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Abstract— Estimating a user’s gaze direction, one of the main
novel user interaction technologies, will eventually be used for
numerous applications where current methods are becoming less
effective. In this paper, a new method is presented for estimating
the gaze direction using Canonical Correlation Analysis (CCA),
which finds a linear relationship between two datasets defining
the face pose and the corresponding facial appearance changes.
Afterwards, iris tracking is performed by blob detection using a
4-connected component labeling algorithm. Finally, a gaze vector
is calculated based on gathered eye properties. Results obtained
from datasets and real-time input confirm the robustness of this
method.

I. INTRODUCTION

User-friendly applications are generally built with con-
sideration to a user’s intentions and interests. Ideally, such
applications are able to adapt to different users. With the aid
of computer vision a person’s focus of attention can be de-
tected without the need for physical contact, while employing
this gathered data as an interaction method or to determine
the user’s regions of interest for further processing. Similar
technologies are already available today for various purposes,
for example heat mapping, ATM security and human-computer
interfaces, yet all of these applications still introduce restric-
tions or require complex hardware setups.

A. Gaze estimation technologies
Several possible approaches using head-mounted [1] or

multiple near-infrared [2] cameras have been put forward
regarding gaze estimation. Eye tracking needs to be highly
accurate if used for gaze estimation. Therefore, head-mounted
cameras are the optimal solution when dealing with low-
resolution images or large distances between the camera and
user. However, such an approach is extremely intrusive and
therefore not suitable for user friendly applications.

Using near-infrared illuminators offers great advantages
above purely vision based eye trackers. Not only do they
reduce the effect of different ambient light conditions, they
also bring out the difference between the iris and pupil as
well as the reflections from light sources on the iris, which can
be used to track the current eye gaze direction as explained
in [3]. However, infrared sensors are active devices which are

not part of most people’s day-to-day working environment and
can introduce damage of the eyes [4]. Furthermore, infrared
signals are easily disturbed by the presence of other infrared
sources such as remote controls or sunlight.

In case of detecting a 3D gaze point, stereo-vision can be
employed to accurately determine the gaze direction and gaze
depth using tracking data from both eyes. Being able to detect
this gaze allows for an accurate detection of the 3D point of
focus as long as the user’s gaze is directed towards a position
between himself and the camera system.

B. Tracking face position

Different face tracking methods exist, for example, involv-
ing active contours [5], Active Shape Models (ASM) [6] or
Active Appearance Models (AAM) [7], [8], [9]. While ASM
are based solely on the shape of a person’s face, AAM also
includes texture or other appearance based features within this
shape. They both use Principal Component Analysis (PCA)
[10] for dimensionality reduction while training.

Methods using a single low resolution camera while al-
lowing free head movement however, cannot solely depend
on the position of both irises to estimate a user’s gaze
direction as the incoming frames are of such low quality
they are nearly impossible to track. This accuracy problem is
resolved by combining 3D face pose tracking and iris tracking,
proposed by [11]. We have approached the 3D face pose and
animation tracking by finding a linear relationship between
face parameters and facial appearance changes. This is done
using a Canonical Correlation Analysis (CCA) [12], similar
to techniques described in [13], [14]. CCA based tracking can
be compared to AAM as both methods find the relationship
between a residual and pose parameters. However, our method
creates an adjustable 3D face model which gives us the
possibility to track the 3D pose parameters. We also compare
the current face with a reference image to adjust the pose
parameters, while AAM performs an analysis by synthesis:
creating a face image by means of the learned AMM and
compares this to the face in the actual frame in order to retrieve
a best possible duplicate.
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C. Our approach

By retrieving the face position using CCA, we are able to
estimate the gaze direction with respect to the face position
instead of the camera position, providing a better prediction.
Also, a wider region of interest including the visible sclera of
the eyes can then be used to estimate the gaze direction vector.
As soon as the position and frontal direction of the face are
known, the position of both irises can be extracted from the
eye’s region of interest by implementing a blob detection using
a fast and efficient two-pass 4-connected component labeling
algorithm [15]. Finally, the gaze angle with respect to the
camera can be calculated from both face and eye rotations.

II. FACE TRACKING

Firstly, the 3D pose and animation of the user’s face is
tracked by creating a frontal view and training different poses
of this view using CCA [12]. This provides us with face poses
relevant for future tracking of the eyes, as well as the position
of the eyelids and eyebrows.

A. 3D face model

In this paper, the CANDIDE-3 face model [16], a parame-
terized face mask developed for model-based representations
of human faces, is used. This model can be controlled by an-
imation units and initialized by shape units and is represented
as follows:

g = ḡ + Sτs +Aτa (1)

with ḡ being the standard CANDIDE-3 shape model, S and
A the columns containing our shape units and animation units
respectively, τs being 14 shape parameters able to reshape the
wireframe to the most common head shapes and τa being the
animation parameters to control facial movement. We have
limited τa to five parameters relevant to our goal, being the
inner and middle eyebrow movement points and the combined
movement of the eyelids.

B. Initialization phase

During an initialization phase, the first frame is used as
reference to manually adjust the face model wireframe to the
user’s face using 14 adjustable shape parameters. A 3D model
is also created and shown rotating around its vertical axis to
visualize the depth changes by wrapping this snapshot around
the face model wireframe, as seen in Figure 1.

Fig. 1. Visualizing the textured 3D face model

C. Image patch
Once the face model has been initialized, an image patch

will be created. Image patches will be created during both
training and tracking phases, and represent a frontal view of
the face, as well as two semi-profile side views. We create
this 2D image patch by projecting three 3D face models on
a 2D environment, which have been rotated -60◦, 0◦ and 60◦

respectively. A simple color normalization method is used to
increase robustness to lighting changes:

RGB = min(
127.5RBGt

RGBavg
, 255) (2)

Where RGBavg is a vector containing the averages of all
pixels underneath the face model wireframe for each RGB
channel at initialization, and RGBt is a vector containing all
pixels for each RGB channel of the current frame. The result
is then clipped when exceeding 255. Afterwards, we convert
this frame into a grayscale image. Slight differences between
an original and a normalized frame are noticeable at the facial
edges, which can be useful during facial rotation tracking as
it creates slightly better results after performing a canonical
correlation analysis.

The 2D reference image patches are finally created using
the texture from the initialization phase, illustrated in Figure
2. These patches are important during training as this phase
depends on the differences between image patches created
from incoming frames and this reference image patch.

a. b.

Fig. 2. 2D Reference image patch for pose tracker (a), and animation tracker
(b).

D. Training phase
All possible face model rotations and translations are trained

separately, as well as several rotational combinations and the
five animation parameters mentioned in section 2.1. A single
tracker was found to be far too inaccurate, therefore, two
independent trackers have been implemented, training on the
pose and animation states respectively. The different state
vectors assigned to these trackers, with θ containing rotations
and t translations, are:

bPose = [θx, θy, θz, tx, ty, tz]
T (3)

bAnimation = [τa1, τa2, τa3, τa4, τa5]
T (4)

During the training phase, reference face textures from the
initialization phase are wrapped around face models adjusted
by bPose or bAnimation. While the first tracker is based on
the full image patch which is resized to 88x75, the second
tracker uses only a region of interest around the eyes, resized to
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140x38. This setup improves robustness for tracking both the
pose and the animation state differences. For practical reasons,
we will from now on assume a single tracker using state vector:

bTraining = [θx, θy, θz, tx, ty, tz, τa1, τa2, τa3, τa4, τa5]
T (5)

Two datasets Q1 and Q2 are created during training. These
datasets hold the normalized facial appearance variations and
the variation in the state vector ∆bTraining respectively.
By facial appearance variations x� we mean the difference
between a created 2D image patch and the reference image
patch made during initialization:

x� = (xt − x(ref)
t ) (6)

Currently, 535 different shape vectors are trained, out of
which 329 are poses (rotations and translations) and 206 are
different animation states. These values are sampled densely
around the reference position b0, and more sparsely when
moving away from this position as illustrated in Figure 3.

Fig. 3. Empirically chosen values for a parameter of bTraining

These values were obtained empirically and produced good
results with only 8◦ variation of possible rotations and a frac-
tion of possible translations trained. Changing these training
shape vectors will result in a less accurate tracking result.

E. Canonical Correlation Analysis
After creating Q1 and Q2, a linear relationship between

these sets can be found to create a motion model matrix G
which will be used during tracking. By using CCA we try
to maximize the correlation between these datasets, which
are sometimes referred to as independent and dependent data
respectively. To situate the mathematical problem, we map the
centered data A1 and A2 to the direction vectors w1 and w2

and obtain two new vectors, called the canonical variates or
scores:

z1 = A1w1 (7)

z2 = A2w2 (8)

The cross-correlation for estimating the degree to which two
series are correlated is calculated, with µ1 and µ2 being the
expected values, by:

ρ =
(z2 − µ2)(z1 − µ1)�
(z2 − µ2)2

�
(z1 − µ1)2

(9)

However, because the data is centered, this formula can be
simplified to:

ρ =
zT2 z1�

zT2 z2
�

zT1 z1
(10)

This equation should now be maximized to retrieve the best
canonical variates. As ρ should not be affected by rescaling
z1 or z2, we introduce the constraints:

zT1 z1 = wT
1 A

T
1 A1w1 = wT

1 Σ11w1 = 1 (11)

zT2 z2 = wT
2 A

T
2 A2w2 = wT

2 Σ22w2 = 1 (12)

With Σ11 and Σ22 being covariance matrices. After writing
this maximization problem in Lagrangian form as explained
and solved in [12], two equations which govern CCA are
found:

(ΣT
12Σ

−1
22 Σ12 − ρ2Σ22)w1 = 0 (13)

(ΣT
12Σ

−1
11 Σ12 − ρ2Σ22)w2 = 0 (14)

Given the eigenvectors for one of these equations, the
eigenvectors for the other can be resolved. This generalized
eigenvalue problem is solved using singular value decompo-
sitions [17] on known data matrices A1 and A2 as done in
[12] and [14], which results in two canonical correlation basis
vectors:

w1 = V1D
−1
1 U (15)

w2 = V D−1
2 V2 (16)

While searching for a maximized correlation we assume
ρ ≈ 1, and using equations 10, 11 and 12 we find

�A1w1 −A2w2� =
�
(A1w1 −A2w2)(A1w1 −A2w2)T

=
�
2− 2A1w1AT

2 w
T
2 (17)

⇓
�A1w1 −A2w2�2 = 2(1− ρ) (18)

the canonical variates are equal to each other:

A1w1 ≈ A2w2 ⇒ z1 ≈ z2 (19)

As A1 represents image patch vectors (xt−x(ref)
t ) and A2

the state vectors ∆bt, this can be written as:

(xt − x(ref)
t )w1 ≈ ∆btw2 (20)

Our motion model G can then be retrieved:

∆bt = (xt − x(ref)
t )w1w

−1
2

= (xt − x(ref)
t )V1D

−1
1 U(V D−1

2 V2)
−1

= (xt − x(ref)
t )G (21)

⇓
G = V1D

−1
1 UV TD2V

T
2 (22)

This model can now be used while tracking to obtain the
state variation ∆bt, which represents the motion prediction of
the model.
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F. Tracking phase
While tracking a user’s face, initialization parameters b0 are

used as starting position. An image patch vector xt containing
the normalized pixel values is then created using the texture
underneath the model’s position. The state vector bt for the
current frame is calculated by:

b = bt−1 +G(xt − xref
t ) (23)

bt = [10 · b0..2, 4 · b3..10] (24)

With bt−1 being the last known state vector, xt the current
image patch vector and xref

t the reference image patch vector
created at initialization. Mind that this state vector estimate
is multiplied by 10 for rotations and 4 for translations and
animation states. These empirically chosen adjustments speed
up the tracking with minimum loss of accuracy. The whole
process is iterated four times for every incoming frame,
ensuring a good 3D representation of the model’s position.
Finally, at each new frame the reference image patch is slightly
adjusted to overcome lighting changes, which is a similar
approach as in [14];

xref
t+1 = αxref

t + (1− α)xt (25)

With xref
t+1 and xref

t being respectively the new and old
reference image patches, xt the image patch from the current
frame and α= 0.99, proven by [13] to provide the best results.
Keep in mind we have trained and tracked the pose and the
animation states separately.

III. EYE TRACKING

As explained above, an image patch is created which
recreates a frontal view from any out-of-plane facial rotations,
along with two side-views, by wrapping an incoming frame’s
region of interest on a 3D face model.

The eye region is now extracted from this image patch and
converted to a binary image using a predefined threshold. This
threshold is the average grayscale value from the irises’ region
of the face during our face model initialization. All values
above this threshold are ignored while darker colors are treated
as possible blobs, considering the iris and pupil usually having
the darkest gray levels in the eye region. Keep in mind this
region is restricted to the sclera of each eye, minimizing false
positives while becoming more dependent on a robust face
tracker.

Fig. 4. Grayscale and binary regions of interest during eye tracking

Finally, a fast and simple two-pass Connected Component
Labeling (CCL) algorithm [15] for finding 4-connected com-
ponents is used, meaning every pixel with neighborhood pixels

having coordinates (x±1, y) or (x, y±1) will receive the same
label, giving every tracked blob a unique label. Afterwards, we
calculate the centroid of the largest blob and use this position
as estimated center of the iris, seen in Figure 4.

On a side note, implementations of a Hough transform
method [18] or normal canny edge detection [19][20] for
finding circles in both the grayscale image patch as the binary
image showing only the darker colors, have proven not to be
robust enough for usage in this implementation. The highly
variable contour shapes of the iris or detected blob cause these
algorithms to fail.

IV. EYE GAZE ESTIMATION

As the head position and direction are known, as well as
the irises’ position with respect to the face position, the gaze
direction can be estimated by regarding the eyeballs as spheres
similar to [21]. By doing this, several parameters are needed
to result in a gaze direction vector:

• Position of the iris with respect to the center of the eyeball
• Radius of the eyeball
The eyeball radius can be approximated by the radius of

a 2D projection of the eyes during our initialization phase,
which is retrieved from the face model adjustments made by
the user. Afterwards, the eyeball center is then easily found.
The position of the iris is retrieved by introducing a blob
detection algorithm on the current image patch as explained
in Section 3. Finally, the calculated angle θ between the iris
center and the eyeball center, for both horizontal as well as
vertical movement, defines the orientation of the gaze direction
vector as seen in Figure 5.

Fig. 5. Visual representation of θ on an eye

V. RESULTS

Two separate datasets by Asteriadis et al. [22] and Weiden-
bacher et al. [23] have been used for testing purposes, which
enables comparison of our method with future gaze tracking
algorithms.

A. Implementation details
Tests were performed on an Intel Core2 Duo P9500 at

2.53GHz using the Logitech 1.3 MP Webcam C300 which was
placed in front of the user. The project was written in C++,
including OpenGL libraries for enabling a 3D environment
and OpenCV 2.0 libraries for image processing. An image
resolution of 320x240 has been used throughout these tests,
while enlarging the output frames to 640x480. The current
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non-optimized implementation runs at 256 ms per frame,
averaged to 4 fps. However, because a tracking iteration of
four has been included, we can assume that tracking can be
done at a much higher frame rate if we discard the iteration.
This action would have a small negative impact on the tracking
accuracy.

The duration of training our method depends on the amount
of poses trained. Currently, 328 positions and 205 animation
states are trained, creating 553 different image patches and tak-
ing 35.5 seconds to complete while including the computation
time for retrieving a motion model using canonical correlation
analysis.

B. HPEG Dataset

The Natural Head Pose and Eye Gaze (HPEG) dataset
presented by Asteriadis et al. [22] was recorded using a
monocular camera, while three LED’s placed in front of the
face are used for extraction of the face position ground truth.
Eye gaze directionality, with respect to the head pose, has been
presented by three eye gaze classes being: looking forward,
looking to the left and to the right. Eye gaze ground truth is
given by appointing video time segments to the appropriate
eye gaze class.

Although the gaze estimation can not accurately be com-
pared with the dataset, it still provides a good perspective of
our method’s robustness and, although this is not our major
interest, we were able to compare our 3D face tracking with
the ground truth head positions.

Our method has been applied to three randomly chosen
video sequences. Because this dataset is restricted to yaw
movements, the graphs found in Figure 6, 7 and 8 represent
only the yaw rotation of the head and eyes during each frame
of their sequence, while a frame of each eye position has been
included.

Figure 6 shows a correct tracking during the whole video
sequence.

Fig. 6. Graphical representation of face/eye yaw movement using video
sequence 1 b.avi

As seen in Figure 7, during the test our face tracking
algorithm has accuracy problems while tracking the user’s
head movement in video 7 b.avi, due to the slow position
adjustment of the face mask in this sequence.

While testing video 9 b.avi we notice the eye gaze track-
ing becomes inaccurate for eyes positioned looking straight
forward, from frames 210 to 260 as seen in Figure 8.

Fig. 7. Graphical representation of face/eye yaw movement using video
sequence 7 b.avi

Fig. 8. Graphical representation of face/eye yaw movement using video
sequence 9 b.avi

C. uulmHPG Dataset
This data consists out of several image sequences of differ-

ent subjects including faces in various combinations of head
pose and eye gaze, and can give us a more precise accuracy
measurement. We have documented the mean error in degrees
for six unique tracking events of three image sequences using
two slightly different initialization parameters for each set.

Fig. 9. Mean error and stdev measurements of 3 image sequences

Head rotations have been restricted to [-30◦,30◦] and gaze
vector rotations to [-40◦,40◦] with respect to the camera.

Figure 9 shows the average error angle of our algorithm
during three image sequences (Head 3,12 and 16), which lies
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around 3.08◦ for facial rotation tracking, and 5.64◦ for our
gaze estimation vector. The latter however, proves to be more
robust during a frontal face view and becomes less accurate
during facial rotations.

D. Real-time webcam results
Because former results have been obtained from ideal

dataset frame sequences, a real-time webcam input has been
tested while the user made natural head and gaze movements.
Several frames during this tracking are shown in Figure 10
and 11.

Fig. 10. Gaze tracking during constant, uniform lighting conditions

Fig. 11. Face and gaze tracking during non-constant, non-uniform lighting
conditions

VI. CONCLUSION

Our paper proposed a novel solution for tracking the eye
gaze vector, making it possible to determine a gaze point.
This was done by modifying an existing CCA based face
tracking algorithm and include a simple yet effective blob
tracking method to retrieve robust results concerning eye gaze
estimation. Finally, video sequences including ground truth
and real-time input data have been used to provide an accuracy
measurement of the system, which confirmed the robustness
considering low-resolution video input.

VII. FUTURE WORK

Several methods can be improved concerning the eye gaze
estimation. Currently, a sphere is used to represent the eye
during the eye gaze vector estimation, although a spheroid
would give a more accurate representation. Based on these
mathematical shapes the gaze direction could be calculated,
although other techniques, for example, a calibration system
as in [24], could prove to be more accurate.

Although several facial animation shapes are currently being
tracked, i.e. the eyelids and eyebrows, they have no direct

effect on the eye gaze direction. A more complex system can
be built, using the same trackers yet trained for more animation
units to find different facial expressions and incorporate those
expressions into a possible eye gaze direction.
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