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Abstract—In this paper, we describe a framework for surface
registration. The framework consists of a combination of rigid
registration, elasticity modulated registration and the use of a
shape model prior. The main goal in this paper is to mini-
mize the geometric surface registration error while maintain-
ing correspondences. Experiments show improved geometric fit,
correspondence, and timing compared to the current state of
the art. Possible applications of the framework are construction
of correspondences for shape models, reconstruction of missing
parts, and artifact reduction.

I. INTRODUCTION

Surface registration is a frequently used technique in many
applications, such as surface recognition [1], [2] or surface
reconstruction [3], [4]. The goal of surface registration is to
deform one surface to another while finding a meaningful map-
ping between the vertices of the surfaces, by maintaining the
correspondences. The distance between corresponding points
on the target surface and the deformed source surface must be
minimal.

A developer of products that have to fit closely to the
human body or a part of it, needs to gain insight into the
shape variability of that specific part of the body of a target
population. Statistical shape modeling is a promising approach
to map out this variability [5]. The construction of such mod-
els, based on surface-to-surface correspondences is, however, a
challenging task. 3D surface registration is an elegant approach
to obtain such correspondences. Based on the distribution of
the shape variances, ergonomic products can be developed and
tested on characteristic shapes. Furthermore, shape models are
useful in intelligent systems for made-to-measure products [6].

Obtaining surface correspondences can be done manually
[7], but this is time-consuming and error prone. The current
challenges for surface registration are flexibility, robustness
and performance [5]. Surface registration can be done by
parametrization [8]–[11]. A mapping between the source and
target surface is obtained through parameterization to a com-
mon mathematical domain, such as a sphere or cylinder. The
disadvantage of such a technique is that the surfaces must
have the same non-complex topology, because they have to be
deformed to the same target space.

Another approach is spatial registration, where features are
matched [1], [12], [13]. With these techniques, each vertex
is transformed individually. Amberg et al. [14] presented an

algorithm in which each vertex is displaced separately by
an affine transformation matrix, but with constraints. They
introduced a stiffness, causing a vertex to be displaced along
with its neighbors. The stiffness value decreases during the
iterations, allowing a more elastic deformation. This results in
a good geometric fit, but often poor correspondences.

Our main goal was to develop a registration framework
that provides an accurate geometric fit while maintaining cor-
respondences. In this paper, a method for surface registration
with automatic transfer of correspondences from the source
to the target surface is described. The proposed framework
extends Amberg’s approach by splitting the registration step
into a local and global part and by exploiting prior knowledge
i.e. a shape model [15] in elastic surface registration. The
shape model has the advantage that realistic deviations of the
mean are known. The combination with elasticity makes the
framework more flexible and a better geometric fit is obtained
with improved correspondences.

II. METHOD

In this section, the developed framework is described. It
extends the elegant algorithm of Amberg [14] by separating the
global registration from the local registration step and adding
a shape model prior, resulting in a more efficient algorithm.
The framework is illustrated in Fig. 1.

Fig. 1: The framework of the proposed algorithm.

The surfaces are represented by triangle meshes and no
landmark information is used. The algorithm is however triv-
ially extendible to include prior landmark correspondences cfr.
Amberg.
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A. Amberg

1) N-ICP-A: In [14], Amberg et al. presented the nonrigid
optimal step iterative closest points (ICP) algorithm with affine
transformation matrices (N-ICP-A). Each vertex undergoes
a transformation, while motion is restricted by a stiffness
factor β that regulates the strength of the connection with the
neighboring vertices and which decreases during the iterations.
In this way, the movement of neighboring vertices is con-
strained, resulting in similar movements for nearby vertices, as
displayed in Fig. 2. This affine transformation matrix implies
also a global alignment.

By applying weights to each vertex, the importance of
this vertex can be set. When there is no corresponding point
found for a vertex of the target mesh, its weight is set to
zero. In that case, this vertex simply translates along with
its neighboring vertices. While many weighting schemes are
possible, we used binary weights for simplicity, which were
observed to be sufficient.

Fig. 2: Schematic representation of elasticity. If one vertex,
in this case the red dot, is transformed, the neighboring
vertices are forced to move along with this vertex. The closest
neighbors (blue dots) are the stiffest and move more than the
distant neighbors (green dots).

Let X be a 3nv × 4 matrix that stores a 3 × 4 affine
transformation matrix for each vertex of the source surface.
X can be determined by solving a linear system that consists
of three expressions.

• The stiffness term Es(X) is the Frobenius norm ||· ||F
of the Kronecker product⊗ of incidence matrix M and
matrix G. M is a ne×nv matrix, with ne the number
of edges and nv the number of vertices. M indicates
the start (-1) and end (+1) vertex of each edge. G is
a diagonal matrix diag(1, 1, 1, 1). Hence:

Es(X) = ||(M⊗G)X||2F (1)

• The distance term Ed(X) is built up from a nv × nv

diagonal weight matrix W, which indicates the weight
of each vertex. Let V be a sparse nv×4nv matrix that
holds the coordinate vectors v of the source surface,
with vi = [x y z 1]T , where vi starts at position
(i, 4i) of V. Furthermore, nv × 3 matrix T holds the
coordinates of the corresponding point for each vertex
on the target surface. Then,

Ed(X) = ||W(VX− T)||2F (2)

• The landmark term El(X) consists of nv × 3 matrix
TL and nv × 4nv matrix SL, which are the landmark
matrices.

El(X) = ||SLX− TL||2F (3)

The sum of the terms must be minimized. All terms together
give a system that must be solved for X:[

βM⊗G
WV
γSL

]
X =

[ 0
WT
TL

]
(4)

In Eq. (4), β represents the stiffness factor that limits the
deformation and γ is the landmark weight, used to control
the importance of the landmarks. Landmarks are, however, not
used in this paper.

2) N-ICP-T: In the nonrigid optimal step ICP algorithm
with transformation vertices (N-ICP-T) of Amberg et al. [14],
the vertices are only allowed to translate. This is a simplified
version of the N-ICP-A method and results in larger geometric
and correspondence errors, as rotation of the object is not
possible. The W(T−S) matrix is a nv×3 matrix and represents
the weighted distances between each vertex on the source
surface S and its corresponding point on the target surface
T [

βM
WI

]
X =

[
0

W(T− S)

]
(5)

Eq. (5) must be solved for X, which is a nv × 3 matrix
of displacement vectors. Each row represents the translation
vector for its associated vertex.

B. Registration of Two Surfaces

For the first part of our framework, in order to obtain a
population correspondence, one surface of the population is
registered to every other surface of the population. By this
step, the points of the source surface will be located on the
same anatomical locations on the deformed source surface.
Both surfaces are defined as triangular meshes.

First, a rigid registration is performed. The next part of the
registration procedure is done by iteratively repeating a rigid
registration combined with an elasticity modulated registration.

Si = (1− α) ·R(T, Si−1) + α · E(T, Si−1, β) (6)

In Eq. (6), Si is the nv×3 matrix that contains the coordinates
of the vertices of the source surface at iteration i. Furthermore,
R(.) and E(.) represent the rigid and elastic registration,
respectively.

The combination of both techniques is balanced with a
weight factor α ∈ [0, 1]. At the first stage of the registration,
the rigid registration is more important. Later, the elastic
registration becomes more apparent.

During the iterations, α will increase and β will decrease.
This makes that the elastic deformations will become more
prominent with respect to the rigid transformation through the
iterations. β is updated every u iterations.

u =
N

βstart − βend
(7)

with N the total number of iterations. β is determined by

βi = βi−1 −
(
βstart − βend

N

)2

(8)
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Appropriate values for these weights have been obtained
empirically. For this paper, α goes from 1 to 0 and β goes
from 50 to 5. In Section III-E, the influence of the stiffness
term is investigated.

We will refer to the above algorithm as RN-ICP-T, because
it combines a rigid registration and the N-ICP-T algorithm of
Amberg. In the following subsection, the RN-ICP-T algorithm
is discussed in more detail.

1) Rigid Registration: By this step, a rigid transformation
is performed. First, in both surfaces corresponding points are
identified. This is done by casting a ray along the normal ns

of a vertex of the source surface to the target surface. The
intersection point does not have to be a vertex, but can be any
location on the target surface. The direction of the normal nt

of this intersection point of the ray with the target surface is
compared with the direction of ns by

d = ns · nt (9)

If the dot product d > 0.5, the points can be considered
as corresponding points. Multiple intersections of the normal
ray with the target surface are possible. The vertices with
normals for which d > 0.5 and at the shortest Euclidean
distance from each other, are corresponding points. The second
constraint is that two points can only be corresponding if the
line segment between them does not intersect the surface. The
corresponding points are mapped onto each other to find the
optimal affine transformation matrix for the surface, by least-
squares minimization. This means that the distance between
corresponding points is minimal.

2) Elasticity Modulated Registration: Apart from a global
transformation, also local deformations are needed to obtain
an accurate geometric fit. It is implemented by using the N-
ICP-T formula of Amberg’s algorithm, which minimizes the
difference between the translations of neighboring vertices. We
chose for the N-ICP-T algorithm because it has four times less
linear equations than the N-ICP-A algorithm, what leads to a
much shorter calculation time for solving the linear system.
In combination with a rigid transform, N-ICP-T even gives
an improved geometric fit and a smaller correspondence error
regarding to the current state of the art.

C. Building a Shape Model

The second part of our framework consists of building
a statistical shape model [8] based on the correspondences
that resulted from the surface registration. This is done by
using principal components analysis (PCA). In this model, the
mean surface and the eigenmodes are incorporated. To build
a shape model using PCA, it is important that the surfaces
are superimposed by optimally translating and rotating the
surfaces The optimal poses are determined by Procrustes
analysis. A shape model can be presented with following
formula.

y = C(X̄ +Φb) (10)

In Eq. (10), y denotes an instance of the model, X̄ represents
the mean surface, C is a similarity transformation and b are
the shape parameters. The matrix that holds the eigenvectors
of the shape model is represented by Φ. This means that a new,

realistic surface can be formed by adapting the shape model
parameters.

D. Surface Registration with Shape Model Prior

In this section, the approach for registration with a shape
model prior is discussed. A shape model contains more infor-
mation than a single surface, so it is expected that this will
give improved correspondences than registration starting from
a single surface. The goal is to minimize the distance between
the corresponding points, by deforming the shape model in
combination with a further elastic deformation.

Surface registration with a shape model is done by com-
bining a model regularized registration with an elasticity regu-
larized registration to obtain good results on both geometric fit
and correspondences. The elasticity regularized registration is
the same as described before in Section II-B2, but the model
regularized registration requires a different approach because
the model variances are incorporated.

We will refer to the above algorithm by RNM-ICP-T. This
algorithm is similar to the RN-ICP-T algorithm, but makes use
of prior shape model knowledge instead of registration with a
random source surface.

1) Model Regularized Registration: First, a fitting of the
PCA model to the target surface is done, effectively deriving
the contributions for each of the shape modes. The goal is
to adjust the principal component contributions so that the
model approaches the shape of the target surface. The number
of shape modes m that are included in each iteration i are
calculated by following formula.

mi = ceil(
mi−1

4
· 4 · (i+ 1)

N
) (11)

where N stands for the total number of iterations. m0 is the
total number of shape modes of the shape model.

The model parameters b can be found by solving

ΦT
mi
·WΦmi

· b = ΦT
mi
·W(t− s̄) (12)

In Eq. (12), W is a diagonal 3nv × 3nv matrix that holds the
weights, t is the vector that holds the positions of the vertices
of the target mesh and s̄ the vector holds the positions of the
mean mesh, both with size 3nv . Matrix Φmi is a 3nv × nm

matrix that holds the first mi shape modes. A new surface is
formed by the mean shape and a linear combination of the
principal components, with parameters b.

The algorithm for registration with a shape model is a
combination of both model regularized registration M and
elasticity regularized registration E.

Si = (1− α) ·M(T, Si−1) + α · E(T, Si−1, β) (13)

III. EVALUATION

In this section, the results of the performed tests are
described. Due to the large calculation time, only the results of
the human head registration are compared with the N-ICP-A
algorithm of Amberg. The framework is tested on the full body
and specific body parts. Each registration technique is set to
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run for a minimum of 50 iterations and a maximum of twice
the set number of iterations or when convergence is obtained.
This is when the convergence ratio c is less than 0.0001. The
calculation is based on the current (i) and previous (i − 1)
mean distance d between the source and target surface.

c =
di − di−1

di
(14)

In Section III-C, tests are performed on the quality of the
geometric fit, in Section III-D the quality of the correspon-
dences and in Section III-F the execution time of the algorithm.
The influence of the stiffness term and number of iterations
are also tested in resp. Section III-E and Section III-G.

A. Data Sets

For the performed tests, four classes of data sets are used.
There are 106 full-body scans, 150 ear scans, 90 clavicula
scans, and 100 head scans.

B. Shape Model

For this illustration, a shape model is built from 100 MRI
scans of human heads, that are registered with one surface. The
five first shape modes of the model are displayed in Fig. 3.

Fig. 3: The first five eigenmodes of the head model, plus and
minus 3 standard deviations. The model is created from 100
surfaces. The colors indicate the magnitude of the landmark
covariance tensor from blue (little variation) to red (many
variation).

C. Evaluation of the Geometric Fit

It is important that the registration results in an accurate ge-
ometric fit. This means that the distance between the deformed
source surface and the target surface must be minimal.

In Table I, the error on the geometric fit (in mm) from the
deformed target surface on the source surface are summarized.
There, the distance from each point of the deformed source
mesh is measured to the closest point on the target mesh.

N-ICP-A RN-ICP-T RNM-ICP-T
head 0.022 ± 0.006 0.006 ± 0.007 0.006 ± 0.001
body - 0.092 ± 0.072 0.053 ± 0.040
ear - 0.346 ± 0.334 0.095 ± 0.067

clavicula - 0.065 ± 0.007 0.052 ± 0.005

TABLE I: Geometric error (mm).

It can be seen that the proposed algorithms result in an
improved geometric fit compared to the N-ICP-A algorithm.

D. Evaluation of the Correspondence Quality

For evaluating the correspondences, some characteristic
points are annotated on the source mesh. The same anatomical
locations are annotated on the target mesh. When the regis-
tration is done, these locations can be loaded again on the
deformed mesh. The Euclidean distance between correspond-
ing points in the target mesh and deformed source mesh is
calculated. The smaller this distance, the better. In Figure 4,
the validation of the correspondences is shown for a typical
surface.

With N-ICP-A, the vertices are deformed to the closest
point without aligning the surface features properly. While it
leads to negligible geometric errors, the correspondence error
is generally large. This is clearly visible in the shoulder area in
Fig. 4e. When using a shape model, the surfaces are globally
well registered before local deformations are allowed.

In Table II the results of the tests are shown. The algo-
rithm is performed on 10 surfaces of each class. The mean
correspondence error (in mm) is displayed in the table.

N-ICP-A RN-ICP-T RNM-ICP-T
head 6.13 ± 1.16 4.23 ± 0.89 4.14 ± 0.89
body - 26.84 ± 3.61 25.88 ± 3.35
ear - 4.09 ± 2.75 2.18 ± 0.51

clavicula - 4.42 ± 1.33 4.50 ± 1.36

TABLE II: correspondence error (mm)

The N-ICP-A algorithm of Amberg gives significantly
larger errors. This is because there is no overall rigid allign-
ment step, so the chances are higher that the source vertices
migrate to a wrong position on the target vertex. Once such
an error is made, the algorithm is not capable of repairing
this. The proposed technique makes use of a separate, overall
rigid step and also a global non-rigid registration by the shape
model, which makes the registration more robust.

Evidenced by the results, the RN-ICP-T and RNM-ICP-T
algorhithms give the smallest errors. The results of the RNM-
ICP-T algorithm are the most stable. It is clear that the algo-
rithm of Amberg gives the worst results on correspondence.

E. Evaluation of the Sensitivity of the stiffness

For this test, the stiffness value evolves from 50 to 5.
This value is empirically determined. The smaller the stiffness
value, the more freely the vertices can move.

The influence of the stiffness depends on the number
of triangles on the surface. The more triangles, the smaller
the distance between neighboring points. This means that a
surface with many triangles will be less elastic than a surface
with less triangles. When a surface is highly curved, finding
corresponding points will be more difficult and it is less likely
that all corresponding points can be found. In that case it is
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(a) (b) (c) (d) (e)

Fig. 4: Validation of the correspondences, displayed by an example. The source and target surface are displayed in Fig. 4a and
Fig. 4b respectively. Fig. 4c shows the annotations on the result of RN-ICP-T and Fig. 4d for the result of RNM-ICP-T. Fig. 4e
is the result of N-ICP-A.

better that the source surface migrates slowly to the target
surface to reduce the chance on errors. Once a vertex has
migrated to the wrong corresponding point, this fault is less
likely to be repaired. The more similar the surfaces, the more
elastic the source surface can behave. In any case, it is best to
end with a small stiffness value close to 5.

In Fig. 5, the influence of the stiffness value is tested on
10 clavicula surfaces. The RNM-ICP-T algorithm ran from a
start value of 100 to an end-value ∈ [0, 100], with a step size
of 5. The algorithm also ran from a start value ∈ [0, 100] to
an end value of 0.

(a) (b)

Fig. 5: Evaluation of the influence of the end stiffness value,
tested on 10 clavicula surfaces.

It is clear that it is best to end with a small stiffness value.
From Fig. 5b, it can be obeserved that a stiffness value of
0 gives a worse result on correspondences than a value of 5.
This is because the vertices have too much freedom to migrate
to an inaccurate position, due to drift of the vertices because
there are no restrictions. On the other hand, ending with a
stiffness of 0 gives the best results on geometric fit. For the
start stiffness value has little influence on the results, but a
starting with a low stiffness value (less than 20) results in too
much freedom of movement and a high stiffness value (more
than 80) leads to a registration that is too rigid. From tests it
turned out that a start value of 50 gives acceptable good results
on correspondence and geometric fit for all types of surfaces.

F. Evaluation of the Timing

The execution time of the algorithm depends on the number
of vertices, because this determines how many times there

must be searched for corresponding points and the size of the
linear system.

A test is performed on 10 surfaces, registered by the three
techniques for 50 iterations. The results are shown in Table III.

N-ICP-A RN-ICP-T RNM-ICP-T
head 578 ± 102 14 ± 4 16 ± 4
body - 5 ± 1 6 ± 1
ear - 166 ± 62 127 ± 30

clavicula - 12 ± 2 15 ± 2

TABLE III: Run times of the algorithm (min)

Amberg’s algorithm has the largest calculation time. The
most time consuming parts of the RN-ICP-T and RNM-ICP-
T algorithms are the solving of the linear system and the
determination of the corresponding points. Solving the linear
system takes about 1/3 of the total time of an iteration.
The determination of the corresponding points takes about
1/3 of the time for as well the rigid as elastic registration.
For Amberg’s algorithm, the solving of the linear system
takes most of the time, about 99% of the total time of an
iteration. In our implementation, this is because the number
of unknowns is four times larger relative to the one used in
this presented framework. This leads to a factor 40 increment
in time, compared to the proposed algorithms in this paper.

G. Influence of the Number of Iterations

For the previous tests, the RN-ICP-T, RNM-ICP-T and N-
ICP-A algorithms ran 50 iterations. The number of iterations
determines how fast the stiffness decreases and the weight
factor α increases, because these parameters evolve linearly to
a fixed end value. During the first iterations, the registration is
more global because of the low weight factor α and the small
number of eigenmodes. At the end it becomes elastic and the
deformation is more refined.

When the number of iterations is small, e.g. less than
30, there is not much time to obtain a good rough and fine
registration. This may lead to an inexact registration. On the
other hand, by setting the number of iterations too high the
algorithm will take too long without improvement with respect
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(a) (b) (c)

Fig. 6: The more iterations, the smaller the geometric error. It is seen in Fig. 6a that this applies to both RN-ICP-T and RNM-
ICP-T. Fig. 6b shows that the correspondence error decreases more for RNM-ICP-T than for RN-ICP-T. The execution time of
both algorithms increases linearly, as seen in Fig. 6c.

to less iterations. The number of iterations will depend on the
desired precision of the surface registration.

Tests are performed on registration of 10 surfaces of the
human head. Each surface is registered by 10 to 100 iterations,
with a step size of 10.

For RN-ICP-T, the number of iteration only has a sig-
nificant influence on the geometric fit and the execution
time. There is no improvement on correspondences, while the
geometric fit gets better. When registering with a shape model,
the correspondences also improve over the iterations. These
factors must be taken into account when choosing the number
of iterations. For our applications, 50 iterations is sufficient.

IV. CONCLUSION

In this paper, two new techniques for surface registration
were described. They proved to score well on geometric
fit, correspondences, and duration, compared to the N-ICP-
A algorithm of Amberg. Another advantage over Amberg’s
algorithm is that the proposed algorithms run about 40 times
faster.

The optimal stiffness value depends on the type of surface,
or more specifically the number of triangles and the curvature
on the surface. The optimal number of iterations also depends
on the type of surface and the application. The more similar the
surfaces, the fewer iterations are needed for good correspon-
dences and a good geometric fit. For the tests in this paper, all
surfaces are resampled to 10, 000 vertices, which makes that
all surfaces could be registered with the same start and end
stiffness value.

The choice of the number of iterations depends on the
desired accuracy of the results. More iterations will yield
improved results on correspondence and geometric fit, but the
execution time will increase. The tests show that 50 iterations
gives good results within an acceptable time frame for each
class of surfaces considered in this paper.
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