delay of the class-2 packets since there are too few class-1
packet arrivals to have a severe impact on their delay. As the total load further
increases however, the transmission of class-1 packets becomes more frequent
and starts to take its toll.

3.8.3 Influence of the service times on mean values

In this subsection, we show the influence of the service times on the mean
system contents and mean packet delay. To show the influence of the mean
service times of both classes, we assume deterministic service times. In order
to show the influence of the variances of the class-1 and class-2 service times
(on the mean system contents and mean packet delay) however, service times
with a pgf as in (3.175) are also considered (when appropriate).

System contents

In the first two figures, we assume deterministic service times for both classes.
Figure 3.9 shows the mean system contents of both classes versus the class-1
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Figure 3.6: Mean values of the packet delay versus the total load (11 = p2 = 2)

Figure 3.7: Variances of the packet delay versus the total load (11 = p2 = 2)
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Figure 3.8: Mean values of the packet delay versus the total load (1 = 2, p2 = 20)

service time with s = 20 and oo = 0.25, 0.5 and 0.75 respectively. The total
load is equal to 0.75. It can be seen that the mean class-1 system contents de-
creases with increasing j1. This is explained as follows: less class-1 packets
arrive when p; increases (since p; is kept constant, A; decreases when p; in-
creases). The mean class-2 system contents on the other hand increases with
increasing u1 (when Var[s;] = 0). So, although the load of class-1 packets stays
the same, the mean class-2 contents (heavily) increases with the class-1 service
time. This is due to the fact that when the class-1 packets are longer, the vari-
ance in the lengths of the periods that the server is available and unavailable
for class-2 packets grows. It is a well-known fact from queues with server in-
terruptions (i.e., queues with a server that is unavailable for certain periods)
that a higher variance in the interruption process gives rise to higher mean
system contents (see e.g. Bruneel and Kim [1993], Fiems [2004]). The same
phenomenon is the cause of the behavior of the mean class-2 system contents
in this plot.

In Figure 3.10, the mean system contents of both classes are plotted as a func-
tion of the (mean) class-2 service time with p; = 20, pr = 0.75 and « = 0.25,
0.5 and 0.75. It can be seen that the mean class-1 contents increases, while the
mean class-2 system contents decreases with increasing ji. The increase of the
mean class-1 system contents is easily explained as follows: as seen in subsec-
tion 3.3.3, the influence of the class-2 packets on the class-1 system contents is
closely related to (the number of class-1 arrivals during) the residual service
times of class-2. Obviously residual service times increase when service times
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Figure 3.9: Mean values of system contents versus the (mean) class-1 service times
(,DT = 0.75,/12 = 20)

increase. Or in other words, when the service times of the class-2 packets
increase, more class-1 packets will arrive during the time periods that class-
2 packets are being served. Since the arriving packets cannot interrupt the
service of these class-2 packets, they have to wait until this packet leaves the
system, thus leading to a larger mean class-1 system contents. The decrease
of the mean class-2 system contents is caused by the decrease of A\, when p»
increases (and p» is constant), i.e., on average less class-2 packets arrive.

As can be seen from formulas (3.59) and (3.61), the mean class-1 and class-
2 system contents are linearly dependent on the variance of the class-1 and
class-2 service times. This is also shown in Figures 3.11 and 3.12. In Figure
3.11 (Figure 3.12 respectively), the mean class-1 and class-2 system contents
versus the variance of the class-1 (class-2 respectively) service times are depic-
ted when the total load is 0.75, when o = 0.25, 0.5 and 0.75, when the mean
class-1 (class-2 respectively) service time is equal to 20 and when the class-2
(class-1 respectively) service times are deterministically equal to 20. The ser-
vice times of class-1 (class-2 respectively) have a pgf as defined in expression

(3.175), with u§1) =1, u§-2) varying from 20 to infinity and p; chosen so that
the mean service time p; is kept constantly equal to 20 slots. It can be seen
that mean class-1 and mean class-2 system contents increase with increasing
Var([s;]. The influence on the mean class-2 system contents is generally larger
than the influence on the mean class-1 system contents, due to the priority

scheduling discipline.



110 Non-preemptive priority

50 100 150 200 250 300 350 400
Ho

Figure 3.10: Mean values of system contents versus the (mean) class-2 service times
(,DT = 0.75,/11 = 20)
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Figure 3.11: Mean values of system contents versus the variance of the class-1 service
times (pT = 04757M1 = l2 = 20)
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Figure 3.12: Mean values of system contents versus the variance of the class-2 service
times (pT = 0.75,/11 = U2 = 20)

Packet delays

Figure 3.13 shows the mean packet delays of class-1 and class-2 packets as
functions of the service time of class-1 packets, when pr = 0.75, y2 = 2 and
« is, as before, 0.25, 0.5 and 0.75. Service times of class-1 and class-2 are de-
terministically equal to p1 and po respectively. We see that the mean packet
delays of both classes are proportional with y; and that the impact of ;11 on
the delay of both priority classes is significant. Figure 3.14 shows the mean
packet delays of class-1 and class-2 packets as functions of the service time of
class-2 packets, when pr = 0.75, 1 = 2 and « is 0.25, 0.5 and 0.75. Varying
the mean service time of class-2 packets has a considerable influence on the
mean delay of class-2 packets, while the influence on the mean packet delay
of class-1 packets is small, but not negligible. Furthermore we observe that for
small class-2 packets, both classes have a smaller mean delay if the fraction of
the load of class-1 packets is lower, while for long service times of the class-2
packets, the opposite holds, as already discussed before (see also Figure 3.8).

To emphasize the possible influence of the (mean) service times of the class-2
packets on the (mean) class-1 packet delay, we show the mean value of the
packet delay of class-1 packets as a function of the total load, when A; = 0.25,
w1 = 2and po = 1,2,4,8,16 in Figure 3.15. This figure shows the influence
of the NP priority scheduling discipline. When the service time of a class-2
packet is assumed to be deterministically equal to one slot, i.e., 2 = 1, the
NP priority scheduling has the same effect - on the mean class-1 delay - as the
preemptive priority scheduling, and E[d;] is not influenced by the presence
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Figure 3.13: Mean packet delays versus mean service times of class-1 packets (pr =
0.75, 2 = 2)

Figure 3.14: Mean packet delays versus mean service times of class-2 packets (pr =
075, H1 = 2)
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Figure 3.15: Mean packet delay of class-1 packets versus the total load (p1 = 0.5, u1 =
2)

of class-2 packets. For us > 1, the higher the value of pr (and hence p3), the
higher the probability that a newly arriving class-1 packet has to wait for a
class-2 packet service completion, and obviously the effect becomes worse as
Lo Increases.

In the next two figures, we assume the service time of class-1 or class-2 packets
respectively to have a pgf as defined in expression (3.175). The weight p; is
again chosen in such a way that the mean service time remains constant. By

varying u§2) while keeping ,ugl) constant the variance of the class-j service
time can be varied (from 0 until co). In Figure 3.16, we have plotted the mean
delays of both classes as functions of the variance of the service times of class-
1 packets, when pr = 0.75, deterministic class-2 service times, 1 = pg = 2
and « = 0.25,0.5 and 0.75 respectively. Figure 3.17 shows the mean delays of
both classes as functions of the variance of the service times of class-2 packets,
when pr = 0.75, deterministic class-1 service times, 3 = po = 2 and a =
0.25,0.5 and 0.75 respectively. These figures illustrate that even though the
mean lengths of class-1 and class-2 packets are kept constant, their variances
have a large impact on both the class-1 and class-2 mean packet delays.

3.8.4 Tail probabilities

In the next figures, we illustrate the tail behavior of the packet delay. The
tail behavior of the system contents is similar and as a result similar plots as
the ones for the packet delay can be constructed. We have shown in section
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Figure 3.16: Mean values of the packet delays versus the variance of the class-1 service
times (pT = 0.75,/11 = U2 = 075)
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Figure 3.17: Mean values of packet delays versus the variance of the class-2 service
times (pT = 04757M1 = l2 = 0.75)
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Figure 3.18: Regions for tail behavior as a function of the load of both classes in the
case of deterministic class-1 service times (1 = 2)

3.6.6, that the tail probabilities of the class-2 packet delay can have 3 types of
behavior, depending on which singularity of D;(z) is dominant. In case of
the arrival process considered in this section, Figures 3.18 and 3.19 show for
which combination of class-1 and class-2 loads the transition type behavior
occurs for the packet delay when p1; = 2 and for several values of ps, i.e., for
which combination of loads the regular pole and the branch point coincide.
The service times of the class-2 packets are deterministic. In Figure 3.18, the
service times of the class-1 packets are also assumed to be deterministic, while
in Figure 3.19 the service times of class-1 packets are geometrically distributed.
In the region above the curves, the tail behavior is geometric for the respective
p1 and p2, while below the curves the tail behavior is non-geometric. Note
that in the area above the line defined by p; + p» = 1 in both figures, the
total load is larger than 1, and as a result, the system becomes unstable. As
can be seen from these figures, the higher the mean service time of class-2
packets, the smaller the region where the tail behavior is non-geometric. By
comparing both figures (and from other extensive examples), we conclude
that the transition between geometric and non-geometric tails highly depends
on the service time distribution of the class-1 packets.

Figure 3.20 shows the tail probabilities of the packet delay of class-1 and class-
2 packets for deterministic service times (111 = po = 2),if py = 0.4and p2 = 0.1
(non-geometric behavior), approximately 0.21 (transition type behavior) and
0.4 (geometric behavior) respectively. Tail behavior of the packet delay of
class-1 packets is not the same for the 3 cases, but the curves lie (in this case)
near to each-other. We have also compared our approximations with simula-
tion results (marks in the figures). The figure shows that the approximations
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Figure 3.19: Regions for tail behavior as a function of the load of both classes in the
case of geometric class-1 service times (1 = 2)

for the tail probabilities of the delay of both classes are very good.

Finally, Figure 3.21 shows the tail probabilities of the class-1 delay for p; =
p2 = 0.4, 1 = 2 and several values of s (u2 = 1, 2,4, 8,16). The service times
of both classes are deterministic. This figure clearly shows that the class-2 ser-
vice times can have a big effect on the tail probabilities of the class-1 delay.
Since class-1 traffic is delay-sensitive, this is something to keep in mind when
incorporating priority scheduling disciplines (e.g., in telecommunication net-
works).

3.9 Concluding remarks

In this chapter, we studied a more evolved priority queueing system with gen-
erally distributed service times. The priority scheduling was of the NP type.
The analysis was an extension of techniques used in the previous chapter.
The most important step was finding an embedded Markov chain. This was
done by first analyzing the system contents at specific time instants. The two-
dimensional pgf of the steady-state class-1 and class-2 system contents at the
beginning of such slots was the starting-point of all further calculations in this
chapter.

An important conclusion is that the NP priority discipline can differentiate
the quality of service of different classes. More precisely it is shown that the
delay of the high-priority traffic can be decreased by applying the NP prior-
ity discipline. The price to pay is an increase in the delay of the low-priority
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Figure 3.20: Tail behavior of the class-1 and class-2 packet delay for several class-2
loads (p1 = 0.4, u1 = p2 = 2)
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traffic. However, it is also shown that the NP property of this scheduling dis-
cipline can have an important ‘negative’ influence on the high-priority delay
characteristics. Especially when the service times of the low-priority class are
relatively large (compared to the service times of the high-priority packets),
the positive influence of the priority discipline on the high-priority delay can
be severely decreased by the NP property.



Chapter 4

Preemptive resume priority

In this chapter, we describe the analysis of a preemptive resume (PR) priority
queue. Packets of two classes (class-1 and class-2) arrive in a single-server
queueing system where packets of class-1 have (PR) priority over class-2 pack-
ets. Whenever the server becomes available, a class-1 packet is served next (if
any). If no class-1 packets are present, a class-2 packet can start service. In con-
trast with the NP (non-preemptive) priority scheduling discipline analyzed in
the previous chapter, newly arriving class-1 packets interrupt an on-going ser-
vice of a class-2 packet. So, when class-1 packets arrive during a service slot
of a class-2 packet, one of the class-1 packets starts service at the beginning of
the next slot, and the (not-yet-served part of the) interrupted class-2 packet is
pushed back in the queue (unless it was its last slot of service). In this chapter,
we analyze the preemptive resume priority scheduling discipline. An inter-
rupted class-2 service resumes after all class-1 packets have left the system.
Or in other words, only the not-yet-served part of the interrupted packet has
to be served afterwards.

According to Miller [1960], the first published results for the preemptive (re-
sume) priority queue are by White and Christie [1958]. In [Miller 1960], the
Laplace-Stieltjes transform of the waiting time is found for a continuous-time
PR priority queue with Poisson arrivals and generally distributed service
times. Furthermore - as already mentioned in the previous chapter - an
overview of some other basic (non)-preemptive priority queueing models in
continuous-time can be found in the monographs of Kleinrock [1976] and
Takagi [1991].

Continuous-time single-server PR priority queues with no correlation between
the arrival processes of the priority classes have been analyzed by a.o. Marks
[1973], Miller [1981], Brandwajn [1982], Cidon and Sidi [1990], Takahashi
and Miyazawa [1994], Takine and Hasegawa [1994], Abate and Whitt [1997],
Boxma et al. [1999], Berger and Whitt [2000], Kraimeche [2001], Drekic and
Grassmann [2002], Drekic and Stafford [2002], Sharma and Virtamo [2002],
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Takada and Miyazawa [2002] and Liu and Gong [2003]. Marks [1973] gives an
algorithm for the calculation of the state probabilities in a PR priority queue
with negative exponential interarrival and service times. Miller [1981] ana-
lyzes a PR priority queue with Poisson arrivals and exponential service times.
The state probabilities of the number of packets of each type in the system are
presented by explicit recursive formulas. Brandwajn [1982] demonstrates a
technique whereby one attempts to solve the difference equations - the start-
ing point of most queueing problems - directly for PR priority queues with
rather general input processes. A two-class PR priority queue with Poisson
arrivals and exponential service times is studied by Drekic and Grassmann
[2002]. The buffer storing the high-priority packets is assumed to be infinitely
large, while the low-priority buffer is of finite length. The method of the gen-
eralized eigenvalues is used to determine the joint distribution of the number
of high- and low-priority packets. A recursive formula for the steady-state
probabilities of the system contents of the two priority classes is proposed
by Cidon and Sidi [1990]. This formula is found from the joint pgf of these
stochastic variables, as calculated by Miller [1960]. Abate and Whitt [1997]
quantify the effect of the priority structure on the low-priority steady-state
delay tail probabilities (in NP and PR priority systems). They show that the
priority structure tends to make the tail probabilities non-exponential (as also
shown in this dissertation). Takahashi and Miyazawa [1994] propose a rela-
tionship between the queue contents and the waiting time for the NP and PR
priority queues. Takine and Hasegawa [1994] study a queue with Markovian
arrivals and with state-dependent service time distributions. As an applica-
tion of the results obtained for this queueing model, a PR priority queue is
analyzed. In particular, the Laplace-Stieltjes transform and the mean values
of the waiting times of packets of all priority classes are obtained. Boxma
et al. [1999] derive a heavy-traffic limit theorem for the low-priority waiting
time when the service times are heavy-tailed. Upper and lower bounds on the
per-class workload distributions in a priority fluid queue are established by
Berger and Whitt [2000]. Kraimeche [2001] models the multiplexing of video
and data sources in an ATM access network by a fluid priority queue. The
cell loss of the data traffic is analyzed. Drekic and Stafford [2002] propose a
symbolic computation procedure to calculate (higher order) moments of the
system contents and packet delay - starting from the pgf or Laplace-Stieltjes
transform of these variables - in (general) priority queues. Sharma and Vir-
tamo [2002] study a two-class PR priority queue with (Markov modulated)
Poisson arrivals and general service times. The queue is assumed to be of fi-
nite length in the sense that the total amount of (unfinished) work in the queue
is assumed to be limited (in contrast with traditional finite queue analyses,
where the number of packets in the system is assumed to be limited). Takada
and Miyazawa [2002] analyzed a fluid priority queue with the high-priority
traffic existing out of continuous fluid and the low-priority traffic out of batch
fluid. The stationary joint distribution of the buffer contents of both types is
obtained in terms of matrix transforms. In Liu and Gong [2003], a two-class
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fluid priority queue is studied with the high-priority traffic modeled by the
superposition of on-off sources and the low-priority traffic by a constant bit
rate flow. Sample path analysis tools are used to obtain various analytical
results (e.g., the low-priority system contents distribution).

Continuous-time multi-server PR priority queues are analyzed by a.o. Goldberg
[1981], Mitrani and King [1981], Buzen and Bondi [1983], Kao and Narayanan
[1991], Galil et al. [1992], Tabet-Aouel and Kouvatsos [1992], Kouvatsos and
Tabet-Aouel [1994], Nufiez Queija and Boxma [1998] and van der Heijden
et al. [2004]. All these papers except for Gail et al. [1992], Tabet-Aouel and
Kouvatsos [1992] assume Poisson arrivals and exponential service times. In
[Goldberg 1981], an exact and a (faster) approximate procedure to calculate
the steady-state probabilities numerically are established. Mitrani and King
[1981], Buzen and Bondi [1983] calculate the mean values of the steady-state
delay. Both papers provide an exact analysis for a two-class system and an ap-
proximative analysis for a system with a general number of priority classes.
Kao and Narayanan [1991] analyze a two-class PR priority queue by making
use of matrix-analytic solution techniques. To limit the state space, two ap-
proximations are proposed: assuming a finite high-priority buffer or a finite
low-priority buffer respectively. Gail et al. [1992] analyze a two-class PR prior-
ity queue. By eliminating remaining unknown variables from the generating
functions of the state probabilities, these latter ones are numerically calcu-
lated. An entropy maximization approach is used to characterize the distribu-
tional form of the steady-state probabilities in a PR priority queue with gen-
eral interarrival and service times by Tabet-Aouel and Kouvatsos [1992] and
Kouvatsos and Tabet-Aouel [1994]. Nufiez Queija and Boxma [1998] study
a two-class priority system with independent Poisson arrivals and exponen-
tial service times. The low-priority packets are furthermore served in a pro-
cessor sharing fashion. A complete characterization of the joint distribution
of the steady-state system contents of both classes is given and the results are
applied in an ATM context. The approximation of performance measures in
multi-class PR priority queues is discussed by van der Heijden et al. [2004] for
large problem instances (many classes and servers) using class aggregation
and server reduction.

Discrete-time PR priority queues with no correlation between the arrival processes
of different classes are studied by a.o. Rubin and Tsai [1989], Chen and Guérin
[1991], Choi et al. [1997], Lee et al. [1998], Lee [2001] and Fiems et al. [2004].
Chen and Guérin [1991], Choi et al. [1997] and Lee et al. [1998] analyze an
input queueing ATM switch with cells of two traffic classes arriving to the
inlets of the switch. The cells arrive at the inlets according to a Bernoulli pro-
cess and are all of the same length. Because of the head-of-the-line blocking
of the input queues, the service times of cells are not deterministic but are -
approximatively - modeled by a geometric distribution. Fiems et al. [2004]
describe an analysis of a queue with service interruptions. The service inter-
ruptions are of renewal type. The results are used to analyze the low-priority
characteristics (such as the system contents and packet delay) in preemptive
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priority queues. Rubin and Tsai [1989] and Lee [2001] analyze a PR priority
queue with general service times. The numbers of per-slot arrivals are i.i.d.
from slot-to-slot. The mean delays of a general number of priority classes are
calculated using pgf’s in [Rubin and Tsai 1989]. Lee [2001] calculates the joint
pgf of the system contents of two priority classes, as well as the pgf’s of the
unfinished work and the delay of both classes. The queueing model and the
analysis method described in this chapter is closely related to the ones in this
paper. The main difference is that we allow correlation between the number
of per-slot arrivals in this chapter, while this is assumed not to be the case in
the model in [Lee 2001].

Takahashi and Hashida [1991] and Walraevens et al. [2000a, 2001, 2002b,
2004b] study discrete-time PR priority queues with correlation between the num-
ber of per-slot arrivals of the different priority classes. The numbers of per-slot
arrivals are assumed to be i.i.d. in all these papers. Takahashi and Hashida
[1991] calculate the pgf of the delay of a general number of priority classes,
starting from the total unfinished work (without analyzing the system con-
tents). In [Walraevens et al. 2000a, 2001, 2002b, 2004b], the number of priority
classes is assumed to be equal to two. In these papers the joint pgf of the
system contents and the pgf’s of the packet delays of both classes are determ-
ined. In [Walraevens et al. 2000a, 2004b], the service times are assumed to
be geometrically distributed. This condition is first relaxed to general service
times for the high-priority service times in [Walraevens et al. 2001]. Finally,
in [Walraevens et al. 2002b], the service times of both classes are generally
distributed. Note that in the models of all these papers the distributions of the
service times of different classes may be different.

In this chapter, we describe the analysis of a PR priority queue with two pri-
ority classes as described in [Walraevens et al. 2000a, 2001, 2002b, 2004a,b].
First, we describe the analysis approach in section 4.1. The multivariate pgf
that is the starting-point of our further calculations is described in section 4.2.
The system contents, queue contents and unfinished work of both classes are
analyzed in section 4.3, 4.4 and 4.5 respectively. The packet delay and wait-
ing time are discussed in sections 4.6 and 4.7. In section 4.8, we briefly focus
on some relationships with results of the NP priority queue. Some numerical
examples are shown in section 4.9, before completing this chapter with some
concluding remarks in section 4.10.

4,1 Preliminaries

As described in section 3.1, the system contents at consecutive slot boundar-
ies of queues with generally distributed service times do not form a Markov
chain. Therefore, a Markov chain first has to be constructed.

The embedded Markov chain technique used in the previous chapter - defin-
ing specific slot boundaries so that the system contents at these slot bound-
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aries form a Markov chain - is more complicated for the PR priority queue.
This is caused by the fact that the service of low-priority packets can be inter-
rupted and later resumed. In the previous chapter for instance, we defined
the start-slots as the slots at the beginning of which a packet can enter the
server (if there are any packets). Because of the non-preemptive property, the
number of slots between a start-slot and the next start-slot was either one, the
length of a class-1 service time or the length of a class-2 service time. In the
PR priority case however, this is no longer true, since class-2 service times are
interrupted by newly arriving class-1 packets. It is furthermore complicated
to define other time epochs so that the system contents at these time epochs
form a Markov chain.

Therefore, we follow another approach in the case of queues with a pree-
mptive (resume) priority scheduling discipline. This is a technique that is
widely used in queueing theory. We construct a Markov chain using stochastic
variables at consecutive slot boundaries (we thus do not define specific slot
boundaries). When the system contents at consecutive slots do not form a
Markov chain, supplementary variables are defined in such a way that the sys-
tem contents together with these supplementary variables form a Markov
chain. This is called the supplementary variable technique (and is as one of the
first times used by Cox [1955]). In this chapter, we start with a relatively
simple model and extend the model and analysis in a few steps.

Firstly, we assume that the service times of both classes are (shifted) geomet-
rically distributed. The geometric distribution contains the memoryless prop-
erty. In this case the memoryless property means that when tagging a slot
wherein a service time is on-going the residual part of the service time from
that slot on is independent of the amount of service the packet has already re-
ceived. Or in other words, the probability that a packet that is served during a
slot will need at least another slot of service is equal to a constant parameter (3,
independent of the amount of service it has already received before that slot.
Therefore, the system contents at consecutive slot boundaries form a Markov
chain and no supplementary variables have to be defined. Note that we al-
low this parameter (3 to be different for class-1 and class-2 service times. This
model is analyzed in [Walraevens et al. 2000a, 2004b].

Secondly, we assume general service times for the class-1 packets, while keep-
ing the service times of the class-2 packets geometrically distributed. In this
case, the system contents at consecutive slot boundaries do no longer form a
Markov chain. We therefore define a supplementary variable, notably, the re-
maining number of slots that a class-1 packet in service needs before leaving
the system. This is called the residual service time of class-1. The system con-
tents of both classes and the residual service time of class-1 at the beginning
of consecutive slots form a Markov chain. Note, that since the class-2 service
times are geometrically distributed, the class-2 system contents is still enough
to describe the class-2 characteristics of the queue. This model is studied in
[Walraevens et al. 2001, 2004a].
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Finally, we relax the last limitation in our model and analyze the system con-
tents in the case of generally distributed service times for both classes. In this
case, we define a second supplementary variable - besides the residual service
time of class-1 - notably, the residual service time of class-2. This stochastic vari-
able is defined as the number of slots of service that the oldest class-2 packet
in the system needs to be completely served. The oldest class-j packet in the
system at a certain time instant is defined as the class-j packet that - from all
the packets present in the system at that time instant - arrived first. Note, that
the definition of the residual service time of class-2 is a bit different than for
the class-1 residual service time. This is because the oldest class-2 packet is
not necessarily in service - because of the possible presence of class-1 packets
in the system which are served with priority over the class-2 packets - as op-
posed to the oldest class-1 packet. The analysis described for this model is as
in [Walraevens et al. 2002b].

4.2 The supplementary variable technique

4.2.1 Geometrically distributed service times

First, we assume geometric service times for both classes. The pgf of the ser-
vice times of class-j packets is given by

S;(z) :7(1 - gj iz 4.1)

with j = 1, 2. Thus 3; denotes the probability that an on-going class-j service
time lasts at least another slot.
We denote the system contents of class-j packets at the beginning of slot k by
ujk (7 = 1, 2). Their joint pgf is given by

Ur(21,22) =E [zlu”“z;“] ) 4.2)

As already mentioned in section 4.1, the set {(u1x,u2x),k > 1} forms a

Markov chain, since the arrival process is i.i.d. and the service times are
geometrically distributed. The following system equations are established:

1. Ifuyp =ugp =0:
Uj k1 =0k, (4.3)

j = 1,2, ie, the only packets present in the system at the beginning of
slot k + 1 are the packets that arrived during slot k.
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2. If U g = O,UQJC > 0:

U1,k+1 =01,k (4.4)
v _ Jua gk +agk with probability g, (4.5)
2R ug g + agp — 1 with probability 1 — Gy, ’

i.e., the class-2 packet in service stays in the system (not necessarily in
the server) with probability 3; and leaves the system at the end of slot &
with probability 1 — 3,.

3. If Uy g > 0:
" Jugta with probability (3, (4.6)
LE+1 = Uik + a1,5 — 1 with probability 1 — 8, ’
U k+1 =U2k + A2k, 4.7)

i.e., the class-1 packet in service stays in the system with probability 5,
and leaves the system at the end of slot k£ with probability 1 — (;.

Using these system equations, we derive a relation between Uy (z1, z2) and
Uk+1(21, 2z2). We remind the reader that E[X{Y}] is short for E[X|Y|Prob[Y].
We proceed as follows, taking into account the statistical independence of the
random variables (ui i, u2 1) and (a1 k, a2 k)

Uit1(21, 22) 2B [z 25247 (4.8)
=E [zfl’kzgz’k {u1 =uop = 0}] 4.9)
+ 32E {z?l’kzgz’k+a2’k{u17k =0,ug) > O}}
(1= B)B [ 20 Yy o = 0,03, > 0}
+ (E [Z;Ll’k+a1"“z§2’k+a2’k {ur > 0}}
(1= BE [t gty s 0}
=A(z1,22)Prob [ug = ug, = 0] (4.10)

1- u
+ A(z1, 22) (ﬁz + 22ﬁ2) E [2y*"{u1,k = 0,uz > 0}]

1-— Wi e sk
+ A(z1, 22) (ﬁl + Z1ﬁ1> E [21 Fay {uy g > 0}]

AL 2) (L U0(0,0) 4 (1 — By + ) (U0, 22) — Us(0,0))

Z1%22
(4.11)
+ (1 — 81 + B121)22(Uk (21, 22) — Uk(0, 22))].
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We assume the system is stable and as a result Uy (21, 22) and Ug1(z1, 22) con-
verge both to a common steady-state value U(z1, 22). By taking the k£ — oo
limit of equation (4.11), we obtain:

Z1(1 — ﬂg)(ZQ — 1)U(0,0)
A(ZleQ) {+[(1 _ 62)21 — (1 — BI)ZQ + (62 — ﬁl)zlzg]U(O,Zz)}

22[(1 = B1A(21, 22))21 — (1 = B1) A(z1, 22)]

U(Zl, 22) =
4.12)

It now remains for us to determine the unknown function U(0, 25) and the
unknown parameter U(0, 0). This can be done in two steps. Firstly, we notice
that the joint pgf U(z1, 22) must be bounded for all values of z; and z; such
that |z1| < 1 and |22| < 1. In particular, this should be true for z; = Yi(z2) -
with

Yi(z) 2E1(Y1(2), 2) (4.13)

(1- B)AMI(2), 2)
T BAM(),2) @14

and E;(z1,22) £ Sj(A(21,22)) - and for |22| < 1 (see the appendix for more
details). The above implies that if we choose z; = Yi(z2) in equation (4.12),
with |z| < 1, the denominator of the right-hand side of this equation becomes
zero. The same must then be true for its numerator, yielding

_ U(0,0)Y1(22)(1 — B2)(22 — 1)
V0.2 =00~ 0 pi(a) ~ (e Wiz )

The following expression for U(zy, z2) is then derived from equation (4.12)
together with equation (4.15):

U(0,0)E1(z1,22)(z1 — Y1(22))
21 — Ey(21, 22)
(1-P5a)(22—1)
(1= B2)Y1(22)(22 = 1) = (1 = B1)z2(Yi(22) — 1)

U(Zl, ZQ) =

(4.16)

X

Finally, in order to find an expression for U(0,0), we put z; = z; = 1 and use
de I'Hopital’s rule in expression (4.16). Therefore, we will need to calculate
the value of Y{(1). By taking the derivative of both sides of the definition of
Y1(z) and by substituting z by 1, we obtain - Y7 (1) = 1 since we have already
proved in the previous chapter that Y7 (z) is a pgf -

Yi(1) = 1Aiﬂ;1 4.17)
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a 1,k=1
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Figure 4.1: Sample of the time-axis for general class-1 and geometric class-2 service
times

A2
=" 4.18
1—=0F1—M (218)
Using this expression, we obtain the expected result for U(0, 0):
U(0,0) =1- pr. (4.19)

Substituting expression (4.19) in expression (4.16) finally gives U(z1, z2) in
terms of the system’s parameters and the implicitly defined Y7 (z).

In the special case that 8; = 2 = 0, the service times are deterministically
equal to one slot. Substituting 5; = (2 = 0 indeed yields expression (2.13) for
U(z1, #2) in chapter 2.

4.2.2 Generally distributed class-1 service times, geometric-
ally distributed class-2 service times

In this subsection, we analyze the steady-state system contents in the case of
generally distributed class-1 service times and geometrically distributed (with
parameter (3,) class-2 service times. Since the service times of class-1 packets
are generally distributed, the set {(u1 x,u2,x), k > 1} does (generally) not form
a Markov chain. Therefore, we introduce a new stochastic variable r; j as
follows: ry j indicates the remaining number of slots needed to transmit the
class-1 packet in service at the beginning of slot &, if uy, > 0, and 1, =
0if u1, = 0. A sample of the time axis is given in Figure 4.1, in order to
demonstrate the relevant stochastic variables.
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With this definition, {(r1 x, w1k, u2,%), k > 1} is seen to constitute a Markovian
state description of the system at the beginning of slot k. Let s7 , indicate the
service time of the next class-1 packet to receive service at the beginning of
slot k. The following system equations are then established:

1. If ry ;, = 0 (and hence uy,, = 0):

(@)

(b)

If U2,k = 0:
uj7k+1 :ajﬁk (420)
_ 0 if alr = 0
Tl,k+1 - {ST,]C lf al,k > 07 (4:21)

(j = 1,2), ie., the only packets present in the system at the be-
ginning of slot k 4 1 are the packets that have arrived during the
previous slot. If there are new arrivals of class-1 packets during slot
k, the remaining number of slots needed to serve the packet in ser-
vice at the beginning of slot k£ + 1 is equal to this packet’s complete
service time; otherwise, a class-2 packet (if any) enters the server at
the beginning of slot k£ + 1.

If wg 1, > O:
U1,k+1 =01,k (4.22)
R v T
Lkl = {Sik g Ziz N 8_ (4.24)

Expression (4.23) expresses that the service of the class-2 packet in
service at the beginning of slot k is completed at the end of slot k
with probability 1 — 5, or that the packet stays in the system (not
necessarily the server) with probability ;. This last event com-
bined with a;; > 0 represents the case where the service of the
class-2 packet is interrupted by a newly arriving class-1 packet, due
to the preemptive service discipline.

2. If T,k = 1:

UL k+1 =U1,k — 1+ a1k (4.25)
U2 k+1 =U2 | 1+ A2k (4.26)

{0 ifulyk—l—kalyk:O
T,k+1 =

STk ifurp—14a1;>0. (4.27)

Since the class-1 packet in service at the beginning of slot k£ needs one
more slot of service (namely slot k), it leaves the system at the end of
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slot k. If there are class-1 packets present in the system at the end of slot
k, the service of a new class-1 packet is started.

3. If T,k > 1:

Uj ptr1 =Ujk + Gk (4.28)
T1k+1 =71,k — 1, (4.29)

for j = 1,2. The class-1 packet in service at the beginning of slot k stays

in the server at the beginning of slot k£ + 1. Its residual service time is
decreased by one.

We define Py (z1, 21, 22) as the joint pgf of the state vector (11 k, u1 k, U2 k):
Py(z1, 21, 22) =E [xgl'kzlul’kz;””“] ) (4.30)

Using the system equations, we derive a relation between Pj(.,.,.) and
Pri1(., ., .). We first define

Rp(z1,22) 2E [z?l”“ilz;“{rlyk = 1}} (4.31)

= Z ZProb[rl’k =1,uyp = myugp = nj2" 12, (4.32)

m=1n=0

For further use we also note that
Ry(0, z2) =E [zgz”“{rLk =up = 1}] ) (4.33)

Taking into account the statistical independence of the random variables
(71,5, U1k, u2 k) and (a1 x, az i) respectively, we find:
Pk+1(x1; 21, 22) :A(O, ZQ)Pk(O, O7 0) —+ (A(Zl, 2’2) — A(O, 22))51 (Il)Pk(O, 0, 0)
(4.34)
1 -0

Z2

A0, 2) (62 + ) (Pa(0,0,2) — P4(0,0,0))

+ (A(21, 22) — A(0, 22))S1(z1) (52 n 1- 52)

X (Pk(O, 0, 2’2) — Pk(O, 0, O)) + A(O, ZQ)Rk(O, 22)
+ A(Zl, 22)51 (ml)Rk(zl, ZQ) — A(O, 22)51 (.1‘1>Rk(0, 222)
A(Zl,ZQ)

+ T[Pk(xla 21, 22) — x121 Ry (21, 22) — Pi(0,0, 22)].
1
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We assume that the system is stable and as a result Py (x1, 21, 22) (Ri(21, 22)
respectively) and Pyy1(x1, 21, 22) (Ri+1(21, 22) respectively) converge both to
a common steady-state value P(x1, 21, z2) (R(z1, 22) respectively). By taking
the £ — oo limit of expression (4.34), we obtain:

1
22(1'1 - A(Zl, 2’2))

[(1 = B2)x1(22 — 1){A(0, 22)(1 — Si (1))
(4.35)

P(x1,21,22) =

+ A(z1,22)S1(x1)}P(0,0,0)

+ 21 A(0, 29)(1 — S1(x1))(1 — B2 + B222) P(0,0, z3)
+ A(z1, 22) (151 (21) (1 — B + Baz2) — 22) P(0,0, 22)
+ x122A4(0, 29)(1 — S1(x1))R(0, 22)

+ x129A(21,22)(S1(x1) — 21)R(21, 22)]-

It now remains for us to determine the unknown functions P(0, 0, z3), R(0, z2)
and R(z1, z2) and the unknown parameter P(0, 0, 0) from equation (4.35). This
can be done in the following steps. Firstly, we observe that P(z1,0,22) =
P(0,0, z2) for all x; and z3, due to the fact that r1 ,, = 0 iff uy ;, = 0. Substitut-
ing z; by 0 in equation (4.35) and using this property, we obtain:

[22 — A(O, 22)(1 — ﬁg + ﬁQZQ)]P(O, 0, ZQ) }
_(1 - 62)(32 - 1)A(07 Z2)P(070’ 0)

ZQA(O, 22)

R(0, z) = { (4.36)

This expression can be used to eliminate R(0, z2) in expression (4.35).

Next, we notice that the function P(z1, 21, 22) must be bound for all values of
x1 and z; such that |z1] < 1 and |z;| < 1 (j = 1,2) since P(x1, 21, 22) is a pgf.
In particular, this should be true for 21 = A(z1, z2) and |z;| < 1 (j = 1, 2), since
|A(z1, 22)| < 1for all such z; (A(z1, 22) is a pgf). The above implies that if we
choose z1 = A(z1, 22) in equation (4.35), where |z;| < 1, the denominator of
the right-hand side of this equation vanishes. The same must then be true for
its numerator, which yields the following relation for R(z1, z2):

A(Zl, Zg)(l — ﬁg)(ZQ — 1)P(0,0, 0)
£y (Zh 22) {—I—[A(Zl, ZQ)(l — ﬁg + /6222) — ZQ]P(O, 0, 2’2) }

R(z1,20) = 29 A(21,22) (21 — Er (21, 22)) 7

(4.37)

where we have used equation (4.36) to eliminate R(0, z3).

Next, we also notice that the partial pgf R(z1, z2) must be bound for all values
of z; such that |z;| < 1 (j = 1,2). In particular, this should be true for z; =
Y1 (z2), with - as before -

Yl(z) £ El(Yl(Z)vz)7 (438)
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and |z2| < 1. If we put 21 = Y1(22) in equation (4.37), the denominator of the
right-hand side of this equation equals zero. The same must then be true for
its numerator, yielding

A(Yi(22), 22)(1 — B2) (22 — 1)
2 — A(Y1(22),22)(1 — B2 + Paz2)

P(0,0,22) = P(0,0,0) (4.39)

Using this equation and equations (4.36)-(4.37) in equation (4.35), the follow-
ing expression for P(x1, 21, 22) is derived:

P(0,0,0)(1 — B2)(22 — 1)
23 — A(Y1(22), 22)(1 — B2 + B222)
_a:lzl(A(Yl(zQ), 29) — A(z1,29))(S1(x1) — E1(21, 22))
(x1 — A(21,22)) (21 — E1(21, 22))

P(xl,zl,ZQ) = A(K(ZQ)’ZQ) (440)

Finally, in order to find an expression for P(0,0,0), we put z; = z1 = 2o = 1
and use de I'Hoépital’s rule in equation (4.40). Using

A
V() = < i“pll , (4.41)

we find the expected result

P(0,0,0) =1 — pr. (4.42)

If we assume geometric class-1 service times with parameter 51, P(1, 21, 22)
equals expression (4.16) of U(z1, z2) in the previous model, as expected.

4.2.3 Generally distributed service times

Finally, we analyze the system contents in case of generally distributed ser-
vice times for both classes (which can be different for the two classes). The set
{(r1,6,u1,k, u2,k), k > 1}, as defined in the previous subsection, does no longer
form a Markov chain, since the class-2 service times are also generally dis-
tributed in this subsection. Therefore, we introduce a new series of stochastic
variables r3 i, as follows: rs j, indicates the remaining number of slots service
time of the oldest class-2 packet in the system at the beginning of slot %, if
Uz > 0,and ro , = 0if ug ), = 0. A sample of the time axis is given in Figure
4.2 in order to demonstrate the relevant stochastic variables.

With this definition, {(r1x,u1k, 72k u2k),k > 1} is seen to constitute a
Markovian state description of the system at the beginning of slot k. Let s,
(j = 1,2) indicate the service time of the next class-j packet to receive service
at the beginning of slot k. The following system equations are established:
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a 1,k=1
a2,k
/service class-1\
} } } } } } } } } } —>
< H——> <>
service class-2 remaining part
interrupted service class-2
Uq,k-270 Uq k2 ™1
up k-2>0 u2 k+2>0
F1,k-270 M1, k423
F2,k-2=3 F2,k+2=2

Figure 4.2: Sample of the time-axis for general class-1 and class-2 service times

1. If r ;, = 0 (and hence uy, , = 0):

Class-1 system equations:

UL, k41 =01,k (4.43)
_ 0 if ai k= 0
TLkt+1 = {Sik lf ai.k >0 (444)

The only class-1 packets present in the system at the beginning of slot
k + 1 are the packets that arrive during the previous slot. If there have
been new arrivals of class-1 packets during slot &, the remaining number
of slots needed to serve the first class-1 packet is that packet’s full service
time.

Class-2 system equations:

In order to give expressions for us 41 and rg 41, the value of 7y, is
important. Three situations are distinguished:

(a) If ro 1 = 0 (and hence uy j, = 0):

U2 k41 =02k (4.45)

0 if ag .k = 0
T k+1 = {SZk ifagy >0 (4.46)
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(b)

(©

i.e., when class-2 packets arrive during slot k, the remaining service
time of the oldest class-2 packet is this packet’s service time.

If T2,k = 1:

U k+1 =U2 | — 1+ a2, k; (4.47)

0 ifulk—l-l-ag’k:()
T2,k+1 = {s;k ifugp —1+asg >0 (4.48)
The class-2 packet in service at the beginning of slot k leaves the
system at the end of slot k. If there are more class-2 packets present
at the end of slot k, the remaining number of slots needed to serve
the oldest class-2 packet is that packet’s complete service time.

If ro > 1

U2 k41 =U2,k + G2,k (4.49)
T2,k+1 =72,k — 1, (450)

i.e., the class-2 packet in service at the beginning of slot k remains
in the system (not necessarily in the server - it only remains in the
server if there are no new class-1 arrivals). Its remaining service
time is decreased by one.

2. If T,k > 0:

Class-1 system equations:

(a)

(b)

Ifry =1

UL g1 =UL g — L+ ayk (4.51)

. 0 ifu17k—1+a17k20
T1k4+1 = {Sikk ifur g —1+tay,>0" (4.52)
The class-1 packet in service at the beginning of slot k, leaves the
system at the end of slot k. If any class-1 packets present, a new one
enters the server.

If ryp > 1

UL k41 =ULk T O1k (4.53)
T1 k41 =T1,k — 1, (4.54)

i.e., the class-1 packet in service at the beginning of slot k stays in
the server at the beginning of slot £ + 1. Its remaining service time
is decreased by one.
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Class-2 system equations:

(a) If 75 = 0 (and hence uy j, = 0):

U2 k41 =02,k (4.55)
- 0 if ag.k = 0
T2 k41 = {S;k ifagy >0 (4.56)

There were no class-2 packets in the system at the beginning of slot
k.

(b) If o), > O:

U k1 =Usk + A2 (4.57)
T2 k+1 =72,k- (458)
The difference with the previous situation is that there are class-

2 packets in the system at the beginning of slot k. The remaining
service time of the oldest class-2 packet stays the same.

We define Py (z1, 21, 2, 22) as the pgf of the state vector (71 k, w1k, 72k, U2 k):
Py(z1, 21,09, 22) 2 Bl 2y > 2570 (4.59)

Note that we use the same notation for the 4-dimensional pgf in this subsec-
tion, as we have used for the 3-dimensional pgf in the previous subsection.
This is done because they are both the pgf of the Markovian state vectors.
Since these are two different analyses, this does not give rise to any confusion.

Using the system equations (4.43)-(4.58), we constitute a relation between
Py(x1, 21, %2, 22) and Py11(x1, 21, T2, 22)- taking into account the statistical in-
dependence of the random variables (1 k, U1k, 72,5, U2.k), (a1, G2.k), STk and
s3 1, respectively - which is given by

Pyy1(21, 21, 22, 22) (4.60)
=[A(0,0) + (A(0, z2) — A(0,0))S2(22) + (A(21,0) — A(0,0))S1(21)
1 (A1, 22) — A(z1,0) — A(0, 22) + A(0,0))S) (1) ()] P (0,0,0,0)
1 A(0,0)Ra(0) + [A(0, 22) Raj(z2) — A(0,0)Rai(0)] Sala2)
+ (A(21,0) — A(0, ))Rz 1(0)S1(z1) + [(A (21’22) — A(0, z2)) R,k (22)
~ (A(21,0) — A(0,0))Ra(0)] S1 (1) S (x
n A0, 20) + (A(z 1,22) — A0, 22)) 51 (

— P4(0,0,0,0)] + [A(0,0) + (A(0, z2) — A(0,0))Sa(22)| R1,(0,0,0)
=+ [A(Zl, O)RL]C(Zl, 0, 0) — A(O, O)Rl,k(O, 0, 0)] S (ZL‘1)

y 22

)

) [Pk(o 0,22, 22) — 2222 R2 1 (22)
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+ [(A(z1, 22) — A(21,0))Ry,x(21,0,0) — (A(0, 22) — A(0,0))R1,£(0,0,0)]
x S1(z1)S2(22) + A(0, 22) [R1,5(0, 22, 22) — R1,(0,0,0)]

+ [A(z1, 22) (R1 5 (21, 22, 22) — R1k(21,0,0))

— A(0, 22) (R 1(0, w2, 22) — R1,1(0,0,0))]S1 (1)

n A(z1,0) + (A(z1, 22) — A(21,0)S2(x2)

z1
X [Py(1,21,0,0) — 2121 Ry (21,0,0) — Py (0,0,0,0)]
Az, z
+ % [(Pe(21, 21,22, 22) — P(x1,21,0,0)) — 2121 (Ry k (21, 2, 22)

- Rl,k(zla 0) 0)) - (Pk(0707.’1,‘27 22) - Pk:(070a Oa 0))]7

with the partial pgf’s Ry (21, T2, 22) and Ry x(22) defined as

Ry (21,2, 20) 2B {zfl’k_lx;’kzgz’k{m,k = 1}} (4.61)

RQJC(ZQ) éE {Z;LZ’kil{Tl,k = Uik = O,TQ,k = 1}} . (4.62)

We assume that the queueing system is stable and as a result Py (z1, 21, Z2, 22),
R k(z1,22, 20) and Ry i (z2) converge to the steady-state values:

P(x1, 21, T2, 22) éklim Py(x1, 21,22, 22) (4.63)
Rl(Z1,.Z‘2,Zg) éklim RLk;(Zl,.TQ,ZQ) (464)
Ry (22) éklim Ry 1(22), (4.65)

respectively. By taking the £ — oo limit in (4.60) we obtain

P(21, 21,72, 22) (4.66)
o 114(21’ o~ {[#1224(0,0)(1 = S1(a1))(1 — 55())

+ 21 A4(0, 22)(1 — S1(x1)) (2252 (22) — 1)

+ x9A(21,0) (2151 (x1) — 1)(1 — Sa(x2))

+ A(z, 22)(x151(x1)(x252(x2) — 1) — z2(92(z2) — 1))] P(0,0,0,0)

+ z122 [A(0,0)(1 — S1(21)) + A(21,0)S1(21)] (1 — S2(x2)) R2(0)

+ xl:r,g(A(O 22) A(0,0))(1 = S1(x1))(S2(x2) — 1)R1(0,0,0)

+ x9(A(21, 22) — A(21,0))(S2(z2) — 1) P(x1, 21,0, 0)

+ z129(A(21, 22) — A(21,0))(21 — S1(21))(1 — Sa(22))R1(21,0,0)
[ 1A4(0, 22)(1 — S1(x1)) + A(z1, 22) (2151 (1) — xg)]P(O, 0,2, 22)

+ x179 [A (0,22)(1 — S1(x1)) + A(z1, 22)51(351)} (So(x2) — 22)Ra(22)




136 Preemptive resume priority

=+ Il:L'QA(O, 22)(1 — Sl (1‘1))R1 (0, o, 2’2)
+ 2122A(21,22)(S1(21) — 21)R1(21, @2, 2’2)}

It now remains for us to determine the unknown functions P(x1, z1,0,0),
Rl(Zl, O, 0), P(O, 07 T2, 22), RQ(ZQ), Rl(O, T2, 22) and Rl(zl, T, 2’2) and the un-
known parameters P(0,0,0,0), R2(0) and R;(0,0,0). This is done in a few
steps.

We observe that, due to the fact that r; , = O iff u;;, = 0 (j = 1, 2 respectively),
the following equations hold:

P(x1,0,22,0) =P(0,0,0,0) (4.67)

R1(0,22,0) =R, (0,0,0), (4.68)

for all z; (j = 1,2). By putting z; = 0 (j = 1, 2) in (4.66) and using equations

(4.67) and (4.68), we obtain the following relation between P(0,0,0,0), R2(0)
and R;(0,0,0):

P(0,0,0,0) =A(0,0)[P(0,0,0,0) + Ry(0) + Ry (0,0,0)]. (4.69)

We furthermore observe that the following equations hold - again because
Tk = 0 iff Uj ke = 0-

P(z1,21,22,0) =P(z1,21,0,0) (4.70)
Rl(Zl, ZTo, 0) :Rl(Z1, 0, 0) (471)
P(.I‘170,.1‘2,2:2) :P(0,0,$2722>, (472)

forall z; and z; (j = 1, 2). Replacing z» (21 respectively) by 0 in equation (4.66)
and using the former equations and equation (4.69), we find the following
expressions for P(x1, 21,0,0) and P(0,0, z2, 22) respectively:

[.231(1 — Sl(ﬂfl)) + A(Zl, 0)(1‘151(371) — 1)]P(0, 0, 0,0) }
+.’171A(2:1, 0) [Sl ($1)R2(0) + (Sl (56'1) — 21>R1(2’1, 0, 0)]
Ty — A(Zlv 0)

P(z1,21,0,0) :{
4.73)

[372(1 — SQ(J?Q)) + A(O, 2’2)(.13252(33‘2) — 1)]P(O, 0,0, 0) }

+Z‘2A(O, ZQ)(SQ ($2) — l)Rl (0, O7 0)

+x2A(0, 22) [(S2(x2) — 22) Ra(22) + R1(0, 22, 22)]

P(0,0,22,2) = { xo — A(0, 22)

(4.74)

Substituting these two expressions in expression (4.66) allows us to eliminate
P(z1,2,0,0) and P(0,0, x2, z2) in this latter expression.
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Firstly, we determine all unknown functions in the right-hand side of expres-
sion (4.74) as a function of the - at this moment still unknown - constant
P(0,0,0,0). Therefore, we go back to expression (4.66). We notice that the
function P(z1, 21, 22, 22) must be bound for all values of z; and z; such that
|z;] < 1and |z;| < 1(j = 1,2) since P(z1, 21,2, 22) is a pgf. In particular,
this should be true for 1 = A(z1, 22), |z2| < L and |z;| < 1 (j = 1,2), since
|A(z1, 22)| < 1 for all such z2 and z;. The above implies that if we choose
x1 = A(z1, 22) in equation (4.66), where |z2| < 1 and |2;| < 1, the denominator
of the right-hand side of this equation vanishes. Of course, the same must
then be true for the numerator, which yields the following expression:

(S2(z2) — 1)R1(21,0,0) + Ry (21, x2, 22) (4.75)
1
_A(Zl, ZQ)(.’EQ - A(O, 22))(21 — El(Zl, Zz))
X {(A(Zl, ZQ) — A(O7 ZQ))El (2717 ZQ)SQ(.I‘Q)(.’I?Q — 1)P(0, 0, O7 0)
+ A(O, ZQ)(A(Zl, 2’2) - Ig)El(Zl, ZQ)(SQ(I’Q) - 1)R1 (0, 0, O)
+ J?g(A(Zl, ZQ) — A(O, ZQ))El(Z1, Zg)(SQ(J?Q) — ZQ)RQ(ZQ)

+ A(O, ZQ)(A(Zl, ZQ) — $2>E1(21, ZQ)Rl (0, ZTo, 22)}

Here we also substituted P(z1, 21,0,0) and P(0, 0, z2, 22) by their expressions
obtained in equations (4.73) and (4.74) respectively.

Next, we notice that (S3(z2) — 1)R1(21,0,0) + R1(z1, 22, 22) must be bound for
all values of 5 and z; such that |z2| < 1 and |z;| < 1 (j = 1,2). In particular,
this should be true for z; = Y7 (22), with

Yi(2) 2 Ei(Yi(2),2). (4.76)

The above implies that if we insert z; = Y3 (22) in equation (4.75), where | z3| <
1, the denominator of the right-hand side of this equation vanishes. The same
must then be true for its numerator, yielding

(SQ(.I‘Q) — 1)R1 (0, O7 0) + Rl (O, ZTo, 2:2) (477)
SQ(:EQ)(IQ — 1)P(0, 0, 0,0)

A(Y1(z2), 2z2) — A(0, z2) {+x2(52(x2) — 23)Ra(22) }

A(O, ZQ)(.’I?Q — A(Yl(ZQ), ZQ))

Next, we notice that (S2(z2) — 1)R1(0,0,0) + R1(0, z2, 22) must be bounded
for all values of z2 and z2 such that |z2| < 1 and |22| < 1. In particular,
this should be true for 2 = A(Y1(22), 22). The above implies that if we choose
xg = A(Y1(22), 22) in equation (4.77), the denominator of the right-hand side of
this equation vanishes. The same must then be true for its numerator, yielding
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the following expression for Ry (22):

P(Ovovov0)Y2(22)(A(Y1(22)7Z )_ 1)

o) = M) ) - D) @
with
Ya(2) £ Sa(A(Ya(2), 2)). (4.79)
Using equations (4.77) and (4.78) in equation (4.74), we find:
P(0,0, 22, 22) =P(0,0,0,0) (4.80)

(A(Yi(22), 22) — 1)(S2(22) — Ya(22))
(z2 — A(Yi(22), 22))(22 — Ya(22))

X 1+$222

It now remains for us to determine the unknown functions P(zx1, 21,0, 0),
R1(21,0,0) and the unknown parameters P(0,0,0,0), R2(0) and R;(0,0,0)
- we already have relation (4.69) between the latter three constants - in ex-
pression (4.66). Therefore, we return to expression (4.73). We notice that the
function P(z1,21,0,0) must be bound for all values of z; and z; such that
|z1] < 1and |z1]| < 1 since P(z1, 21, x2, 22) is a pgf. In particular, this should
be true for 1 = A(z1,0), |z1] < 1, since |A(z1,0)| < 1 for all such z, be-
cause A(z1, #z2) is a pgf. The above implies that if we choose z; = A(z1,0) in
equation (4.73), where |z;1| < 1, the denominator of the right-hand side of this
equation vanishes. Of course, the same must then be true for its numerator,
which yields the following relation for R (z1,0,0):

E1(21, 0)[(14(21, 0) - 1)P(0’ 07 07 0) + A(Zlv 0)R2(0)] )

Rl(«zl,oao) = A(zl,O)(Z1 — E1(2’1,0))

(4.81)

Finally, R3(0) is easily calculated by substituting z2 by 0 in expression (4.78)

1— A(Y1(0),0)

Ry(0) =P(0,0,0,0)— VAOKD

(4.82)

We find the following expression for P(xz1, 21,0,0) from equation (4.73) to-
gether with equations (4.81) and (4.82):

P(z1,21,0,0) =P(0,0,0,0) (4.83)

A(21,0) — A(Y1(0),0))(S1(21) — S1(A(21),0))

X |14+ xz121 A(Y1(0),0)(z1 — A(21,0))(21 — E1(21,0))

The following expression for P(x1, 21, Z2, 22) as function of the system para-
meters, the functions Y;(z) and P(0,0, 0, 0) is now derived by substituting all
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found unknown functions and constants in expression (4.66):

P(l’l,Zl,ZEQ,Zz) :P(0,0,0,0) 1+ (4:84:)

7121 (A(21,0) — A(Y1(0),0))(S1(w1) — E1(21,0)) (1 — Sa(x2))
A(Y1(0),0)(z1 — A(21,0))(21 — E1(21,0))
(A(21, 22) — A(Y1(22),22))(S1(71) — B (21, 22))
(x1 = A(21,22)) (21 — E1(21, 22)) (22 — Ya(22))
Ya(zo)(22 — Sa(22)) | (22— 1)(S2(22) — Ya(22))
X{ A(Yi(z2), 22) TR — A(Y1(22), 22) }
(A(Y1(22), 22) — 1)(S2(22) — Ya(22))
(22 — A(Y1(22), 22)) (22 — Ya(22)) |

+ 2121

+ 2229

Finally, in order to find an expression for P(0,0,0,0), we put 1 = 21 = x2 =
2y = 1 and use de I'Hopital’s rule in equation (4.84). Again the value of Y7 (1)

A
Y/ (1) :%7 (4.85)

is needed in this calculation. We obtain the expected result for the probability
of an empty system:

P(0,0,0,0) =1 — pr. (4.86)

Substituting this result in equation (4.84), we finally obtain a fully determined
- albeit an elaborate - expression for P(z1, 22, T2, 22).

If we assume geometric class-2 service times, P(z1, 21, 1, 22) equals expression
(4.40), as expected.

This concludes the calculation of the multivariate pgt’s for the three different
models, which are the starting-points for all further calculations. However,
since these calculations are fairly similar for these three models, we will in the
remainder of the analysis only concentrate on the most extensive model dis-
cussed in this subsection. From this point on, the service times of both classes
are thus assumed to be generally distributed and we start from expression
(4.84) of the multivariate pgf P(z1, 21, T2, 22). The calculation of some of the
performance measures for the other two models can be found in [Walraevens
et al. 2000a, 2004b] and [Walraevens et al. 2001, 2004a] respectively.
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4.3 System contents

In this section, we calculate marginal pgt’s, moments and tail probabilities of
the steady-state total, class-1 and class-2 system contents.

4.3.1 Calculation of the pgf P (z, z)

From expression (4.84) some useful joint pgf’s are calculated. First, we calcu-
late the joint steady-state pgf of the system contents of class-1 packets and the
residual service time of the class-1 packet in service:

Py(z, 2) éklirgoE [x71k 2 k] (4.87)
=P(z,z,1,1) (4.88)
(1= p) |1+ 22 (A1(2) = D(Si(x) = S1(Ai(2))) ] (4.89)

(z = A1(2)) (2 = S51(A1(2)))

This joint pgf is independent of class-2 characteristics, due to the preemptive
property of the priority scheduling discipline. From the point-of-view of class-
1 packets, it is as if they are the only packets in the system. This pgf is thus
the same as obtained in Bruneel [1993], wherein a single-class system with the
numbers of per-slot arrivals i.i.d. and with general service times is analyzed.

4.3.2 Calculation of the pgf P;(z, 2)

Secondly, we calculate the joint pgf of the system contents of class-2 packets
and the remaining service time of the oldest class-2 packet at the beginning of
arandom slot in steady-state (note that this packet is not necessarily in service)
from equation (4.84), yielding

Py(z,2) = hm E[ T2k 12,k (4.90)
:P(l, 1,x,2) (4.91)
—(1— ) Az(0)(1 — A(Y31(0),0)) — (A2(0) — A(Y31(0),0))S2(z)

- A(Y1(0),0)(1 = 4(0))
(4.92)
n Y (2)(A2(2) — A(Yi(2),2)) (2 — S2(2))
A(V1(2), 2)(1 = Az(2)) (2 — Ya(2))
(2= 1)(As(2) — AY1(2), 2)) (Sa(2) — Y2(2))
(1= A2(2))(z — A(Y1(2),2)) (= — Ya(2))
gy AG(2),2) — 1)(S2(2) — 52(AM1(2), 2))
(= A(Y1(2),2))(z — Ya(2))
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4.3.3 Calculation of the pgf U(zy, 2)

Thirdly - and most importantly - we calculate the joint pgf of the system con-
tents of class-1 and class-2 packets at the beginning of a random slot from
equation (4.84). It is given by:

Ul(z1,22) = klglgoE (27" 252" ] (4.93)
:P(l,Zhl,ZQ) (494)
. _ YQ(ZQ)(ZQ — ].)
=0 =r) =~y o =) (4.95)
w1+ 2 (A(z1,22) — A(Y1(22), 22)) (E1(21, 22) — 1)

A(Yl(ZQ), ZQ)(A(Zl, 2’2) — 1)(2’1 - E1 (2’1, 22))

4.3.4 The marginal pgf Ur(z)

From expression (4.95) of the two-dimensional pgf U(z1, z2), we derive an ex-
pression for the pgf of the total steady-state system contents at the beginning
of an arbitrary slot, yielding

Ur(z) £ lem E [2%7#] (4.96)
=U(z,z) (4.97)
_ Ya(z)(z — 1)
=(1- PT)W (4.98)

(Ar(2) = AM1(2), 2))(S1(A7(2)) = 1)

—1
AN () 9 (Are) - V(- S1(Ar ()]

Note that in the special case that the service times of both classes are equally
distributed, this expression does no longer equal the pgf of the system con-
tents in a single-class queue, as is the case for a queue with an NP priority
scheduling discipline. The reason is that, since the class-2 service times can
be interrupted, "partial” packets are stored in the queue, which are counted as
(integer) packets in the system contents.

4.3.5 The marginal pgf U;(z)

The pgf of the class-1 system contents is calculated from U (21, 22) as follows:

Ui(z) & klim E [2%1F] (4.99)
—U(z,1) (4.100)

_ S1(A1(2))(z — 1)
=l =)= =5 )

(4.101)
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Note that U, (z) is also obtained from P, (z, z) by substituting x by 1.

This expression is identical to the pgf of the system contents in a single-class
buffer with A;(z) the pgf of the number of per-slot arrivals and the pgf of
the service times equal to S;(z). Indeed - as already discussed - since the
priority scheduling discipline is preemptive, the class-1 system contents is not
influenced by arriving class-2 traffic.

4.3.6 The marginal pgf Us(z)

The pgf of the class-2 system contents is easily determined from U (z1, 22):

Us(z) = len;o E [z%2*] (4.102)
—U(1, ) (4.103)

Ya(2)(z = 1) A2(2)(A(Yi(2), 2) = 1)

2 —Ya(2) A(Yi(2),2)(As2(z) — 1) (4.104)

=(1-pr)

Alternatively, this expression is found by substituting x by 1 in Py(z, z).

4.3.7 Calculation of moments

From the pgf’s (4.98), (4.101) and (4.104), we calculate the moments of the
total, class-1 and class-2 system contents respectively. We give the expressions
of the means in this subsection.

The mean total system contents is given by

Elur] =Ur(1) (4.105)
_pr | mVarfar]  piAa(pe — pa)Varfar]  (u2 — pa)Varlas]
=2 o) T 21— (- ) —pry 1
)\1Vﬁl’[81](>\1(1 — pl) + )\2(1 — /1,2)\1)) )\%Vﬁl’[Sg]
2(1 = pr)(1 = p1) 2(1 = pr)(L = p1)
n p1a(pe — 1)
2(1-p1)

The mean class-1 system contents is found by taking the first derivative of
Ui (#) and substituting z by 1, yielding

E[u,] =U!(1) (4.107)
_p1 ., mVarfai] A?Var|[s1]
2 2(1=p1)  2(1—p1)

(4.108)
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Finally, the mean class-2 system contents is given by

E[us] =U5(1) (4.109)
P pioVarla ] paVarfaz] — p1Coviay, as)
2 T -pn-p) 20 -pr) T 1-pr (4.110)
)\Q(AlVar[sl] + AQV&I‘[SQD ,01)\2(,11/2 — ].)
2(1 = pr)(1 = p1) 2(1—p1)

Note that expressions (4.106), (4.108) and (4.110) satisfy E[ur] = E[u1] + E[us],
since Var[ar| =Var[a,]+Var[a1] + 2Cov|aq, az].

4.3.8 Calculation of tail probabilities

As in the previous chapters, approximate tail probabilities of the system con-
tents can be calculated, i.e., approximate expressions of Probju = n] and
Problu > L] (with u the class-1 or class-2 system contents respectively) are
found for large enough n and L.

The respective pgf’s of the system contents show a similar qualitative beha-
vior as the pgf’s of the system contents in the case of an NP priority schedul-
ing. More precisely, exactly the same singularities play a role in the pgf’s for
both types of priority. The difference in the behavior of the pgf’s near their
dominant singularity (and thus in the tail probabilities) are the scaling factors
K7, K; and the Kéz)’s (¢ = 1,2, 3) (see further). We will thus only show the
expressions of the tail probabilities in this subsection and refer to subsections
2.1.7 and 3.3.6 for (more) detailed derivations. We once again note however
that we assume that the pgf’s of the arrival and service processes (Ar(z), the
A;(z) and the S;(z)) and their derivatives go to infinity for z equal to their
radii of convergence or for z — oo.

Behavior of Y;(z) and Ys(2)

Y1(z) is implicitly defined as Y1(z) = S1(A(Y1(2),2)). This function has a
dominant branch-point singularity zp where Y’(z) becomes infinite, i.e.,

BN (Yi(25), 28) =1, (4.111)

with F1(21,2) 2 S1(A(z1, 22)) and EY (z,y) = 0Fn(21,22) ,§ =

8zj
Z1=T,22=Y
1,2. In the neighborhood of this (dominant) singularity, Y;(z) is approxim-
ately given by

Yi(2) ~Yi(z5) — Ky, (25 — 2)"/?, (4.112)
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with
Kyl _ 2A(2)(Y1(ZB)7ZB) . (4113)
AUV (Y1 (2), 2B) + ST (A(Y1(2B), 28)) (AV (Y1(2B), 2B))

zp is also a branch-point of Y5 (z), since
Y5(2) =S5(A(Y1(2), 2)) [A(Ya(2), 2)Y] (2) + AP (Vi (2), z)} . (4114)

Thus in the neighborhood of zp, we find

Ya(2) =Y2(2B) — Ky,V2B — 2, (4.115)
with
KYz :KYI Sé (A(Yl (ZB)v ZB))A(l) (YI(ZB)7 ZB)' (4116)

Class-1 system contents

The dominant singularity zy of Uy (%) is the dominant zero of z — S1(A1(2))
on the positive real axis (> 1) and this singularity is a single pole. We get

u1(n) £Prob[u; = n] (4.117)
~K 2t (4.118)
for large enough n and
Kl Z;]L*l

Prob[u; > L] = (4.119)

ZH — 1’
for large enough L. The constant K is given by

(= p1)(zug —1)zm
M = S A o) A ) -1 (£.120)

Class-2 system contents

Uz(#) has 2 important singularities, a single pole z;, and a branch point zp,
with z;, the dominant zero of z — Y3(2) and zp the branch-point of Y (z) (thus
E}l) (Y1(zg), zB) = 1). The tail behavior of the system contents of class-2 pack-
ets is thus characterized by z, or zp, depending on which is the dominant (i.e.,
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smallest) singularity. The following three different types of tail behavior may
occur:

uz(n) £Prob[ug = n] (4.121)

Kél)zznfl if z;, dominant

K§2)n71/2zl§n

ZBT

K®
; /Z_Bn—3/22§n if 5 dominant,
Y

The constants K. éi) are given by

Q

if z;, = zp dominant (4.122)

(1 — pr)zpAs(zr) (20 — )(A(Yi(zr), 20) — 1)
AYi(zr), 20)(A2(22) — 1) (Y3(22) — 1)
2 _ (1= pr)zpAs(zp)(zp — 1)(A(Ya(2B), 28) — 1)
A T R AN Ga), o) (Aa(e) - D) 4129
(1—pr)As(zB)(28 — 1)
A(Y1(2B),28)(A2(28) — 1)(2p — Ya(2B))
{KYIA(l)(Yl(ZB), ZB)YQ(ZB) + KYQZB(A(Yl(ZB), ZB) — 1) }
A(Y1(zB), 2B) zp — Ya(2p)) ’

KM = (4.123)

(4.125)

K =

Finally,

uz (L)
ze — 17

Problu, > L] = (4.126)

with z, the dominant singularity of Us(z).

4.4 Queue contents

The queue contents - defined as the number of packets in the queue (thus
without the one in the server) - are easily derived from the system contents.
We denote - as before - the queue contents of class-j at the beginning of the
k-th slot by ¢; 1 (j = 1,2). The following relations between g¢; ;, and u; j are
then found:

qe =[ure — 1] (4.127)

_ [u27k — 1]+ if Uk = 0
Q@ = {UM fury >0 (4.128)
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When a class-1 packet is in service during slot k - i.e. when u; ; > 0, the class-
1 queue contents is one less as the class-1 system contents, while the class-2
queue contents and class-2 system contents are equal. When a class-2 packet
is in service during slot k (u1 5 = 0,ug ; > 0), the class-1 system contents and
class-1 queue contents are zero and the class-2 queue contents is one less than
the class-2 system contents. This leads to the former equations. Taking the
(two-dimensional) z-transform of these equations and letting & — oo leads to

Qa1,22) = lim E[s{"* 2424 (4.129)
:U(O, 0) + U(Oa Z2> - U(07 0) + U(Zla Z2> - U(07 22) ] (4130)
22 21

Substituting equation (4.95) in this expression yields

z9 — 1

29 — Ya(22)

Ya(22)(A(21, 22) — A(Yi(22), 22)) (Er (21, 22) — 1)
A(Yi(z2), 22)(A(21, 22) — 1)(21 — E1(21, 22))

Q(z1,22) =(1 — pr) (4.131)

x [1+

4.5 Unfinished work

The joint pgf of the steady-state unfinished work of class-1 and class-2 at the
beginning of a random slot is easy to derive from the results in subsection
4.2.3. We denote the class-j unfinished work at the beginning of slot k by w; ,
j =1, 2. The following relations between wj , u;  and r; ;, are established

[ujp—1]7F
Wik =Tik+ Y Sim (4.132)
m=1
j = 1,2, with r;; the residual service time of the oldest class-j packet at
the beginning of slot &k (as defined in subsection 4.2.3) and the s;,, (m =
1,...,[ujx — 1]7) the service times of the class-j packets in the system at the

beginning of slot k (except for the oldest one). Expression (4.132) is explained
as follows: all class-j packets except for the oldest one add a complete service
time to the unfinished work, while the oldest class-j packet adds a residual
service time.

By z-transforming equations (4.132), the joint pgf of the class-1 and class-2
steady-state unfinished work at the beginning of a random slot is calculated as
a function of the four-dimensional pgf P(x1, 21, z2, z2) of the class-1 residual
service time and system contents and the class-2 residual service time and
system contents respectively. We find

W (21, 29) B[z 25 2] (4.133)
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P(Zl,Sl(Zl),0,0) —P(0,0,0,0)
51(21)
P(0,072’2,SQ(22)) - P(0,0,0,0)
+
SQ(ZQ)

{P(Z1,Sl(21),22,52(22)) — P(Zl,51(21),0,0)}
—P(0,0, 29, S2(22)) + P(0,0,0,0)

Sl (Zl)SQ (Zg)

=P(0,0,0,0) +

(4.134)

The first term gives the partial pgf of the unfinished work when the system
is empty, the second (third respectively) term is the partial pgf of the unfin-
ished work of both classes when a class-1 (class-2 respectively) packet is being
served while the class-2 (class-1 respectively) system contents are zero. Fi-
nally, the last term is the partial pgf of the unfinished work of both classes
when there is at least one class-1 and at least one class-2 packet in the system.

Substituting expression (4.84) in expression (4.134) yields

A(S1(21), 52(22)) (21 — A(Y1(S2(22)), S2(22))) (22 — 1)

(21 = A(S1(21), S2(22))) (22 — A(Y1(S2(22)), Sa(22))) -
(4.135)

Wi(z1,22) =(1 — pr)

4.6 Packet delay

In this section, we study the steady-state packet delay. We first calculate the
pgf of the packet delay of a class-1 packet, a class-2 packet and a random
packet respectively. These pgf’s are used to analyze the performance meas-
ures, such as the mean values and the tail probabilities.

4.6.1 Pgf D,(2) of the class-1 packet delay

We can analyze the packet delay of class-1 packets as if they are the only pack-
ets in the system. Indeed, because of the preemptive property of the studied
priority scheduling, the class-1 packet delay is independent of class-2 pack-
ets. The pgf of the class-1 packet delay is thus the same pgf as the pgf of the
delay in a single-class system with the numbers of arrivals i.i.d. from slot-to-
slot with a common pgf A;(z) and general service times with pgf S;(z). This
system is e.g. analyzed in Bruneel and Kim [1993] and the pgf of the packet
delay of class-1 packets is given by

_1-m S1(2)(z—=1) A1(S1(2)) -1
)\1 Zz — Al(Sl(Z)) 51(2) — 1 ’

D1 (2) (4.136)

with Ay and p; the class-1 arrival rate and class-1 arrival load respectively.
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Note that this expression equals the pgf of the class-1 packet delay in a queue
with an NP priority scheduling discipline and deterministic class-2 service times
of one slot. Indeed, substituting S2(z) by z (and 2 by 1) in expression (3.115)
yields expression (4.136). Although class-1 packets arriving during a class-2
service time have to wait (at least) until this class-2 service time is completed
in the NP case, this service time is completed at the end of the slot in case of
single-slot service times. Thus (one of) the arriving class-1 packet(s) enters the
server at the beginning of the next slot. The same happens in the preemptive
case (with general class-2 service times): class-1 packets arriving during a class-
2 service time interrupt this service and one of them enters the server at the
beginning of the next slot.

4.6.2 Pgf D,(z) of the class-2 packet delay

Because of the priority discipline, an expression for Dy(z) will be more in-
volved. We tag a class-2 packet that enters the buffer during slot k. We will -
as in the previous chapters - use the notion of sub-busy periods to analyze the
class-2 packet delay. Two different kinds of sub-busy periods are defined, not-
ably, sub-busy periods initiated by a class-1 packet and sub-busy periods initiated by
a class-2 packet. The first type is defined as follows: it starts at the beginning
of the slot the initiating class-1 packet enters the server and ends when the
number of class-1 packets in the system is one less - for the first time - as when
the initiating class-1 packet entered the server. A sub-busy period initiated by
a class-2 packet is defined as: it starts at the beginning of the slot the initiating
class-2 packet enters the server for the first time and it ends at the beginning
of which a new class-2 packet can enter the server (if there is any).

We denote the pgf of the length of a sub-busy period initiated by a class-j
packet by V;(z) (j = 1,2). Note that these pgf’s are identical in the case of a
PR and an NP priority scheduling discipline. For Vi(z), this is clear: during
a sub-busy period initiated by a class-1 packet only class-1 packets are served
and therefore the pgf Vi (z) is independent of the type of the priority schedul-
ing discipline. A sub-busy period initiated by a class-2 packet starts with the
service of a class-2 packet. The class-1 system contents is thus zero at that time
instant (in both the NP and the PR case). It ends when two conditions are sat-
istied for the first time: firstly, the initiating class-2 packet is fully transmitted
and secondly, the class-1 system contents is zero (again). Since both types of
priority scheduling are work-conserving, these two conditions are satisfied at
exactly the same time for both priority disciplines (if the same number of ar-
rivals occur during the sub-busy period for both scheduling types). Therefore
the lengths of the class-2 sub-busy periods are equally distributed for both
priority types. The V;(z) are thus identical as in the previous chapter, namely

Vi(z) =8;(zA1(Vi1(2))), (4.137)

with j = 1,2.
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We now perform a similar delay analysis as in the previous chapter (subsec-
tion 3.6.2). Let us again refer to the packets in the system at the end of slot
k, but that have to be served before the tagged packet as the “primary pack-
ets”. So, the tagged class-2 packet enters the server for the first time when
all primary packets and all class-1 packets that arrived after slot k (i.e., while the
tagged packet is waiting in the queue) are served. All primary class-j pack-
ets add a class-j sub-busy period to the delay of the tagged packet. Let v,
denote the length of the m-th class-j sub-busy period added to the tagged
packet’s delay by the m -th class-j packet already in the queue at the begin-

ning of slot & and let ol i m denote the length of the sub-busy period added to
the delay of the tagged class-2 packet by the m-th class-j packet that arrives
during slot i.

The delay of the tagged packet depends on the state of the system at the be-
ginning of its arrival slot (slot k by definition). This state is described by the
class-1 and class-2 system contents u; ; and ug ;, and the residual service times
of the oldest class-1 and class-2 packet 71, and ry ; respectively, which are
defined earlier in this chapter. The delay of the tagged packet is written as a
function of this state vector {r1 x, u1 x, 72k, U2 r } at the beginning of its arrival
slot as follows:

[rietres—1]1 ai,n; 2 fik
dy =[r1p + 7ok — 17 + STl 3 S0 @ass)
i=1 m=1 j=1m=1
2 [ujr—1]T sy—laiy,
DD IEREEES P
m= i=1 m=1
with f; %, j = 1,2 defined as the numbers of class-j packets arriving dur-
ing slot k, but that have to be served before the tagged packet. Slots n; (i =
1,...,[r1k + r2x — 1]7) are defined as the slots that the oldest class-1 and
class-2 packet receive service and the slots I; (i = 1,...,s3) are defined as

the slots during which the tagged packet receives service. Expression (4.138)
of the class-2 packet delay exists of the following parts: the remaining ser-
vice times of the oldest class-1 packet and class-2 packet at the beginning of
slot k (note that the remaining service time of the class-2 packet can exist of
non-consecutive slots, because of the preemptive property), and the sub-busy
periods added by the class-1 packets arriving during these remaining service
times. These contribute in the first 2 terms of (4.138). The class-j primary
packets that arrive during slot k£ and that have to be served before the tagged
packet add f; ;; class-j sub-busy periods to the delay. These contribute in the
third term. The sub-busy periods added by the class-1 and class-2 packets
already in the system (excluding the oldest ones) at the beginning of slot k con-
tribute in the fourth term. Finally the service time of the tagged class-2 packet
itself and the sub-busy periods of the class-1 packets arriving during this ser-
vice time (except for its last slot) contribute in the last two terms. Note that
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the class-1 packets arriving during the last slot of the tagged packet’s service
time do not influence its delay, since the tagged packet’s service is completed
at the end of that slot.

We distinguish four possibilities of the system state at the beginning of slot &:
ULk = U2k = 0; Ul g = 07U2,k > 0; ULk > O,Ug,k =0and ULk > O’UQ,k» > 0.
We thus find

Ds(z) =E [z {u1 p = ua i, = 0}] + E [z {u1 = 0,us > 0}] (4.139)
+E [zd2 {u1k >0,usp = 0}] +E [ZdQ{Ul,k > 0,ug > 0}} .

Using expression (4.138) of ds in this expression yields

DQ(Z) =E |: Z? 1Z¢fr{ kl §k21:| |: 924‘2@2—1 11{ 1)§l77)7:| {Prob[ul’k =ug) = O}
(4.140)
ro k1 aln;  (ng) ug =1 o 1
+E {32“ (1+Zm:1 ”l»m)Jer:l " lug g = 0,ug, > 0}

1k a1 n;  (ny) up,p—1 .
Z 1+ ¢ + ~ im
Z = Pmtt v m) Ymz1 Uim {Ul,k > 0,us ) = O}

{ 7"1 k+T2 r—1 1 + Zal g (”z ) }
“7 k 1] i
+Z] 1 Z J.m {uLk > O’UQ,k» > 0} }

The first factor equals the pgf of the total number of sub-busy periods added
to the tagged packet’s delay by the packets arriving in the same slot as the
tagged one, but that have to be served before it. The second factor equals the
pgf of the last part of the tagged packet’s delay, namely, starting at the slot the
tagged packet enters the server for the first time. Finally, the influence of the
state of the system at the beginning of slot k is given by the third factor. This
factor can thus be written in terms of the pgf P(z1, 21, z2, 22). We get

Dy(z) =FP(Vy(2), %(@)W{P(o, 0,0,0) (4.141)
P(0,0, 24, (Vi(2)), Va(2)) — P(0,0,0,0)
zA1(Vi(2))Va(2)
N P(zA1(Vi(2)), Vi(2),0,0) — P(0,0,0,0)
ZAl(Vl (z))Vl(z)

1
+ zA1(V1(2))Vi(2)Va(2) P4 (2) Ta(2), 24 (1 (=), Val2))

— P(0,0,2zA1(V1(2)), Va(z)) — P(zA1(Vi(2)), V1(%),0,0)
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P(0,0,0,0)] },

with F®) (21, 2,) 2 B[z 1k f2 **]. The random variables f; ; and f ; have the
following joint pgf (for more details see chapter 3):

A(Zl, 22) — Al(Zl)

PO =00

(4.142)

Substituting expressions (4.84) and (4.142) in expression (4.141) leads to the
following final expression of Ds(2):

1—pr Va(2)(zA1(Va(2)) = 1) A(VA(2), Va(2)) = A1(Vi(2))

D) = AR RE) 1a() D) 2Ai(Vi() — ATA (), V()

(4.143)

with V;(z) given by (4.137), j = 1, 2.

4.6.3 Pgf D(z) of the delay of a random packet

In this subsection, we tag a random (class-1 or class-2) packet. Since, the prob-
ability that the tagged packet is of class-j is equal to \; /Ap,

D(z) =Dy (2) 4 22

- oD () (4.144)

Substituting (4.136) and (4.143) in this expression yields

- Si(2)e—1) A1) -
Ar z—A1(51(2))  Si(z) —
1—pr Va(2) (41 (V1(2)) — ) A(V1(2), Va(2)) = A1(Vi(2))
Ar o Ai(Vi(2)(Va(z) = 1) 241 (Vi(2)) — A(Vi(2), Va(2))

D(z) = (4.145)

+

4.6.4 Calculation of moments

From the pgf’s D;(z), D2(z) and D(z), all moments of the delays of a class-
1, of a class-2 and of a random packet can be calculated. We show the mean
values in this subsection.

The mean class-1 delay is given by

Eld,] =D} (1) (4.146)
_ﬂ mVar[al] /\1Var[31]
2 20 (1—p1)  2(1—py)’

(4.147)
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with Var(a,] and Var[s,], the variance of the number of per-slot class-1 arrivals
and of the class-1 service times respectively.

Taking the first derivative of expression (4.143), the mean class-2 delay is
found to be

E[ds] =Ds(1) (4.148)
B2 u3Var|a] w2Varfaz]  p1Coviay, as]
=2 T o) T2l ) T N(-pr) P
/\1Va1'[81] + /\QVaI'[SQ] P1 (/.1/2 — 1)

2(1 = pr)(1 = p1) 2(1—p1)

Var[as] and Var([s,] are the variances of the number of per-slot class-2 arrivals
and of the class-2 service times respectively.

Finally, the mean delay of a random packet is given by

E[d] =D’ (1) (4.150)
A\ A2
_EE[dl] + EE[dg] (4.151)

_pr  mVarfar]  pda(pe —pa)Varfar] | (pe — p)Varlas]
207 2Ar(1—pr)  2Ar(1 = p7)(1 = p1) 2A7(1 = pr)

(4.152)
)\1Var[31]()\1(1 — p1) + )\2(1 — )\1/L2)) )\%V&I‘[SQ]
2Ar(1 = pr)(1 = p1) 207 (1 = pr)(1 = p1)
p1r2(p2 — 1)
2Ar(1—p1)

Little’s law can be seen to hold for the total system and for the classes separ-
ately (see expressions (4.106)-(4.152), (4.108)-(4.147) and (4.110)-(4.149)).

4.6.5 Calculation of tail probabilities

In this subsection, we retrieve expressions of tail probabilities of the delay of
a class-1, of a class-2 and a of a random packet respectively.

Class-1 packet delay

From expression (4.136), it is seen that the dominant pole 2 of D, () is a zero
of z — A;1(S1(2)) and that this pole has multiplicity one. We thus obtain

dy(n) £Prob[d; = n] (4.153)
~K 5" (4.154)
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for large enough n, and

(4.155)

with

o (1—p1)S1(2n) 2y — 1)(2 . (4.156)

Behavior of V7 (z) and V,(z)
Since the Vj(z) are equally defined as in chapter 3 and since we have studied

their behavior in that chapter (subsection 3.6.6), we will only summarize the
results in this chapter.

Both Vj(z) have the same branch-point singularity 25 with
2581 (25 A1(V1(28))) A1 (Vi(2B)) = 1. (4.157)

In the neighborhood of 25, V;(2) behaves as

Vi(2) ~Vj(zp) = Kv, Vs — 2 (4158)
with
- 24 (Vi(Zp))
v _\/2BA’1’<V1(2B>> ERY SRy N A EM Y I A E A
and

Ky, =Kv,85(¢pA1(Vi(28))) 25 A1 (Vi (2B)). (4.160)

Class-2 packet delay

Expression (4.143) of Dy(z) has two important singularities: the branch
point £p and a pole 2;, with multiplicity 1 which is a zero of zA;(Vi(z)) —
A(Vi(z), Va(z)). Both singularities can be dominant, depending on the input
parameters/pgf’s of the queueing system. The tail behavior of the class-2
packet delay is summarized as:

d(n) 2Prob[dy = n] (4.161)
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Kél)égn_l if Z;, dominant
IA(f)n*l/Qég"
vV 2371’

KB I3
_; Z_Bn*3/22§” if 25 dominant,
T

if 2;, = Zp dominant (4.162)

Q

and
Probldy > D) “jQ(_Di , (4.163)
with Z, the dominant singularity of D(z) and with
s (1 —pr)Va(20) (2 — 1)(2 A1 (Vi(22)) — 1) (4.164)
NaCl) 1) (dA(Vl(Z 2(2)) (zAZl(:fl(z))> A
KO~ (1—pr)(z2BA1(Vi(2B)) — 1) o (4.165)

A2(Va(2p) — 1)
o Va(Z)(25 — 1)
Ky, (AM(Vi(2p), Va(2B)) — 28A1(Vi(28))) + Kv, A® (Vi (2B), Va(2B))
2(3) _ L—pr
K= A A1 (Vi(2p))?(Va(2B) — 1)2(2A1(Vi(2B)) — A(Vi(Zp), Va(2B)))?
(4.166)

< { [41izp)) (K AV (Vi (25), Vazp)) + K, AP (Vi (25), Va(2p)) )

—Kle(Vl(ﬁB)aVz(éB))Ai(Vl(éB))} (25 = DA (Vi(Z8)) — 1)

x (Va(2p) — DAL(Vi(2B))Va(2B) + [Kv Va(28) A1 (Vi(28))(Va(2B) — 1)
A(V;

— Ky, A1(Vi(28))(28A1(V1(2B)) — 1)] (A(Vi(2B), V2(2B)) — 1(28)))
x (21 (Vi(28)) = A(Vi(25), Va(2))) }- (4.167)
Delay random packet

Finally, we calculate the tail probabilities of the delay of a random packet.
Its pgf D(z) is given by expression (4.145). The dominant singularity of this
function is 2, or 25, depending on which is smallest.

Note that - similar as in the previous chapter - the dominant singularity of
Dy (2) - 2y - is also a singularity of D(z), but that 2y is never dominant, since
Zg > Zp. This inequality is proved in section 3.6.6. From expression (4.144)
and the fact that the dominant singularities of D(z) and D(z) are equal, it is
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easily seen that

d(n) 2Probld = (4.168)
%ﬁdg(n), (4.169)
AT

for large enough n. Since da(n) is approximately calculated in expression
(4.162), d(n) is approximately determined from this expression.

Finally, the probability that the steady-state delay of a random packet is larger
than a bound D is given by

Prob[d > D] %i\—zProb[dg > DJ. (4.170)
T

4.7 Waiting time

The waiting time is defined as the number of slots a packet has to wait in
the queue before starting service. Thus specifically for the class-2 packets, the
waiting time - as defined in this dissertation - does not include the slots the
packets spend in the queue after the possible interruption.

The relation between the waiting time ¢; and the delay d; of a class-1 packet
is given by

dy =t; + s, (4.171)

with s} the service time of the packet. Since ¢; and s} are independent vari-
ables, we find

T(z) =5—= (4.172)

for the pgf of the steady-state class-1 waiting time. Substituting expression
(4.136) in this expression yields

:1—p1 z—1 A1(51(Z))—1

Ti(z) == 2 —A(S1(2)) Si(z)—1

(4.173)
for the pgf of the class-1 waiting time.
The relation between the waiting time ¢, and the delay d; of a class-2 packet

is given by

*
sa—lay,

dy =ty +s5+ > > vl (4.174)

i=1 m=1
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with s3 the service time of the packet and the vgl’n)l the sub-busy periods added
to the delay by the class-1 packets arriving during the service slots of the class-
2 packet (see also expression (4.138)). Since the first term of the right-hand side
of expression (4.174) is independent of the other two terms, we find

A1(Vi(2))

Ba(2) =D2(2) g A )

(4.175)

for the pgf of the class-2 waiting time. Substituting expression (4.143) in this
expression gives

L) L= Pr AVAG). Vo(2) — A(A(2) 2A1(A(2))
Y A(V() - ATAG)L V() Va() —1

(4.176)

Finally, the pgf of the steady-state waiting time of a random (class-1 or class-2)
packet is given by

A Ao
T(z ):ETl( HETQ( z) (4.177)
l=p 21 A(S (Z))

A z— A1(S1(2))  Si(z) — (4.178)

L—pr AVi(2), Va(2)) — Al( 1(2)) zA1(Vi(2)) -1
Ar 241 (Vi(2)) = A(Vi(2), Va(2)) - Va(z) =1

4.8 Identical variables in PR and NP priority queues

There exist some stochastic variables in case of an NP (studied in section 3)
and a PR (studied in this section) priority queue which are identically distrib-
uted.

4.8.1 Total unfinished work

The total unfinished work at the beginning of a random slot is independent
of the scheduling discipline, as long as this scheduling discipline is work-
conserving. Since both the NP and PR priority scheduling disciplines are
work-conserving disciplines, the total unfinished work is equally distributed
for both scheduling disciplines. Indeed, using expressions (3.103) and (4.135)
of the joint pgf of the unfinished work of both classes in case of the NP and PR
priority scheduling discipline respectively, we find

Wr(z) =W (z, 2) (4.179)

_ A(S1(2), 92(2))(z — 1)
=(1=pr)—— A(S1(2), Sa(2))

(4.180)
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for the pgf of the total unfinished work in both cases. More generally, this
expression equals the pgf of the (total) unfinished work in a queueing system
where the pgf of the work arriving in the system during a slot is equal to
A(51(2), 52(2)).

4.8.2 Class-2 waiting time

The class-2 waiting times in queues with the NP or the PR priority discip-
line are closely related to the total unfinished work in these queues. In this
subsection, we show an alternative calculation of the pgf T5(z) of the class-2
waiting time, based on expression (4.180) of Wr(z). Furthermore, we show
that the class-2 waiting times in a PR and an NP priority queue are equally
distributed.

Denoting ¢, as the waiting time of a (tagged) class-2 packet, wr the total un-
finished work at the beginning of this packet’s arrival slot and g7 the total
amount of work arriving in the same slot as and ultimately served before the
tagged packet, ¢, is given by

[wr—1]"+gr

ta= > o, (4.181)

i=1

where the v; are defined as the number of slots necessary to lower the work
ahead of the tagged class-2 packet by 1 (taking into account newly arriving
class-1 packets). All v; are i.i.d. and their common pgf is given by

V(2) =2A1(Vi(2)), (4.182)

since the v; consist of one slot augmented with the sub-busy periods added by
the class-1 arrivals during that slot. Recall that

Since wr and gr are independent stochastic variables, z-transforming (4.181)
yields

with Wr(z) and Gr(z) the pgf of wr and gr respectively. Wr(z) is given by
expression (4.180) and Gr(z) is given by

Gr(z) = FP(S5,(2), S2(2)), (4.185)
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with F(?)(z, 2,) given by expression (4.142). Substituting all this in expression
(4.184) finally yields expressions (3.166) and (4.176).

Concluding, (the pgf of) the class-2 waiting time is identical for both the NP
and PR priority scheduling discipline, because in both cases a class-2 packet
can only start service when all class-2 packets arrived before it and all class-
1 packets are serviced. Whether or not the class-1 packets interrupt class-2
service times is not important for the class-2 waiting time.

Finally, we note that the reasoning in this section is part of the approach fol-
lowed in [Takahashi and Hashida 1991] to analyze the packet delays in NP
and PR priority queues.

4.9 Numerical examples

In this section, we discuss some numerical examples. We have studied the
influence of different parameters on system contents and packet delay per-
formance measures in the case of an NP priority scheduling discipline quite
extensively (in the previous chapter). Furthermore, the general influence of
these parameters is often similar for the NP or the PR priority scheduling
disciplines. Therefore, we focus - in this section - mostly on the comparison
between the results for these priority disciplines.

4.9.1 Input processes

We first briefly summarize the most important characteristics of the arrival
and service processes we consider in this section.

The arrival process

The pgf of the number of per-slot class-1 and class-2 arrivals is given by

A (1-2q A2 ) ! 4.186
(21,22) = —ﬁ(—zl)—ﬁ( —z2) | . (4.186)

N is chosen 16 in the figures in this section.

The means of the total, class-1 and class-2 number of per-slot arrivals are given
by Ar, A1 and A, respectively.
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Figure 4.3: Mean class-1 system contents versus the total arrival rate for both the PR
(lower curves) as the NP priority (upper curves) scheduling disciplines (11 = p2 = 2)

The service process

The service times of both classes are assumed deterministic throughout this
section, i.e.,

Si(z) =21, (4.187)

j = 1,2, with p; the class-j service time.

4.9.2 Influence of the load

System contents

In Figures 4.3 and 4.4, we show the mean class-1 and class-2 system contents
respectively as functions of the total load, with 11 = ps = 2 and with a £
p1/pr -equalto 0.25,0.5 and 0.75. In both figures, we show the curves for both
the PR and the NP priority scheduling disciplines. The mean class-1 system
contents is larger in case of the NP priority scheduling. The opposite holds
for the mean class-2 system contents. It is seen that the difference between
both scheduling disciplines is (relatively) more significant for the mean class-
1 system contents, especially as pr — 1.
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Figure 4.4: Mean class-2 system contents versus the total arrival rate for both the PR
(upper curves) as the NP priority (lower curves) scheduling disciplines (u1 = p2 = 2)

Packet delay

Similar differences between the PR and the NP priority scheduling disciplines
can be seen for the mean packet delay. Figures 4.5 and 4.6 depict the mean
class-1 and class-2 packet delays respectively as functions of the total load,
with p1q7 = pe = 2 and with « equal to 0.25, 0.5 and 0.75. It can be seen that
the mean class-1 delay can be considerably higher in the NP priority case,
especially for low a. On the other hand for high «, the mean delay of the
class-2 packets is significantly higher in the case of the PR priority scheduling.
Indeed, for high o, a service time of a class-2 packet is interrupted with a large
probability when a PR priority scheduling is applied.

4.9.3 Influence of the service times
System contents

Figures 4.7 and 4.8 show the mean class-1 and class-2 system contents respect-
ively versus the (deterministic) lengths of the class-1 service times for both the
NP and PR priority scheduling disciplines. The total load is 0.75, the class-2
service times are deterministically equal to 20 and « = 0.25, 0.5 and 0.75 re-
spectively. From Figure 4.7 it is seen that the mean class-1 system contents
stay constant in the case of the PR priority scheduling (for this particular ar-
rival and service process). For low pi; the difference between the mean class-1
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Figure 4.5: Mean class-1 packet delay versus the total arrival rate for both the PR (lower
curves) as the NP priority (upper curves) scheduling disciplines (u1 = p2 = 2)

Pr

Figure 4.6: Mean class-2 packet delay versus the total arrival rate for both the PR
(upper curves) as the NP priority (lower curves) scheduling disciplines (11 = p2 = 2)
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Figure 4.7: Mean class-1 system contents versus the mean class-1 service time for both
the PR (lower curves) as the NP priority (upper curves) scheduling disciplines (pr =
0.75, 112 = 20)

system contents in the NP and PR case is rather large, while the difference is
negligible for high p;. Indeed, for low p; the mean class-1 system contents
in the NP priority queue is largely due to a residual class-2 service time. For
high 411, a residual service time of class-2 packets is negligible to the (residual)
service times of class-1 packets, and thus the curves for the NP and PR priority
queue lie near to each other for high p;. From Figure 4.8, we conclude that the
difference between the mean class-2 system contents in the case of the PR and
the NP priority queue is independent of 11; (when p; is kept constant).

In Figures 4.9 and 4.10, we show the mean class-1 and class-2 system contents
respectively as functions of the length of the class-2 service times, with pr =
0.75, p1 = 20 and o = 0.25, 0.5 and 0.75. It is seen that the mean class-1
contents are independent of the class-2 service times in case of the PR priority
scheduling, as expected. For pus = 1, the mean class-1 system contents in
the NP priority queue is equal to the mean class-1 system contents in the PR
priority queue - for single-slot class-2 service times, the class-1 system contents
are indeed independent of the class-2 characteristics - and the mean class-2
system contents increase with increasing po.

Packet delay

Figures 4.11 and 4.12 depict the mean class-1 and class-2 packet delays re-
spectively as functions of the mean class-1 service times for both the NP and
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Figure 4.8: Mean class-2 system contents versus the mean class-1 service time for both
the PR (upper curves) as the NP priority (lower curves) scheduling disciplines (pr =

0.75, 2 = 20)
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Figure 4.9: Mean class-1 system contents versus the mean class-2 service time for both
the PR (lower curves) as the NP priority (upper curves) scheduling disciplines (pr =

0.75, u1 = 20)



164 Preemptive resume priority

0 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Ho

Figure 4.10: Mean class-2 system contents versus the mean class-2 service time for
both the PR (upper curves) as the NP priority (lower curves) scheduling disciplines
(pr = 0.75, u1 = 20)

PR priority scheduling disciplines. The total load is 0.75, the class-2 service
times are equal to 20 and o = 0.25, 0.5 and 0.75 respectively. It is seen that the
difference between the mean class-1 packet delay for both scheduling discip-
lines is larger for smaller «.. For the class-2 packet delay, the difference is larger
for increasing «. It is also seen from both plots that the difference between the
mean packet delays in both priority queues is independent of p;. So for high
p1 (compared with 115), the difference between the mean delays of both types
in the PR and NP priority queue is (relatively) negligible, while this is not the
case for small p1.

In Figures 4.13 and 4.14, we show the mean class-1 and class-2 packet delays
respectively as functions of the mean class-2 service time, with pr = 0.75,
1 = 20 and a = 0.25, 0.5 and 0.75. Since the class-1 performance measures
are independent of the class-2 characteristics in the PR priority queue, the
mean class-1 packet delay is independent of the class-2 service times in case
of the PR priority scheduling. For pio = 1, the mean class-1 packet delay in
the NP priority queue is equal to the mean class-1 delay in the PR priority
queue and the mean class-2 packet delay increases with increasing ji5. The
mean class-2 delay is equal for both types of scheduling disciplines for po = 1.
For pg > 1, the class-2 packet delay is larger in the case of the PR priority
scheduling and the difference increases for increasing o and/or increasing
a. As can be seen from Figure 4.14, the difference can be substantial for long
class-2 service times and/or a high fraction of class-1 traffic.
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Figure 4.11: Mean class-1 packet delay versus the mean class-1 service time for both
the PR (lower curves) as the NP priority (upper curves) scheduling disciplines (pr =
0.75, 12 = 20)
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Figure 4.12: Mean class-2 packet delay versus the mean class-1 service time for both
the PR (upper curves) as the NP priority (lower curves) scheduling disciplines (o7 =
0.75, u2 = 20)
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Figure 4.13: Mean class-1 packet delay versus the mean class-2 service time for both
the PR (lower curves) as the NP priority (upper curves) scheduling disciplines (pr =
0.75, 11 = 20)
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Figure 4.14: Mean class-2 packet delay versus the mean class-2 service time for both
the PR (upper curves) as the NP priority (lower curves) scheduling disciplines (o7 =
0.75, u1 = 20)
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Figure 4.15: Tail probabilities of the class-1 packet delay for several class-2 loads
for both the PR (lower curve) and the NP (upper curves) priority disciplines (p1 =
O.4,/.L1 = M2 = 16)

4.9.4 Tail probabilities

In this subsection, we compare the tail behaviors of the class-1 and class-2
packet delays in case of the NP and the PR priority scheduling disciplines.
We have seen that all singularities of D;(z) and D(z) that play a role in the
tail behavior are equal in case of both scheduling types. This means that the
slopes of the tail probabilities will be equal for both types. In Figures 4.15 and
4.16, the tail probabilities of the class-1 and class-2 packet delay respectively
are shown in case of the NP and the PR priority scheduling disciplines. The
class-1 load equals 0.4 for all curves and the class-2 loads take the values 0.1
(non-geometric class-2 tail), approximately 0.21 (transition type class-2 tail)
and 0.4 (geometric class-2 tail). The service times are equal to 16. In Figure
4.15, the lower curve is the curve of the tail probabilities of the class-1 packet
delay in the PR priority queue. This packet delay is independent of the class-2
characteristics, and we thus get the same curve for the three chosen values
of pe. It is seen from these figures that the type of the priority scheduling
discipline plays a significant role in the tail probabilities of both the class-1
and class-2 packet delay.

4.10 Concluding remarks

In this chapter, we analyzed a PR priority queue. In the most general case -
general service times for both classes - the most important step was to find -
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Figure 4.16: Tail probabilities of the class-2 packet delay for several class-2 loads
for both the PR (upper curves) and the NP (lower curves) priority disciplines (p1 =
O.4,/.L1 = M2 = 16)

besides the system contents of both classes - supplementary variables in order
to construct a Markov chain. A four-dimensional pgf was calculated, which
was the starting-point to obtain all performance measures.

In the previous chapter, a Markov chain was introduced by studying the sys-
tem first at specific slot boundaries. The methods used to analyze (discrete-
time) queues with general service times - namely, the method discussed in
the previous chapter and the supplementary variable technique studied in
this chapter - both have their advantages and disadvantages. The advantage
of the analysis on specific slot boundaries is that the initial analysis is more
simple, i.e., finding the joint pgf of the steady-state system contents at the
specific slot boundaries is a quite straight-forward extension of the single-slot
analysis. The disadvantage of this method is the quite extensive calculations
which are necessary to calculate the pgf’s of the required stochastic variables
(system contents at random slot boundaries, unfinished work, packet delay,
...). A second disadvantage is the fact that it is sometimes hard to define spe-
cific slot boundaries so that the system contents at these slot boundaries form
a Markovian description of the system. This is especially hard when service
times can be interrupted (e.g., the scheduling discipline in this section). The
advantages of the supplementary variable technique is the ease of defining
supplementary variables to form a Markov chain and the relative ease to find
the interesting pgf’s once the pgf of the stochastic variables of the Markov
chain is calculated. The main disadvantage is the complexity in calculating
the multivariate pgf.

Comparing the performance measures - we concentrate on the (mean) packet
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delay - in the NP and PR priority queue, it is seen that the NP scheduling
discipline is more tolerant to the class-2 packet delay than the PR priority
scheduling discipline. However, the latter discipline gives rise to a lower
class-1 packet delay. The class-1 delay characteristics are completely inde-
pendent of the characteristics of the class-2 traffic in the PR priority queue.
This latter feature is not the case in the NP priority queue. Thus, purely
reasoning on the performance measures, the PR priority scheduling discip-
line seems to be a better candidate to be used than the NP priority scheduling
discipline since the primordial goal of a priority scheduling is to decrease the
high-priority - or class-1 - packet delay. However - in e.g. telecommunication
systems - the implementation of the PR priority discipline is more cumber-
some, since service of packets can be interrupted and have to be (partially)
restored in the queue. Even more importantly, the network will have to be
able to cope with partial packets floating through the network instead of com-
plete packets. This gives a more complicated header creation (each part of the
packet its own header?), packets that have to be re-assembled, .... Since the
NP priority scheduling discipline does not have these problems, this schedul-
ing is mostly used in telecommunication systems. However, we have shown
that the influence of the class-2 characteristics on the class-1 delay can be sig-
nificant for this scheduling discipline, especially for long class-2 service times.
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Chapter 5

Preemptive repeat priority

In this chapter, we describe the analysis of a preemptive repeat priority queue.
Packets of two classes (class-1 and class-2) arrive in a single-server queueing
system and the packets of class-1 are scheduled for service with priority over
class-2 packets. So, when the server becomes available, a class-1 packet is
served next (if any). If no class-1 packets are present, a class-2 packet starts
service (if any). The scheduling type is preemptive - as in the previous chapter -
which means that newly arriving class-1 packets interrupt an on-going service
of a class-2 packet. Or in other words, when class-1 packets arrive during a
service slot of a class-2 packet, one of the class-1 packet starts service the next
slot, and the interrupted class-2 packet is pushed back in the queue (unless it
was its last slot of service). In this chapter, we analyze the preemptive repeat
priority scheduling discipline, which means that an interrupted class-2 packet
has to repeat its complete service upon returning in the server (after all class-1
packets have left the system).

In the literature, two main types of preemptive repeat priority disciplines are
distinguished, namely, preemptive repeat different (PRD) - or preemptive re-
peat with resampling - and preemptive repeat identical (PRI) - or without res-
ampling. In the first type, an interrupted service time is resampled. Thus,
when an interrupted packet enters the server for a new service attempt, the
new service time is not necessarily the same as the old one, but it takes a new
sample (with the same distribution). In the PRI queue, the service time of a
particular class-2 packet is the same in all its service attempts. In this chapter,
we study both these priority types.

Although this type of priority scheduling is mentioned - not analyzed - in
earlier works like [White and Christie 1958, Miller 1960] and in e.g. the stand-
ard work of Kleinrock [1976], analyses of queues with this type of schedul-
ing discipline are more scarce than analyses considering NP and PR priority
queues. In our opinion, this is due to two (equally important) reasons. First,
this type of priority scheduling is less useful in practice. This is basically be-



172 Preemptive repeat priority

cause it is a non-work-conserving scheduling discipline, since an interrupted
packet has to be fully retransmitted. In other words, the load incorporates not
only the service time of class-2 packets, but also their possible repeats. The
load offered to the system is thus different from the arrival load. Therefore the
performance of this kind of queue is generally worse than the ones analyzed
in the two previous chapters. A second reason that this kind of queue is less
studied, is that its analysis is more complicated than that of the NP and PR
priority queues. We go in further detail about the nature of this complexity in
the first section of this chapter.

Continuous-time queues with a preemptive repeat priority discipline are ana-
lyzed by a.o. Sumita and Sheng [1988], Yoon and Un [1994] and Krinik et al.
[2002]. Sumita and Sheng [1988] analyze a PRD queue in the context of a data-
base system. The arrival process is assumed to be a Poisson process, while the
service times are generally distributed. In this database system it is assumed
that update requests and read queries are performed, where the former have
preemptive repeat priority over the latter. The reason why the low-priority
service times are resampled is because a file copy is likely to be stored on disk,
and processing of update requests may change the location of the read /write
heads, thus leading to a possibly resampled version of the service time of the
(interrupted) read query. The authors state that therefore resampling gives a
more accurate model than the model without resampling. The use of a PRI
priority scheduling discipline in CSMA-CD protocols for fiber optic bus net-
works is described in [Yoon and Un 1994]. A general finite number (M) of sta-
tions, each with an infinite queueing capacity, are connected by an optic bus
network. A station has priority of accessing the bus network over its down-
stream stations possibly overwriting information of the downstream stations.
Therefore, this is modeled by a PRI priority queue with M priority classes.
The arrival processes are modeled by a Poisson process. Finally, Krinik et al.
[2002] analyze the transient behavior of a PRI priority queue with a Poisson ar-
rival process and exponential service times using the randomization solution
form and lattice path combinatorics.

In [Mukherjee et al. 1995, Fiems et al. 2004, Fiems 2004], discrete-time queues
with a preemptive repeat priority scheduling discipline and without correla-
tion between the arrival processes of different classes are studied. Mukherjee et al.
[1995] study a preemptive repeat protocol for voice-data integration in a ring-
based LAN. A number of stations is connected by a ring network and each
station is either a voice or a data station. Voice stations can overwrite the
information of the data stations. The data stations can only put data on the
network when no information of the other stations is passing by. When the
packet reaches its destination an acknowledgement is immediately send to
the sender. The ring is unidirectional and the sender thus waits for a determ-
inistic amount of slots - the round-trip-time (RTT) - for the acknowledgement.
When no acknowledgement is received, the packet has to be retransmitted.
This system is thus modeled as a preemptive repeat priority queueing system
with deterministic service times (a number of slots so that the lengths of the
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service times equal the RTT) for the low-priority packets. Note that the data
and voice queues are all analyzed separately and that the queueing model for
the low-priority queue is given by a queueing model with service interruptions.
Fiems et al. [2004], Fiems [2004] analyze preemptive priority queues. This is
also done by means of queues with service interruptions. A technique - the
technique of the effective service times - is proposed for analyzing PR, PRD and
PRI queues commonly. The interruptions are incorporated in the service times
of the packets. These effective service times are obtained for the three prior-
ity disciplines separately, but once these are calculated a common queueing
analysis is performed.

Walraevens et al. [2003a] analyze a discrete-time two-class PRD queue with cor-
relation between the arrival processes of the two classes. The numbers of arrivals
are i.i.d. from slot-to-slot and the service times are generally distributed. Us-
ing pgt’s, the moments of the system contents and packet delay of both classes
are obtained.

In this chapter, we analyze the PRD and PRI priority queues. Firstly, we start
by focusing on the particular difficulties in their analyses in section 5.1. The
joint pgf of the numbers of per-slot class-1 and class-2 arrivals is still given by
A(z1, z2). The service times of class-j packets are assumed to be generally dis-
tributed with their pgf’s equal to S;(z), j = 1,2. In this chapter, we describe
the analysis of both the preemptive repeat priority queues jointly when pos-
sible and separately when necessary. The analysis of the PRD priority queue is
as described in [Walraevens et al. 2003a], while the analysis of the PRI priority
queue is not previously published. We make use of the supplementary vari-
able technique - as in the previous chapter - and describe the basic analysis
in chapter 5.2. The analysis of the system contents is described in section 5.3.
The joint pgf’s of queue contents and unfinished work of both classes are cal-
culated in sections 5.4 and 5.5 respectively. The analyses of the packet delays
and waiting times of both classes are described in sections 5.6 and 5.7 respect-
ively. We show some numerical examples in section 5.8, where we specifically
focus on the comparison of the class-2 performance measures of the PR, of the
PRD and of the PRI priority queues. Finally, some concluding remarks are
given in section 5.9.

5.1 Preliminaries

In this chapter, we use the supplementary variable technique to analyze the pree-
mptive repeat priority queues. For more details about this technique, we refer
to section 4.1.

As mentioned in the introductory paragraphs of this chapter, one of the reas-
ons that these types of priority queues - and especially the PRI priority queues
- have not been analyzed frequently in the literature is the fact that the ana-
lyses are (much) more complicated than the analyses of their NP and PR coun-
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terparts. This is mainly because one has to keep track of the complete service
time of the oldest class-2 packet in the queue in the PRI priority queue. (The
oldest class-j packet in the system at a certain time instant is defined as the
class-j packet that - of all the class-j packets present in the system at that time
instant - arrived first.) This is necessary, since this packet’s service can be
interrupted and afterwards its complete service has to be repeated. This com-
plexity does not occur for the PRD priority scheduling discipline, since the
service time is resampled after an interruption. Therefore, the latter schedul-
ing discipline can (also) be seen as a simplified version of the former - in terms
of the analysis. We will however show that the performance measures of both
queues can be considerably different.

Note that because of the more complex analysis the (finally) obtained pgf’s
will also be more complex. For example for the PRI priority queue an infin-
ite sum will still appear in the pgf’s of the class-2 output stochastic variables.
Although means and variances are still (relatively) easy to obtain from these
pgf’s, calculating higher moments is in practice much more difficult. Further-
more, which singularities of the pgf’s can be dominant and what the behavior
of these pgf’s is in the neighborhood of these singularities, is an open issue
at this time. It will thus take further study to calculate tail probabilities from
these pgf’s.

5.2 The supplementary variable technique

We denote the system contents of class-j packets at the beginning of slot k by
uj i (j = 1,2), as usual. The set {(u1,x,u2),k > 1} does not form a Markov-
chain in the case of general service times for both classes. Therefore, we intro-
duce some additional stochastic variables.

Firstly, we define 7, as follows: rj indicates the residual service time at the
beginning of slot %, i.e., the remaining number of slots needed to serve the
packet in service from the beginning of slot k on, if urj > 0, and r, = 0 if
ury = 0. ury £ u1 i + ug ,, denotes the total system contents at the beginning
of slot k. With this definition, {(ry, u1 k, u2.x),k > 1} forms a Markov-chain
of the PRD queue. A sample of the time-axis is shown in 5.1 to demonstrate
the PRD priority scheduling discipline and the stochastic variables. In this
example, a class-2 service time of 5 slots is preempted by a newly arriving
class-1 packet and it is repeated with a new sample of 3 slots after this class-1
packet’s service time.

However, in the case of the PRI queue, this set of stochastic variables still does
not form a Markov-chain, since an interrupted class-2 service time is not res-
ampled and thus the (complete) service time has to be kept track of. Therefore,
we introduce an additional stochastic variable ¢; ;, for the PRI Markov-chain,
as follows: 3 , indicates the complete service time of the oldest class-2 packet
at the beginning of slot k, if up, > 0, and t2 = 0 if us, = 0. With this
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a 1 ,k=1
a2k
service class-1
< >
+ + + + >
EH—H—H—H——D> >
service class-2 resampled
interrupted service class-2

Ug k-2=0 Us 2 =1
uz k-2>0 uz k+2>0
k2 =3 a2 =3

Figure 5.1: Sample of the time-axis in case of the PRD priority queue

a 1 ,k=1
a2k
service class-1
pd N
~ 7
o + >
CH—H—H—H—D> < >
service class-2 repeated
interrupted service class-2
Uq k-2 =0 Uq 2 =1
uz k-2>0 uz k+2>0
k2 =9 a2 =3
t2,k275 t2k-2=°

Figure 5.2: Sample of the time-axis in case of the PRI priority queue

definition, {(rx, u1 k,t2k,u2%),k > 1} forms a Markov-chain of the PRI pri-
ority system. A sample of the time-axis is shown in 5.2 to demonstrate the
PRI priority scheduling discipline and the stochastic variables involved. In
this example, a class-2 service time of 5 slots is preempted by a newly arriving
class-1 packet and it is identically repeated after this class-1 packet’s service
time.

We first calculate the joint pgf of the steady-state version of {ry,us r,uz,}
in the PRD case and calculate the joint pgf of the steady-state version of
{ri,u1 i, ta,k, 2k} in the PRI priority queue next. For both models, STk
(j = 1,2) denotes the service time of the next class-j packet to receive service
after slot k.
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52.1 PRD
The following system equations are established:

1. If r, = 0 (and hence ur = 0):

Ul k+1 =0Q1,k (5~1)

U2 k+1 =02k (5.2)
0 if ap g = a2k = 0

Thtl = S;,k if aix = 0,@27]@ >0 . (5.3)

s?k ifa;r >0

The system was empty at the beginning of slot k. If no packets arrive
during slot k, the system stays empty. If no class-1 packets and at least
one class-2 packet arrives during slot k, a class-2 packet starts receiving
service at the beginning of slot k + 1. If at least one class-1 packet arrives
during slot k, a class-1 packet enters the server.

2. If?"k =1

(a) If uy = 0 (and thus ug ;, > 0):

UL,k4+1 =01,k (5.4)
U2 k1 =Uz g — 1+ ag g (5.5)
0 ifalyk =ugr—1l+axy=0
The1 =1 Sop ifarky =0,ug, —1+az, >0. (5.6)
STk ifa; >0

A class-2 packet left the system at the end of slot k. A new packet
(of class-1, if any, otherwise of class-2) enters the server at the be-
ginning of slot k+1 (if the system is non-empty at that time instant).

(b) Ifuyy > O:

Uy g1 =Urp — 1+ a1k (5.7)

U2 k41 =U2k + G2,k (5.8)
0 ifurp—1+aix=usr+asr=0

Thel =4 S5 ifuyp—14+air=0,u2p +agy >0. (5.9

sik fupp—14+a1, >0

A class-1 packet left the system at the end of slot k. A new packet
commences service at the beginning of slot k + 1.

3. If?"k > 1:
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(a) If uy r = 0 (and thus ug 1, > 0):

UL, k+1 =01,k (5.10)

U2 k41 =U2k + G2,k (5.11)
o kalifauﬁ:()

Tk41 = {S,{k ifay, >0 (5.12)

A class-2 packet was in service during slot k, but needs at least
one more slot to complete its service. It stays in the server when
no new class-1 packets arrive during slot k, otherwise its service is
preempted by one of the newly arriving class-1 packets.

(b) If uy g > O

U1, k+1 =U1,k + G1,k (5.13)
U2 k+1 =U2,k + G2,k (5.14)
Tp41 =g — L. (5.15)

A class-1 packet was in service during slot k, but needs at least
one more slot to complete its service. Its residual service time is
decreased by one.
We define
Py(z, 21, 20) = Bla" 21 25 >%], (5.16)

as the joint pgf of the state vector (1%, u1 x, us2,x). We also define the partial
pgf’s

Rix(21,22) =E [z?l’rlzzuz’k{rk =1,upp > 0}} (5.17)
Ry 1 (22) £E [zgz’k_l{rk =lu = O}} . (5.18)

Using the system equations, we constitute the following relation between
Pk(., . ) and Pk+1(., . )

Pyi1(z, 21, 29) =A(0,0)P;(0,0,0) + (A(0, z9) — A(0,0))S2(z) Px(0,0,0)
(5.19)
+ (A(21, 22) — A(0, 22))S1(2) P4 (0, 0,0) + A(0,0) Ra.1,(0)
+ [A(0, 22) Ra 1 (22) — A(0,0) Ra,1,(0)]S2(z)
+ (A(z1,22) — A(0, 22))S1(x) Ra 1 (22) + A(0,0) Ry £(0,0)
+ [A(0, 22) Ry £ (0, 22) — A(0,0) Ry 1(0,0)]S2(x)
+ [A(#1, 22) R1 (21, 22) — A(0, 22) R1 1(0, 22)]S1(2)
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A0,
+ ( ZQ) [Pk(xv 07 22) - xZ2R2,k(ZQ) - Pk(o, 0, 0)]

+ (A(Zl, ZQ) — A(O,ZQ))[PL]C(]., 0, Zz) — ZQRQJC(ZQ)

Az, z
— P(0,0,0)]S1(z) + %[Pk(% 21, %2)
—xz1Ry (21, 22) — Py(2,0, 22)].
We assume that the system is stable (we will comment on the stability con-
dition later) and as a result Py (x, 21, 22), R1,x(#1, 22) and Rz ;,(22) converge to

steady-state functions denoted by P(x, z1, 22), R1(#1, 22) and Ra(22) respect-
ively. By taking the £ — oo limit in expression (5.19), we obtain:

P(z,21,25) = {2A(0,0)(1 = 52(2))[P(0,0,0) + B1(0,0) + Rz (0)]

(5.20)

1
x — A(z1,22)

+ A(0, z5)(2S2(x) — 1)P(0,0,0)

+ 2 A(0, 22)(Sa2(x) — S1(x))R1(0, 22) + 2[A(0, 22)(S2(x) — 22)
(A(z1,22) — A(0, 22))S1(2)(1 — 22)]Ra(22)

(A(z1, z2) — A(0, 22))[xS1(x)P(1,0, 22) — P(x,0, 22)]

+ 2A(21, 20)(S1 () — 21)Ri (21, ZQ)}.

+
+

—_— o~

It now remains for us to determine the unknown functions P(z, 0, 22), R1 (21, 22)
and Rj(z2). This can be done in the following steps. Firstly, we observe that
P(z,0,0) = P(0,0,0), due to the fact that r;, = 0iff u; , = ug = 0. By putting
z; = 0(j = 1,2) in (5.20) and using this observation, we obtain:

P(0,0,0) =A(0,0) [P(0,0,0) + Ry(0,0) + Ry(0)] . (5.21)

Replacing z; by 0 in equation (5.20) and using equation (5.21), we find the
following expression for P(x,0, z2):

P(x,0,29) = {lz(1 = Sa(x)) + A(0, z2)(xS2(z) — 1)]P(0,0,0)
(5.22)

+ ZL’A(O, ZQ)SQ(.’E)Rl (0, 22) + .’EA(O, ZQ)(SQ(iE) — ZQ)RQ(ZQ)}.

x — A(0, z2)

We note that P(z,0, z3) is bound for all values of x and z3 such that |z| < 1
and |z2| < 1 since P(z, 21, 22) is a pgf. In particular, this should be true for = =
A(0, z2), |z2] < 1, since |A(0, z2)| < 1 for all such zo. If we choose z = A(0, 2z2)
in equation (5.22), with |z| < 1, the denominator in the right-hand side of this
equation equals zero. The above then implies that its numerator also equals
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zero, which yields the following expression:

EQ(O, ZQ)(]. - A(O, Zz))P(O, 07 0) + A(O, 22)(22 - EQ(O, ZQ))RQ(ZQ)
A(O,ZQ)EQ(O,ZQ) ’
(5.23)

R1(0,20) =

with Ej(Zl, 22) £ Sj (A(Zla 22))

Returning to expression (5.20), we notice that P(z, 21, z2) must be bound for
all values of = and z; such that |z| < 1 and |z;| < 1 (j = 1,2) since P(z, 21, 22)
is a pgf. In particular, this should be true for = A(z1, 22), |2;| <1 (j = 1,2),
since |A(z1, z2)| < 1 for all such z;. Substituting = by A(z1, z2) in equation
(5.20), where |z;| < 1, the denominator in the right-hand side of this equation
vanishes. The same must then be true for its numerator, which yields the
following expression:

+[(A(21, 22) — A(0, 22)) E2(0, 22) (22 — 1)
—A(O, ZQ)(A(Zl, 22) — 1)(2:2 — EQ(O, ZQ))]RQ(ZQ)
(A(O,ZQ) — 1)A(21,22)E2(0722)(21 —El(Zl,ZQ)) ’
(5.24)

(A(O, 2’2) - 1)(14(2’1, 22) - I)EQ(O, ZQ)P(O7O, 0)
Ei(z1,22)

31(21722) =

by substituting P(z,0, z2) and R;(0, z2) by their expressions (5.22) and (5.23)
respectively. We furthermore note that R; (21, z2) must be bound for all values
of z; such that |z;| < 1 (j = 1,2). In particular, this should be true for z; =
Yl (22) - with

Yl(z) = El(Yl(Z)7Z)7 (525)

-and |z2| < 1 (see the Appendix for more details). The above implies that if
we insert z; = Y3(22) in equation (5.24), where |22| < 1, the denominator in
the right-hand side of this equation vanishes. The same must then be true for
its numerator, yielding

(A(Yi(22), 22) — 1)Ya(22)

Ro(22) :P(O’O’O)A(Y1(Z2)a 22) (22 — Ya(22))’

(5.26)

with

(1 — A(0,2))A(Y1(2), 2)S2(A(0, 2))
(A(Y1(2), 2) = A(0,2))52(A(0, 2)) — A(0,2)(A(Y1(2), 2) = 1)

Ya(z) = (5.27)
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The following expression of P(x, z1, z2) is derived by substituting the equa-
tions (5.21)-(5.26) in expression (5.20):

P(x,21,22) = P(0,0,0){l (5.28)

(A(z1, 22) — A(Y1(22), 22))(S1(z) — E1 (21, 22))Ya(22) (22 — 1)
A(Y1(22), 22)(x — A(21, 22)) (21 — E1(21, 22)) (22 — Y2(22))

A(0, 22)(A(Y1(22), 22) — 1)(S2(x) —E2(0722))Y2(Z2)}
A(Y1(22), 22) E2(0, 22) (x — A(0, 22)) (22 — Ya(22)) [~

+ xz

+xz2

Finally, in order to find an expression for P(0,0,0), we putz = z; = 2z = lin
equation (5.28) and use de I'Hopital’s rule. We obtain

P(Ov 07 0) =1- PT.effs (529)
with
PT.eff =p1+ Aafizefs, (5.30)

and

A1(0)(1 — S5(4,(0)))
P2t = 5 A 0))(1 = A41(0)

(5.31)

So, pr.cfs is the effective load (including retransmissions of class-2 packets)
offered to the system. Using this result in equation (5.28), we finally obtain an
expression of P(z, z1, z2) in terms of the system parameters.

5.2.2 PRI

As already mentioned, we need an extra stochastic variable ¢, ;, - the complete
service time of the oldest class-2 packet - in order to analyze the PRI priority
queue.

The following system equations are established:
1. If r, = 0 (and hence ur ; = 0):

U1, k+1 =01k (532)
U2 k41 =02,k (5.33)

0 1fa1k—a27k—0
The1 =1 Sap ifar,y =0,a2, >0 (5.34)
81y ifai, >0
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. 0 if ag .k = 0
boet1 = {s;’k ifagy, >0 (5.35)

The system is empty at the beginning of slot k. If no packets arrive dur-
ing slot k, the system stays empty. If no class-1 packets and at least one
class-2 packet arrive during slot &, a class-2 packet starts receiving ser-
vice at the beginning of slot k + 1. If at least one class-1 packet arrives
during slot k, a class-1 packet enters the server. If class-2 packets arrive,
t2 k+1 equals the service time of one of these class-2 packets.

2. If?"k =1

(a) If uy r = 0 (and thus ug ;, > 0):

U1 k+1 =01,k (5.36)

U g1 =U2,k — 1+ ag (5.37)
0 ifajp=usp—1+asr=0

The1 =4 Sop ifar e =0,uz —1+agy >0 (5.38)

ST,I@ ifarr >0

{0 ifu27k_1+a27k:0

sy if g — 1+ as, >0 (5.39)

to k41 =

A class-2 packet is served during slot k and leaves the system at
the end of this slot. A new packet (of class-1, if any, otherwise of
class-2) enters the server at the beginning of slot £+ 1 (if the system
is non-empty at that time instant).

(b) If us ;, = 0 (and thus uy ; > 0):

UL k1 =UL g — 1L+ aip (5.40)
U2, k+1 =02,k (5.41)
0 iful,k—l—i—al,k =az =0
Th+l = S;,k if Uk — 1+ al g = 0, azp > 0 (5.42)
Sik ifurp—14+a1,>0
0 ifagr =0
togs1 = {Sé,k i az:: o (5.43)

A class-1 packet leaves the system at the end of slot k. A new packet
commences service at the beginning of slot k + 1.

(c) If uy g > 0,u9) > 0

Uy g1 =urg — 1+ ag (5.44)
U2 k41 =U2k + A2k (5.45)
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ok if Uy —l+a =0
Tkl = {S’{’k furp—14+a1, >0 (5.46)
to g1 =l2 k- (5.47)

The difference with the previous situation is that at least one class-2
packet is in the system at the beginning of slot k. The oldest class-2
packet - with service time equal to ¢, j, - starts service at the begin-
ning of the next slot if no class-1 packets are present in the system
at that time instant.

3. Ifrp, > 1:

(a) If uy = 0 (and thus ug j, > 0):

UL k41 =01k (5.48)

U2, k+1 =U2,k + A2k (5.49)
_ kalifCLl’k:O

Th+1 = {ST,k ifary, >0 (5.50)

to k4+1 =to k- (5.51)

A class-2 packet is in service during slot k, but needs at least one
more slot to complete its service. The class-2 packet stays in the
server when no new class-1 packets arrive during slot k, otherwise
its service is preempted by one of the newly arriving class-1 packets
and the class-2 packet is put back in the queue.

(b) If uz ;, = 0 (and thus uy j > 0):

UL k+1 =ULE T A1k (5.52)

U2 k+1 =02k (5.53)

Tky1 =Tk — 1 (5.54)
. 0 if a.k = 0

lok+1 = {S;,k ifasy >0 (5.55)

A class-1 packet is in service during slot k, but needs at least one
more slot to complete its service.

() Ifuyp > 0,uz2) > 0:

UL k41 =ULE + 01k (5.56)
U k41 =U2,k T A2k (5.57)
Thy1 =Tk — 1 (5.58)

to k+1 =t2 k- (5.59)
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The difference with the previous situation is that at least one class-2
packet was present in the system at the beginning of slot k.

We define

(1>

Pi(z, 21,92, 22) E[x”“zi“"‘”y;z’kz;m’k], (5.60)

as the joint pgf of the state vector (ry, uy i, 2k, u2,k). Further, we define the
partial pgf’s

R k(21,y2, 22) AE {zll kT ly;2 Faa =1,y k> O}} (5.61)

Ro (g2, 22) 2B [y 252 g = 1w = 0} (5.62)

Using the system equations, we constitute the following relation between
Py(w, 21,92, 22) and Prya (@, 21, Y2, 22):

Pry1(w,21,y2, 22) = [A(0,0) + (A(0, 22) — A(0,0))S2(zy2) (5.63)
+ (A(21,0) — A(0,0))S1(z) + (A(21, 22) — A(21,0) — A(0, 22)
+ A(0,0))S1(2)S2(y2)] P (0,0, 0,0) + A(0, 0) Ra,x (1, 0)
+ [A(0, 22) Ra (1, 22) — A(0,0)R2 1 (1,0)]S2(zy2)
+ (A(21,0) — A(0,0))S1(z) R2,1(1,0) + [(A(21, 22)
— A(0, 22)) Ro io(1, 22) — (A(21,0) — A(0,0)) Rz (1, 0)]S1 () S2(y2)
+ [A(0,0) + (A(0, 22) — A(0,0))S2(zy2)] R1,£(0,0,0)
+ [A(21,0) Ry 1 (21,0,0) — A(0,0) Ry (0,0,0)]S1(x) + [(A(z1, 22)
— A(21,0))Ry, k(zl,O 0) — (A(0, z2) — A(0,0)) Ry (0,0, 0)]S1(x)S2(y2)
+ A(0, 22)(R1,1(0, 2y2, 22) — R1,%(0,0,0)) + [A(21, 22) (R1,k(21, Y2, 22)
— Ry (21,0,0)) — A(0, 22)(R1,%(0, Y2, 22) — R1 £(0,0,0))]S1(x)
+ AQ, 22)[ Pi(2,0,y2, 22) — x22Ra i (y2, 22) — Pi(0,0,0,0)]
+ (A(z1, z9) — A(0, 22))S1(2)[P1k(1,0,y2, 22) — 22Ra 1 (Y2, 22)

_ Pk(o, O7 O, 0)] + A(Zh O) + (A(Zl, Zij) — 14(2,’17 O))SQ(y2)

X [Pg(x, 21,0,0) — x21R1 k(21,0,0) — Px(0,0,0,0)]
Az,
n (21, 22)

- Rl(Zl,0,0)) - (Pk(xa07y2722) - Pk(0,0,0,0))}

[(Pr(z, 21, Y2, 22) — Pr(®,21,0,0)) — x21 (R1k(21, Y2, 22)

We assume that the system is stable (we will comment on the stability con-
dition in subsection 5.2.3) and as a result Py(x, 21, y2, 22), R1,x(#1, Y2, 22) and
Ry 1 (y2, 22) converge to the steady-state functions P(z, z1, Y2, 22), R1(21, y2, 22)
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and R (ys, z2) respectively. By taking the k — oo limit in expression (5.63), we
obtain:

P, 21,92, 22) = {2400,0)(1 = Sa(ays) + $1(2)(Sa(y2) ~ 1)

(5.64)

1
x — A(z1, 29)

x (P(0,0,0,0) + R1(0,0,0) + R2(1,0))

+ [A(0, 22) (252 (2y2) — 1 + 251 (2) (1 — S2(y2)))

+ (A(z1,22) — A(21,0))(xS1(z) — 1)(S2(y2) — 1)]P(0,0,0, O)
+ xA(z1,0)51(x)(1 — Sa2(y2))R2(1,0) + 2 A(0, z2)(Sa2(zy2) —

+ 51(2)(1 — S2(y2)))R1(0,0,0) + x(A(21, 22) — A(21,0))

x (S1(z) — 21)(S2(y2) — 1)Ri(21,0,0) + (A(21, 22) — A(21,0))
X (Sa2(y2) — 1)P(x,21,0,0) + £ A(0, 22) Sa(zy2) Ra(1, 22)

+ x(A(z1, 22) — A(0, 22))S1(x)S2(y2) Ra(1, 22)

— 2A(0, 22) 51 () R1(0, y2, 22) — x22[A(0, 22)

+ (A(21, 22) = A(0, 22)) S1(@)| Ra(y2, 22) + #(A(21, 22)

— A(0,22))S1(x)P(1,0,y2,2z2) — (A(21, 22 — A(0, 22))

X P(x,0,y2,22) + £ A(0, 22) R1 (0, 2y2, 22)

+ xA(21, 22)(S1(x) — 21)R1(21, Yo, 22)}

In the remainder we determine the functions P(z,z1,0,0), P(z,0,ys,22),
R (21, Y2, 22) and Ry (ya, 22) and the unknown constants P(0, 0,0, 0), R1(0,0,0)
and R»(1,0). This can be done in a few steps. Firstly, we observe that
P(x,0,y2,0) = P(0,0,0,0) and R;(0,y2,0) = R1(0,0,0), due to the fact that
Tk = 0 iff Ul = U2k = 0 and t27k = 0iff U2 = 0. By putting Zj = 0 (] = 1, 2)
in expression (5.64) and using this observation, we obtain:

P(0,0,0,0) =A(0,0) [P(0,0,0,0) + Ry (0,0,0) + Ry(1,0)]. (5.65)

We furthermore observe that the following equations hold (because t2, = 0
iff ug 1, = 0):

P(‘Tazlay%o) :P(I,Zh0,0) (566)
R1 (Zl, Y2, 0) :R1 (Z1, 0, 0) (567)

Replacing z (z1 respectively) by 0 in equation (5.64) and using the former
equations and equation (5.65), we find the following expression for P(z, 21, 0, 0)
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(P(z,0,ys2, 22) respectively):

[(1 = Si(2)) + A(z1,0)(zS1(x) — 1)]P(0,0,0,0) }
+$A(Zl, O) [51 (J?)Rg(l, 0) + (Sl (J?) — Zl)Rl (Zl, 0, O)]

P(z,21,0,0) :{ x = A(21,0)

(5.68)
[x(l — So(zy2)) + A0, 22) (S2(xy2) — 1)]P(0, 0,0,0)
+$A(O, 2’2) [SQ(Z‘QQ)RQ(L ZQ) — ZQRQ(yQ, Zg)
+(Sg($6'y2) — 1)R1(0, 0, O) + Ry (0, Y9, 2’2)]
x — A0, z2)

P(x,0,ys,22) {
(5.69)

Substituting these expressions in (5.64) allows us to eliminate P(z, z1,0,0),
P(x,0,ys,22) and P(1,0, yo, 22).

We now first return to expression (5.64) and extract as much information as
possible from this expression. We notice that the function P(x, z1, y2, 22) must
be bound for all values of z, y, and z; such that |z| < 1, |y2| < 1 and |z;| < 1
(j = 1,2) since P(z,z1,y2,22) is a pgf. In particular, this should be true for
x = A(z1,22), |z] < 1, |y2| < land |z;| < 1(j = 1,2), since |[A(z1,22)| < 1
for |z;| < 1. The above implies that if we choose x = A(z1, 22) in equation
(5.64) the denominator of the right-hand side of this equation vanishes. The
same is then true for the numerator, which yields the following expression (by
also substituting P(z, z1,0,0) and P(x, 0, y2, 22) by their expressions obtained
in equations (5.68) and (5.69) respectively):

(S2(y2) — 1)R1(21,0,0) + R1(21,y2, 22) (5.70)
_ El(zhzz)
A(z1,22)(1 — A0, 22)) (21 — E1(21, 22))
x {A(0, 22)(1 — A(21, 22))[(1 — S2(y2)) R1(0,0,0) — R1(0, y2, 22)]
+ (A(z1, 22) — A(0, 22))[S2(y2) R2(1, 22) — 22R2(y2, 22)]}-

Next, we notice that (S2(y2) — 1)R1(21,0,0) + Ry (21, Y2, 22) must be bound for
all values of y, and z; such that |ys| < 1 and |z;| < 1 (j = 1,2). In particular,
this is true for z; = Y7 (22), with

Y1(Z) £ El(Yl(Z),Z) (571)
The above implies that if we insert z; = Y7 (22) in equation (5.70), where |2z2| <

1, the denominator of the right-hand side of this equation equals zero. The
same must then be true its numerator, yielding

(S2(y2) — 1)R1(0,0,0) + R1(0,y2, 22) (5.72)
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(A(Y1(22), 22) — A(0, 22))(S2(y2) Ra(1, 22) — 22 Ra(y2, 22))
A(O,ZQ)(l —A(Yl(ZQ),ZQ)) '

From this expression, no more information can be extracted. Therefore, we
return to expressions (5.68) and (5.69).

Firstly, we notice that expression (5.68) must be bound for all values of x
and z; such that |z| < 1 and |z1| < 1. In particular, this should be true for
x = A(z1,0). The above implies that if we choose © = A(z1,0) in equation
(5.68), where |z1| < 1, the denominator of the right-hand side of this equa-
tion vanishes. Of course, the same must then be true for its numerator, which
yields the following relation for R;(z1,0,0):

Ey(z1,0)[(A(z1,0) —1)P(0,0,0,0) + A(21,0)R2(1,0)]

R1(21,0,0) = A(21,0)(z1 — E1(21,0))

(5.73)

This expression must be bound for its argument z; within the complex unit
circle, the denominator of the right-hand side of this expression vanishes
when z; = Y7(0), since the denominator vanishes also for this value of z; -
since Y(0) = E1(Y(0),0) - yielding:

Rs(1,0) =P(0,0,0 O)W. (5.74)

We then determine the following expression for P(z, 21,0, 0) from equation
(5.68) together with equations (5.73) and (5.74):

P(z,2,0,0) =P(0,0,0,0) (5.75)

(A(21,0) = A(Y1(0),0)) (51 (2) = 51(A(21),0))

T e 3, (0), 0) (@ — A(21,0)) (21 = Ba (21,0))

Finally, we find the remaining unknown function R (y2, z2) (Which is the only
still unknown - except for P (0,0, 0, 0) - at this time). First, substituting expres-
sion (5.72) in expression (5.69) yields the following expression of P(z, 0, y2, 22):

(x — A(0,22))(1 — A(Y1(22), 22)) P(0,0,0,0)

—z(1 — A(0, 22))S2(xy2) (1 — A(Y1(22), 22))P(0,0,0,0)
+.’E(1 - A(O, Zz))A(Yl(Zz), ZQ)SQ(:E:[/Q)RQ(]., 22)
—222A(0, 22)(1 — A(Y1(22), 22)) R2(y2, 22)
—x22(A(Y1(22), 22) — A(0, 22) Ra(wy2, 22)

P(2,0,y2,22) = (z — A0, 22)) (1 — A(Y1(22), 22))

(5.76)

P(z,0,y2, z2) must be bound for all values of z, y2 and z5 such that |z| < 1,
ly2| < 1 and |z2] < 1. In particular, this should be true for = A(0, z2).
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Choosing z = A(0, z2) in equation (5.76), the denominator of the right-hand
side vanishes. The same must be true for the denominator, yielding:

XP(O 0,0, )+A(Y1( ) )Rg(l 22)]
+A(0 ZQ)ZQ(A 1(22) ) — 1)R2(y2, Z9

{( A(0, 22))52(A(0, 22)y2) [(A(Y1(22), 22) — 1)}
( )
22(A(Y1(22), 22) — A(0, 22))

Ry (A(0, 22)ya, 22) =
(.77)

This latter expression thus gives a functional equation of Rz (ys2, 22) (as a func-
tion of P(0,0,0,0)). Defining the following partial conditional pgf

Ry.i(22) £E [z§‘271|t2 =i{r=1u = 0}] , (5.78)
where 7, uj, to and us are the steady state versions of ry, uj i, t2r and ua g
respectively. Ra(y2, 22) is expressed in function of the Rj ;(22) as follows:
Rg(yg, 22) = ZPI‘Ob[tQ = i|’l“ = 17’11,1 = O]y;RQJ(ZQ) (579)
i=1
Note that the slots at the beginning of which = 1 and u; = 0 are the slots
of which at the end a class-2 packet leaves the system (and vice versa). Since

t2 equals the service time of the packet that leaves the system (the oldest one)
and since every packet leaves the system just once, we find

Prob[ty = ilr = 1,u; = 0] =s2(7), (5.80)

with s5(7) the pmf of the class-2 service times. Expression (5.79) thus becomes

2(y2, 22) i $2(1)ys Ra.i(22). (5.81)
i=1
Substituting this expression in expression (5.77) gives
(A (22), 22) — A0, 7)) S 52(0) (A0, 20)y) B (22) 582
i=1
A(0, 22) 252 A0, 22)y2)"
x [(A(Y1(22), 2 ) 1)P(0,0,0,0) + A(Y1(22), 22) R2(1, 22)]

+ A(O, ZQ)ZQ (A(Yl ,2’2 Z 52 y2R2 i ZQ)

i=1
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where we have also substituted S5(A(0, z2)y2) by its power series expression.
Since this equation has to hold for all y, (|y2| < 1), the coefficients of y} in both
sides of the expression have to be equal (and this for all ¢). This leads to

(1 (0.2 400,z { (112 2 PO 0. 0.0
2o[(A(Y1(22), 22) — A(0, 22)) A(0, 22)" — A(0, 22) (A(Y1(22), 22) — 1)]
(5.83)

Ryi(2z2) =

i > 1. Substituting this in (5.81) yields

B(yz, z2) (A(Yl(zz), 29) —

1
29 A(Y:(22), 22) P(0,0,0,0) + R2(1,22)> . (5.84)

Ry (y2 , 22) =
with

oo

a so(1)yH(1 — A(0,2))A(Y1(2), 2) A(0, 2)°
B2 22 G010, 2) - A A, 2~ AW, AT (3,7 1)
(5.85)

Substituting y2 by 1 in expression (5.84), gives an expression of R (1, 23) as a
function of P(0,0,0,0):

(A(Y1(22), 22) — 1)B(1, 22)
A(Y1(22), 22)(22 — B(1, 22))

Ry(1,2) =P(0,0,0,0) (5.86)

Substituting expressions (5.84) and (5.86) in expression (5.76) yields the fol-
lowing expression of P(z, 0, y2, 22) as a function of P(0,0,0,0):

P(x,0,y2, 22) (5.87)
A(Y1(22)7 22)(3(9@27 2’2) - Sz(xyz))
+A(0, 22) A(Y1(22), 22) (S2(zy2) — B(y2, 22))
+A(0, 22)(B(y2, 22) — B(xya, 22))

=P(0,0,0,0) |1+ 2 A(Y1(22), 22)(z — A(0, 22)) (22 — B(1, 22))

We find the following expression for P(z, 21, y2, 22) - since all unknown func-
tions and constants in expression (5.64) are basically found as a function of
P(0,0,0,0) -

P(x,21,y2,22) = P(0,0,0,0) |1 (5.88)
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(A(21,0) — A(¥1(0),0))(E1(21,0) — 51

A(Y1(0),0)(x — A(21,0)) (21 —

(A(z1, 22) — A(Y1(22), 22))(S1(2

A(Yi(22), 22)(x — A(21, 22)) (21 — En(2
X (22B(y2, 22) — S2(y2)B(1, 22))

{A(Y1(22)7 22)(B(zy2, 22) — S2(7y2)) }

))(S2(y2) — 1)

(v
T F1(21,0))
) —

Ey(21,22))
,22))(22 — B(1, 22))

+x21

+A(0, ZQ)A(Yl (2’2)7 ZQ)(SQ(SCyQ) - B(yg, 2’2))
+A(0, 22)(B(yz, 22) — B(xya, 22))
A(Yl(ZQ), 2’2)(.’13 — A(O, 22))(22 — B(l, ZQ))

Xrzo

Finally, in order to find an expression for P(0,0,0,0), we put 1 = 21 = x2 =
zo = 1 and use de I'Hopital’s rule in equation (5.88). We obtain

P(0,0,0,0) =1 — prery, (5.89)
with
PT.eff =P1+ Nafiz eff (5.90)

and

252(1/4:(0)) -1

H2.eff = 1/A1(0) — (5.91)

pr.eff denotes also in this model the effective load (including retransmissions
of class-2 packets) offered to the system. Using this result in equation (5.88),
we finally obtain P(z, z1, y2, 22).

5.2.3 Stability issues

We briefly touch upon stability issues of these priority queues. We notice that
P(0,0,0) = 0 and P(0,0,0,0) = O for prers = 1 in the PRD and PRI case
respectively. As a result the system becomes instable for pr.rs > 1. Note that
in the PRI case

H2eff = Ho- (5.92)

This is proved by writing expression (5.91) in terms of power series, yielding

Poeff = 82(@%, (5.93)

n=1
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and by noting that

(1/A:(0)" =1 (5.94)

>n,

1/4,(0)—1 —

for all n > 1, since A;(0) < 1. As a result the effective load is always larger
than the arrival load in a PRI priority queue. This is also intuitively clear, since
retransmissions increase the total (effective) load of a system. Note that this is
not necessarily the case for the PRD priority queue, since the resampling of a
service time can actually lead to a decrease of the (effective) load.

5.3 System contents

5.3.1 Calculation of the pgf U(z1, 22)

In this paragraph, we calculate the joint pgf of the system contents of class-
1 and class-2 packets. It is given by P(1,z1,22) in case of PRD and by
P(1,2,1,29) in the PRI case. Both lead to the following expression for
U(Zl, 22)2

Ul(z1,22) 2E [2]" 25?] (5.95)
i Ya(z2)(22 — 1)
_(1 pTﬁff) 29 7}/2(2:2)

(A(z1, 22) — A(Y1(22), 22)) (B (21, 22) — 1)
. {1 T A (22), 22) (Ao, 22) — 1)1 — E1<z1,zQ>>}

(5.96)

with Y5(z) given by

(1 — A0, 2))A(Yi(2), 2)52(A(0, 2))

Yo%) =AW 12) — A0, 2)52(A(0.2)) — A, @A), 2 1) )
in the PRD case and by
Ya(z) £B(1, 2) (5.98)
B > s9(1)(1 — A(0, 2))A(Y1(2), 2) A(0, 2)*
=2 A9 - A0 9)AD.2) - A0 HAm@ - &)
in the PRI case.

We give a stochastic interpretation of this function Y5(z) - which is a pgf -
further in this chapter.



5.3 System contents 191

Special case: geometric class-2 service times
In the special case of geometric class-2 service times, i.e.,

Ss(2) :7(1 = gzl’z (5.100)

expression (5.96) equals

(1—pr)(1—B2)(22 — 1)

zo — A(Y1(22), 22)(1 — B + [222)
(A(Y1(22), 22) — A(21, 22))(E1(21, 22) — 1)}
(A(z1,22) — 1) (21 — E1(21,22)) ’

U(21,22) =

|:A(Y1 (22), 22) (5.101)

-2

in the case of PRD. This is the same pgf for U(z1,22) as in chapter 4 for a
preemptive resume priority queue with the same arrival and service processes.
The difference between a PR and a PRD scheduling discipline is that from an
interrupted low-priority packet only the not-yet-served part has to be served
after the interruption in the PR priority queue, while in the PRD priority queue
an interrupted class-2 service has to be repeated with a new sample of the
class-2 service times. Since the geometric distribution is memoryless however,
a residual service time and a new sample of the complete service time have
the same (geometric) distribution, and thus the system contents in a buffer
with PR priority on the one hand and PRD priority on the other hand are
identically distributed. Note that the expression of U(z1, z2) in the PRI queue
is different, because in this case, a second attempt of a class-2 service time is
not resampled and as a result class-2 service times are no longer memoryless
after an interruption.

Special case: deterministic class-2 service times
In the special case of deterministic class-2 service times, i.e.,

Sa(z) =212, (5.102)
the expressions of Y3(z) in the PRD and PRI queue are equal:

B (1 - A(0,2))A(Y1(z), 2)A(0, z)+2
Yo%) = Wi (,2) — A0, 2) A0, )= — A0, ) (AT (7~ 1) o)

As a result the expressions of U(z1, z2) in both cases are also equal. Indeed,
when the class-2 service times are deterministic, resampling the class-2 ser-
vice times after an interruption has no effect since all ‘samples” have the same
length.
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5.3.2 Calculation of the pgf Ur(2)

From the two-dimensional pgf U(z1, z2), we derive the expression for the mar-
ginal pgf of the total system contents:

Ur(z) 2E [z1702] (5.104)
=U(z,z) (5.105)
=(1— pT,eff)% (5.106)

5.3.3 Calculation of the pgf U, (z)

Furthermore, the pgf of the steady-state class-1 system contents is calculated
from U(z1, 22):

Ui(2) £E [2*] (5.107)
—U(2,1) (5.108)
oSG
=l =)= =5 )

(5.109)

5.3.4 Calculation of the pgf Us(2)

Finally, the pgf of the steady-state class-2 system contents is obtained from
U(z1, 22) and we find

Us(2) £E [22] (5.110)
=U(1, 2) (5.111)
(1 s A2RAMIE).2) — 1) Va(2) (=~ )

P AN(2), 2)(Aa(2) — 1) 2 — Ya(2)

(5.112)

5.3.5 Calculation of moments

By taking the necessary derivatives of these (marginal) pgf’s, moments of the
total, of the class-1 and of the class-2 system contents are found. We show the
expressions of the mean values in this subsection.

The mean total system contents is found by taking the first derivative of (5.106)
and substituting z by 1:

Efur] =U4 (1) (5.113)
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_press . maVarlar]  pmida(pa.ers — pa)Varay]
2 2(1 = press) 2(1 = proefr)(1 = p1)
(H2,er5 — p1)Varlaz] n ArVar[si (A (1 = p1) + Aa(1 — paepr1))

(5.114)

+

2(1 = press) 2(1 = prefr)(1 = p1)
A3Var[sa]esr + p1A2(p2,erf — 1)
2(1 = presr)(1 —p1) 2(1 = p1)

with

_ (2) / _
Var[ssles =fizes s 2(1—p1)A (0,1){  83(A1(0) A1 (0)( A1(O))}

A2A41(0)(1 — A1(0)) S2(A1(0))(1 — S2(A41(0)))
(5.115)

+ p2efr — 11 ;

for the PRD case, and

Varlsaless =n,ers | 21— VAP {1—‘%(1/‘41(0))} (5.116)

A2A1(0)(1 — A1(0)) H2.ef f
2(S2(1/A1(0)2) — Sa(1/4,(0))?) ]

(1/A1(0) — 1)(S2(1/A1(0)) — 1) + berr —1

for the PRI priority queue.

The mean class-1 system contents is given by

E[u1] =U1(1) (5.117)
p1 mVar[ai] = A3Var[s]
== . 5.118
2 "o ) T 20— ) G118
And finally, the mean class-2 system contents is given by
Elus] =U5(1) (5.119)
7p2,eff ;ﬁ)\QVar[al] ugﬁffVar[ag] ,U,1COV[0,1, ag]
= - +
2 20 = presp)(X = p1) 201 = presys) L= prery
(5.120)

/\2(/\1Var[51] + /\QVaI‘[SQ]eff) plAQ(‘LL27eff — 1)
2(1 = presp)(X = p1) 2(1—-p1)

with Var[so]. s given by expressions (5.115) or (5.116) for the PRD or PRI pri-
ority queue respectively.
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It is easily verified that expressions (5.114), (5.118) and (5.120) satisfy the rela-
tion E[ur] =E[u1]+E[uz].

5.4 Queue contents

The queue contents are easily derived from the system contents. We denote - as
before - the queue contents of class-j at the beginning of the k-th slot by ¢,
(5 = 1,2). The following relation between ¢; ; and u; j - the class-j system
contents at the beginning of slot k - is then found:

q1,k :[ULk — 1]+ (5.121)
_ [u27k — 1]+ if U,k = 0
92k = {u27k if Uy g > 0 (5122)

These are the same expressions as given in the previous chapter (subsection
4.4). When class-1 packets are present in the system, one of them is in service.
A class-2 packet is in service when at least one class-2 packet is present and
no class-1 packets are present. This leads to the above relations.

Taking the z-transform of these relations, the following relationship between
Q(z1, 22) - the joint pgf of the steady-state queue contents of class-1 and class-2
at the beginning of a random slot - and U(z1, 22) is found

Q(z1,22) :klim E[2{"% 252%] (5.123)
:U(0,0) + U(O’Z2)Z_ U(0,0) + U(Zlaz2)z_ U(O,Zg) (5124)
2 1

Substituting expression (5.96) in this expression finally yields

zZ9 — 1
29 — Ya(22)
(A(z1,22) — A(Y1(22), 22))(E1(21, 22) — 1)Ya(22)
x {1 T AN (), 22) (A1, 22) — D1 — Br (o1, 2)) }

Q(z1,22) =(1 — priess) (5.125)

5.5 Unfinished work

The total unfinished work at the beginning of slot k, denoted by wr, is
defined as the number of slots it takes to serve all packets in the system at the
beginning of slot k£, when no new packets arrive from slot £ on. Furthermore,
the unfinished work of class-j (j = 1,2) at the beginning of slot k, denoted
by wj , is defined as the number of slots of the total unfinished work that are
effectively spent on serving class-j packets. The steady-state unfinished work
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of class-j at the beginning of a random slot is denoted by w;, j = 1, 2. We will
perform separate calculations of W (zy, z2) - the joint pgf of w; and w,, - for the
PRD and PRI priority queues.

PRD

W (z1, z2) is expressed as a function of P(z, z1, z2) as follows:

W (21, 29) £B[2]" 257] (5.126)
=P(0,0,0) + P(z,0 522,?2)2)_ P(0,0,0) (5.127)

n P(Zl, Sl(zl), SQ(ZQ)) — P(Zl, 0, SQ(ZQ))

S1(z1) '

The first term is the partial pgf when the system is empty at the beginning of
the randomly chosen slot. The second term is the partial pgf of the unfinished
work of both classes when a class-2 packet is in service at the beginning of
the slot. In that case, the remaining service time is part of the class-2 unfin-
ished work. All other class-2 packets in the queue add a class-2 service time
to the unfinished work of class-2. The third term is the partial pgf of the un-
finished work of both classes when a class-1 packet is in service. In this case,
the remaining service time is part of the class-1 unfinished work, and all class-
j packets in the queue add a class-j service time to the unfinished work of
class-j. Note that the oldest class-2 packet could have already attempted to
get served (but was interrupted). Since the priority discipline is of the PRD
type, this packet indeed also adds a random class-2 service time to the unfin-
ished work.

Substituting expression (5.28) in expression (5.127) gives

(A(S1(21), 52(22)) — (Y1(52(22)) S2(22)))

A(Y1(82(22)), S2(22)) (21 — A(S1(21), S2(22)))
(5.128)

W(Zl,ZQ) :(]_ — pT,eff){]- + 21

oo Ya(S2(22))(S2(22) — )JFZ A(0, Sa(22))Ya(S2(22))
Sa(z2) = Ya(Sa(z2)) <Y1<S2<z2>> Sa(22))

o (AY1(55(22)), Sa(22)) — 1)(S2(22) — 52(A(0, S2(22)))) }
S2(A(0,52(22))) (22 — A(0, S2(22))) (S2(22) — Y2(S2(22)))

PRI
In this case, W(z1, 22) is written as a function of P(z, z1, y2, 22) as follows:

W (z1,22) =E[2)" 252 {w1 = we = 0}] + E[27" 252 {w; = 0,wy > 0}] (5.129)
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+ E[21" 25 {w1 > 0, we = 0}] + E[27" 252 {w;1 > 0, w3 > 0}]
P(29,0,1,55(22)) — P(0,0,0,0)
SQ(ZQ)
P(z1,51(21),0,0) — P(0,0,0,0)
S1(z1)
{P(zl, S1(z1), 22, S2(22)) — P(#1,0, 29, Sg(zg))}
—P(z1, 81(21),0,0) + P(0,0,0,0)
51(21)52(22)

=P(0,0,0,0) + (5.130)

+

All class-j packets in the queue add a (random) class-j service time to the
unfinished work of class-j, except for the (possible) oldest class-1 and class-2
packets. The oldest class-1 packet is being served and it thus adds a residual
class-1 service time. The oldest class-2 packet adds a residual service time if
no class-1 packets are present at the time. Otherwise it adds a complete service
time equal to ¢; (i.e., not just a random class-2 service time)

Substituting expression (5.88) in expression (5.130) gives

_ A(S1(21), 52(22)) — A(Y1(S2(22)), S2(22))
ez = pT"e”){l A A (52(22)). Sa(22)) (51— A(S (1) Sa(22))

(5.131)

B(z2, 52(22)) — B(1, S2(22))
Sa(2z2) — B(1, S2(22))

{A(07 S2(22)) A(Y1(52(22)), S2(22))(S2(22) — B(1, Sa2(22))) }

+A(Y1(52(22)), S2(22)) (B(22, S2(22)) — 52()22))

+A(0, Sa(22))(B(1, 52(22)) — B(22, S2(22)
— B(1,85(22))) |

A(Y1(S52(22)), S2(22)) (22 — A(0, S2(22)))(S2(22

)
)

5.6 Packet delay

5.6.1 Pgf D;(z) of the class-1 packet delay

Since the class-1 characteristics in the preemptive priority queues are inde-
pendent of whether an interrupted class-2 packet is resumed or repeated, the
delays of class-1 packets in preemptive repeat and preemptive resume prior-
ity queues are identical. We thus have the same expression for D (z) as in the
previous chapter (expression (4.136)):

_1=p1 S1()(z=1) Ai(Si(2) —1
)\1 z — Al(Sl(Z)) 51(2) -1

D (2) (5.132)
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5.6.2 Pgf D,(z) of the class-2 packet delay

We tag a class-2 packet that enters the buffer during slot k. We use the no-
tion of sub-busy periods to analyze the class-2 packet delay (as in the previous
chapters). Two different kinds of sub-busy periods are defined, i.e., sub-busy
periods initiated by a class-1 packet and sub-busy periods initiated by a class-2 packet.
The first type is defined as follows: it starts at the beginning of the slot the ini-
tiating class-1 packet enters the server and ends when the number of class-1
packets in the system is one less - for the first time - than when the initiat-
ing class-1 packet entered the server. A sub-busy period initiated by a class-2
packet starts at the beginning of the slot the initiating class-2 packet enters the
server (for the first time) and it ends at the beginning of which a new class-2
packet can enter the server (if there is any).

Let us refer to the packets in the system at the end of slot &, but that have to
be served before the tagged packet as the “primary packets”. So, the tagged
class-2 packet enters the server for the first time, when all primary packets and
all class-1 packets that arrived after slot k (i.e., while the tagged packet is waiting
in the queue) are served. All primary class-j packets (except for the oldest
class-1 and class-2 packet) add a class-j sub-busy period to the delay of the
tagged packet. Let ¥;,, denote the length of the sub-busy period added to
the tagged packet’s delay by the m-th class-j packet already in the queue at
the beginning of slot k£ and let vj(ﬁ)n denote the length of the sub-busy period
added to the delay of the tagged class-2 packet by the m-th class-j packet that
arrives during slot ¢. Finally ¢, denotes the sub-busy period initiated by the
tagged class-2 packet itself.

During the tagged packet’s arrival slot, the system is in one of the following
states:

1. Uy, = U2,k = 0:

2 fik a1,k+do
k ~ k+d
dy =3 > "ol + <v2 D R 2>> : (5.133)

j=1m=1 m=1

with f; ; the number of class-j packets arriving during slot &, but that
have to be served before the tagged packet. f;  class-j primary packets
( = 1,2) all add a class-j sub-busy period to ds. During the service
time of the tagged class-2 packet, new class-1 packets may arrive, which
interrupt the tagged packet’s service. The sub-busy periods added to ds
by the class-1 packets arriving in the slot preceding the departure of the
tagged packet (slot k + ds), are part of ¥, but are not part of the delay
of the tagged packet, since the tagged packet departs from the system at
the end of this slot. This accounts for the negative part in the right-hand
side of the above expression. Note that the last term in the right-hand
side of this expression is stochastically independent of the first term.



198 Preemptive repeat priority

2. Ui g = O,u27k > 0:

ug k—1 fa.k a1, k+doy
~ (k+d2)
L=Cfa =D+ 2 U2m+zvzm - > v

m=1
(5.134)

with v2 . the remaining part of the sub-busy period initiated by the old-
est class-2 packet at the beginning of slot k. The difference with the
former case, is that (multiple) class-2 packets are present in the system
when the tagged class-2 packet arrives and thus have to be served before
the tagged packet. All these class-2 packets initiate their own sub-busy
periods.

3. U1,k > O,UQJC =0:

re—101 k44 uy,p—1
dy =(rp, — 1) + kz ZJr vlkﬂ) + Z U1,m + Z Z v (5.135)
i=1 m=1 1 m=1
a1,k+dy =
+ (’52 — Z ’Ug:tdﬂ) .
m=1

The residual service time of the class-1 packet in service during slot &
contributes in the first term, the sub-busy periods added to ds by the
class-1 packets arriving during the residual service time contribute in the
second term, the sub-busy periods added by the class-1 packets already
in the queue at the beginning of slot & contribute in the third term, the
sub-busy periods added by the class-1 and class-2 packets arriving dur-
ing slot k, but that have to be served before the tagged class-2 packet con-
tribute in the fourth term and finally the service time of and the sub-busy
period initiated by the tagged class-2 packet itself (minus the sub-busy
periods initiated by the class-1 packets arriving in the slot preceding the
class-2 packet’s departure) contribute in the last term.

4. Uy > O,UQ,k; > 0:

rr—101,k+i uy,p—1
k
dy=(r— 1)+ > Y oty Z vlm+ZZvjm (5.136)
i=1 m=1 j=1m=1
Uz, k—1 a1, k+do
~ ~ k+d
+v§fk+ ZU27m+<02— Z §,‘,§2>>.
m=1 m=1

This is a combination of the two previous situations.
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Dy (z) is given by - by conditioning on whether the class-1 and/or the class-2
systems are empty -

Dy(z) =E [zd2 {ug . = ugp = 0}] +E [de {u1,r =0, ug s > O}} (5.137)
+E [zd2 {u1 k> 0,ugp = 0}] +E [z‘b{ul’k > 0,ug > O}} .

Before calculating the four terms of expression (5.137) - using the system
equations (5.133)-(5.136) - we first take a closer look at the pgf’s of the sub-
busy periods. It can easily be seen that the sub-busy periods initiated by the
primary packets of class-1 (class-2 respectively) form a set of ii.d. random
variables and their common pgf is - as usual - represented by Vi(z) (Va(2)
respectively).

The sub-busy periods initiated by a class-1 packet are still identically distrib-
uted as in the previous chapters. Thus we have

The sub-busy periods initiated by a class-2 packet are different from the ones
discussed in the previous chapters. The reason for this is that the possible
repeats of the class-2 packet’s service time have to be accounted for in the sub-
busy period in this case. These sub-busy periods are furthermore different for
the PRD and PRI priority queues.

From this point forward we continue the analyses of the PRD and PRI priority
queues separately. We start with the PRD case.

PRD

We first calculate V2(z). When a class-2 packet enters the server, two events
can occur: the class-2 packet can either be completely served in the first at-
tempt, or the service of the class-2 packet is interrupted by newly arriving
class-1 packets during its service time. Denoting a random class-2 sub-busy
period by v,, we find

Va(z) 2E[2*2] (5.139)
=E[2"?{no interruption}| + E[z"2 {interruption}], (5.140)

with “interruption” and “no interruption” short for the events that the first
attempt of the class-2 service is interrupted or not interrupted respectively
by arriving class-1 packets. A class-2 service is not interrupted if no class-1
packets arrive during the slots of the class-2 service time, with exception of
the last slot (since the class-2 packet leaves the system at the end of that slot
independent of whether class-1 packets arrive during that slot). The possible
class-1 packets that enter the system during that last service slot add class-1
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sub-busy periods to the class-2 sub-busy period. Therefore the first term of
(5.140) is given by

E[z"?{no interruption}] =A; (V1 (= Zsz ity (5.141)

(5.142)

(ZAl(O))Al( 1(2))
A1(0) ’

—~

with s2(¢) the pmf of the class-2 service times.

The class-2 service is interrupted when m > 1 class-1 packets arrive during
one of the service slots of the class-2 packet (excluding the last one). These
class-1 packets all add a class-1 sub-busy period. The class-2 packet is put
back in the queue and has to wait in the queue until all class-1 packets are
served before having another service attempt. Since the service time in the
new attempt is resampled, this again initiates a new class-2 sub-busy period
with pgf V5(z). This leads to the following expression

E[2'2{interruption}] = 252@) iAl(O)j’lzj > ar(m)(Va(z))™

(5.143)
_(Ai("1(2)) — A41(0))(52(A41(0)2) — A1(0)2)Va(2)
A1(0)(A1(0)z - 1) ’
(5.144)

with a;(m) the pmf of the per-slot class-1 arrivals.

Substituting expressions (5.142) and (5.144) in (5.140), we find the following
expression for V(z):

B (1~ 4(0)2) A1 (Vi(2))Sa( 41 (0)2)
V2(®) = W) — A 0)Sa( A (0)2) - A0 A ) 1) )

We now return to formula (5.137) and calculate the four partial pgf’s one by
one. Firstly, z-transforming expression (5.133), we find

FO)(V1(2), Va(2))Va(2)P(0,0,0)

E [2%{u1} = usy = 0}] = YNUAS) . (5.146)
with

F® (2, 25) E[ fon f“} (5.147)

Al ) = Aila) (5.148)

)\2(2’2 — 1) ’
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which was already calculated in the previous chapters.

The second term in expression (5.137) is a bit more involved, because in this
case - 1 = 0,ug, > 0 - a class-2 packet is in service when the tagged packet
arrives, which can be interrupted by newly arriving class-1 packets. Thus, the
packet in service during slot k is either completely served during that service
attempt or is interrupted by class-1 packets, leading to:

E [2%{u1x = 0,uz > 0}] =E [2%{u1 1, = 0,uz ), > 0,no interruption}]
(5.149)
+E [zd2 {u1x =0,u2y > O,interruption}] .

The first term equals - by z-transforming expression (5.134) -

E[2%{u1 4 = 0,us > 0,n0 interruption}] (5.150)
_FO(Vi(2), Va(2)Va(2) F®)(0,Va(2))
A1 (V1(2)) (A1(0))%2
< [P(A1(0)2,0, Va(2)) — A1(0)2V5 (=) Ra(Va(2)) — P(0,0,0)],

RQ(VQ(Z)) +

with Ry(z2) and P(z, #1, z2) defined in section 5.3 The first term is the partial
pgf of when the remaining service time of the class-2 packet equals 1 slot,
while the second term gives the partial pgf when this remaining service time
is larger than 1. Note that in this latter case fi = 0, since we consider the
case that the service of the packet in service during slot & is not interrupted.

The second term of (5.149) is given by - again by using expression (5.134) and
after some extensive mathematical manipulations -

E [2%{u1x = 0,uz > 0, interruption}] (5.151)
=(F®(Vi(2), Va(2)) = FP(0,Va(2)))[P(1,0, Va(2)) — Va(2) Rz (Va(2))

= P0.0,0)p A 4 (0, () LA - A0
y {P(A1(O)Z,0, Va(z)) — A1(0)2Va(2)Re(Va(2)) — P(0,0,0)
(A1(0)2)?

~[P(1,0,Va(2)) — V(=) Ra(Va(2)) — P(0,0, o>]}

Va(2)
A1 (Vi(z))

The first term of this expression is the partial pgf when class-1 packets arrive
during slot k, while the second term is the partial pgf when no class-1 arrivals
occur during this slot.

Thirdly, we take a look at the third and fourth term of expression (5.137). Note,
that v, is equally distributed as a complete sub-busy period when uy ) >
0,uz) > 0 since the oldest class-2 packet is waiting in the queue at the be-
ginning of slot k£ and as a result it starts a “new” complete sub-busy period
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with pgf V5(z) once it (re)starts service. (This is due to the resampling of the
service time after an interruption and will thus not be valid for the PRI prior-
ity queue.) As a result, it can be seen from expressions (5.135)-(5.136) that the
situations u; > 0,ug; = 0 and uy , > 0,uz; > 0 can be analyzed together.
We find

E [2%{u1 > 0}] =E [z {u1 s, > 0,uzs, = 0}] +E [2¥{u1 1 > 0,us > 0}]

(5.152)

_WEFP(1h(2). ()

T AM(2) o
o PEAL((2), V(2), Va(2)) — P(2A1(Vi(2)), 0, Va(2).

zA1(Vi(2))Vi(2)

Summing expressions (5.146), (5.150), (5.151) and (5.153) yields the following
expression for Ds(z)

Va(2)
A1(Vi(2))

Da(z) = {F@(vl(z), Va(2))[P(0,0,0) + Ra(Va(2)) (5.154)

zA1(V1(2)) — 1

N [F<2>(V1(Z),v2(z)) — FO®(0,V4(2)) [P(1,0,Va(2))

Al(O)Z —1
— Va(2) Ra(Va(2)) — P(0,0,0)] + FP(0, Va(@)%
. P(A1(0)2,0, Va(2) — A1(0)2Va(2) Ba(Va(2)) — P(0,0,0)

A1 (0)252 (Al (0)2)
+ FO(V1(2),V2(2))

o PEAL(V1(2)), Vi(2), Va(2)) — P(2A1(Vi(2)), 0, Va(2))
A1 (Vi(2))Vi(z) ‘

Using expressions (5.26), (5.28), (5.29) and (5.148) in the previous expression
of Dy (z), we finally find

Da(2) L —presr Va(2) {(ZAI(V](Z)) —1)(A(0, Va(2)) — A1 (0))
A2 A1 (Vi(2)) (Va(z) — 1)(A1(0)z — A(0, Va(2)))

(5.155)
n Y2(Va(2))(2A1(Vi(2)) — A(Y1(Va(2)), Va(2)))
A(Y1(Va(2)), Va(2))(Va(2) — Ya(Va(2)))
L (A1(0)A(Va(2), Va(2)) — A1 (Va(2)) A(0, Va(2))) (2 — 1) }
(A1(0)z — A(0, Va(2))) (2A1(Vi(2)) — A(Vi(2), Va(2))) )

with Y5(z) given by (5.27).
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PRI

We first calculate V,(z) for this case. We denote the conditional pgf of the sub-
busy period of a class-2 packet with a service time of i slots by V3 ;(z). We thus
have

=" s5(i)Va,(2). (5.156)
=1

We first calculate an expression for the V5 ;(z). The pgf of the sub-busy period
initiated by a class-2 service time equal to i slots is the same as the pgf of the
class-2 sub-busy period in the case of a PRD priority queue and deterministic
class-2 service times of ¢ slots. Indeed, in case of deterministic service times
resampling or not resampling are identical. This V5 ;(z) thus equals expression
(5.145) with Sy(z) = 2, or

(1— A1(0)2) A1 (Vi (2))(A1(0)2) (5.157)

V24 ) = V@) — 4 0) (A (0)2) — A1 (0) (A (Vi (2)) — 1)

Substituting this expression in (5.156) yields

3 2(3)(1 = A1(0)2) Ay (Vi (2)) (41 (0)2)°
; A1(Vi(2)) = A(0 ))(lAl( 02 — A0 A =1 Y

We calculate the four partial pgf’s in the right-hand side of expression (5.137)
one by one in the PRI case. Firstly, taking the z-transform of equation (5.133)
yields

F(Q)(Vl (Z)v V2(Z))V2(Z)P(Ov 07 07 0)
A1(Vi(2)) ’

E [de {ury =uo = 0}} = (5.159)

with F(?) (21, z5) still given by expression (5.148).

The second term in expression (5.137) is (again) a bit more involved. The class-
2 packet in service during slot k is either served completely during that trans-
mission attempt or is interrupted by class-1 packets, leading to:

E [2%{u1x = 0,uzx > 0}] =E [2%{u1 1, = 0,uz ), > 0,no interruption}]
(5.160)

+E [zd2 {u1x =0,ugy > O,interruption}] .
The first term equals - by z-transforming expression (5.134) -

E[de{uLk = 0,uz,x > 0,n0 interruption}| (5.161)
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FO(Vi(2), Va(2)Va(z) F®)(0,Vy(2))
A1(Vi(2)) (41(0))2=
X [P(Al(O)Z, 0, ]., VQ(Z)) — Al(O)ZVQ(Z)RQ(l, VQ(Z)) — P(O, 0, 0, 0)]

Ry(1, Va(2)) +

The first term is the partial pgf when the remaining service time of the class-2
packet in service during slot £ equals 1 slot, while the second term yields the
partial pgf when this remaining service time is larger than 1.

The second term of (5.160) is given by - by using expression (5.134) and after
some mathematical manipulations

E [2%{uix = 0,uz > 0 interruption}} (5.162)
F®(Vi(2), Va(2)) = FP (0, Va(z
= vz i(1,0, V&
YWUAB) Z 21(2) [Qi( 2(2))

F®(o, Vz(Z)) 2(A1(Vi(2))) — 41(0)

—52(1)Va(2)Ra i (Va(2))] +

Al(Vl(Z)) Al(O)Z -1
" { Doy V2,i(2)[Qi(A1(0)2,0, Va(2)) — s2(i) A1(0)2Va(2) Ra i (Va(2))]
(A1(0)2)2

- va Q4(1,0,Va(2)) — sa V) RasVa(a))] .

with
Qi(z, 21, 20) ZE[x™ 2" 25> {ta ) = i}], (5.163)

i > 0. We show later on how the latter partial pgt’s are calculated using
the expression of P(z,z1,¥y2,22). The first term of expression (5.162) is the
partial pgf when class-1 packets arrive during slot k, while the second term
is the partial pgf when no class-1 arrivals occur during this slot. Note that
expression (5.162) resembles expression (5.151) in the PRD case. The difference
is that in the PRI case, we have to condition on the service time ¢4 of the class-2
packet which service is preempted because this service time is not resampled
in this case.

Furthermore, we take a look at the third term of expression (5.137). We find

E [2%{u1 > 0,uzr = 0}] = (5.164)

,Vl(z),0,0) — P(0,0,0,0)
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Finally, the last term of expression (5.137) is given by

@ (11(2), Va(2))

(=) (169
" Yooy Va,i(2)[Qi(2A1(Vi(2)), Vi(2), Va(2)) — Qi(2A1(Vi(2)),0, Va(2))]
zA1(V1(2))Vi(2) '

E[zd2{u17k > 0,ug x> OH

Again, we have to condition on the service time of the oldest class-2 packet
because this service time could have been interrupted before.

Summing expressions (5.159), (5.161), (5.162), (5.164) and (5.165) yields an ex-
pression for Dy (z) in terms of the functions P(., ., .,.) and R»(1, .) and the func-
tions Rgﬂ'(.) and Ql(, 5 ) (’L > O) The RQJ‘(ZQ), Rg(l, 22) and P(J}, 21,92, 2’2) are
given by expressions (5.83), (5.86) and (5.88) respectively. So it remains for us
to calculate the Q;(z, 21, 22). From the definition (5.163) of Q;(x, z1,22) and
P(x,z1,y2, 22), it is seen that the following relation exists:

P(xz,21,y2,22) — P(x,21,0,0) ZQz 21, Y2, %2)Y (5.166)

From expressions (5.75) and (5.88), we find

P(xazlay27 22) - P(fE,Zl, 07 0) = (1 - pTﬁff)x (5167)

(A(21,0) — A(Y1(0),0))(E1(21,0) — S1(x))S2(y2)

A(Y1(0),0)(x — A(21,0))(21 — E1(21,0))

(A(z1, 22) — A(Y1(22), 22)) (S1(z) — E1(21,22))
A(Y1(22), 22) (7 — A(z1, 22)) (21 — E1(21, 22)) (22 — B(1, 22))
X (22B(y2, 22) — S2(y2) B(1, 22))

{A(Yl(zz)’@)(B(xy%@) — Sa(zy2)) }

21

+ 21

+A(0, ZQ)A(Yl (2,’2), ZQ)(SQ(SCyQ) - B(yQ, 2’2))
+A(0, 22)(B(y2, 22) — B(xy2, 22))
A(Yl(ZQ), 2’2)(.’13 — A(O, 22))(22 — B(l, 22))

22

The right-hand sides of the last two expressions have to be equal for each ys,
ly2| < 1. Thus, the coefficients of the y§ of both expressions are also equal
(for all i), leading to - by noting that B(y, z) is given by (5.85) and S2(y) =

Zz 182( )y -

Qi(x,21,22) = (5.168)

21(A(21,0) — A(Y1(0),0))(Er(21,0) — 51 ()
A(Y1(0),0)(z — A(z1,0)) (21 — Ei(21,0))

(1= proess)asa(i)



206 Preemptive repeat priority

21(A(21, 22) — A(Y1(22), 22))(S1(w) — E1(21, 22))
A(Y1(z2), 22) (@ — A(21, 22)) (21 — B (21, 22)) (22 — B(1, 22))
% 22(1 — A(O,ZQ))A(Y:[(ZQ),ZQ)A(07ZQ)i
(A(Yl (Zg), 22) — A(O, Zg))A(O, Zg)i — A(O, ZQ)(A(Yl (Zg), 22) — 1)
2o(xt — A(0, 2)%)
-he 22)} A (z2)-22) — A0, 2)) A0, 22) | — (AT (z2)-22) — 1)

o (1= A0, 22)) (A(Ya(22), 22) — 1)
(z — A0, 22))(22 — B(1,22)) |’

Finally bringing everything together, we find (after some extensive mathem-
atical manipulations)

Dy(z) =L Prets_Vol2) {<2A1<V1<z>>—1><A<o V(=) = Ai(0))
Ao A1(Vi(2)) (Va(z) — 1)(A1(0) A0, Va(2)))

(5.169)
(241(V1(2) = A(1(Va(2)), Va(2))) 30724 $2(1) (Va,i(2) = 1D)Ya,i(Va(2))
AY1(V2(2)), Va(2))(Va(2) = Y2(Va(2))) (Va(2) — 1)
o (A1(0)A((2), Va(2)) — A1 (Vi(2))A(0, Va(2))) (2 — 1)
(41(0)z = A(0, V2(2))) (241 (V1 (2)) — A(Va(2), Va(2))) | 7
with Y5(z) given by (5.99) and
RN (1 — A(0,2))A(Y1(2),2) A0, 2)*
Y242 S HWR), 2 - A0, 2))A(0, 2 — A, AW D 00
or thus
= s5(i)Ya,(2). (5.171)
=1
Special case: geometric class-2 service times
In the special case of geometric service times of class-2, i.e.,
S2(2) =7 “ 5 (5.172)
expression (5.155) equals
_1—pr 2(A(Vi(2), Va(2)) — A1 (Va(2)))
D = T A we) - AL e O
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with Va(z) = S2(zA1(Vi(2))) in the case of PRD. This is the same expression
as found in chapter 4 for a preemptive resume priority queue with the same
arrival and service processes. As discussed earlier, a remaining class-2 service
time and (a new sample of) a complete class-2 service time have the same
geometric distribution in this case, and thus both PR and PRD queues are
stochastically equal.

Special case: deterministic class-2 service times

In the special case of deterministic class-2 service times, i.e., S2(z) = z#? and
s2(1) = pa, we find in the PRI case that

Doy 52()(Vau(2) —1)Y2,i(Va(2)) _ Ya(Va(z))
(Va(2) = Y2(Va(2)))(Va(z) = 1) Va(z) = Ya(Va(z))

(5.174)

Since, Y5(z) and V(%) are - in this special case - equal for the PRD and PRI
case, Dy(z) also becomes equal for both priority queues. Indeed, as already
mentioned, resampling or not resampling are identical when the class-2 ser-
vice times are of constant length.

Special case: uncorrelated number of per-slot class-1 and class-2 arrivals

In this case A(z1,22) = Ai(#1)A2(22). The second terms of the right-hand
sides of expressions (5.155) and (5.169) are equal to zero in this case and Dz (z)
equals

1 e B(EATE) — 1) Ay(a(z) ~ 1
S Y A A G ED R A0

Note that in the case of PR, the same expression is obtained in case of uncor-
related per-slot class-1 and class-2 arrivals (see expression (4.143)). So, in this
case, the distribution of class-2 sub-busy periods is still different for the three
priority queues (PR, PRD and PRI), but the relationship between the delay of
a class-2 packet and the sub-busy periods of class-2 packets is identical for the
three cases. In Fiems [2004], a similar relationship is found. In Fiems’ disserta-
tion, the low-priority characteristics of priority queues are analyzed by using
queues with server interruptions. Indeed, from the point-of-view of class-2
packets the server is interrupted when class-1 packets are being served. In
Fiems [2004], these interruptions are incorporated in the service times - and
are called effective service times - which are analyzed separately for the PR,
PRD and PRI queue respectively. Once the distributions of these effective ser-
vice times are found however, the PR, PRD and PRI queues are analyzed in
a uniform manner. The effective service times in that dissertation are thus
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closely related to the sub-busy periods initiated by class-2 packets defined in
our dissertation.

Note that - as expressions (5.155) and (5.169) show - D4 (z) is much more com-
plicated in the case the numbers of per-slot class-1 and class-2 arrivals are
correlated.

5.6.3 Pgf D(z) of the delay of a random packet

We tag a random (class-1 or class-2) packet. Since, the probability that the
tagged packet is of class-j is equal to A; /A, we find for the pgf of the delay
of a random packet

D(z )=;—1D1( )+ i—;Dz( ) (5.176)
_1=p Si(x)(=-1) A1(51(Z)) -1
)\T z — Al(Sl(z)) 51(2)
1—prerr  Va(z) {(ZAl(Vl( z)) — 1)(A(0, Va(2)) — A1(0))
A A(Vi(z)) (Va(z) — 1)(A41(0)z — A(0, V2(2)))

(
L AI(N(2) — A (Va(2)), Va(2)))C(2)
a(

(5.177)

A(Y1(Va(2)), Va(2))
. (A1(0)A(V1(2), Va(2)) — A1 (Vi (2)) A(0, Va(2))) (2 — 1)}
(A1(0)z — A(0, Va(2))) (241(Vi(2)) — A(Vi(2), Va(2)))
with
C(z) éVQ (Z})/Q%Q((Z‘)/l Bik (5.178)
in case of PRD, and
c(2) _ 2ty 52(0)(2,(2) = DY2,i(Va(2)) (5.179)

(Va(2) = Y2(Va(2))) (Va(z) = 1)

in case of PRI.

5.6.4 The functions Y;(z)

As in the previous chapters Y;(z) (j = 1,2) is the pgf of the number of class-2
arrivals during a sub-busy period initiated by a class-j packet. For Y7 () this
is directly clear, since Y1 (z) is identically defined as in the previous chapters.
In case of Y3(z) on the other hand, the possible repeats of the class-2 service
times have to be taken into account. Therefore we will in this section calculate
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the pgf of the number of class-2 arrivals during a sub-busy period initiated by
a class-2 packet and prove that it equals Y5(z).

When at the beginning of a slot a class-2 packet with service time s enters the
server, a new sub-busy period starts (with length denoted by v3). Denoting the
number of class-2 packets that arrive during this sub-busy period by y, and
denoting the number of class-j arrivals during the i-th slot of this sub-busy

period by ag.i) (j =1,2), we get

Vg
v =Y ay). (5.180)
=1

We prove in the remainder of this subsection, that Y>(z) is the pgf of y» for
both the PRD and the PRI queue.

PRD

When a class-2 packet enters the server, two events may occur: the class-2
packet is either completely served in the first attempt, or the service of the
class-2 packet is interrupted by newly arriving class-1 packets. The service
time of the class-2 packet is not interrupted if no class-1 packets arrive during
all slots of the class-2 service time (with exception of its last slot). The possible
class-1 packets that enter the system during that last service slot add class-1
sub-busy periods to the the (initial) class-2 sub-busy period and thus the class-
2 arrivals during those class-1 sub-busy period are part of y,. Since Y;(z) is
the pgf of the number of class-2 arrivals during a class-1 sub-busy period, the
partial pgf of y» in case of no interruptions during the initial attempt of the
class-2 packet to get transmitted is given by

S2(A(0, 2))

E[z¥2{no interruption}] = A(0,2)
2

A(Y1(2), 2). (5.181)

The first factor is the pgf of the number of class-2 arrivals during all slots of
the initial service time (excluding the last slot) and the second factor is the pgf
of the number of class-2 arrivals during the last service slot and during the
sub-busy periods added by the class-1 arrivals in this last slot.

The class-2 service is interrupted before completing its service time when
m > 1 class-1 packets arrive during one of the service slots of the class-2
packet (excluding the last one). These class-1 packets all initiate a class-1 sub-
busy period. The class-2 packet is put back in the queue and has to wait in
the queue until all class-1 packets are served before having another service at-
tempt. Since the service time in the new attempt is resampled, this again ini-
tiates a new class-2 sub-busy period and thus the class-2 arrivals during this
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new sub-busy period - denoted by y; - is equally distributed as y,. This leads
to the following expression (in a similar way as reaching expression (5.144)):

(A(Yi(2), ) — A(0, 2))(S2(A(0, 2)) — A(0, 2) )E[=%]
A(0,2)(A(0,2) — 1) '

E[z¥? {interruption}] =

(5.182)

From expressions (5.181) and (5.182) and from the fact that y; and y; are
equally distributed we indeed find expression (5.27) for the pgf of ys.

PRI

In this case, we condition on the lengths of the service times. Thus

oo

E[2%] =) " sy (i)E[2¥|sy = i], (5.183)

i=1

with s, the service time of the initial class-2 packet. E[z¥2|sy = i] equals Y2(2)
in case of PRD and of deterministic class-2 service times of 7 slots, i.e.,

(1 A(0,2))A(Yi(2),2)A(0, 2)’
(A(Yi(2), 2) — A(0,2)) A0, 2)F — A(0, 2)(A(Y1(2),2) = 1)
(5.184)

E[z%2|sy = i] =

Substituting this in the previous expression, we indeed find expression (5.99).

When the number of class-1 and class-2 arrivals are independent stochastic
variables, it can be seen that v and the aél) are also independent variables.
From expression (5.180), it then follows that

Ya(2) =Va(Az(2)). (5.185)

Indeed, by substituting A(z1,z2) by A1(z1)A2(22), expression (5.27) (expres-
sion (5.99)) and expression (5.145) (expression (5.158)) satisfy the previous re-
lationship in case of PRD (PRI respectively), since Yi(z) = Vi(A2(z)) in this
case.

Note that expression (5.185) is not generally valid when the number of class-1
and class-2 arrivals in a slot are correlated, since v, and the ag') both depend
on the a!” (in general).
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5.6.5 Calculation of moments

The mean class-1 packet delay is given by

E[d,] =Di(1) (5.186)
J25% mVar[al] )\1Var[sl]
=0 . 5.187
2 201 -p)  20-p) (G187)
The mean class-2 packet delay is expressed as follows:

E[ds] =D5(1) (5.188)

_HMaeff pii Var|ay] p2errVarfas] - paCoviay, as]

2 20 = presp)X —p1)  2X2(L=press)  A2(l = presy)
(5.189)

(A1Var[s1] + AoVar[so]esr) | p1(p2err — 1)
2(1 = prerr)(L = p1) 2(0—p1)

with Var[ss].f¢ given by expressions (5.115) or (5.116) for the PRD or PRI pri-
ority queue respectively.

Finally, the mean delay of a random packet yields

E[d] =D'(1) (5.190)
_PTeff pVarfar] i do(paers — pa)Varfad]
20 200(L = pregs)  2A0(1 = priesp)(1 — p1)

(H2,er — 1) Varfas]  ArVar[si](Ai(1 = p1) + Aa(1 — pr2ers 1))

2A1(1 = proesys) 2Ar(1 = press)(1 = p1)
A%Var[SQ]eff Pl)\2(ﬂ2,eff — 1)
2Ar(1 = press)(1 — p1) 2A7(1 = p1)

(5.191)

+

It can be seen from the expressions in this subsection and subsection 5.3.5 that
Little’s law holds for the total system and for the class-1 and class-2 systems
separately.

5.7 Waiting time

The waiting time is defined as the number of slots a packet has to wait in
the queue before starting service. Thus specifically for the class-2 packets, the
waiting time - as defined in this dissertation - does not include the slots the
packets spend in the queue after the possible interruption(s).
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We find the same expression for the pgf 7' (z) as in the previous chapter since
the class-1 waiting time is independent of whether service times of class-2
packets are resumed or repeated after an interruption. Therefore, we have

:1—p1 z—1 Al(Sl(z))—l

Ti(z) Atz = A(S1(2)  Si(z) -1

(5.192)

for the pgf of the class-1 waiting time.

The relation between the waiting time ¢, and the delay d; of a class-2 packet
is given by

a1, k+do
dy =ty + 70— Y it ™) (5.193)
m=1

with 7, the sub-busy period initiated by the class-2 packet and vaWtdQ) the
sub-busy periods added to the delay by the class-1 packets arriving during
the last service slot of the class-2 packet. The class-1 packets arriving during
the tagged class-2 packet’s last service slot are part of the sub-busy period
initiated by the class-2 packet but are not part of its delay (since the class-2
packet leaves the system at the end of that slot). Since the first term of the
right-hand side of expression (5.193) is independent of the other two terms,
we find

A1(i(2))

(5.194)

Substituting expressions (5.155) and (5.169) for the PRD and PRI priority
queue respectively gives

1= pregs | (A1 (Vi(2) — DA Va(2)) — 4,(0))
Ble) ==, ”{ (12(2) — (A1 (0)z — A(0, Va(2))) (5.199)
(24, (Vi(2)) — A(Y(Va(2)), Va(2)C(2)
AV (Val(2)) Val(2))
¢m®mwaw@wﬁmmmmmmmw—n}
(1 (0) — A(0, Va(2) (o1 (Vh(2)) — ATV (2). Ve () S

+

with C(z) given by (5.178) or (5.179) for the PRD or PRI case respectively.
Finally, the pgf of the waiting time of a random packet is given by

T(2) =201, (2) + 22 15(2) (5.196)
T T
:17p1 z—1 Al(Sl(Z))fl

)\T Z — Al(Sl(z)) Sl(z) -1

(5.197)
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+

1= press { (241 (V1(2)) = D(A(0, Va(2)) — 41(0))
At (Va(2) = 1)(A1(0)z — A(0, V2(2)))

(zA1(Vi(2)) = AN (Va(2)), Va(2)))C(2)
1

A(Y1(Va(2)), V2 (Z)
. (A1(0) AV (2), Va(2)) — A1(Vi(2)) A0, Va(2))) (= — 1)}
(41(0)2 — A(0, V2(2))) (241 (V1 (2)) — A(Vi(2), Va(2))) |

5.8 Numerical examples

In this section, we discuss some numerical examples. Since the class-1 char-
acteristics are the same as in the previous chapter, we solely focus on class-2
performance measures. More precisely, we focus on the comparison of the PR
priority scheduling discipline - discussed in the previous chapter - and the
PRD and PRI priority scheduling disciplines - analyzed in this chapter.

5.8.1 Input processes

We first briefly summarize the most important characteristics of the arrival
and service processes we consider in this section.

The arrival process

The pgf of the number of per-slot class-1 and class-2 arrivals is given by

A( (=M -2 ; 5.198
21722) = N( 2’1) N( Z2) . (G )

N is chosen 16 in all figures in this section.

The means of the total, class-1 and class-2 number of per-slot arrivals are given
by Ar, A1 and \g respectively.
The service process

In most figures of this section, the service times of both classes are assumed
deterministic

Sj(z) = 2", (5.199)

j = 1,2, with p; the class-j service time.

In order to study the influence of the variance of the class-2 service times on
the difference between the PRD and PRI case, we use class-2 service times
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which are equal to ugl) with probability p, and equal to ug) with probability

1— P2, i.e.,

Sa(2) =pazte 4+ (1 — pa)2hs” . (5.200)

In order to study the influence of Var[ss], p2, ,ugl) and ,ugz) will be varied so that
2 is kept constant and Var([s,] is varied from 0 to infinity (in discrete steps).

5.8.2 Influence of load
System contents

In Figures 5.3 and 5.4, we show the mean value and the variance of the class-
2 system contents as functions of the total load, with the class-1 and class-2
service times deterministically equal to 20 and with « - a« = p1/pr - equal to
0.25, 0.5 and 0.75. In both figures, we have shown the curves for the PR and
the PRD and PRI priority queues. Because the service times are assumed to be
deterministic the latter two scheduling types are equivalent. We furthermore
show - on this figure and the other figures presented in this section - the ver-
tical asymptotes of the curves in case of PRD and PRI, which equal the values
of the arrival load for which the effective load equals 1. On the right of this
asymptotes, the priority repeat queues are instable. It is seen that the mean
value and the variance of the class-2 system contents can be considerably lar-
ger in case of the PRI and PRD cases. This is because of the extra load that is
added because of the repeats of class-2 packets.

Figure 5.5 shows the mean class-2 system contents as a function of a, with
deterministic service times of 20 slots and with pr equal to 0.7, 0.8 and 0.9.
We show the curves for the PR and the PRD (and PRI) priority queues. It can
be seen that the influence of repeats of class-2 service times is especially high
when o equals mediocre values, i.e., lies around 0.5. Indeed, for low ¢, almost
no class-1 packets are arriving in the system and thus the interruptions of
class-2 service times are scarce. For high o, the mean class-2 system contents
is low simply because the arrival rate of class-2 packets is low. Note that - in
the case of PRD (and PRI) and pr = 0.9 - the system is instable for o between
(approximately) 0.37 and 0.70. For values of « in this range pr ¢ > 1.

In Figure 5.6, the mean class-2 system contents in case of PRI and PRD are
depicted as functions of the total load for o = 0.25,0.5 and 0.75 respectively.
The class-1 service times are deterministically equal to 20 slots and the class-2
service time process is given by expression (5.200) with ugl) =10and uf) =30
in such a way that ps = 20 (or thus p; = 0.5 in this case). It is seen that
the mean class-2 system contents may differ considerably for both priority
scheduling disciplines. It is also seen that the mean class-2 system contents in
the PRD priority queue is lower than the mean class-2 system contents in the
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Figure 5.3: Mean class-2 system contents versus the total arrival rate for the PR (lower
curves) and the PRD and PRI priority (upper curves) scheduling disciplines and with
the service times deterministic (1 = p2 = 20)

10

Figure 5.4: Variance of the class-2 system contents versus the total arrival rate for the
PR (lower curves) and the PRD and PRI priority (upper curves) scheduling disciplines
and with the service times deterministic (1 = p2 = 20)
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Figure 5.5: Mean class-2 system contents versus the fraction of class-1 load for the PR
(lower curves) and the PRD and PRI priority (upper curves) scheduling disciplines and
with the service times deterministic (111 = p2 = 20)

PRI priority queue. This is because a long class-2 service time (30 slots) which
is interrupted is resampled in the PRD priority queue and is resampled to 10
slots with a probability equal to 0.5 in the next service attempt. Obviously,
a service time of 10 slots can also be resampled to one with 30 slots when
interrupted, but since the probability that a 30 slots service time is interrupted
is larger than that a 10 slots service time is interrupted, the resampling of the
class-2 service times decreases the (mean) class-2 system contents.

Packet delay

Figure 5.7 depicts the mean class-2 packet delays as functions of the total load,
with deterministic service times, p; = 2, 2 = 20 and with « equal to 0.25, 0.5
and 0.75. It is seen that the mean delay of the class-2 packets is significantly
higher in the case of the PRI (and PRD) priority scheduling. Again this is due
to the repeats of the class-2 packets.

Furthermore, Figure 5.8 shows the mean class-2 packet delay in case of the
PRD and PRI priority scheduling disciplines for o« = 0.25,0.5 and 0.75 re-
spectively. The class-1 service times are deterministically equal to 2 slots and
the class-2 service time process is given by expression (5.200) with uél) =10
and ,ug) = 30 in such a way that ps = 20. It is again seen that the PRD priority
queue performs better - in terms of mean class-2 delays - than the PRI priority
queue when the variance of the class-2 service times is larger than 0.
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Figure 5.6: Mean class-2 system contents versus the total arrival rate for the PRD
(lower curves) and the PRI priority (upper curves) scheduling disciplines and with
the class-2 service times variable (u1 = p2 = 20)
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Figure 5.7: Mean class-2 packet delays versus the total arrival rate for the PR (lower
curves) and the PRD and PRI priority (upper curves) scheduling disciplines and with
the service times deterministic (11 = 2, u2 = 20)
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Figure 5.8: Mean class-2 packet delays versus the total arrival rate for the PRD (lower
curves) and the PRI priority (upper curves) scheduling disciplines and with the class-2
service times variable (u1 = 2, u2 = 20)

5.8.3 Influence of service times
System contents

Figure 5.9 shows the mean class-2 system contents in case of PR and PRD (and
PRI) as functions of the class-1 service time p;, when class-2 service times
equal 20 slots, the total arrival load is 0.75 and for « equal to 0.25, 0.5 and 0.75.
The service times of both classes are deterministic. In case of PR scheduling,
the mean system contents increase with increasing ;. In case of the PRI and
PRD scheduling, two counter-acting effects can be observed: firstly, longer
class-1 packets increase the build-up periods for class-2 packets in the queue
(i.e., longer periods when the server is busy with class-1 packets), thereby in-
creasing the mean class-2 packet delay. Secondly, longer class-1 packets (while
keeping the class-1 arrival load constant) means less class-1 packet arrivals,
thus decreasing the probability of a class-2 packet’s service getting preempted
and having to be repeated. This has a decreasing effect on the mean class-2
system contents. The latter effect is important for small class-1 service times.
Indeed, it can be seen on the figure that for low y; the mean class-2 system
contents increase dramatically with decreasing 1. So, in the case of the repeat
scheduling disciplines there is an optimum for y; for which the mean class-2
system contents becomes minimal.

Figure 5.10 depicts the mean class-2 system contents in the PR and PRD (and
PRI) priority queues as functions of the (mean) class-2 service times, for p; =



5.8 Numerical examples 219

10 20 30 40 50 60 70 80 90 100
Hq

Figure 5.9: Mean class-2 system contents versus the class-1 service time for both the
PR (lower curves) and the PRI and PRD priority (upper curves) scheduling disciplines
and with the service times deterministic (pr = 0.75, 2 = 20)

20, pr = 0.75 and the different values of . We see that for low ps, the mean
class-2 system contents in both priority queues are high. This is due to the fact
that A, is relatively large for low ps (in order to keep p, constant) and thus
many class-2 packets arrive to - and have to be stored in - the system. For
increasing (i, the mean system contents in case of PR decreases, while in case
of PRI (and PRD) the mean system contents first decreases and then increases
again. The latter is due to the fact that service of longer class-2 packets have
a higher probability of being preempted by arriving class-1 packets. For a
particular po these numbers of interruptions and repeats are too large to still
have a stable system.

Figure 5.11 shows the mean class-2 system contents in the PR, PRD and PRI
priority queues as functions of the variance of the class-2 service times. The
total load is fixed at 0.75, the class-1 service times are deterministically equal
to 20 slots and o = 0.25. The class-2 service time process is characterized by
expression (5.200), with uél) equal to 1, ug) varying and p, also varying but
such that ps is kept constant (equal to 20 slots). This figure clearly shows that
the mean class-2 system contents can be very different in the PRD and PRI
priority queues respectively. Indeed, when the variance is large, long service
times have a high probability of being resampled in service times of 1 slot in
the PRD case, while this is not the case in a PRI priority queue. Also notice
that the mean class-2 system contents is lower in the PRD case than in the PR
case for high variances. Indeed, since long service times can be resampled to
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Figure 5.10: Mean class-2 system contents versus the class-2 service time for both the
PR (lower curves) and the PRI and PRD priority (upper curves) scheduling disciplines
and with the service times deterministic (pr = 0.75, u1 = 20)

service times of 1 slot, the resampled version of the complete service time can
be smaller than the residual part of the original service time.

Packet delay

Similar conclusions can be drawn for the mean class-2 packet delay from Fig-
ures 5.12 and 5.13. In Figure 5.12 the same input parameters are chosen as in
Figure 5.9, while the input parameters in Figure 5.13 are identical to the ones
in Figure 5.11. It is seen that the PRI and PRD scheduling types have an op-
timum g (for which the mean class-2 packet delay is minimal) and that the
mean delay differs considerably in the PRD and PRI priority queues respect-
ively if the variance of the class-2 service times is large.

5.9 Concluding remarks

In this chapter, we analyzed two types of preemptive repeat priority queues,
namely a PRD and PRI priority queue. In both cases, we defined supplement-
ary variables - besides the system contents of both priority classes - in order
to construct a Markov-chain. In the PRD case, defining the remaining service
time of the packet in service was enough to construct a Markov-chain. In the
PRI case, we needed to keep track of the complete service time of the oldest
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Figure 5.11: Mean class-2 system contents versus the variance of the class-2 service
times for the PR, PRD and PRI case (pr = 0.75, u1 = p2 = 20)
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Figure 5.12: Mean class-2 packet delays versus the class-1 service time for both the
PR (lower curves) and the PRI and PRD priority (upper curves) scheduling disciplines
and with the service times deterministic (pr = 0.75, u2 = 20)
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Figure 5.13: Mean value of class-2 packet delays versus the variance of the class-2
service times for the PR, PRD and PRI case (pr = 0.75, u1 = p2 = 20)

class-2 packet as well. We thus had to calculate a three-dimensional pgf in
the PRD case and a four-dimensional pgf in the PRI case. These pgf’s were
the starting points of all calculations of the performance measures of these
priority queues.

Note that an infinite sum is part of the solution in the class-2 pgf’s (system
contents, packet delay, ...) of the PRI case. This infinite sum does not give
problems when evaluating the means and variances of these variables, but
the calculation of higher moments could turn out to be of a more complex
nature in practice - although it is feasible in theory. Furthermore, the infinite
sum prohibits us - at this time? - to find approximate tail probabilities of the
class-2 variables.

We compared the performance measures of a PR priority queue - analyzed in
the previous chapter - of a PRD priority queue and of a PRI priority queue.
Main conclusions are firstly the fact that repeats of class-2 service times in the
PRI and PRD priority queues may considerably deteriorate the performance
of these systems, especially when the arrival rate of class-1 packets is large.
Secondly, the results of the PRD priority queue and the PRI priority queue are
only similar when the variance of the class-2 service times is sufficiently small.
Both scheduling disciplines are only identical when this variance is zero.



Chapter 6

Conclusions

In this last chapter, we summarize the main results of this dissertation and
briefly describe some possible extensions and related topics.

6.1 Summary

In this dissertation, we comprehensively described the analysis of discrete-time
queues with different types of priority scheduling disciplines. We assumed
two priority classes throughout the dissertation. The arrival process was as-
sumed to be i.i.d. from slot-to-slot, but the number of per-slot arrivals of both
priority classes may be correlated, i.e., so-called structured input. We started
by analyzing a priority queue with service times of one slot and extended this
to general service times for both classes. The distributions of the service times
could furthermore be different for both classes.

In chapter 2, we analyzed a priority queue with single-slot service times. This
is a fairly easy model and analysis which was mainly used to familiarize the
reader with pgf’s, the way in which the performance measures of interest are
extracted from the obtained pgf’s and the specific difficulties introduced by
the priority scheduling discipline. Furthermore, this type of service times is
useful in practice, e.g. in telecommunication networks where the packets float-
ing through the network are all of the same size (e.g. in ATM).

In chapters 3, 4 and 5, we extended this inital model to a model with gener-
ally distributed service times. In case of general service times, 3 main priority
scheduling disciplines are distinguished in the literature and analyzed in this
dissertation. The first one is the non-preemptive priority scheduling discipline.
In this discipline, service times are never interrupted, i.e., once a unit starts
service it stays in the server until its service is completed. This type of priority
queue was analyzed in chapter 3. The second type is the preemptive resume
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priority scheduling discipline, studied in chapter 4. In this discipline, a new
arrival of a unit of higher priority than the one served during that slot inter-
rupts this latter unit’s service at the end of the slot. When all higher priority
units have left the system the interrupted unit resumes its service, i.e., the not-
yet-served part of this unit has to be served after the interruption. The last
scheduling type is the preemptive repeat priority scheduling discipline, which
we analyzed in section 5. This type of priority scheduling differs from the
preemptive resume priority in the fact that a unit whose service was interrup-
ted by higher priority arrivals repeats its service from the start. Thus the unit’s
service time has to be repeated completely.

Throughout the different queueing models, we used a fairly general analysis
method. Firstly, a Markovian description of the system was found. This
Markovian description exists out of a number of stochastic variables. We ad-
opted the probability generating functions (pgf’s) technique in order to ana-
lyze these priority queues. The joint pgf of the steady-state versions of the
random variables defined in the Markovian description is calculated. From
this joint pgf all further pgf’s and performance measures of interest are calcu-
lated (in steady-state). These pgf’s are: the joint pgf and the marginal pgf’s of
the number of units of both classes in the system at the beginning of a random
slot, the marginal pgf of the total number of units in the system, the joint pgf
of the number of units of both classes in the queue (i.e., without the unit in
service), the joint pgf of the unfinished work of both classes, the pgf’s of the
delays of units of both classes, the pgf of the delay of a random unit and fi-
nally the pgt’s of the waiting times of units of both classes. From these pgf’s, it
was shown how moments and approximate tail probabilities of the stochastic
variables of interest can be calculated.

6.2 Possible extensions and related topics

As with all research, this dissertation - although described as a self-containing
unit - has many possible extensions. To conclude this dissertation, we de-
scribe some of these extensions and other related topics and refer the inter-
ested reader to related work.

The most direct extension is the extension of the input model of the prior-
ity queue. Firstly, we have only described the analysis of a two-class priority
queue in this dissertation. This could be extended to more classes (and even
a general number of classes). For example in the case of the non-preemptive
priority scheduling, we have already analyzed a three-class priority queue
in [Walraevens et al. 2003b] and a priority queue with a general number of
classes in [Walraevens et al. 2004c]. Secondly, the arrival process could be ex-
tended to a correlated arrival process, i.e., in which the numbers of arrivals
during a slot depend on the numbers of arrivals of previous slots. The easiest
extension is a model in which the number of arrivals during one slot only de-
pends on the number of arrivals during the previous slot, but other extensions
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are also possible (e.g. the use of so-called ‘train arrivals’, see e.g. [Wittevron-
gel 1998] for a thorough discussion and analysis of single-class discrete-time
FIFO bulffers with this type of arrival process). Finally, the service time process
could be extended in a couple of ways. In this dissertation, we have only stud-
ied single-server queueing models. This could be extended to multi-server
models. This is e.g. already done by Gao et al. [2004] in the case of a pree-
mptive resume priority scheduling discipline and geometric service times.
Furthermore, service interruptions or vacations could also be incorporated in
the queueing model. Examples of studies of priority queues with vacations
are studied by Blondia [1987, 1989], Sandhu and Posner [1989], Katsaros and
Langaris [1995] and Langaris and Katsaros [1997].

In this dissertation, we studied the system characteristics and mainly focussed
on the system contents and delay. Another interesting topic is studying the
output process of priority queues. The study of this output process is important
when studying cascades of queues, since the output process of one queue is
(related to) the input process of another. For example in [Stanford 1991, 1997,
He and Stanford 1999], the departure process of priority queues is studied in
more detail. In our model, we could e.g. extend the supplementary variable
technique in order to keep track of the length of the ongoing busy period (of a
certain class).

We have analyzed the steady-state performance characteristics in this disserta-
tion. Studying the transient behavior could be interesting as well though. This
could be done by combining our methods and the method used in Bruneel
[1991], where the transient behavior of a single-class discrete-time queue with
service times of one slot was analyzed.

Another extension is combining the different priority scheduling disciplines
analyzed in this dissertation, i.e., combining the NP, the PR, the PRD and/or
the PRI priority scheduling disciplines. This could e.g. be done by splitting
the service times of the low-priority units in several parts and using a different
priority scheduling discipline for each part. Hokstad [1978], Sandhu and Pos-
ner [1989], Cho and Un [1993], Paterok and Ettl [1994] and Machihara [1995]
propose and analyze combinations of NP and PR priority scheduling discip-
lines. Queues with a priority scheduling discipline which is some kind of
mixture between the NP and the PRI or PRD cases are analyzed by Adiri and
Domb [1984], Cho and Un [1993]. Yoon and Un [1991], Drekic and Stanford
[2001], Drekic and Grassmann [2002] and Drekic [2003] investigate combina-
tions between PR and PRI priority scheduling disciplines. Finally, Hong and
Takagi [1997] study a queue with a priority scheduling which is a combination
of NP, PR and PRI.

In the remainder of this section, we will briefly touch upon analyses of some
related (priority) queues. Priority queueing networks are studied by Peterson
[1991], Chen and Zhang [1998, 2000], Afeche [2003] and Kouvatsos and Awan
[2003]. Tijms [1974] investigates a control policy for a priority queue with re-
movable servers. This policy turns the server off when the system is empty
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and turns it back on when a given linear combination of the numbers of units
of all priority classes in the system exceeds a given value. Schaack and Lar-
son [1986] study a multi-server non-preemptive cut-off priority queue. In this
type of priority queues, the system deliberately queues arriving lower pri-
ority units whenever the number of busy servers exceeds a given priority-
dependent number, instead of serving them directly. This is done to keep
some of the servers idle to be able to serve arriving higher priority units imme-
diately. A priority queue with set-up times is studied by Takagi [1990]. In this
system, a set-up time is required before initiating service from the system'’s
idle state. Sidi [1987, 1988] analyzes a discrete-time priority queue with par-
tial interference. More precisely, a number of traffic classes are served accord-
ing to a priority scheduling discipline, while one class uses a random access
scheme (i.e., a cell of this class (if any) is tried to be served with an assigned
probability in [Sidi 1987], while there is some kind of correlation between the
probabilty of attempting to be served in consecutive slots in [Sidi 1988]). If
a cell of one of the priority classes and a cell of this latter class are attemp-
ted to be served simultaneously, there is no service at all. Choi et al. [1998b]
analyze a priority queue with random order of service within each priority
class, while van der Mei et al. [2003] study a priority processor sharing queue.
Antal and Bir6 [2000] study a priority system with one high-priority source
and a number of low-priority sources. The time-axis is divided into frames
(which consist of a fixed number of slots). High-priority cells can be transmit-
ted in every slot, while the low-priority sources can use only one slot in every
frame (evidently, a cell can only be transmitted in that slot if no high-priority
cells are present). Lee and Choi [2001] study a queueing system with a prior-
ity scheduling discipline and a push-out scheme. Leemans [2001] analyzes a
two-server two-class priority queue. The priority order is different for the two
servers: in the first server one of the classes has priority over the other, while
it is the other way around in the other server. Choi and Park [1990], Falin et al.
[1993], Takahashi et al. [1999], Artalejo et al. [2001] and Gémez-Corral [2002]
study retrial queues with an NP priority scheduling discipline. In [Ozawa
1992], an NP priority queue with gates is analyzed. Chao [1994] analyzes a
priority tandem queue. Mandjes [2003] investigates pricing strategies in net-
works with priority. Finally, Maertens et al. [2004] analyze a priority queue
with priority jumps. In this model, units can jump to a higher priority queue
while waiting.



Appendix A

The function Yi(z)

In this appendix, we describe more fundamental details on the function Y7 ()
(or the function Y'(z2) of chapter 2) which is an important function in this dis-
sertation. First, we describe Rouché’s theorem and its use in finding the solu-
tion z; = Y1 (22) of z1 — S1(A(z1, 22)) = 0, for |z1| < 1 and |z2| < 1. Further-
more, we explain the behavior of Y7 (z) on the real axis (outside the unit disk).
For ease of notation, define E1(z1, 22) = S1(A(21, 22)), with A(z1, 22) the two-
dimensional pgf of the numbers of class-1 and class-2 arrivals in a random
slot and S1(z) the pgf of the service time of a random class-1 unit. Further-
more, we define E}l) (21, 22) as the first derivative of E;(z1, 22) in z;. Note that
E1(z1,22) is also a two-dimensional pgf, more precisely, it is the joint pgf of
the numbers of class-1 and class-2 arrivals during the service time of a class-1
packet.

A.1 Rouché’s theorem

Theorem A.1 Let f(z) and g(z) be two analytic functions inside and on a closed
contour C'in the complex z-plane such that |g(z)| < |f(z)| for all z on C. Then the
functions f(z) and f(z) + g(z) have the same number of zeros inside C.

A.2 Determination of Y;(z) for |z| < 1

We use Rouché’s theorem to prove that for each zo (with |z3| < 1), there exists
a unique solution of z; — E1(z1, z2) = 0 for z; in the unit disk.

First, we look for a contour C to apply Rouché’s theorem. Therefore, we first
compare the functions f(|z1]) £ |21] and §(|21]) £ E1(|z1], |22|), with 22 a fixed
point inside the unit disk and |z, | in the range [0, 1]. Firstly, it is easily seen that
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F(1z1]) and §(|z1|) are continuously increasing functions in [0, 1[. Furthermore,
since

§(0) =E1(0, |22]) (A1)
>F41(0,0) (A.2)
>0 (A.3)
=1(0), (A4)
and since
g(1) =E1 (1, |22]) (A.5)
<1 (A.6)
=f(1), (A7)

F(z1)) —§(]z1)) has exactly one zero z, in [0, 1. In the following we will define
the contour C as the circle with radius R with R a randomly chosen real num-
ber in the interval ]z, 1[. Note that it directly follows from the choice of R
that

9(R) <f(R). (A.8)

Now, define
f(z1) &2 (A.9)
9(z1) £E1 (21, 22), (A.10)

with z; still a fixed point inside the unit disk. f(z1) is analytic in the whole
complex plane and since E;(z1, 22) is a pgf, g(#1) is analytic inside the unit
circle. Both f(z1) and g(z1) are thus analytic inside and on the contour C - a
circle inside the unit disk. Since

(1) = f(R), (A.11)

and - keeping in mind that |z < 1 -

l9(21)| = |E1(21, 22)] (A.12)
< Ei(|z1], |22]) (A.13)
=g(R), (A.14)

on the contour C (|z1| = R), it follows from (A.8) that |g(z1)| < |f(z1)| on C. It
then follows from Rouché’s theorem that z; — E(z1, 22) has the same number
of zeros as z; inside the contour C. The latter has one solution - namely z; =0
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- and thus z; — E1(z1, z2) has a unique solution for z; inside C. Since the
contour C can be chosen arbitrarily close to the unit disk - inequality (A.8) is
valid for every R €]z, 1[ - 21 — E1(21, 22) has one solution inside the unit disk
which is denoted by Y7 (22) (for each zs, with |z2| < 1).

Note that another possible choice of C'is the unit circle. However, since pgf’s
are not necessarily analytic on the unit circle this would have restricted the
choice of the pgf E(z1, 22) in order for Rouché’s theorem to work, in contrast
with the proof given in this appendix, which is valid for every pgf Ei (21, 22).

The next question is whether Y7 (2) itself is an analytic function inside the unit
circle (i.e., for |z| < 1)? Since Y7(z) is a pgf - in the dissertation a stochastic
variable is found with a pgf equal to Yi(z) - Y1 (%) is indeed an analytic func-
tion inside the unit circle. Furthermore we have Y7 (1) = 1.

A.3 Outside the unit disk

To calculate the (tail) probabilities of the stochastic variable corresponding
with the pgf Y1(z), the behavior of Y7 (z) outside the unite disk is important,
and more precisely the singularities of this function. To calculate the tail prob-
abilities only the dominant singularity, lying on the positive real axis, is im-
portant. Therefore, we limit the function Y (z) for values of z on the positive
real axis in the remainder. First, we give a useful theorem, the implicit function
theorem. There are many versions of this theorem, depending on the domains
and types of functions one is dealing with. The following version is suitable
for our case.

A.3.1 The implicit function theorem

Theorem A.2 Given a real function F(z1,z2), which is continuously differen-
tiable in the neighborhood of z1 = z§0),z2 = zéo). If F(z§°>,z§°>) = 0 and
F(l)(zgo),zéo)) # 0 then there exists a unique continuously differentiable func-
tion f(z2) in the neighborhood of zéo) with z§°> = f(zéo)) and F(f(z2),22) = 0.

A.3.2 Yj(z) on the positive real axis

We have already proved that Y (z) is continuously differentiable in the inter-
val [0, 1[. Can we now extend the function Y7 (z) for higher 2? Starting in the
point z = 1,Y7(z) = 1, we use the implicit function theorem to investigate in
what region Y7 (z) is continuously differentiable. Denoting F'(z1,22) = 21 —
FE4(z1, 72), it can be seen that the implicit function theorem will work as long
as F(z1, 2) is continuously differentiable and F()(Y;(2),2) # 0. F(z1,22)
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is continuously differentiable iff Ey (21, 22) is continuously differentiable and
FO(Y(2), 2) # 0 iff

EW(Y1(2),2) # 1. (A.15)

We start at z = 1. We assume that E; (21, 22) is continuously differentiable in
(1,1). Furthermore, condition (A.15) is true, since E"(Y;i(1),1) = p; < 1.
We furthermore assume that £(V)(Y;(z), ) is a strictly increasing function in z
inside the region of convergence of E(Y (z), z) (which is true for most ‘normal’
arrival and service processes). So, by increasing z, E!) (Y, (2), 2) will get closer
to 1. As long as it does not reach 1, Y7 (z) can be defined for that particular z.
For a specific z however, denoted by zp, E(l)(Yl(z), z) becomes 1, and the
implicit function theorem can no longer be used. So Yi(z) can be defined in
the interval [0, z5].

The last question remaining is what happens for z = z5? Note that it can-
not be proved through the implicit function theorem that Y7 (zp) exists (or,
in other words, stays finite). We can however illustrate this by noting that
z1 — F1(z1, 22) has 2 solutions for z5 € [0, zg[. This can for instance be seen
in Figure A.1. In this figure, we have shown z;, and E(z1, z2) for four z5's,

denoted by 24" (i = 1,...,4), with

2D < 2P < Y

— 25 <2, (A.16)
with F(z1, 22) a two-dimensional pgf (this is just an example; the specific ex-
pression of the pgf E1(z1, z2) is not important). We see that z; — E; (21, 22) has
two solutions if zo < zp. The smallest solution is Y;(z3) and we denote the
other solution by Y;*(z2). Notice that for z, < zp this second solution always
exists, since E(l)(Y1(22)7 z9) < 1 and thus E;(z1,22) and z; will intersect in
this point. Since we assumed throughout this dissertation that £ (z, z2) and
E® (21, 22) go to infinity for z; equal to the convergence radius of E;(z1, 22)
(for the specific z2), E1(z1,22) and z; intersect once more, resulting in the
second solution Y7*(z2). It can be proven that Y7*(z) is a continuously differ-
entiable function for z < zp in a similar way as this is proven for Y;(z). Since
FE4(z1, 22) is a strictly increasing function in z, it can be seen that Y;(2) is a
strictly increasing function while Y7*(z3) is a strictly decreasing function (see
Figure A.1: Yl(zél)) < Yl(zf)) and Yl*(zél)) > Yf‘(zf))). For 2z, going to zp,
Y1(z2) and Y;*(22) grow nearer to each-other, resulting in Y3 (z5) = Y{*(zp). It
can thus also be seen that Y7 (zp) will always be finite, since for all z, < zp,
Yi(z,& < Yl(ZB) = Yi*(ZB) < Yi*(z*) For zo > zp, El(zl,ZQ) > 21 for all 21
resulting in the fact that z; — E1(21, 22) = 0 has no solution for z, > zp (see
the curve of E;(z1, z§4)) in Figure A.1). For the same input functions as used
in Figure A.1, Y1(z) and Y7*(#) are shown in Figure A.2.

So, summarizing, z; — F4(z1, 22) = 0 has 2 solutions for z; when z; € [0, zg],
which coincide in zg. For 25 > zp, 21 — F1(21, 22) = 0 has no solution. Y7(z)
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thus has a branch point zp on the real positive axis and a branch cut which
is chosen on the positive real axis (starting in this branch point). This branch
point is furthermore the dominant singularity of Y7 (z).
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