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Samenvatting

Mathematische morfologie (mm) is een theoretisch raamwerk voor de analyse
van (vormen in) beelden en gebaseerd op settheorie. In het begin was het dan
ook enkel bruikbaar voor de verwerking van binaire beelden, die als verzamelin-
gen van zwarte pixels tegen een witte achtergrond kunnen worden beschouwd.
Later werden uitbreidingen ontwikkeld voor grijswaarden- en kleurbeelden.
Morfologie kan vanuit een erg theoretisch standpunt bekeken worden, maar
in deze thesis kijken we naar de bruikbaarheid van de gereedschappen die deze
theorie ons biedt.
De theorie van mathematische morfologie steunt op twee basisbeeldverwer-
kingsoperatoren: de dilatatie en de erosie. De dilatatie zet een beeldobject
als het ware uit, terwijl een erosie het object doet inkrimpen. Kenmerkend
aan deze operatoren is dat zij de vorm van de objecten grotendeels behouden.
Morfologie is dan ook een theorie waarbij de vorm en grootte van objecten een
grote rol spelen.
Een belangrijke parameter van de morfologische operatoren is het structuure-
lement. Dit is een set, meestal veel kleiner dan de set die het beeld voorstelt,
die over het beeld geschoven wordt. De vorm van dit structuurelement is be-
palend voor het resultaat van de morfologische bewerking. Met behulp van
de basisoperatoren kunnen veel complexere operatoren geconstrueerd worden.
Het combineren van verschillende operaties maakt het mogelijk morfologie
te gebruiken voor verschillende toepassingen, zoals segmentatie, hoekdetectie,
ruisfiltering, . . . .
Voor de uitbreiding van de theorie naar grijswaarden kan gebruik gemaakt
worden van de schijfjesbenadering (Engels: threshold approach) of de umbra-
benadering. Beide methoden hebben hun voor- en nadelen. Het grote verschil
met de binaire theorie is het vervangen van de setoperaties unie en doorsnede
door maximum en minimum. De beelden worden dan ook niet meer aanzien
als sets, maar als functies.
Een uitbreiding naar kleurbeelden is minder vanzelfsprekend. De kleur van een
pixel wordt voorgesteld door een vector, typisch bestaande uit een rode, groene
en blauwe kleurcomponent (de rgb-kleurruimte). Kleuren kunnen in principe
niet op een ondubbelzinnige en natuurlijke wijze totaal geordend worden, het-
geen nodig is om de morfologische operatoren van de grijswaardentheorie uit te
breiden naar kleurbeelden. Soms wordt elke kleurcomponent afzonderlijk be-
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handeld. Een andere mogelijkheid is om een artificiële lexicografische ordening
toe te passen. Zo krijgt bijvoorbeeld de luminantiewaarde een grotere prioriteit
in de bepaling van de kleurvolgorde dan de saturatie- en tintwaarde.
In dit proefschrift ontwikkelen we een aantal nieuwe beeldverwerkingstech-
nieken gebaseerd op mathematische morfologie. Bovendien onderzoeken we
de bruikbaarheid van een specifieke techniek, het patroonspectrum, in materi-
aalkundig onderzoek.
Als een eerste bijdrage van dit proefschrift stellen we het meerderheidsorde-
ningsschema voor, getiteld mss. De kleuren worden gerangschikt naargelang
de frequentie dat ze voorkomen in het beeld. Voor een aantal typen beelden
is dit interessant. Op het geordende beeld, de mss-map, worden de morfolo-
gische bewerkingen uitgevoerd. Deze methode is nuttig voor de behandeling
van beelden waarop een andere kleurordening niet goed werkt. Verscheidene
problemen worden aangekaart en oplossingen worden aangereikt, alsook de ei-
genschappen van de mss worden besproken. Zo is er het probleem dat ver-
schillende kleuren dezelfde rangorde kunnen hebben in de mss-map (en dus
beschouwd en behandeld worden als dezelfde kleur).
Een ander onderzoek heeft betrekking op het morfologische patroonspectrum
(ps) en aanverwante spectra die veel minder rekenintensief zijn. Eerst doen
we een vergelijkende studie van de verschillende technieken. Vervolgens passen
we deze technieken toe in het onderzoek — via beeldverwerking — van de
slijtage van polymeren en composieten die gebruikt worden als glijlagers. Tri-
bologisch onderzoek onthult informatie over het gedrag van deze materialen on-
der verscheidene temperaturen en belasting. Wij onderzoeken de brokstukken,
afkomstig van de slijtage-experimenten, en correleren de karakteristieken van
deze deeltjes, bekomen via het patroonspectrum, aan de experimentele para-
meters. We bespreken de bekomen resultaten en gaan na hoe bruikbaar de
spectra zijn.
Tot slot passen we morfologie toe in het domein van de beeldinterpolatie. In een
rasterbeeld wordt elke beeldcoördinaat voorgesteld door een pixel, in dewelke
een kleur- of grijswaarde opgeslagen zit. Wensen we in te zoomen op het beeld of
de resolutie aan te passen, dan moeten we gebruik maken van interpolatietech-
nieken. Afhankelijk van de gebruikte interpolatietechniek kunnen artefacten
optreden. Bij pixelreplicatie bijvoorbeeld zien de objectranden in het uitver-
grote beeld er gekarteld uitzien; bij bilineaire interpolatie wordt het beeld dan
weer wazig. Andere effecten zijn ringvorming, segmentatie- of veegeffecten.
Wij stellen een nieuwe adaptieve interpolatietechniek voor die gebaseerd is op
mathematische morfologie, mmint. Deze techniek vertrekt van een pixelge-
repliceerd binair beeld dat vervolgens verbeterd wordt. Dit gebeurt door de
hoeken van de gekartelde randen “af te ronden”. Hiervoor moeten we de hoeken
eerst detecteren, hetgeen mogelijk is met de morfologische hit-miss transforma-
tie. De hoeken van de gekartelde randen worden afgevlakt door de pixelwaarden
van deze hoeken om te wisselen. In mmint gebeurt dit in een iteratief proces.
De iteratieve werking van mmint maakt de methode traag. Daarom hebben
we ook mmintone ontwikkeld, een techniek die erg gelijkaardig is wat betreft



v

de filosofie en het interpolatieresultaat ten opzichte van mmint, maar die de
interpolatie uitvoert in een enkele cyclus. Het verschil in rekentijd kan dan tot
enkele grootte-ordes zijn.
We hebben ook een uitbreiding naar grijswaarden gëımplementeerd, mmintg.
Voor de hoekdetectie worden de grijswaarden eerst lokaal gebinarizeerd, waarbij
de drempelwaarde afhangt van de minimum- en maximumwaarde in het lokale
venster. Ons voornoemde voorstel van de meerderheidsordening gebruiken we
om een grijswaarde lokaal te classificeren als voorgrond of achtergrond. De stap
waar de hoekpixels van waarde veranderen is ook gewijzigd, aangezien we nu
niet enkel over de kleuren wit en zwart beschikken. De gemiddelde waarde van
naburige pixels bepaalt de nieuwe pixelwaarde.
Onze op morfologie gebaseerde interpolatiemethoden blijken beter te werken
dan bestaande algoritmes. Dit blijkt uit visuele vergelijkingen, kwantitatieve
experimenten en testen met een testpubliek.



vi



Summary

Mathematical morphology (mm) is a theoretical framework for the analysis of
(the shapes in) images, based on set theory. Initially, it was only applicable
to binary images, which can be considered as sets of black pixels against a
white background. Later on, extensions to greyscale images and colour images
have been developed. In this thesis we concentrate on the usability of several
morphological tools, rather than on theoretical development.
The theory of mathematical morphology is built on two basic image processing
operators: the dilation and the erosion. Simply put, the dilation enlarges the
objects in an image, while the erosion lets them shrink. A feature of these
operators is the fact that they preserve the objects’ shapes for the most part.
Morphology is thus a theory where size and shape of objects play an important
role.
An important parameter of the morphological operators is the structuring ele-
ment. This is a small set, mostly much smaller than the image set, that scans
the image. The pixels covered by this structuring element determine the out-
put value of the currently covered pixel. Using the basic operators, much more
complex operators can be constructed. These new operators can be used in
different applications, such as image segmentation, corner detection, noise fil-
tering, . . . .
For the extension of the theory to greyscale images we can use the threshold
approach or the umbra approach. Both methods have their advantages and
disadvantages. The main difference between the greyscale and binary case is
that the union and intersection are now replaced by a maximum and minimum
operation. The images are therefore no longer treated as sets, but as functions.
An extension to colour images is less straightforward. We represent a pixel col-
our by a vector, typically consisting of a red, green and blue colour component
(the rgb colour space). Colours cannot be totally ordered in a unique sensible
way. If the colours are ordered, then we can apply greyscale morphology on col-
our images. Sometimes, each colour component is treated separately. Another
option is to use an artificial lexicographical ordering scheme. For example, a
pixel with higher luminance is ranked higher, while saturation and hue are less
important for the ordering.
In this dissertation, we develop a number of image processing techniques that
are based on mathematical morphology. We also investigate the usability of a
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specific technique, the pattern spectrum, in the field of material science.
Our first contribution is the proposal of the majority ordering, a.k.a. the ma-
jority sorting scheme (mss). The image colours are ranked in accordance to
their frequency of occurrence in the image. This ordering is interesting for a
certain type of images. On this ordered image, the mss-map, we can apply
morphological operations. This method is useful if operations using other col-
our orderings do not produce a satisfying result. We discuss several possible
problems and solutions, as well as the properties of the mss. One of the prob-
lems we can encounter is that different colours can be given the same ranking
in the mss-map (and therefore be considered and treated as the same colour).
Another part of our research concerns the investigation of the morphological
pattern spectrum (ps) and related (and much faster) spectra. First, we compare
the different techniques. Afterwards, we use these techniques for the analysis
— using image processing — of polymers and composite materials that are
used as sliding bearings. Tribological research reveals information about the
behaviour of these materials under certain temperatures and loads. We analyse
the debris particles from the wear experiments, and correlate the characteristics
of these particles, obtained from the pattern spectrum, with the experimental
parameters. We discuss the obtained results and investigate the usefulness of
the spectra.
Finally, we concentrate on image interpolation. A bitmap image consists of
pixels, where each pixel contains a grey value or colour value. To zoom in on
the image or to change the spatial resolution, we must make use of interpolation
techniques. Artefacts can occur during the interpolation process, and they
depend on the technique used. For example, pixel replication introduces jagged
edges (“jaggies”), while a bilinear interpolation makes the image blurry. Other
effects are ringing artefacts, segmentation effects or painting effects.
We propose a new and adaptive interpolation technique, mmint, based on
mathematical morphology. This technique improves a pixel-replicated image.
This is done by smoothing the jagged edges in the magnified image. We detect
the corners of such edges with the morphological hit-miss transform. The
corners of the jagged edges are smoothened by swapping the pixel values. In
mmint this is done in an iterative process.
The iterative nature of mmint makes the method slow. Therefore, we de-
veloped mmintone, a technique very similar to mmint, both in result and in
philosophy. The big difference is that only one iteration is needed, making
mmintone much faster. The speed improvement can be up to several orders
of magnitude.
We also present an extension to greyscale images, mmintg. The corner detec-
tion step is updated by introducing a local binarization step. The threshold
value depends on the minimum and maximum value in the local window. We
also use our aforementioned proposal of the majority ordering to locally classify
a grey value as object pixel or background. The pixel swapping step is also
replaced, since we now can have other colours besides black and white. The
average grey value of neighbouring pixels defines the new pixel value.
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Our morphology-based interpolation methods perform better than existing
techniques. We come to this conclusion after comparing the results visually,
performing quantitative experiments, and by scoring of the interpolation results
by a test panel.
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Chapter 1

Introduction

Mathematical morphology is a theory that dates back to 1964 when Georges
Matheron studied the geometry of porous media in relation to their perme-
abilities. At the same time, Jean Serra had to quantify the petrography
(i.e., the macroscopic and microscopic study of rocks) of iron ores, in or-
der to predict their milling properties [Serra, 1982]. Both men initiated the
development of the theory of mathematical morphology for binary images.
Over the years, the theory has been extended to greyscale images and with
some limitations to colour images. Even fuzzy logic is used in morphology
[Kerre and Nachtegael, 2000, Nachtegael, 2002].

Mathematical morphology is used for the analysis of spatial structures in im-
ages. The keyword for morphology is shape: unlike, e.g., an averaging filter
which averages grey values, a morphological operator does not look at the grey
values in the first place, but uses geometrical features of objects in an image.

In theory, mathematical morphology can be applied in any field of image pro-
cessing where shape plays some role. This can be object extraction, noise fil-
tering, edge enhancement, segmentation, texture analysis, classification, shape
description, and so on.

This thesis considers a few of the possible applications, namely colour morpho-
logy, tribology and image interpolation.

1.1 Colour mathematical morphology

A binary image can be represented as a set, i.e., the set of all pixels with value 1.
The background pixels with value 0 do not belong to that set. The morpholo-
gical theory uses the Minkowski set addition and subtraction, or alternatively
the union and intersection operation, to define morphological image operators.

The morphological theory can be extended to grey values by representing an
image as a function and by essentially replacing the set operations union and
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intersection by respectively the maximum and minimum of functions represent-
ing the grey values of the image. The image function A has a grey value A(a)
at location a.

The theory can be readily extended to other data than grey values, provided
the maximum and minimum operation can be defined on the data. In the case
of colour, this is not trivial. The use of a maximum or minimum operation
requires a total ordering of the pixel values. A 3D colour space, however, is not
totally ordered in a natural way. It can be ordered, but not in a unique way
that makes sense in image processing. There exist several approaches to deal
with this issue.

The most straightforward method is to separately totally order each colour
component. Each component can be seen as a greyscale image. They are
treated independently and their results are combined. A better approach is the
use of a lexicographical ordering: one component is considered most important,
another one is considered least important. The question that rises here is
which component should be considered more important. A logical approach
is to separate the luminance information from the chrominance information
and order first by luminance, since most interesting differences, like edges, are
obtained from the luminance component. Depending on the application and
goal, one could also order first by saturation or hue.

In this thesis, we suggest a colour ordering that allows us to perform greyscale
mathematical morphology on colour images. Our technique, the majority or-
dering, is based on the assumption that the frequency of the colours in the
image is related to the importance of these colours. This majority ordering is
therefore an image-dependent ordering.

We investigate how morphological operations perform when we use this or-
dering scheme. There are some problems to be tackled, which we discuss ex-
tensively. Amongst them, the number of colours present in the image has an
influence, and the technique assumes a few conditions to be met concerning the
image content. We mention them and look at the properties of the majority
ordering.

1.2 Granulometries used in material science

Tribology is a research domain of material science where the wear of materials
is investigated. This is very important research as equipment manufacturing
companies want the cheapest materials with the best performance and prop-
erties. For some applications, the reliability and/or durability is extremely
important. Therefore, the wear properties of materials such as polymers and
composites must be tested. We want to contribute to the tribological research
by investigating the usefulness of mathematical morphology in this field.

A morphological tool that we use in this domain is the pattern spectrum, a size
distribution histogram. Such spectrum gives us quantitative information about



1.3 Image interpolation 5

the shapes and sizes of the objects in the image. Next to the regular pattern
spectrum, we discuss several other types of pattern spectra, each suited for
computing a histogram in function of a certain object feature (such as length,
orientation, size, area and/or shape).

We investigate how the algorithm for each type of pattern spectrum performs.
The computation of the regular morphological pattern spectrum can be very
costly. The other techniques are much faster and less dependent on the image
content. An increase in speed of several orders of magnitude can be achieved.

We use these spectra for the analysis of sliding bearing materials. Such mate-
rials can be made of polymer or composite polymer. Bearings made of (com-
posite) polymer are very useful in different areas, and the understanding of the
underlying processes helps us to choose the right material for the job. Our part
of this research concerns the investigation of the debris particles obtained from
wear experiments and their relation to the experimental parameters, such as
load and temperature. This is done using image processing techniques, namely
the morphological pattern spectrum and its alternatives. We discuss the ob-
tained results and investigate the usefulness of the spectra in this research
domain. Although it is not easy to find much correlation between the spectral
parameters and the experimental settings, we can correlate the behaviour of the
pattern spectrum with some other experimental findings, such as transitions at
certain temperatures or loads.

1.3 Image interpolation

The third topic we address, is image interpolation. When we magnify a bitmap
image, the number of pixels covered by such an image increases. Interpolation
is performed to compute values for the newly added pixels. Such a process
can be needed in several applications: digital zooming in cameras, printing,
displaying low-resolution footage on a high definition television, etc.

Several interpolation techniques exist, each with their own type of artefacts.
The most common interpolation methods are fast but simple linear techniques,
such as pixel replication, bilinear and bicubic interpolation. While the first one
produces jagged edges, the other two give rise to a blurred result in textured
areas or at edges.

Adaptive techniques incorporate prior knowledge about images to achieve bet-
ter interpolation results. They are not as straightforward to implement as
the linear techniques, but they are able to avoid the blur or jagged artefacts.
Nevertheless, new kinds of artefacts might be introduced, such as effects of
segmentation or painting, or other visual degradations. The adaptive methods
can be classified, according to the method used. Edge-based techniques do not
allow interpolation across the edges in the image, or interpolation has to be per-
formed along the edges. The so-called restoration methods try to remove the
artefacts obtained by interpolation with a linear technique. The example-based
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approaches map blocks of the low-resolution image into pre-defined interpolated
patches, or exploit the self-similarity property of an image.

These techniques work quite well on images containing natural scenes with
smooth gradients, but they fail when applied to binary images or images con-
taining sharply defined edges, such as cartoons, maps or logos. Our contribu-
tion is the introduction of an interpolation technique that is able to satisfactori-
ly interpolate this kind of images. It uses the morphological hit-miss transform
to detect jagged corners in a pixel-replicated image. A speed improvement and
an extension to greyscale images is also presented. Several experiments show
that this technique is superior to existing ones.

1.4 Thesis outline

The organization of this dissertation is as follows. Chapter 2 explains the the-
ory of mathematical morphology, its power and possibilities. We use different
morphological tools throughout this thesis. In this chapter, we discuss the
binary and greyscale morphology, and we take a look at some of the many
problems that can be solved using mathematical morphology.

In chapter 3, we discuss the extension of mathematical morphology to colour
images. First, we give an introduction to colour and colour spaces. Afterwards,
we discuss some colour ordering schemes that enable us to apply the theory of
greyscale morphology to colour images. We also introduce our own ordering
scheme, the majority ordering.

Chapter 4 covers the theory of granulometries. We explain what granulometries
are and introduce the morphological pattern spectrum. From this pattern
spectrum, several parameters can be derived. They can be used to extract
properties from the objects in images, or to perform a classification. Because
of the high computational cost of the pattern spectrum, several alternatives are
discussed, some existing and some new. The computation times of the different
techniques are compared.

In chapter 5, we investigate the applicability of the pattern spectra in the field of
tribological research on composite materials and polymers. These materials are
used as sliding bearings. First, we give an introduction to composite materials
and tribology. Afterwards, we examine the different pattern spectra and their
parameters for images containing debris particles. We correlate the spectral
parameters with the parameters of the experimental set-up.

Finally, before we state some general conclusions in chapter 7, we dedicate
chapter 6 to the discussion of image interpolation. First we explain the dif-
ference between vector and raster graphics. Then we discuss some standard
linear interpolation techniques and state-of-the-art non-linear techniques. Af-
terwards, we propose a novel technique, based on mathematical morphology,
that interpolates binary images. We perform several qualitative and quantita-
tive experiments that compare our method with existing ones. To reduce the
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computational cost, we introduce an adaptation of our interpolation technique
which is much faster. At last, we propose an extension to greyscale images.

1.5 Contributions and publications

During the work on this thesis, several contributions have been made. The
main contributions, extensively discussed in this dissertation, are:

• The development of a new ordering scheme, the majority ordering
(mss), that allows us to perform greyscale morphology on colour images
[Ledda and Philips, 2005b, Ledda and Philips, 2005a];

• A study of the debris particles from polymers with morphological
techniques (the pattern spectrum), in order to investigate the use-
fulness of morphological operations in the field of material sci-
ence [Ledda and Philips, 2002, Ledda et al., 2003, Ledda et al., 2004,
Samyn et al., 2004, Samyn et al., 2005];

• The invention of an interpolation technique, mmint, based on math-
ematical morphology. It works on binary images and we also de-
veloped a version that works on greyscale images containing sharp edges
[Ledda et al., 2005, Ledda et al., 2006b, Ledda et al., 2006a].

Contributions to other people’s work are:

• The segmentation of flares in ultrasound images using mathematical mor-
phology [Vansteenkiste et al., 2003];

• Research on polymers and composites [Quintelier et al., 2004,
Quintelier et al., 2005];

• The development of new methods for image interpolation
[Luong et al., 2006b, Luong et al., 2006a, De Witte et al., 2006].

Four papers have been published in Springer’s Lecture Notes in Com-
puter Science, of which two as first author [Ledda and Philips, 2005a,
Ledda et al., 2006a] and two as co-author [Luong et al., 2006a,
De Witte et al., 2006]. Another paper appeared in the journal of Materials Sci-
ence Forum: [Quintelier et al., 2005]. Nine other papers appeared in the pro-
ceedings of international conferences: four as first author [Ledda et al., 2003,
Ledda et al., 2004, Ledda and Philips, 2005b, Ledda et al., 2006b] and
five as co-author [Vansteenkiste et al., 2003, Samyn et al., 2004,
Quintelier et al., 2004, Samyn et al., 2005, Luong et al., 2006b]. Two pa-
pers were presented at a local conference [Ledda and Philips, 2002,
Ledda et al., 2005], of which the last one received the best presentation award.
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Chapter 2

Mathematical Morphology

The main tool used throughout this thesis is mathematical morphology. This
chapter explains the theory of mathematical morphology and its power and
possibilities.

The mathematical foundations of morphology are quite elaborate, but we will
only introduce the concepts necessary in this thesis. Mathematical deductions
and proofs are already available in literature, so the interested reader is re-
ferred to the books mentioned in the bibliography [Haralick and Shapiro, 1992,
Heijmans, 1994, Nachtegael, 2002]. In this chapter, we discuss the binary
and greyscale morphology, but we also extend the theory to colour images
in chapter 3. We use mathematical morphology as a tool for different pur-
poses, like the morphological pattern spectrum for the investigation of debris
particles (chapters 4 and 5), and we use morphology for image interpolation
(chapter 6).

Firstly, we will discuss the morphological operators and their properties for
binary images. Secondly, we take a look at some extensions to greyscale mor-
phology. We also discuss some of the many applications that can be performed
using mathematical morphology.

2.1 Introduction to image processing

An image can be represented as a function f(x, y), with (x, y) the coordinates
of the pixels (picture elements) in the image [Gonzalez and Woods, 2002]. The
function’s output is the value of the image pixel, which is a logical value (0 or 1)
for binary images, a grey value (0, . . . , 255), or a colour vector, as we will discuss
in chapter 3. In image processing we alter an input image with an image
processor, which is designed for a specific task, e.g. noise removal, in order to
obtain an output image, e.g. a noise free image. The image processor Ψ is thus a
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transformation of an input image f(x, y) to an output image g(x, y). We obtain
the input-output equation [Goutsias and Batman, 2000, Goutsias, 2001]:

g(x, y) = Ψ(f(x, y)) . (2.1)

The choice of image processors can be reduced by assuming two fundamental
properties:

• Distributivity : the operator Ψ produces the same result when applied to
two individual images, and then combined, or to the combination of both
images;

• Translation invariance: the operator Ψ produces the same result when a
translation is applied to the image or to the result of the operation.

The operator Ψ is called linear when it satisfies the following properties:

Ψ(f1(x, y) + f2(x, y))= Ψ(f1(x, y)) + Ψ(f2(x, y)) , (2.2)

Ψ(cf(x, y))= cΨ(f(x, y)) , (2.3)

where c is a constant value. Property (2.2) is the distributivity for the linear
operator. It states that the sum of two images can be processed by the operator,
or that the results of the (separate) processing of those two images can be
added. Both approaches return the same output image. For a translation
invariant linear operator we can rewrite the input-output equation (2.1) in
terms of the convolution operator :

Ψ(f)(x, y)=

∫ +∞

−∞

∫ +∞

−∞
h(x− ξ, y − η)f(ξ, η)dξdη . (2.4)

Linear image processors are often used because of their simplicity and because
the convolution equation is equivalent to a multiplication in the Fourier domain:

G(u, v)= H(u, v)F (u, v) with −∞ ≤ u, v ≤ +∞ , (2.5)

with H(u, v) the frequency response of the linear operator Ψ, and u and v the
spatial frequency coordinates.

Linear image operators cannot be applied to binary images, because they as-
sume that the images are combined by standard addition. This is not possible
in the binary case, since the image only allows the logical values 0 and 1, and
1 + 1 = 2 for example is a pixel value that does not exist in binary images.
The morphological operators were especially designed for binary images, using
a set theoretical approach.
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2.2 Binary morphology

Mathematical morphology (mm) [Serra, 1982, Haralick and Shapiro, 1992,
Heijmans, 1994, Goutsias and Batman, 2000, Nachtegael, 2002, Soille, 2003] is
a framework for image processing based on lattice theory and random geo-
metry. It dates back to 1964 when it was introduced by J. Serra and G. Math-
eron [Matheron, 1975, Serra, 1982, Serra, 1988]. It is a tool for investigating
geometric structures in binary and greyscale images. Morphological image
processing can simplify images, preserve objects’ essential shape characteris-
tics, and can eliminate irrelevant objects. Further on in this chapter we will
see some possible applications.

We first discuss the binary case, since originally the theory was developed for
binary images. In section 2.3 we will discuss the extension to greyscale images.
The theory uses operators and functionals based on topological and geometrical
concepts.

Binary images can be described in terms of sets of pixels of constant pixel value.
Image pixels can assume the value 1 or 0. Thus, the image is uniquely defined
by specifying the set :

A = {r | Af (r) = 1} . (2.6)

The vector r is the representation of the pixel coordinate (x, y). A is the set,
while Af is the binary image function that gives value 0 or 1 to the specified
pixel. The term binary image is sometimes interchanged with the term set.
The pixels with value 1 are foreground pixels (they are part of the set), while
the background has value 0. When a binary image is displayed, usually the
colours black and white are respectively used for background and foreground.
Our schematic examples use black as foreground (i.e., value 1) pixels, though.

A set that represents a binary image can consist of several objects . Objects
are connected areas of elements with pixel value 1, whereas the background
elements have value 0.

We work in a discrete space, where an image is represented by pixels that are
aligned on a grid. Usually this grid is rectangular. To determine if two pixels
are part of the same object, a connectivity rule must be specified. The two
most common connectivities are the 4- and 8-connectivity (figure 2.1), but 6-
connectivity on a hexagonal grid is also possible. In the 4-connectivity case,
a pixel is connected with another if the other pixel is one of the four nearest
neighbours of this pixel. When we use the 8-connectivity, then also the four
neighbouring corner pixels are connected with the pixel. Two pixels are part of
the same object if it is possible to move between the two pixels using a path of
connected pixels. In figure 2.2 there are one or two black objects, depending on
which connectivity we assume, 8- or 4-connectivity respectively. The left black
pixel and the right black pixel in the figure are only part of the same object if
8-connectivity is used.
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(a) 4-connectivity (b) 8-connectivity

Figure 2.1: Connectivity between pixels can be defined in different ways. The grey
coloured pixels are connected with the black pixel.

Figure 2.2: One or two objects, depending on the connectivity used. The white
pixels are background.

(a) Two sets A and B (b) Set union A ∪ B

(c) Set intersection A ∩ B (d) Set difference A\B

Figure 2.3: The set operations.

The complement of a set A is defined as:

Ac = {r | Af (r) = 0}
= {r | r /∈ A} .

(2.7)

Image Ac is obtained from A by changing black pixels into white ones, and vice
versa.

We use the set operations union (∪) and intersection (∩), and set difference
(\), as illustrated in figure 2.3. The set difference A\B is defined by A ∩ Bc.
An empty set is represented by the symbol ∅.
Binary mathematical morphology is based on two basic operators: dilation
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(section 2.2.1) and erosion (section 2.2.2). They are defined in terms of a
structuring element (section 2.2.6). The input-output equation of a morpholo-
gical image processor is denoted:

A′ = ΨB(A) . (2.8)

The structuring element B is an important parameter of the operator. It is also
a set and thus can be thought of as a binary image, albeit a very small-sized
one. By small we mean a binary image with sides below 10 pixels, while the
input image can have sides of hundreds of pixels.1 The function of the operator
is determined completely by B. The shape of this structuring element reveals
what kind of shapes are important in the following morphological operation.
Some operations, like the hit-miss transform (section 2.4.4), need more than
one structuring element.

In the following sections we will make use of the concepts of the translation
and reflection. The translation of B by a vector r is defined as:

Tr(B) = {b | b− r ∈ B}
= {b + r | b ∈ B} .

(2.9)

A digital image is always described inside some area, defined by a number of
pixels horizontally and vertically. This means the pixels inside this area have
been assigned a value, but all other pixel values are unknown. A translation
from the coordinates of a defined pixel can refer to a pixel with an undefined
value. This must be taken into account.

Pixels outside the image area can be assigned the value 0, the so-called zero
padding . All objects are then contained inside the visible area. A disadvantage
is that we obtain an abrupt cut-off for objects that touch the border of the
image. We can generalize this padding to other values, e.g., by assigning the
maximum value to the outside pixels.

Another possibility is border mirroring . The image borders function as mirror
lines, and the pixel values of the visible image area are reflected. Abrupt
changes at the image borders are avoided this way, but the new values do not
necessarily represent the real values of the undefined pixels.

Both methods are visualized in figure 2.4, where vxy is a pixel value. For the
morphological dilation and erosion, two different approaches are used. This
will be explained in sections 2.2.1 and 2.2.2 respectively.

The reflection of B (around the origin) is denoted B̆ and defined as:

B̆ = {b | − b ∈ B} . (2.10)

1Actually, an image has an infinite range, but in practice the image size is limited.
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(b) Border mirroring

Figure 2.4: Pixels outside the visible area (the shaded region) are given a default
value.

2.2.1 Binary dilation

The binary dilation combines two sets by using the vector addition of set ele-
ments. This addition is called the Minkowski addition. The dilation is defined
as:

A⊕B = {r | r = a + b for a ∈ A and b ∈ B} . (2.11)

Because the Minkowski addition is commutative, the dilation is also commuta-
tive, thus A⊕B = B⊕A. In practice, A is an image and B is the much smaller
structuring element, and the operation is always described as the “dilation of
the image by the structuring element”, i.e., the terminology is non-symmetric.

The dilation can also be explained in terms of a union operation. The definition
of the dilation can therefore be rewritten as:

A⊕B =
⋃

b∈B Tb(A)

= {r | Tr(B̆) ∩A 6= ∅} .
(2.12)

Figure 2.5 shows the effect of the morphological dilation. The dilation adds
pixels to the set A. The (origin of the) structuring element is positioned at
every object pixel. Every pixel that is now part of the structuring element, will
be part of the dilated image.

A dilation enlarges the objects in the image, by increasing the number of 1-
pixels in the image. If we use a disc shaped structuring element, then the
objects dilate isotropically. Figure 2.6 shows the dilation of a binary image
(white pixels are part of the set) by a disc shaped element with a radius of 4
pixels. Notice that, besides the object expansion, holes are filled and contour
lines appear smoother.

The dilation has some interesting properties. First of all, it is distributive with
respect to the union operation. It is also translation invariant, so it has the
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(a) A (b) B (c) A ⊕ B

Figure 2.5: Binary dilation operation. The cross is the origin of the structuring
element. The black blocks represent the object pixels.

(a) A (b) A ⊕ B

Figure 2.6: Binary dilation by B, with B a disc structuring element. White are
object pixels, black is background.

properties of an image processor, according to the definition in section 2.1.
The distributivity and translation invariance properties for the dilation are
respectively:

(A1 ∪A2)⊕ B = (A1 ⊕B) ∪ (A2 ⊕B) , (2.13)

A⊕ Tr(B) = Tr(A⊕B) . (2.14)

The operator is also increasing , which means that the dilation of a subset
remains part of the dilation of the bigger set:

A1 ⊆ A2⇒A1 ⊕B ⊆ A2 ⊕B . (2.15)

The dilation operator is called an extensive operator if, for all images, the input
image is part of its dilation:

∀A : A ⊆ A⊕B . (2.16)

This is the case when the origin is part of the structuring element (0 ∈ B).
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(a) A (b) B (c) A ⊕ B

Figure 2.7: A binary dilation operation that is not extensive. White is background.

We then know that every pixel with value 1 keeps its value, some pixels with
value 0 will change to value 1 after dilation, but no 1-pixels ever change to 0.
For example, the dilation performed in figure 2.5 is extensive, but the dilation in
figure 2.7 is not. The structuring element determines if the dilation is extensive.

In the given examples, the border effect must be taken into account. For the
dilation, all pixels outside the image are set to 0.2 This way, only the object
pixels that are visible, i.e., explicitly defined, will contribute to the dilation.
Otherwise, pixels outside the image boundaries can introduce unforeseen/un-
wanted object pixels in the image.

2.2.2 Binary erosion

The binary erosion is the morphological dual of the dilation. The erosion is
defined in terms of the Minkowski subtraction:

A	B = {r | r + b ∈ A, ∀b ∈ B} . (2.17)

Unlike the dilation, the erosion is not commutative. As with the dilation, it is
possible to rewrite the erosion, this time using the intersection operation:

A	B =
⋂

b∈B T−b(A)

= {r | Tr(B) ⊆ A} .
(2.18)

A schematic example of the erosion can be seen in figure 2.8. The (origin of
the) structuring element is translated to every object pixel, one at a time. If
every pixel that is part of the translated structuring element is also part of the
object, then the pixel at the location of the (origin of the) structuring element
will be part of the eroded image.

2This zero padding of the image is the common approach for the dilation. Generally, the
padding value is the minimum value a pixel can assume (0 in this case).
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(a) A (b) B (c) A 	 B

Figure 2.8: Binary erosion operation. The cross is the origin of the structuring
element. The black blocks represent the object pixels.

(a) A (b) A 	 B

Figure 2.9: Binary erosion by B, with B a disc structuring element. White are
object pixels, black is background.

An erosion shrinks objects; also small objects may disappear and objects con-
nected by a small bridge will be disconnected (figure 2.9).

The distributivity (now with the intersection operation) and the translation
invariance are also properties of the erosion, which makes it an image processor,
according to the definition in section 2.1. The distributivity and translation
invariance properties for the erosion are respectively:

(A1 ∩A2)	 B = (A1 	B) ∩ (A2 	B) , (2.19)

A	 Tr(B) = T−r(A	B) . (2.20)

The erosion is also increasing:

A1 ⊆ A2⇒A1 	B ⊆ A2 	B . (2.21)

The erosion is called an anti-extensive operator if, for all images, the erosion
of the input image is part of the input image itself:

∀A : A	B ⊆ A . (2.22)
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This is the case when the origin is part of the structuring element (0 ∈ B).

In the given examples, the border effect must be taken into account. For the
erosion, all pixels outside the image are set to the maximum value, i.e., value 1
for a binary image.3 This way, only the pre-defined pixels contribute to the
erosion. The border pixels are then part of a large object outside the visible
area. This might lead to the preservation of these border pixels, while this is not
necessarily desired. Border mirroring could also be used, but this is generally
not done. Padding ensures that no pixel outside the image contributes to the
dilation or erosion.

2.2.3 Binary closing and opening

The dilation and erosion are the primary building blocks of the other mor-
phological operators. The basic operators can be combined in several different
ways. The simplest combination is the chaining of one basic operator with the
other. These are the secondary morphological operators.

2.2.3.1 Closing

The morphological closing is defined as a dilation followed by an erosion:

A •B = (A⊕B)	B

= {r | r ∈ Ts
˘(B) ⇒ Ts

˘(B) ∩A 6= ∅} .
(2.23)

Notice that the same structuring element B is used as well for the dilation as for
the erosion. We have to remark that the morphological operators are defined
with the Minkowski notation. Alternative definitions exist (see section 2.2.5),
which explains why some books use a reflected structuring element for the
second operation.

The erosion partially compensates for the effect of the dilation: the contour
lines appear smoother after a dilation, but this effect is partially undone by the
erosion. Also the swelling of the objects is cancelled by the shrinking due to the
erosion step. Only, when small holes are filled, the erosion is not able to make
them appear again. The closing is therefore a smoothing filter . Figure 2.10(a)
shows an example.

Every closing is increasing, extensive and idempotent, which is respectively:

A1 ⊆ A2⇒A1 •B ⊆ A2 •B , (2.24)

A ⊆ A •B , (2.25)

A •B = (A •B) •B . (2.26)

3This padding of the image is the common approach for the erosion. Generally, the
padding value is the maximum value a pixel can assume (1 in this case).
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(a) A • B (b) A ◦ B

Figure 2.10: Binary closing and binary opening of figure 2.9(a) by B, with B a disc
structuring element. White are object pixels, black is background.

The idempotency is an important property (equation (2.26)). A second closing
by the same structuring element produces the same image as closing the image
only once.

2.2.3.2 Opening

The morphological opening is defined as an erosion followed by a dilation:

A ◦B = (A	B)⊕B

= {r | r ∈ Ts(B) and Ts(B) ⊆ A} .
(2.27)

The dilation will try to undo the erosion operation, but objects that disappear
because of the erosion cannot be recovered by the dilation. Like the closing,
the opening is a smoothing filter. An example of the binary opening is shown
in figure 2.10(b).

Every opening is increasing, anti-extensive and idempotent, which is respec-
tively:

A1 ⊆ A2⇒A1 ◦B ⊆ A2 ◦B , (2.28)

A ◦B ⊆ A , (2.29)

A ◦B = (A ◦B) ◦B . (2.30)

2.2.4 Properties

In the previous sections we mentioned some properties of the four basic morpho-
logical operators, like the distributivity and translation invariance, the mono-
tonicity, (anti-)extensiveness and idempotency. This section contains a list of
some additional properties of and relations between the different operators.
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2.2.4.1 Duality

We mentioned that the erosion is the morphological dual of the dilation. This is
also true for the closing and the opening. The erosion can be written in function
of the dilation, or vice versa, and the opening can be written in function of
the closing, and vice versa. As a consequence, the morphological theory can be
described in terms of a single basic operator. The duality relations [Serra, 1982]
are obtained using the set complement:

(A⊕B)c = Ac 	 B̆ , (2.31)

(A	B)c = Ac ⊕ B̆ , (2.32)

(A •B)c = Ac ◦ B̆ , (2.33)

(A ◦B)c = Ac • B̆ . (2.34)

2.2.4.2 Distributivity and translation invariance

The distributivity property exists for the structuring elements too:

A⊕ (B1 ∪B2) = (A⊕ B1) ∪ (A⊕B2) , (2.35)

A	 (B1 ∪B2) = (A	 B1) ∩ (A	B2) . (2.36)

These properties can be turned to good account to improve the computational
cost of a morphological operation. An image can be processed with different
smaller structuring elements in parallel on different computer processors. The
results are then combined using the distributivity property.

Some more translation invariance rules are available [Nachtegael, 2002]:

A • Tr(B) = A •B , (2.37)

A ◦ Tr(B) = A ◦B , (2.38)

Tr(A)⊕B = Tr(A⊕ B) , (2.39)

Tr(A)	B = Tr(A	 B) , (2.40)

Tr(A) •B = Tr(A •B) , (2.41)

Tr(A) ◦B = Tr(A ◦B) , (2.42)

Tr(A)⊕ T−r(B) = A⊕B , (2.43)

Tr(A)	 Tr(B) = A	B , (2.44)

Tr(A) • Tr(B) = Tr(A •B) , (2.45)

Tr(A) ◦ Tr(B) = Tr(A ◦B) . (2.46)

2.2.4.3 Scaling invariance

The morphological definitions and properties are valid for discrete binary im-
ages, as well as for continuous binary images. The scaling invariance is an
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exception and needs two different definitions. We first define the scaling for a
continuous image.

The homogeneity properties are stated below. The scaling of an image B with
a factor λ is:

Hλ(B)= {λb | b ∈ B, λ 6= 0} , (2.47)

with λ ∈ �
. When λ = 0, the scaled result is the origin 0.

The following property holds:

H̆λ(B)= H−λ(B) = Hλ(B̆) . (2.48)

For the special case λ = −1 we have:

H−1(B) = H1(B̆) = B̆ . (2.49)

The homogeneity properties state that absolute size does not matter, only
relative size and shape:

Hλ(A)⊕Hλ(B)= Hλ(A⊕B) , (2.50)

Hλ(A)	Hλ(B)= Hλ(A	B) , (2.51)

Hλ(A) •Hλ(B)= Hλ(A •B) , (2.52)

Hλ(A) ◦Hλ(B)= Hλ(A ◦B) . (2.53)

With λ = −1 we obtain the following special cases:

Ă⊕ B̆ = (A⊕B)̆ , (2.54)

Ă	 B̆ = (A	B)̆ , (2.55)

Ă • B̆ = (A •B)̆ , (2.56)

Ă ◦ B̆ = (A ◦B)̆ . (2.57)

Equation (2.47) is the general definition for continuous sets. If we consider a
discrete image, then another type of scaling applies. First of all, the pixels of
a digital image are aligned on a grid, so the pixels of the scaled image must
have discrete coordinates. Therefore, λ is restricted to an integer. Secondly,
the magnification of a discrete object results in a set of disconnected pixels
(figure 2.11). To avoid this, the objects must be dilated instead of magnified.
The definition for scaling by factor n (equation (2.47)) is changed into:

nB = B ⊕B ⊕ · · · ⊕B︸ ︷︷ ︸
n times

. (2.58)

When n = 0, the scaled result is the origin 0.



22 Mathematical Morphology

(a) A (b) nA, with n = 2

Figure 2.11: Connected pixels become disconnected after scaling, when using defi-
nition (2.47) for a discrete image.

2.2.4.4 Commutativity and associativity

The Minkowski addition is a commutative operation, which implies that the
dilation is also commutative: A⊕B = B⊕A. We discussed this in section 2.2.1.
Because in practice A is an input image and B is a small structuring element,
the commutativity rule has no practical purpose. More useful are the following
equations. They state that the order in which different structuring elements
are used, is irrelevant:

(A⊕B1)⊕ B2 = (A⊕B2)⊕B1 , (2.59)

(A	B1)	 B2 = (A	B2)	B1 . (2.60)

The associativity equations are:

(A⊕B1)⊕ B2 = A⊕ (B1 ⊕B2) , (2.61)

(A	B1)	 B2 = A	 (B1 ⊕B2) . (2.62)

The associativity rules are important to know. Equation (2.61) states that
the dilation of an image, once by B1 and the result by B2, is equivalent to
one dilation of the image by the bigger structuring element B1 ⊕B2. The first
calculation is much less computational intensive than the second: a sequence of
morphological operations with small structuring elements is more advantageous
than one operation with one large structuring element. Indeed, a non-optimized
algorithm would need to dilate or erode every pixel in the image, for example
M×N pixels. If the set of the structuring element B contains P pixels, then the
number of operations would be MN(P − 1). If we can write this structuring
element B as B1 ⊕ B2 ⊕ . . . ⊕ Bp, i.e., we can decompose this structuring
element into p smaller elements with size Pi (i = 1, . . . , p), then the number of
operations would be MN(

∑
i(Pi−1)), which is often smaller than MN(P −1).

A 5 × 5 square structuring element can be decomposed into two 3 × 3 square
structuring elements. The number of operations decreases from 24MN to
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(a) Bc (b) Bs (c) Br

Figure 2.12: Structuring element decomposition: Bc = Bs ⊕ Br.

16MN . For larger structuring elements the difference in number of operations
is even more clear.

Another example is the circle shaped structuring element, shown in fig-
ure 2.12(a). It contains 21 pixels and the computational cost is 20MN opera-
tions. Its decomposition into a square (9 pixels) and a cross element (5 pixels)
has a cost of 12MN operations.

2.2.4.5 Idempotency

The idempotency is a useful property of the secondary basic morphological
operators. We repeat equations (2.26) and (2.30):

A •B = (A •B) •B , (2.63)

A ◦B = (A ◦B) ◦B . (2.64)

A consequence of the idempotency is the invariance of the dilation under open-
ing and the erosion under closing [Haralick and Shapiro, 1992]:

A⊕B = (A⊕B) ◦B , (2.65)

A	B = (A	B) •B . (2.66)

Notice that the above equations can respectively be rewritten as:

A⊕B = (A •B)⊕B , (2.67)

A	B = (A ◦B)	B . (2.68)

If the closing or opening by a certain structuring element has no effect on the
input image, then the image is said to be respectively B-closed or B-open:

A •B = A , (2.69)

A ◦B = A . (2.70)
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2.2.4.6 Union and intersection

Note that the following properties can be generalized: instead of a combination
of two sets (a union or intersection of images or structuring elements), more
sets can be combined.4

(A1 ∩A2)⊕ B⊆ (A1 ⊕B) ∩ (A2 ⊕B) , (2.71)

(A1 ∪A2)	 B⊇ (A1 	B) ∪ (A2 	B) , (2.72)

A⊕ (B1 ∩B2)⊆ (A⊕B1) ∩ (A⊕B2) , (2.73)

A	 (B1 ∩B2)⊇ (A	B1) ∪ (A	B2) , (2.74)

(A1 ∪A2) •B⊇ (A1 •B) ∪ (A2 •B) , (2.75)

(A1 ∪A2) ◦B⊇ (A1 ◦B) ∪ (A2 ◦B) , (2.76)

(A1 ∩A2) •B⊆ (A1 •B) ∩ (A2 •B) , (2.77)

(A1 ∩A2) ◦B⊆ (A1 ◦B) ∩ (A2 ◦B) . (2.78)

2.2.4.7 Adjunction

Another form of duality between the dilation and erosion is the following prop-
erty:

A1 ⊕B ⊆ A2⇔A1 ⊆ A2 	B . (2.79)

The couple (⊕,	) is called an adjunction. Note that this equation states that
the erosion is not the exact inverse of the dilation: the erosion generally does
not completely undo the effect of the dilation, and vice versa. If this had been
the case, then the closing and opening would both be identity operators, since
they are a dilation followed by an erosion, and an erosion followed by a dilation,
respectively.

2.2.4.8 Monotonicity

We have seen before that the four basic morphological operators are monotonic,
i.e., they are entirely non-increasing or non-decreasing.5 To be more specific,
they are all (strictly) increasing (i.e., they do not remain constant or decrease).
From the point of view of the structuring element, the dilation and erosion
are monotonic too. The dilation is increasing in its second argument, but the
erosion is decreasing.

B1 ⊆ B2⇒A⊕B1 ⊆ A⊕B2 , (2.80)

4The properties can be rewritten using
S

i Ai and
T

i Ai instead of A1 ∪A2 and A1 ∩A2,
respectively.

5A function f is non-increasing if: ∀a, b : a < b ⇒ f(a) ≥ f(b). A function f is non-

decreasing if: ∀a, b : a < b ⇒ f(a) ≤ f(b).
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B1 ⊆ B2⇒A	B1 ⊇ A	B2 . (2.81)

2.2.4.9 Inequalities

A dilation followed by an erosion (closing) is not the same as an erosion followed
by a dilation (opening). The same is true for the combination of the closing
with the opening:

(A ◦B) •B 6= (A •B) ◦B . (2.82)

Some other inequalities [Nachtegael, 2002]:

A⊕ (B1 	B2)⊆ (A⊕B1)	B2 , (2.83)

(A	B1)⊕ B2⊆ (A⊕B2)	B1 , (2.84)

A	B⊆A⊕ B̆ , (2.85)

A ◦B⊆A •B . (2.86)

Notice that the last equation is a special case of equation (2.84), with B1 = B2.
We can also derive equation (2.86) from the extensivity (equation (2.25)) and
anti-extensivity (equation (2.29)) property of the closing and opening, respec-
tively. Equation (2.83) shows that the associativity rule, that holds for the dila-
tion and in a slightly different form for the erosion (see subsection 2.2.4.4), is not
extendible to combinations of the dilation and erosion. Equation (2.84) shows
something similar regarding the commutativity rules (see subsection 2.2.4.4).

If the origin is part of the structuring element (0 ∈ B), then we have some
more relations between the different operators; they follow directly from the
extensiveness and anti-extensiveness properties:

A	B ⊆A⊆ A⊕B , (2.87)

A •B⊆A⊕B , (2.88)

A ◦B⊆A⊕B , (2.89)

A	B⊆A ◦B , (2.90)

A	B⊆A •B . (2.91)

In all the above equations, it is allowed to replace the structuring element B
by its reflective counterpart B̆, on only one or both sides of the equation.

As a conclusion, we mention the following relationship between the different
operators, assuming the condition 0 ∈ B is fulfilled:

A	B ⊆ A ◦B ⊆ A ⊆ A •B ⊆ A⊕ B . (2.92)

When 0 ∈ B, the erosion and opening are anti-extensive operators, the dilation
and closing are extensive operators. We can also conclude that, for the same
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structuring element, the erosion removes most pixels, while the dilation adds
most pixels.

2.2.5 Alternative definitions

In the literature it is possible to find alternative definitions for the basic mor-
phological operators. We can distinguish two frequently used definitions: the
Serra definition and the Minkowski definition (the one used in this thesis).
The difference between these notations is whether or not the reflection of the
structuring element is used.

The definitions according to Serra are:

Dilation : A⊕B =
⋃

b∈B T−b(A) , (2.93)

Erosion : A	B =
⋂

b∈B T−b(A) , (2.94)

Closing : A •B = (A⊕B)	 B̆ , (2.95)

Opening : A ◦B = (A	B)⊕ B̆ . (2.96)

The Serra definitions (·S) are related to the Minkowski definitions (·M ) in the
following way:

(A⊕B)M = (A⊕ B̆)S , (2.97)

(A	B)M = (A	B)S , (2.98)

(A •B)M

((A⊕B)M 	B)M

}
=

{
(A • B̆)S

((A⊕ B̆)S 	B)S

, (2.99)

(A ◦B)M

((A	B)M ⊕B)M

}
=

{
(A ◦B)S

((A	B)S ⊕ B̆)S

. (2.100)

In equation (2.99) we used the property
˘̆
B = B. Note that the definition of the

erosion remains the same, but for the dilation a reflected structuring element
is used.

When the structuring element B is symmetric, then B = B̆ and the Serra and
Minkowski definition generate the same result.

2.2.6 The structuring element

The structuring element is a probe that scans the image and alters the pixels
based on its content. Just like the input image, it is a binary one. The task of
the structuring element is to alter the input image in a certain way, and this
by taking into account local information. The structuring element is therefore
in most cases a very small set, not only in number of pixels (or area in the
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Figure 2.13: A few examples of structuring elements. The cross is the origin.

continuous case), but the pixels are also close to each other. A typical (discrete)
structuring element consists of a few pixels (less than 10) that are connected
to each other. A typical (discrete) input image has hundreds by hundreds
or thousands by thousands pixels. When we work with discrete images, the
structuring element is a small rectangular window with certain pixels set to 1
and the others to 0. Figure 2.13 shows a few examples of structuring elements.
They can be linear, symmetric, have a specific shape, be tilted, have different
origins, . . . . The shape of the element is chosen in function of the task it has
to perform.

The crosses in the examples resemble the origin of the structuring element.
The location of this origin is very important. It sets the reference position of
the window, and thus the structuring element, when we move it over the image
pixels.

In figure 2.14 the same image has undergone a morphological opening operation
with two different structuring elements. In figure (c) an elongated horizontal
element is used, in figure (d) an elongated vertical element is used. In fig-
ure (c) the small vertically oriented objects in the image are removed and
the small horizontally oriented objects are kept. In figure (d) the opposite is
true. Anisotropic structuring elements are therefore useful for the extraction
of orientation-dependent information from the image.

Structuring elements can also be combined. Small and simple structuring ele-
ments can be used as the building blocks to construct a larger and more complex
structuring element. It is then possible to perform the morphology, either by
using the large structuring element or by using a sequence of small elements.
This is a consequence of the associativity relations mentioned in section 2.2.4.4,
where a big structuring element is the dilation of one small structuring element
with another (or a sequence of dilations). Some examples of combinations are
shown in figure 2.15. As discussed before, we emphasize that a sequence of
morphological operations using small structuring elements is computationally
more efficient than one operation using a large structuring element. It is, how-
ever, possible that such a sequence requires more computation time, if the
algorithms for the basic morphological operations are optimized. For example,
the commercial package Matlab needs about 3.5 seconds to dilate a binary im-
age (size 280× 272) 50 times successively by a 3× 3 structuring element, and
only 1/100 of that time to perform the dilation by the composition of those
elements, i.e., a 101× 101 square.
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(a) A

B1

B2

(b) B1 and B2

(c) A ◦ B1 (d) A ◦ B2

Figure 2.14: Morphological opening by different structuring elements.

(a) B1 (b) B2 (c) B1 ⊕ B2

(d) B3 (e) B4 (f) B3 ⊕ B4

Figure 2.15: Structuring elements can be combined.
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2.3 Extension to greyscale images

The theory of mathematical morphology was developed for binary images.
Union and intersection operations are the operations used for the construc-
tion of the morphological operators. These are logical operations working on
logical images: a point in the space, i.e., a pixel in the discrete image, is part of
the set or it is not. This is the equivalent of saying that a pixel has the logical
value 1 or 0.

Greyscale images are a different matter. While a binary image is represented
by the colours black and white, a greyscale image consists of different shades
of grey. In image processing, the range of these grey values is usually between
0 and 255, taking only integer values, with 0 being the darkest shade (black)
and 255 being the lightest shade (white). This results in an 8-bit image, with
28 = 256 possible grey values. The logical union and intersection cannot be
used like in the binary case. An extension of the morphological theory is
therefore imposed.

We keep in mind that a binary image is a special case of a greyscale image, but
with only two levels of grey. The extension will therefore be quite natural: by
replacing the union (or logical or) and intersection (or logical and) with the
max en min operations, binary morphology will be obtained as a specific case
of greyscale morphology.

This section will discuss two approaches for extension: the threshold approach
and the umbra approach.6

2.3.1 The threshold approach

A greyscale image can be represented by the collection of cross sections of the
image. The cross section (or level set) at level t is a set defined as:

A×(t)= {r | A(r) ≥ t} . (2.101)

t is the threshold value, which can be any possible grey value. The image A
should now be seen as a function: the function value at coordinate r (for a
two-dimensional image this is (x, y)) is the grey value A(r). Figure 2.16 shows
a one-dimensional function A(x) that is thresholded at level t.

The threshold decomposition is the collection of all non-empty cross sections:

A= {A×(t) | A×(t) 6= ∅} . (2.102)

Notice that we can reconstruct the original image from its cross sections:

A(r)= max{t | r ∈ A×(t)} . (2.103)

6In this thesis it is implicitly assumed that the threshold approach is used, unless stated
otherwise.
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t

x

A(x)

Figure 2.16: The cross section A×(t). For the sake of simplicity, we show a one-
dimensional image: the coordinates are the abscissa values, the grey values are the
ordinate values. The coordinate values between the dotted lines are part of the cross
section for the given t.

The principle of the threshold approach (sometimes referred to as the t-
approach) is to perform the binary morphological operations on the cross sec-
tions of the image/function A. Every cross section is a binary image, the struc-
turing element is binary too. The basic morphological operators are defined in
a similar way, except that the union is replaced by max and intersection by
min. Actually, the replacements would be the supremum and infimum, but this
mathematical correctness only makes sense when continuous images are used.
Since in practice in image processing discrete images are used, we will further
use the maximum and minimum.

2.3.1.1 Greyscale t-dilation

As in the binary case, the dilation has the properties of an image processor,
i.e., it is distributive and translation invariant. The dilation is defined as:

(A⊕B)(a)= max{A(r) | a− r ∈ B}
= max{A(r) | r = a− b,b ∈ B} .

(2.104)

This greyscale dilation has the same complexity as a convolution operation
(section 2.1). However, the summation of products is replaced by a maximum
of sums.

The threshold or flat dilation can be visualized by taking every cross section
from the threshold decomposition as an input image. The input greyscale im-
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x

A(x)

(a) A (b) B

x

A(x)

(c) Cross sections of A

x

A(x)

(d) A ⊕ B on cross sections

x

A(x)

(e) A ⊕ B

Figure 2.17: Greyscale t-dilation on a one-dimensional greyscale image. The ab-
scissa is the pixel coordinate, the ordinate the grey value or t-value.

age, which is in fact a function, is now transformed into slices of binary images.
On every cross section the binary morphological dilation by a binary structur-
ing element is applied. The results are then combined using equation (2.103).
An example is shown in figure 2.17.

2.3.1.2 Greyscale t-erosion

The t-erosion (figure 2.18) is defined in a similar way as the greyscale t-dilation:

(A	B)(a) = min{A(r) | r− a ∈ B}
= min{A(r) | r = a + b,b ∈ B} .

(2.105)

2.3.1.3 Greyscale t-closing and t-opening

The secondary basic operators for greyscale morphology with the threshold
approach are defined like their binary equivalents. In this case, they are a max
operation followed by a min operation, and vice versa:

Closing : A •B = (A⊕B)	B , (2.106)
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x

A(x)

(a) A (b) B

x

A(x)

(c) Cross sections of A

x

A(x)

(d) A 	 B on cross sections

x

A(x)

(e) A 	 B

Figure 2.18: Greyscale t-erosion on a one-dimensional greyscale image. The abscissa
is the pixel coordinate, the ordinate the grey value or t-value.

Opening : A ◦B = (A	B)⊕B . (2.107)

An example on a real greyscale image is shown for all four operators in fig-
ure 2.19. The swelling or shrinking of the image objects and the filling of
the holes or the disconnection of thin lines is now translated to the greyscale
domain. A dilation increases the overall brightness of the image, while the
erosion darkens the image. A hole in a greyscale image is a small dark area
surrounded by lighter grey values. A closing operation would then increase
the greyscale value of the pixels of the hole. The opposite happens with the
opening operation.

2.3.1.4 Properties using the threshold approach

The t-dilation and t-erosion are also distributive and translation invariant, just
as in the binary case. All operators are still increasing. The dilation and closing
are extensive, the erosion and opening anti-extensive. The secondary operators
are idempotent.

All other properties are extendable to the greyscale case. The commutativity
is an exception: in the binary case, both A and B are binary sets, but in
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(a) A

(b) A ⊕ B (c) A 	 B

(d) A • B (e) A ◦ B

Figure 2.19: Greyscale morphology using the threshold approach. B is a disc
structuring element (with a radius of 4 pixels).
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the greyscale extension with the threshold approach, the input image A is a
greyscale image and the structuring element B is considered to be a flat, binary,
element. In definition (2.104), A and B cannot be switched.

An extra property is the greyscale translation invariance. With the (spatial)
translation invariance, the absolute position of the image content is irrelevant.
Now, it is also possible to increase or decrease the grey values with a constant
value. We define the greyscale translation of image A by a scalar value v as:

Tv(A)= {A(r) + v} . (2.108)

This greyscale translation Tv may not be confused with the spatial transla-
tion Tr. Similar properties can now be written down like the equations in
section 2.2.4.2. The greyscale translation invariance for the basic operators is
then:

Tv(A)⊕B = Tv(A⊕B) , (2.109)

Tv(A)	B = Tv(A	B) , (2.110)

Tv(A) •B = Tv(A •B) , (2.111)

Tv(A) ◦B = Tv(A ◦B) . (2.112)

The morphological t-operators produce the same results on a binary image as
the binary morphology. In that case, background pixels have grey value 0 and
object pixels have grey value 1.

2.3.2 The umbra approach

The umbra approach, or u-approach, is an extension which allows greyscale
structuring elements, but which introduces a new problem, as we will discuss
later.

This approach introduces a few new concepts that transform an image set into
an image function, or vice versa. Let us assume an N -dimensional set As. The
top surface (or top) is defined by:

T [As](r)= max{z | (r, z) ∈ As} . (2.113)

An example is shown in figure 2.20 for a two-dimensional set. The first N − 1
coordinates of such a set are the coordinates in the spatial domain of the set,
the Nth coordinate is for the so-called surface of As. For our purposes we have
N = 3, with the first two coordinates the (x, y)-coordinates of the pixels.

In practice, when working with greyscale images, the input image A is already
a top surface: A(r) = T [As](r) = z. A is the functional representation of the
image, As is the three-dimensional set representation of the image.
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x

z

T[A ]s

U[T[A ]]s

As

Figure 2.20: A set As in two dimensions (one spatial coordinate and one surface
coordinate) and its top surface T [As] and umbra U [T [As]].

The umbra (sometimes referred to as the subgraph) of the image function A is:

U [A] = {(r, z) | z ≤ A(r)} . (2.114)

The umbra (figure 2.20) is thus a set containing the top surface of a function A
and everything “below” that top surface if we interpret z = A(r) as a height of
a topographic landscape at position r. The umbra operation drops a shadow on
everything on and below the top surface, hence the name umbra, which means
shade or shadow. The image A, with grey values A(r), is transformed into a
set U [A]. This set is N -dimensional, with N − 1 coordinates that constitute
the spatial domain and the Nth coordinate the surface of the set.

The umbra of the one-dimensional function T [As] is visualized in figure 2.20.
The schematic example in figure 2.21 illustrates the difference between the
function and its umbra.

The definitions of the top surface and the umbra allow us to define the extension
of mathematical morphology to greyscale images. With this umbra approach it
is possible to use greyscale structuring elements. The morphological operations
are performed on the umbrae of the images. The structuring element used is
an umbra version of the original structuring element (figure 2.22).

2.3.2.1 Greyscale u-dilation

The greyscale image A and the greyscale structuring element are functions.
We take the umbra of both images and perform a binary dilation between the
umbrae. The dilated result is a set, which is transformed to a greyscale image,
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x

A(x)

(a) A

x

z

(b) U [A]

Figure 2.21: A one-dimensional greyscale image and its umbra. The ordinate is the
grey value in figure (a) and an extra dimension in figure (b).

x

A(x)

(a) B

x

z

(b) U [B]

Figure 2.22: A one-dimensional greyscale structuring element and its umbra.

by taking the top surface:

A⊕B = T [U [A]⊕ U [B]] , (2.115)

(A⊕B)(a)= max{A(a− b) + B(b) | b ∈ Ω(B)} , (2.116)

with Ω(B) the support of B. The support is the set of all pixels r in the image
(function) that are defined. In practice, the undefined pixels are given value
−∞, and by convention s + t = −∞ if s = −∞ or t = −∞, and s− t = +∞ if
s = +∞ or t = −∞ are used in case of ambiguity.

The one-dimensional example (figure 2.23) illustrates what happens: the im-
age and the structuring element are one-dimensional, i.e., every pixel has one
spatial coordinate with a respective grey value. The umbra transforms the
one-dimensional greyscale image into a set, which is a two-dimensional binary
image. The same applies for the structuring element. Now we can dilate the
two-dimensional binary image by a two-dimensional structuring element. The
result is also a two-dimensional binary image. By taking the top surface, we
transform the set into a greyscale image, which is one-dimensional. This ex-
planation remains valid for higher dimensions (but is not so easy to visualize).
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x

z

(a) U [A] ⊕ U [B]

x

A(x)

(b) T [U [A] ⊕ U [B]] = A ⊕ B

Figure 2.23: Greyscale u-dilation on a one-dimensional greyscale image. A and B
are shown in figures 2.21 and 2.22.
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z

(a) U [A] 	 U [B]

x

A(x)

(b) T [U [A] 	 U [B]] = A 	 B

Figure 2.24: Greyscale u-erosion on a one-dimensional greyscale image. A and B
are shown in figures 2.21 and 2.22.

2.3.2.2 Greyscale u-erosion

The u-erosion (figure 2.24) is defined in a similar way as the greyscale dilation:

A	B = T [U [A]	 U [B]] , (2.117)

(A	B)(a) = min{A(a + b)−B(b) | b ∈ Ω(B)} . (2.118)

2.3.2.3 Greyscale u-closing and u-opening

The secondary basic operators for greyscale morphology with the umbra ap-
proach are defined like their binary equivalents:

Closing : A •B = (A⊕B)	B , (2.119)

Opening : A ◦B = (A	B)⊕B . (2.120)
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As U[T[A ]]s = 

x

z

T[A ]s

Figure 2.25: A set As in two dimensions (one spatial coordinate and one surface
coordinate) is an umbra. Its top surface T [As] and umbra U [T [As]] are each other’s
inverse.

2.3.2.4 Properties using the umbra approach

The top surface operator is the left inverse of the umbra operator, so the top
surface operation always cancels the umbra operation:

T [U [A]] = A . (2.121)

They are not real inverses, because the same is not true for the opposite oper-
ation, i.e., the umbra is not the left inverse of the top surface. All we can say
is that:

As⊆U [T [As]] . (2.122)

When set As is an umbra, then the equality is true. In this case the umbra and
the top surface are each other’s inverse. Figure 2.25 illustrates this. Set As is
already an umbra. The umbra of the top surface of As results back in As.

The umbra homomorphism theorem states:

U [A⊕B] = U [A]⊕ U [B] , (2.123)

U [A	B] = U [A]	 U [B] . (2.124)

A homomorphism is a structure-preserving map between two algebraic struc-
tures. In this theorem, the umbra of the result of a morphological dilation or
erosion, using the greyscale morphology on functions, is the same as the binary
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dilation or erosion with the umbrae (thus sets) as arguments. The homomor-
phism is also valid for the closing and opening:

U [A •B] = U [A] • U [B] , (2.125)

U [A ◦B] = U [A] ◦ U [B] . (2.126)

This method makes it possible to extend properties for binary morphology to
greyscale morphology. Most properties, like the duality, associativity, union/in-
tersection, . . . remain valid in the umbra approach. In contrast to the threshold
approach, the commutativity rule still applies. The top surface and umbra are
also monotone (and increasing) functions:7

A1 ≤ A2⇔U [A1] ⊆ U [A2] , (2.127)

As1 ⊆ As2⇒T [As1] ≤ T [As2] . (2.128)

And when As1 and As2 are umbrae, equation (2.128) becomes:

As1 ⊆ As2⇔T [As1] ≤ T [As2] . (2.129)

2.3.3 Comparison of the t- and u-approaches

In the threshold approach we take the cross sections of the greyscale image and
use a binary morphological operator on every cross section. After reconstruc-
tion we get the resulting greyscale image. The structuring element used is flat
(i.e., binary).

With the umbra approach we perform binary morphology on the umbra of the
image and the structuring element. The top surface of the result is the output
greyscale image. It is now possible to use non-flat (i.e., greyscale) structuring
elements. The grey values of the structuring element can in theory be real
values, positive or negative. Digital images usually have pixels with positive
integer values in the range [0, 255].

This is the problem that arises when using the u-operators: when taking this
range into consideration, the use of a non-flat structuring element makes it
possible to go outside this range, even if the range of the structuring element is
also [0, 255]. A dilation can increase the value to 510 (a grey value of 255 dilated
by a structuring element grey value of 255), an erosion can decrease the value
to −255 (a grey value of 0 eroded by a structuring element grey value of 255).
The dilation example in figure 2.23 shows a few pixels that have increased in
value. This is also true with the t-dilation, but there the pixels only increase
to the maximum value of the pixels in the structuring element window. With

7The relation ≤ is an ordering (see also chapter 3, section 3.2) on two functions: A ≤
B ⇔ ∀r : A(r) ≤ B(r).
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(a) Hard-limit approach
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(b) Rescaling approach

Figure 2.26: The u-operators can generate values outside the greyscale range
[0, 255], which can be avoided by cropping or remapping the grey values.

the umbra approach, the grey values can go beyond the extremal value in the
image, which can be a value outside the range of the greyscale domain.

Since digital images usually have pixels with positive integer values in the range
[0, 255], we cannot visualize or store the values that go outside this range. This
problem can be tackled in different ways. The easiest solution would be to hard-
limit the result: values below 0 become 0, values above 255 are set to 255. A
second possibility is a rescaling and translation of the result: the least possible
value when using an 8-bit structuring element is −255 (using the erosion), and
the maximum value is 510. Translating this result to the range [0, 765] and
rescaling this range by a factor 1/3 to the range [0, 255] would give an 8-bit
greyscale image. A consequence of this approach is that the grey values are
remapped, even the initially valid pixel values.

The transfer function for the hard-limit approach is shown in figure 2.26(a), the
transfer function for the rescaling approach is shown in figure 2.26(b). Both
approaches are not ideal: the former assigns a default value to every grey
value outside the range; the latter remaps the whole range. Because of this,
the umbra approach is rarely used in practice, and also because of the extra
computations needed8 and because it is difficult to set the greyscale weights of
the structuring element according to the image intensity values [Soille, 2003].

The formulas for the u-dilation and u-erosion can be used for flat (i.e., binary)
structuring elements. The values of B should then be set to 0, and all elements
outside B must have value −∞. The equations are now those of the t-approach.

There is also another possibility, for which we refer the reader to
[Kerre and Nachtegael, 2000, Nachtegael, 2002]. Several morphological frame-
works exist, based on fuzzy logic. It is possible to use fuzzy logic for the

8A non-flat (greyscale) structuring element introduces an extra cost: if we compare equa-
tions (2.104) and (2.105) with equations (2.116) and (2.118), respectively, we notice the
extra term added or subtracted in the definition of the u-operators. This term increases the
computational cost.
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greyscale extension of mathematical morphology, using non-flat structuring
elements. The pixel values can be kept in the range [0, 255].

2.4 Applications

This section covers a few special operators that can be formed by combin-
ing several of the basic morphological operators. Each operator has its own
functionality and usage. We have chosen to divide this part into subsections,
where each subsection addresses a specific type of application, like image re-
construction, filtering, segmentation and shape detection. The selected special
operators are introduced in the section for the application where they are use-
ful.

2.4.1 Image reconstruction

Image reconstruction is a technique that tries to create a desired image from
an inferior one. With an inferior image we mean an image that hides some of
the desired information, but where this information is still somehow available.
For example, a noise filter might remove the noise, but also some details in
the image. An image reconstructor will approximate the original image by
restoring the vanished details, but not the noise.

A morphological image reconstructor [Goutsias, 2001, Soille, 2003] is defined
with the conditional dilation (a.k.a. geodesic dilation):

δ(A|M)= min{(A⊕B), M} . (2.130)

In the binary case, when using sets, the min operation is replaced by the
intersection ∩. Structuring element B contains the origin. Likewise, the other
conditional operators can be defined. The conditional closing and conditional
opening are compositions of the conditional dilation and conditional erosion.
The conditional erosion is defined by:

ε(A|M) = max{(A	B), M} . (2.131)

A dilation by a structuring element containing the origin expands the objects.
If this is repeated several times, then the objects will grow until no more back-
ground is present. The conditional dilation restricts this swelling by defining
a mask element M . This mask defines the boundaries of the image growth.
Figure 2.27(a) shows a binary image that is used as a mask for the conditional
dilation of the image in figure (b). The input image is also called a marker.
The marker element should be part of the mask (A ≤M).9

9For the conditional erosion we expect the mask to be part of the marker (A ≥ M). If A
and M are sets, we replace ≤ by ⊆.
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(a) Mask M (b) Marker A

Figure 2.27: For the conditional dilation we need a marker and mask image.

(a) δ10(A|M) (b) δ20(A|M) (c) ρB(A|M)

Figure 2.28: Morphological image reconstruction of A, with mask M , both shown
in figure 2.27. The dilation is performed by a structuring element B, a 5 × 5 square.

For the definition of the image reconstructor, we first need to define the condi-
tional dilation of size n:

δn(A|M)= δδ · · · δ(A|M)︸ ︷︷ ︸
n times

. (2.132)

The morphological image reconstruction is then:

Â = ρB(A|M) = max
n≥1
{δn(A|M)} . (2.133)

In the binary case, when using sets, the max operation is replaced by the union
∪n≥1. A morphological image reconstruction is thus a sequence of conditional
dilations until idempotency. We defined the conditional dilation as a dilation
of a marker image (A) that is bound by a mask image (M).

Figure 2.28 shows the image reconstruction using the conditional dilation of
the marker in figure 2.27. The first conditional dilations might not show any
difference with a normal dilation, but for higher sizes, as can be seen in fig-
ures 2.28(a) and (b) for n = 10 and n = 20, the dilated image does not exceed
the boundaries of the mask. Figure (c) shows the reconstructed image.

In section 2.4.2, the opening and closing by reconstruction are used for noise
filtering. The opening and closing can be used to remove small elements, i.e.,
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noise, from the image. The noise is then filtered out of the image, but the re-
maining objects are smoothened, because the opening and closing are smooth-
ing filters. Therefore, morphological image reconstruction is used to prevent
this. The result from the opening (or closing) can be used as a marker image for
image reconstruction. We introduce two special cases of image reconstructors.
The opening by reconstruction is defined by:

Ψoprec(A)= ρC(A ◦B|A) . (2.134)

Because A ◦B ≤ A (A ◦B ⊆ A in the binary case), we can use the opening as
a marker image. The input image is at the same time the mask image. While
B is used for the making of the marker, the structuring element C is used in
the reconstruction step. The closing by reconstruction is defined by:

Ψclrec(A)= (ρC(Ac ◦B|Ac))c . (2.135)

2.4.2 Image filtering

We previously mentioned that the morphological closing and opening are filter
operators. Generally, an operator is said to be a morphological filter if it is
increasing and idempotent.

The closing and opening can be combined in order to construct new filters. A
combination of a closing with an opening, or vice versa, is called an alternating
filter (af):

ρ(A)= (A •B) ◦B , (2.136)

π(A)= (A ◦B) •B . (2.137)

Remember (equation (2.82)) that those two filters do not produce the same
result. In general, we can specify a size n for a basic structuring element B,
resulting in nB:10

ρn(A)= (A • nB) ◦ nB , (2.138)

πn(A)= (A ◦ nB) • nB . (2.139)

These alternating filters can be used to construct a new class of filters, the
alternating sequential filters (asf):

νn(A)= ρnρn−1 · · · ρ1(A) , (2.140)

µn(A)= πnπn−1 · · ·π1(A) . (2.141)

These filters first remove the smallest objects with filter ρ(A) (or π(A)), us-
ing structuring element B. Visually this means that small darker or lighter

10Recall equation (2.58): nB = B ⊕ B ⊕ . . . ⊕ B (n times).
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(a) Original (b) 10 % salt-and-pepper noise

(c) Structuring element (d) ρ-filtered

Figure 2.29: Filtering salt-and-pepper noise from an image.

areas (compared to their surrounding intensity values) are smoothened. Every
successive filter ρn(A) (or πn(A)) filters the image using a larger structuring
element nB, removing the larger objects from the image.

We also mention an extension of the alternating filters, namely the combination
of three filters:

τn(A)= ((A • nB) ◦ nB) • nB , (2.142)

σn(A)= ((A ◦ nB) • nB) ◦ nB . (2.143)

Figure 2.29 shows an image contaminated with salt-and-pepper noise.11 Ap-
plying an af on this image will remove most noise speckles. We can compare
the behaviour of the morphological filter with the more common median filter .

11Salt-and-pepper noise are random black or white pixels that appear in the image.
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The median filter is a rank order filter that takes the middle grey value from
the ordered list of neighbouring grey values, i.e., it takes the median inside a
small window. Note that the morphological operators are also rank order func-
tions: a dilation takes the maximum value of the neighbourhood defined by the
structuring element, in other words, the output value is the largest value from
the ordered list of neighbouring grey values. The same goes for the erosion, but
now with the minimum value. Note that the dilation and erosion are not filters,
because they are not idempotent. The median filter is also not idempotent, so
it is not a morphological filter.

Morphological filters are good at removing salt-and-pepper noise, just like the
median filter does. The effect on Gaussian noise12 can be seen in figure 2.30,
where the ρ-filter is compared to the classical averaging filter . The averaging
filter is a low-pass filter and is good at removing Gaussian noise from an im-
age. However it is a low-pass filter, all the high frequency information in the
Fourier domain is filtered out of the image. Not only the noise, which is high
frequency information, but also details, like sharp edges, will disappear. The
image will look blurred, and the larger the filtering window is chosen, the more
blur will emerge. The morphological filter does not average values, but takes
the extremal value from a selection of pixels (i.e., the pixels covered by the
structuring element), which leads to sharper edges.

In figure 2.31(a) we filtered the same image as in the previous example, but
now the morphological filtering is a sequence of an opening by reconstruction
(section 2.4.1), a closing by reconstruction, and an alternate filter ρ. The cross
structuring element (figure 2.29(c)) is used. In figure (b) a Wiener filter has
been applied. The Wiener filter filters out additive noise that has corrupted
the signal by statistical means. Its objective is to estimate the noise-free image,
by minimizing the difference between the filtered result and the optimal res-
ult. This is done by calculating the minimum mean squared error (chapter 6,
section 6.4.5).13 It produces quite good results with sharp edges. In the ex-
ample the morphological filter produces somewhat better edges. Notice the
cross shaped artefacts caused by the structuring element (a few of them are
encircled in the figure).

Besides for noise filtering, the morphological filters can be used for image
smoothing. An alternate filter π will first open the image, which reduces the
grey value of the brighter isolated pixels. The closing step will increase the
value of the darker isolated pixels. Both steps smoothen the image.

12Gaussian noise is noise with a Gaussian amplitude distribution.
13Of course, the optimal result is usually not known, but the Wiener filter can be expressed

in function of the signal-to-noise ratio (snr) instead of the ideal image [Pratt, 2001]. The
signal-to-noise ratio is a measure of the variance of the signal against the variance of the
noise in the signal. The variance of the signal (i.e., the optimal image) can be calculated
using the variance of the noise and the variance of the observed image.
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(a) Original (b) Gaussian noise (µ = 0, σ = 0.01)

(c) ρ-filtered (d) Average filtered (window size 5)

Figure 2.30: Filtering Gaussian noise from an image.

(a) Result of morphological filtering (b) Result of Wiener filtering (window 5)

Figure 2.31: Filtering Gaussian noise from an image (crop of figure 2.30(a)).
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(a) Input image A (b) Gradient GB(A)

(c) External gradient Ge
B(A) (d) Internal gradient Gi

B(A)

Figure 2.32: Morphological gradient operations on A, using a square structuring
element B.

2.4.3 Segmentation

A morphological gradient can detect edges in an image. If objects are regions
of rather homogeneous grey values, then object boundaries are located at high
grey value differences. The morphological gradients enhance these differences
in grey values. The morphological gradient operator is defined by:

GB(A)= (A⊕B)− (A	B) . (2.144)

The subtraction is the pixel-wise difference in grey value. In the binary case,
only two grey values are present, 0 and 1. When the binary image is interpreted
as a set instead of a function, then the set difference \ is used. The dilation
takes the maximum value in the local neighbourhood defined by the structuring
element, the erosion gives the minimum value. The difference of the dilation
with the erosion shows the object boundaries. Higher grey values indicate
higher grey level variations. An example is shown in figure 2.32.

The external morphological gradient operator is defined by:

Ge
B(A)= (A⊕B)−A . (2.145)

As we can see in figure 2.32(c), the external gradient marks the outside of the
object boundaries.
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Finally, the internal morphological gradient operator is defined by:

Gi
B(A)= A− (A	B) . (2.146)

The internal gradient marks the inside of the object boundaries (see fig-
ure 2.32(d)). The gradient GB(A) marks both the outside and the inside
boundary. To avoid negative grey values, the structuring element must contain
the origin (0 ∈ B). This ensures the relationship A	 B ⊆ A ⊆ A⊕ B (equa-
tion (2.92)) is valid. In practice, a symmetric structuring element is used (i.e.,
B = B̆).

Notice that the morphological gradient is the combination of the external and
internal gradient:

GB(A)= Ge
B(A) + Gi

B(A) . (2.147)

The external gradient marks the edges at the outside of the objects, while the
internal gradient calculates the internal boundaries. The gradient GB marks
both the outside and the inside boundaries. This formulation is also valid in the
binary case. When the binary image is interpreted as a set, then the addition
is replaced by the union operation ∪.

An example of segmentation with the morphological gradient is shown in fig-
ure 2.33. Figure (a) shows an ultrasound (us) image of the brain of a very low
birth weight (vlbw) newborn, i.e., less than 1500 g [Vansteenkiste et al., 2003,
Vansteenkiste et al., 2006a]. The risk for such an infant to have white matter
damage (wmd) or Periventricular Leukomalacia (pvl) is between 20 and 50 %.
Due to a lack of oxygen in the brain, parts of the white matter die. In the us
image this leads to flaring. Our goal is to draw the boundaries of these flares
in a (semi-)automatic way. The speckle in the image, which is inherent in us
images, hinders the segmentation.

Firstly, a rectangular region of interest (roi) is drawn by the medical doctor.
This roi contains the flare and surrounding background speckle. This region
is binarized using a threshold which is the average grey value in the roi. The
result is shown in figure (b).

Secondly, mathematical morphological techniques are used for the segmenta-
tion. A closing will fill the small holes in figure (b). The morphological gradient
(equation (2.144)) is calculated from figure (c). Here, we have used different
structuring elements for the dilation and the erosion. The dilation is done by a
disc shaped structuring element of radius 3, the erosion is done with radius 2.

Finally, the gradient result (figure (d)) is placed on top of the ultrasound image,
shown in figure (e).
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(a) Original (b) Threshold of roi

(c) Closing (d) Gradient (e) Segmentation result

Figure 2.33: Morphological segmentation of flares in an ultrasound image.

2.4.4 Corner detection

In some applications we want to extract specific shapes from the image, or we
want to detect corners from objects, or edge points, or isolated points. The
hit-and-miss transform is the ideal tool for this task. The hit-miss operator for
binary images is defined by:

A⊗ (B, C)= (A	B) ∩ (Ac 	 C)

= {r | Tr(B) ⊆ A and Tr(C) ⊆ Ac} .
(2.148)

This operator needs two disjoint structuring elements: element B erodes the
objects, element C erodes the background set. The combination of both struc-
turing elements, as in the above equation, is a powerful tool to detect specific
patterns.

For example, to detect the upper-left corner of an object, we erode the image
by a structuring element B like the one in figure 2.34(a), resulting in A 	 B
(see figure 2.35). If an object pixel has a right and lower object neighbour,
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(a) B (foreground) (b) C (background)

1
1

−1

0
1
0

0
−1
0

(c) Alternative representation

Figure 2.34: Upper-left corner detection with the hit-miss transform. Specific struc-
turing elements are used.

then this pixel is kept by the erosion. It is irrelevant if other neighbours are
object pixels. We also erode the complement of the image by the structuring
element C, shown in figure 2.34(b), resulting in Ac	C. Notice that the origin
of the structuring elements plays an important role: it sets the position of the
possible corner pixel. Here, if the left and upper neighbour of the pixel are
background (in the original image, foreground in Ac), then this pixel is kept
by the erosion. Whether the pixel itself or its other neighbours are background
pixels is not important.

The intersection of both erosions shows where upper-left corners are in the
image. The result of the hit-miss transform is a set of the foreground pixels
with at their right and below them foreground pixels and at their left and above
them background pixels.

The hit-miss transform is capable of detecting very specific forms, and these
forms are defined by the structuring elements B and C. If we want to de-
tect a shape that is slightly different, we must slightly change the structuring
elements. For example, the structuring elements from figure 2.34 detect an
upper-left corner. No requirements are implied for the value of the pixel at the
upper-left position, relative to the investigated pixel. We can change structur-
ing element C by adding an extra pixel to its support, namely the pixel at the
upper-left, relative to the origin. As a result, the upper-left pixel must now
be a background pixel, otherwise the hit-miss transform does not produce a
hit. The next paragraph introduces the don’t care pixels, which embody the
strictness of the hit-miss shapes. Unfortunately, the size of the shapes that will
be detected are defined by the given structuring elements. For the detection
of corners this is not a problem, but if a specific object shape must be found,
then size does matter.

The hit-miss structuring elements can be represented in an alternative way
(figure 2.34(c)): instead of structuring elements, a small window with values
−1, 1 and 0 scans the image. In our example, a pixel is detected as a corner
if the pixels at the locations with value 1 are foreground pixels, and the pixels
at the locations with value −1 are background pixels. The value 0 represents
the so-called don’t care pixels: the pixel values at these positions are not im-
portant. This approach gives the same hit-miss results as the definition with
the structuring elements.

The structuring elements must not intersect, otherwise the hit-miss transform
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(a) A (b) A 	 B

(c) Ac (d) Ac 	 C (e) A ⊗ (B, C)

Figure 2.35: An example of the hit-miss transform, detecting upper-left corners
(using the structuring elements from figure 2.34).

is useless:

B ∩ C 6= ∅⇒A⊗ (B, C) = ∅ . (2.149)

Some properties of the hit-miss operator are:

Tr(A)⊗ (B, C) = Tr(A⊗ (B, C)) , (2.150)

A⊗ (Tr(B), Tr(C)) = T−r(A⊗ (B, C)) , (2.151)

Hλ(A)⊗ (Hλ(B), Hλ(C)) = Hλ(A⊗ (B, C)) , (2.152)

B = ∅⇒A⊗ (B, C) = Ac 	 C , (2.153)

C = ∅⇒A⊗ (B, C) = A	B , (2.154)

A⊗ (B, C) = Ac ⊗ (C, B) . (2.155)

Equations (2.150) and (2.151) show the translation invariance, while equa-
tion (2.152) shows the scale invariance property. Equations (2.153) and (2.154)
state special cases of the hit-miss transform, when one of the structuring ele-
ments is an empty set. The last equation shows the relation of the hit-miss
transform of the image with that of its complement.

The hit-miss transform has originally been developed for the detection of shapes
in binary images. The pixels are either part of the background or part of the
foreground, and the elements from the output set are pixels where the transform



52 Mathematical Morphology

x

A(x)

0

1

(a) A

A(x)

x

0

1

(b) B

x

A(x)

1

0

−1

(c) A 	 B

x

A(x)

1

0

−1

(d) −A 	−B

x

A(x)

0

−1

−2

(e) A ⊗ B

Figure 2.36: A one-dimensional example of the greyscale hit-miss transform using
template matching. Note that the range of the grey values on the ordinate changes
for each figure.

produces a perfect hit. With greyscale images, we have more grey values at
our disposal. We might want to make a distinction between identical shapes
found at different grey levels, or on the contrary do not want this to affect the
hit-miss transform at all. We can also use greyscale structuring elements and
try to match them to the greyscale content in the image. Several extensions
to a greyscale hit-miss transform exist. In [Khosravi and Schafer, 1996] an
extension, with only one structuring element, for the u-approach is proposed:

(A⊗B)(a)= (A	B) + (−A	 (−B)) (2.156)

= min
b∈Ω(B)

{A(a + b)−B(b)}+ min
b∈Ω(B)

{−A(a + b) + B(b)}

= min
b∈Ω(B)

{A(a + b)−B(b)} − max
b∈Ω(B)

{A(a + b)−B(b)} .

The structuring element B is called the template. The result of this hit-miss
transform is always ≤ 0. Pixels with value 0 are the locations where a perfect
match has been discovered (figure 2.36).

In [Soille, 2003], two extensions are discussed (t-approach). The unconstrained
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(a) A
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(b) Structuring elements
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A(x)

(c) Hits
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(d) (A ⊗ (B, C))U

Figure 2.37: A one-dimensional example of the unconstrained greyscale hit-miss
transform. The grey blocks in figure (c) denote the pixels and their respective cross
sections where the hit-miss finds a match.

hit-miss transform is defined as:

(A⊗ (B, C))U (a) ={
(A	B)(a)− (A⊕ C̆)(a), if (A⊕ C̆)(a) < (A	B)(a)

0, otherwise.

(2.157)

This transform gives for every pixel the number of cross sections that produce
a hit. We illustrate the unconstrained hit-miss transform in figure 2.37 using
a one-dimensional greyscale image. At several pixels and cross sections a hit
is found. The final hit-miss result is shown in figure (d). This method finds
exact matches for the desired (flat) shape, for every cross section.

The constrained hit-miss transform is defined as:

(A⊗ (B, C))C(a) =



A(a)− (A⊕ C̆)(a), if A(a) = (A	B)(a)

and (A⊕ C̆)(a) < A(a)

(A	B)(a)−A(a), if A(a) = (A⊕ C̆)(a)

and (A	B)(a) > A(a)

0, otherwise.

(2.158)
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x

A(x)

(a) Hits
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(b) (A ⊗ (B, C))C

Figure 2.38: A one-dimensional example of the constrained greyscale hit-miss trans-
form. A, B and C are shown in figure 2.37. The grey blocks in figure (a) denote the
cross sections and pixels where the hit-miss finds a match.

If FG(r) = {a | A(a) ≥ A(r)} and BG(r) = {a | A(a) ≤ A(r)}, the extra
constraint here is that the structuring element containing the origin must match
the foreground set FG if 0 ∈ B, or the background set BG if 0 ∈ C. These
are sets defined by a threshold for every pixel. An example of the constrained
greyscale hit-miss transform is shown in figure 2.38.

Both the unconstrained and the constrained greyscale hit-miss transform are
equivalent in the binary case and result in the binary hit-miss operation, equa-
tion (2.148). The constrained hit-miss is always part of the unconstrained
result, i.e., (A⊗ (B, C))C ≤ (A⊗ (B, C))U .

Finally, we briefly mention a fourth variant of the greyscale hit-miss transform
(u-approach) [Ronse, 1996]:

(A⊗ (B, C))(a) ={
(A	B)(a), if (A⊕ (−C̆))(a) ≤ (A	B)(a)

−∞, otherwise.

(2.159)

The result depends on the absolute values in the input image, while the result
of the previous definitions depends on the relative values in the input image.

2.5 Conclusion

In this chapter, we introduced the concepts of mathematical morphology, a
theory based on lattice theory and random geometry, and used for the inves-
tigation of geometric structures. We defined the basic operators, dilation and
erosion, as well as the secondary operators, closing and opening. The morpho-
logical operators perform their duty using one or more structuring elements.
The choice of size and shape of these elements depends on the application
and image content. We also discussed several properties of the morphological
operators.
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We explained two greyscale extensions of the binary theory: the threshold ap-
proach and the umbra approach. The t-approach builds on the concept of cross
sections, while the u-approach uses concepts like the top surface and umbra.
The umbra approach allows the use of greyscale structuring elements, but it
has a higher computational cost and the grey values can lie outside the initial
range.

In the final section, we discussed a few morphological operators used in prac-
tice, such as the morphological reconstructors and filters, the gradient for seg-
mentation and the hit-miss transform for the detection of specific shapes. The
hit-miss transform will play an important role in chapter 6.
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Chapter 3

Colour Mathematical

Morphology

In chapter 2, we introduced the concepts of mathematical morphology. Origin-
ally, this theory was developed for binary images, using set theory. The math-
ematical concepts were extended to greyscale images, represented by functions.
This was quite straightforward, since the only essential change in the theory is
the replacement of the union and intersection by the maximum and minimum
operation, respectively.

Extending the theory to colour is a different matter because colour is vector
data (e.g., each pixel has three colour components, rather than one grey value).
One approach to extend greyscale morphology is to define a complete ordering
on the possible colour vectors. This ordering can then be used instead of taking
the grey values. This chapter will explain the problem that is involved and will
discuss some possible solutions. First, an introduction to colour representation
is given, along with some colour space definitions. Different solutions to colour
ordering exist, as we will see in section 3.2. Finally, we will introduce our own
ordering scheme, the majority ordering.

3.1 Theoretical background

Chapter 2 dealt with binary and greyscale images. The pixel values in those
images describe intensity. The human eye is also able to distinguish dif-
ferent colours [Trussell et al., 2005, Gonzalez and Woods, 2002, Pratt, 2001,
Poynton, WWW]. Colour images can provide valuable information, not avail-
able in greyscale images. We will therefore describe how to deal with colour
images. We first give a definition of colour, how we perceive it, and how we
can represent it.
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Figure 3.1: The visible spectrum, going from violet (380 nm) to red (780 nm).
Neighbouring lower wavelengths are in the ultraviolet range, neighbouring higher
wavelengths are in the infrared range.

3.1.1 The human perception of colour

Sunlight is perceived as white light, but when a beam is passed through a glass
prism, then the emerging beam is not white. Instead, it is broken up, dispersed,
in a continuous spectrum of colours. This effect can be seen when a rainbow
appears in the sky, caused by the dispersion of sunlight as it is refracted by
raindrops. This colour spectrum is most commonly cited as the seven colour
regions red, orange, yellow, green, blue, indigo, and violet. In reality, however,
an infinite number of colours are present.

Each spectral component is characterized by a frequency ν, or alternatively by a
wavelength λ, defined by λ = c/ν, with c the speed of electromagnetic radiation,
which is about 300 000 km/s in vacuum.1 2 The visible spectrum for humans lies
between 380 nm and 780 nm (see figure 3.1). The range of colours corresponding
to this spectrum goes from blue, over green, to red. Electromagnetic signals
with a wavelength outside this range are not detectable by the human eye.
The wavelengths below 380 nm are the ultraviolet (uv) waves (on the left in
figure 3.1). Further away from this area are the X-rays, γ-rays and cosmic rays,
which have the highest energy per photon.3 The wavelengths above 780 nm are
the infrared (ir) waves (on the right in figure 3.1). Electromagnetic waves with
even less energy per photon are the microwaves, television and radio signals,
and electricity.

The eye is a lens system, where the incident light is focussed by the cornea and
lens to form an image of the object being viewed on the retina at the back of
the eyeball. The retina contains receptors that translate the incident light to a
nerve signal, that is interpreted by the brain. There are two kinds of receptors:

• Rod cells or rods are very sensitive photoreceptor cells, and are thus able
to respond to very weak light stimuli. They are very numerous, the retina
has about 100 million rods. Their purpose is night vision, or scotopic
view, and they confer the achromatic or monochromatic view.

1The speed of light in vacuum is exactly defined as 299 792 458 m/s [NIST, WWWc].
2Note that the wavelength λ of a certain spectral component depends on the medium,

while the frequency ν does not. Often, λ is used to define a certain spectral component, and
it is then implicitly assumed that the medium is vacuum.

3The energy of a photon (the smallest amount of electromagnetic radiation, a massless
bundle of energy) has an energy of E = hν, with h Planck’s constant (6.626 0693 ·10−34 J s)
[NIST, WWWb]. This energy is usually expressed in electron volt (eV), where 1 eV =
1.602 176 53 · 10−19 J [NIST, WWWa].



3.1 Theoretical background 59

• Cone cells or cones function in relative bright light and allow the percep-
tion of colour. There are about 6 million cones present on the retina, so
they are less numerous than the rods. They are also less sensitive, since
they only respond to a specific wavelength range. There are three types
of cones:

– Short (S) cones are sensitive in the blue region. Their response
function has a peak wavelength at (about) 445 nm.4

– Medium (M) cones respond to green colours, with a peak wavelength
at (about) 540 nm.

– Long (L) cones respond to the long wavelengths, i.e., yellow-green
light. Their peak wavelength is at (about) 565 nm.

The (normalized) spectral absorption curves for the three types of cones and
the rod cells (R) are visualized in figure 3.2. The combined sensation of the cells
is what we define as colour . Black, white and the different grey values are also
colours, but the achromatic ones. This system of three different cones makes
the human vision a trichromatic system, i.e., a colour perceived by the human
eye can be described as a weighted sum of three pre-defined colours. The colour
yellow, for example, is perceived when the L-cone is stimulated slightly more
than the M-cone. There are fewer S-cones and they are less sensitive than the
other cones, so the detection of blue is more difficult.5 The human eye is also
more sensitive to the colour green, because then both the M- and L-cones are
stimulated almost equally.

3.1.2 Colour reproduction

3.1.2.1 Additive systems

In additive devices, colours are produced by combining several primary light
sources. It is sufficient to have three well-chosen primary colours (red, green
and blue) or primaries to produce most colours that are visible to the hu-
man eye. The choice of the primaries defines the range of colours that are
physically obtainable. This range is called the gamut . Each primary has a
colour matching function, which defines the weight, or tristimulus value, for
its respective primary that is needed to mimic a spectral light source with a
specific wavelength. A colour matching function can be negative in a certain
wavelength domain, in which case a spectral light source with that wavelength
cannot be reproduced. Any colours containing such spectral components are
outside the gamut.

4The values of the peak wavelengths are from [Stiles and Burch, 1959]. Other experiments
[Dartnall et al., 1983] show peak wavelengths at 419 nm, 531 nm and 558 nm for the S-, M-
and L-cones, respectively.

5Figure 3.2 shows the normalized absorption spectra of the cones. Relatively, the max-
imum absorption value of the S-cone is much lower than that of the other two cones.
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Figure 3.2: The cone sensitivities for the S-, M- and L-cones. The response function
of the rod cells (R) is also shown.

Figure 3.3 shows how the colours cyan, magenta, yellow and white are generated
by adding the primaries. If the intensities of those primaries red, green and
blue are changed, then other colours are produced. An example of this is shown
in figure 3.4 with the “Lena” image.

A television or computer monitor with a crt (cathode ray tube) is an example of
an additive colouring system. The screen is covered with phosphoric dots that
emit light with a specific spectrum when hit by an electron beam that scans the
screen. The dots are clustered in groups containing the three primaries. The
emitted spectra of neighbouring primaries are added and the result is captured
by the eye.

3.1.2.2 Subtractive systems

In an additive colour system, primaries are superimposed to obtain a specific
colour, i.e., their light intensities are added. In a subtractive colour system,
on the other hand, a portion of the electromagnetic spectrum is removed from
initially white light in a filtering process, before reaching the observer, which
results in a certain colour. The filter is a semi-transparent coloured medium.
The colours used are cyan, magenta and yellow. The thickness and properties
of the dye layer define how much light can pass. This way, a wide range of
colours can be obtained. Figure 3.5 shows the subtraction of colours. For
example, in order to obtain green, the white light must pass a cyan and yellow
filter.

A colour inkjet printer is a typical example of a subtractive device, using the
cmyk model. The different ink cartridges contain semi-transparent ink with
a certain primary colour, i.e., cyan, magenta and yellow (and black). The ink
drops are printed onto a white piece of paper. When we look at the paper,
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Figure 3.3: The addition of colours. The combination of the primaries red, green
and blue generates new colours, such as cyan, magenta, yellow and white.

(a) Red colour band (b) Green colour band

(c) Blue colour band (d) Additive result

Figure 3.4: The additive colour system. The sum of the three colour bands results
in a colour image.
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Figure 3.5: The subtraction of colours. The combination of the primaries cyan,
magenta and yellow generates new colours, such as red, green, blue and black.

white light passes the ink layers and is changed into coloured light, which is
reflected on the paper and reaches our eyes through the layers of ink. An extra
cartridge with a black primary (the letter K in cmyk) is used for a better and
less expensive reproduction of the “colour” black.

The subtractive system enables us to observe objects and distinguish their
colours. Light is reflected on objects and certain spectral parts are absorbed
by these objects. The other parts reach the eye and define the perceived colour.

3.1.3 Colour spaces

All visible colours can be represented by the combination of three default col-
ours with their respective colour matching function, the primaries. Every col-
our system has its own set of primaries. In theory, the number of possible sets
of primaries is infinite.

In practice, several different colour spaces are used, and also several different
sets of primaries. The choice of the colour space and primaries depends on
the device and application used. A good set of primaries is one that has a
large gamut, i.e., many colours can be obtained by combining the primaries.
Therefore, the preferred colour matching functions are non-negative. We now
discuss some commonly used colour spaces.

3.1.3.1 CIE’s XYZ space

The Commission Internationale de l’Eclairage (cie) [CIE, WWW] defined
some standard colour coordinates X, Y and Z. The xyz coordinates are as-
sociated to three artificial primaries that cannot be realised by light sources.
The coordinate values are linear to the intensity of light and embed the spectral
properties for human colour vision.
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The spectra of the primaries of the xyz colour system have the following re-
strictions:

• The Y-coordinate is the luminance component. Luminance is like in-
tensity,6 but it is now radiant power weighted by a spectral sensitivity
function that is characteristic of vision [Poynton, 1997b]. The unit of
luminance is cd/m2.7

• Uniform white light is obtained when X = Y = Z. As a consequence,
greyscale values can be represented by the luminance component Y, know-
ing that the other two components have the same value.

• The colour matching functions of the three primaries must be positive.

3.1.3.2 CIE’s xy space

Until now, we have discussed the colours in function of how the human eye
captures colour. It can be convenient to have a representation of “pure” col-
our in the absence of luminance. Therefore, the cie defined the normalized
chromaticity coordinates x, y and z:





x = X
(X+Y +Z)

y = Y
(X+Y +Z)

z = Z
(X+Y +Z)

. (3.1)

Since z can be described as a linear combination of x and y, i.e., x + y + z = 1,
only the first two coordinates are used, along with the luminance Y . The colour
space is represented by the chromaticity diagram (figure 3.6). The gamut is
the area inside the shark fin shaped curve. The curved edge of the gamut is
called the spectral locus and corresponds to monochromatic light. The gamut
of real devices is much smaller than the xy-gamut. Also, their white point is
not the same as the equal energy white point , where x = y = 1/3.

3.1.3.3 The RGB colour space

In section 3.1.2 we discussed additive and subtractive colour systems. The rgb
(Red-Green-Blue) colour system is an additive colour system based on the tri-
chromatic theory. This is an easy to implement, but visually non-linear system
(i.e., a displacement in its three-dimensional space is not linearly proportional
to the perceived colour difference). It is also device dependent. It is often used
in computer monitors and video cameras. The space is represented as a cube,
with on each axis one of the primaries red, green or blue (see figure 3.7). The

6Intensity (unit: W/m2) is the rate at which radiant energy is transferred over some time
interval per unit area, without correlation to human perception.

7The symbol “cd” stands for candela, the unit of luminous intensity.
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Figure 3.6: The cie xy chromaticity diagram. The point E is the equal energy

white point, i.e., x = y = 1/3. (Part of the graph was made using software from
[efg, WWW].)

coordinates (1, 1, 1), i.e., when all primaries are at their maximum, produce
bright white (W). When all primaries have the same value, then grey values
are generated. When two of the components are set to zero, then the colour
ranges from black (K) to bright red (R), green (G) or blue (B).

The conversion between the rgb space and xyz space is:




R

G

B


 =




Xr Xg Xb

Yr Yg Yb

Zr Zg Zb




−1

·




X

Y

Z


 . (3.2)

The matrix coefficients depend on the definition of the rgb space. For com-
puter monitors, studio video and high definition television (hdtv), a specific
transformation matrix is used:




Xr Xg Xb

Yr Yg Yb

Zr Zg Zb




−1

709

=




3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556

0.055648 −0.204043 1.057311


 . (3.3)

This is ITU-R Recommendation BT. 709 (a.k.a. standard rgb or srgb)
[Poynton, 1997b]. The white point from this space is the so-called D65 white
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Figure 3.7: rgb colour space.

point, which differs slightly from the equal energy white point.8 For pal and
ntsc television, two other sets of primaries are used.

Notice the negative coefficients in the transformation matrix. The rgb values
can thus become negative. These points lie outside the gamut, so there are
colours that cannot be displayed using this colour system.

On a computer, the colours are usually stored in 24-bit format. This means
there are three colour bands, each 1 byte (= 8 bits) large. Every colour band
can thus store 28 = 256 possible values; together there are 224 ≈ 16.7 million
colours. Not every colour stored can be distinguished by the human eye. No
exact number exists, but [Leong, WWW, Expert, WWW] sum several sources
that give different results, going from 100 000 to about 10 million distinguish-
able colours. Thus several different colour vectors will be perceived as the same
colour. On the other hand, many noticeable colours are not produced by the
computer monitor, because of its limited gamut.

3.1.3.4 The CMY(K) colour space

The subtractive colour system cmyk is used in printing. It is device depend-
ent,9 non-linear with visual perception and quite unintuitive. A simple trans-

8The chromaticities xy of Rec. 709 are: R = (0.64, 0.33), G = (0.30, 0.60), B = (0.15, 0.06)
and W = (0.312713,0.329016) [Ford and Roberts, WWW]. The non-linearity or gamma of
the monitor is 2.2 (see also p. 73).

9Not only the printing device influences the result, but also the inks used and even the
printing paper. No wonder why the inks and paper from the printer manufacturers are so
expensive.
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formation between rgb and cmy exists:10





C = 1−R

M = 1−G

Y = 1−B

. (3.4)

So, cyan is the complementary colour of red, magenta is the complement of
green, and yellow is that of blue.

Unfortunately, this transform is not useful in practice. In reality, the trans-
formation from the desired rgb to the cmy required to reproduce this rgb is
more complex. The absorption spectra of the colourants overlap in practice,
which means that, for example, the cyan filter also attenuates some of the
magenta parts of the spectrum. Also, the conversions are device and applica-
tion dependent. They can be described in icc profiles [ICC, WWW]. We must
also keep in mind that, when transforming an rgb image (screen image) into
a cmyk image (print image), that both gamuts are not the same.

3.1.3.5 HSL cylindrical space

One of the many colour spaces that aim to separate the luminance and chromi-
nance information, is the hsl (Hue Saturation Luminance) space. Variants of
this space are hsv (V for Value) and hsi (I for Intensity). The hsl coordinates
are the following:

• H: hue: this is the tint of the colour in the visible spectrum. People would
refer to a hue as blue, red, orange, purple, . . . .

• S: saturation: this corresponds to the purity of the colour: less saturation
results in a more pastel colour. When there is no saturation, then grey
values are obtained.

• L: luminance: see section 3.1.3.1. It is proportional to the radiant power.

The hsl space is a double-cone space (hsldc), as will be discussed in the next
subsection, but a cylindrical variant (hslc) is also used (figure 3.8). The trans-
formation from rgb to hslc is [Hanbury, 2001]:

L =
m + M

2
, (3.5)

Sc =

{
M−m
M+m , if L ≤ 1

2
M−m

2−M−m , if L > 1
2

, (3.6)

10A transformation between cmy and cmyk is given in [Ford and Roberts, WWW].
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Figure 3.8: HSL cylindrical space.

0 90 180 270 360

Figure 3.9: The hue is defined on a circle, in the interval [0◦, 360◦[. Here, it is shown
on a strip (for L = 1/2 and S = 1).

H =





60◦( G−B
M−m mod 6), if R = M

60◦(2 + B−R
M−m mod 6), if G = M

60◦(4 + R−G
M−m mod 6), if B = M

, (3.7)

with m = min {R, G, B} and M = max {R, G, B} and a mod b is the modulo
of a to b (i.e., the remainder of a/b). L and Sc have values in the interval
[0, 1], just as the coordinates R, G and B. The hue H is defined in the interval
[0◦, 360◦[ (see figure 3.9).

A high saturation value denotes a more pure colour. When Sc = 0, then the
hue is undefined and grey values are obtained.

The backward transformation from cylindrical hsl to rgb is described by the
following algorithm [Hanbury, 2001]:

1. First, remap the hue to the interval [0, 6[:

Ht = H/60◦ ; (3.8)
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2. Then, if S = 0 and Ht = 0:





R = L

G = L

B = L

; (3.9)

3. Else:

(a) Define f = Ht − bHtc ;

(b) If L ≤ 1/2:

i. m = L(1− S) ;

ii. M = L(1 + S) ;

iii. mid1 = L[2Sf + (1− S)] ;

iv. mid2 = L[2S(1− f) + (1− S)] ;

(c) Else:

i. m = L(1 + S)− S ;

ii. M = L(1− S) + S ;

iii. mid1 = 2[L(1− f)− ( 1
2 − f)M ] ;

iv. mid2 = 2[Lf − (f − 1
2 )M ] ;

(d) Further, if bHtc = 0:





R = M

G = mid1

B = m

; (3.10)

(e) Else, if bHtc = 1:





R = mid2

G = M

B = m

; (3.11)

(f) Else, if bHtc = 2:





R = m

G = M

B = mid1

; (3.12)
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(g) Else, if bHtc = 3:





R = m

G = mid2

B = M

; (3.13)

(h) Else, if bHtc = 4:





R = mid1

G = m

B = M

; (3.14)

(i) Else, if bHtc = 5:





R = M

G = m

B = mid2

. (3.15)

3.1.3.6 HSL double-cone space

The hsl cylindrical space does not agree well with the perceived properties
of colour, such as saturation. hsl is therefore represented in a different way,
namely a double-cone representation (figure 3.10). The luminance value goes
from 0 to 1, exactly as we described in the previous section concerning the
cylindrical representation. The same is true for the hue value, which is an-
gular. The saturation, however, is defined differently. The maximum possible
saturation value now depends on the luminance. The saturation S has values
between 0 and 1 for L = 1/2, but the maximum S decreases linearly as L goes
to 0 or 1. At L = 0 and L = 1 the saturation can only be 0. As a consequence,
the colours black and white are independent of the value of S and H, and
narrowing of the cones shows that colours with L < 1/2 and L > 1/2 cannot
take on the full range of saturation values.

The cylindrical hsl representation can be useful for adjustments to the lu-
minance or saturation channels. It is more convenient to alter the luminance
while the saturation is kept constant. In the double-cone space this can result
in coordinates that lie outside the hsl space. Also, if we want to change the
saturation in the cylindrical space, we know that the range is always [0, 1].
The altered colour is then transformed back to the double-cone space. The
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Figure 3.10: HSL double-cone space.

transformation from cylindrical hsl to double-cone hsl is:11





H = H(c)

S = Sc(1− 2| 12 − L(c)|)
L = L(c)

. (3.16)

The transformation from double-cone hsl to cylindrical hsl is:





H(c) = H

Sc = S/(1− 2| 12 − L|)
L(c) = L

. (3.17)

3.1.3.7 CIE’s L∗a∗b∗ space

The problem with most colour spaces is the fact that they are not perceptually
uniform. A space is perceptually uniform if we can use the Euclidean distance
as a measure for the difference in colour, perceived by the eye. The Euclidean
distance is defined as:

d(r, s)=
√

(r1 − s1)2 + (r2 − s2)2 + (r3 − s3)2 , (3.18)

with, in this context, r and s two points in the colour space. ri and si (for
i = {1, 2, 3}) are the vector components.

11The subscript (c) in equations (3.16) and (3.17) denotes the component in hslc, but this
value equals that of the respective component in hsldc.
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Some colour spaces have been constructed to be perceptually uniform.
The L∗a∗b∗ (CIELab)12 colour space is derived from the xyz space.
It is device independent. The transformation from xyz to L∗a∗b∗ is
[Ford and Roberts, WWW]:

L∗ =

{
116 ( Y

Yn
)

1

3 − 16, if Y
Yn

> 0.008856

903.3 ( Y
Yn

), if Y
Yn
≤ 0.008856

, (3.19)

a∗ = 500

[
f

(
X

Xn

)
− f

(
Y

Yn

)]
, (3.20)

b∗ = 200

[
f

(
Y

Yn

)
− f

(
Z

Zn

)]
, (3.21)

with

f(t)=

{
t

1

3 , if t > 0.008856

7.787 t + 16
116 , if t ≤ 0.008856

. (3.22)

The lightness L∗ has values in the range [0, 100]. The non-linear relationship
is intended to mimic the logarithmic response of the eye. The lightness is the
perceptual response to luminance, which behaves non-linearly regarding human
vision. a∗ and b∗ are the chromaticity coordinates. The subscript n denotes
the white point of the system.13

We can transform the chromaticity coordinates to polar coordinates:

C∗ =
√

a∗2 + b∗2 , (3.23)

hab = arctan

(
b∗

a∗

)
, (3.24)

where hab is the hue and C∗ is called the chroma.

The colour difference between colours r and s is expressed using the Euclidean
distance, as stated in equation (3.18):

∆E∗
ab(r, s) =

√
(L∗

r − L∗
s)

2 + (a∗
r − a∗

s)
2 + (b∗r − b∗s)

2 . (3.25)

A newer definition for the colour difference exists, taking into account the hue
and chroma components [Trussell et al., 2005]. It is denoted ∆E∗

94.

12There also exists another Lab space, Hunter Lab [HunterLab, WWW].
13If we want to represent an srgb image in L∗a∗b∗, we transform first to xyz using the

inverse of the matrix in equation (3.3). The white point in rgb is (R, G, B) = (1, 1, 1), which
equals (Xn, Yn, Zn) = (0.950455,1.0, 1.088754).
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3.1.3.8 CIE’s L∗u∗v∗ space

Another perceptually uniform colour space is L∗u∗v∗ (CIELuv). Just as
L∗a∗b∗, it is derived from xyz:

L∗ =

{
116 ( Y

Yn
)

1

3 , if Y
Yn

> 0.008856

903.3 ( Y
Yn

), if Y
Yn
≤ 0.008856

, (3.26)

u∗ = 13L∗(u− un) , (3.27)

v∗ = 13L∗(v − vn) , (3.28)

with

u =
4X

X + 15Y + 3Z
, (3.29)

v =
9Y

X + 15Y + 3Z
, (3.30)

un =
4Xn

Xn + 15Yn + 3Zn
, (3.31)

vn =
9Yn

Xn + 15Yn + 3Zn
. (3.32)

Notice that the lightness is the same as the one for L∗a∗b∗ (equation (3.19)).

We can transform the chromaticity coordinates u∗ and v∗ to polar coordinates:

C∗ =
√

u∗2 + v∗2 , (3.33)

huv = arctan

(
v∗

u∗

)
, (3.34)

where huv is the hue and C∗ is the chroma. A psychometric saturation is also
defined:

suv =
C∗

L∗ . (3.35)

The colour difference between colours r and s is expressed as:

∆E∗
uv(r, s)=

√
(L∗

r − L∗
s)

2 + (u∗
r − u∗

s)
2 + (v∗r − v∗s )2 . (3.36)

3.1.3.9 Other spaces

The list of existing colour spaces is very long, which makes an overview of colour
spaces a difficult task. We confined ourselves to the above mentioned colour
spaces. The colour spaces can be classified into four groups [Poynton, 1997a]
that are related by different kinds of transformations:
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• Linear-light tristimulus spaces: these are the spaces where the defined lu-
minance is proportional to intensity. The cie xyz space (section 3.1.3.1)
and the linear rgb space (e.g., srgb (section 3.1.3.3)) belong to this
group.

• (x,y) chromaticity spaces: this is the cie xyy colour space (sec-
tion 3.1.3.2).

• Perceptually uniform spaces: these are the spaces that take into account
the non-linear response of the eye. CIELab (section 3.1.3.7), CIELuv
(section 3.1.3.8) and non-linear r’g’b’ are spaces where the Euclidean
distance is a good measure for the perceptual colour difference. r’g’b’ is
a gamma-corrected rgb,14 so it is still device dependent. It is also not
really perceptual uniform.

• Hue-oriented spaces: one of the components is the hue. hsv, hsi and hsl
(discussed in sections 3.1.3.5 and 3.1.3.6) are examples of hue-oriented
spaces, as well as the polar versions of the L∗ spaces (sections 3.1.3.7
and 3.1.3.8).

Gamma

The detector of a camera produces electrical signals that are proportional to
the intensity of the incident light. However, if the captured images are shown
on a crt, the obtained intensity is not linearly related to the applied voltage:

I(r)∝V (r)γ . (3.37)

I(r) is the obtained intensity at position r in the image, V (r) is the applied
voltage in the crt and γ is a number that denotes the power-like relation. The
latter symbol explains why we speak of gamma and gamma-correction. The
value of γ lies between 2.3 and 2.6 [Poynton, 1996].

Because the acquisition is a linear relationship while the reproduction is non-
linear, a correction is needed. This is the γ-correction: a modification of the
image signal, s, is performed before it is sent to the phosphoric screen:

s(r)∝ I(r)1/γ . (3.38)

This γ-correction can be done right after acquisition15 or right before display-
ing. Since different monitors have different gamma, although there are stan-
dards, it is important to know the value of γ of the correction and the value of
γ of the monitor, otherwise the result of the images might not look good (too

14The next paragraph explains gamma.
15For a television program, the correction is done in the studio, before broadcasting. A

digital image is usually stored as a gamma-corrected one. By convention, γ-correction is done
at this stage.
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bright or too dark, for example). The Rec. 709 (srgb) gamma value is 2.2 and
is recommended when some of the above information is not available.

An advantage of the γ-correction (equation (3.38)) is that the relationship re-
sembles very good the logarithmic response of the human eye. Storing an image
after γ-correction (nearly) minimizes the perceptibility of noise and (nearly)
maximizes the perceptual uniformity. This is useful since colour or grey values
are quantized, i.e., the image pixels have a certain bit depth.

3.1.4 Colour quantization

Sometimes we want to reduce the number of colours in a digital image. This
can be because of technical reasons (e.g., a gif image has a palette of only 256
colours), colour reduction is needed for compression, it improves segmentation
of objects, . . . . In section 3.3 we will also need colour reduction.

Several quantization techniques exist. The most straightforward one is uniform
quantization. Each colour band is subdivided in a number of bins of equal
width. The colour of each bin is the centre colour of the bin. This technique
does not take the image content or the image colours into account. Some bins
can be almost empty, while other bins can contain many colours that are all
transformed into one single colour.

A better approach would be to take the N most frequent colours in the image,
by calculating a colour histogram. The disadvantage of this technique, which
is called the population algorithm, is that rare colours, even if they are im-
portant for the representation of the image content, will be thrown out of the
colour palette after reduction. Colour reduction by a median cut is yet another
possible technique. It produces quite good results.

More sophisticated quantization methods use non-uniform quantization. Sim-
ilar colours are grouped together into a cluster. Every pixel in such group
receives a new colour value, the quantized colour.

An example of colour quantization is shown in figure 3.11. The image in fig-
ure (a) contains 244 different colours. This number is decreased with colour
quantization, and the last figure only contains 8 unique colours. The quanti-
zation technique that is used here, is peer group filtering. We also use it in
section 3.3. We will therefore take a closer look at this method.

3.1.4.1 Peer group filtering (PGF)

Peer group filtering (pgf) [Deng et al., 1999] is a technique that filters out
salt-and-pepper noise (a.k.a. impulse noise) from colour images. Image pixels
are replaced by a weighted average of their peer group (see next paragraph).
pgf can also be used as a pre-processing step for colour quantization. Local
statistics obtained from the pgf procedure are then used as weights in the
quantization step. These weights will suppress more colours in detailed regions,
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(a) 244 colours (b) 101 colours

(c) 32 colours (d) 8 colours

Figure 3.11: Figure (a) is colour reduced from 244 different colours to 101, 32 and
8 colours. While there is a big difference in number of colours, the visual difference
between the images is small.

which is good, since human perception is less sensitive to colour differences in
these areas. In smooth areas, the quantization is less severe.

A peer group is a set of pixels with similar characteristics. In our case, we
discriminate based on colour. Let us denote x0(r) the colour information of
the image pixel at position r, and the centre of a w×w window (e.g., w = 10).
We sort the pixels inside this window, according to their colour similarity. For
this, we measure the Euclidean distance of the colours to the colour of the
centre pixel (for instance in rgb space):

di(r)= ||x0(r)− xi(r)|| , (3.39)

with i = 0, . . . , w2 − 1. xi(r) are the pixels inside the window and they are
sorted from small to large distance to x0(r), i.e.:

d0(r) ≤ d1(r) ≤ . . . ≤ dw2−1(r) . (3.40)

We distill a peer group from this set of pixels:

P (r)= {xi(r) | i = 0, . . . , m(r)− 1} . (3.41)
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The size of the peer group, m(r), can be different for every image pixel. We
define this threshold further on.

We want to perform a filtering of the image, by replacing the pixels with a
weighted average of their peer group. We confine ourselves to the averaging
of the peer group, and not of the entire local window, in order to avoid edge
blurring. First, we remove the impulse noise. Therefore we define the first-order
difference of the distance di(r):

fi(r)= di+1(r)− di(r) . (3.42)

To detect impulse noise, we check the following condition on the first and the
last M = dw/2e points of the set xi(r):

fi(r)≤α . (3.43)

The parameter α can be chosen freely. For images with a lot of noise, a higher
value for α is used. We set α = 5. When we test the first M points, and
fi(r) > α, then the end points xj(r), with j ≤ i, are considered impulse noise
and removed from the set. When we test the last M points and fi(r) > α,
then we remove xj(r), with j > i from the set. As we can see, if x0(r) itself
is impulse noise, then it is removed from the peer group and its new value will
be determined by the other remaining pixels in the set. We now continue with
the remaining set of points xj(r) and distances dj(r).

The threshold m(r) for defining the peer group is calculated with discriminant
analysis. We divide the set of pixels into two clusters and maximize Fisher’s
linear discriminant criterion [Duda et al., 2000]:

J(i) =
|a1(i)− a2(i)|2
s2
1(i) + s2

2(i)
, (3.44)

with i = 0, . . . , w2 − 1, but without the pixels we considered as impulse noise.
The averages of the clusters are:

a1(i) =
1

i

i−1∑

j=0

dj(r) , (3.45)

a2(i) =
1

w2 − i

w2−1∑

j=i

dj(r) , (3.46)

and the variances are:

s2
1(i) =

1

i

i−1∑

j=0

|dj(r)− a1(i)|2 , (3.47)
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s2
2(i) =

1

w2 − i

w2−1∑

j=i

|dj(r)− a2(i)|2 . (3.48)

We calculate the discriminant criterion for every i (that is still available) and
take the threshold on the maximal J(i):

m(r)= arg[max
i
{J(i)}] . (3.49)

With this threshold we can define the peer group P (r) (equation (3.41)). The
pixels in the peer group are similar in colour. We use the points in this peer
group for the calculation of the new value of pixel r.

The new pixel value is the weighted average of its peer group members:

x′
0(r)=

∑m(r)−1
i=0 wixi(n)
∑m(r)−1

i=0 wi

, (3.50)

with xi(r) ∈ P (r) and wi are standard Gaussian weights depending on the
relative position of xi(r) with respect to x0(r).

The above procedure filters noise from a colour image and smoothens this image
by using colour distances. We now detail the steps necessary to quantize the
colours. We use the results from the pgf to determine in which areas of the
image the colours may change and how much. We exploit the property that
the human visual perception is more critical about colour changes in smooth
areas than in textured ones.

For each pixel x0(r) we have determined a peer group P (r) containing m(r)
elements. The maximum distance in the peer group is:

T (r)= dm(r)−1 . (3.51)

This value gives an indication for the smoothness of the local region. If this
value is low, the colours are very similar and thus the area is smooth. The
weight for the pixel at position r is defined as:

v(r) = exp (−T (r)) . (3.52)

So, a colour in a smooth area (low T (r)) will receive a higher weight than a
colour in a textured area.

For the quantization we start with a number of clusters. This number N
depends on the smoothness of the overall image:

N = β〈T 〉 , (3.53)

with β = 2 and 〈T 〉 the average of T (r) for the entire image.
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We use the so-called splitting initialization algorithm for the determination of
the initial N clusters. We start with one colour cluster, containing all the colour
pixels, which we split up into smaller clusters, until we obtain N clusters. The
centroid ci and distortion Di of cluster Ci are defined by:

ci =

∑
x(r)∈Ci

v(r)x(r)
∑

x(r)∈Ci
v(r)

, (3.54)

Di =
∑

r∈I

v(r)||x(r)− ci||2 . (3.55)

The cluster with the highest distortion (e.g., Cj) is divided into two clusters.
The centroid and distortion of the new clusters are calculated. This splitting
algorithm is repeated until the initial number of clusters N is obtained. The
weights v(r) cause the centroids to move towards the pixels of a smooth region.
As a result, more colours are obtained in the smooth areas, and colours are
merged in detailed regions.

For the vector quantization, the generalized Lloyd algorithm (gla) is used
[Lloyd, 1982]. The generalized Lloyd algorithm is a clustering technique. It
consists of a number of iterations, each one recomputing the set of more ap-
propriate partitions of the input vectors, and their centroids.

The colour vector of each pixel is mapped onto the closest remaining centroid.
To obtain the true cluster centres, the centroids for this final step are calculated
without the weights v(r).

3.2 Colour ordering

A binary image is usually interpreted as a two-colour image, the colours typ-
ically being black and white. We can apply set theory on this kind of images,
because we can simply state that one of the colours is background (i.e., is not
part of the set) and the other one represents the objects (i.e., is part of the set).
Mathematical morphology was originally developed for binary images, as it was
in essence a set theory where the colours white and black can be interpreted
as “the pixel belongs to a set” or “the pixel does not belong to a set”.16 We
covered this in the previous chapter.

Binary images are a special case of greyscale images. Grey values range from
black to white, with different grey values in between. A binarized image is
a quantized greyscale image, resulting in a two-colour (black and white) im-
age. The space of the grey values, G, is totally ordered , i.e., we can define
a relation ≤ that orders the elements in G. The following properties hold

16Notice that for most examples in chapter 2 black is the colour given to the set members
and white the colour of the background.
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[Weisstein, WWW]:

Reflexivity : ∀a ∈ G : a ≤ a , (3.56)

Antisymmetry : a ≤ b and b ≤ a⇒ a = b , (3.57)

Transitivity : a ≤ b and b ≤ c⇒ a ≤ c , (3.58)

Comparability : ∀a, b ∈ G : a ≤ b or b ≤ a . (3.59)

Because of this ordering, we can say whether grey value g1 is darker or lighter
than grey value g2. The theory of mathematical morphology has been extended,
as we explained in chapter 2, from binary images to greyscale images. The
basic operators, dilation and erosion, are then described with a maximum
and minimum operation, respectively, instead of the union and intersection
operation, respectively.

For colour images, the situation is more complicated. A colour space, like for
example the rgb space, cannot be totally ordered in a sensible way. We can
represent a colour as a vector in a three-dimensional space. In the rgb space,
the origin (R, G, B) = (0, 0, 0) is located on black and the three axes represent
the colour bands red, green and blue. This is illustrated in figure 3.7. There
exists no obvious “logical” ordering for such vectors. Colour vectors cannot be
totally ordered in an obvious way. Several total orderings can be defined, such
as the lexicographical ordering, discussed in section 3.2.2. However, in general,
such orderings have no physical meaning. Sometimes, only the ordering of one
of the components is useful, e.g., (R, G, B) ≤ (R′, G′, B′) if R ≤ R′. We then
have a partial ordering . The properties stated before are still valid, except for
the comparability property, equation (3.59). This property only holds when we
consider two colours in the same colour band.

The goal of colour morphology is to extend the morphological theory to col-
our images by defining a useful order relationship. Since we do not have some
natural basis for the ordering of a colour space and cannot define some “uni-
versal” total ordering, we need to restrict ourselves to a sub-ordering (i.e., a
restricted ordering). Four groups of sub-ordering for multivariate data have
been proposed [Barnett, 1976]:

• Marginal ordering (M-ordering): the data are ordered within one or more
components, the marginal samples, of the multivariate data;

• Reduced (aggregate) ordering (R-ordering): each multivariate observation
is reduced to a single value, which is a function of the component values;

• Partial ordering (P-ordering):17 the observations are classified into dif-
ferent groups that are ordered one to another, but not internally;

17This partial ordering or P-ordering must not be confused with the previously mentioned
partial ordering of the colour space. The latter term describes a relation ≤ with the properties
(3.56), (3.57) and (3.58). The P-ordering, although also called a partial ordering, is a specific
type of sub-ordering.
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Figure 3.12: An image and its colour components. A morphological erosion using
M-ordering transforms v22 = (5, 2, 8) into v′

22 = (1, 1, 1). This colour is not available
in the original image and is called a false colour.

• Conditional (sequential) ordering (C-ordering): the ordering is conducted
on a marginal set, in terms of other ordered marginal sets.

We now discuss the M-ordering and C-ordering more in depth.

3.2.1 Component-wise ordering (marginal ordering)

In marginal ordering, the ordering takes place within one or more of the com-
ponents (i.e., marginal samples). In colour images represented in rgb space,
there are three marginal sets, namely the three colour bands R, G and B.
Within a colour band it is possible to order the colours. We can order each
component independently and perform operations on the separate components.
The three results are combined afterwards, to obtain a colour image again.

However, this is not without problems. Regarding mathematical morphology,
we dilate or erode the image. If we use the marginal ordering, we consider
each colour band to be a greyscale image and perform greyscale morphology
on each colour band separately. Afterwards, we combine the different greyscale
results to a colour image. This approach can introduce false colours . A false
colour is a colour that did not exist in the original image, or in the considered
image region. For example, figure 3.12(a) shows a part of a colour image
with the following colours: v11 = (1, 7, 4), v12 = (2, 8, 5), v13 = (3, 9, 6),
v21 = (4, 1, 7), v22 = (5, 2, 8), v23 = (6, 3, 9), v31 = (7, 4, 1), v32 = (8, 5, 2) and
v33 = (9, 6, 3). The colour components are shown in figures (b), (c) and (d). If
we perform a component-wise erosion operation on the middle pixel, v22, using
a 3 × 3 structuring element, then the resulting component values are 1, 1 and
1, respectively. Our erosion result is thus the colour v′

22 = (1, 1, 1), which is
not present in the original figure (a), and is therefore a false colour.

Also, the high correlation of the image components makes the marginal or-
dering a non-ideal ordering solution. As we can see in figure 3.2, the human
visual system (and also rgb sensor devices) has overlapping spectral responses.
There is a lot of redundancy in the rgb space and the different image com-
ponents are highly correlated. A change of one component, independent of the
other components, is therefore not a good decision. Nevertheless, M-ordering is
widely used, because of its simplicity. The M-ordering can be applied for image
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filtering or motion estimation in video sequences. To obtain better results, the
component-wise ordering is preferably applied in a chromaticity space.

3.2.2 Lexicographical ordering (conditional ordering)

Suppose we have two colours: v1 = (a1, b1, c1) and v2 = (a2, b2, c2). We can
order them using a lexicographical ordering18 scheme. It is defined as follows:

(a1, b1, c1) < (a2, b2, c2) if





a1 < a2

or a1 = a2 and b1 < b2

or a1 = a2 and b1 = b2 and c1 < c2

. (3.60)

First, we order the colour vectors by their first components (the rule a1 <
a2). If the components are equal, then we compare the second components.
Only if both the first and the second components are equal, we compare the
third component. For higher-dimensional elements, this ordering can be easily
generalized.

Since the three colour bands in rgb space are correlated and none of the com-
ponents is considered superior to the others, a lexicographical ordering in rgb
will not produce an ordering with a physical meaning. More useful colour spaces
are the ones where the chromaticity information is separated from the lumin-
ance, like hsl/i/v or L∗a∗b∗ [Hanbury and Serra, 2001b]. We will discuss the
lexicographical ordering in hsl [Hanbury and Serra, 2001a].

3.2.2.1 Ordering by luminance

The ordering by luminance or L-ordering is the lexicographical ordering where
the luminance component in double-cone hsl space (see section 3.1.3.6) is
ordered first, followed by the saturation component and finally the hue:19

v1 > v2 if





L1 > L2

or L1 = L2 and S1 < S2

or L1 = L2 and S1 = S2 and H1 ÷H0 < H2 ÷H0

. (3.61)

For the last row, we must take into account that the hue is an angular function
defined on the unit circle. We compare the hue value to a value H0, which can

18The term lexicographical ordering is sometimes called the dictionary ordering , since this
is how words are ranked in a dictionary.

19It is also possible to order by hue before ordering by saturation. The order of the second
and third rule is chosen somewhat arbitrarily.
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be chosen arbitrarily. H ÷H0 is the acute angle between those hues:

H ÷H0 =

{
|H −H0| if |H −H0| ≤ 180◦

360◦ − |H −H0| if |H −H0| > 180◦
. (3.62)

For many images, most colours present in the image can be ordered using
only the first two rules in equation (3.61). The definition of H0 is therefore
not an important issue for the L-ordering. An ordering by luminance is often
used, because in general the most interesting differences are obtained from the
luminance component. The edges of objects, for example, are for the most part
detectable as a difference in luminance.

3.2.2.2 Ordering by saturation

The S-ordering is defined by:

v1 > v2 if





S1 > S2

or S1 = S2 and |L1 − 1
2 | < |L2 − 1

2 |
or S1 = S2 and |L1 − 1

2 | = |L2 − 1
2 | and H1 ÷H0 < H2 ÷H0 .

(3.63)

The most saturated (i.e., the purest) colour is ranked highest. In case of a
tie, the colour with luminance closest to L = 1/2 is ranked higher, since at
this luminance value the saturation can assume its largest range of values.20

This is the choice in [Hanbury and Serra, 2001a], and seems logical because
e.g. a dilation should take, using the S-ordering, the value of the pixel with the
largest saturation as output; if the saturations are equal, we take the pixel with
the highest potential to increase further its saturation, i.e., the pixel with L
closest to 1/2. Also for the S-ordering, the definition of H0 is not an important
issue. The ordering by saturation can be used when the background colour is
some tint of grey, i.e., a colour with a very low saturation. If the objects are
coloured, then it is very likely that their saturation is relatively high. These
colours are then ranked higher than the background colour.

3.2.2.3 Ordering by hue

A possible lexicographical scheme for the H-ordering could be:

v1 > v2 if





H1 ÷ 0◦ < H2 ÷ 0◦

or H1 ÷ 0◦ = H2 ÷ 0◦ and S1 > S2

or H1 ÷ 0◦ = H2 ÷ 0◦ and S1 = S2 and |L1 − 1
2 | < |L2 − 1

2 | .
(3.64)

20Remember that we work in the double-cone hsl space, not the cylindrical one.
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(a) a = (0◦, 1.0, 0.5) (b) b = (20◦, 0.9, 0.5) (c) c = (10◦, 0.2, 0.5)

Figure 3.13: Three sample colours. While colour (a) looks more like colour (b)
than like colour (c), the latter will be ordered between the former two, when using
H-ordering.
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(b) Saturation-weighted hue

Figure 3.14: The positions of some colours on the hue circle, (a) before and (b)
after taking the saturation value into account.

The problem here is that there is a close interaction between the hue and the
saturation component [Hanbury, 2001]: figures 3.13 and 3.14 illustrate this. In
figure 3.13, three colours and their HSL-values are shown. These colours are
also shown on the unit circle of the hue, figure 3.14(a). If we compare the colours
b = (20◦, 0.9, 0.5) and c = (10◦, 0.2, 0.5) to the red colour a = (0◦, 1.0, 0.5),21

then equation (3.64) will position the grey-purple colour c closer to this red
than the orange b.

When we order in function of the hue, we expect red and orange to be close
to each other. The under-saturated colour c is not perceived as a red-like
or orange-like colour (more some grey-purple tint), although it is positioned
between a and b. To solve this problem, a saturation-weighted H-ordering is
suggested, where an alternative hue in function of the saturation is defined. If
the saturation value of a colour is high, the original hue value is retained. In
case we have a low saturation value, the hue is shifted away from the reference
hue H0, towards H0+90◦ or H0−90◦. This will reduce the probability of being
chosen as an extremum when a morphological dilation or erosion is performed.

21This means that H0 = 0◦.
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To simplify the notations, we first redefine H such that H0 = 0◦:

H ′′ =

{
H −H0 if H −H0 ≥ 0◦

360◦ + (H −H0) if H −H0 < 0◦
. (3.65)

Then, we take the value of the saturation into account:

H ′ =





sup{H ′′, 90◦(1− S)} if 0◦ ≤ H ′′ < 90◦

inf{H ′′, 90◦(1 + S)} if 90◦ ≤ H ′′ < 180◦

sup{H ′′, 90◦(3− S)} if 180◦ ≤ H ′′ < 270◦

inf{H ′′, 90◦(3 + S)} if 270◦ ≤ H ′′ < 360◦

. (3.66)

So, low-saturation colours with a hue in the range [0◦, 180◦[ will change hue
towards 90◦; low-saturation colours with a hue in the range [180◦, 360◦[ will
change hue towards 270◦.

Finally, we obtain the saturation-weighted hue ordering:

v1 > v2 if





H ′
1 ÷ 0◦ < H ′

2 ÷ 0◦

or H ′
1 ÷ 0◦ = H ′

2 ÷ 0◦ and S1 > S2

or H ′
1 ÷ 0◦ = H ′

2 ÷ 0◦ and S1 = S2 and |L1 − 1
2 | < |L2 − 1

2 | .
(3.67)

As we can see in figure 3.14(b), colour c has been given a new hue value of 72◦.
Now, the orange colour b is positioned closer to a (red). The saturation-
weighted hues H ′ are only used to order the colours, the colours themselves
keep their original hue. This way, no false colours are introduced.

3.2.2.4 Definition of H0

The hue is the angle (in the range [0, 360◦[) of a point on the unit circle.
H = 0◦ represents the colour red, by convention (see also figure 3.9). The hue
component cannot be sensibly ordered like the luminance or saturation. For
the lexicographical ordering, the angle between the hue and some reference hue
H0 is taken. This way, we can order the hue component, but such ordering of
the hue introduces inconsistencies: angles H ÷H0 that are (almost) the same
can belong to very different colours. To illustrate this statement, consider
H0 = 180◦ (cyan). If H ÷H0 = 45◦, the hue can be H = 135◦ or H = 225◦.
These hues, green and blue, respectively (see figure 3.9), are perceived as very
different colours, although their distance to H0 is the same.

Another problem we face when using the H-ordering, is the choice of H0: the
principal ordering is done in function of the reference hue. A well chosen H0

is therefore a must. With the L-ordering, the colours with the highest ranking
are those with the highest luminance value. With the S-ordering, these are the
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colours with the highest saturation value. In the case of the H-ordering, the
colours with their hue closest to H0 are ranked highest. Since there is no hue
value that has a logical or intuitive preference over the other hues, we should
choose H0 in function of the image content.22

A possible choice for H0 could be the hue that appears the most in the image.
If the background hue is the most present in the image, then all hue values are
referenced to the hue of the background.23

Another possibility [Hanbury, 2001] is to take the hue value of the average
chromaticity vector as H0. The chromaticity vector is the vector representation
of the hue: the hue can be seen as a point on a circle with an angle θ (the actual
hue value) and with radius r = 1. This hue “vector” in polar coordinates is
transformed into its Cartesian coordinates:

{
x = r cos θ

y = r sin θ
. (3.68)

The sum of two vectors (in Cartesian coordinates) is:

a + b = (xa, ya) + (xb, yb) = (xa + xb, ya + yb) ≡ (x′, y′) . (3.69)

We can generalize this to take the vector sum of all hue vectors. Finally, we
transform back to polar coordinates:





θ′ = arctan ( y′

x′
) if x′ > 0, y′ > 0

θ′ = arctan ( y′

x′
) + π if x′ < 0

θ′ = arctan ( y′

x′
) + 2π if x′ > 0, y′ < 0

r′ =
√

x′2 + y′2

. (3.70)

The resultant average angle θ′ is the origin of the hue (H0).

If we take the saturation into account, as we did in the previous subsection,
the transformation to Cartesian coordinates (equation (3.68)) becomes:

{
xS = rS cos θ

yS = rS sin θ
. (3.71)

The average hue now depends on the saturation S.

We can also obtain θ′ (i.e., H0) from equation (3.70) in a different way, by taking
the histogram of the hue in the image and then assign the histogram values
to the radius r of the respective chromaticity vector. Then we also transform

22For the L-ordering and S-ordering this choice is not a major drawback, because the hue
component is the last criterion in the lexicographical ordering. Most colour pairs can be
ordered using the first and the second rule, so the choice of H0 will not have a big influence.

23The opposite is also possible: the reference hue lies 180◦ from the most prevalent hue.
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to Cartesian coordinates and average the vectors and transform this average
vector back to polar coordinates. This approach is similar to the previous
method, but in a histogram the data are grouped into bins. For example, if 36
bins are chosen, the accuracy of the hues is ±10◦, which is less accurate than
using the previous method (where the original accuracy of the hues is used).

We propose yet another method for the calculation of the average hue. The
basic principle is to shift the obtained histogram of the hue. Let us first consider
a straightforward example: the average of H = 170◦ and H = 190◦ is H0 =
180◦. In this case, the average hue is very similar to the hue of the two original
colours, which is what we expect from the average. Now, let us assume we
have two colours with hue H = 10◦ and H = 350◦. These are two tints of
red. The big difference in hue value is misleading, because the hues have to
be interpreted modulo 360◦. The average of these two values, without any
conversion from polar to Cartesian coordinates and back, is 180◦. This cyan
tint is much different from the hue of the input colours and not desired.

In such case, we shift the histogram and take into account the fact that the
hue is defined on the unit circle and in the interval [0◦, 360◦[. If we shift
the histogram with +10◦ (i.e., 1 bin-unit when there are 36 bins), then the
two mentioned hue angles (H = 10◦ and H = 350◦) become 20◦ and 0◦,
respectively, so the average hue is 10◦; minus the shift (−10◦) this would give
us the correct result, i.e., H0 = 0◦. We must of course know if the histogram
needs to be shifted, and how much. Therefore, we calculate the variance of
every shifted spectrum, and finally calculate the (weighted) average hue from
the histogram with the smallest variance.

This method is not very efficient, because we must shift the histogram with
every possible value and calculate the variance for each shifted histogram.
Nevertheless, it has an advantage over the previously defined approach (equa-
tion (3.70)). Consider the hues 0◦ and 180◦. Averaging using equations (3.68),
(3.69), and (3.70) leads to an undefined angle. On the other hand, the shifted
histogram method always returns an average value (90◦ in the example).

There is a remark to make: in our example, the result 270◦ is equally valid,24

which creates an ambiguous situation. Also, in practice, the situations where
the angles annihilate each other (when using equation (3.70)) are rare.

3.2.2.5 Morphology using lexicographical ordering

When we perform a morphological operation, we calculate a maximum or min-
imum of a number of pixel values. Therefore, we must be able to order the pixel
values. Colours can be ordered, for example, using a lexicographical ordering
(a C-ordering) in hsl. Practically, we can perform mathematical morphology
on colour images in two ways.

24We know that 0◦ = 360◦. A shift by +180◦ changes the hues to 180◦ and 360◦. Their
average is 270◦ and the variance is the same as for shift +0◦.
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The first possibility is to order the colours only locally instead of globally. That
is, for a dilation by a small structuring element we order, at every pixel, the
pixels that are covered by the structuring element. The colour that has the
highest rank is considered the maximum and thus the dilation result for the
considered pixel. A similar approach is taken for the erosion.

This local operation can be quite intensive because a lot of comparisons have
to be made. To avoid the recalculations of the order of one pixel compared to
another, it is better to transform the hsl image into a scalar image, based on
the lexicographical ordering.

A 24-bit rgb image25 will be transformed into a double-cone hsl image and
subsequently into a 24-bit “greyscale” image. We subdivide the 24-bit scalar
into three 8-bit scalars.26 The highest 8 bits are used for the ordering of the
colours by the first rule in the lexicographical ordering scheme (equation (3.60)).
The following 8 bits are reserved for the ordering by the second rule, and the
lowest 8 bits are used for the ordering by the least important rule. This way,
each pixel gets some value between 0 and 224 − 1.

For example, using the L-ordering, the index value of a colour v = (H, S, L)
will be:

v =
⌊
((28−1)L)216 +((28−1)(1−S))28 +((28−1)(1− H ÷H0

180◦
))20

⌋
. (3.72)

Notice that this indexing is in fact an R-ordering. We used the lexicographical
ordering (C-ordering) to obtain a scalar value for each vector (R-ordering).

3.3 Majority ordering

In this section we propose a new type of sorting colours, the majority sorting
scheme (mss) [Ledda and Philips, 2005b]. The approach of the majority or-
dering is quite different from the previously discussed sub-orderings. The basic
idea is to count the number of pixels present in the image for each colour and
order the colours accordingly.

3.3.1 Basic approach

The following assumptions do not hold for all images, but they do for a certain
type of images. We consider the background of an image to be mostly made
out of a single or a few colours. Also we assume that the background colours
are the most prevalent colours in the image. The other most frequent colours

25Each colour band (red, green, blue) contains 28 values.
26This is not the same as is done in a quantized rgb image: in rgb, the three colour

components have no mutual ordering, it is still a vector; here, the 24 bits form one scalar
value.
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(a) Input image (b) mss ordering map

Figure 3.15: A colour image is transformed into an image with ordered values, that
can be treated as a greyscale image.

are those that are part of the objects and that constitute the basic shapes of
the objects. On the other hand, details or noise are rare colours. The “Lena”
image, figure 3.4(d), is not a very good example of such type of images. On
the other hand, the “Barbara” image, figure 3.23, shows a large background of
a few colours, the subject (Barbara) contains a lot of white, black and skin-
colour. The detail colours are less prominent (the colours of the books, the
eyes, . . . ).27

We use this assumption to construct a new kind of colour ordering which we
call the majority sorting scheme (mss) or majority ordering.28 We count the
number of times each (quantized) colour appears in the image and order the
colours accordingly. A background colour will then probably have the highest
number of pixels and the details the lowest number of pixels. This way, we can
construct an ordering map (or mss-map). The values in this newly obtained
image are scalar index values, and not vector coordinates. We have ordered the
colours in the image. We could say we performed an R-ordering, although the
new scalar is now an image-dependent function. For the moment, we presume
that there is a bijective relationship between the different image colours and
the indices of the mss-map. What happens when different colours have the
same number of pixels, will be discussed in section 3.3.3.

Figure 3.15 shows a simple example of a colour image. In figure (a) we see that
purple is the background, since this colour appears most in the image. The
pink pixel, on the other hand, is a small detail or maybe even some noise. The
mss results in figure (b). The black colour represents the colour most present
(purple), the white colour represents the most rare colour (pink).

The approach of the majority ordering is illustrated in figure 3.16. The colour
input image (Iin) is ordered using the mss, which results in an ordered map

27Of course, such real life scene contains thousands of different colours, thus saying that the
background only exists of a few colours is an optimistic statement. Reduction of the number
of colours is a solution to the problems that this can impose to our ordering technique, as
we will discuss in section 3.3.3.2.

28A more correct name would be majority ordering by total area.
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I in MSS MMMSSmap in MSSmapout

Iout
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−1

LUT

Figure 3.16: The majority sorting scheme (mss) is conducted on the input image.
A morphological operation (mm) is then applied on the ordering map.

(MSSmapin). This ordered map behaves as if it is a greyscale image, but the
number of possible values is not necessarily 256. It could be much more or
much less, depending on the number of different colours in the input image.
We can now perform any kind of operation that is possible for greyscale im-
ages, like mathematical morphological operations (mm). The resulting image is
still an ordering map (MSSmapout). We note that a morphological operation
with a flat structuring element does not introduce new values in the image
(here, the ordering map). Other operations, such as an averaging operation
or morphology with a greyscale structuring element, can introduce non-integer
values, non-existing index values or values that lie above the maximum or be-
low the minimum index value. Such values should be changed into the closest
valid (i.e., existing) index values.29 To obtain a colour image again (Iout), we
transform the ordering map using an inverse mss. This inverse transformation
simply looks up the colour value that belongs to a certain index in the order-
ing map. Therefore we need to store this information in a lookup table (lut)
when we construct the mss-map. The resulting image does not contain any
false colours (see section 3.2.1), since we obtain all values from the lut.

In a greyscale image, black is given the value 0, while white is given the
value 255 (for an 8-bit greyscale image). The background is usually a dark
shade of grey, i.e., it has lower grey values compared to the other pixels. For
this reason, we illustrate the mss-map by giving the background the grey value
black and the rarest colour the grey value white (as in figure 3.15(b)).

Notice that the background has the biggest number of pixels, and the details
the smallest number. If we use these colour frequencies to fill the ordering map,
then we have values that are opposite to what we expect (i.e., black has the
lowest value, white has the highest value). A dilation is a maximum operation
and increases the values in the ordering map, which is in this case an increase in
background colour (the dominant colour). In a greyscale image (no mss-map),
where the background is assumed dark and the details bright, the opposite
happens, namely a decrease in background colour. To solve this inconsistency,
we have two options:

29In a normal greyscale image, values below 0 would become 0, and values above 255 would
become 255. A non-integer value is rounded to the nearest integer.
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1. Redefine dilation and erosion, i.e., switch their definitions (dilation be-
comes a minimum operation and erosion becomes a maximum operation);

2. Switch the values in the mss-map: vnew = vmin + vmax − vold.

So, actually we should perform a minority ordering instead of a majority or-
dering, but we will keep the original terms “majority ordering” and “majority
sorting scheme”.

The majority ordering is content-dependent, i.e., image-specific, as opposed to
traditional orderings which are known and static, and do not take any know-
ledge about the image into account. For example, if blue is ranked lower than
green, then this is the case for every image. The mss, on the other hand, is
highly dependent on the colours that are present in the image. If blue is ranked
lower than green in one image, it is not necessarily the case in another image.

We also point out that only the colours that are present in the image can be
ordered. Although the colour space contains many more colours,30 the mss-
map only contains the indices for the colours in use.31

We need to emphasize an important property of the mss. As we can see in
figure 3.16, the morphological operations are performed on the ordered image,
MSSmapin. We could say that the morphological operations are applied in
mss-space. The inverse mss transformation on MSSmapout produces an output
image. We can perform a sequence of morphological operations in two ways:

1. We use Iout (figure 3.16) as the input image for the second morphological
operation;

2. We remain in mss-space and use MSSmapout as the input map for the
second morphological operation.

The two approaches seem similar, but in the second case no inverse mss and no
second mss need to be performed between the two morphological operations.
Because the ordering map depends on its input image, the results between the
two approaches are different.

For example, the closing of figure 3.11(a) by a 5 × 5 structuring element can
be performed in two ways. The result using the first approach is shown in
figure 3.17(a), the second approach outputs figure 3.17(b). If we dilate first,
transform back to “real” space (rgb, hsl, . . . ), and use this result Iout as input
for the erosion, then we must generate a new ordering map. This mss-map is
not the same as MSSmapout after dilation!

For all the morphological properties discussed in chapter 2 to hold,32 only the
second approach is correct. We must perform all morphological operations at
once in mss-space without converting back to “real” space first. The morpho-
logical properties only hold in the mss-space.

30In a 24-bit colour image there are more than 16.7 million different colours.
31Which can be at most M × N , the size of the image.
32Properties such as increasingness, idempotency, extensivity, . . . .
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(a) Dilation, followed by erosion (b) Closing

Figure 3.17: An erosion on the output image of a dilation is not the same as a
closing, i.e., an erosion on the output mss-map of a dilation.

3.3.2 Examples

In this section we investigate how the mss behaves, and how it relates to other
ordering schemes. We take the hsl ordering, discussed in section 3.2.2, as a
comparison.

3.3.2.1 Objects of one colour

We first discuss the most trivial situation. If all objects in the image have
the same colour and also the background consists of only one colour, then the
image can be seen as a binary image. The binary morphological operations will
produce the results we expect with the majority sorting scheme as well as with
the lexicographical orderings (H-, S- or L-ordering).

We have to make some remarks, though. In order to obtain the same res-
ults as with binary morphological operators (thus, with the set theoretical
approach), the background colour should be the most dominant colour for the
mss-ordering. With the lexicographical orderings, it is possible that the back-
ground colour is ranked higher than the foreground colour (which means the
background is then treated as objects). In the case of the H-ordering, the
choice of H0 is important in order to avoid such situations. In the case of
the S- and H-ordering, the comparison of the luminances (see section 3.2.2) is
referenced to L = 1/2, which means that there is no difference between colours
with luminance L and luminance 1 − L (and having the same saturation and
hue angle). Background and objects are then treated as the same colour.

3.3.2.2 Objects of multiple colours

Figure 3.18(a) represents a pink object with a black border. We consider the
purple colour to be background. In the middle of the image we notice a small
cluster of green pixels. The isolated cluster is probably noise, so we want to
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(a) Original image (b) mss-ordered opening

(c) L/S/H-ordered opening (H0 = 0◦) (d) H-ordered opening (H0 = 105◦)

Figure 3.18: Opening (by a 5 × 5-square) of figure (a).

remove it. The black border is part of the object, but we also want to get rid of
this border. A morphological opening seems most suited to perform this task:
in a greyscale image the opening would darken the image by removing bright
(isolated) objects and thin lines.

When we use the mss-ordering (figure 3.18(b)), it is possible to remove the
artefacts, because the background (purple) and the object (pink) are more
prevalent than the border (black) and the isolated cluster (green). The result
for the lexicographical ordering technique is shown in figure 3.18(c). If we
take for the reference hue H0 = 0◦, then the H-, S- and L-ordering do not
remove these artefacts. If we know the “correct” H0-value, then we obtain a
good result (figure 3.18(d)). We discussed some possible definitions of H0 in
section 3.2.2.4. It can be a problem to define the right value for H0.

There is a difference between figure (b) and figure (d): the mss-ordering con-
siders the black border to be noise or detail and the opening removes this border
in favour of the (pink) object. The H-ordering ranks purple higher than pink,
which results in a different output as with the majority ordering. This is not
necessarily a bad result, but it illustrates that the two methods produce dif-
ferent output images. If we consider the black border to be part of the object
and not of the background, then mss is the ordering of preference.
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3.3.2.3 Results on real images

Figure 3.19(a) shows the “jelly beans” image, a colour image with 252 colours.
Our goal here is to extract the yellow letters “I P I” by emphasizing them. The
yellow from the letters and the colours of the background are the dominant col-
ours. An erosion operation will increase the area covered by these colours. This
is shown in figure 3.19(c), while the ordering map is displayed in figure 3.19(b).
The grey values are not linearly related to the values of the mss-map. Darker
grey values are dominant colours in figure 3.19(a) and the lighter grey values
are rare colours.

The results with the L- and S-ordering are disappointing. These orderings
look at the luminance or the saturation values of the colours, respectively. The
problem is that the image is not a real life scene, where we can expect some
correlation between the luminances and saturations of different pixels. As a
consequence, luminance and saturation do not give useful information for colour
ordering. The same is true for the H-ordering, but if we choose the reference
hue well (here, H0 = 250◦, the average hue + 180◦),33 then we also get a nice
result.

3.3.3 Variations on the basic method

3.3.3.1 Discrimination of equally frequent colours

Until now, we considered images where the number of pixels with one colour in
an image is different from the number of pixels with another colour. In practice,
colours can have the same frequency of occurrence, and therefore have the same
rank order in the mss-map. We present different solutions for discriminating
between such colours:

• It is possible to change the rank order of a colour by adding a constant to
its frequency of occurrence. This way, we can give each colour a unique
index in the ordering map. This approach can be handy if for example a
specific background colour has to be chosen. This would be the case when
the background colour is not the most prominent colour, as we assume
for the mss.

• The output colour is chosen in function of neighbouring pixel colours.34

In case of a tie, the output colour is chosen according to the difference of
the possible values with that of the input pixel. This difference can be a
difference in grey value or hue, for example.

33The average hue of the image is very similar to the average hue of the background colours.
It is also reasonably similar to the hue of the yellow beans. If this average hue is chosen as
H0, then the yellow and background colours will be ranked higher than the other colours.
An erosion will decrease the presence of the pixels with these colours. Therefore, we shift
the average hue with 180◦.

34In the case of mathematical morphology, it are the pixels covered by the structuring
element that define the output colour.
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(a) Original image (b) mss ordering map

(c) mss erosion (d) L-ordered erosion

(e) S-ordered erosion (f) H-ordered erosion (H0 = 250◦)

Figure 3.19: Erosion (by a diamond with diameter 13) of figure (a).
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• Another possibility is to prefer the colour of the pixel closest (in distance)
to the current pixel. When there is still a tie, thus in case of equidistant
and equally frequent colours, an extra comparison should be made or one
of these colours must be chosen arbitrarily.

• A comparison with the background colour is also an option (e.g., choose
the colour most similar to the background colour).

In the second proposed solution, we take the difference in grey value or hue
with that of the input pixel as an extra criterion to decide which colour will be
the output colour for the pixel. It is best to retain the colour with the smallest
difference to the input colour, in order to keep the difference in grey value or
hue between the original and morphological processed image small.

We performed experiments on several images like the ones in figures 3.19
and 3.11, but they show no (significant) visual differences with the basic mss
approach when this extra discrimination criterion is used. Also, the Peak
Signal-to-Noise Ratio35 shows that the differences are small: if we take the
morphologically treated image without the extra ordering as the reference im-
age and we compare the morphological treatment of the same input image with
the extra ordering against it, then we obtain psnr-values of about 35 dB and
more. This high value indicates that the differences between the basic mss
approach and the approach with the extra ordering are very small.

3.3.3.2 Quantization of colours

For practical reasons, a quantization of the colours is necessary and can also
improve results: if many different colours are present, then the pixel count per
colour will be low for many colours.36 As a consequence, many colours will
be assigned the same ranking, which cancels the purpose of the mss, namely
to construct an mss-map that orders the colours in function of their frequency
(which is related to their importance). Therefore, in most cases a quantization
is desired.37 The majority sorting scheme therefore becomes as illustrated in
figure 3.20. Before the majority ordering, the image colours are first quantized.
We discussed a few quantization methods in section 3.1.4.

In figure 3.21 we illustrate the effect of a dilation on the same image, but each
time with a different number of colours present (we quantized the image using
peer group filtering (section 3.1.4.1)). We notice that the result of the dilation
depends strongly on the number of colours in the input image. If we want to
detect the roads in the image, then it is best to reduce the number of colours
strongly.

35For a definition of the psnr we refer to chapter 6, section 6.4.5.
36In a 24-bit image that displays a real life scene, it is not uncommon to have ten thousands

or more colours that appear only a few times (less than 10).
37The colour quantization is one possibility. Another option is to rank a colour whose

pixels are clustered more lower than a colour whose pixels are scattered more throughout the
image.
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MSS MMMSSmap in MSSmapout
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Figure 3.20: The majority sorting scheme (mss) is conducted on the input im-
age, after colour reduction. A morphological operation (mm) is then applied on the
ordering map.

The ideal number of colours after quantization depends on the source image
and the application. As we just mentioned, a strong colour reduction is desired
for the extraction of roads from a map. Text extraction also works better when
there are not many colours present. However, we have to make sure that the
useful colour differences in the image are retained.

It is not easy to define the ideal level of colour reduction. It is possible to limit
the number of colours to a value selected by the user (e.g., 100 or 32). Another
solution we propose is the following: we count the number of colours C in the
original image, and we count the number of levels L in the ordering map. If we
find more colours than there are levels, then we reduce the number of colours
to the number of levels:

{
C > L⇒ reduce to L colours

C = L⇒ ok
. (3.73)

We repeat this procedure until C = L. As the number of colours decreases, the
number of levels also decreases (or remains constant). The reason is the colour
reduction, that implies a new and different ordering map. Since we decrease
the number of colours to the number of levels, the newly obtained number of
levels will never be more than the previous one:

Lnew ≤Lold . (3.74)

When Lnew = Lold, then also C = L and the colour reduction is completed.

3.3.3.3 Avoiding false colours

When we compare the quantized image to the original one, we notice that false
colours have been introduced. This should and can be avoided. The colour
reduction is necessary to let the majority ordering work properly. Colours
whose mutual difference is perceptually irrelevant, are changed into one new
colour, which will influence the pixel counts and thus the mss-map. Because
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(a) 244 colours (b) 101 colours

(c) 32 colours (d) 8 colours

Figure 3.21: mss-dilation (by a 5×5-square) of the respective images in figure 3.11.

the operations are performed on the mss-map, the colour values themselves
are not important during the calculations. This is advantageous, because we
can put the original colours back in the image (actually, in the lookup table)
while retaining the new majority ordering index value. This is done before
performing some operation on the mss-map. So, an operation (in the mss-
space) is performed on a quantized image, but with an output image containing
only colours originally present.38

The scheme from figure 3.20 can be updated to the one in figure 3.22. Fig-
ure 3.24 shows the result of four morphological operations on figure 3.23. The
“Barbara” image originally contains 242 colours, but after the colour reduction
described in subsection 3.3.3.2 (equation (3.73)), the number of colours is re-
duced to 79. In the end result, no false colours are present, because the original
colours were extracted from a lookup table from the original input image.

3.3.3.4 Merging of colours

In some situations it is an advantage to merge the pixel counts of different
colours into one single value in the mss-map. Colour quantization is a sug-

38We have a similar situation as in subsection 3.3.3.1: different colours get the same rank-
ing. It is thus possible to discriminate between the different colours (that are quantized into
one colour) by using an extra discrimination criterion, as explained in subsection 3.3.3.1.
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Figure 3.22: The majority sorting scheme (mss) is conducted on the input im-
age, after colour reduction. A morphological operation (mm) is then applied on the
ordering map. False colours are avoided.

gested possibility, as we have seen. In some cases, almost equally important
colours (i.e., they have almost the same number of pixels) in the image are too
different to be merged by a colour quantization procedure. For example, if the
background has two equally prominent colours with almost the same ranking,
then one colour would be rated higher than the other in an arbitrary manner.
If this is not desired, then we can merge these two colours:

|Li − Lj |
max {Li, Lj}

< α⇒





Li → L′
i

Lj → L′
j

L′
i = L′

j

, (3.75)

where Li and Lj are the mss-index for the colours i and j, respectively. The
value α is a small percentage, say 5 %. a → b means that a is replaced by b.
It is possible to generalize equation (3.75) for more than 2 colours. The pixels
retain their respective colours, but their mss-index changes to L′

i. Again, an
extra discrimination criterion can be used (subsection 3.3.3.1) if a choice has
to be made between the two merged colours.

The new index value L′
i(= L′

j) can be calculated in two different ways:

1. We take the sum of the values of the separate colours, i.e., L′
i = Li + Lj .

This way, the different colours have merged into one bigger area, although
it contains different colours.

2. We calculate the average area, i.e., L′
i = (Li + Lj)/2. This way, the two

colours are considered equally important, just like in the first approach,
but compared to the other colours in the image their importance does
not change much.

3.3.4 Properties

Traditional colour ordering techniques use colour information to obtain an or-
dering. This colour information can be of all sorts: hue, saturation, luminance
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Figure 3.23: The “Barbara” image.

[Hanbury and Serra, 2001a], reference to black or white [De Witte et al., 2005],
order inside a colour band, etc. The majority ordering does not take this in-
formation into account; it counts the number of times a colour appears in the
image. The colour value itself is of no importance, only the ability to distinguish
different colours is. We also know that the mss is a content-based ordering:
every image has its own ordering map, the ordering is not pre-defined. We
summarize some properties that can be advantageous or disadvantageous.

The technique can be used for binary, greyscale and colour images, since the
colour itself is not important, but its cardinality in the image. In fact, an
extension to multispectral images is possible with the same majority ordering
scheme.

Colour images with only two colours are treated as if they are binary images.
Also, the colour of the background does not matter. This is an advantage if we
expect the morphological operators to perform as we expect intuitively. That
is, if we expect a dilation to let the objects grow and an erosion to let the
objects shrink, the background must be black and the objects white. On the
complement of the image, the opposite results will be obtained. With the mss,
the colour itself is no issue anymore.

The colour space used to represent the colours, is irrelevant. The majority
ordering produces the same result in every colour space, if no colour quanti-
zation is used. Also, the technique is quasi invariant for colour and greyscale
transformations (e.g., γ-compensation), if no colour reduction has been applied;
when all colours change in a new map of unique colours (the transformation is
bijective), then there is no difference in the majority ordering.

An advantage over the lexicographical hsl ordering discussed in section 3.2.2
is that we do not have to define a reference hue value H0. The definition of
H0 is rather arbitrary (see section 3.2.2.4), but with the mss we do not have
to bother about this.
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(a) Dilation (b) Erosion

(c) Closing (d) Opening

Figure 3.24: Morphological operations using the mss on the “Barbara” image (fig-
ure 3.23).

The assumptions made about images, namely that the colour of the background
is the most prominent colour and that the rare colours are details or noise, are
at the same time the restrictions of this technique. If the background colour
is not the colour most prevalent in the image, then it can be chosen by the
user. Too many colours in the image can make the mss-technique useless (as
discussed in section 3.3.3). Finally, if colours have almost the same number of
pixels, then the technique can become inaccurate, because maybe one colour is
regarded object and another colour noise. The ranking is then not reliable.
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3.4 Conclusion

In this chapter, we gave an introduction to the theory of colour; we defined
colour, discussed how we perceive it and how we can reproduce it. Different
colour spaces exist, such as xyz, rgb, hsl or L∗a∗b∗. They all have their
advantages, disadvantages and purposes.

Colours are not totally ordered in an obvious and unambiguous way. Several
ways of ordering exist, like marginal ordering or lexicographical ordering. We
explained the latter for the hsl colour space. A problem here is that the
ordering of the angular hue component poses potential problems. When the
colours are ordered, the image can be treated as if it was a greyscale image.
Greyscale mathematical morphology can now be applied to the colour image.

We proposed an original colour ordering, the majority sorting scheme (mss).
It is a content-dependent ordering that ranks the colours depending on the
number of pixels with those colours in the image. The method assumes that
background colours are highly present, while details and noise are pixels with
rare colours. Morphological operations using the mss perform well on such
images. A practical problem is the number of colours present. Colour reduction
is a suggested solution to limit the amount of colours and to obtain a useful
ordering.
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Chapter 4

Granulometries

This chapter covers the theory of granulometries. We explain what granu-
lometries are and introduce the morphological pattern spectrum. From this
pattern spectrum, several parameters can be derived. They can be used to
extract properties from the objects in images, or to perform a classification.

Because of the high computational cost of the pattern spectrum, several alter-
natives are discussed, such as the area pattern spectrum and the Fourier pattern
spectrum. The computation times of the different techniques are compared.

4.1 The morphological pattern spectrum

The concept of granulometry is well known in material science [Soille, 2003].
A granulometry is the process of sieving a sample through sieves of increasing
mesh size. The smallest objects will be filtered out first, followed by the bigger
ones, until finally the largest objects are removed. This way, particles can be
sorted form fine to rough. The principle in image processing is similar.

Such a sieving process has the following properties:

• If we sieve a subsample of a larger sample, then the sieving result is also
a subsample of the sieving result of the larger sample;

• The residue after a sieving is part of the input sample;

• If we sieve repeatedly using the same mesh size, then we will not filter
out new objects.

When we take a closer look at these properties, we notice that these are the
properties of the morphological opening A ◦B (both binary and greyscale):

• Increasingness (equation (2.28)): A1 ⊆ A2 ⇒ A1 ◦B ⊆ A2 ◦B;
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• Anti-extensivity (equation (2.29)): A ◦B ⊆ A;

• Idempotency (equation (2.30)): A ◦B = (A ◦B) ◦B.

Moreover, if we sieve twice, using two different mesh sizes, the residue is what
we get when sieving once using the larger mesh. This is the absorption property
and in the case of the opening this formalizes as:

(A ◦B) ◦ C = (A ◦ C) ◦B = A ◦ (max{B, C}) , (4.1)

where max{B, C} means the structuring element that is the superset of the
other structuring element. Equation (4.1) is equivalent to:

B ⊆ C⇒A ◦B ⊇ A ◦ C . (4.2)

A granulometric curve is defined as:

GC(A; B)(n)= ][A ◦ nB], n ≥ 0 . (4.3)

The index n increases the size of the structuring element. The operator ]
computes the sum of all grey values.1 The normalized granulometric curve is
the granulometric curve, but with the results scaled (i.e., divided) by the sum
of grey values in the original image.

In practice, we look at the part that is sieved out, not the residue. This is
called the pattern spectrum (ps) or size distribution:2

PS(A; B)(n)= ][A ◦ nB −A ◦ (n + 1)B], n ≥ 0 , (4.4)

where the subtraction − is the pixel-wise difference of the grey values. In the
binary case, the interpretation of the pattern spectrum is straightforward: the
value of a bin n in the size histogram indicates then how many pixels have
been sieved out between the opening by the structuring element nB and the
structuring element (n + 1)B.

In the case of a greyscale image, the value in bin n of the size histogram
indicates what amount in grey value has been sieved out between the opening
by the structuring element nB and the structuring element (n + 1)B. A value
v can represent v pixels that decreased one unit in grey value, it can represent
one pixel that decreased v units in grey value, but in general it is a combina-
tion of both. So, we cannot tell from the pattern spectrum whether a large
value indicates that the opening caused many pixels to decrease a little in grey
value, or a few pixels a lot. On the other hand, the pattern spectrum of a

1In other words: ][A] =
P

a∈Ω(A) A(a), with Ω(A) the support of A. In the case of a

binary image (i.e., a set), ][A] is the cardinality of the set A. The −-operation in the following
equations is then replaced too, with the set difference \.

2The pattern spectrum is sometimes referred to as the pecstrum.
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greyscale image reveals subtle changes in grey values, while in the binary case
these changes are gone after the binarization of the input image. For example,
textured objects will produce another ps than flat objects, which is useful for
classification purposes.

We can also define a normalized pattern spectrum, similarly as for the granu-
lometric curve (i.e., divide the result by the sum of grey values in the original
image). Alternatively, we can define a structuring element-normalized ps:

PSN (A; B)(n)=
1

][nB]
][A ◦ nB −A ◦ (n + 1)B], n ≥ 0 . (4.5)

So, the values in the bins n of the size distribution indicate the number of
objects that are sieved out, assuming that the objects have the same size and
shape as the structuring element nB.

The definition for the pattern spectrum given in equation (4.4) can also be
defined for continuous functions or sets [Maragos, 1989]. It is a differential size
distribution function:

PSc(A; B)(r)=−d][A ◦ rB]

dr
, r ≥ 0 , (4.6)

where rB ≡ Hr(B) is defined as in equation (2.47).

Figure 4.1 shows an example of an image that is sieved using disc-shaped struc-
turing elements with increasing size. First, the smallest objects disappear, the
largest object remains until the 10th opening. Figure 4.2 shows its granulomet-
ric curve and pattern spectrum. Notice that the granulometric curve is the in-
verse of a cumulative size distribution, in the sense that the value GC(A; B)(n)
decreases from ][A] to 0 for increasing n. The peaks in the pattern spectrum
indicate when a lot of object pixels decrease value, thus telling us how many
pixels belong to a region of size nB.

4.1.1 Discrete size transform

The morphological pattern spectrum is actually derived from statistics com-
puted on the discrete size transform (dst) [Goutsias and Batman, 2000], which
is:

DST (A; B)(n)= A ◦ nB −A ◦ (n + 1)B, n ≥ 0 . (4.7)

This is a set of images which have only non-negative values, because of the
absorption property (equation (4.2)). The discrete size transform is thus the
difference of two successive sievings, and the pattern spectrum is the “mag-
nitude” of the dst. Notice that we can reconstruct the input image from the



106 Granulometries

(a) A (b) A ◦ B (c) A ◦ 2B

(d) A ◦ 3B (e) A ◦ 4B (f) A ◦ 5B

(g) A ◦ 6B (h) A ◦ 7B (i) A ◦ 8B

Figure 4.1: The first eight residues of the granulometry. The structuring element
B is a disc with radius 5 pixels.
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Figure 4.2: The granulometric curve and the pattern spectrum from figure 4.1(a).
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elements of the dst, i.e.:

A=
∑

n≥0

DST (A; B)(n) . (4.8)

The dst is a multi-resolution image decomposition scheme, a morphological
transform that can be seen as an analogue of the Fourier transform (which will
be discussed in section 4.2.5). As is the case with the Fourier transform, it
is common practice to work only with the magnitude of the transform, which
here is the pattern spectrum.

4.1.2 Oriented pattern spectrum

Different structuring elements can be used in computing the pattern spectrum.
The pattern spectrum with a square structuring element performs openings
by square structuring elements with increasing size. It indicates what the
sizes of the square objects in the image are. When we use a linear structuring
element (oriented horizontally, vertically, diagonally, . . . ), the pattern spectrum
indicates what the sizes of the objects in a specific direction are. For example,
using a one-dimensional horizontal structuring element for the computation of
the pattern spectrum reveals the width of the objects but not the height. So,
the pattern spectrum depends both on the input image and the structuring
element used for the openings.

In the case of a linear structuring element, or in fact any anisotropic structuring
element (i.e., being not the same in all directions), the pattern spectrum is the
result of a search for objects with a specific orientation. A square is an isotropic
object, because we work on a square discrete grid, not in a continuous 2D-space.
If we want to find anisotropic objects, but with unknown orientation, we must
use the (discrete) oriented pattern spectrum (ops) [Maragos, 1989]:

OPS(A; Bθ)(n)= ][max
θ
{A ◦ nBθ} −max

θ
{A ◦ (n + 1)Bθ}] , (4.9)

with n ≥ 0. Bθ are line segments with orientations θ. Typically only a discrete
set of angles is considered, for example, θ = {0◦, 45◦, 90◦, 135◦}. If the input
image A is interpreted as a set (i.e., it is a binary image), we replace the
maximum operation with a union.

Figure 4.3 shows a structuring element and its rotated versions. Note that
for the calculation of the ops, equation (4.9) must be used. It is not possible
to produce the same oriented pattern spectrum using the standard pattern
spectrum by combining linear structuring elements. For example, dilating a
horizontal by a vertical structuring element results in a square element, which
is no more anisotropic.

Let us show how the ops works differently from the regular pattern spectrum,
using a simple example. Consider the image A in figure 4.4. The pattern
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(a) Bθ1
= B0◦ (b) Bθ2

= B45◦ (c) Bθ3
= B90◦ (d) Bθ4

= B135◦

Figure 4.3: Elongated structuring elements Bθ, of different orientations θ.

Figure 4.4: A sample image: a 3×6 pixels large black object on a white background.
The pattern spectra are different when different structuring elements are used.

spectra for a square structuring element B with size 3 × 3 pixels, Bθ1
and

Bθ3
(from figure 4.3) are respectively: PS(A; B) = {0, 18}, PS(A; Bθ1

) =
{0, 0, 18} and PS(A; Bθ3

) = {0, 18}. The regular pattern spectrum for a square
structuring element reveals square-shaped objects in the image (namely, two
touching 3× 3 squares). The regular pattern spectrum for a linear structuring
element (Bθ1

or Bθ3
) yields other results. The use of Bθ1

reveals horizontally-
shaped objects. For figure 4.4, the spectrum indicates the presence of 3 touching
lines of 6 pixels in length. The use of Bθ3

allows us to detect 6 vertical touching
lines of 3 pixels in length.

When we use the oriented pattern spectrum with the structuring elements Bθ1

and Bθ3
, the result is PS(A; Bθ) = {0, 0, 18}. With the ops, we find the

horizontal elongated lines of 6 pixels in length. The oriented pattern spectrum
does not detect the smaller vertical objects, since equation (4.9) contains a
maximum operation.

If we rotate the input image A over 90◦, the regular pattern spectra for the
linear structuring elements will change. This is caused by the anisotropy of
the structuring elements.3 The pattern spectrum with the square structuring
element B remains the same, because it is an isotropic structuring element. The
oriented pattern spectrum also does not change, it is rotation invariant. The
big difference with the pattern spectrum for a square or elongated structuring
element is that the ops is able to find anisotropic (e.g., elongated) shapes,
regardless of the orientation of the shapes.

4.1.3 Granulometries by closing

The granulometric curve, discrete size transform and (oriented) pattern spec-
trum are defined in terms of the morphological opening. With these techniques

3Notice that the results PS(A; Bθ1
) and PS(A; Bθ3

) are interchanged.
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we can detect and quantify bright objects on a darker background. It is possible
to use the closing operator to measure dark objects on a brighter background
(such as holes inside objects) using the granulometry by closing , a.k.a. anti-
granulometry . This is because the closing is an extensive operator, instead of
an anti-extensive one. The index for the anti-granulometric curve or pattern
spectrum by closing is given a negative value (−n). When both the opening
and closing granulometries are calculated, the anti-granulometry is shown on
the left (negative index) and the granulometry is shown on the right (positive
index).

A granulometric curve by closing is defined as:

GC(A; B)(−n)= ][A • nB], n > 0 . (4.10)

The pattern spectrum by closing is defined as:

PS(A; B)(−n)= ][A • nB −A • (n− 1)B], n > 0 . (4.11)

We recall the duality relationship between the secondary morphological oper-
ators (chapter 2, section 2.2.4.1): (A • B)c = Ac ◦ B̆ and (A ◦ B)c = Ac • B̆.4

The pattern spectrum by closing is simply the standard pattern spectrum by
opening, but for the complement of the image, i.e.:5

PS(A; B)(−n)= ][Ac ◦ (n− 1)B̆ −Ac ◦ nB̆], n > 0

= PS(Ac; B̆)(n− 1) .
(4.12)

The discrete size transform by closing is defined as:

DST (A; B)(−n)= A • nB −A • (n− 1)B, n > 0 . (4.13)

Notice that we can also reconstruct the input image from the elements of this
dst, i.e.:

A = [
∑

n>0

DST (A; B)(−n)]c . (4.14)

The oriented pattern spectrum by closing is, for n > 0:

OPS(A; Bθ)(−n)= ][min
θ
{A • nBθ} −min

θ
{A • (n− 1)Bθ}] . (4.15)

4Ac is the complement of the (greyscale) image A. For a greyscale image, the complement
v′ of a grey value v in an 8-bit image is: v′ = 255 − v.

5Since we use the Minkowski definition, we must also take the reflection of the structuring
element into account. For a symmetric element, B = B̆, which is generally the case when
calculating a pattern spectrum.
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4.1.4 Parameters

From the pattern spectrum different parameters can be calculated
[Maragos, 1989]. These parameters provide statistical information about the
content of the image, like mean object size, shape, direction, variation, . . . . Us-
ing a different structuring element results in another pattern spectrum. This
also implies other values for the parameters.

4.1.4.1 Maximal size

The size of an object in the pattern spectrum is defined as ][nB], so we can
take the bin-index n as a measure for the size. We define Nmax as the maximal
size, i.e., the last bin (the highest n-value, when all image objects are sieved
out) of the pattern spectrum histogram. Thus:

Nmax(A; B)= min{n | ∀n′ > n : PS(A; B)(n′) = 0} (4.16)

= max{n | ∃a ∈ Ω(A) : a ∈ Ω(A ◦ nB)} . (4.17)

4.1.4.2 Average size

The average size is:

S(A; B)=

∑Nmax

n=0 nPS(A; B)(n)

][A]
. (4.18)

As with Nmax, this value is directly related to the actual mean object size or
mean area ][S(A; B)B]. Let us take figure 4.1(a) as an example (its pattern
spectrum is shown in figure 4.2). The average size is S(A; B) = 3.36 (Nmax =
9), which means that on average the objects have the size ][3.36B], with B a
disc with radius 5 pixels, thus the actual mean object size or mean area is a
disc with radius 16.8 pixels.6

4.1.4.3 Average roughness (entropy)

Another parameter is the (average) entropy of the size distribution, also
known as the average roughness. Its definition comes from information the-
ory [Shannon, 1948].

E(A; B)=−
∑Nmax

n=0 PS(A; B)(n) log2

(
PS(A;B)(n)

][A]

)

][A]
, (4.19)

6Note that the value n in nB (B is a discrete set) is supposed to be an integer (see
equation (2.58) in chapter 2). S(A; B) can be a non-integer value and is not meant to
reconstruct an image or structuring element with.
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where P log2(P ) = 0 if P = 0.7

If the entropy is small, then the objects in the image are very similar in size.
The minimal value of E(A; B) is 0 and is obtained when all objects are sieved
out during one opening. In other words:

∃!n ≥ 0 : PS(A; B)(n) > 0 =⇒E(A; B) = 0 . (4.20)

The larger the entropy, the more different sizes and/or shapes are present in
the image. The maximal entropy value is attained when the pattern spectrum
is flat, i.e., ∀0 ≤ n, n′ ≤ Nmax : PS(A; B)(n) = PS(A; B)(n′). This maximal
entropy value is log2(Nmax + 1).

The average roughness is a quantification of the shape-size complexity of the
image A.

In our example, figure 4.1(a), the average roughness of PS(A; B), with B a
disc with radius 5 pixels, is E(A; B) = 2.88. The maximal obtainable entropy
for Nmax = 9 is about 3.32.

4.1.4.4 Normalized average roughness

It is also possible to calculate the normalized average roughness :

EN (A; B)=
E(A; B)

log2(Nmax + 1)
. (4.21)

So, it is simply the entropy divided by the logarithm of the number of bins in
the pattern spectrum (which is the maximal entropy value). The value of the
normalized average roughness lies between 0 and 1.

In our example, figure 4.1(a), the average roughness of PS(A; B), with B a
disc with radius 5 pixels, is EN (A; B) = 0.87. Maximal entropy is obtained
when EN (A; B) = 1. The example image apparently contains objects of many
different sizes.

4.1.4.5 B-shapiness

The B-shapiness is the maximal degree to which A contains the shape B, or
shapes like B:

BS(A; B)=
PS(A; B)(Nmax)

][A]
. (4.22)

7In [Maragos, 1989], the use of the base 2 logarithm is not explicitly stated, but it is used
in the examples thus assumed implicitly.
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It is the pattern spectrum value at Nmax, divided by the total amount of
grey values. The B-shapiness is also considered a quantitative measure of the
resemblance of the objects to the shape of the structuring element.

The B-shapiness takes values between 0 and 1. When this value is low, the
object shapes should be very dissimilar to the shape of the structuring element.
The opposite is true when the B-shapiness is close to 1.

In our example, figure 4.1(a), the B-shapiness of PS(A; B), with B a disc with
radius 5 pixels, is BS(A; B) = 0.11. If we use a square structuring element B ′

with size 3× 3, then BS(A; B′) = 0.079.

4.1.5 Computational cost

The pattern spectrum is computed by a sieving operation with openings by
increasing structuring elements. We discussed in chapter 2, section 2.2.4.4 that
a dilation or erosion takes MN(P − 1) calculations for an M × N image and
a structuring element support containing P pixels. Since the opening is an
erosion followed by a dilation, the calculation time doubles. For every n we
must calculate an opening, and the size of the structuring element increases.
One can imagine that the calculation time can become a real problem. In
large images it is likely to find large objects, which implies the need for large
structuring elements.

To reduce the computational cost, it is important that we implement the open-
ing by taking advantage of the associativity rules (equations (2.61) and (2.62)).
An opening by structuring element nB is:

A ◦ nB = (A	 nB)⊕ nB (4.23)

= (A	 (B ⊕B ⊕ . . .⊕B︸ ︷︷ ︸
n times

))⊕ (B ⊕B ⊕ . . .⊕B︸ ︷︷ ︸
n times

) (4.24)

= A	B 	 . . .	B︸ ︷︷ ︸
n times

⊕B ⊕B ⊕ . . .⊕B︸ ︷︷ ︸
n times

. (4.25)

The last equation reduces the calculation time considerably.

For the calculation of the value of the pattern spectrum PS(A; B) at bin n,
we must compute A ◦ nB as well as A ◦ (n + 1)B (see equation (4.4)). For
the value at bin (n + 1), we must calculate A ◦ (n + 1)B and A ◦ (n + 2)B.
So, when we have computed PS(A; B)(n), we can re-use A ◦ (n + 1)B for the
calculation of PS(A; B)(n + 1). This advantage should be taken into account
when implementing an algorithm for the pattern spectrum. At bin n, two
images must be stored in memory. When PS(A; B)(n) has been calculated,
one of the images can be cleared (A ◦ nB) and the other one (A ◦ (n + 1)B)
will be used for the calculation of PS(A; B)(n + 1).

Unfortunately, it is not possible to use A ◦ nB as a starting point for the
calculation of A ◦ (n + 1)B. While it is possible to erode A 	 nB by B to
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obtain A 	 (n + 1)B, and similarly for the dilation, this is not the case with
the opening (as well as the closing). Indeed, adding an extra opening at the
end of equation (4.25) does not change the result, because of the idempotency
and the absorption property. This means that we must compute an opening
for every n. When n increases, the structuring element increases, which results
in high computation times when Nmax is high.

4.2 Other pattern spectra

In the next chapter, we use the pattern spectrum for the processing of large
images (size 1030 × 1300). The calculation time of these images is very large.
The calculation of the pattern spectrum for a 512 × 512 image already takes
more than 3 hours.

Therefore we look at alternatives for the pattern spectrum, in order to reduce
the calculation time. These alternatives can be an efficient implementation of
the pattern spectrum, or another type of histogram of the image that reveals
shape information.

In this section, we discuss several alternative “pattern spectra”. In section 4.3
we compare the computational cost of the different spectra.

4.2.1 The colour pattern spectrum

Chapter 3 dealt with colour morphology. Greyscale morphology can be used on
colour images, if we perform a sub-ordering on the image, such as a component-
wise ordering or a lexicographical ordering. We also introduced the majority
sorting scheme (mss), an ordering based on the number of times the colours
(or grey values) appear in the image.

Calculating the pattern spectrum of colour images is then possible, although
the interpretation becomes quite abstract. The values in the histogram do
not resemble differences in grey value, as is the case with greyscale images. A
greyscale pattern spectrum is also abstract, in the sense that we cannot tell
whether an obtained value of the spectrum represents a small decrease in grey
value of many pixels or a large decrease of a few pixels. In the case of a colour
image, however, not only luminance but also saturation and hue contribute to
the spectrum. This complicates the interpretation.

With the mss, we are able to look at images in a different way, namely to order
the colours in function of the image content. We can also apply the mss to
greyscale images, resulting in another pattern spectrum than the traditional
greyscale spectrum. The successive openings are performed in mss-space, i.e.,
on the ordering maps.

These pattern spectra, the colour pattern spectrum (cps) and the mss-ps,
are not faster than the standard pattern spectrum (ps). They use the same
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algorithm, but it works on different kinds of data. In the case of the cps using
the lexicographical ordering, the colour image must be converted into a 24-bit
scalar image using the lexicographical ordering rules. In the case of the mss-
ps, the colours or grey values are re-indexed according to their presence in the
image. A colour quantization step might also be necessary, which can increase
the total calculation time.

4.2.1.1 Experimental results

We now show some differences between the spectra obtained with the mss-ps
and the standard ps or cps.

Objects of one colour If all the objects in the image have the same colour
and the background also consists of only one colour, then the image can be seen
as a binary image. The binary morphological openings produce the same results
as with the majority sorting scheme or with the lexicographical orderings (H-,
S- or L-ordering).8 Therefore: PS = CPS = PSMSS . Similar remarks can be
made as in the previous chapter, section 3.3.2.1.

Objects of multiple colours Figure 4.5(a) shows two objects with a small,
differently coloured border. The small borders are regarded less important
than the objects. The spectra using the lexicographical ordering depend on
the colour of the objects and the borders. When we use the majority ordering,
the prevalence of these colours defines the ordering of the colours. Pattern
spectra for a square structuring element (3 × 3) are shown in figures 4.5(b)
and (c).

The majority sorted spectrum shows a peak at the lowest bin, which indicates
pixels that do not specifically belong to a big object. In this case, these are
the pixels from the small borders. The large peak at n = 6 indicates the
disappearance of the two objects. The L-ordered spectrum, figure 4.5(c), has
similar peaks as the mss-ps, but it also has a non-zero value at bin n = 5. This
extra bin value comes from pixels that change colour after an opening with a
13× 13 square structuring element. These pixels are the pixels from the upper
object in figure (a), inside the small border. They change into the colour of
the surrounding border, which has a lower luminance value. Although this is
just an artificial example, such extra peaks can make the interpretation of the
pattern spectrum less trivial. We expect the colours to be ordered in a specific
way. That is, we expect the borders in figure 4.5 to be part of the square
objects. An opening operation should remove the borders in favour of the
objects. A colour ordering that follows this assumption is therefore preferred,
since it will result in a more meaningful pattern spectrum.

8H: hue; S: saturation; L: luminance.
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Figure 4.5: Different pattern spectra for an artificial colour image.

Results on real images The pattern spectrum of the image in figure 4.1(a)
for a square structuring element (size 3 × 3) is shown in figure 4.6(a). When
we use the majority sorting scheme to re-order the grey values, the spectrum
looks like the one in figure 4.6(b).

As we can see, there are similarities between the two spectra. Especially for
higher n values, we notice the same behaviour. The mss-map that the majority
ordering generates, is shown in figure 4.7. The colours of the dark centres and
the borders of the blobs are apparently less prevalent than those of the blobs
and the background. Therefore, these centre and border pixels will be the first
to decrease value when calculating the pattern spectrum.

Another example is shown in figure 4.8. Figure (a) is a medical colour image. It
is a histological section of a tissue containing several cells. Figure (b) visualizes
the mss-map. The image size is 239 × 328 pixels and there are 244 different
colours present.

Most cells have a diameter between 10 and 20 pixels. This is confirmed by the
peak in the range n = {5, . . . , 10} for the pattern spectrum of the majority
sorted image, figure 4.9(a). The structuring element used is a 3 × 3 square.
The colour pattern spectra with the L-, S- and H-ordering show peaks at much
higher n-values. These peaks suggest the presence of much larger objects in the
image, although this is not the case. For this image, the mss-ps produces the
most realistic graph. If we calculate the spectral parameters from the pattern
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Figure 4.6: The spectra ps and mss-ps for figure 4.1(a).

Figure 4.7: The mss-map of figure 4.1(a), used for the calculation of the mss-ps.

spectrum of the majority sorted image, then we can draw several conclusions.
For example, the maximal size calculated is Nmax = 34, which means the
largest image structures are sieved out after an opening by a 69 × 69 square
element. The average size is S = 10.8 and the normalized entropy is EN = 0.9.
This high value indicates the presence of objects of many different sizes. These
results can be affirmed by a visual inspection of figure 4.8(a).

4.2.2 The area pattern spectrum

The necessary properties for a granulometry are stated at the beginning of this
chapter. A granulometry function is increasing, anti-extensive and idempotent.
The absorption property also holds. The morphological opening satisfies all
these properties, and we defined the pattern spectrum using the opening func-
tion.

Some other functions exist that can replace the opening and are called attribute
openings . One of them is the area opening .9 We measure the area of connected

9Other attribute openings are openings in function of the diagonal length, the perimeter
or area of the convex hull, . . . .
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(a) Original image (b) mss ordered map

Figure 4.8: A colour image and its mss-map.

components, first for the binary case, afterwards we generalize for grey values.10

Components with an area equal or greater than some threshold value λ are kept,
but components with smaller areas are removed from the image. The binary
area opening of set A by parameter λ is given by:

A ◦] λ = {a ∈ A | ][Ca(A)] ≥ λ} (4.26)

=
⋃

i∈I

{Ai | ][Ai] ≥ λ} . (4.27)

Ca(A) is the binary connected opening, which is the connected component of
set A containing a, if a ∈ A, otherwise the connected opening is empty. (Ai)i∈I

are all the connected components (i.e., objects) of set A.

Figure 4.10(a) shows a binary image (black is object, white is background).
In figure (b), objects with an area smaller than 100 pixels are removed from
the image (the eyebrows). In figure (c), objects with an area smaller than 500
pixels are removed from the image (the eyebrows and the eyes).

In the case of greyscale images, the grey value decreases to the grey value of
the underlying connected component that satisfies the λ-condition. We first
define Th(A), the threshold of the function A at level (i.e., grey value) h:

Th(A)= {a | A(a) ≥ h} . (4.28)

A(a) is the grey value at position a. The greyscale area opening of image
function A by parameter λ is then given by:

(A ◦] λ)(a)= max{h ≤ A(a) | ][Ca(Th(A))] ≥ λ} (4.29)

= max{h ≤ A(a) | a ∈ Th(A) ◦]b
λ} . (4.30)

The operator ◦]b
in equation (4.30) denotes the binary area opening operator.

10One can choose for 4- or 8-connectivity when connecting the pixels.
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Figure 4.9: Different pattern spectra for figure 4.8(a).

(a) Original image (b) Area opened (λ = 100) (c) Area opened (λ = 500)

Figure 4.10: Area opening of a binary image, with λ = 100 and λ = 500. White is
considered background.

In figure 4.11(a), we see the greyscale “Lena” image. Figure (b) shows the
result after area opening this image with λ = 10 000. As with the traditional
opening, the overall brightness has decreased (see for example the hair and
feathers on the hat of Lena).

The area pattern spectrum (aps) is defined in a similar way as the standard
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(a) Input image (b) Area opened image

Figure 4.11: Area opening of a greyscale image, with λ = 10 000.

pattern spectrum:

APS(A; λ)(n)= ][A ◦] nλ−A ◦] (n + 1)λ], n ≥ 0 . (4.31)

The smaller components (in area) are sieved out first, the largest connected
components are sieved out last.

The above equation states that the threshold (nλ) increases linearly with n. If
desired, we can increase this threshold quadratically or in some other way. A
generalization of the aps is therefore:

APS(A; λ)(n)= ][A ◦] Ψ(n; λ)−A ◦] Ψ(n + 1; λ)], n ≥ 0 . (4.32)

The function Ψ(n; λ) is increasing.

If we want to approximate the regular pattern spectrum ps for a specific struc-
turing element B, we can increase Ψ(n; λ) in such way that its value is the area
of nB. A few examples:

• Linear : an elongated structuring element B has a length of λ pixels.
nB is B dilated n − 1 times by itself. We approximate the area of such
element with: Ψ(n; λ) = n(λ− 1) + 1.

• Square: a square structuring element B has sides of λ pixels. For every
n we have: Ψ(n; λ) = (n(λ− 1) + 1)2.

• Diamond : a diamond shaped structuring element contains 5, 13, 25,
41, . . . pixels if its diagonal is 3, 5, 7, 9, . . . pixels, respectively. In a
generalized form, this is: Ψ(n; λ) = ((2nλ + 1)2 + 1)/2, where 2λ + 1 is



120 Granulometries

the length of the diagonal (and λ is the distance from the origin to the
points of the diamond).11

• Disc: because we work in a discrete space, a discrete disc structuring
element is used, which is an approximation of an analytic disc. The
disc is the set of pixels that are no more than λ away from the ori-
gin, with λ the radius of the disc. The area of the discrete disc can
be approximated using the rounding of the area of the analytic disc:
Ψ(n; λ) = 1 + round((nλ)2π).12

The big difference between the standard opening and the area opening is, of
course, that the opening tries to match a specific shape of a specific size to
the objects in the image, while the area opening calculates the area of con-
nected components, which does not depend on the shape of those connected
components.

Efficient implementations for the area opening and the area pattern spectrum
exist [Vincent, 1992, Breen and Jones, 1996, Meijster and Wilkinson, 2002].
For the area pattern spectrum we have implemented an algorithm based
on Tarjan’s union-find method. We refer to [Wilkinson and Roerdink, 2000,
Meijster and Wilkinson, 2001, Meijster and Wilkinson, 2002] for more details
on the implementation of the algorithm. In the following subsection we will
give a description of the union-find problem.

The union-find implementation is very fast, because the image is scanned only
once. It is practically independent of the value of λ, or the image content.
Comparisons of the calculation times of the different pattern spectra will be
discussed in section 4.3.

4.2.2.1 The union-find method

In [Meijster and Wilkinson, 2001], the area pattern spectrum is calculated by
representing the image pixels as nodes in a tree. A set can be subdivided
into smaller, disjoint sets. Figure 4.12 shows disjoint sets represented as trees.
Each set is uniquely identified by the so-called canonical element of the set,
an arbitrary but unique representative for the set. Three set operations are
defined [Tarjan, 1975, Tarjan, 1983]:

• MakeSet(x): a new set is created for the element x, which previously
did not belong to any set;

• Find(x): the canonical element of the set containing element x is re-
turned;

11If we want λ to be the length of the diagonal instead of 2λ + 1, then we substitute
2λ + 1 → λ, which results in Ψ(n; λ) = ((n(λ − 1) + 1)2 + 1)/2.

12The discrete disc will contain 5, 13, 29, 49, 81, . . . pixels, for λ = 1, 2, 3, 4, 5, . . .. The
calculation of Ψ results in areas of 4, 14, 29, 51, 80, . . . pixels, respectively.
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Figure 4.12: The 3 sets {A, B, C, D, E, F}, {G}, {H, I, J, K} are represented as
trees, with the elements the nodes in the trees.

• Link(x, y): two sets, with canonical elements x and y (x 6= y), are united.
The original sets are replaced by a new set, with its own canonical ele-
ment.

As we can see in figure 4.12, each set has a root (elements A, G and H, re-
spectively), which is at the same time the canonical element. Each element is
a node that points to another node, its parent. Notice that the roots point to
themselves.

So, the operation MakeSet(x) would construct a pointer p(x) = x. The
Find(x)-operation would look for the parent of x, and then for that element’s
parent, and so on, until the canonical element has been found. In the figure,
Find(E) would first find D, then B and finally A, the root of the tree. The
operator Link(x, y) merges the sets x and y. The pointer p(x) = x becomes
p(x) = y and y becomes the canonical element of the new set.

This union-find method is used for the area opening. First, the pixels in the
image are ranked from large grey value to small grey value. The pixels are pro-
cessed in this order. The function MakeSet is called when the pixel under inves-
tigation is processed for the first time. Previously processed neighbouring pixels
are merged with the function Link if they have the same grey value and thus a
connected set is created. The grey value can be called with the function Find.
In the algorithm, a check for the λ-condition is included. A more elaborate
description of this technique can be found in [Wilkinson and Roerdink, 2000].

The worst case computational complexity for the union-find approach is
on the order of N log N , with N the number of pixels in the image
[Meijster and Wilkinson, 2002]. Concerning the memory usage, the union-find
needs 2N integers: N for the array containing the pixels’ parents (which be-
comes the output image), and N for the sorted pixel array in the algorithm.
An extra N memory elements is needed for the input image.
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Figure 4.13: A one-dimensional greyscale image. The grey values are shown on the
left.

4.2.3 The pattern spectrum using opening trees

The calculation of the morphological pattern spectrum (ps) has a high com-
putational cost. Several attempts have been made to develop efficient mor-
phological algorithms, for basic morphological operations as well as for granu-
lometries. Most of the developed granulometry algorithms are restricted to
binary images [Yuan, 1991, Vincent, 1994b, Läy, 1987, Haralick et al., 1992].
They are capable of using two-dimensional structuring elements, i.e., these al-
gorithms are not restricted to process each row or column independently. Fewer
techniques also work on greyscale images, and only for one-dimensional (i.e.,
linear) structuring elements [Vincent, 1994a, Sivakumar et al., 2000].

We have implemented a fast greyscale technique that works with linear
structuring elements, but that is extendible to two-dimensional elements
[Vincent, 1994a, Vincent, 1995, Vincent, 2000]. It introduces the concept of
opening trees. We will now explain this approach. For more details about the
implementation, we refer to the aforementioned articles.13

Consider the example of the one-dimensional greyscale image in figure 4.13.
This image contains two so-called horizontal maxima, one with length l(M1) =
5 and one with length l(M2) = 2. When we open this image by linear struc-
turing elements of increasing length, i.e., when we perform a granulometry,
the pixel values of the upper plateaus14 will decrease to the grey value of the
plateau below them. This sequence of grey value changes for each pixel can be
visualized with the opening tree (ot) (figure 4.14).15

An opening tree consists of the following elements:

• Tree T : each image line can be represented as a tree;

• Nodes (h, n): the nodes contain a grey value h and an opening size n;

• Leaves: these are the image pixels of the tree.

13Articles from L. Vincent are available at http://www.vincent-net.com/luc/papers/.
14The upper plateaus are the horizontal maxima.
15Note that this technique has nothing to do with the tree structure from the previous

section.

http://www.vincent-net.com/luc/papers/
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(4, 9)

(2, 17)

(0, 20)
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(6, 2)

Figure 4.14: The tree representation of figure 4.13. The circles are the nodes (h, n),
the squares are the leaves (the pixels).

The opening tree representation of figure 4.13 is shown in figure 4.14. The
squares are the leaves and represent the 20 different pixels in the image. Each
leave has at least one node (h, n). h is a grey value and n is an opening size.
Opening operations are done by nB, where B is a horizontal elongated 1D-
structuring element with a length of 2 pixels. Node (h, n) tells us that an
opening by nB will result in the grey value h, for any pixel that we can reach
by climbing up the tree starting at node (h, n). For example, from this repre-
sentation we know that the opening of the 5 pixels of the horizontal maximum
M1 by nB, with n = 9, changes their grey values to h = 4. This information
is stored in the node (4, 9).

We can also interpret the tree as follows: the node (h, n) states that there is
a plateau of n pixels with a grey value > h. The leaves attached to this node
point to the pixels that have grey value h′, with h′ the grey value of the node(s)
(h′, n′) that lie(s) directly above node (h, n). The remaining pixel values are
stored in the successive nodes when climbing up the tree. Only the values of
the horizontal maxima are not stored in a node (only in the leaves).

When going down to the root of the tree, the successive nodes (h1, n1),
(h2, n2), . . . satisfy, ∀i > 0:

hi > hi+1 , (4.33)

ni < ni+1 . (4.34)
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Figure 4.15: A few sample greyscale images. The numbers are the grey values of
the respective pixels.

We also know that:

(A ◦ nB)(a) = hj , for nj ≤ n < nj+1 . (4.35)

An opening tree is constructed using the horizontal maxima in the image. The
length of a horizontal maximum defines the opening size n. An opening by
nB creates a new horizontal maximum with lower grey value. This grey value
defines the value h. By remembering the end points of the horizontal maxima,
we can avoid redundancy by processing every pixel once and thus significantly
increase the processing speed. A more extensive description of this technique
can be found in the original papers.

In order to calculate the pattern spectrum with an elongated structuring ele-
ment B, we must execute the following algorithm:
1. Set each bin of the pattern spectrum PS(A; B) to 0;

2. For each pixel a of A do:

3. v = A(a);
4. (h, n) = node pointed at by a;
5. While (h, n) exists, do:

6. PS(A; B)(n− 1) = PS(A; B)(n− 1) + (v − h);
7. v = h;
8. (h, n) = next node down in tree T.

As an example, let us calculate the pattern spectrum for figure 4.15(a). We
get PS(A; B) = {0, 2, 3}, like the result of the standard pattern spectrum,
equation (4.4). As a second example, we calculate the pattern spectrum of the
3rd column of figure 4.15(b).16 The result is PS(A; B) = {2, 2, 0, 4}. Notice
that grey value 1 is the background (it is the lowest value of the considered
column), so the pixels with value 1 are not linked to a node.

16Remember that a tree T is a representation of an image line. To calculate the pattern
spectrum with a vertical elongated structuring element, using the ot, every column must be
treated independently. Afterwards, the resulting pattern spectra are added.
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Computation times between the different techniques are compared in sec-
tion 4.3, but previous experiments [Vincent, 1994a] already suggest an im-
provement by a factor of about 1000, compared to the naive implementation of
the pattern spectrum. The calculation time of the opening tree pattern spec-
trum increases linearly with the number of pixels in the image. In the worst
case, one node per pixel is needed. In practice, between 0.3 and 0.9 nodes per
pixel are needed.

4.2.3.1 Two-dimensional granulometry

The previously mentioned algorithm allows us to compute pattern spectra of
greyscale images very quickly. The restriction, however, is that it only works
for one-dimensional structuring elements, because the algorithm works on a
row-by-row or column-by-column basis. In this subsection, we will show how
the representation of the opening tree is used to calculate granulometries using
maxima or minima of linear openings in several orientations [Vincent, 2000].

The algorithm can provide results for several orientations at once. The fol-
lowing algorithms are for two orientations.17 We must perform the following
steps:

1. Compute the opening tree for each horizontal image line;

2. Compute the opening tree for each vertical image line;

3. For each pixel, combine its associated horizontal opening tree T1 and
vertical opening tree T2 and extract its contribution to the pattern spec-
trum. The trees are followed to their respective roots and along the way
the desired values are calculated and added to the pattern spectrum.

In the last step, different trees are combined using maximum or minimum
operations. This way, the rows and columns are not independent anymore, the
results for the openings by linear horizontal and vertical structuring elements
are merged. We show the algorithms used to combine the trees and to compute
the pattern spectrum in the following paragraphs. We discuss the resulting
spectra in the following subsection.

Granulometry by maxima of linear openings
1. Set each bin of the pattern spectrum OTmax(A; B) to 0;

2. For each pixel a of A do:

3. v = A(a);
4. (h1, n1) = node of T1 pointed at by a;
5. (h2, n2) = node of T2 pointed at by a;
6. While (h1, n1) and (h2, n2) exist, do:

17By default, we take horizontal and vertical structuring elements, but it is also possible
to construct the opening tree for a diagonal image line.
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7. s = max{n1, n2};
8. While (h1, n1) exists and n1 ≤ s, do:

9. (h1, n1) = next node down in tree T1;

10. While (h2, n2) exists and n2 ≤ s, do:

11. (h2, n2) = next node down in tree T2;

12. OTmax(A; B)(s−1) = OTmax(A; B)(s−1)+(v−max{h1, h2});
13. v = max{h1, h2}.
On line 12, the pattern spectrum is updated. The greyscale difference of the
pixel value with the grey value after opening with size n is added to bin n− 1.
The opening size is that of the tree with the largest opening size (for that
pixel), i.e., a granulometry by maxima of linear openings is computed.

Pseudo-granulometry by minima of linear openings We speak of a
pseudo-granulometry, because from the properties stated in section 4.1, idem-
potency is not satisfied. Minima of linear openings are thus not openings. The
algorithm is the following:
1. Set each bin of the pattern spectrum OTmin(A; B) to 0;

2. For each pixel a of A do:

3. v = A(a);
4. (h1, n1) = node of T1 pointed at by a;
5. (h2, n2) = node of T2 pointed at by a;
6. While (h1, n1) or (h2, n2) exist, do:

7. s = min{n1, n2};18

8. If (h1, n1) exists and n1 = s, do:

9. l1 = h1;

10. (h1, n1) = next node down in tree T1;

11. Else:

12. l1 = +∞;

13. If (h2, n2) exists and n2 = s, do:

14. l2 = h2;

15. (h2, n2) = next node down in tree T2;

16. Else:

17. l2 = +∞;

18. OTmin(A; B)(s− 1) = OTmin(A; B)(s− 1) + (v −min{l1, l2});
19. v = min{l1, l2}.

4.2.3.2 Adaptation of the two-dimensional granulometries

The previous two algorithms produce (pseudo-)granulometries by maxima/
minima of linear openings, and the pattern spectra are named OTmax(A; B)
and OTmin(A; B), respectively. The “max-opening” approach actually pro-
duces an oriented pattern spectrum (see section 4.1.2): for each pixel, the
maximum opening size, when comparing between the different orientations,

18If n1 does not exist, then s = n2, and vice versa.
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is kept as the opening size that contributes to the pattern spectrum. In the
“min-opening” case, the minimum opening size is kept.

For binary images, the above algorithms produce spectra as expected, i.e., by
means of the maxima or minima of linear openings. For greyscale images,
however, we get unexpected results. The following paragraphs explain this.
The pattern spectra using opening trees for figure 4.15(a) are: OTmax(A; B) =
{0, 4, 1} and OTmin(A; B) = {5,−2, 2}.19

OTmax(A; B)(1) = 4 indicates a total decrease of 4 grey value units after open-
ing by 2B. This can be due to one pixel which grey value decreases 4 units,
two pixels which grey values decrease with 2, etc. The two pixels with grey
value 2 contribute to bin n = 1, they are completely removed by a structuring
element of 3 pixels in length. However, a lower plateau of value 1 lies below.
This plateau has a length of 3 pixels. An opening drops a pixel value to that
of its lower plateau (that is kept intact by the opening). This is not the case
here. While the author claims his algorithms are correct and work as expected,
they behave differently from what we expect (that is, reduce the value to that
of its lower (remaining) plateau). In the papers, no example is given to verify
the outcome of the algorithm. Further on, we will describe an adaptation of
otmax, so that its output equals that of the oriented pattern spectrum (ops),
just like in the binary case.

A strange result is obtained with the algorithm of the pseudo-granulometry.
Indeed, the negative values in otmin suggest that some pixel values have in-
creased at a certain stage of the sieving. This means that the minima of open-
ings by elongated structuring elements of increasing length do not constitute a
decreasing family of image operators, as expected from a granulometry20 and
stated in the papers.

Therefore, we now present two algorithms that are slightly modified versions
of the original ones. The max-opening approach now produces the oriented
pattern spectrum, while no negative values are obtained with the updated
min-opening algorithm.

Granulometry by maxima of linear openings
1. Set each bin of the pattern spectrum OTmax(A; B) to 0;

2. For each pixel a of A do:

3. v = A(a);
4. (h1, n1) = node of T1 pointed at by a;
5. (h2, n2) = node of T2 pointed at by a;
6. While (h1, n1) and (h2, n2) exist, do:

7. s = max{n1, n2};
8. l = max{h1, h2};
19Applying these algorithms on figure 4.15(b) gives us OTmax(A; B) = {2, 8, 7, 10} and

OTmin(A; B) = {10, 9, 0, 8}.
20The property of a decreasing family of operators is contained in the absorption property,

equation (4.2).
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9. If h1 = l, do:

10. (h1, n1) = next node down in tree T1;

11. If h2 = l, do:

12. (h2, n2) = next node down in tree T2;

13. OTmax(A; B)(s− 1) = OTmax(A; B)(s− 1) + (v − l);
14. v = l.

Line 8 is new and lines 9 and 11 are updated versions of lines 8 and 10 in
the original algorithm (the while-loop is replaced by an if-block). What the
algorithm does, is the following: for each pixel, it looks at the size of the plateau
it belongs to, in both horizontal and vertical direction. The bin of the pattern
spectrum corresponding to the maximal size (between the two orientations) is
updated. The opening is performed in the direction of the tree with the node
with the maximal size, so this node is replaced by the next node down in the
tree.

The pattern spectrum for figure 4.15(a) is now OTmax = {0, 2, 3}, which
equals the output of the ops. The same is true for figure 4.15(b): OTmax =
{1, 5, 5, 16}.

Pseudo-granulometry by minima of linear openings
1. Set each bin of the pattern spectrum OTmin(A; B) to 0;

2. For each pixel a of A do:

3. v = A(a);
4. (h1, n1) = node of T1 pointed at by a;
5. (h2, n2) = node of T2 pointed at by a;
6. While (h1, n1) and (h2, n2) exist, do:

7. s = min{n1, n2};
8. l = max{h1, h2};
9. If h1 = l, do:

10. (h1, n1) = next node down in tree T1;

11. If h2 = l, do:

12. (h2, n2) = next node down in tree T2;

13. OTmin(A; B)(s− 1) = OTmin(A; B)(s− 1) + (v − l);
14. v = l.

This pseudo-granulometry is an exact copy of our adapted granulometry by
maxima of linear openings, except that the size on line 7 is obtained by taking
a minimum instead of a maximum. Since l ≤ v, the contribution to the pattern
spectrum (line 13) is always positive. The pattern spectrum will therefore
contain no negative values.

The pattern spectra for figure 4.15(a) and figure 4.15(b) are, respectively:
OTmin = {5, 0, 0} and OTmin = {10, 9, 4, 4}.
The ot-based pattern spectra still use linear structuring elements. A granulo-
metry by maxima of linear openings is actually an oriented pattern spectrum,
using one-dimensional structuring elements. The characteristics of a pseudo-
granulometry by minima of linear openings are often similar to those of a
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standard morphological pattern spectrum with square structuring elements.
An example will be shown in figure 4.19.

4.2.4 The erosion pattern spectrum

We define the erosion pattern spectrum (eps) as:

EPS(A; B)(n)= ][A	 nB −A	 (n + 1)B], n ≥ 0 . (4.36)

The definition is very similar to the pattern spectrum definition (equa-
tion (4.4)), but the erosion replaces the opening. The erosion pattern spectrum
(eps) is not a granulometry though, because it does not possess all the prop-
erties of a granulometry, stated in section 4.1: the erosion is increasing and it
is anti-extensive if the origin is part of the structuring element (0 ∈ B). We
assume this condition is met. Unfortunately, the erosion is not idempotent, so
the absorption property does not hold.

There is a big advantage to this non-idempotency: we can re-use the calcula-
tions from EPS(A; B)(n) for EPS(A; B)(n + 1). Indeed:

A	 nB = A	 (B ⊕B ⊕ . . .⊕B︸ ︷︷ ︸
n times

) (4.37)

= A	B 	 . . .	B︸ ︷︷ ︸
n times

. (4.38)

Consequently, we have:

A	 (n + 1)B = A	 (nB ⊕B) (4.39)

= A	 nB 	B . (4.40)

Thus, to calculate A	 (n + 1)B, we can re-use A	 nB by eroding this result
again by B. This advantage improves the calculation speed considerably.

The interpretation of the eps is much more abstract. While the (opening)
pattern spectrum only removes pixels that are part of objects that are too
small, compared to the structuring element used by the opening operation,
now there will be pixels filtered out of the image for every n.21

4.2.5 The Fourier spectrum

The previously discussed granulometries or pseudo-granulometries stem from
mathematical morphology. We now take a look at Fourier analysis
[Pratt, 2001] and how we use the Fourier spectrum as an alternative for the
pattern spectrum.

21In the case of a greyscale image, grey values decrease.
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4.2.5.1 Theoretical background

A time signal or spatial signal can be represented in the frequency or spatial
frequency domain, respectively. The Fourier transform converts a signal from
the time or spatial domain to the frequency domain. The spectrum obtained
from this transform, allows us to examine the periodic nature of the signal.
The signal can be one-dimensional or higher-dimensional, and continuous or
discrete. A greyscale image, for example, is a two-dimensional discrete spatial
signal.

Continuous Fourier transform Consider a continuous one-dimensional
function f(x). The Fourier transform (ft) of this function, F{f(x)}, is defined
as [Gonzalez and Woods, 2002, Castleman, 1996]:

F (u) =

∫ +∞

−∞
f(x)e−i2πuxdx , (4.41)

where i =
√
−1. The inverse Fourier transform, F−1{F (u)}, is defined as:

f(x) =

∫ +∞

−∞
F (u)ei2πuxdu . (4.42)

Equations (4.41) and (4.42) form a Fourier transform pair, because:

F{f(x)} = F (u)⇐⇒F−1{F (u)} = f(x) . (4.43)

The Fourier transform can be easily extended to multivariate continuous func-
tions. For a two-dimensional function f(x, y), equation (4.41) becomes:

F (u, v)=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i2π(ux+vy)dxdy . (4.44)

The inverse transform, F−1{F (u, v)}, is:

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (u, v)ei2π(ux+vy)dudv . (4.45)

Discrete Fourier transform We mostly work with discrete images. There-
fore, we must use the discrete Fourier transform (dft). In one dimension, this
transform is:

F (u) =
1

M

M−1∑

x=0

f(x)e−i2πux/M , (4.46)
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where M is the number of samples.22 The inverse discrete Fourier transform
is:

f(x)=

M−1∑

u=0

F (u)ei2πux/M . (4.47)

As with the continuous ft, equations (4.46) and (4.47) can be extended to
multivariate discrete functions. For two-dimensional discrete functions, such
as digital images, the dft is:23

F (u, v) =
1

MN

M−1∑

x=0

N−1∑

y=0

f(x, y)e−i2π(ux/M+vy/N) . (4.48)

Notice that F (0, 0) is the average grey value if f(x, y) is a greyscale image. The
inverse dft is:

f(x, y) =

M−1∑

u=0

N−1∑

v=0

F (u, v)ei2π(ux/M+vy/N) . (4.49)

An important property is the separability of the Fourier transform, i.e., we can
factor equation (4.48):

F (u, v) =
1

M

M−1∑

x=0

[
1

N

N−1∑

y=0

f(x, y)e−i2πvy/N

]
e−i2πux/M . (4.50)

Analogously, the inverse 2D-dft can be separated into a horizontal and a
vertical component:

f(x, y) =
M−1∑

u=0

[
N−1∑

v=0

F (u, v)ei2πux/M

]
ei2πvy/N . (4.51)

We therefore can perform a 1D-dft on every row of the image, followed by
a 1D-dft on every column of the partly transformed image. The separability
reduces the computational cost of the 2D-dft (see also chapter 6, p. 190).

Another important property is the periodicity of the dft:

F (u, v) = F (u + αM, v + βN) , (4.52)

f(x, y) = f(x + αM, y + βN) , (4.53)

22Sometimes, the constant 1/M in front of the Fourier transform is put in front of the
inverse Fourier transform, equation (4.47). Sometimes, 1/

√
M is put in both equations.

23As in the one-dimensional case, the constant 1/MN can be placed in equation (4.49), or
1/

√
MN is placed in both equations.
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with α and β integers. This property can be derived from equations (4.48)
and (4.49), because exp (±i2π(α + β)) = 1. Thus, we only need an area of
M ×N to define all the frequency components of a Fourier transformed image.

Polar representation We can write the Fourier transform in polar coordi-
nates, i.e., F (u, v) = |F (u, v)| exp (−iφ(u, v)). The Fourier spectrum is:24

|F (u, v)|=
√

F (u, v)F ∗(u, v)

=
√
R2(u, v) + I2(u, v) ,

(4.54)

with R and I the real and imaginary part of F , respectively. F ∗ is the complex
conjugate of F . The phase angle or phase spectrum is:

φ(u, v) = arctan

( I
R

)
. (4.55)

Both spectra are needed to reconstruct the original image. Mostly, only the
amplitude spectrum (or Fourier spectrum) is visualized. This spectrum spe-
cifies how strongly each Fourier component contributes.

The power spectrum is the square of the amplitude spectrum:

P (u, v) = |F (u, v)|2
=R2(u, v) + I2(u, v) .

(4.56)

Some properties

• Addition theorem: af(x) + bg(x)←→ aF (u) + bG(u), i.e., multiplication
with a constant or addition in the real domain corresponds to multipli-
cation with a constant or addition in the frequency domain;

• Similarity theorem: f(ax) ←→ F (u/a)/|a|, i.e., narrowing a function in
the frequency domain broadens its Fourier transform, and vice versa;

• Shift theorem: f(x− a)←→ F (u) exp (−i2πau), i.e., a shift of the image
content does not change the Fourier spectrum, only the phase spectrum;

• Convolution theorem: f(x) ∗ g(x)←→ F (u)G(u), i.e., costly convolution
operations can be avoided by multiplying the Fourier transforms of the
functions, at the expense of going back and forth between the Fourier
and the spatial domain;

• The Fourier transform of a Gaussian function f(x) = exp (−πx2) is also
a Gaussian, F (u) = exp (−πu2);

24Other names are amplitude spectrum, magnitude or simply spectrum.
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• The Fourier transform of a real function is a so-called Hermite function,
i.e., F (u) = F ∗(−u). As a consequence, the Fourier spectrum of a real
function is symmetric about the origin F (0).

Fast Fourier transform The one-dimensional discrete Fourier transform
has a computational cost on the order of M 2, with M the number of
samples.25 26 The calculation time can be highly reduced, when a fast Fourier
transform (fft) algorithm is used.

Consider M = 2p, with p a positive integer. We can split equation (4.46) up
into an even and an odd part:

F (u) =
1

M

M/2−1∑

x=0

f(2x)e−i2πu(2x)/M +
1

M

M/2−1∑

x=0

f(2x + 1)e−i2πu(2x+1)/M

=
1

2


 1

(M/2)

(M/2)−1∑

x=0

f(2x)e−i2πux/(M/2)

+
1

(M/2)

(M/2)−1∑

x=0

f(2x + 1)e−i2πux/(M/2)e−i2πu/M




≡ 1

2

[
Feven(u) + Fodd(u)e−i2πu/M

]
. (4.57)

Both parts are a summation over M/2 samples. The extra complex factor
exp (−i2πu/M) is called the twiddle factor. Because M is a power of 2, we can
recursively split up the even and odd functions p times. This way, we can split
up the Fourier transform into M Fourier transforms of length 1 (multiplied by
some twiddle factor).

What we have done now, is actually rearranging the terms of the summation.
This can be done in a very cost-effective way by using the concept of bit reversal.
Successively putting the terms with even index to the left and the terms with
odd index to the right can be seen as a binary problem. The index is translated
into binary code and the binary digits are mirrored. Let us clarify this with an
example.

Consider the case where M = 8, as illustrated in figure 4.16. The sample
indices go from 0 to 7, the binary equivalent is also shown. When we reverse
the bits, i.e., we make the least significant bit the most significant bit, and vice
versa, then we obtain the order after p = log2 M splits, using the principle
stated in equation (4.57). Here, p = 3. Notice that all even indices are on the
left, and the ones divisible by 4 on the extreme left.

25We must calculate M Fourier transforms and each Fourier transform contains a summa-
tion over M samples multiplied by a complex factor. This results in a computational cost on
the order of M2.

26A 2D-dft has a cost on the order of M2N2.
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Figure 4.16: Bit reversal used for the fft, for M = 8.

The actual cost reduction comes from the decrease of the number of samples per
period. We know that the number of samples for the discrete Fourier transform
decreases from M to M/2 when we split up into an even and an odd part (see
equation (4.57)). This implies the following:

Feven(u) = Feven(u + M/2) , (4.58)

Fodd(u) = Fodd(u + M/2) . (4.59)

When we take the twiddle factor into account, we get:

F (u + M/2) =
1

2

[
Feven(u)− Fodd(u)e−i2πu/M

]
, (4.60)

for 0 ≤ u < M/2. With this in mind, we calculate the complexity of the fft
(of the so-called Cooley-Tukey algorithm). Let us denote CM the complexity
of a dft of length M . C1 = 0, since the Fourier transform of length 1 is an
identity operation. The split into an even and an odd part has the following
computational cost:

CM = 2CM/2 +
M

2
+ M . (4.61)

There are two dfts to calculate, M/2 multiplications (with the twiddle
factors) and M summations. These are the M/2 summations F (u) =
1
2

[
Feven(u) + Fodd(u)e−i2πu/M

]
for 0 ≤ u < M/2 and the M/2 summations

F (u) = 1
2

[
Feven(u)− Fodd(u)e−i2πu/M

]
for M/2 ≤ u < M (because of equa-

tion (4.60)).

We can generalize equation (4.61) for a recursive split of the Fourier transform:

CM = 2qCM/2q +
M

2
q + Mq , (4.62)

with 0 < q ≤ p an integer denoting the split-level. If we split p times (i.e.,
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q = p), then we have M Fourier transforms of length 1. We get:

CM = MC1 +
M

2
log2 M + M log2 M (4.63)

=
3

2
M log2 M . (4.64)

So, the computational cost of the fast Fourier transform is on the order of
M log2 M instead of M2. For a 2D-fft, the cost will reduce to N(M log2 M)+
M(N log2 N) = MN log2(MN). The transform of an image with size 1024 ×
1024 pixels gets a speed bump by a factor of more than 50 000.

4.2.5.2 Pattern spectrum versus Fourier spectrum

From the Fourier spectrum, interesting information regarding the image con-
tent can be extracted. This is also true for the pattern spectrum. When
we compare the behaviour of these two spectra, we find several similarities
[Goutsias and Batman, 2000]:

1. (a) A smooth image, i.e., an image with no small details or rapid grey
value variation, is characterized by large values in the Fourier spec-
trum at low frequencies and small or zero values at high frequencies.

(b) An image that contains many large (smooth) objects and a few or
no small objects, is characterized by large values in the higher part
of the pattern spectrum (i.e., high n value) and small or zero values
in the lower part of the pattern spectrum.

2. (a) An image with fast grey value variation has a lot of detail, noise
and/or different content. In the Fourier spectrum this is character-
ized by small or zero values at low frequencies and large values at
high frequencies.

(b) An image that contains many small (rough) objects and no large
(smooth) objects, is characterized by small or zero values for high n
values of the pattern spectrum and large values for low n values of
the pattern spectrum.

3. (a) The Fourier spectrum is a histogram of the distribution of energy
over the frequency domain.

(b) The pattern spectrum is a histogram of the distribution of sizes.
These are the sizes of the various objects in the image.

4. (a) In order to reconstruct the input image from the Fourier spectrum,
also knowledge of the phase spectrum is necessary.

(b) We cannot reconstruct the input image from the pattern spectrum.27

27On the other hand, the discrete size transform (section 4.1.1) can be used to reconstruct
the original image.
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So, the Fourier spectrum and the morphological pattern spectrum have several
things in common. They are both distributions that give us information about
the objects in the image. The low frequency content of the Fourier spectrum
reveals the global shapes in the image, just as the higher part of the pattern
spectrum does. High values in the other part of both spectra indicate the
presence of details and/or noise.

4.2.5.3 The Fourier pattern spectrum

The Fourier transform (ft) of an image gives us an amplitude spectrum (or
spatial frequency spectrum) that reflects the greyscale variation in the image.
Large image objects will contribute to the low-frequency part of the spectrum,
small objects will contribute to the higher frequencies. The Fourier spectrum
lacks the ability of spatial localisation, but this is also the case with the pattern
spectrum. We assume that the size distribution of the objects in the image has
its effect on the shape of the Fourier spectrum.

The Fourier transform of an image is two-dimensional. In order to calculate
some first-order histogram features and to remove the orientation dependence
of the Fourier spectrum, we transform the 2D-spectrum into a 1D-spectrum.
On the abscissa, we put the spatial frequencies

√
u2 + v2.28 The resulting

histogram is the Fourier pattern spectrum (fps).

We must point out that in the dft, redundant information is present. Equa-
tion (4.52) states the periodicity of the dft, and we also mentioned that the
Fourier transform of a real function is a Hermite function. We can merge these
two properties:

F (u, v)= F ∗(−u + αM,−v + βN) . (4.65)

As a result, the Fourier spectrum is symmetric around the origin, i.e.,
|F (u, v)| = |F (−u,−v)|. This property and the periodicity of the spectrum
give us a redundancy of about 50 % for the Fourier spectrum, on an area
M × N [Pratt, 2001]. We should take this into account when converting the
Fourier spectrum to the fps. This is shown in figure 4.17: the greyed-out re-
gions in the amplitude spectrum can be generated from other samples, because
of the above property. Also, the frequencies on the right can be seen as negative
frequencies, i.e., N/2+1 would be −N/2 and N − 1 would be −1, for example.

4.2.5.4 Parameters

Several parameters exist for the Fourier histogram [Pratt, 2001]. Some of these
parameters have already been defined for the pattern spectrum.

28For example, the spectrum magnitudes at (u, v) = (4, 5) and (u, v) = (5, 4) are added
and put in the bin at location

√
41.
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Figure 4.17: The frequency domain of the discrete Fourier transform. The grey
area is redundant for a real function.

Mean The average value of the histogram is defined similarly as the average
size (equation (4.18)):

SM = b̄ =
∑

b

bP (b) , (4.66)

with b the histogram index and P (b) the histogram value at index b divided by
the total of the histogram.

Standard deviation The standard deviation defines the spread of the values:

SD = σb =

√∑

b

(b− b̄)2P (b) . (4.67)

Skewness The skewness is a measure for the asymmetry of the histogram
curve:

SS =
1

σ3
b

∑

b

(b− b̄)3P (b) . (4.68)

Kurtosis The kurtosis matches the curve shape to the shape of a normal
distribution:

SK =
1

σ4
b

∑

b

(b− b̄)4P (b)− 3 . (4.69)
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Energy The energy is defined by:

SN =
∑

b

P (b)2 . (4.70)

Entropy The definition for the entropy is similar to that of the average rough-
ness (equation (4.19)):

SE =−
∑

b

P (b) log2 P (b) . (4.71)

4.3 Comparison of computation times

We compare the processing time of the pattern spectrum (ps) from section 4.1
with the alternative suggestions introduced in section 4.2. As we will see, the
difference in calculation time can be very high. The pattern spectrum needs
larger and larger structuring elements, while other techniques only need to scan
the image once or always use the same structuring element.

4.3.1 Influence of Nmax

We process a set of artificial test images with different pattern spectrum tech-
niques. These techniques are: the morphological pattern spectrum (ps), the
erosion pattern spectrum (eps), the area pattern spectrum (aps), the pseudo-
granulometry (otmin) and the Fourier pattern spectrum (fps).

There are 52 binary test images of 512 × 512 pixels in size. The first image
contains one square object with size 2 × 2 pixels. The second image contains
an additional object of size 4 × 4, etc. The final image of the set contains 52
objects, with the largest one a square of size 104 × 104. If we calculate the
pattern spectrum with a square structuring element with size 3 × 3, the first
image will have Nmax = 0. This number increases linearly until Nmax = 51 for
the last image of our test set.

Figure 4.18 shows the timing results for the different spectra. The timing
experiments are performed on an amd Athlon xp 2200+ (1.8 GHz, 1.5 GB ram)
running Linux, kernel v2.6.3. We used the time command in Linux to perform
the measurements.29 As we can see from figure (a), the calculation time of
the pattern spectrum increases quadratically. The erosion pattern spectrum
on the other hand, figure (b), increases linearly with Nmax. The other three
investigated spectra have a (quasi) constant computational cost. When the

29The calculation time (using time) is the addition of the measured cpu-seconds used by
the system on behalf of the process (in kernel mode) and the cpu-seconds used directly by
the process (in user mode).
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Figure 4.18: Calculation time to calculate the different pattern spectra.

opening tree is used (otmin), a small quadratic increase is visible, but its
calculation time is still the smallest of all considered spectra.

These artificial binary images already show the problem that arises when using
a standard implementation for the pattern spectrum: when the input images
become more complex, Nmax can easily grow by 1 or 2 orders of magnitude,
which results in a very inefficient algorithm.

4.3.2 Computational cost on realistic images

We calculate different pattern spectra for the image shown in figure 4.1(a). The
structuring element used is a 3× 3 square element. For the area pattern spec-
trum we mimic a square structuring element and set λ = 3 (see section 4.2.2).
The image has size 277×390 and contains 227 different grey values. The spectra
are calculated 10 times to get a more accurate result.

The calculation times are shown in table 4.1. In this case, the area pattern
spectrum is the fastest technique, followed by the pseudo-granulometry. The
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Table 4.1: The calculation time for the different pattern spectra for figure 4.1(a),
using a square structuring element (3 × 3) or an approximation of a square. The
standard deviation is indicated for each result.

Spectrum Nmax Calculation time (s)

ps 29 17.14 ± 0.38

eps 29 0.651 ± 0.020

aps 39 0.0790 ± 0.0074

otmin 83 0.0960 ± 0.0052

fps — 0.12 ± 0.059
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Figure 4.19: Comparison of the pattern spectrum with the pseudo-granulometry.

standard pattern spectrum ps is the only technique that needs more than a
second to calculate its spectrum.

Figure 4.19 shows the pattern spectrum and the pseudo-granulometry.30 Al-
though they are not the same, similarities can be observed between the two
spectra. Thus, the pseudo-granulometry by minima of linear openings has sim-
ilar characteristics as the pattern spectrum with a square structuring element.

Another example is a cropped version of the “Lena” image, with a size of 234×
202 pixels and 199 different grey values (see figure 4.20(a)). We also calculated
the colour pattern spectrum (cps) of figure 4.20(b), using the lexicographical
ordering (H-, S- or L-ordering). There are 40 091 colours in the image.

Table 4.2 shows the calculation results. In this example, the Fourier pattern
spectrum (fps) is the fastest. Because of the conversions involved (i.e., trans-
forming the rgb image into a hsl image and ordering the colours) and the

30The bins of otmin have been merged two by two, in order to let the spectrum be like
one where an elongated structuring element with a length of 3 pixels has been used (instead
of length 2).



4.3 Comparison of computation times 141

(a) Greyscale version (b) Colour version

Figure 4.20: The input image, a cut-out of the “Lena” image.

Table 4.2: The calculation time for the different pattern spectra for the cropped
“Lena” image, using a square structuring element (3 × 3) or an approximation of a
square. The standard deviation is indicated for each result.

Spectrum Nmax Calculation time (s)

ps 136 149.0 ± 1.2

eps 136 1.2280 ± 0.0063

aps 108 0.0430 ± 0.0048

otmin 200 0.2700 ± 0.0047

fps — 0.041 ± 0.013

cps (H) 185 3134.8 ± 2.3

cps (S) 223 4510.0 ± 5.8

cps (L) 185 3105.9 ± 2.8

high value for Nmax, the cps is very slow (about one hour is needed). Note
that a higher number of grey values or colours does not necessarily mean a
higher computational cost for the (colour) pattern spectrum. The previously
investigated image is larger and contains more grey values than the cropped
“Lena”, but only needs 17 s to calculate the pattern spectrum ps. For the cur-
rent image, 2.5 minutes are needed. It is the complexity of the “Lena” image
that increases the calculation time, i.e., larger greyscale plateaus are present,
thus larger structuring elements are needed to sieve all the objects out.

The full “Lena” image (see figure 4.11(a)) has a size of 512 × 512 pixels and
contains 216 different grey values. If we take the colour version of the “Lena”
image (figure 3.4(d), p. 61), then 148 279 colours are present.

The results are shown in table 4.3. Again, the Fourier pattern spectrum is the
fastest technique, followed by the area pattern spectrum (aps). The standard
pattern spectrum is calculated in more than 3 hours.

As we can see, the computational cost for ps, as well as cps, is very high.
The calculation time increases non-linearly with Nmax. This parameter mainly
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Table 4.3: The calculation time for the different pattern spectra for the “Lena”
image, using a square structuring element (3 × 3) or an approximation of a square.
The standard deviation is indicated for each result.

Spectrum Nmax Calculation time (s)

ps 507 11530 ± 430

eps 507 26.185 ± 0.027

aps 255 0.3670 ± 0.0048

otmin 509 3.216 ± 0.034

fps — 0.2944 ± 0.0019

cps (H) 388 7510 ± 310

cps (S) 415 8580 ± 230

cps (L) 312 4860 ± 150

depends on the image content: large objects, or large plateaus of grey values,
imply a high value Nmax. In the case of greyscale images, a small difference in
background colour means that it is very probable that there are large plateaus
in the image. The size of these plateaus are likely to increase when the image
size is large.

As an approximation of the pattern spectrum, the pseudo-granulometry by
minima of linear openings performs about 3 orders of magnitude faster than
the regular pattern spectrum. The erosion pattern spectrum is about 2 orders
of magnitude faster. In general, the Fourier pattern spectrum performs best,
immediately followed by the area pattern spectrum (4 orders of magnitude
faster).

Most techniques work with integers, because only (integer) grey values are
compared, added or subtracted. An exception is the Fourier pattern spectrum,
where we need floats. When we convert from rgb to hsl for the calculation of
the colour pattern spectrum, or when we perform a colour quantization before
applying the majority ordering for the mss-ps, then we must use floats too.

The different techniques have different memory requirements. Some have been
discussed before. If an image contains N pixels, then we always need at least
N integers for the storage of the input pixels. The final spectrum also needs a
certain amount of memory, depending on the image content.

For the pattern spectrum (ps) an extra N integers are needed for the storage
of A ◦ nB, as well as N integers for the storage of A ◦ (n + 1)B. The resulting
difference of both openings can be temporarily stored in the first array. An
extra small amount of memory is required for the storage of the structuring
element B.

The area pattern spectrum (aps), implemented with the union-find method,
needs an extra 2N integers: N for the array containing the pixels’ parents
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(which becomes the output image), and N for the sorted pixel array in the
algorithm.

The opening tree algorithms (ot) need at most one node per pixel. A node
contains a value h and a value n. For the 2D-(pseudo-)granulometries we need
to scan the image twice (horizontally and vertically). Therefore, the maximum
number of additional integers needed is 4N .

For the erosion pattern spectrum (eps) we can re-use the input array for A	nB,
but we need an extra N integers for the storage of A	 (n+1)B. The resulting
difference of both erosions can be temporarily stored in the first array. An
extra small amount of memory is required for the storage of the structuring
element B.

The Fourier transform results in N complex values, but for the Fourier spec-
trum we know there is 50 % redundancy when the function is real. A colour
image, finally, contains 3 colour bands, which triples the required amount of
memory.

4.4 Conclusion

In this chapter, we introduced the morphological pattern spectrum (ps). It is a
size distribution histogram of the objects in an image. The objects are sieved
out and counted according to their shape and size. Several interesting statistical
parameters can be obtained from the pattern spectrum, such as average size or
entropy. The pattern spectrum is defined for binary and greyscale images.

We suggested the colour pattern spectrum (cps) and majority sorting scheme
pattern spectrum (mss-ps) for the spectrum of a colour image. A colour spec-
trum is preferred over a greyscale spectrum if relevant information is stored
in the colour. If we restrict ourselves to the luminance values, important in-
formation of saturation and/or hue will be ignored. The mss-ps is based on
the concept of ordering the colours according to their frequency of occurrence
in the image. This approach can be used on images where the grey or colour
values are not naturally ordered.

Because of the high computational cost, we have examined several other spec-
tra. The area pattern spectrum (aps) is similar to the ps, but does not take the
shape of the objects into account. This is useful if we do not look for a specific
shape, but are interested in the size of the objects. We might be interested in
the length of the objects to ensure us that they all have the same length or
do not deviate too much. By objects we mean connected components. In the
greyscale case, the connected components are treated per grey value.

The principle of opening trees allows us to calculate the pattern spectrum with
one-dimensional structuring elements very quickly. It is the preferred method
for classifying linear objects in function of their length and orientation. A
granulometry by maxima of linear openings is in fact a very fast calculation
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of the oriented pattern spectrum (ops). The oriented pattern spectrum can
be used for the examination of anisotropic objects with unknown orientation.
The pseudo-granulometry by minima of linear openings can be used as an
approximation of the pattern spectrum with a square structuring element.

We proposed the erosion pattern spectrum (eps). It is not a granulometry,
but it is fast compared to the pattern spectrum. We also suggested a one-
dimensional histogram of the Fourier spectrum of the image, the so-called
Fourier pattern spectrum (fps). The usefulness of these two methods will be
tested in the next chapter.

When comparing the computation times of the different spectra, we notice that
the time for the calculation of the morphological pattern spectrum increases
quadratically with Nmax, and linearly for the erosion pattern spectrum. The
Fourier pattern spectrum is the fastest technique, followed by the area pattern
spectrum and the opening tree algorithm.



Chapter 5

Analysis of Sliding Bearings

This chapter deals with the applications of the pattern spectra, mentioned in
chapter 4, to the analysis of composite materials and polymers. First, we will
introduce the problem. Afterwards, we examine the different pattern spec-
tra and their parameters. We investigate the correlation between the spectral
parameters and the parameters of the experimental set-up. While the experi-
ments have only been performed on polymers, other composite materials can
be examined in a similar way.

5.1 Introduction

This section gives a brief overview of composites and tribology. We
refer interested readers to [Halling, 1973, Matthews and Rawlings, 1993,
Khonsari and Booser, 2001, van Beek, 2004] for more in-depth information
about these topics.

5.1.1 Composites

Composites are heterogeneous materials, made out of at least two different and
clearly distinct phases [Degrieck, 2002]. A phase is a distinct state of matter in
chemical composition and physical state in the composite. In addition to the
natural composites (e.g., wood, teeth, . . . ), there are a lot of artificial/technical
composites. Examples are plywood (known in Dutch as triplex or multiplex),
reinforced concrete, car tires, . . . . We are interested in the fibre reinforced
materials in which fibres are combined with some plastic, metal or other matter.
The fibres are added to strengthen the material. They are added to a binding
agent, which is called the matrix. The fibres and matrix are separated by
the interface, which is accomplished by a finish or sizing (i.e., some after-
treatment) on the fibres. The interface binds the fibres with the matrix and



146 Analysis of Sliding Bearings

it also protects the fibres. The combination of fibres, matrix and interface
determines the properties of the composite material.

5.1.1.1 The fibres

The fibres can be made of glass, carbon, metal, ceramic or an organic material.
The fibres in the composite determine the stiffness and limit the growth of
cracks in the matrix. They also need to carry the load applied on the composite.

Most used are glass fibres, because of their relative low price and good strength.
Different types exist, with different properties (high electrical resistance, high
chemical resistance, higher strength and stiffness, etc.).

Carbon fibres have a low strain, which is generally not desirable, but on the
other hand their coefficient of thermal expansion is very low. This last property
makes carbon fibres very useful for applications in astronautics.

Most of the organic fibres are polyaramide (a.k.a. aramide fibres). Kevlar and
Twaron are well-known brands of aramide-based products that are used in
bulletproof vests and fire-resistant clothing.

5.1.1.2 The matrix

The matrix for the composite is usually made of polymer (pmc), metal (mmc)
or ceramic (cmc). The most popular materials used are the polymers, be-
cause they are easy to process, they have a low density and good chemical
and dielectric properties. A distinction is made between thermoplastics and
thermosets.

Thermoplastics can be recycled, melted and re-molded. This kind of poly-
mers can be amorphous (e.g. polysulfone), semi-crystalline (e.g. polyamide) or
liquid crystal (e.g. all-aromatic copolyester). Other well known examples of
thermoplastic polymers are nylon, polyethylene and polypropene.

Thermosetting plastics are different from thermoplastics in that they do not
melt at high temperatures, but remain hard (although they can decompose).
They are also generally stronger than thermoplastics. Examples of thermosets
are Bakelite, vulcanized rubber, polyester and epoxy. Also polyimides are
thermosets and can sustain high temperatures.

The main task of the matrix is to keep the fibres together and in their place.
The matrix limits the formation of cracks of the fibres and protects them from
the environment.

5.1.1.3 Properties and applications

In the previous subsections we already mentioned some properties and possible
applications for fibre reinforced materials.
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The most important advantage of composites is that it is easy to tune their
properties, like making them electric or dielectric, thermally insulating or not,
or with a low or a high coefficient of thermal expansion. Another major ad-
vantage is the high stiffness- and/or strength-to-weight ratios.

Unfortunately, composites are costly, as well in raw materials as in production.
The production process is still slow and labour-intensive and the composites
allow only a low plastic deformation. Thermosetting plastics are not easy to
recycle, which leads to environmental problems.

Despite the disadvantages mentioned, composite materials are part of our daily
lives. In the transportation sector, composites are commonly used as part of
the vehicle. For example, the shields of spacecrafts, the doors of airplanes, car
spoilers or train seats are made of fibre reinforced materials. Sometimes, the
whole vehicle is made out of a composite, like military planes, minesweepers
or race boats. Another sector where composites are commonly used is that of
(building) constructions: swimming pools, mobile homes or sewers are only a
few examples where composites are used. Other examples of composite usage
are computer cases, ladders, barriers, tennis rackets, surfing boards, . . . .

5.1.2 Tribology

Tribology is the science of interacting surfaces in relative motion and the prac-
tices related thereto. All aspects of surfaces and their relative motion is studied,
such as friction, lubrication and wear.

Traditional parameters studied in tribology are the normal and the friction
force. One of the most important parameters to collect is the coefficient of
friction. If N is the normal force, then the friction force F is directly propor-
tional to it:

F = µN , (5.1)

where µ is the coefficient of friction. There exist two types of friction: static
friction, when the two objects in contact are not moving relative to each other
(thus, speed v = 0), and dynamic friction when v > 0. In general, the static
friction Fs is higher than the dynamic friction Fd (for the same normal force
and materials). There is also the limiting friction, which is the maximum
value of static friction, obtained just before the objects move relative to each
other. This coefficient is generally smaller than one, when we consider steel-
plastic combinations.1 Friction produces heat, so it is often better to have a
low friction. The coefficient of friction is a perfect indication for this. This
coefficient depends on many parameters other than the normal load, such as
speed and temperature.2

1A tire on concrete can have a coefficient value of 1.7.
2Of course, the materials used are also important.
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Another interesting parameter to measure is the vertical displacement. This
gives an indication of the wear rate under certain conditions.

Nowadays it is not enough to know how fast materials wear, but we want to
understand how they wear, what the major processes are, all in order to pick
up the better material combination. There are lots of different processes that
can take place. The most important mechanisms are adhesion, abrasion (wear
of the contact surface by scratching), corrosion, fretting,3 pitting (a form of
extremely localized corrosion) and delamination of the composite layers.

5.2 Experimental set-up

Composite materials and polymers are useful as friction bearing materials.
They are used in the motors of many household appliances, but also for tele-
scopic arms or sluices. In comparison with traditional rolling bearings, the com-
posite and polymer bearings have many advantages: low acoustic noise, simple
assembly and disassembly, they are shockproof, high frequencies are possible
and they have a long life expectation. As such, there is a great interest in
experimentally evaluating their friction and wear properties and relating them
to external parameters (motor speed, temperature, pressure, . . . ).

Compared to polymer bearings, the advantage of composite bearings is their
load bearing capacity. Therefore, these materials are used in large machinery.

A microscopic study of the fibres in composites can help us understand what
is happening physically, and allows us to choose the right materials to build
bearing constructions. This is very important for composites when used as dry
bearing materials, i.e., when no oil can be used, like in machinery in the food
or pharmaceutical industry. The microscopic images have to be analysed, so
image processing is needed for pre-processing and to do the analysis.

The subsequent experiments are performed on polymers, both thermosets and
thermoplastics. The images and technical information about the experiments
were provided by Pieter Samyn and Jan Quintelier of the Laboratory Soete
(Department of Mechanical Construction and Production, Ghent University).
The investigated materials are discussed in section 5.2.3, but first we give more
information about the two types of experimental set-up used: the cylinder-on-
plate small-scale tribotester and the flat-on-flat large-scale tribotester. Our ex-
periments concern the investigation of the pattern spectra of the debris particles
obtained from wear experiments. We investigate whether image processing, and
the morphological pattern spectrum in particular, can contribute to tribology
by giving additional information or by confirming other experimental findings.
With image processing, it would be possible to (semi-)automate the investiga-
tions of the materials.

3Fretting is corrosion at the rough edges of the contact surface, induced under load and
in the presence of repeated relative surface motion, as induced for example by vibration.
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Figure 5.1: Small-scale cylinder-on-plate tribotester.

5.2.1 Small-scale testing

The small-scale testing device is illustrated in figure 5.1 [Zsidai et al., 2002].
The machine used is a plint te 77 High Frequency reciprocating sliding tri-
botester. It is a cylinder-on-plate tester, which means the polymer is cylindri-
cally shaped (measuring 15 mm in length and 5 mm in diameter) and allows
dry reciprocating sliding4 with a fixed steel plate. This counterface measures
58× 58× 4 mm3 and is made of ha-steel, a high alloy steel containing Cr, Mn,
Mo and Ni.5 It is much harder than normal steel.

The cylinder slides over the counterface, so it is prevented from rolling. The
counterface can be heated. This way, the temperature can be regulated. If no
heating is applied, we refer to this set-up as “free T”. As can be seen in the
illustration, a normal load can be applied on the polymer sample. The coeffi-
cient of friction µ, the vertical displacement ∆h and the friction temperature
Tf can be measured during the experiment. Offline, the difference in weight
and diameter, before and after, is measured.

We summarize the test conditions used for the small-scale wear tests in
table 5.1.

5.2.2 Large-scale testing

For high loads, a large-scale tribotester is used, which is illustrated in figure 5.2.
This tester uses a flat-on-flat reciprocating motion set-up. The polymers are

4This means the polymer goes back and forth while contacting the plate. No lubricant is
used during the wear tests.

5The elements Cr, Mn, Mo and Ni stand for Chromium, Manganese, Molybdenum and
Nickel, respectively.
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Table 5.1: Small-scale test conditions.

Test parameter Unit Value(s)

Normal load N 50, 100, 150, 200

Single sliding stroke mm 15

Total sliding distance m 15 000

Sliding frequency Hz 10, 20, 30, 40

Sliding velocity m/s 0.3, 0.6, 0.9, 1.2

Counterface temp. ◦C free T, 60, 80, 100, 120, 140, 180, 220, 260

Ambient temperature ◦C 23± 2 (standard atmosphere)

Relative humidity % 60± 5 (standard atmosphere)

Figure 5.2: Large-scale flat-on-flat tribotester.

fixed at the top and the bottom in the figure. Each specimen measures 150×
150 × 20 mm3. The sliding is done by the counterface plates, which measure
410 × 200 × 20 mm3 each. In the figure, the plates move from left to right
(and back), and are shown as black rectangles. The counterface is continuously
cooled by water. Initially, the counterface temperature is 15◦C.

We summarize the test conditions used for the large-scale wear tests in table 5.2.

5.2.3 Polymers used in the study

Four different types of polymer have been investigated. Two are thermoplastics,
two are thermosets. One of them is tested with the large-scale tribotester, in
order to investigate the material under high pressure. The other three materials
are tested with the small-scale tribotester at different temperatures.
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Table 5.2: Large-scale test conditions.

Test parameter Unit Value(s)

Normal load kN 190, 380, 560, 1260, 3380

Contact pressure MPa 8, 16, 25, 55, 150

Single sliding stroke mm 230

Total sliding distance m 4.6 (short), 2500 to 3000 (long)

Sliding frequency Hz 0.011

Sliding velocity m/s 0.005

Counterface temp. ◦C no heating

Ambient temperature ◦C 23± 2 (not controlled)

Relative humidity % 40 to 60± 5 (not controlled)

5.2.3.1 POMH

pomh is the acronym for polyoxymethylene homopolymer, a hard and stiff ther-
moplastic with good abrasion resistance. It is used as sliding bearing in every-
day appliances, such as gates. It can also be used for guide wheels in mechanical
appliances.

This thermoplastic is tested under different high pressures. Therefore, the tests
are performed with the flat-on-flat large-scale testing device.

5.2.3.2 SP-1

sp-1 is short for DuPont’s Vespel SP-1 product. sp stands for sintered polyim-
ide, which is a simple thermosetting plastic that is made in a sintering process.
Sintering is the process of converting a powder into a solid polymer by a chem-
ical reaction of the powder elements and by compressing the resulting substance
under high pressure and temperature. Sintered polyimide is e.g. used in elec-
trical engines.

This thermoset is specifically tested at different high temperatures. The exper-
iments are performed with the cylinder-on-plate small-scale testing device.

5.2.3.3 SP-21

sp-21 is a variant of sp-1 and is also a thermoset. The powder contains 15 %
graphite. This gives sp-21 a lower coefficient of friction µ than sp-1, as well as
an increased wear resistance. sp-1 and sp-21 degrade both at 600◦C.
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5.2.3.4 TP

tp is the acronym for thermoplastic polyimide. The material is DuPont’s Vespel
TP-8054. The melting temperature of this thermoplastic, 388◦C, is higher than
average. It is used in electrical engines, but can be utilized in more demanding
applications concerning temperature, because of its higher melting point. The
fabrication procedure is called injection moulding : the powder is softened above
230◦C and is afterwards pressed into a mould.

The experiments are performed with the cylinder-on-plate small-scale testing
device.

5.2.4 Images of debris particles

We are interested in the debris particles obtained from the wear experiments.
After the wear tests, the pieces that have come off the bulk material are collect-
ed and photographed. The debris particles are scattered onto a dark plate, in
order to be photographed. They have no favourable orientation. The pictures
taken are 24-bit rgb colour images with size 1030× 1300 pixels.

For our experiments with the different granulometries, we must first process
the images. First of all, we need to transform the rgb colour images into 8-bit
greyscale images for most pattern spectrum techniques.6 We also examine the
usefulness of the processing of binary images. The binarization is done with
the Otsu thresholding.7 In some cases, we perform a histogram equalization.

A pre-processing step we can perform, before any other transformation, is to
blacken the background. The background plate on which the particles are
scattered, is not homogeneously black. Therefore, we blacken this background
in the following way:

1. We assign some pixel p the status of background;

2. We define some threshold t;

3. We calculate the maximum colour distance to the other pixels p′, i.e., we
calculate d(p,p′) = max{|R −R′|, |G−G′|, |B −B′|};

4. We set the colour value of pixels p′ with d(p,p′) < t to RGB = (0, 0, 0).

In the first step, the user must point to a pixel with a colour that is character-
istic for the background colour of the image. The threshold t depends on the
image. Here, this value lies at about 50. An example of background blackening
is shown in figure 5.3.

6Colour images can be used with the pattern spectrum using the majority sorting scheme
mss-ps and the colour pattern spectrum cps (H-, S- or L-ordered).

7In chapter 6, section 6.4.3, we discuss the Otsu threshold.
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(a) Before (b) After

Figure 5.3: Background blackening of a colour image of debris particles.

5.3 Results

This section deals with the analysis of the debris particles. We calculate the
different pattern spectra for the different images and from these spectra we ob-
tain some spectral parameters, as we discussed in chapter 4, section 4.1.4. We
look for correlations with the experimental set-up, i.e., we investigate the cor-
relation between the spectral parameters and the experimental parameters load
and temperature. We also compare the behaviour of the spectral parameters
with conclusions obtained from tribological experiments.

5.3.1 Choice of the structuring element

All the calculations of pattern spectra that allow the choice of a structuring
element (ps, cps, mss-ps, eps and aps) are done with a square structuring
element with size 3× 3 pixels. In the case of the area pattern spectrum (aps),
we set λ to mimic a square structuring element. The opening trees (ot) use
linear structuring elements and the Fourier pattern spectrum (fps) is based on
a different principle, so no structuring element has to be chosen here.

We choose a square structuring element because it is easy to implement and is
isotropic on a square discrete grid. Also, it allows us to compare the standard
pattern spectrum (ps) with the opening tree by minima of linear openings
(otmin).

5.3.2 Calculation times

In the previous chapter, section 4.3, we have investigated the computational
cost of the different pattern spectra. It turned out that the implementation of
the morphological pattern spectrum is computationally very inefficient. The
other spectra, on the other hand, are calculated much faster.
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This is of course also the case with the images we investigate in this chapter.
The images measure 1030 × 1300 pixels, and contain objects of different size.
The maximal size Nmax can be up to 1300, which means a calculation time
of up to several hours for the normal ps. On average,8 the maximal size for
a greyscale image is about 900. If we blacken the background of the images,
Nmax reduces to about 23.

The calculation of the ps for a greyscale image can take several days, if the
spectrum is calculated in the background and other processes are running on
the computer. If we only look at the resources needed by the algorithm, the
calculation takes several hours. The second least efficient algorithm, that for the
calculation of the erosion pattern spectrum (eps) (see section 4.3), is finished
in about 3 minutes, which is already a lot faster. The other algorithms, such
as that of the opening tree and the area pattern spectrum, only need a few to
several seconds.

5.3.3 Correlations

In this part, we discuss the correlations between the parameters from the dif-
ferent spectra and the experimental set-up. We therefore have to calculate the
different spectral parameters, introduced in section 4.1.4 of chapter 4. These
parameters are:

• average size, S(A; B);

• average roughness or entropy, E(A; B);

• normalized average roughness, EN (A; B);

• B-shapiness, BS(A; B);

• maximal size, Nmax.

These parameters are calculated for the following pattern spectra:

• morphological pattern spectrum (ps);

• area pattern spectrum (aps);

• erosion pattern spectrum (eps);

• colour pattern spectrum using the lexicographical ordering (cps);

• pattern spectrum using the majority ordering (mss-ps);

• granulometry by maxima of linear openings (otmax), which is an oriented
pattern spectrum (ops);

8The average is taken from the values of the parameter Nmax of the pattern spectra of
15 images with debris particles from pomh.
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• pseudo-granulometry by minima of linear openings (otmin).

For the Fourier pattern spectrum (fps) we calculate the parameters mentioned
in section 4.2.5.4, i.e.:

• mean, SM ;

• standard deviation, SD;

• skewness, SS ;

• kurtosis, SK ;

• energy, SN ;

• entropy, SE .

First, we introduce the correlation coefficient.

5.3.3.1 Correlation coefficient

The correlation coefficient ρ(x, y) gives us the quality of a linear fit of variable
x against variable y. Generally, Pearson’s correlation coefficient is used. It is
defined as:

ρ(x, y)=

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
. (5.2)

(xi, yi) are the data points that are fitted. x̄ and ȳ are the average values.
Equation (5.2) is equivalent to:

ρ(x, y)=
C(x, y)√

C(x, x)C(y, y)
. (5.3)

C(x, y) is the covariance of x and y. The (first-order) covariance matrix ele-
ment C(x, y) is defined as:

C(x, y)=
1

N

N−1∑

i=0

(xi − x̄)(yi − ȳ) , (5.4)

with N the number of data points. The equivalence between equations (5.2)
and (5.3) now becomes obvious. Notice that C(x, x) and C(y, y) are the vari-
ance of x and y, respectively. The square root of the variance (σ2) is the
standard deviation σ. When the variables are uncorrelated, then the covari-
ance value will be 0.
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(a) ρ(x, y) = 0.97

0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

x

y

(b) ρ(x, y) = 0.77

Figure 5.4: Two example datasets with a different correlation coefficient of x and y.

The value of the correlation coefficient lies in the interval [−1, +1]. A value
near 0 means that there is no linear correlation. A good linear fit is not possible
then. Either the statistical deviation of the data is too high, the variables are
correlated in a non-linear way, or both. A value of ρ(x, y) = ±1 indicates
perfect correlation. When ρ(x, y) = 1, y is linearly correlated with x, while
ρ(x, y) = −1 means y is anti-linearly correlated with x, i.e., y decreases when
x increases. A visual example of different correlation coefficients is shown in
figure 5.4.

There is no fixed rule that states which values for ρ indicate a good linear fit
and which not. For ρ ≥ 0.7 we can say that a linear trend becomes visible
and reasonably accurate. Values above 0.9 are very good in our experiments.
ρ < 0.5 does not give a good indication of a linear relationship between the
variables, the fit is not trustworthy. As said before, this bad result can be due
to the statistical deviation and/or the non-linearity of the relationship.

5.3.3.2 Correlation between the spectral parameters of the pattern
spectrum and those of the alternative spectra

The morphological pattern spectrum is a tool that can be used to tell us some-
thing about the size and shape of the objects that are present in an image. In
the previous chapter we have seen that this spectrum has a (very) high com-
putational cost. For this reason, we looked at alternative pattern spectra and
algorithms. Some of them calculate something completely different, such as the
erosion pattern spectrum and the Fourier pattern spectrum, while we assume
that some other techniques produce (to a certain extent) similar spectra (the
area pattern spectrum or the pseudo-granulometry).

We now investigate how the parameters of these different spectra correlate with
those of the default pattern spectrum (ps). To do this, we take the images
used in the next subsection about pomh, i.e., 10 images for each of 5 different
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Table 5.3: Correlation coefficients between the spectral parameters of the alternative
spectra and the default pattern spectrum (ps). The inputs are blackened greyscale
images.

Spectrum ρS ρE ρEN
ρBS ρNmax

eps 0.99 0.99 0.96 0.61 1.00

aps 0.81 0.73 0.66 0.69 0.44

otmin 0.99 0.99 0.81 −0.35 0.59

otmax 0.99 0.99 0.79 0.96 0.57

oth 0.99 0.99 0.80 0.95 0.57

otv 0.99 0.99 0.80 0.66 0.59

pressures. We calculate the different spectral parameters, as mentioned in the
beginning of this section, and compute the correlation coefficients.

Table 5.3 lists the correlation coefficients between the spectral parameters of
the different spectra and those of the default pattern spectrum.9 oth and otv

are pattern spectra using a horizontal or vertical structuring element.10 The
area pattern spectrum has the lowest scores (except for B-shapiness). The
perfect correlation between the maximal sizes of ps and eps is logical, because
for both spectra the same number of openings/erosions is always needed to
remove all the objects in the image. Overall, the correlation coefficients for size
and roughness are very high, suggesting a good linear fit of these parameters
for the ps with those for the alternative spectra. There is one negative value
in the table, suggesting a negative linear fit, but the value is low (ρ < 0.7) so
this fit is not accurate.

If we process every type of input image (i.e., greyscale and binary, blackened
and non-blackened, histogram equalized and non-equalized images) and aver-
age all the obtained correlation coefficients, then we get the values listed in
table 5.4.

We can partly make the same remarks as with the previous table: aps
is least correlated with the ps, and eps is most correlated. While the
pseudo-granulometry by minima of linear openings should have similar fea-
tures as the morphological pattern spectrum with a square structuring element
[Vincent, 2000], the correlation coefficient is rather low, especially when com-
pared to the correlation coefficients of other alternative pattern spectra. Even
the pattern spectra with a one-dimensional structuring element correlate better
with the parameters of the ps with a square.

The morphological pattern spectrum of the greyscale version of figure 5.6(a)
is shown in the upper part of figure 5.5. The lower part shows the opening
tree by minima of linear openings. Notice the logarithmic scale of the ordinate.

9The fps is not included because we calculate other parameters from this spectrum.
10Using the algorithm of the opening tree.
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Table 5.4: Correlation coefficients between the spectral parameters of the alternative
spectra and the default pattern spectrum (ps), averaged.

Spectrum ρ

eps 0.90

aps 0.50

otmin 0.73

otmax 0.82

oth 0.83

otv 0.84
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Figure 5.5: The pattern spectrum ps (upper) and pseudo-granulometry otmin

(lower) of figure 5.6(a).

The spectra are not very similar: at lower n, the spectra follow the same trend,
but at higher n they are very different. This is not disadvantageous for our
purposes, i.e., correlating spectral parameters with experimental parameters,
but this means the pseudo-granulometry is not a good approximation of the
pattern spectrum with a square structuring element. Both spectra can produce
quite different parameters.
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5.3.3.3 POMH

Tribological experiments on this material show that the wear at low
pressures causes debris particles to crumble off the bulk material
[Samyn and De Baets, 2005]. At higher pressures (16 MPa and above), crys-
tallization occurs and also smaller debris particles in the shape of flakes are
obtained. At 150 MPa, the contact surface melts, resulting in larger but
filament-shaped particles. The applied contact pressures were 8 MPa, 16 MPa,
25 MPa, 55 MPa and 150 MPa. The sliding velocity is 5 mm/s (sliding fre-
quency 11 mHz). The differences between the debris particles when different
pressures have been applied, can be seen in figure 5.6. We now discuss the
information we can retrieve from the pattern spectra from such images.

In the first experiment, we have 10 images containing debris particles, for each
load. Their spectra are combined by adding them and then the parameters are
calculated. Figure 5.7 shows plots of the behaviour of the spectral parameters
with the applied pressure p. The images used are greyscale versions of the
original images, with the background blackened (as explained in section 5.2.4).

From the plots we can conclude that size and roughness both increase with
the contact pressure, and in a similar manner. B-shapiness increases almost
linearly with the load. The increase in entropy (roughness) with the load can
be explained by the increasing diversity in size of the debris particles. At
higher pressures, also smaller flakes are visible because of the crystallization
process. The increase of the B-shapiness tells us that the shapes of the detected
particles become more the shape of the structuring element used, which is a
square. The absolute value of the B-shapiness is still very small, so the relative
increase does not reveal much useful information. The variation of the average
size states that the particles increase in size with the normal force. At 8 MPa,
the actual mean object size is about 20× 20 pixels and at the highest pressure
the mean object size is about 120 × 120 pixels (i.e., about 0.27 × 0.27 mm2).
The flakes are in general smaller in size than the other fragments, but they are
often clustered, which makes them appear bigger. Also, bigger particles come
off the bulk material when high pressures are applied.

In table 5.5 we present the correlation coefficients between the spectral para-
meters of the default pattern spectrum and the applied pressure in the experi-
ment. We investigate the effect of blackening of the images, binarization and
histogram equalization. Overall, the histogram equalization has a negative im-
pact on the correlation coefficients. For example, the correlation coefficient for
average size, obtained from the standard pattern spectrum (ps), drops from
about 0.87 to about 0.72 for the blackened greyscale images. There is no clear
difference between the correlation coefficients for greyscale images and those of
binary images.

Table 5.6 lists the correlation coefficients for some pattern spectrum techniques.
The processed images are greyscale and blackened. We can see that the cor-
relation coefficients between the maximal sizes Nmax and the applied pressure
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(a) p = 8 MPa (b) p = 16 MPa

(c) p = 25 MPa (d) p = 55 MPa

(e) p = 150 MPa

Figure 5.6: Debris particles from pomh, for different loads.
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Figure 5.7: The spectral parameters from the pattern spectrum (ps), for pomh
(greyscale, blackened), plotted against the contact pressure.
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Table 5.5: Correlation coefficients between spectral parameters of the pattern spec-
trum (ps) and the applied pressure, for differently treated images, for pomh. bl:
blackened; gr: greyscale; bw: binary; eq: histogram equalized. Blackening is per-
formed before greyscale conversion, histogram equalization is performed on the grey-
scale image.

Image ρS ρE ρEN
ρBS ρNmax

bl–gr 0.87 0.69 0.56 0.99 0.16

gr–eq 0.75 0.58 0.33 0.86 0.65

bl–gr–eq 0.72 0.56 0.58 0.83 0.17

bw 0.86 0.65 −0.25 0.98 0.66

bl–bw 0.86 0.61 −0.31 0.99 0.54

eq–bw 0.74 0.38 −0.85 0.97 0.76

bl–eq–bw 0.67 0.49 0.37 0.96 −0.0092

Table 5.6: Correlation coefficients between spectral parameters and the applied
pressure, for different spectra of blackened greyscale images of pomh.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps 0.87 0.69 0.56 0.99 0.16

eps 0.87 0.71 0.68 0.60 0.16

aps 0.55 0.042 0.71 0.76 −0.70

otmin 0.87 0.73 0.88 −0.36 0.029

otmax 0.90 0.76 0.87 0.98 0.21

are very low. In general, we cannot state that Nmax is linearly correlated with
the applied pressure. An exception is the area pattern spectrum: its ρNmax

is
much higher than that of the other spectra, but for the other parameters the
correlation coefficient is amongst the smallest values. The other coefficients are
quite high, often ρ ≥ 0.7. Overall, the oriented pattern spectrum (ops), cal-
culated using the granulometry by maxima of linear openings (otmax), scores
best in this example. For the alternative spectra, the plots of the contact pres-
sure against the spectral parameters is mostly similar to the plots shown in
figure 5.7. Only in the cases where the correlation coefficient deviates signific-
antly from that for the default pattern spectrum, the trend is different.

The parameters from the Fourier pattern spectrum (fps) are not so well corre-
lated with the experimental set-up, i.e., with the applied pressure. This can be
seen in table 5.7: almost every correlation coefficient is less than 0.5. The best
correlation is obtained when histogram equalized greyscale images are used as
input. Here we can say that kurtosis has the highest (anti-)linear correlation
with the applied load (−0.89 for histogram equalized greyscale images). We
can conclude here that the Fourier pattern spectrum is not well suited for the
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Table 5.7: Correlation coefficients between spectral parameters of the Fourier pat-
tern spectrum (fps) and the applied pressure, for differently treated images, for pomh.
bl: blackened; gr: greyscale; bw: binary; eq: histogram equalized. Blackening is
performed before greyscale conversion, histogram equalization is performed on the
greyscale image.

Image ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

gr 0.40 0.90 −0.46 −0.74 0.29 0.13

bl–gr 0.14 0.61 −0.21 −0.29 0.12 0.049

gr–eq 0.69 0.87 −0.76 −0.89 0.087 0.46

bl–gr–eq −0.38 0.33 0.37 0.33 0.26 −0.38

bw −0.13 0.42 −0.079 −0.72 0.36 −0.22

bl–bw 0.047 0.30 −0.26 −0.68 0.17 −0.042

eq–bw 0.36 0.18 −0.65 −0.72 −0.099 0.23

bl–eq–bw −0.31 0.44 0.21 −0.56 0.36 −0.34

study of the debris particles.

Another approach is to calculate the parameters for each of the 10 spectra (for
the same load) separately, and to average these results.11 We have to remark,
though, that the samples most probably do not follow a normal distribution.
The particles were scattered on a surface and photographed. It is likely that
in some areas (and thus in some pictures) more particles are present than in
other areas. It is also possible that large particles dropped first and smaller
objects later. Or vice versa. There is thus no certainty that the particles are
evenly distributed over the different images.

We will, however, show the graphs such as the ones in figure 5.7 for this ap-
proach, in order to better understand the usefulness of our method. Figure 5.8
shows the plots containing error bars. We notice that the standard deviations
can be very big, going from about 10 % to more than 110 %. On average, the
standard deviation is 45 % of the parameter value.

Figure 5.9 shows the same graphs, but the error bars are replaced by the actual
data points. The green dotted line is the average, the red dashed line is the
median. The median of the data points results in a more robust value, less
sensitive to outliers. We notice several outlier values. In almost every graph,
at least one outlier can be seen at p = 55 MPa. The outlier in figure 5.9(a) at
55 MPa is caused by one of the images where considerably larger objects are
present. However, its influence on the average is minimal, since the difference
of the average value with the median is small. A similar conclusion can be
drawn from figure (b). For the normalized roughness, on the other hand, there
is more than one outlier. The lower values for EN (A; B) at 55 MPa are from

11Before, we combined the 10 spectra by adding them, and thus one set of parameters is
obtained.
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Figure 5.8: The spectral parameters from the pattern spectrum (ps), for pomh
(greyscale, blackened), plotted against the contact pressure. The spectra are not
added; instead, the parameters are averaged.
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Figure 5.9: The spectral parameters from the pattern spectrum (ps), for pomh
(greyscale, blackened), plotted against the contact pressure. The spectra are not
added; instead, the parameters are averaged.
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Table 5.8: Correlation coefficients between spectral parameters of the pattern spec-
trum (ps) and the applied pressure, for differently treated images, for pomh. The
spectra are not added; instead, the correlation coefficients are median averaged. bl:
blackened; gr: greyscale; bw: binary; eq: histogram equalized. Blackening is per-
formed before greyscale conversion, histogram equalization is performed on the grey-
scale image.

Image ρS ρE ρEN
ρBS ρNmax

bl–gr 0.61 0.48 0.44 0.89 0.35

gr–eq 0.53 0.43 0.35 0.65 0.62

bl–gr–eq 0.47 0.45 0.41 0.64 0.26

bw 0.43 0.27 −0.21 0.76 0.18

bl–bw 0.52 0.23 −0.48 0.75 0.41

eq–bw 0.48 0.19 −0.61 0.85 0.54

bl–eq–bw 0.44 0.19 −0.48 0.74 0.39

images where much more smaller debris particles are present. They are less
numerous in the other images.

We notice large error bars at p = 150 MPa (figure 5.8). As we can see in
figure 5.9(a), the average size S(A; B) varies a lot at 150 MPa. This variety in
size can be confirmed by looking at the photographs. Sometimes, only one or a
few large objects are present, in other images more smaller or thinner particles
are visible. We cannot define a certain size or type of particle as outlier, since
they all are (approximately) equally present. The large spread of values is due
to the uneven distribution of the particles (in size) over the different images.

In figure 5.9, the trend of the median curve is in accordance with other tribolo-
gical experimental results. The increase in average size (figure 5.9(a)) from
8 MPa to 16 MPa is due to the increase in size of the debris particles. We
notice a small decline in average size between 16 MPa and 55 MPa. Besides
degradation, now also crystallization occurs, which leads to smaller debris. The
average size is higher again at 150 MPa (melting pressure): long but clustered
filaments are present.

When we compare the graphs in figure 5.7 with those in figure 5.8 or 5.9, we
notice similarities, but also differences. For instance, the parameter values for
average size and roughness are almost the same, except at 150 MPa where the
values in figure 5.7 are bigger. For the other graphs on the other hand, the
shape is very similar but not the values. This is logical, since the maximal size
(Nmax) in figure 5.7(e) is the maximum value Nmax of the 10 different images.
In figure 5.9(e), Nmax is a mean or a median of several values. Because the
normalized average roughness and the B-shapiness depend on Nmax,12 their

12The B-shapiness depends on the value PS(A; B)(Nmax) (see equation (4.22) in
chapter 4).
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Table 5.9: Correlation coefficients between spectral parameters and the applied
pressure, for different spectra of blackened greyscale images of pomh. The spectra
are not added; instead, the correlation coefficients are median averaged.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps 0.61 0.48 0.44 0.89 0.35

eps 0.62 0.58 0.56 0.21 0.35

aps 0.43 −0.82 −0.57 0.39 −0.18

otmin 0.76 0.62 0.51 0.90 0.21

otmax 0.75 0.57 0.49 0.93 0.23

Table 5.10: Correlation coefficients between spectral parameters of the Fourier pat-
tern spectrum (fps) and the applied pressure, for differently treated images, for pomh.
The spectra are not added; instead, the correlation coefficients are median averaged.
bl: blackened; gr: greyscale; bw: binary; eq: histogram equalized. Blackening is
performed before greyscale conversion, histogram equalization is performed on the
greyscale image.

Image ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

gr 0.43 0.84 −0.49 −0.72 0.15 0.13

bl–gr 0.17 0.78 −0.25 −0.35 0.15 0.13

gr–eq 0.62 0.84 −0.64 −0.83 0.05 0.35

bl–gr–eq −0.38 0.53 0.36 0.25 0.44 −0.29

bw −0.052 0.47 −0.095 −0.55 0.44 −0.15

bl–bw 0.022 0.34 −0.21 −0.73 0.24 0.035

eq–bw 0.24 0.096 −0.52 −0.61 −0.12 0.13

bl–eq–bw −0.36 0.48 0.28 −0.57 0.62 −0.35

respective values change too.

We list the equivalent of table 5.5 in table 5.8. Remember that now the spectra
are not added, but 10 different sets of spectral parameters and correlation
coefficients are calculated. The results are averaged. We use the median to
suppress the influence of outliers. If we use the arithmetic mean, the correlation
coefficient would be much lower.13 We notice that almost all the correlation
coefficients in table 5.8 are smaller than their respective values in table 5.5.
Similar conclusions can be drawn when we compare table 5.6 with table 5.9
and table 5.7 with table 5.10.

In another experiment, 3 images were taken for each of the 5 different loads.
Again, their resulting spectra are combined. We will not discuss the case where

13For example, the values in the first row of table 5.8 are respectively 0.46, 0.35, 0.36, 0.68
and 0.24 if we do not use the median.
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Table 5.11: Correlation coefficients between spectral parameters and the applied
pressure, for different spectra of blackened greyscale images of pomh (second experi-
ment). The last row displays the correlation coefficients for the parameters of the
Fourier pattern spectrum.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps −0.46 −0.46 −0.36 −0.078 −0.42

eps −0.46 −0.45 −0.37 0.022 −0.42

aps −0.31 −0.36 0.54 0.17 −0.49

otmin −0.45 −0.46 −0.26 −0.086 −0.47

otmax −0.38 −0.36 −0.031 −0.11 −0.47

ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

−0.066 −0.54 0.22 0.29 −0.31 0.058

we treat each spectrum independently, because having only 3 images is not
enough to obtain statistically relevant error bars. Also here we would obtain
large error bars and lower correlation coefficients.14

The pattern spectra and parameters are quite different from the ones we showed
in figure 5.7. Again, size and roughness have a similar trend mutually, but the
highest parameter value for these parameters is obtained when p = 16 MPa.
The photographs from this set confirm this: large objects, mixed with smaller
particles, are visible for p = 16 MPa, and mostly only fine flakes can be seen at
the higher pressures. These results are not the same as those of the previous
experiment, but still explicable: there is no peak at 150 MPa, because the
filaments are not clustered. They are very thin, which means that they are
sieved out by the pattern spectrum operation when the structuring element
nB is still small. If the peak at 16 MPa is due to some outlier particles present
in the image, then we can exclude them and recalculate the spectra and their
parameters. Unfortunately, too many possible outliers are present in the images
and there are not enough debris particles to conclude that they are indeed
outliers.

The correlations for the parameters of different pattern spectra, like those
shown in table 5.6, are shown in table 5.11 for this second experiment. The
correlation coefficients are much lower than in the first experiment, and also
negative. The major reason for this difference with the coefficients from the
first experiment is the lack of sufficient samples, i.e., if more debris particles
would be present and processed, then more accurate correlations would be pos-
sible. Again, the erosion pattern spectrum (eps) follows the regular pattern
spectrum (ps) for the most part. The parameters from the fps do not show a
clear trend in function of the applied pressure (see the last row in table 5.11).

Concerning the colour images, i.e., the images containing debris particles

14The previous experiment is the only one where 10 images are available for each setting.
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Table 5.12: Correlation coefficients between spectral parameters and the applied
pressure, for different spectra of blackened colour images of pomh (second experi-
ment).

Spectrum ρS ρE ρEN
ρBS ρNmax

mss-ps −0.44 −0.51 −0.46 0.71 −0.42

cps (L) −0.47 −0.48 −0.37 0.058 −0.42

cps (S) −0.68 −0.74 −0.54 0.89 −0.69

cps (H) −0.29 −0.38 0.32 −0.38 0.69

without any greyscale conversion or binarization, we refer to table 5.12. We no-
tice that the correlation between the applied pressure and the parameters from
the pattern spectra of the blackened colour images, using the lexicographical
ordering, is highest when the S-ordering is used (cps (S)).15 It is also interest-
ing to note that the pattern spectrum of the majority sorted image (mss-ps)
produces better correlations than the other two lexicographical orderings (H
and L). The plots of the spectral parameters from the S-ordered cps against
the contact pressure are shown in figure 5.10. We notice a decreasing be-
haviour in several graphs, which is in accordance with the coefficients from
table 5.12. When we examine the accompanying photographs, we see that the
debris particles are indeed large at the lower pressures, and that the flakes (that
appear at higher pressures) are smaller. In contrast to the first experiment,
here the flakes are not clustered.

5.3.3.4 SP-1

Typical examples of debris particles of sintered polyimide are shown in fig-
ure 5.11. The analysis of the tribological experiments on this material show
a transition at about 180◦C [Samyn et al., 2003]. At higher temperatures, the
debris particles become bigger. The reason for this is a chemical reaction called
imidization, which causes polymer chains to be formed. Figure 5.11(a) shows
debris particles of sp-1 without imidization. Figure 5.11(b) shows the debris
particles when T > 180◦C. There is also a transition between normal loads
of 100 N and 150 N: larger particles are obtained at higher pressure, caused
by mechanical fracture. The applied loads during the experiments were 50 N,
100 N or 200 N. Images of particles exist for counterface temperatures of “free
T”, 60◦C, 80◦C, 100◦C, 140◦C, 180◦C, 220◦C and 260◦C. The sliding frequency
is ν = 10 Hz (or speed v = 0.3 m/s).

We show the behaviour of the spectral parameters related to the temperature
in figure 5.12.16 Data are shown for loads of 50 N, 100 N and 200 N. From
most graphs we can conclude that a load of 50 N leads to different results

15H: hue; S: saturation; L: luminance.
16Notice that we do not have images for every (N, T )-combination.
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Figure 5.10: The spectral parameters from the S-ordered cps, for pomh (colour,
blackened), plotted against the contact pressure (second experiment).
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(a) T = 100◦C (b) T = 220◦C

Figure 5.11: Debris particles after wear of sp-1. Both small and large particles are
visible. N = 100 N and ν = 10 Hz.

compared to the graphs for the other loads. This could suggest that there is a
transition between 50 N and 100 N, but material science experiments revealed
a transition above 100 N. When we examine the plots at 100 N and 200 N,
we notice a significant increase of average size and average roughness above
180◦C. The actual mean object size jumps from about 16×16 pixels to 48×48
pixels (i.e., about 0.11× 0.11 mm2), an increase by a factor of 3. The average
roughness also increases by a large factor, about 1.4. These tendencies might
be the indication for the imidization process.

Table 5.13 lists some correlation coefficients which indicate a quite good
and reliable linear fit (although not always for normalized roughness and B-
shapiness), if we consider ρ ≥ 0.7 a good correlation value. We must point
out that parameters from the pattern spectrum of the majority sorted images
(mss-ps) correlate better with the temperature than the pattern spectrum on
the normal images (ps). The pseudo-granulometry also scores better than the
ps.

The Fourier pattern spectrum (fps) gives us very high correlation coefficients
(the last row in table 5.13). The mean, for example, is (anti-)linear with
temperature, with ρ(SM , T ) = −0.96. This negative value is in accordance
with the linear correlation of the spectral parameters with temperature, since
high frequencies in the fps are similar to low values of n in the ps, and vice
versa.17

The plots in figure 5.13 for the fps show a lot of similarity with those in
figure 5.12. A load of 50 N leads mostly to different results compared to the
graphs for the other loads. Again, a transition can be observed at 180◦C.

17We discussed the similarities between the Fourier spectrum and the pattern spectrum in
chapter 4, section 4.2.5.2.
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Figure 5.12: The spectral parameters from the pattern spectrum (ps), for sp-1
at 50 N, 100 N and 200 N (greyscale, blackened), plotted against the counterface
temperature.
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Figure 5.13: The spectral parameters from the Fourier pattern spectrum (fps), for
sp-1 at 50 N, 100 N and 200 N (greyscale, blackened), plotted against the counterface
temperature.
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Table 5.13: Correlation coefficients between spectral parameters and the counterface
temperature, for different spectra of blackened greyscale images of sp-1 at 200 N. The
last row displays the correlation coefficients for the parameters of the Fourier pattern
spectrum.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps 0.79 0.85 0.068 0.64 0.71

eps 0.79 0.84 0.37 0.00 0.71

aps 0.76 0.85 0.50 −0.051 0.59

otmin 0.80 0.86 0.62 −0.74 0.82

otmax 0.78 0.81 0.77 −0.32 0.78

mss-ps 0.83 0.88 0.14 0.30 0.72

ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

−0.96 −0.84 0.97 0.97 0.90 −0.94

5.3.3.5 SP-21

Graphite filled sintered polyimide has less friction at higher temperatures
(above 100◦C) and therefore smaller debris, and above 180◦C imidization oc-
curs, resulting in a homogeneous polyimide film. The applied loads during the
experiments were 50 N and 100 N. Images of particles exist for counterface
temperatures of 60◦C, 80◦C, 100◦C, 120◦C, 140◦C, 180◦C, 220◦C and 260◦C.
The sliding frequency is ν = 10 Hz (or speed v = 0.3 m/s).

The curves for 50 N and 100 N are quite similar mutually, except for some
outlier values (see figure 5.14). We do not observe a clear trend in function of
the counterface temperature, but we notice several abrupt changes in the graphs
at 140◦C and/or at 180◦C (especially at 100 N). The correlation coefficients in
table 5.14 are almost always below 0.5.18

There is an interesting similarity between the graphs in figure 5.14 and fig-
ure 5.15 [Samyn, 2007]. Figure 5.15 is a plot of the coefficient of friction µ
(see section 5.1.2) against the temperature. Only at the highest temperature
the graphs are different: the average size and roughness increase above 200◦C.
Apparently, there is a direct relationship between the coefficient of friction and
the size and diversity (i.e., average roughness) of the debris particles. The
correlation coefficients of some parameters from the pattern spectrum and the
coefficient of friction are, for a blackened greyscale image and a load of 50 N,
ρ(S, µ) = 0.84, ρ(E, µ) = 0.66 and ρ(EN , µ) = 0.75.

18For anti-linear correlations, the correlation coefficients are negative, so they are almost
always higher than −0.5.
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Figure 5.14: The spectral parameters from the pattern spectrum (ps), for sp-21 at
50 N and 100 N (greyscale, blackened), plotted against the counterface temperature.
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Table 5.14: Correlation coefficients between spectral parameters and the counterface
temperature, for different spectra of blackened greyscale images of sp-21 at 100 N.
The last row displays the correlation coefficients for the parameters of the Fourier
pattern spectrum.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps −0.46 −0.42 −0.63 0.41 0.55

eps −0.41 −0.65 −0.86 0.59 0.55

aps 0.52 −0.026 −0.68 0.69 0.52

otmin −0.17 −0.15 −0.34 0.079 0.46

otmax −0.010 0.099 −0.12 0.86 0.37

mss-ps 0.36 0.0031 −0.60 0.79 0.60

ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

0.47 −0.90 −0.63 0.67 −0.54 0.49
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Figure 5.15: The coefficient of friction plotted against the counterface temperature,
for sp-21 at 50 N and ν = 10 Hz.

5.3.3.6 TP

Tribological studies of this material show that the debris particles gradually be-
come bigger at higher pressures and temperatures [Samyn et al., 2006]. There
is imidization between 140◦C and 200◦C. The thermoplastic polyimide melts
around 200◦C–250◦C during the wear experiment. Figure 5.16 shows the be-
haviour of the spectral parameters with the temperature, for a fixed load (50 N).
The temperatures applied are “free T”, 60◦C, 80◦C, 100◦C, 120◦C, 140◦C,
180◦C, 220◦C and 260◦C. Figure 5.18 shows the behaviour of the spectral para-
meters with normal load, at “free T”. The loads applied are 50 N, 100 N, 150 N
and 200 N. The sliding frequency is always ν = 10 Hz (or speed v = 0.3 m/s).
The material melts above 150 N.
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Figure 5.16: The spectral parameters from the pattern spectrum (ps), for tp at
50 N (greyscale, blackened), plotted against the counterface temperature.
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Figure 5.17: The coefficient of friction plotted against the counterface temperature,
for tp at 50 N and ν = 10 Hz. Cross: measurement after 30 m sliding; white square:
measurement after 100 m sliding; black square: measurement after 15 000 m sliding
or end-of-test.

At 120◦C, a peak is visible in several graphs (figure 5.16). This indicates that
one or more large debris particles are present. The high value of the maximal
size (Nmax) indicates that the size of these large particles is very big compared
to the size of the other particles. The roughness also increases, so there are
also smaller particles present at the same time or the big objects are very
rough and jagged. The peak is also visible in the graph for average size, which
means that the larger object(s) have a significant influence on the average size
of the particles. When we look at the pictures, we notice for T = 120◦C and
T = 140◦C that very large and rough debris particles are present and only few
small particles.19

As with sp-21, we notice some correlation between the plot of the coefficient
of friction against the temperature (figure 5.17 [Samyn, 2007]) and the graphs
in figure 5.16. The plots in figures 5.16(b) and (c) ((normalized) roughness)
approximately correspond to the plot in figure 5.17. This visual correlation can
mean that the friction is related to the diversity of the particles in the image.
The correlation coefficients, however, are low and negative (ρ < | − 0.70|).
Table 5.15 lists some correlation coefficients. In general, the absolute values are
rather low, below 0.5. The peak in the graphs attributes strongly to these low
ρ-values. A good linear fit of the spectral parameters against the counterface
temperature is therefore not possible. This is also true for the Fourier pattern
spectrum.

Figure 5.18 shows the spectral parameters from the pattern spectrum (ps), for
tp at “free T” and for blackened greyscale images, plotted against the applied
normal force. If the values at 100 N in the graphs are considered outliers,
then we can conclude that the pattern spectrum indeed indicates that the

19These large particles are about ten times larger in area than the ones at the other
temperatures.
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Figure 5.18: The spectral parameters from the pattern spectrum (ps), for tp at
“free T” (greyscale, blackened), plotted against the applied normal force.

average size of the particles increases (but not monotonically), as well as the
entropy. On the other hand, the maximal size Nmax states that the size of the
objects decreases with the temperature. This suggests that the biggest objects
become smaller, but at higher temperatures there are more of those big objects,
compared to the smaller debris. We can confirm this by looking at the pictures.
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Table 5.15: Correlation coefficients between spectral parameters and the counterface
temperature, for different spectra of blackened greyscale images of tp at 50 N. The
last row displays the correlation coefficients for the parameters of the Fourier pattern
spectrum.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps −0.30 −0.49 −0.32 −0.10 −0.46

eps −0.28 −0.40 −0.30 0.44 −0.41

aps −0.34 −0.61 0.20 −0.66 −0.59

otmin −0.28 −0.44 −0.23 0.42 −0.52

otmax −0.30 −0.48 −0.41 −0.20 −0.36

mss-ps −0.24 −0.47 −0.22 −0.38 −0.41

ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

0.30 0.22 −0.24 −0.21 −0.20 0.28

Table 5.16: Correlation coefficients between spectral parameters and the normal
force, for different spectra of blackened greyscale images of tp at “free T”. The last
row displays the correlation coefficients for the parameters of the Fourier pattern
spectrum.

Spectrum ρS ρE ρEN
ρBS ρNmax

ps −0.28 −0.16 0.63 −0.26 −0.86

eps 0.70 0.70 0.47 −0.86 0.41

aps 0.75 0.74 0.40 0.18 0.52

otmin 0.78 0.84 −0.19 0.64 0.83

otmax 0.59 0.70 −0.036 0.12 0.31

mss-ps 0.75 0.87 0.72 −0.76 0.41

ρSM
ρSD

ρSS
ρSK

ρSN
ρSE

0.34 0.43 −0.45 −0.45 −0.14 0.34

Table 5.16 lists some correlation coefficients which sometimes indicate a good
linear fit of the spectral parameters with the counterface temperature. This is
the case for the average size and average roughness (ρ ≥ 0.7), for most pattern
spectra. The parameters of the default pattern spectrum parameters correlate
worst of all with the normal load, while the parameters from mss-ps correlate
quite well. Also the parameters obtained from otmin correlate well with the
applied load, except for the normalized roughness. The correlation coefficients
are not high enough to state a definite conclusion, but the values suggest an
increase of the debris size with the normal force.
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5.4 Conclusion

The biggest problem with our analysis of the pattern spectra is the small
amount of available data. For each of the experimental settings, we had ac-
cess to a few pictures of debris particles. In order to perform a more relevant
statistical research, much more data would be needed. Also, the number of
experimental settings is limited, which hinders the correlation accuracy.

Nevertheless, we have obtained some interesting results. We can confirm for
one experiment that, using the pattern spectrum, the size of the debris particles
of the wear of polymer pomh increases with the contact pressure.

The sintered polyimide sp-1 has a transition temperature above T = 180◦C,
when imidization starts to occur. We observe this through the behaviour of
the spectral parameters with the temperature.

The parameters from sp-21 tell us something similar as with sp-1, but less un-
ambiguously. However, for the graphite filled polymer sp-21, we can correlate
the coefficient of friction with the average size and roughness obtained from
the pattern spectrum.

For the material tp, we notice a correlation between the coefficient of friction
and the (normalized) average roughness, when the load is fixed.

The morphological pattern spectrum (ps) has a high computational cost. Each
of the suggested alternatives has its own characteristics. Most of them are
much faster, so they could replace the ps. It is not clear which one is best
suited as the replacement for ps. Interesting to note is that the parameters of
the pattern spectrum based on the majority sorting scheme, mss-ps, correlate
quite well with the experimental settings of the tribological experiments.

For this kind of images, the influence of colour is minimal. Processing of the
greyscale (or even the binary) versions of the images produces similar results.
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Chapter 6

Image Interpolation

Bitmapped images sometimes need to be magnified. This means increasing the
number of pixels covered by such an image. If the magnification is done by
using simple interpolation techniques (which will be explained later on in this
chapter), the result often looks jagged, because they are unable to increase the
apparent resolution. This chapter deals with an interpolation technique that
removes those jagged edges from the images. Mathematical morphology is used
in a novel way to perform this task.

In this chapter, we first explain the difference between vector and raster graph-
ics. Then we discuss some standard linear interpolation techniques and state-
of-the-art non-linear techniques. Afterwards, we explain our morphological
interpolation technique for binary images, as well as an improvement of this
method. We propose an extension to greyscale images in the final section.

6.1 Introduction

6.1.1 Vector and raster graphics

When we consider image formats, we can distinguish between two
classes of images: vector graphics and raster graphics. Vector graphics
[Wikipedia, WWWb] are images in which the content (the objects) is described
using geometrical primitives, such as points, lines, curves and polygons. The
vector graphics format is used for line art drawings, such as logos, diagrams,
graphs and text. There are different advantages to the use of vector graphics:

• Objects can be drawn with a minimum of information. Indeed, in order
to draw a circle on a computer screen, we mainly only need to specify
the type of object (a circle), the origin and radius of the circle, instead
of every point on its boundary. Additional specifications would be the
stroke style and fill style and their respective colour.
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Vector
Graphics

Vector
Graphics

Figure 6.1: Vector graphics look good at any magnification.

• The objects can later be edited with a minimum of effort. We can trans-
late, rotate, change colour, fill, . . . the objects by only updating specific
parameters.

• The image objects can be changed in size without limitation. Because of
the geometrical character of the image, it is possible to zoom in on the
objects in the image and still see smooth lines.

Figure 6.1 shows an image stored as a vector image. The magnified version of
this image clearly looks smooth. Different software applications are available
that produce vector graphics, like Adobe Illustrator, CorelDRAW, Xfig and
others. The vector graphics can be stored in a variety of file formats. Best
known are Encapsulated PostScript (eps), Windows Meta File (wmf), Adobe
Flash (swf), and Adobe’s PostScript (ps) and Portable Document Format
(pdf). ps and pdf are both page description languages that use a vector
graphics model, and are therefore device-independent. TrueType fonts are
vector based and are thus scalable fonts, which makes it possible to print text
well with an arbitrary point size.

The other class of images, raster graphics, is the one we take a closer look
at now. It is the type of images used in image processing. A raster image is
also called a digital image or bitmap. A bitmapped image consists of picture
elements, pixels, aligned on a grid. Each pixel has its own colour or grey
value. The difference with vector images is clear: the scene in the image is
now described in terms of pixels, rather than by (the drawing of) geometric
primitives. In general, more disk space is needed to store a bitmap (every pixel
requires an amount of memory), but it is now possible to represent a real life
scene, with a lot of texture, colour variation and detail. We can visualize a
textured and detailed scene with a vector graphic, but then we must use dots
as geometrical primitives. In that case, the advantage of using a vector graphic
is lost. Therefore, vector graphics are used for artificial images (line art, graphs,
charts, logos), while raster graphics are generally used for pictures.

Applications like Adobe Photoshop, Corel Paint Shop Pro or The GIMP are
sophisticated computer applications for editing pictures, pixel by pixel, or as a
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group. Vector graphics can also be edited with these programs, but they are
then converted to raster format.

The quality of a raster image is determined by its resolution, which is the
maximum amount of spatial detail in the image (which in turn is related to
the total number of pixels that describe that raster image), and the precision
of the colour information in each pixel (often called colour depth). The latter
is not important in this discussion. When we wish to display this image on
a computer screen or print it on paper using an inkjet or laser printer, the
resolution is the number of pixels per inch (ppi, also called the pixel density)
or dots per inch (dpi), respectively. The terms ppi and dpi are sometimes
interchanged.

When an actual measure of the physical resolution is not necessary, we can
define the image resolution just by the width and height of that image, e.g.
M × N , measured in pixels. It is not an uncommon practice to denote the
image size as the image resolution and the physical resolution as the pixel
density.

A consequence of the pixel-wise approach is the fact that we cannot scale up
without limitation and without introducing artefacts. An example: consider a
15 inch computer display with a size of 1024 × 768 pixels. 15” is the length
of the diagonal, so the size of the screen is 12”× 9”, assuming that the aspect
ratio is 4 : 3. The pixel density is then 85.3 ppi. An image with a size of
512× 384 pixels that is displayed at the resolution of the monitor’s pixel depth
(i.e., a quarter of the screen is filled by the image) will be visually pleasing.1

When we zoom in on the image, i.e., we magnify the image M times (e.g., to
full-screen, M = 2), then the number of pixels should also be increased (M 2

times), in order to keep the pixel density constant. The problem is that we
only know the pixel values of the original pixels. The values of the new pixels
must be guessed using some intelligent calculation. This process is called image
interpolation.

The simplest interpolation method is pixel replication or nearest neighbour in-
terpolation. Every pixel from the original image now occupies M ×M pixels.
In other words, the pixel values in the enlarged image are copied from the
pixels at the corresponding position in the original image, or, if that position
does not correspond to a pixel centre, from the pixels nearest to that position.
This is illustrated in figure 6.2. Figure 6.3 shows an example of a binary raster
graphic that is magnified 4 times using pixel replication. The result contains
unwanted jagged edges, called jaggies .2

To avoid or remove these jaggies (as has been done in figure 6.4), various
interpolation techniques are at our disposal (sections 6.1.3 and 6.1.4). Most

1Not taking the content itself into account, that is.
2According to [Wikipedia, WWWa], the origin of the term “jaggies” is the following:

in the video game Rescue on Fractalus! (1985), aliens that were called Jaggi made their
appearance. They seem to have been given this name, due to the blocky/jagged graphics of
this game.
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(c) Pixel replication

Figure 6.2: Pixel replication for 2× magnification: the original pixel values are
copied to the newly available pixels.

of them work well on natural scenes, but some of them are suited for the
interpolation of line art (i.e., two-colour drawings) or multi-colour images with
sharp edges (e.g., cartoons). These techniques may seem superfluous because
the preferred way to store line art is using vector graphics. This is true, indeed,
but there are situations where bitmaps are unavoidable. E.g., to display an
image on a website, the World Wide Web Consortium, or w3c [W3C, WWW],
has approved three file formats, gif, jpeg and png, all three raster graphics
formats, and a standard format for vector graphics, svg. The Scalable Vector
Graphics format (svg) can be used to display a logo or graph on a web page
and adhere to the web standards, but its use is not yet widespread. This
is because several browsers still need a plug-in, like Adobe’s svg Viewer, to
display svg. Microsoft’s Internet Explorer and Apple’s Safari are among them.
Other browsers, like Opera and Firefox, only recently included native support
for svg. It is possible to display the picture using the popular Flash format,
but this is not a web standard and also requires a browser plug-in. So, in most
cases, line art and cartoons are converted to one of the raster graphics formats.

In other situations it happens that only the raster image is available, e.g.,
because the vector image file is lost, corrupt or unavailable, the line art image
was created with a raster image editing application, or the vector image has
been edited and then saved as a raster image.

Another example where interpolation can be advantageous is digital television.
Footage from a standard definition camera has a smaller resolution than hdtv.
Interpolation can improve the visual result of the images when viewed on a high
definition display. Especially for text this can be an advantage.

A similar problem occurs with lcd projectors: presentations are beamed on a
big screen, but if the resolution of the connected laptop is too low, the result
does not look good without interpolation.

Another application is to use a segmentation mask in video motion estimation
applications (especially in object based coding) at different magnifications.
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(a) Original image (b) 4× magnified

Figure 6.3: Raster graphics: pixel replication creates “jaggies”.

Figure 6.4: An interpolated raster graphic (4× magnified version of figure 6.3(a)).

In the field of digital libraries, interpolation is useful when a low-resolution
electronic version of the document already exists. When the original paper
document is no longer available, e.g., it has been destroyed or is lost, then
interpolation is a solution to obtain a high resolution document. Similar prob-
lems arise in computer graphics where the source file of a line drawing is missing
and only bitmaps are left.

6.1.2 Interpolation

Image interpolation or resampling has many applications [Lehmann et al., 1999,
Meijering et al., 2001, Meijering, 2002]. Sometimes, the aspect ratio of the
stored image is not the same as that of the desired output. The pixel aspect
ratio describes the squareness of the pixels, i.e., the ratio between the height
and the width of the pixel. For example, consider a photograph taken with a
digital camera, which contains a ccd (charge-coupled device) with a certain
pixel aspect ratio. If the pixel aspect ratio of the display device is different from
the ccd’s pixel aspect ratio, then interpolation is required to show the picture
with the correct aspect ratio. Interpolation is also necessary for rotations or
perspective projections. A more common feature would be the rescaling of
existing images, i.e., changing the image resolution (as we mentioned in the
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previous section). This rescaling is desired when we zoom in on a portion of
the image (we magnify) or when we want to change the pixel density (we need
more detail).

Several interpolation techniques exist, as we will discuss in the following sec-
tions. We can draw a distinction between linear and non-linear interpolation
methods. Linear or convolution-based techniques are the most frequently used
methods, because they are versatile and have a relatively low complexity. Some
non-linear techniques are discussed in section 6.1.4. They often give better re-
sults than the linear methods, but their design is more complex.

Convolution-based image interpolation or resampling actually reconstructs a
two-dimensional image on a continuous domain from the discrete samples.
From this, the missing intermediate samples can be found by simple sampling.
Optimal reconstruction is only possible when the Nyquist criterion (explained
in section 6.1.2.1) was satisfied when the given input image was acquired. The
ideal convolution-based interpolation faces practical problems (section 6.1.2.3),
which force us to use other techniques, that approximate this ideal interpola-
tion.

We now discuss the theoretical background of sampling and linear interpolation.

6.1.2.1 Sampling of a continuous image

Image sampling is the process of converting a continuous image s(x, y), with
x, y ∈ �

, into a discrete image s(m, n), with m, n ∈ �
. That is, the image

function is spatially digitized.3 The sampled image ss(x, y) is the discrete
sample defined on a continuous domain:

ss(x, y) =

+∞∑

m=−∞

+∞∑

n=−∞
s(m∆x, n∆y)δ(x−m∆x, y − n∆y) . (6.1)

We make use of the Dirac comb δT (t) =
∑+∞

k=−∞ δ(t − kT ) (or Shah function�
), where T is the sampling interval. The sampled image is useful for theo-

retical derivations because it represents the discrete sample s(m, n) in terms of
a function of continuous variables.

A signal can be represented by its Fourier transform. Simply stated, the Fourier
transform (ft) of a signal s(t) is its representation S(f) in the frequency domain
and of a spatial signal its spatial frequency domain. Most often, the term
Fourier transform refers to the continuous ft, but a discrete ft (operating on
discrete images) can also be defined. The discrete Fourier transform (dft)4

of a discrete image s(m, n), S(u, v), is periodic with periods M and N . We

3Digitization of the signal values (for an image these are the grey values or colour values)
is called quantization.

4For more information, see also chapter 4.
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repeat equation (4.52):

S(u, v)= S(u + αM, v + βN) , (6.2)

with α, β ∈ �
. In other words, the Fourier transform of s(m, n) repeats infi-

nitely. The transformation of a continuous image s(x, y) is not repeated. The
periodicity of the Fourier image is a consequence of sampling.

Reconstructing the original continuous image from its samples, is equivalent to
removing the replicas (i.e., the copies of the ft around (u, v) = (0, 0)) from the
Fourier transform. For this to be possible, the replicas must not overlap, which
is the case when the Nyquist criterion is satisfied. In turn, this requires the
signal to be bandlimited. A function is bandlimited if in the Fourier domain
above a specific absolute frequency the spectrum values are 0. In our two-
dimensional case we have two such frequencies, umax and vmax, corresponding
to the maximum spatial frequencies in the image in the horizontal and vertical
direction, respectively. The Nyquist criterion or Whittaker-Shannon sampling
theorem states that the sampling intervals (∆x, ∆y) in the spatial domain must
be chosen such that:

{
∆x < 1/(2umax)

∆y < 1/(2vmax)
. (6.3)

The sampling interval is the spatial distance between the sampling points in
the image. This sampling criterion thus depends somewhat on the image con-
tent, because it is related to the frequencies (umax, vmax). When the Nyquist
criterion is satisfied, then all the image information is preserved. If not, the
Fourier transform in the interval ([−umax, umax], [−vmax, vmax]) is corrupted
by frequency components from the replicas of the spectrum. This distortion of
the image is called aliasing . High frequency components from one replica are
mixed with low frequency components from the adjacent replica, which results
in a loss of information in the sense that the original frequency information
cannot be retrieved from the Fourier transform. Figure 6.5 shows, for a one-
dimensional signal, the magnitude of the Fourier transform of a signal that has
been sampled at intervals smaller than 1/2umax

5 and that of a signal that has
been sampled at intervals greater than 1/2umax.

An example of aliasing is shown in figure 6.6. The left “Barbara” image is the
original one. The right image is a downsampled version by a factor of 2, but
rescaled again. Notice how the line pattern in the scarf is oriented differently.
An effect of aliasing are moiré patterns.

5This is the same as to say that the sampling is performed at a frequency below 2umax.
The frequency umax is also called the Nyquist frequency , 2umax is called the Nyquist rate.
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u

|F(u)|

(a) Nyquist criterion fulfilled

u

|F(u)|

(b) Aliasing

Figure 6.5: (a) The Fourier transform of a discrete signal is repeated infinitely.
(b) When the sampling frequency is too low, then the signals overlap in the Fourier
domain and aliasing occurs.

6.1.2.2 Convolution-based interpolation

When we have a digital image and we want to obtain its continuous counterpart
or resample it, then image interpolation is necessary. The continuous image
s(x, y) (with x, y ∈ �

) is reconstructed from its sampled image ss(x, y) (with
ss(x, y) = s(x∆x, y∆y) for x, y ∈ �

and ss(x, y) = 0 otherwise), using a
convolution operation:

s(x, y)= ss(x, y) ∗ h(x, y) (6.4)

=

+∞∑

m=−∞

+∞∑

n=−∞
ss(m∆x, n∆y)h(x−m∆x, y − n∆y) . (6.5)

The filter h is called the two-dimensional impulse response6 of the two-
dimensional reconstruction filter. In the following subsection we will define h.

The two-dimensional interpolation kernel h is usually separable into a hori-
zontal and a vertical one-dimensional kernel, because this reduces the compu-
tational complexity:

h(x, y)= hx(x)hy(y) . (6.6)

The calculation complexity is the following: suppose Ω(hx), Ω(hy) and Ω(h)
are the support for hx, hy and h, respectively. The support is the set of pixels of
the kernel that contribute to the convolution. In practice, only pixels in a small
neighbourhood of the current pixel (x, y) contribute. For the one-dimensional
kernels, we need 2][Ω(hx)]−1 and 2][Ω(hy)]−1 calculations per pixel.7 On the
other hand, a two-dimensional kernel needs 2][Ω(h)]−1 = 2][Ω(hx)]][Ω(hy)]−1
calculations per pixel. We can easily calculate that in all cases, except the
trivial ones, the combination of two separate one-dimensional kernels is faster

6Other names are the reconstruction kernel or interpolation kernel.
7The symbol ] denotes the number of pixels in the set.
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(a) Nyquist criterion fulfilled (b) Aliasing

Figure 6.6: When the sampling frequency is too low, aliasing occurs. Compare
the orientation of the line patterns in the encircled areas in (b) with the respective
patterns in (a).

than one two-dimensional kernel. Not performing an interpolation technique is
faster,8 but the consequence is visual artefacts (jaggies).

Figure 6.7 schematically shows how a two-dimensional interpolation is per-
formed, using two separate one-dimensional kernels. In the example, a mag-
nification factor M = 2 is used. Figure (a) shows a grid of pixels, where the
squares marked with a black dot represent the image pixels from the input
image. The white squares are image locations that do not exist in the low-
resolution image. The squares marked with a grey dot in figure (b) show the
positions of the interpolation results after a horizontal interpolation. These re-
sults, together with the original input pixels, are used as input for the vertical
interpolation. This can be seen in figure (c). For simplicity, we will further
explain the interpolation principles with one-dimensional images.

The interpolation factor M can be some other value than 2. For example, when
the magnification is 4, we must calculate three new pixel values between the
defined pixels, instead of just one. An interpolation in multiple stages is also
possible (e.g., interpolating twice using M = 2 instead of once with M = 4).
Fractional magnifications, like M = 3/2 can be achieved by first interpolating
by a factor of 3, and then downsampling by a factor of 2. In practice, this
would be implemented in one step in the interpolation kernel.

8In that case, actually pixel replication is used.
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(a) Discrete image (b) Horizontal interpolation (c) 2D interpolation

Figure 6.7: Two-dimensional image interpolation using separable interpolation ker-
nels. The black dots indicate input pixels; the other pixels do not exist in the low-
resolution image; the grey dotted pixels are calculated (interpolated) using the black
dotted pixels.

6.1.2.3 Ideal interpolation

In section 6.1.2.1 we explained that the Fourier transform of a discrete image
is periodic and consists of the superposition of the original spectrum and rep-
licas. If the replicas do not overlap, the continuous image can be reconstructed
by removing the replicas through lowpass filtering. This can be implemen-
ted by multiplication of the Fourier domain with a rectangular function. This
rectangular function Π(v) is defined as follows:9

Π(v)=





0 for |v| > 1/2

1/2 for |v| = 1/2

1 for |v| < 1/2

, (6.7)

with v the (spatial) frequency.

In the spatial domain, the product of the Fourier transformed function with
the rectangular function is a convolution of this function with a (normalized)
sinc function. This sinc is the ideal interpolator :

hideal(x)= sinc(x)

= sin(πx)/(πx) .
(6.8)

The sinc function assumes the value 1 for x = 0, and the value 0 for x ∈ �
0.

10

The sinc function is displayed in figure 6.8 for the interval −π < x < π.
The Fourier transform of this interpolation kernel is the rectangular function,

9A common alternative definition is to give for all |v| < 1/2 the value 1, and for every
other v value 0.

10With the notation � 0 we denote the set of all integers, both positive and negative, with
the exception of 0. In other words: � 0 = {. . . ,−3,−2,−1, +1, +2, +3, . . .}.
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Figure 6.8: The ideal interpolator and its Fourier spectrum.

as mentioned before. This transfer function Π(v) in the Fourier domain is
constant and has value 1 in the interval −π < ω < π (or −1/2 < v < 1/2),
with ω the angular frequency and v the frequency, which is v = ω/2π. This
interval is called the passband , and the value ω = π or v = 1/2 is the cutoff
point . The values |ω| > π (or |v| > 1/2) are part of the so-called stopband .

The sinc function is called an interpolator . In order for a function to be called
“interpolator”, it must satisfy the following conditions:

{
h(0) = 1

h(x) = 0, |x| = 1, 2, . . . .
(6.9)

Interpolation kernels that do not satisfy these properties, are called approxi-
mators .

The sinc function is capable of reconstructing the original continuous image
from the discrete image, using a convolution operation. Its Fourier spectrum,
a rectangular shaped spectrum, is multiplied with the discrete image, which
separates the frequency components of the image from frequency components of
the replicas. Perfect reconstruction is only possible when the Nyquist criterion
is fulfilled. We remark that in practice it is not possible to satisfy the Nyquist
criterion, because images have a finite spatial support and objects with a finite
spatial support have an infinite frequency support. Another problem is that
the sinc function is spatially unlimited. This makes the exact computation
of the sinc interpolation impossible, since all sampling points are needed for
reconstruction. Therefore, the ideal interpolator is replaced by some approx-
imation of this ideal, which results in artefacts. We will now discuss some
existing interpolators.
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6.1.3 Standard linear interpolation techniques

Linear (or non-adaptive) interpolation techniques are relatively simple to im-
plement and are therefore popular interpolators. Because the exact compu-
tation of the spatially unlimited sinc interpolator is not possible, alternative
interpolators are available and used. These interpolators are similar to the sinc,
but spatially limited. The following interpolators are frequently used basic al-
ternatives for the sinc function.

6.1.3.1 Pixel replication

Pixel replication (also called nearest neighbour interpolation), introduced in
section 6.1.1, is the most straightforward interpolation technique. We replace
the sinc function as interpolation kernel by the rectangular function Π(x). The
value is 1 inside of the interval −∆/2 < x < +∆/2, and 0 outside of this
interval. ∆ is the length of the sampling interval. The Fourier transform of
Π(x) is a sinc function. This has two implications: due to the sidelobes in the
ft of Π(x), the frequency components of the replicas are not removed (i.e.,
not all frequencies in the stopband are attenuated), which results in staircase
patterns, jaggies.11 Pixel replication also introduces blur, because the sinc
function slightly attenuates the highest frequencies of the passband (the sinc
already descends before it reaches the cutoff point). An example of jaggies in a
greyscale image is shown in figure 6.10(a). It is a cut-out of the “boat”-image
shown in figure 6.9, after magnification with factor M = 4.

6.1.3.2 Bilinear interpolation

Other simple techniques are bilinear and bicubic interpolation. Here, the new
pixel value is the (weighted) mean of respectively the 4 and 16 closest neigh-
bours. The one-dimensional interpolation kernel for bilinear interpolation is a
triangular function:

h(x)=

{
1− |x|, 0 ≤ |x| < ∆

0, elsewhere.
(6.10)

The impulse response for the bilinear interpolation (i.e., the triangular func-
tion) and its Fourier spectrum are shown in figure 6.11. The jagginess is less
prominent than with pixel replication, but bilinear interpolation blurs the im-
age. This is due to the loss of some high frequency information when using
this interpolation kernel. This area is marked with a rectangle in the figure.
An example of this blur is shown in figure 6.10(b).

11Often, the terms aliasing and jaggies are interchanged, while they actually describe
different phenomena. Aliasing occurs when the image is downsampled and the sampling rate
is too low, resulting in strange results like moiré patterns. Jaggies occur when the image is
upsampled, resulting in staircase patterns.
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Figure 6.9: An example image. Figures 6.10 and 6.16 show 4× magnified versions
of the box selection.

6.1.3.3 Truncated and windowed sinc interpolation

The truncated sinc function and windowed sinc functions are (altered) sinc
functions with a finite number of lobes, and are thus spatially limited. This
is equal to a multiplication of the sinc with a window function. The trun-
cated/windowed sinc function is then:

h(x) =

{
sinc(x)w(x), 0 ≤ |x| < N

2 ∆

0, elsewhere,
(6.11)

with N ∈ �
0. N is a strictly positive integer that defines the length of the

support of the truncated or windowed sinc.

For the truncated sinc function, a rectangular function is used, i.e., w(x) =
1 for 0 ≤ |x| < N

2 ∆. Figure 6.12 shows the impulse response for the trun-
cated sinc interpolation with N = 5. Because of this truncation, the Fourier
transform is no longer a block function. Overshoots appear near the transition
from the passband to the stopband and oscillations are visible in the stopband
region. The ringing artefacts that are visible in the interpolation result at the
locations of discontinuities (sharply defined edges) when the higher frequencies
are cut off (see figure 6.10(c)), are known as the Gibbs phenomenon.

For a general windowed sinc function, an equation similar to (6.11) is used, but
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(a) Jagginess (b) Blurring

(c) Ringing

Figure 6.10: Possible artefacts that appear when linear interpolation techniques are
used.

with w(x) not a rectangular function. A wide variety of window functions exist
[Lehmann et al., 1999, Meijering et al., 2001]. The Blackman-Harris window
[Harris, 1978] is an example of such a window that gives a quite good approx-
imation of the ideal interpolator. A windowed sinc function can avoid the
Gibbs phenomenon mentioned before that is obtained when using a truncated
sinc function as interpolator.

6.1.3.4 B-spline interpolation

Other linear methods use higher order (piecewise) polynomials
[Lehmann et al., 1999, Meijering et al., 2001] or B-splines [Unser et al., 1993a,
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Figure 6.11: The bilinear interpolator and its Fourier spectrum.
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Figure 6.12: A non-ideal interpolator and its Fourier spectrum.
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Unser et al., 1993b]. B-splines, or basis splines, are a special type of piecewise
polynomials and are one of the most commonly used family of spline functions.
The basis function is the rectangular function Π(x) (equation (6.7)). This is
the zeroth-degree B-spline, and is denoted β0(x). Higher degree B-splines are
constructed using self-convolution [Unser, 1999]:

βn(x)= β0 ∗ β0 ∗ · · · ∗ β0(x)︸ ︷︷ ︸
n+1 times

. (6.12)

We can explicitly write down the definition of a B-spline of degree n:

βn(x) =
1

n!

n+1∑

k=0

(
n + 1

k

)
(−1)k

(
x− k +

n + 1

2

)n

+

, (6.13)

where
(
a
b

)
is a binomial coefficient12 and the unit step function (x)n

+ is defined
as:

(x)n
+ =

{
xn, x ≥ 0

0, x < 0
. (6.14)

It is also possible to construct the B-splines recursively [Unser et al., 1993a]:

βn(x) =

[(
n+1

2 + x
)
βn−1

(
x + 1

2

)
+

(
n+1

2 − x
)
βn−1

(
x− 1

2

)]

n
. (6.15)

So, β0 is the reconstruction kernel used for pixel replication, but β1 is also
a known function, namely the triangular function (equation (6.10)) used for
(bi)linear interpolation. The B-splines for n = 2 and n = 3 are shown in
figure 6.13. They are called the quadratic and cubic B-spline, respectively.
Note that they are not interpolators but approximators, since they do not
satisfy condition (6.9). The cubic B-spline could be the (bi)cubic interpolation
we mentioned before (subsection 6.1.3.2).

The Fourier transform of the B-spline βn(x) is of course sincn+1(v). As a re-
sult, the interpolation with such a B-spline (approximator) displays stronger
blurring effects and more attenuation of unwanted high-frequency components
for a higher value of n.

It is possible to transform the B-splines to become interpolators instead of
approximators (i.e., they satisfy condition (6.9)). These B-splines are called

12A binomial coefficient is:
`
a
b

´
= a!

(a−b)!b!
.
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Figure 6.13: The quadratic and cubic B-spline.

cardinal B-splines . The interpolation kernel is [Unser et al., 1993a]:

h(x)=
+∞∑

k=−∞
(bn)−1(k)βn(x− k) . (6.16)

(bn)−1 is a recursive pre-filter (or direct B-spline filter) [Unser et al., 1993b].
What is actually done is the following: the input image Is is pre-processed with
the direct B-spline filter, in order to get a new set of sample points. The next
step is to apply the B-spline kernel, giving us the interpolated image:

I =
+∞∑

m=−∞
((bn)−1 ∗ Is)(m)βn(x−m) . (6.17)

The B-spline is convolved with an image with repositioned samples. The B-
spline still behaves as an approximator, but on (bn)−1 ∗ Is, not on Is. On Is,
the basis spline is an interpolator.

These are very good interpolators: the shape of a cardinal B-spline is similar
to that of the sinc. When n → ∞, the cardinal spline converges to the sinc
function [Aldroubi et al., 1992]. As a consequence, the rectangular shape of
the Fourier transform is obtained for n → ∞. The support of the cardinal
B-spline is infinite, so we would need to truncate this function as with the sinc
(see subsection 6.1.3.3), which leads to the Gibbs phenomenon. On the other
hand, the B-splines (not the cardinal B-splines) βn decay exponentially and
their support is finite, as can be seen in figure 6.13. It is a major advantage
that we can use these functions with finite support for interpolation, using
equation (6.17).

Most of the linear techniques create a greyscale image with artefacts, like jag-
gies, blurring and/or ringing. The extra lobes in the stopband region cause
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jagginess, as is for example the case with pixel replication, and in a lesser de-
gree with bilinear interpolation. Blurring is a consequence of the attenuation
of the high frequency information. Ringing artefacts in the Fourier domain are
caused by the truncation of the sinc, and in the real domain by the frequency
cut-off.

6.1.4 Non-linear interpolation techniques

Adaptive or non-linear interpolation methods incorporate prior knowledge
about images to achieve better interpolation results. They are not as straight-
forward to implement as the convolution-based techniques, but they are able to
avoid the previously mentioned types of artefacts (jaggies, blurring, ringing),
although new kinds of artefacts might be introduced. We can define different
classes, based on the method used.

6.1.4.1 Edge-based interpolation

Edge-based techniques follow the principle that no interpolation across the
edges in the image is allowed or that interpolation has to be performed
along the edges. Examples of these techniques are edi (Edge-Directed In-
terpolation) [Allebach and Wong, 1996], nedi (New Edge-Directed Interpola-
tion) [Li and Orchard, 2001] and aqua (Adaptively Quadratic interpolation)
[Muresan and Parks, 2004].

The edi technique, for example, consists of two phases: rendering and data cor-
rection. The rendering is based on bilinear interpolation of the low-resolution
image data. The quality is then improved by taking edge information into
account: the bilinear interpolation is modified to prevent interpolation across
edges.

6.1.4.2 Restoration-based interpolation

The so-called restoration methods use regularization methods or smoothing
to limit interpolation artefacts. Some restoration methods use partial dif-
ferential equations based (or pde-based) regularization [Tschumperlé, 2002],
isophote smoothing [Morse and Schwartzwald, 1998] and level curve mapping
[Luong and Philips, 2005, Luong et al., 2005]. The goal of these techniques is
to remove the artefacts obtained by interpolation with a linear technique.

Isophote smoothing, for example, is a geometry-based approach: the interpola-
tion is performed by reconstructing geometric properties of the original image.
As a first approximation, some standard linear interpolation technique is used.
When examining the level curves of this interpolated image, we notice that
their local spatial curvature is quite high. A level curve or isophote is a curve
of pixels with the same intensity. The staircase patterns in a pixel-replicated
image clearly show such high curvatures (see figure 6.14). Isophote smoothing
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Figure 6.14: The isophotes (yellow line) of a pixel replicated image have a high
spatial curvature.

removes the jagginess from the level curves, which results in a better magnified
image (i.e., with less jaggies and blur).

The manipulation of the level curves can be done locally by using a curve
evolution method [Morse and Schwartzwald, 2001].13 The relation between the
change of the image function I and the movement of the curve in the direction
of its normal is:

It =−κ(∇I)||∇I|| , (6.18)

where the isophote curvature κ is:

κ(∇I) = div(∇I/||∇I||) = −I2
xIxx − 2IxIyIxy + I2

yIyy

(I2
x + I2

y )3/2
. (6.19)

Ix is the derivative w.r.t. x, and ||∇I|| =
√

I2
x + I2

y . The curvature determines

how much the pixel value must change. In practice, isophote smoothing is
performed iteratively, until the level curve is completely smooth.

Figure 6.15 shows an example with a jagged line. The bilinear interpolation
blurs the edge, but the jaggies are not completely removed. Isophote smoothing
removes the staircase pattern.

6.1.4.3 Example-based interpolation

Example-based approaches are yet another class of adaptive interpolation meth-
ods. They map blocks of the low-resolution image into pre-defined interpolated
patches [Stepin, 2003, Freeman et al., 2002]. The hq technique [Stepin, 2003],
for example, is a fast, high quality magnification filter. For every image pixel,
the colour difference (using a lexicographical ordering in the yuv colour space)

13I.e., we do not need to know the exact path of the level curve, we can calculate how large
the local curvature is.
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(a) Pixel replication (b) Bilinear interpolation (c) Isophote smoothing

Figure 6.15: A line is 4× magnified and interpolated using (a) pixel replication, (b)
bilinear interpolation and (c) isophote smoothing.

(a) Painting effect (b) Segmentation effect

Figure 6.16: Possible artefacts that appear when non-linear interpolation techniques
are used.

of this pixel with its 8 neighbouring pixels is measured. The differences are com-
pared to a pre-defined threshold value, and a classification is made. Pixels fall
into the “close” or “distant” category. Because there are 8 nearest neighbours,
256 different classification combinations are possible. For each combination, a
description how to change the input pixels is stored in a lookup table. hq is
implemented in different games emulators.

Some other adaptive methods exploit the self-similarity property of an im-
age, e.g., methods based on iterated function systems (or fractal inter-
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Figure 6.17: Schematic representation of the algorithm of mmint.

polation) [Honda et al., 1999] or non-local interpolation [Luong et al., 2006b,
Luong et al., 2006a].

While artefacts like jaggies, blurring and ringing can be avoided with adaptive
techniques, new artefacts might be introduced. Figure 6.16(a) shows stripes
or sweeps in the image, a painting effect that occurs when nedi is used for
the interpolation of the image. Also, random pixels are created in smooth
areas. Sometimes the result looks segmented (figure 6.16(b)). This is the case
when local binarization is used. Local binarization is a binarization procedure
where the threshold is defined for every pixel, using the values of neighbouring
pixels instead of all image pixels. Results can also suffer from important visual
degradation in finely textured areas.

6.2 Morphological interpolation: mmINT

In this section we present our own original non-linear interpolation technique
for black-and-white images. As we will see in section 6.4, it performs better
than several other techniques, both linear and non-linear.14 Since mathematical
morphology concepts are used in various steps of the algorithm, we will refer
to our new method as mmINT (Mathematical Morphological INTerpolation).

The purpose of mmint is to remove the jagged edges from a pixel-replicated

14Some of the results have been published in [Ledda et al., 2005] and [Ledda et al., 2006b].
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Figure 6.18: The difference between “jagged corners” (boxed) and “real corners”
(encircled).

image, by changing specific pixels from the background colour to the foreground
colour and vice versa. This will improve the visual result when we magnify a
binary input image.

The method uses the concept of “background pixel”, which we define as the
most frequent colour in the image. A schematic representation of the algorithm
is shown in figure 6.17. We summarize the different steps:

1. Pixel replication (section 6.2.1): First the image is pixel-replicated
by an integer factor M . The resulting image contains strong staircase
patterns because of the pixel replication (see the object in figure 6.3 for
example).

2. Corner detection (section 6.2.2): Using a combination of hit-miss trans-
forms, the algorithm determines the positions of corners, both real ones
and false ones (due to jaggies) in the image.

3. Corner validation (section 6.2.3): Some corners found in the preceding
step are real corners , which have to be retained in the interpolated image.
For example, the corners of the door and walls of the house illustrated in
figure 6.18 are real corners, because they belong there. The corners de-
tected on the roof are jagged corners , because the ideal roof is a diagonal
line which should not have jaggies. In a discrete image it is not possible
to construct a perfect diagonal line, it will always be a staircase pattern,
but we want to reduce the jagginess so that it becomes invisible (or at
least undisturbing). The aim of corner validation is to distinguish false
corners from real ones.

4. Hole filling (section 6.2.4): Some of the corners detected as jagged
corners cause artefacts after interpolation. We will explain this type
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(a) Original image (b) Pixel-replicated image (3×)

(c) Partial smoothing of jaggies (d) Interpolated image

Figure 6.19: The jagged edges have to be removed, by replacing the values of specific
pixels. The dotted lines show the orientation of the original line (a). The dots show
the pixels that will change value after interpolation.

of artefacts in section 6.2.4 and we will present a solution that removes
them. This procedure is performed once, during the first iteration step.

5. Pixel swapping (interpolation) (section 6.2.5): We swap the colour of
pixels classified as false corners, and the colour of some of their neigh-
bours.

The above operations (except the 1st and the 4th one) are repeated iteratively
(section 6.2.6), each iteration operating on the output image of the preceding
iteration.

To illustrate our method, we consider the case of enlarging an object consisting
of a thin line of foreground pixels (see figure 6.19). The result after pixel
replication is shown in figure 6.19(b) and is clearly jagged. The dotted lines
show the ideal boundaries of the magnified line.15 The ideal solution would be
to replace all (white) background pixels between the dotted lines with (black)
foreground pixels and to replace all foreground pixels outside the dotted lines
with background pixels. The iterative procedure aims at doing just that.

As we can see when we compare figure 6.19(b) to figure 6.19(c), jaggies can be
removed by altering the pixel values at the locations of object and background
corners. The positions of these corners can be located with the morphological

15One might note that we can also use the boundaries of the convex hull of the line. If we
do that, the lines will look thicker than originally intended.
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hit-miss transform, introduced in chapter 2. After the corner detection, which
will be fully discussed in section 6.2.2, corners that are a geometrical feature
of the image content (the so-called real corners) are detected, so they can be
retained after interpolation. To know if a corner is a real or a jagged corner,
we will introduce the concept of complementary corners in section 6.2.3. A
complementary corner of an object corner co

16 is a corner in the background
(or vice versa) that lies at specific relative coordinates with respect to co. We
also take care of hole artefacts, which will be discussed in section 6.2.4.

In the pixel swapping step (see section 6.2.5), we change the value (0 or 1) of
the pixels (and surrounding neighbours) detected as corners of a jagged edge.
Which pixels exactly need to be changed, depends on the magnification factor,
the iteration step and the corner orientation (i.e., upper-left (ul), upper-right
(ur), lower-right (lr) or lower-left corner (ll)).

At this point, lines with an orientation other than 0◦, ±45◦ or 90◦ are not yet
completely smooth.17

In our example, figure 6.19(c) shows the result of the first iteration step of
our method. The small arrows point to the next set of pixels that need to
be changed. The orientations of the arrows also show how the pixel swapping
evolves with respect to the originally detected corners: we start from a location
of a (false) corner, but in every iteration step the corner moves away from its
original position and the values of its surrounding pixels change. Therefore
the algorithm is repeated until all appropriate changes have been made, using
different (and larger) structuring elements in successive iteration steps for the
hit-miss transform (i.e., the corner detection) and pixel swapping step. The
final interpolation result of our example is shown in figure 6.19(d).

6.2.1 Interpolation by pixel replication

First, we magnify the image by a scaling factor (or magnification) M using pixel
replication (also known as nearest neighbour interpolation). The only restric-
tion on the scaling factor is that it has to be an integer value, the magnification
can be as high as we want.

Pixel replication is a simple interpolation technique: every pixel of the low-
resolution image is replaced by a square of M ×M pixels with the value of
the original pixel. If two pixels a and b are located at a distance of ∆ pixels
from each other, then they will be M∆ pixels away from each other, after pixel
replication. As a result, a blocked pattern (jagged edges or jaggies) becomes
visible (see the object in figure 6.3 for an example). Next, we will remove
those disturbing jaggies and let the lines appear less jaggy, as schematized in
figure 6.19.

16The corner co is defined by the pixel coordinates (xco , yco). This pixel is obtained in the
corner detection step using the hit-miss transform.

17We consider a horizontal line in the image oriented 0◦.
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(a) Original image (b) Pixels moved: (x, y) → (Mx, My)

(c) Structuring element (d) Dilation of (b) by (c)

Figure 6.20: Pixel replication (with magnification M = 2) using mathematical
morphology.

Pixel replication can be defined in terms of a mathematical morphological op-
eration (see figure 6.20): when the magnification is M , every object pixel (x, y)
(figure (a)) is first moved to a new location (Mx, My) (figure (b)), while all
other pixels are set to background. A binary dilation by a square structuring
element (figure (c)) then results in the pixel-replicated image (figure (d)). We
assume that the origin of the coordinate system of the image is at one of the
corners of the image. This convention also applies to the structuring element.
The side of the structuring element is M pixels.

6.2.2 Corner detection

If we examine figure 6.19(b), we notice that the jaggies can be removed by
removing or adding some pixels from or to the image set. These pixels are
respectively at the locations of object and background corners. In the figure
they are marked with a dot. We need the positions of these corners in order to
remove the jaggies.

The morphological hit-miss transform is a very useful tool for corner detection.
We have introduced this operator in chapter 2, section 2.4.4. The hit-miss re-
sult is a set containing the positions where the desired shape is present. Since
we will look for corners, we will further refer to this set as a corner map.
The hit-miss transform needs two structuring elements, one to erode the set of
object pixels and one to erode the set of background pixels.
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(a) B (foreground) (b) C (background)

Figure 6.21: Upper-left corner detection with the hit-miss transform. Specific struc-
turing elements are used. The black squares are pixels of the structuring element; the
cross is the origin of the structuring element.

Figure 6.21 shows the structuring elements B and C used for the detection
of an upper-left corner. Other variations are also possible: B (figure 6.21(a))
could be replaced by a square element; C (figure 6.21(b)) could be substituted
by a similar but more strict element with an extra pixel at the upper-left
position; etc. We have chosen the structuring elements B and C as shown in
figure 6.21, since they are compact, they produce the desired result and are
not too restrictive, i.e., they detect all corners that are possible jagged corners.
In section 6.2.4 we state some extra remarks about the choice of structuring
elements.

The other three corners (upper-right, lower-right and lower-left) are detected
using rotated versions of these elements.

We not only look for corners of the objects, but also for corners in the back-
ground. For the detection of object corners, we use the structuring element B
for the erosion of the foreground and structuring element C for the erosion of
the background. For the detection of background corners, the hit-miss trans-
form is performed on the complement of the image (i.e., we use structuring
element B for the erosion of the background and structuring element C for the
erosion of the foreground). This way we will have a total of 8 corner maps (4
object corner maps and 4 background corner maps).

6.2.3 Corner validation

Not all corners detected by the method described in section 6.2.2 need to be
changed. Some corners are real corners, which have to be retained in the
interpolated image. We have already explained that the corners of the door
and walls in figure 6.18 are real corners, but the corners detected on the roof
are jagged corners, because the ideal roof is a diagonal line without jaggies.

We have to determine which corner pixels should be transformed by the in-
terpolation part (section 6.2.5) (the jagged corners) and which should be left
intact (the real corners). To distinguish between both, we try to find for every
detected corner pixel one or more complementary corner pixels .

A complementary corner of a corner is a (nearby)18 corner of the opposite

18Initially, the complementary corners lie in a close neighbourhood of the corner pixel. As
we will see in section 6.2.6, the distance between the corner and its complement can increase.
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colour. The relative coordinates of this complementary corner are specifically
chosen. The existence of a complementary corner indicates the presence of a
jagged edge. The argumentation for this is the following: if a background corner
pixel is changed to an object pixel (which is done in the pixel swapping step,
section 6.2.5), then an object corner pixel must also change to background,
in order to keep the total number of foreground pixels, i.e., the global image
intensity, (quasi) constant. This global intensity is not exactly constant, since
in some cases more than one complementary corner is found for a corner. Also,
as we will discuss in section 6.2.5, when the magnification is even, the pixel
swapping of object pixels is not the same as for background pixels.

We look in the direction of the jagged edge for a complementary corner, and/or
we look in the direction across the edge for such complement, and/or we look
inside a small window around the considered corner pixel. We will discuss this
more thoroughly in the following subsections. In figure 6.19(b), for example,
the corner pixels, both from the background and the foreground, are marked
with a dot. These corners are each other’s complement, at least the ones that
are situated at a distance of no more than 3 pixels away from each other.

Complementary corners can be classified into two classes: complements that lie
across the edge and complements that lie along the edge. If we find at least one
of such complementary corners, then we state that the considered corner pixel
is a jagged corner. If no complementary corner can be detected, the corner is
deleted from its corner map. We will now discuss both classes in more detail.

6.2.3.1 CC I: Search for complements across the edges

Complementary pixels lie across or along a jagged edge. In this subsection we
look for pixels that are positioned at the opposite side of a line. If we detect a
complementary corner of this type, we label it as cc i (Complementary Corner
of type I ).

Specific neighbour based approach Suppose we have a jagged line such
as in figure 6.19. In the original low-resolution image, this line has a thickness
of 1 pixel. After pixel replication with magnification M this thickness is M
pixels (3 in the example figure). With the corner detection step (section 6.2.2)
we find several corner pixels, both from the background and the foreground.
When the line is indeed thin and jagged, complementary (background) corners
are detected for every object corner at a distance of M pixels at the other side
of the line. This distance is measured either in a straight vertical or straight
horizontal direction.

Whether the possible complementary corner is positioned at a vertical or hor-
izontal distance depends on the orientation of the line. When the orientation
β lies in the interval 45◦ < β < 135◦ (or −135◦ < β < −45◦), the possible cc i
pixel is located at M pixels in the horizontal direction. If 135◦ < β < 225◦
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Figure 6.22: Complementary corners: the background corner (black dot) has two
complementary corners (white dots) at specific relative coordinates.

(or −45◦ < β < +45◦), the possible cc i pixel is located at M pixels in the
vertical direction.

For lines with orientation ±45◦, both directions are possible. Figure 6.22 shows
part of a pixel-replicated line (M = 3) with orientation −45◦. For such a line
a background corner has two complementary corners (and vice versa), each
across an edge. Note that the complementary corners are of the same type: in
the figure they are all three lower-left corners.

To summarize: a cc i pixel has the same corner orientation as the corner under
investigation. It is located M pixels away, either in the horizontal or vertical
direction, at the other side of the jagged line. If at least one complementary
pixel is found, then the corner pixel (and also its complement(s)) is classified
as a jagged corner. If not, then this corner pixel is removed from its corner
map.

Window based approach The above solution (i.e., the specific neighbour
based approach) is elegant and efficient, because it only looks at two specific
relative locations. An alternative (i.e., the window based approach), which uses
the morphological dilation, is also possible.19

Again we suppose a pixel-replicated line with a thickness of 1 pixel in the
low-resolution image that needs to be deprived from its jaggies. Figure 6.23
shows part of such a line (β = −45◦, and 3× magnified), with a background
corner pixel (black dot) and the union of all the object corner maps (white
dots) marked. We take the intersection of this union map and the dilation of
the aforementioned background corner by a square structuring element B (the
window in the figure). If this intersection is not empty, then the corner is a
jagged corner. Otherwise, the background corner is removed from its corner
map. In other words, if we find at least one object corner inside an area
around the considered background corner pixel, then this background corner is
considered to be a jagged corner. The same approach is taken for the object
corners.

19This search technique is less efficient than the previously explained one, since it checks
more neighbouring pixels. We mention it here, because our first implementations of mmint
search for cc i pixels this way.
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Figure 6.23: Complementary corners in a window with size 2M − 1 (the area inside
the dotted box). Black dot: background corner; white dots: object corners.

We can formulate this mathematically for every pixel r. Here, we do this for
the search of complements of a lower-left background corner pixel:

Abg
ll (r)≡ (Cbg

ll (r)⊕B) ∩ (Cfg
ul ∪ Cfg

ur ∪ Cfg
lr ∪ Cfg

ll )

⇒
{

Cbg
ll (r) = 0, if Abg

ll (r) = ∅
Cbg

ll (r) = 1, if Abg
ll (r) 6= ∅ .

(6.20)

The sets Cq
p are the corner maps, with p the type of corner (i.e., its orientation),

and q foreground or background. Similar equations can be formulated for the
other corner maps.

The size of the structuring element B is (2M − 1) × (2M − 1), with M the
desired magnification, and the origin in the centre of the square. Figure 6.23
illustrates this. The size of the window (i.e., the square structuring element) is
chosen such that the upper-left pixel and the lower-right pixel in the figure are
not covered by this window. This ensures that, if one of these pixels indicates
a real corner, this pixel will indeed be detected as a real corner.

The two discussed search methods look for cc i pixels and classify the con-
sidered pixel as a jagged corner if at least one cc i pixel is found. It works only
for thin line drawings, since the algorithm looks for complementary corners in
the direct neighbourhood of the pixel. For solid objects, a different method,
discussed in subsection 6.2.3.2, has to be used.

The specific neighbour based approach and the window based approach do not
find the same complementary corners. Indeed, when we compare figure 6.22
to figure 6.23, we see that both methods detect different complements. With
the former method we detect (per corner pixel) two complements at most, with
the latter we can detect up to four complements. This is only true in the first
iteration step.

6.2.3.2 CC II: Search for complements along the edges

Complementary corners can also be found along the edge of an object (instead
of across). If at least one complementary corner is found, the corner under
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Figure 6.24: Complementary corners: the background corner (black dot) has two
complementary corners (white dots) at specific relative coordinates.

investigation is classified as a jagged corner. If not, then the corner is removed
from its corner map.

Suppose we have a jagged edge, which may be the border of a solid object.20

Figure 6.24 shows a part of a diagonal line (orientation β = −45◦), 3× mag-
nified. A detected lower-left background corner is marked with a black dot.
The search for Complementary Corners of type II , cc ii, is performed along
the edge. In the figure these complements are marked with a white dot. These
corners are upper-right object corners. This can be generalized:

Corner: upper-left ⇒cc ii: lower-right,

Corner: upper-right⇒cc ii: lower-left,

Corner: lower-right ⇒cc ii: upper-left,

Corner: lower-left ⇒cc ii: upper-right.

(6.21)

We can specify the location of possible complements by relative coordinates to
the examined pixel:

M − 1 pixels in one direction,

1 pixel in the other direction,
(6.22)

where M is the desired (integer) magnification. The direction and sense depend
on the corner orientation. In section 6.2.6.2 we generalize this equation for the
higher iteration steps.

6.2.3.3 Combination of CC I and CC II searches

We can combine the search for cc i and cc ii. This way we smooth edges
and lines by looking for complementary corners across a thin line, as well as

20When we search for cc i pixels, we will only find them if the edge belongs to a thin line.
If we look for cc ii pixels, the thickness of the line plays no role, since we search along the
edge.
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(a) Before interpolation (b) Without hole filling (c) With hole filling

Figure 6.25: Barely touching pixels (encircled in figure (a)) can give artefacts after
interpolation. Hole filling prevents this.

along an edge. The combination is straightforward: if we find at least one
complementary corner, cc i or cc ii, then the considered corner pixel indicates
a jagged edge or line and is retained in its corner map.

This combination has the only disadvantage that (at most) twice as much pixels
must be investigated to verify the existence of a complementary corner.

6.2.4 Hole filling

After the previous algorithm steps, some of the corners detected as jagged
corners are not wanted, because they cause artefacts. We will now explain this
type of artefacts and we will show how to remove them. This procedure is
performed once, during the first iteration step.

When we have a line where some pixels are only point-connected, i.e., a line
with pixels connected only in 8-connectivity (figure 6.25(a)), then some of the
detected corners are unwanted. The encircled pixels in the image are detected
as object corners, but their neighbours are also detected as background corners.
If all these corners are validated as jagged corners, then hole artefacts are
introduced after the pixel swapping (figure 6.25(b)). This hole filling step
removes certain corner pixels from their respective corner map, so that the
interpolation result will look good (figure 6.25(c)), i.e., without unwanted holes.

The circumstances in which these artefacts appear, depend on the search tech-
niques used in section 6.2.3. If we use the window based approach, then all
situations with 8-connectivity lines, as shown in figure 6.25(a), will introduce
artefacts. When we use the specific neighbour based approach (cc i or cc ii),
then not all the corner pixels adjacent to the considered corner pixel are de-
tected as complement, but only corners at specific relative locations (see the
previous section). Hole artefacts then only appear at V-shaped lines. Fig-
ure 6.26 shows such a shape. The pixel with the white dot is a validated object
corner pixel, because there is a cc i pixel (the most left pixel marked with a
black dot), as well as a cc ii pixel (the other pixel with a black dot). If this
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Figure 6.26: A V-shaped line. The pixels marked with a black dot are comple-
mentary corners of the pixel marked with a white dot (the left most one is cc i, the
uppermost one is cc ii).

Figure 6.27: The structuring element for the hole filling.

object pixel is removed in the interpolation step (section 6.2.5), then a hole
appears. This is illustrated in figure 6.25(b).

We have to remove these (object) corner pixels from their corner map, obtained
in section 6.2.3. Suppose we want to filter out the upper-left corners that
cause artefacts. We take the union of the pixel-replicated image A with all
the background corner maps Cbg

p (with p = {ul, ur, lr, ll}). In our example,
figure 6.25(a), this is the set of the black pixels and the pixels with the black
dots. Within this union, we look for set elements that form a cross shape, like
in figure 6.27. The choice for this cross-shaped element comes from the shape
of the artefact: in figure 6.25(b) we encircled a hole and its surrounding pixels.
The shape is a cross. If we find such cross-like elements, then the pixels at
these positions are not allowed to change during the interpolation sequence.
We can define the updated upper-left (object) corner map as:

C ′fg
ul = Cfg

ul \
(
(
⋃

p

Cbg
p ∪A)	B

)
. (6.23)

The structuring element B is shown in figure 6.27. Similar equations can be
formulated for the other foreground corner maps.

This part of the algorithm introduces an asymmetry between the black and
white pixels: the object and background pixels are not treated in the same
way. The hole filling explained with equation (6.23) is only performed on the
object corner maps.

It is therefore important to know which pixels represent the background and
which ones the foreground. If we define the wrong colour as background, the
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Figure 6.28: Hole filling produces wrong results when the wrong colour is chosen as
background.

interpolation result looks quite different. This is illustrated in figure 6.28, which
is the interpolation result of figure 6.25(a) when black is considered background
instead of white (figure 6.25(c)).

We define the background colour as follows: we count the white and the black
pixels in the image and the colour that is most present is considered back-
ground, which indeed is mostly the case.21 The hole filling step adds more
foreground pixels than background pixels to the magnified image, since now
some object corner pixels will not be swapped in the next step of the algorithm.

6.2.4.1 Alternative hole filling

The removal of the hole artefacts can be accomplished in an alternative way,
without the inclusion of the hole filling step in the algorithm. The solution
is to use other (more strict) structuring elements for the corner detection in
section 6.2.2. The asymmetry issue is still present, but now in the form of the
used structuring elements for the hit-miss transform.

We still use the structuring elements shown in figure 6.21 for the detection
of the background corners, so the same background corners in our example
figure 6.25(a) will be detected (the pixels marked with a black dot). For the
alternative hole filling, we use the structuring elements shown in figure 6.29 for
the object corner detection. This way we exclude the encircled object pixels in
figure 6.25(a) as object corners during the corner detection step itself, but still
detect the other object corners (the pixels marked with a white dot). As a re-
sult, the hole artefacts will not become present at the 8-connectivity locations.

We have to mention that in some rare situations the interpolation results
between the two hole filling approaches can differ. For example, figure 6.30(a)

21Most binary images contain some objects on a background that occupies more pixels
than the objects. Exceptions are: large solid objects (relative to the image resolution) or
large objects with a lot of texture, a symmetrical texture such as a checkerboard pattern,
two identical image parts that are each other’s complement, etc.

In these situations, the definition of foreground and background could be done arbitrarily
or locally. The latter principle is used in section 6.5 where we discuss a greyscale extension
of mmint.
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(a) B (foreground) (b) C (background)

Figure 6.29: Alternative structuring elements for the hit-miss transform for an
upper-left corner detection.

(a) Hole filling approach (b) Different structuring elements

Figure 6.30: On some rare occasions, different results are obtained if the hole
filling step is replaced by a corner detection using different structuring elements for
foreground and background.

shows a pixel-replicated image where the detected and validated corner pixels
are marked with a dot. In figure (b), the alternative approach is used, i.e., an-
other set of structuring elements is used for the detection of the object corners
as for the background corners. After the hole filling step, the blue encircled
corner pixels in figure (a) are removed from their corner map, but they make it
possible to validate the pixel in the red rectangle as a jagged corner. This is not
the case with the alternative approach. These subtle differences can improve
the interpolation of text.

6.2.5 Pixel swapping

We have first magnified an image using pixel replication (section 6.2.1). Then
we have detected jagged edges and took care of hole artefacts (sections 6.2.2,
6.2.3 and 6.2.4). We now replace some specific background pixels with fore-
ground pixels, and vice versa.22 The pixel swapping is the actual interpolation
step, since the previous steps merely perform magnification, corner detection
and validation, while this step actually alters image pixels so the image would

22In other words, if a pixel r has value v(r) (which is 0 or 1), its swapped value is v′(r) =
1 − v(r).
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(a) Before interpolation (b) After interpolation

Figure 6.31: Pixel swapping for M = 3. The detected corner pixels (marked with a
dot) are changed from foreground to background, and vice versa.

look not jagged. Not only the detected corner pixels are affected, but also some
of their neighbouring pixels, depending on the used magnification.

Figure 6.31 shows a diagonal line, pixel-replicated with magnification M = 3.
In figure (a), the jagged corners are marked with a dot (white for object corner
pixels and black for background corner pixels). The pixel swapping (figure (b))
changes the value of these pixels to their opposite colour, i.e., black becomes
white and white becomes black.

Figure 6.32 shows the same diagonal line, but now pixel-replicated with M = 5.
To get rid of the jaggies, the change of only the corner pixels is not enough
(figure 6.32(c)). Also some of their neighbouring pixels must be swapped.
These extra pixels are marked with a grey dot in figure (a). The desired
interpolation result is shown in figure (b).

The principle of the interpolation step is to perform a morphological dilation
by a specific structuring element on the detected (and validated) corner pixels,
treating each corner map separately. The result is used as a mask. The pixels
in the mask with value 1 will be swapped from black to white, or from white
to black. The mask Aq

p is thus:

Aq
p = Cq

p ⊕ nB , (6.24)

with B a base structuring element that resembles a corner (figure 6.33(b)).
nB is defined in chapter 2, equation (2.58). q is either fg or bg, and p =
{ul, ur, lr, ll}. The structuring element shown in figure 6.33(b) is used for an
upper-left corner. Rotated versions are used for the other corner orientations.
The value of n is discussed in the following subsections.

All interpolation structuring elements are designed to transform the jagged
edges or lines into a staircase pattern with a step size of one pixel. When we
look at figure 6.19(b), we notice a staircase pattern with steps or plateaus of
6 pixels long and 3 pixels high. Our goal is to transform these plateaus into a
staircase pattern as shown in figure 6.19(d), namely 2 pixels long and 1 pixel
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(a) Before interpolation (b) After interpolation

(c) After interpolation, only corners

Figure 6.32: Pixel swapping for M = 5. The detected corner pixels (marked with
a black or white dot) and surrounding pixels (marked with a grey dot) are changed
from foreground to background, and vice versa. Figure (c) illustrates the result if
only the corner pixels are swapped.

high. There are differences between each iteration step and also between odd
and even magnifications.

6.2.5.1 Magnification by an odd factor

We dilate every corner map n times with its respective base structuring element
(figure 6.33(b) is the structuring element for the upper-left corners). In the case
of an odd magnification M > 1 we get:

n =
⌊M

2

⌋
− 1 =

M − 3

2
. (6.25)
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(a) M = 3 (b) M = 5: the struct. elem. (c) M = 7

Figure 6.33: Not only the corner pixel value (cross) will change its value in the
interpolation part. Depending on the magnification, also neighbouring pixels change.

This value is experimentally determined, by investigating the interpolation be-
haviour. We pursue the smallest possible (and thus least visible) staircase pat-
tern. The resulting structuring element nB is shown in figure 6.33 for M = 3,
M = 5 and M = 7.

The result is an expanded corner map Aq
p (equation (6.24)) that is used as a

mask that specifies which pixels must change value. For an object corner map,
the mask defines the pixels that become background. For a background corner
map the opposite is true.

So, at magnification 3 the created mask will be identical to the corner map,
because the corner map is not changed by the dilation operation.23 At mag-
nification 5 also two neighbours (the shape of the structuring element) will be
added to the mask. The values of the pixels in the obtained mask are swapped.
We have already shown interpolation examples for M = 3 and M = 5 in
figures 6.31 and 6.32, respectively.

6.2.5.2 Magnification by an even factor

For magnification by an even factor the principle is the same, but the object
corner maps are treated differently from the background corner maps. Consider
the 4× magnified line in figure 6.34(a). The detected jagged corners are marked
with a dot. If we use n = 0 for background and foreground, we get figure 6.34(b)
as a result. For n = 1 we get figure 6.34(c). The interpolated line is in both
cases an oscillating one. Either we removed too few background pixels, or
too many. A similar remark can be made for the object pixels. The correct
interpolation is shown in figure 6.35, where more background pixels are swapped
to object than vice versa.

We must use different structuring elements (i.e., n values) for the pixel swapping
of the foreground as for the background. As a consequence, there will be more
or fewer object pixels in the image after interpolation. We choose to add more
foreground pixels in the first iteration step.

The value n that defines the size of the structuring element, and thus the mask

23Remember that 0B = 0, so A ⊕ 0B = A.
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(a) Before interpolation (b) After, with n = 0 (c) After, with n = 1

Figure 6.34: Pixel swapping for M = 4. If both the background and foreground
corners use the same n value, undesired results are obtained.

Aq
p, is:

n =
⌊M

2

⌋
− 1 =

M − 2

2
for the background, (6.26)

n =
⌊M

2

⌋
− 2 =

M − 4

2
for the objects. (6.27)

Magnification 2 is a special case, because n, as defined in equation (6.27), can
have value −1. When this is the case, the (object) corner pixels will not change,
i.e., we do not apply the interpolation as stated in equation (6.24).24

6.2.6 Higher orders

The former steps will interpolate lines that are tilted ±45◦ (and of course 0◦

and 90◦) correctly, but lines at other orientations are only partly interpolated.
This can be seen in figure 6.19(c). The jaggies are only removed in the direct
neighbourhood of the original corners. Therefore, in order to obtain better
results (like figure 6.19(d)), we repeat the procedure from step 6.2.2 on (the
corner detection), until all corner maps are empty.

For illustration purposes we always used straight lines, but as we will see in
section 6.4 with the experimental results, mmint interpolates curved lines as
well. This is an intrinsic property of mmint since the interpolation occurs
locally at jagged corners, without any knowledge about the curvature of the
line.

The structuring elements used in the corner detection and the pixel swapping
sequence will be different in each iteration. We will now look at the differences
with the first iteration.

24This is also true for odd magnifications: when M = 1, equation (6.25) results in n = −1,
so we do not interpolate the image. This is logical, since for a magnification of 1× no
interpolation is needed.
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(a) Before interpolation (b) After interpolation

Figure 6.35: Pixel swapping for M = 4. While the detected background corner
pixels (marked with a black dot) and surrounding pixels (marked with a grey dot)
are swapped, this is not the case for the surrounding pixels of the object corner pixels
(marked with a white dot).

6.2.6.1 Corner detection

As we can see in figure 6.19, the corners are not only shifted, but the shape
of the corners has also changed. In the first iteration step, the shape of the
corners is defined by the structuring elements B and C in figure 6.21. After
the first iteration, corner pixels (and neighbouring pixels) are swapped, and
thus new corners are created. Most of these new corners must be kept, and we
cannot re-use the same structuring elements from the first step, because this
would remove them.

Therefore, the structuring elements for the corner detection part (section 6.2.2)
have to be altered (see figure 6.36). These elements are chosen such that they
gradually, with every iteration step, improve the smoothness of the jagged line,
starting from the original jagged corners and then moving further away (as
shown in figure 6.19). In the first iteration step there are 4 corner orientations,
but from step 2 onwards the structuring elements are less symmetric (as they
are more elongated), which implies now 8 different corner orientations (three
rotational variants and mirrored versions). The total number of corner maps
(foreground and background) hereby increases from 8 to 16.

6.2.6.2 Corner validation

CC I If we use the window based approach to search for complementary
corners, then we need to define a structuring element. In the first iteration
step, as we explained in section 6.2.3.1, this is a square with side 2M − 1
pixels, with M the magnification. In the iteration step τ + 1, the detected
corners are at another location than in step τ . This can be seen in figure 6.19.
If we use the same structuring element for the higher orders (τ > 1), we will not
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(a) B (1st step) (b) B (2nd step) (c) B (3rd step)

(d) C (1st step) (e) C (2nd step) (f) C (3rd step)

Figure 6.36: The hit-miss structuring elements are different for every iteration step.
The arrows and plus signs indicate that every iteration step an extra pixel is added
to the structuring element at those locations.

find any complementary pixel. Therefore, we change the size of the structuring
element (the window) to (2M + 1) × (2M + 1) pixels. In figure 6.19(c), for
example, where M = 3, we now find cc i pixels, which was not possible with
the smaller window size.

This window size of 2M + 1 pixels is used for all τ > 1, so it does not increase
with τ . Complementary corners of this type (cc i), i.e., complements that
lie at the other side of a thin line, move along every iteration. The distance
between a corner and its complement therefore remains constant, namely M
pixels horizontally or vertically. The reason why we use a window size of 2M−1
pixels in the first iteration is to ensure that real corners are not considered as
jagged corners (see section 6.2.3.1). We do not encounter this problem for
τ > 1.

Equation (6.20) needs a small update for τ > 1: in the previous subsection we
mentioned the increase in number of corner maps from 8 to 16. Equation (6.20)
therefore becomes:

Abg
ll,1(r)≡ (Cbg

ll,1(r)⊕B) ∩ (
⋃

p,s Cfg
p,s)

⇒
{

Cbg
ll,1(r) = 0, if Abg

ll,1(r) = ∅
Cbg

ll,1(r) = 1, if Abg
ll,1(r) 6= ∅ .

(6.28)

The sets Cq
p,s are the corner maps, with p the type of corner, s one of the two

mirror versions of that type of corner, and q foreground or background. Similar
equations can be formulated for the other corner maps.
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(a) 1st step (b) 2nd step (c) 3rd step

Figure 6.37: The interpolation structuring element is different for every iteration
step. The arrow indicates that every iteration step the pixel moves up one place at
that location.

CC II In iteration step τ + 1, the detected corners are at another location
than in step τ . This can be seen in the example figure 6.19. This is true for
cc i pixels, but also for cc ii. The latter type of corner pixels move away
from each other. By examining the motion of those pixels, we can generalize
equation (6.22):

M − 1 pixels in one direction,

1 + (τ − 1)(M − 1) pixels in the other direction.
(6.29)

τ = 1, 2, . . . is the iteration step. The direction and sense depend on the corner
orientation.

A disadvantage is that in the result, some corners that are part of a jagged edge
are not removed because the search rule is too strict. Indeed, while removing
jaggies along an edge, the complementary pixels move away from each other.
It is possible that one of these pixels reaches the end of the edge before the
other one does. If at the next iteration step the latter corner is detected, no
complementary pixel will be found anymore and the pixel will be considered a
real corner, although jaggies might still be present. Therefore, a combination
of cc i with cc ii gives the best results, because cc i then might be able to
validate corners as jagged ones when cc ii cannot (or vice versa).

6.2.6.3 Pixel swapping

Also for the interpolation part other structuring elements are needed in steps
τ > 1 compared to step 1. They are shown in figure 6.37. There too the loss
in symmetry implies 8 different orientations.

As we have treated magnifications by an odd factor differently from magnifica-
tions by an even factor in section 6.2.5, there is also a difference between odd
and even iteration steps.

Magnification by an odd factor Equation (6.25) is used to define the
value n (for nB in equation (6.24)) for odd magnifications. We can also use
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this equation for every τ > 1:

n =
⌊M

2

⌋
− 1 =

M − 3

2
. (6.30)

Magnification by an even factor For even magnifications, on the other
hand, there is a difference in treatment between the object and background
corners: equations (6.26) and (6.27) are used for the pixel swapping in the
first iteration step. In this first step, more background pixels are changed to
foreground than the opposite. Therefore we revert the situation for the second
iteration step: more object pixels are changed to background than the opposite.
The third iteration step we revert again, etc. This way we can keep the global
intensity quasi constant.

For the odd iterations (for an even magnification) we have:

n =
⌊M

2

⌋
− 1 =

M − 2

2
for the background, (6.31)

n =
⌊M

2

⌋
− 2 =

M − 4

2
for the objects. (6.32)

For the even iterations (for an even magnification) the situation is reversed:

n =
⌊M

2

⌋
− 2 =

M − 4

2
for the background, (6.33)

n =
⌊M

2

⌋
− 1 =

M − 2

2
for the objects. (6.34)

Magnification 2 is a special case, because n can have value −1. When n = −1,
no pixel swapping is done on those corner pixels (either object or background
corner pixels, depending whether equation (6.31) or (6.34) results in n = −1).

6.2.7 Optimizations

Several options are available to improve the speed of the algorithm and the
quality of the interpolation results.

• The first optimization is the localization of the possible corners in the
next iteration. These locations can be calculated from the locations in
the previous step using the magnification and iteration step, and knowing
what kind of corner (which orientation and whether or not mirrored) the
pixel is. Corner pixels (and neighbouring pixels) are swapped. Possible
new corner pixels will emerge along the edge, but we know in which
direction to search.
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Because the odd and even magnifications are treated differently in the
pixel swapping step, the treatment here is also different for odd and even
magnifications.

For odd magnifications the pixel displacement is:

⌊M

2

⌋
=

M − 1

2
. (6.35)

The direction of the displacement depends on the kind of corner. We
have the following possibilities:

Corner: upper-left ⇒New: right or down,

Corner: upper-right⇒New: left or down,

Corner: lower-right ⇒New: left or up,

Corner: lower-left ⇒New: right or up.

(6.36)

If the magnification is even, then the displacement is, for odd iterations :

⌊M

2

⌋
=

M − 0

2
for the background, (6.37)

⌊M

2

⌋
− 1 =

M − 2

2
for the objects. (6.38)

If the magnification is even, then the displacement is, for even iterations :

⌊M

2

⌋
− 1 =

M − 2

2
for the background, (6.39)

⌊M

2

⌋
=

M − 0

2
for the objects. (6.40)

The direction of the displacement is as stated in equation (6.36).

In the next iteration step, we only perform a hit-miss transform on these
pixels for the corner detection. This reduces the calculation time, because
without this knowledge we would have to scan the entire image again.25

This also takes care of possible artefacts: two regions that are inter-
polated independently (i.e., pixels are swapped and corners move every
iteration step) and that meet each other can create pixels that acciden-
tally satisfy the hit-miss condition. These pixels are now excluded, and
only pixels that are expected to be possible corners will be investigated.
This procedure also ensures that the algorithm converges.

• In the non-optimized version of the algorithm, there are 16 different
corner maps with each the size of the (magnified) image. These maps

25The optimization suggestion in the next paragraph is closely related to this suggestion.
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are stored as binary images, and only at pixels with value 1 some oper-
ation26 is performed. If only these 1-pixels are stored in lookup tables
that contain their coordinates, the image does not need to be scanned
completely, which means a further reduction of the calculation time (and
also of computer memory).

• Another optimization option has already been mentioned: the hole filling
solution is incorporated in the corner detection part, using different struc-
turing elements for the creation of the foreground corner maps as for the
background corner maps. This also improves the interpolation of some
characters in text.

• Of course it is also possible to stop repeating the algorithm after a certain
number of iteration steps, but this implies a loss in interpolation quality.
This option gives much freedom to the user: quick results can be obtained
when only calculating one or two iterations. An “ideal” result is possible,
but takes more time to calculate.

6.2.8 Further discussion

The interpolation method mmint is a technique based on mathematical mor-
phology that works very well on binary images, like logos, cartoons and maps.
A visual study and comparison with other interpolation techniques is presented
in section 6.4.

mmint can be classified as a restoration method (see section 6.1.4), because
it improves a pixel-replicated image by removing the jagged edges. From an-
other point of view, it is also an edge-based interpolation technique, because it
specifically looks for corners of jagged edges.

We emphasize that errors in the original image, e.g. noise, will appear in the
magnified image, and will be interpolated by mmint. Isolated pixels that
are not removed before using mmint will show up as magnified blocks after
interpolation. If this is undesirable, then first some pre-processing with a noise
filter must be performed. If the original image does not look good, e.g., text
that has been rasterized at a very low resolution, then the interpolated result
will not be visually attractive, although the jaggies have been removed. In this
respect, mmint is not a restoration method, only regarding interpolation (i.e.,
removing jaggies from a pixel-replicated image).

6.3 Alternative implementation: mmINTone

In section 6.2 we described a new interpolation algorithm, mmint, based on
mathematical morphology. mmint is an iterative procedure, where every iter-

26By some operation we mean the hit-miss transform in the corner detection step, the
corner validation, and the swapping of pixel values (validated corner pixels and possibly
surrounding pixels).
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Figure 6.38: Schematic representation of the algorithm of mmintone.

ation step more and more jaggies are removed. This can be a time consum-
ing operation when the input image is large and/or when a lot of lines are
present in the image with “unfavourable” orientations. By unfavourable we
mean lines with orientations near (but not equal to) 0◦ or 90◦, because these
are jagged lines with long plateaus which need many interpolations before com-
pletely smoothened.

This section contains the description of a different approach to the same prob-
lem. The same results as with mmint are pursued. The main difference is
the fact that only one iteration step is needed: after the jagged corners are
detected, all the appropriate pixels are swapped in one treatment, instead of
several iteration steps. This algorithm is called mmINTone and is schematized
in figure 6.38.

The algorithmic structure of mmintone is almost identical to the one of mmint.
We distinguish the following steps:

1. Pixel replication: Section 6.2.1: First the image is pixel-replicated
by an integer factor M . The resulting image contains strong staircase
patterns because of the pixel replication.

2. Corner detection: Section 6.2.2: Using a combination of hit-miss trans-
forms, the algorithm determines the positions of corners, both real and
false (due to jaggies) in the image.

3. Corner validation: Section 6.2.3: Some corners found in the preceding
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step are real corners, which have to be retained in the interpolated image.
The aim of corner validation is to distinguish false corners from real ones.

4. Hole filling: Section 6.2.4: Some of the corners detected as jagged
corners are not wanted, because they cause artefacts. We remove these
artefacts. As we have discussed, the hole filling can be combined with
the corner detection, using other structuring elements for the hit-miss
transform.

5. New pixel swapping (new interpolation): Section 6.3.1: We swap the
colour of pixels classified as false corners, and the colour of some of their
neighbours. This step is different from the one in section 6.2.5. We
discuss this in the next section.

Because we introduce a new pixel swapping step, the above operations do not
need to be repeated iteratively.

The new pixel swapping part combines the different iterations (corner detection,
corner validation and pixel swapping). We study the behaviour of the iterative
mmint and mimic it by changing all relevant pixels at once. For this, we
(re-)introduce the concept of plateaus, i.e., the steps in the staircase pattern of
the edges.

6.3.1 New pixel swapping for step 5

The procedure for pixel swapping is completely different from the procedure
explained in section 6.2.5. The approach in mmint is to change pixel values
at the location of the detected jag corners. After that, the different steps for
corner detection and corner validation are repeated in order to locate new jag
corners. These corners will then be swapped. This iteration is repeated until
all jaggies have been removed form the image.

With mmintone, we swap the value of the appropriate pixels at once. The
length of the plateau of a jagged line determines the number of pixels that
need to change at that location. A plateau is a step in the staircase pattern.
Its length is always longer (or equally long) than its height, which is always M
pixels27 for the pixel-replicated image, with M the magnification. In figure 6.19
for example, the plateaus in the pixel-replicated image are 2M pixels long.
The height is indeed M pixels. Two object pixels are changed to background
and two background pixels are changed to object, which results in M smaller

27The reason why the height of a plateau is always M pixels in the pixel-replicated image
is the following: in the corner validation step we search for complementary corners at specific
locations. These locations must be close enough to the considered corner, otherwise the
corner is classified as a real corner. Real corners are not interpolated (pixel swapped), and
thus plateaus with heights greater than M pixels will not be considered in the (new) pixel
swapping step.
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k = 3
k = 2
k = 1

Figure 6.39: A plateau consists of several layers. The figure shows an M = 3
magnified image. The plateau is 2M pixels long.

plateaus with length 2M
M = 2. This is generally true:

length(P ) = nM⇒ length(Pi) = n

height(P ) = M ⇒ height(Pi) = 1
, (6.41)

with P the initial plateau (in the pixel-replicated image), n a strictly positive
integer value, and Pi the plateaus that replace P after interpolation.

A plateau consists of several layers (see figure 6.39). The first layer is the one
of the detected corner pixel (the white dot in the figure). The next layer lies
below the first layer.28 A plateau (and the layers) can be vertically oriented.
Notice that a corner pixel can be part of two plateaus, a vertical one and a
horizontal one. Since the height of the plateau is less or equal to the length of
the plateau, this only occurs at edges with orientation ±45◦.

How the pixels are swapped, is defined by the magnification, the length of the
plateau, and a distinction is made between odd and even magnifications.

6.3.1.1 Magnification by an odd factor

Taking equation (6.41) into consideration, we can derive for each layer how
many pixels need to change value. For an odd magnification M and k as the
layer index, this number ∆k will be:

∆k =
n

2
(M − 2k + 1) . (6.42)

n is a strictly positive integer value that defines the length of the plateau,
nM . Index k is a strictly positive integer within a range that depends on the

28In figure 6.39, the following layer lies indeed below the current layer. More generally, we
interpret “below” as a position away from the opposite colour of the plateau.
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magnification:

0 < k≤ M−1
2

≤
⌊

M
2

⌋
.

(6.43)

In the example illustrated in figure 6.39, k = 1 is the only layer where the pixel
values change. With values M = 3 and n = 2 we can calculate that two pixels
will change value, namely the detected corner pixel and its neighbour (with the
same pixel value) on the same layer.

6.3.1.2 Magnification by an even factor

For an even magnification, the situation is a little more complicated. Just as
with mmint (section 6.2.5.2), object pixels are treated differently from back-
ground pixels. For the change of object pixels into background pixels we have
found that the number of pixels to change is:

∆k =
n

2
(M − 2k + 1)− 1

2
(n mod 2) . (6.44)

For background pixels the number of pixels to change is:

∆k =
n

2
(M − 2k + 1) +

1

2
(n mod 2) . (6.45)

Index k is a strictly positive integer within a range that depends of the magni-
fication:

0 < k≤ M
2

≤
⌊

M
2

⌋
.

(6.46)

The expression n mod 2 in equations (6.44) and (6.45) is the modulo of n to 2.
If n is even, then n mod 2 = 0 and the equations reduce to equation (6.42) for
odd magnifications.

6.3.1.3 Calculation of length of plateau

The new pixel swapping step we just described relies on the value n. This value
can be derived from the length of the plateau, i.e., length(P ) = nM . In other
words, we first need to know length(P ) before we can perform the one-step
interpolation.

Consider a pixel classified as a jagged corner. Figure 6.40 illustrates a few
possible situations of lines. The pixel marked with a white dot is an upper-left
corner pixel. The background pixel marked with a black dot is a complementary
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(a) (b) (c)

Figure 6.40: An upper-left corner (marked with a white dot) and its horizontal
plateau. The blue encircled region marks the end of the plateau.

corner (cc ii). The plateau this upper-left corner pixel is part of, extends to
the right or downwards. Similar conclusions can be drawn for the other corner
orientations.

Detecting the end of the plateau, and thus its length, is simple: scan the
plateau, starting from the jagged corner c0 = (i, j), and check the following
conditions:

• Has the pixel under investigation the same value as the corner pixel (the
starting point c0)?

• If so, has the pixel that lies “above”29 the plateau the opposite colour as
the corner pixel?

The pixel that came right before the first pixel that does not satisfy these two
conditions, marks the end of the plateau.

In our example, we first scan to the right. Afterwards we must also do this
downward, but this is not shown in the figures. The first condition is checked
by investigating the pixels (i, j + p) for p > 0. In figure 6.40(a), the final value
for p (before the condition is not satisfied) is pe = 2. For figures (b) and (c),
pe = 5.

We notice that the value for pe, that marks the position of the end of the
plateau, is incorrect in figure 6.40(b) (the boxed pixel), because above the
layer there are object pixels present that are part of another plateau of the
staircase. The end of the plateau should be marked at p = 2. Therefore, we
also check the second condition by looking at pixel (i− 1, j + p) (for p > 0) to
see if this is background. If both conditions are true, then the pixel (i, j + p) is
still part of the plateau. This way we can find the end of the plateau: pe = 2
for figures (a) and (b), and pe = 5 for figure (c). The following pixel, i.e.,
(i, j + pe + 1), is the first pixel that does not satisfy both conditions.

29If we consider figure 6.39, we would look at layer 0.
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The length of the plateau, length(P ) = nM , equals pe + 1. Thus:

n =
pe + 1

M
. (6.47)

Because of the pixel replication, several pixels in the magnified image are just
copies of a pixel from the low-resolution image. We therefore can restrict the
scan to pixels at locations (i, j + p) (and (i− 1, j + p)), with p:

p = qM − 1 , (6.48)

with q > 0 (a strictly positive integer).

6.4 Experimental results

In the previous sections we presented the theoretical background and im-
plementation of our morphological interpolation techniques mmint and
mmintone. Now, we discuss the results of our techniques.

First, in sections 6.4.1 and 6.4.2, we show the differences between our two
methods, mmint and mmintone. Next, we compare our techniques with ex-
isting ones, like the example-based method of [Stepin, 2003] and classical linear
interpolation methods [Lehmann et al., 1999].

In order to determine the statistical significance of our premise that mmint
(and mmintone) outperforms other techniques, we performed a traditional
psnr measurement (section 6.4.5) and a psychovisual experiment (sections 6.4.6
and 6.4.7).

6.4.1 Visual comparison of mmINT with mmINTone

mmint and mmintone are based on the same principles. A jagged edge has
a staircase pattern, where each step, the plateau, has a certain length. The
plateau is divided into smaller plateaus, and the height is reduced to one pixel.
The two methods try to achieve this goal in a different way. They are very
similar, but the results will not be exactly the same.

Figure 6.41 shows a line that has been magnified 3 times (using pixel replica-
tion). The result of mmint interpolation can be seen in figure 6.42, the output
of mmintone is shown in figure 6.43. The differences can be ascribed to the
corner validation of cc i pixels: while mmintone only passes this validation
step once, with mmint however, a line can be affected multiple times, lead-
ing to different results. A clear example is the top plateau (of the object) in
the figure: mmintone calculates that this plateau is 3M pixels long, and thus
3 pixels will be swapped (using equation (6.42)). With mmint, the search for
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Figure 6.41: A sample image, pixel-replicated (M = 3).

Figure 6.42: Figure 6.41 interpolated with mmint.

Figure 6.43: Figure 6.41 interpolated with mmintone.
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(a) Original

(b) mmint (c) mmintone

Figure 6.44: Differences between mmint and mmintone. Magnification M = 3.

cc i makes it possible to perform five iteration steps, which results in an eroded
plateau. Here, 5 pixels are swapped.

Figure 6.44 shows the difference between interpolation with mmint and inter-
polation with mmintone on line art image. mmintone does a slightly better job
at rounding the curved lines. Sometimes, mmintone is too ambitious (see fig-
ure 6.45): small protrusions can cause unwanted artefacts, because mmintone
looks at the length of the plateaus. If the lines are very long, and the protru-
sions very small (compared to the lines), then the region of pixels that change
values will expand more compared to mmint. This feature of mmintone can
be inconvenient for the interpolation of text. An example of text interpola-
tion is shown in figure 6.46. Straight lines like those in the letter “u” are
overinterpolated.

6.4.2 Speed comparison of mmINT with mmINTone

Based on the lower number of iterations, we expect that mmintone (one iter-
ation) will be significantly faster than mmint (several iterations). To demon-
strate that this is indeed the case, we interpolate artificial as well as real binary
images with mmint and mmintone. The results are discussed in the following
subsections.
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(a) Original

(b) Pixel replication (c) mmint (d) mmintone

Figure 6.45: Protrusions introduce artefacts. Magnification M = 3.

(a) Pixel replication (b) mmint (c) mmintone

Figure 6.46: Interpolation of a text sample. Differences between mmint and
mmintone are visible.

6.4.2.1 Artificial images

We take 16 artificial images (size 50 × 50) and interpolate them for different
magnifications. Each image Im (m = {1, 2, . . . , 16}) contains lines under a
specific angle. The angle of the lines in Im is chosen in such way that mmint
would need m iterations for achieving optimal interpolation of Im. The number
of jagged corners in the images is kept constant (188).30

The timing experiments are performed on an amd Athlon xp 2200+ (1.8 GHz,
1.5 GB ram) running Linux, kernel v2.6.3. We used the time command in
Linux to perform the measurements.31

We can draw the following conclusions:

30We only have 16 different images, because we want to keep the number of jagged corners
constant, with the image size restricted to 50 × 50 pixels.

31The calculation time (using time) is the addition of the measured cpu-seconds used by
the system on behalf of the process (in kernel mode) and the cpu-seconds used directly by
the process (in user mode).
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Figure 6.47: The percental contribution of the common parts of the algorithm to
mmint.

• The common parts of mmint and mmintone, i.e., image read-in, pixel
replication, corner detection (including hole-filling) (first iteration step),
corner validation (first iteration step) and image write-out, occupy a cer-
tain percentage of the total calculation time. For the artificial images
and magnifications M = {2, 3, . . . , 30}, this is on average about 18 % for
mmint and about 98 % for mmintone. For mmintone, the percentage
of contribution of the common parts is by approximation constant with
the magnification. For mmint, however, the contribution depends on the
magnification used (see figure 6.47). We notice that for a magnification
factor M = 13 and higher the interpolation part (i.e., the iterative pro-
cedure of mmint) requires more and more time compared to the common
parts. Only for lower M , the magnification factor implies an increase of
the percental contribution of the common parts.32

• The calculation time t (in seconds) of the common parts at magnification
M has the following (experimentally obtained) quadratic relationship:

t(M) = 0.0055M2 + 0.0062M − 0.013 . (6.49)

The norm of the residuals is 0.35. The residuals are the differences
between the experimental data and the fitted data. The norm of the
residuals is the square root of the sum of squares of the residuals. The
lower this value, the better the fit. This quadratic relationship seems lo-
gical, because a magnification M implies an increase of the image pixels
by factor M2. A similar relationship can be found for the processing time
in function of the width and height of the input image.

• The processing time for mmintone interpolation is independent of the
image content, for a given magnification. This is logical, since all the

32More pixels are created, more pixels must be checked, a larger output image must be
written to file.
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Table 6.1: The average calculation time for mmintone on the artificial images.

Magnification Speed (s)

4× 0.09849± 0.00045

11× 0.8119± 0.0020

30× 5.1319± 0.0081

necessary changes are made in one single step. On the other hand, the
processing time depends on the magnification M . The average total cal-
culation times for 4×, 11× and 30× magnification is shown in table 6.1.33

The read-in and write-out operations of the image files are included in
the timings. So, the interpolation of a 50× 50 binary image, with a mag-
nification factor M = 30, takes about 5 s with mmintone, no matter
what the content of the image is.

• The processing time for mmint interpolation increases polynomially with
the number of iterations needed (this number depends on the image con-
tent). This increase is not only due to the number of iterations, but also
due to the higher calculation cost for using larger structuring elements in
the higher iteration steps. A plot is shown in figure 6.48(a) for M = 4,
M = 11 and M = 30. τ is the number of iterations needed. Notice the
logarithmic scale of the ordinate. The dependency on τ is approximately
cubic, i.e., t ∝ τ3.

• The processing time ratio mmint/mmintone ranges from 1.07 to 52.95
for magnification 4×, from 1.08 to 12.45 for magnification 11×, and
from 1.37 to 31.39 for magnification 30×. The gain in speed when using
mmintone instead of mmint can thus be one or two orders of magnitude.
The progress of the increases is similar to those shown in figure 6.48(a).

• Figure 6.48(b) shows a plot of the average calculation time for the in-
terpolation of the 16 artificial images with mmint and mmintone, for
magnifications 2 to 30.

By fitting a polynomial to the time measurements, we obtain the following
functions, just as in equation (6.49) but now including the interpolation-
specific parts:

mmint: t(M) = 0.0018M3 − 0.02M2 + 0.18M − 0.8 , (6.50)

mmintone: t(M) = 0.006M2 − 0.0034M + 0.032 . (6.51)

The norm of the residuals is 0.98 and 0.49, respectively. We indeed expect
an increase in calculation time with the magnification factor, since this
implies more pixels need to change value. In the case of mmint the

33The average is taken over respectively 100, 15 and 2 timings of each of the 16 images.
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structuring elements in the pixel swapping step are bigger, in the case
of mmintone more layers need to be processed. When more iterations
are needed, the calculation time increases non-linearly for mmint, since
bigger structuring elements are used in the higher orders. We expect the
number of jagged corners to decrease with each iteration.

The computational cost (in number of operations) in the corner detection
part of the algorithm (i.e., the hit-miss operation) for a pixel that is
detected as a jagged corner for τ iterations is:

9 +

τ∑

i=2

(8i− 3) = 9− 3(τ − 1) + 8

τ∑

i=2

i = 4τ2 + τ + 4 . (6.52)

This formula can be deduced from the structuring elements in figure 6.36:
at iteration step i > 1, two erosions are performed, which have a cost of
4(i − 1) + 3 (foreground of the hit-miss) and 4(i − 1) + 1 (background
of the hit-miss) operations.34 An extra operation for the intersection of
the two erosions results in a total of 8i− 3 operations, which appears in
equation (6.52). For the first iteration step, there are only 9 operations
needed. This value is also present in the equation.

The computational cost (in number of operations) for swapping a jagged
corner (and its neighbouring pixels), in function of the magnification M ,
is:

bM/2c∑

j=1

(
j − 1− (M mod 2)

2

)
. (6.53)

This result is obtained from the examination of the structuring elements
in figure 6.37. The equation holds for both odd and even magnifications.
Because of the different treatment of objects and background when M is
even, the average number of operations can be a fractional value.

6.4.2.2 Realistic images

We also compare the speed of our two methods on realistic binary images.
33 random binary images, ranging from a size of 14 × 42 to 504 × 300, are
interpolated with M = 4, M = 11 and M = 30 using mmint and mmintone.
The number of iterations goes from 4 to 38.

The timing experiments are performed on an amd Athlon xp 4000+ (2.41 GHz,
2 GB ram, 64 bit) running Linux, kernel v2.6.11.

We can draw the following conclusions:

34The pixels are compared to their corresponding structuring element pixel, and the logical
results are then compared using the intersection operation.
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Figure 6.48: Calculation time needed for interpolating artificial images with differ-
ent content.

Table 6.2: The ratio mmint/mmintone for the realistic images.

Magnification Average ratio Min. ratio Max. ratio

4× 1.54± 0.68 1.00 4.38

11× 2.6± 3.0 1.1 16.8

30× 12± 23 1 128

• The average processing time ratios mmint/mmintone increase with the
desired magnification. This is shown in table 6.2, which also shows the
minimum and maximum ratios obtained.

The test images are quite diverse: some images are small while others
are large, some images have more jagged corners than others, and some
images need many iterations while others only need a few. This diversity
is noticeable in the standard deviation in table 6.2, which can be larger
than the average ratio. Sometimes mmint needs much calculation time
and mmintone does not, in other situations they both process the image
relatively quickly.

• Figure 6.49 shows a plot of the number of iterations needed (for mmint)
against the ratio mmint/mmintone. A linear fit of these data is possible,
although the norms of the residuals are rather high, namely 1.7, 9.6 and
120 for M = 4, M = 11 and M = 30, respectively.35

The calculation time for mmintone is on average smaller than that of mmint.
With the latter algorithm, we need several iterations in order to obtain the

35By removing the outliers at τ = 13, we can reduce the norms of the residuals to 1.3, 4.8
and 27 for M = 4, M = 11 and M = 30, respectively.
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Figure 6.49: Ratio mmint/mmintone for interpolating realistic images with differ-
ent content. The red line is the linear fit of the data.

final interpolation result. With every iteration step, the sizes of the structuring
elements increase, and so does the computational cost.

6.4.3 Binarization of greyscale images

Most interpolation techniques for binary and greyscale images produce a grey-
scale result, even if the input image is a binary image. This is the case when the
values for the new pixels are calculated using some known pixel values (e.g., an
average of neighbouring pixels for the bilinear interpolation), which introduces
new pixel values. This is not the case with mmint(one), since it only works
with binary images where pixel values are swapped from black to white, and
vice versa. In other words, only existing grey values (black and white) are used.

This greyscale result for a binary image is not always desired, as binary logos or
cartoons often should remain binary. Binarization of the output images of the
other techniques is thus needed in order to compare. This binarization can be
advantageous, since the greyscale interpolation of a binary image often looks



6.4 Experimental results 241

(a) Greyscale (b) Binary

Figure 6.50: A bilinearly interpolated image. Figure (b) is the binary version of
figure (a) after Otsu thresholding.

blurry. The difference between a bilinearly interpolated image in grey values
and after thresholding is shown in figure 6.50. We use the well known Otsu
threshold method [Otsu, 1979] to define the ideal threshold for the grey values.
We now explain how this thresholding technique works.

Otsu thresholding

The image pixels are categorized into two clusters: the foreground and the
background [Liao et al., 2001]. The threshold grey value that divides these
clusters is chosen in such way that the clusters’ overlap is minimized. We
therefore need to minimize the within-class variance:

σ2
W (T ) = ωbg(T )σ2

bg(T ) + ωfg(T )σ2
fg(T ) . (6.54)

The threshold value T that minimizes this equation, is called the Otsu threshold.
We use the following definitions:

pi =
ni

N
probability of grey level i, (6.55)

ωbg(T ) =
T−1∑

i=0

pi probability of the background, (6.56)

ωfg(T ) =

N−1∑

i=T

pi probability of the foreground, (6.57)

µbg(T ) =

∑T−1
i=0 i pi

ωbg
mean for the background, (6.58)

µfg(T ) =

∑N−1
i=T i pi

ωfg
mean for the foreground, (6.59)
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µ =

N−1∑

i=0

i pi total mean, (6.60)

σ2
bg(T ) =

T−1∑

i=0

(i− µbg(T ))2pi variance for the background, (6.61)

σ2
fg(T ) =

N−1∑

i=T

(i− µfg(T ))2pi variance for the foreground, (6.62)

σ2 =

N−1∑

i=0

(i− µ)2pi total variance. (6.63)

The value N is the total number of pixels in the image. ni is the number of
pixels with grey value i (usually i = {0, . . . , 255}). Equivalent to the minimi-
zation of equation (6.54) is the maximization of the between-class variance:

σ2
B(T )= σ2 − σ2

W

= ωbg(T )ωfg(T )[µbg(T )− µfg(T )]2 .
(6.64)

Finding the Otsu threshold is a discriminant analysis problem: it is sufficient
to maximize equation (6.64), but the actual goal is to maximize the value of
the discriminant criterion, which is:

η(T ) =
σ2

B(T )

σ2
. (6.65)

6.4.4 Visual comparison

Many interpolation techniques exist. Our techniques, mmint and mmintone,
have been compared to the ones listed in table 6.3. There are only few that
are strictly binary. These techniques are marked in the table. In this section,
we show the results and differences for some of these methods. The other
methods pose similar results as or worse results than the interpolation methods
we discuss.

In figure 6.51 we show a cartoon that serves as the low-resolution input image.
In figure 6.52 we show several magnified versions (M = 3) of the cartoon.

Magnification using pixel replication introduces jaggies (figure (a)). Figure (b)
shows the bilinear interpolation result, after binarization. We still see some
jagginess in this type of images. Similar results are obtained in figure (c): the
windowed sinc kernel with a 4-term Blackman-Harris window is not able to
interpolate binary images well. hq (figure (d)) shows a nice interpolation re-
sult: the binarization does not pose any problems and the lines appear smooth.
Our morphological techniques (figures (e) and (f)) are very similar. Compared
to hq they are not that different, until we look at the details. The contours
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Table 6.3: A list of interpolation techniques that we have examined. Techniques
that produce a binary result for a binary input image are marked with ∗.

Technique Reference

Pixel Replication∗ [Lehmann et al., 1999]

Bilinear [Lehmann et al., 1999]

Bicubic [Lehmann et al., 1999]

Catmull-Rom [Catmull and Rom, 1974]

Sinc (4-term Blackman-Harris) [Harris, 1978]

Sinc (Lanczos) [Meijering et al., 2001]

B-Spline (Bicubic) [Unser, 1999]

Isophote (B-Spline Bicubic) [Morse and Schwartzwald, 1998]

nedi [Li and Orchard, 2001]

Hierarchical Filling Strategy∗ [Askar et al., 2002]

2xSaI [Liauw Kie Fa, 2001]

Super2xSaI [Liauw Kie Fa, 2001]

SuperEagle [Liauw Kie Fa, 2001]

Scale2x∗ [Mazzoleni, 2001]

hq [Stepin, 2003]

mmint∗ Section 6.2

mmintone∗ Section 6.3

Figure 6.51: A sample image.

in the figures interpolated with mmint(one) are smoother. For example, the
man’s chin, neck, mouth and shirt collar are better interpolated. Therefore we
state that our techniques are visually better than other interpolation methods.

6.4.5 PSNR calculation

Most quality tests use a reference image as ground truth. The altered images
are compared to the reference image and some value is calculated, mostly the
Peak Signal-to-Noise Ratio (psnr) or the related Mean Squared Error (mse).

The mean squared error (mse) [Pratt, 2001] is the expected value of the square
of the “error”, which is the difference between the reference data and the
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(a) Pixel replication (b) Bilinear

(c) Sinc (Blackman-Harris) (d) hq

(e) mmint (f) mmintone

Figure 6.52: Interpolation results of figure 6.51 for 3× magnification.
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measured data. For a discrete image I(x, y), with x = 0, 1, . . . , X − 1 and
y = 0, 1, . . . , Y − 1, the mean squared error in image processing is defined as:

MSE =
1

XY

X−1∑

x=0

Y −1∑

y=0

||I(x, y)− Iref (x, y)||2 , (6.66)

where Iref (x, y) is the ground truth reference image. The root of this result
is called the Root Mean Squared Error (rmse). When we define N as the
maximal possible grey value,36 then the peak signal-to-noise ratio (psnr) can
be computed from the mse:

PSNR =−10 log
(

MSE
N2

)

= 20 log
(

N√
MSE

)
.

(6.67)

The unit of the psnr is decibel (dB). Typical values are between 30 dB
and 40 dB, when measuring the error of good quality image compression tech-
niques or the quality of noise filtering algorithms.

In the case of interpolation, no reference image exists: we start with a small
image, but the interpolated images are magnified versions of the original. This
problem can be solved by taking an image, scaling it down by subsampling it,
and comparing the interpolation result of this small image with the original
figure.

Table 6.4 shows the psnr values for 7 interpolation techniques (mmint,
mmintone, hq, pixel replication, a bilinear and a bicubic algorithm, and a
Blackman-Harris windowed sinc interpolator). We took 57 different binary im-
ages, scaled down 2, 3 and/or 4 times, resulting in a set of 152 downsampled
images. From the table, which shows the average psnr, calculated in the log-
arithmic domain, we can conclude that the standard deviation is too high and
the difference between the psnr values is too low to draw a clear conclusion. For
example, the psnr difference between mmintone and hq is only about 0.45 %.
The behaviour of the psnr is correlated with the visual quality, though.

A partial explanation for the low psnr values37 is the procedure of down-
sampling: lines that are too thin can disappear after subsampling. Also, a line
can have different thicknesses after subsampling, depending on the position of
that line in the image. This affects the interpolation results. Figure 6.53 shows
two simple examples of images where the downsampling can generate different
results. If the resolution of those images is decreased by a factor of 2, then
there are two possibilities: the black lines or dots still remain visible in the
subsampled image, resulting in a totally black image; or the white pixels are
preserved, resulting in a totally white image.

36For binary images, N = 1, for greyscale images, we usually have N = 255.
37We would expect values around 30 dB for a good technique.
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Table 6.4: psnr calculation (in dB) for 7 interpolation techniques (152 images).
The higher the psnr value, the better. The standard deviation is indicated for each
result.

Technique Average PSNR (dB)

mmint 19.2± 5.2

mmintone 19.2± 5.2

hq 19.1± 5.1

Bicubic 18.7± 5.1

Bilinear 18.6± 5.0

Sinc (B-H) 18.6± 5.0

Pixel Replication 18.2± 4.9

Another reason for the low psnr values is the binary input: the mse is a
difference in intensity between two images (equation (6.66)). When dealing
with greyscale images, there are usually 256 different grey values, and images
that are similar, will most probably have small differences in grey values. In
the binary case though, a difference in value is a sudden difference: the pixel
values change from one extreme to the other, because only two grey values are
available.

We can conclude that the peak signal-to-noise ratio (or mean squared er-
ror) gives us an idea of the quality of the different interpolation techniques,
but it is not a very useful quality measure for the comparison of interpola-
tion techniques on binary images. The psnr differences are too small, the
psnr values are low and the standard deviations are too high. We should
remark that the biggest psnr value does not necessarily belong to the visu-
ally best result. While this error value is often used as a quantitative com-
parison between different techniques, and can be a good comparison meas-
ure, it does not always correlate well with human subjective scoring. In
[Vansteenkiste et al., 2006b, Vansteenkiste et al., 2006c], more information can
be found on several similarity measures, other than psnr or mse.

6.4.6 Ranking experiment

We showed 8 different images, interpolated with 4 different techniques (mmint,
hq, pixel replication and a bicubic algorithm), in random order to 37 (non-
expert) persons. The magnification was 2, 3 or 4 times the original binary
image. The test images are cartoons (both line drawings and filled drawings),
text, and maps (containing both line drawings and text). They are shown in
figure 6.54. Because this survey was conducted before the implementation of
mmintone, only mmint is compared with existing techniques.

For this test, we asked our test panel to rank the 4 different interpolation
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(a) Original image (b) Original image

(c) Downsampling of (a) and (b) (d) Downsampling of (a) and (b)

Figure 6.53: Downsampling images is not without problems. Different results are
possible.

techniques in order of preference, this for each of the 8 images. A tie was not
allowed. We then calculated the average ranking, as can be seen in table 6.5.

The results from this experiment are consistent: mmint is always ranked first,
followed by hq, except for text images. Bicubic interpolation and pixel repli-
cation follow at a rather big distance. In the case of the map images (lines and
text combined), the pixel replication is preferred to the bicubic interpolation.

An explanation for the less favourable ranking of mmint for text samples,
is the following: when we look at figure 6.55, we notice that the roundings
of the letters “q” and “a” are not that well interpolated by mmint. This is
because different regions, that are interpolated independently, touch each other.
This visually less attractive result explains the outcome of the psychovisual
experiment. If the original text is rasterized with a higher resolution, then this
problem does not occur.

6.4.7 Multi-dimensional scaling experiment

We showed 8 different images, interpolated with 4 different techniques (mmint,
hq, pixel replication and a bicubic algorithm), in random order to 35 (non-
expert) persons. The magnification was 2, 3 or 4 times. The test images are
the same as for the ranking experiment (figure 6.54). Because this survey was
conducted before the implementation of mmintone, only mmint is compared
with existing techniques.
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(a) Filled 1 (b) Filled 2

(c) Lines 1 (d) Lines 2

(e) Text 1 (f) Text 2

(g) Map 1 (h) Map 2

Figure 6.54: A set of 8 test images. Their resolution (dpi) does not correspond to
their printed size.
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Table 6.5: Ranking of the 4 interpolation techniques. A lower number means a more
preferred technique. The standard deviation is indicated for each result. Notations:
B=bicubic; H=hq; M=mmint; P=pixel replication.

Filled 1 Filled 2 Lines 1 Lines 2

1st M: 1.76± 0.68 M: 1.27± 0.45 M: 1.00± 0.00 M: 1.24± 0.43

2nd H: 1.84± 0.80 H: 1.78± 0.53 H: 2.00± 0.00 H: 1.84± 0.50

3rd B: 2.43± 0.87 B: 2.97± 0.29 B: 3.08± 0.28 B: 3.11± 0.57

4th P: 3.97± 0.16 P: 3.97± 0.16 P: 3.92± 0.28 P: 3.81± 0.40

Text 1 Text 2 Map 1 Map 2

1st H: 1.19± 0.40 H: 1.41± 0.69 M: 1.32± 0.53 M: 1.49± 0.61

2nd M: 2.03± 0.44 M: 1.78± 0.53 H: 1.76± 0.49 H: 1.59± 0.50

3rd B: 3.14± 0.89 B: 3.08± 0.72 P: 3.16± 0.60 P: 3.41± 0.64

4th P: 3.65± 0.48 P: 3.73± 0.45 B: 3.76± 0.43 B: 3.51± 0.56

(a) Pixel replication (b) mmint (c) hq

Figure 6.55: A text sample interpolated. Problems occur at roundings in letters.

This second psychovisual experiment utilizes a multi-dimensional scaling tech-
nique (mds) [Kayargadde and Martens, 1996a, Martens and Meesters, 1998,
Kayargadde and Martens, 1996b, Martens, 2003] to judge the results.38 We
first define two terms used: the stimuli and the subjects. The stimuli are the
input images, in our case the results of the different tested interpolation tech-
niques. The subjects are the persons that perform the psychovisual experiment
and score the stimuli.

We represent the stimuli in a geometrical perceptual space. Usually, this is a
multi-dimensional vector space. The positions of the stimuli in such a vector
space are directly related to their mutual relationship: the distance between
the stimuli states how similar or dissimilar these images are perceptually, based
on the relevant image attributes (e.g., blur, noise, contrast, overall quality, . . . )
The scoring of these attributes should correlate strongly with the stimulus
positions in this perceptual space.

While the subjects can score the stimulus pairs on a different (subjective) scale,

38I hereby would like to thank Ewout Vansteenkiste for parsing the data and helping me
with the theoretical concepts of the technique. I would also like to thank Stefaan Lippens
for kindly providing me his php/mysql framework for the test set-up.
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we assume the principle of homogeneity of perception: the stimulus positions
in the perceptual space are the same for all subjects, i.e., they share the same
stimulus configuration.

Stimuli can be compared in several ways. In a single-stimulus scaling experi-
ment, every image is shown to the subject by itself and is rated by a certain
attribute.

In double-stimulus scaling, two input images are judged together, but scored
separately. The difference between the responses for the individual stimuli is
retained as the final response.

In dissimilarity scaling, the subject has to indicate how different two images are
perceived. The global difference is judged, without focusing on one attribute.39

In difference scaling (or preference scaling), two images are shown to the sub-
ject, which has to give a preference score by a certain attribute. This is the
scaling technique used in our experiment.

For each image, we showed the subjects 6 pairs of images of 2 different in-
terpolation techniques and the subjects had to give a preference score for the
perceived quality for that pair. In the preference interval it is possible to as-
sign an integer value from −3 (the left image is most preferred), via 0 (both
images are equally good), to +3 (the right image is most preferred). From
these preference scores, we calculate a ranking, using mds, for the global image
quality.

We now briefly explain the principle of mds for preference scoring. This
is schematized in figure 6.56. A more in-depth discussion is available in
[Martens, 2003].

Every subject k = 1, . . . , Kp defines a preference score Pk,i,j for a stimulus pair
(i, j). In our experiment, there are Kp = 35 observers and 6 different stimulus
pairs to score for each of the 8 input images. In the mds model in figure 6.56,
the preference scores are on the right, and every line represents a subject.

The goal is to optimize the positions of the stimuli x1, . . . ,xN (N = 4 in our
experiment, the number of compared interpolation techniques) in a geometrical
space (the perceptual space (one-dimensional in our case, because we only have
one attribute, quality)). We assume the principle of homogeneity of perception,
as mentioned before, thus we pursue one stimulus configuration, shared by all
subjects.

The conceptual idea of a stimulus configuration is shown in figure 6.56 for the
stimuli xi and xj . The vertical line on the left illustrates that the relationship
between xi and xj in the stimulus configuration is shared by all subjects k =
1, 2, . . .. The horizontal lines illustrate how the shared stimuli xi and xj are
converted to the individual preference scores P1,i,j , P2,i,j , . . . .

39Thus, the subject scores the stimulus pair for the dissimilarity in noise, and blur, and

overall quality, and . . . .
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Figure 6.56: The mds model relating the stimulus positions (xi,xj) to the preference
ratings Pk,i,j for the stimulus pair (i, j) and the subject k.

In practice, we optimize the stimulus positions using the program XGms
[Martens, 2003]. The stimuli should be positioned in such way that the ex-
perimentally observed preference scores Pk,i,j for the stimulus pair (i, j) and
subject k are linearly related to the interstimulus distances dij . In order to
obtain such linear relationship, we must transform Pk,i,j into metric data with
a transformation Tpk, thus TpkPk,i,j = T (Pk,i,j), i.e., Pk,i,j must have ratio
properties since they are compared to metric distances.

So, we want to obtain a linear relationship between the transformed preference
scores and the interstimulus distances, i.e.:

TpkPk,i,j ≈mkdij . (6.68)

In XGms, it is possible to choose between no transformation (i.e., the data are
already metric), a generalized optimum power-like transformation, a general-
ized Kruskal transformation and an optimum spline transformation.40 We use
a spline transformation in our experiment, but there is little difference in the
results when using an identity matrix.

The interstimulus distance dij between the stimuli xi and xj is defined by:

dij = ||xi − xj ||l =
( n∑

m=1

|xim − xjm|l
)1/l

. (6.69)

This is the Minkowski norm, but we will use the specific case of the Euclidean

40For details we refer to [Martens, 2003].
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norm, i.e., take l = 2, and this for one dimension, i.e., n = 1:

dij = ||xi − xy||2 = |xi − xj | . (6.70)

The regression factors mk and the transformations Tpk need to be derived from
the data. They are subject-dependent, because each subject scores in its own
individual way so we cannot generalize these variables.

From a certain stimulus configuration we can derive the expected values for
the transformed preference scores, defined as:

T̂P k,i,j = mkdij . (6.71)

In order to know how well these estimates compare to the real transformed
preferences, we define a probability density function (pdf) or link function
φ(x; σ), for every subject k. This function is used to define the probability
p(Pk,i,j) that the preference score Pk,i,j is given by subject k for stimulus pair

(i, j), based on the estimate T̂P k,i,j :

p(Pk,i,j) = φ[TPk,i,j − T̂P k,i,j ; σp(k)] · [T ′
pk(Pk,i,j)] . (6.72)

T ′
pk denotes the derivative of Tpk. In different experiments [Martens, 2003,

Vansteenkiste et al., 2006c], the generalized Gaussian pdf is used. For our
experiment it also gives good results. Its definition is:

φ(x; σ)=
r

2ρΓ(1/r)
exp

(
−

∣∣∣∣
x

ρ

∣∣∣∣
r)

, (6.73)

with r = 2, ρ = σ
√

Γ(1/r)
Γ(3/r) , and the gamma function

Γ(a)=

∫ ∞

0

za−1e−zdz . (6.74)

A good stimulus configuration implies high probabilities p(Pk,i,j), i.e., the stim-
ulus configuration should predict well how a subject k will score the stimulus
pairs (i, j).41

Since we want an optimal configuration for all stimuli and all subjects, we
pursue the minimization of the following log-likelihood function:

Lp =

Kp∑

k=1

Lp(k) = −
Kp∑

k=1

∑

(i,j)∈Ip(k)

log p(Pk,i,j) , (6.75)

41This implies that the difference between dTP k,i,j and TPk,i,j must be as small as possible.
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with Ip(k) the set of pairs judged by subject k. XGms calculates this maximum-
likelihood (ml) criterion and recursively minimizes this criterion, by reposition-
ing the stimuli in the perceptual space.

We will now discuss our results. Figure 6.57 shows the stimulus positions (qual-
ity values) for the different techniques for all images together. Since we only
scored the attribute “quality”, we obtain a one-dimensional ordering (the or-
dinate in the figure). The abscissa shows the different interpolation methods,
the values on the ordinate are the quality values. The projection on the ver-
tical axis gives the actual stimulus configuration. The distances between the
stimulus positions represent the differences in quality between the correspond-
ing stimuli. A small (relative) distance means that the subjects perceived the
techniques to be similar in quality. When the (relative) distance is large, the
techniques are scored quite differently.

mmint is clearly superior to the other methods, because its quality value is
higher than that of the other interpolation techniques. hq is the second best
technique, and is competitive to mmint. The bicubic and pixel replication
method provide much worse results. If we look at the stimulus graphs for the
images separately, then we can draw the same conclusion as from the ranking
experiment (section 6.4.6): hq seems to work better for text (figure 6.58(b));
mmint interpolates better cartoons, logos and maps than the other techniques
(figure 6.58(a)).

6.4.8 One-step magnification compared to multi-step
magnification

Our techniques mmint and mmintone allow the magnification by an arbitrary
integer factor M . If we can write this magnification factor as M =

∏n
i=1 Mi,

then we could also iteratively magnify our image using smaller magnifica-
tions Mi.

The question we then ask ourselves is whether the following equation is valid:

ϕM (I) = ϕMn
(· · · (ϕM2

(ϕM1
(I)))) , (6.76)

where ϕM stands for the mmint(one) interpolation by magnification factor M .

In general this is not the case. Consider figure 6.59: figure (a) shows the re-
sult of mmint for M = 9 for figure 6.51. In figure (b) we applied mmint
with M = 3 twice. As we can see in these figures and in the difference map
(figure (c)), the images are not completely the same.

Visually, we do not see much difference between the two approaches (about
0.32 % for mmint and 0.20 % for mmintone).42 Figure 6.60(a) shows a sample

42We performed a small experiment on the images from figure 6.54. We compared M = 4
to M1 = 2 and M2 = 2; M = 6 to M1 = 2 and M2 = 3, and to M1 = 3 and M2 = 2; M = 8
to M1 = 2 and M2 = 4, and to M1 = 4 and M2 = 2, and to M1 = 2 and M2 = 2 and
M3 = 2; M = 9 to M1 = 3 and M2 = 3.
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Figure 6.57: Stimulus positions for the 4 interpolation techniques, for all 8 test
images together.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Pixel repl. Bicubic HQ mmINT

Q
ua

lit
y 

va
lu

e

Stimulus identification

Cartoon and map images (filled, lines, lines and text)

(a) Cartoons and maps

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

Pixel repl. Bicubic HQ mmINT

Q
ua

lit
y 

va
lu

e

Stimulus identification

Text images

(b) Text

Figure 6.58: Stimulus positions.
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(a) ϕ9(I) (b) ϕ3(ϕ3(I))

(c) Difference between (a) and (b)

Figure 6.59: Interpolation with mmint of figure 6.51 with (a) M = 9 and (b) twice
M = 3.

image (pixel-replicated with M = 9) that generates different results for M = 9
and M1 = M2 = 3, both for mmint and mmintone. Just like mmintone (see
section 6.4.1), the multi-step approach produces lines that are bent more. The
visual difference between the one-step and multi-step approach is very subtle
for mmintone.

Computationally, it is more efficient — on average about 14 % — to interpolate
with mmint two or more times using a small magnification factor, than once
with a large value for M . This can be explained by the structuring elements
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(a) Pixel replication (b) mmint, M = 9 (c) mmint, M1 = 3, M2 = 3

(d) mmintone, M = 9 (e) mmintone, M1 = 3, M2 = 3

Figure 6.60: Interpolation with mmint and mmintone with M = 9 and twice
M = 3.

used in the pixel swapping step: for a magnification M = 3, only the corner
pixels must change value, but for M = 9 we need to change 10 pixels per corner
in the first iteration step (see section 6.2.5). The size of the structuring element
is thus bigger for M = 9, which increases the calculation time (as we showed
in chapter 2, section 2.2.4.4). For mmintone, a one-step interpolation is more
efficient (about 21 %).

For M even, we have to remember that the interpolation of foreground and
background pixels is handled differently (see section 6.3.1). For example, a
line drawing interpolated with M1 = 2, M2 = 2, M3 = 2 generally looks thicker
than an interpolation of this line with M = 8. We can distinguish the following
situations:

Magnification M is an odd factor: In this situation we do not encounter
a problem, because foreground and background are treated the same.

Magnification M is an even factor, and the number of iterations τ is
even: We explained in section 6.2.6.3 that the equations for foreground and
background are interchanged every iteration step. This way, after every two
iterations, the global intensity is kept quasi constant. The thickness of a line is
therefore the same when interpolated in multiple steps instead of in one step.

Magnification M is an even factor, and the number of iterations τ is
odd: If we magnify a line with a thickness of p pixels with magnification M ,
then we expect a line with a thickness of pM pixels. In the multi-step approach
we expect the same behaviour, i.e., a line of thickness p pixels should become
a line of pM1M2 . . . Mn pixels, with M =

∏n
i=1 Mi.
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In the previous situations, this is indeed the case. However, for an even mag-
nification and an odd number of iterations the situation is different. When we
look at figure 6.35, we notice that the thickness of the line (p = 1) has become
5 pixels for M = 4 after one iteration, instead of 4 pixels. In general, the newly
obtained thickness for M even and τ odd is pM + 1.

If we use the multi-step approach, e.g., M1 = 2, M2 = 2, M3 = 2 (thus, M = 8),
we would obtain the following thicknesses for each step:

p→ pM1 + 1→ (pM1 + 1)M2 + 1→ ((pM1 + 1)M2 + 1)M3 + 1 . (6.77)

Thus, after the first magnification step (M1) we have one extra pixel (as is
the case in the one-step approach). After two magnification steps (M1M2), we
have M2 +1 extra pixels (i.e., 3 extra pixels), and finally we obtain a thickness
with M2M3 + M3 + 1 extra pixels (i.e., 7 extra pixels).

In order to obtain the same thickness for the result of the multi-step approach
as that for the one-step approach, we interchange equations (6.26) and (6.27)
in mmint for Mi with i > 1. That is, equation (6.26) is then used for the
objects, while equation (6.27) is used for the background.43 The thicknesses
then become:

p→ pM1 + 1→ (pM1 + 1)M2 − 1→ ((pM1 + 1)M2 − 1)M3 − 1 . (6.78)

Thus, after the first magnification step (M1) we have again one extra pixel.
After the second magnification step (M1M2), we have M2−1 extra pixels (i.e.,
1 extra pixel), and finally we obtain a thickness with M2M3 −M3 − 1 extra
pixels (i.e., 1 extra pixel).

This extra number of pixels for a multi-step interpolation with M =
∏n

i=1 Mi

can thus generally be defined as (for a minimum of 2 steps):

n∏

i=2

Mi −
n∑

j=3




n∏

i=j

Mi


− 1 . (6.79)

We immediately notice that this solution is not perfect, since it only works as
intended for Mi = 2. For higher even magnifications we still have an increase in
thickness, but not as much as before.44 Although not a perfect solution for the
thickness-increase problem, we can suggest the following general methodology:

• If possible, decompose even magnifications Mi > 2 into a product of
smaller magnifications of value 2× and possible odd values;

43Regarding mmintone, we interchange equations (6.44) and (6.45).
44For example, M = 16 in multi-step as M1 = 4 and M2 = 4 results in an increase in

thickness of 5 pixels. With the correction suggested, the increase is 3 pixels.



258 Image Interpolation

• Firstly, interpolate using odd magnifications, since here the problem does
not occur;

• If even magnifications Mi are used, it is best to retain a certain order
when interpolating by the different magnifications: put the highest mag-
nification first, since it will always only increase the thickness with 1 pixel.
According to equation (6.79), it is best to rank the remaining magnifica-
tions from small to large: first, interpolate with the lowest Mi and end
the interpolation with the highest Mi. This will minimize the increase in
thickness.

6.5 Extension to greyscale images: mmINTg

The previous sections deal with morphological interpolation techniques that
generate good results for binary images. In the binary case, only two possibil-
ities exist: a pixel is part of the foreground or the background. Also, when we
look for jagged edges, the result is a detection of a corner or no corner.

The greyscale case is more complicated [Ledda et al., 2006a]: the classification
of a pixel into foreground or background is not straightforward (since more
than two grey values are present), which makes the detection of corners using
the binary hit-miss transform more difficult. We therefore adapt the corner
detection step (explained in section 6.2.2). For this purpose the pixels are
locally binarized, before applying the hit-miss operation. A majority ordering
is used for the classification of a pixel as a foreground or a background corner.
All this is covered in section 6.5.1.

In the interpolation step (see section 6.5.2), the values of the neighbouring
pixels are taken into account to calculate the interpolated pixel value.

This algorithm for greyscale interpolation is called mmINTg . The algorithm is
schematized in figure 6.61. We distinguish the following steps:

1. Pixel replication: Section 6.2.1: First, the image is pixel-replicated
by an integer factor M . The resulting image contains strong staircase
patterns because of the pixel replication.

2. New corner detection: Section 6.5.1: Using a combination of hit-
miss transforms, the algorithm determines the positions of corners, both
real and false (due to jaggies) in the image. For greyscale images, we
must perform a local binarization. Hole artefacts are avoided by using
different structuring elements for foreground and background corners (see
section 6.2.4).

3. Corner validation: Section 6.2.3: Some corners found in the preceding
step are real corners, which have to be retained in the interpolated image.
The aim of corner validation is to distinguish false corners from real ones.
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Figure 6.61: Schematic representation of the algorithm of mmintg.

4. New greyscale interpolation: Section 6.5.2: We change the colour of
pixels classified as false corners, and the colour of some of their neigh-
bours. The new colour is defined by some neighbouring pixels.

The above operations (except the first one) are repeated iteratively, each it-
eration operating on the output image of the preceding iteration. Currently,
a non-iterative procedure (like mmintone) does not exist. We suppose this
alternative implementation could be done as in the binary case, but we would
have to take care of the use of local information that is taken into account, as
we will see. We will now discuss the new corner detection and interpolation
algorithm.

6.5.1 New corner detection method for step 2

6.5.1.1 Local binarization

In order to apply the binary hit-miss transform to detect corners, we binarize
the pixel values. We use the binary hit-miss transform, since this gives us a
hit or a miss for a corner, and nothing in between. A greyscale hit-miss45 can
give a gradation of correspondence to a corner, but we wish to know for sure
if there is a corner present or not. The binarization is done locally and only
the pixels that are then covered by the hit-miss structuring elements are taken

45Some greyscale hit-miss transforms are discussed in chapter 2, section 2.4.4.
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into account (see figures 6.21 and 6.29 for the structuring elements used in the
first iteration step). The threshold value T (x, y) for binarization is defined by:

T (x, y) =

{
1
2 (m + M) + α, if I(x, y) ≥ 1

2 (m + M)
1
2 (m + M)− α, if I(x, y) < 1

2 (m + M)
, (6.80)

with m and M respectively the minimum and maximum value of the set of
pixels defined by the structuring elements, I(x, y) is the grey value of the cur-
rently checked pixel, and α is a threshold for classifying more neighbouring
pixels into a class different to the one of the current pixel. We have experi-
mentally found that the following definition for α is a good choice:

α =
M −m

10
. (6.81)

The current pixel is always given the binary value 1, the values of the other
considered pixels depend on their classification w.r.t. the current pixel.

6.5.1.2 Majority ordering

We include the hole filling step in the corner detection step. We have discussed
in section 6.2.4 that we therefore must use different structuring elements for
foreground corner detection as for background corner detection. Also, the
corner validation step looks at complementary corners, which are part of the
opposite class of the pixel under investigation. This means that we need to
classify the pixels as either possible object corner or background corner.

We utilize the majority sorting scheme (mss) to order the grey values in func-
tion of their frequency in a local window. A full discussion of the mss is available
in chapter 3, section 3.3. We assume that grey values that appear often can
be considered background in the local window, while grey values that appear
rarely can be considered to be object. We compare the index of the investig-
ated pixel in the ordering map with the index of two of its neighbouring pixels.
These neighbours are the ones covered by the background hit-miss structuring
element (see figure 6.21(b) for the upper-left corner detection). So, if we look
for an upper-left corner, we compare the pixel’s index with that of its left and
upper neighbours. When the index is lower than that of one of the neighbours,
then the pixel is classified as foreground. Otherwise, the pixel is classified as
background.

We must properly choose the size of the local window in which we calculate
an ordering map with the mss. If we take the window too small, the pixel
count per colour in the window will be almost the same for each colour. This
makes the ordering less useful. If we take the window too large, then some
pixels might not be interpolated because they do not pass the corner validation
step. For example, figure 6.62 shows a white line on a black background. We
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Figure 6.62: If white is considered background, then no black corners will be detec-
ted, which results in a “real” edge.

expect this line to be interpolated, but if in a larger window the white pixels
are in the majority, then white will be taken as the background. In this case,
no interpolation will occur, since different structuring elements are used for
object and background corner detection. There will only be detection of white
corners (the ones marked with a black dot in the figure), which will not pass
the corner validation step, because there are no black corners detected in their
neighbourhood. We therefore use a window size that is not too small nor too
large. In practice, the area in which we calculate an ordering map with the
mss is an 11× 11 window in the original image, since this size gives satisfying
interpolation results.

A robust determination of the ideal window size is still an issue. A suggested
solution would be to locally adapt the window size in function of the window
content, like the number of different colours present. Situations like those in
figure 6.62 could be avoided by changing the corner validation rules (making
the rules less strict).

The majority ordering has to be performed only in the first iteration step. From
then on we know whether the pixel belongs to the foreground or background.

6.5.2 New interpolation method for step 4

In the binary case, the values of the jagged corner pixels and surroundings
are replaced by the opposite colour, i.e., black becomes white and white be-
comes black. With greyscale images, we cannot simply swap the pixel values
to the opposite grey value. The grey values of the surrounding pixels must be
taken into account, so that the transition between grey values does not occur
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Figure 6.63: The new grey value for pixel v22 is the average of the values of its
neighbouring pixels v12 and v21.

abruptly.46

The new pixel value is the average grey value of the pixels that are covered
by the background hit-miss structuring element when positioned at the corner
pixel. So, suppose we have detected an upper-left corner and we must now
change the value of this corner pixel. Figure 6.63 shows the upper-left back-
ground corner pixel v22. The image is pixel-replicated with magnification
M = 3. Its neighbouring pixels v23, v24, v32, v33, v34, v42, v43 and v44 are
classified as background. Its neighbouring pixels v12 and v21 are classified as
object.47 These are the pixels covered by the background hit-miss structuring
element when positioned at v22 (see figure 6.21(b) for the structuring element
used in the first iteration step). The average grey value, i.e., the new value for
pixel v22, is thus [I(v12) + I(v21)]/2.

The resulting value is thus defined in function of the surrounding values of the
other class. For higher magnifications (M > 3), also neighbouring pixels of the
corner pixels must be interpolated. Their value is replaced with the same value
as the one for the corner pixel. For a binary image, the effect is the same as
with mmint, since the average is taken of pixels of the same colour, a colour
that is opposite to that of the current pixel. As a consequence, no blurring
occurs.

6.5.3 Visual results of mmINTg

mmint is a technique that is very good at interpolating line art images, like
logos, cartoons, maps, etc. Our greyscale extension, mmintg, also performs
very well on this kind of images. On binary images, we can expect mmintg and
mmint to perform equally well. When the mss locally produces the opposite

46When we described the algorithms of mmint and mmintone, we referred to the inter-
polation part as the “pixel swapping step”. In these algorithms, this term is well-chosen,
because in a binary image a pixel value can only change between black and white. The
interpolation part changes some black pixels into white pixels, and vice versa.

For mmintg, on the other hand, the term “swapping” is not correct: when a pixel must
change value, we calculate this new value with its neighbouring pixels. Thus, the pixel value
is not simply swapped to its greyscale complement or to the value of one of its neighbours.
Hence, we discard the term “pixel swapping” and replace it by the more general “interpola-
tion”.

47This is of course true, otherwise the hit-miss transform would not have detected pixel
v22 as a corner.
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(a) Original image (b) 3× magnified (pixel replication)

(c) hq interpolated (d) mmintg interpolated

Figure 6.64: The interpolation of a greyscale cartoon.

ordering as on the entire image,48 this will lead to slightly different results as
when we process the image with mmint. Situations like the ones in figure 6.62
will be tackled by mmintg.

The figures 6.64 and 6.65 show images with clear sharp edges. We compare our
greyscale method with hq [Stepin, 2003], a technique that is very competitive
with mmint when interpolating binary images (see section 6.4). In the first
figure, we notice that mmintg interpolates the lines better and the result is
less blurred. The results shown in figure 6.65 look very similar, except that
the rotated squares look blurred with hq. Also, hq introduces too much un-

48This is actually done for mmint to define the background colour: applying the mss on a
binary image simply reveals the colour most prevalent, which is chosen as background. The
difference with mmintg is that no local mss is performed.
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necessary colours in the arrows at the right, i.e., when 8-connectivity lines are
present.

In some circumstances, one could argue that hq performs better than mmintg.
For example, the smiling face and the curved lines in figure 6.65 are smoother
(i.e., better anti-aliased) when hq is used. In the algorithm of mmintg, the
interpolation step produces a binary output when the input image is binary. If
we would change the interpolation step so that a binary input image produces
a greyscale output, then we might be able to anti-alias the aforementioned
objects. A simple post-processing step can also further smoothen the image:
figures 6.66 and 6.67 show the interpolation results of the previous examples,
using mmintg, but filtered after interpolation, with a Gaussian 3 × 3 kernel,
with σ = 0.5. Using an averaging kernel instead of a Gaussian kernel, or using
a too large standard deviation σ results in a blurry image. If a binary output
is desired, then mmintg will (overall) produce better results than hq (whose
results have to be binarized), since its results are very similar to mmint’s and
this method is superior to hq, as we discussed in section 6.4.

Figure 6.68 shows a real life scene containing a lot of texture and grey value
variation. mmintg produces quite good results, but because the edges in the
image are less sharply defined and more grey values are involved, the interpola-
tion result looks segmented, i.e., the grey value change after interpolation is too
abrupt. A suggested improvement is to use a more sophisticated interpolation
step. When M > 3, the neighbouring pixels of a corner pixel that change too
are given the same value as the corner pixel. A calculation of a separate new
value for each pixel could increase the quality of the interpolated image.

6.6 Conclusion

In this chapter, we gave an overview of the convolution-based interpolation.
The ideal interpolation kernel, the normalized sinc, can be approximated in
many ways, in the form of polynomials or B-splines. Adaptive methods exploit
the information available in the low-resolution image, such as edges.

We developed a new interpolation technique for binary images, mmint, based
on mathematical morphology. The primary goal is to detect corners in a pixel-
replicated image. The corners are validated, i.e., we check if they belong to a
jagged edge, and eventually we swap pixel values.

We examined some alternatives, such as mmintone or the multi-step approach,
and we compared our techniques to existing ones. Overall, mmint produces
better results than other methods.

Finally, we extended our interpolation method to greyscale images, using local
binarization and a majority ordering.
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(a) Original image

(b) 3× magnified (pixel replication)

(c) hq interpolated

(d) mmintg interpolated

Figure 6.65: The interpolation of a greyscale line graphic.
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Figure 6.66: Gaussian blur after interpolation of figure 6.64.

Figure 6.67: Gaussian blur after interpolation of figure 6.65.
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(a) Pixel replication (M = 4) (b) mmintg interpolated

Figure 6.68: The interpolation with mmintg of a real life scene (a cut-out of the
“Lena” image).
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Chapter 7

Conclusions

In this thesis, we considered various uses of mathematical morphology (mm),
a theory based on lattice theory and random geometry. It is used for the in-
vestigation of geometric structures. We defined the basic operators, dilation
and erosion, and the structuring element in chapter 2. These are the building
blocks of mathematical morphology. With these ingredients, we can construct
many other, more sophisticated operators.

We explained two greyscale extensions of the binary theory: the threshold ap-
proach and the umbra approach. The t-approach builds on the concept of
cross sections, while the u-approach uses concepts like the top surface and
umbra. With one of these extensions, we can process intensity images with
mathematical morphology, a theory based on set theory and thus originally
only applicable to binary images.

In chapter 3, we gave an introduction to the theory of colour; we defined colour,
discussed how we perceive it and how we can reproduce it. Different colour
spaces exist, such as xyz, rgb, hsl or L∗a∗b∗. They all have their advantages,
disadvantages and purposes.

Colours are not totally ordered in an obvious and unique way. Several ways of
ordering exist, like marginal ordering or lexicographical ordering. We explained
the latter for the hsl colour space. When the colours are ordered, the image can
be treated as if it was a greyscale image. Greyscale mathematical morphology
can now be applied to the colour image.

We proposed an original colour ordering, the majority sorting scheme (mss).
It is a content-dependent ordering that ranks the colours depending on the
number of pixels with those colours in the image. The method assumes that
background colours are highly present, while details and noise are pixels with
rare colours. Morphological operations using the mss perform well on such
images.

We have to take care of several issues. First of all, when the number of colours
present in the image is high, then the pixel count per colour will be low for
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many colours. It is therefore likely that many colours will be assigned the same
ranking, which is not desired because it is then difficult to discriminate between
the colours, i.e., between detail and object or between noise and background.
Colour quantization is a suggested solution to limit the amount of colours and
to obtain a useful ordering.

This quantization step could be further optimized. Possibly there exist better
suited colour reduction techniques than the peer group filtering (pgf), and we
also do not know what the ideal number of colours is. We solved this problem
by requiring each remaining colour to belong to a unique level in the mss-map.

Another issue is the introduction of false colours after quantization, but we
tackled this problem by storing the original colours and linking them to the mss-
map. Equally important colours with a different frequency should be merged.
Equally frequent colours can be distinguished by comparing e.g. the grey value
difference or distance. Generally, this extra comparison does not change the
morphological result significantly.

The majority ordering has its advantage when the images to be processed do not
contain natural colours. By this, we mean any colour image with uncorrelated
colour combinations, such as logos, maps, post-coloured images, . . . . At the
same time, the restriction to this kind of images is of course a drawback. The
mss can be applied to natural images, but most probably a colour quantization
step is necessary to let the mss work effectively.

Some advantages of the majority ordering are: when we change all colours in
a new map of unique colours, i.e, the transformation is bijective, then there is
no difference in the majority ordering. The technique does not depend on the
colour value, but on the frequency of the colour in the image. We can also use
the mss for greyscale images or binary images.

In chapter 4, we introduced the morphological pattern spectrum (ps). It is a
size distribution histogram of the objects in an image. The ps is defined for
binary and greyscale images. We suggested the colour pattern spectrum and the
mss pattern spectrum for the spectrum of a colour image. The mss-ps will first
order the colours (or grey values) according to their frequency. Afterwards, a
standard pattern spectrum is computed.

For a binary image, the interpretation is quite straightforward: the value
PS(A; B)(n) is the number of object pixels that disappear between an opening
of image A by structuring element nB and an opening by (n+1)B. In the case
of a greyscale image, the value denotes a decrease in grey value. Many pixels
could have decreased only a little in grey value, or a few pixels a lot. For colour
images, the interpretation of the spectrum is even more abstract.

Because of the high computational cost, we have examined several other spec-
tra. The area pattern spectrum (aps) is similar to the regular pattern spectrum,
but does not take the shape of the objects into account. This is useful if we do
not look for a specific shape, but are interested in the size of the objects.



271

The principle of opening trees (ots) allows us to calculate the pattern spec-
trum with one-dimensional structuring elements very quickly. It is the pre-
ferred method if we want to classify linear objects in function of their length
and orientation. A granulometry by maxima of linear openings (otmax) com-
putes an oriented pattern spectrum (ops). The oriented pattern spectrum can
be used for the examination of anisotropic objects with unknown orientation.
The pseudo-granulometry by minima of linear openings (otmin) can be used
as a rough approximation of the pattern spectrum with a square structuring
element.

We proposed the erosion pattern spectrum (eps). It is not a granulometry,
but is fast compared to the pattern spectrum. It computes the greyscale dif-
ference between two successive erosions. We also suggested a one-dimensional
histogram of the Fourier spectrum of the image, the so-called Fourier pattern
spectrum (fps).

The calculation time of the pattern spectrum increases quadratically with the
maximal object size in the image, and linearly for the erosion pattern spectrum.
The time needed for the calculation of the default pattern spectrum can easily
increase to more than a few hours (for a 512× 512 greyscale image), while the
erosion spectrum only needs a few minutes at most. The other techniques are
even faster, with the Fourier pattern spectrum the fastest, about one second,
followed by the area pattern spectrum and the opening tree algorithm (tens of
seconds at most).

We analysed debris particles from wear experiments in chapter 5. The materials
tested were polymers that are used in sliding bearings. We used the pattern
spectrum (and its alternative spectra) to analyse the correlation of the spectral
parameters with the settings of the tribological experiment.

The biggest problem with our analysis of the pattern spectra is the amount of
available data. For each of the experimental settings, we had access to only a
few pictures of debris particles. In order to perform a more relevant statistical
research, much more data would be needed. Also, the number of experimental
settings is limited, which hinders the correlation accuracy.

Nevertheless, we have obtained some interesting results. We can confirm, using
the pattern spectrum, that the size of the debris particles of the wear of polymer
pomh increases with the contact pressure. The sintered polyimide sp-1 has a
transition temperature above T = 180◦C, when imidization starts to occur.
We observe this through the behaviour of the spectral parameters with the
temperature.

For the polymer sp-21, we can correlate the coefficient of friction with the
average size and roughness obtained from the pattern spectrum. For the ma-
terial tp, we notice a correlation between the coefficient of friction and the
(normalized) average roughness, when the load is fixed.

Since the morphological pattern spectrum (ps) has a high computational cost, it
would be good to be able to replace it by a much faster alternative spectrum. It
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is not clear which one is best suited to replace the ps. Interesting to note is that
the parameters of the pattern spectrum based on the majority sorting scheme,
mss-ps, correlate quite well with the experimental settings of the tribological
experiments. The plots of the parameters from the mss-ps against the load or
temperature are similar to those from the regular pattern spectrum. This is a
first prove that the mss-ps has its use as an alternative pattern spectrum (and
colour ordering).

In chapter 6, we talked about image interpolation. We gave an overview of
the convolution-based interpolation. The ideal interpolation kernel, the nor-
malized sinc, can be approximated in many ways, in the form of polynomials
or B-splines. Adaptive methods exploit the information available in the low-
resolution image, such as edges.

The interpolation of an image is not without errors. A simple pixel replication
introduces a staircase pattern, jagged edges. Other non-adaptive techniques,
such as bilinear of bicubic interpolation, blur the interpolation result. A ringing
effect is yet another possible artefact (only in the case of greyscale interpola-
tion). While the non-adaptive interpolation methods are better at avoiding
these artefacts, other artefacts can be introduced. The interpolation results of
adaptive techniques often look segmented, suffer from important visual degrad-
ation in finely textured areas or random pixels are created in smooth areas.

We developed a new interpolation technique for binary images, mmint, based
on mathematical morphology. Its primary goal is to detect corners in a pixel-
replicated image. The corners are validated, i.e., we check if they belong to a
jagged edge, and eventually we swap pixel values.

We examined some alternatives, such as mmintone or the multi-step approach.
They are both faster than mmint. For example, interpolating a 337 × 174
binary text sample takes about 21s for mmint, with magnification M = 9.
Performing the same algorithm with the multi-step approach (twice M = 3)
takes only about 14s. mmintone is the fastest, as it interpolates the image in
less than 11s. We believe there is further room for improvement of the speed
of the algorithms.

We compared our techniques to existing ones. The comparison is done quantita-
tively, by means of the peak signal-to-noise ratio (psnr), as well as qualitative-
ly, by asking a test panel to score the quality of several interpolated images.
Overall, mmint received the highest scores. Only for text, the competing
method hq was appreciated more.

Finally, we extended our interpolation method to greyscale images (mmintg),
using local binarization and a majority ordering. A possible improvement is
how we define the window size for the local binarization and for the majority
ordering. This choice should be made in a more adaptive and more robust way.
A better anti-aliasing step is also a desired feature. Nevertheless, mmintg
produces very nice results on images with sharply defined edges. The compu-
tational cost of this implementation is still quite high. A subject for future
work could be to search for a way to implement the greyscale interpolation in
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one step, like mmintone. An extension of our greyscale interpolation method
to colour is quite straightforward.
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addition theorem, 132
additive colour system, 59
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attribute, 250
average roughness, 110, 154

normalized, 111, 154
average size, 110, 154

B-closed, 23
B-open, 23
B-shapiness, 111, 154
B-spline, 196

cardinal, 199
bandlimited function, 189
Barbara (image), 88, 98
bearing, 148
between-class variance, 242
binarization, 240, 260
binomial coefficient, 198
bit reversal, 133
bitmap image, 184
blur, 195
boat (image), 194
border mirroring, 13

candela, 63
canonical element, 120
cc i corner, 209, 221
cc ii corner, 211, 222
centroid, 78

chroma, 71, 72
chromaticity coordinates, 63, 71
chromaticity diagram, 63
cie, 62
closing

binary, 18
greyscale

t-approach, 31
u-approach, 37

cluster, 74, 76
coefficient of friction, 147
colour, 59

difference, 71, 72
false, 80
morphology, 57
ordering, 78
perception, 58
quantization, 73, 95
reduction, 73
reproduction, 59
spaces, 62

colour space, 62
cmy(k), 65
hsi, 66, 72
hsl, 66, 69, 72
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hsl (double-cone), 69
hsv, 66, 72
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L∗a∗b∗, 70, 72
linear-light tristimulus, 72
L∗u∗v∗, 71, 72
perceptually uniform, 70–72
non-linear r’g’b’, 72
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linear rgb, 72
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(x,y) chromaticity, 72
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commutativity, 22
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greyscale, 109
complementary corner, 205, 208
composite, 145
computational cost, 20, 22
conditional dilation, 41
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convolution, 190
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theorem, 132

corner detection, 49, 206, 221, 260
corner map, 207
corner orientation, 205
corner validation, 208, 221
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covariance, 155
covariance matrix, 155
cross section, 29
cutoff point, 192
cylinder-on-plate, 148
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conditional, 41
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greyscale

t-approach, 30
u-approach, 36

Dirac comb, 188
discrete Fourier transform, 130
discrete size transform, 105
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equal energy white point, 63
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conditional, 41
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t-approach, 31
u-approach, 36

Euclidean distance/norm, 70, 74,
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extensivity, 15

fast Fourier transform (fft), 133
fibre, 145, 146
fibre reinforced material, 145
filter

alternating, 43
alternating sequential, 43
averaging, 45
median, 45
morphological, 43
smoothing, 18
Wiener, 45

flat-on-flat, 149
Fourier, 129

amplitude spectrum, 132
discrete transform, 130, 188
fast transform, 133
inverse discrete transform, 130
inverse transform, 130
pattern spectrum, 136
periodicity, 131, 188
phase spectrum, 132
polar representation, 132
power spectrum, 132
properties, 132
spectrum, 132
transform, 107, 130, 188
transform pair, 130

“free T”, 149
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frequency response, 10
friction, 147

bearing, 148
coefficient, 147
dynamic, 147
limiting, 147
static, 147

fuzzy logic, 40

gamma, 73
gamma function, 252
gamut, 59, 65
Gaussian pdf

generalized, 252
generalized Lloyd algorithm, 78
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Gibbs phenomenon, 195, 199
gradient, 47

external, 47
internal, 48

granulometric curve, 104
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granulometry, 103
anti-, 109
by closing, 109
by maxima of linear openings,

125, 127, 128, 154
by minima of linear openings,

126, 154
pseudo-, 121, 126, 128, 154

Hermite function, 132
hit-miss transform, 49, 206

greyscale, 52
hole filling, 212

alternative, 214
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hue, 66, 71, 72

icc profile, 66
idempotency, 18, 23, 42, 104, 126
image processor, 9
image reconstruction, 41

morphological, 41
imidization, 169
impulse response, 190

increasingness, 15, 103
injection moulding, 152
input-output equation, 10
intensity, 63
interface, 145
interpolation, 185

adaptive, 199
B-spline, 196
bicubic, 195, 198
bilinear, 195
edge-based, 200
example-based, 201
hq, 201
ideal, 192
isophote smoothing, 200
kernel, 190
linear, 193
mmint, 203
mmintg, 259
mmintone, 226
nearest neighbour, 185, 194,

206
non-adaptive, 193
non-linear, 199
pixel replication, 185, 194, 206
restoration-based, 200
self-similarity-based, 202
sinc, 192
truncated sinc, 195
windowed sinc, 195

interpolator, 192, 199
intersection, 12, 24
inverse Fourier transform

continuous, 130
discrete, 130

isophote, 200
smoothing, 200

jagged corners, 204
jaggies, 185, 194
jelly beans (image), 93

kurtosis, 137, 155

large-scale testing, 149
layer (of plateau), 228
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leaves, 122
left inverse, 37
Lena (image), 60, 118, 141, 267
level curve, 200
level set, 29
lightness, 71, 72
line art, 186
linear operator, 10
link function, 252
log-likelihood function, 253
lubrication, 147
luminance, 63, 66, 71

magnitude, 132
majority sorting scheme (mss), 87,

113, 152, 260
matrix, 145, 146

polymer, 146
maximal size, 110, 154
maximum-likelihood criterion, 253
mean, 137, 155
mean squared error (mse), 245
median cut, 74
Minkowski

addition, 14
definition, 26
subtraction, 16

Minkowski norm, 252
mmint, 203
mmintg, 259
mmintone, 226
moiré pattern, 189
monotonicity, 24
mss-map, 88, 115
multi-dimensional scaling (mds),

249

nearest neighbour interpolation,
185

nodes, 120, 122
noise

Gaussian, 45
impulse, 74
salt-and-pepper, 45, 74

non-decreasing, 24
non-increasing, 24

non-uniform quantization, 74
Nyquist criterion, 189
Nyquist frequency, 189
Nyquist rate, 189

object, 11
opening

area, 116
attribute, 116
binary, 19
connected, 117
greyscale

t-approach, 31
u-approach, 37

opening by reconstruction, 42
opening tree, 121
ordering, 39

by hue (H-), 82
by luminance (L-), 81
by saturation (S-), 82
by saturation-weighted hue, 84
component-wise, 80, 113
conditional (C-), 79, 81
dictionary, 81
lexicographical, 81, 113
majority, 87, 113, 152, 260
marginal (M-), 79, 80
of colour, 78
partial, 79
partial (P-), 79
reduced (R-), 79
sub-, 79, 113
total, 78

origin of hue, 84
Otsu thresholding, 152, 241

padding, 13, 18
zero, 13, 16

painting effect, 202
parent, 121
passband, 192
pattern spectrum, 104, 154

area, 116, 154
by closing, 109
colour, 113, 152, 154
continuous, 105
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erosion, 128, 154
Fourier, 136
normalized, 105
opening tree, 121
oriented, 107, 154

by closing, 109
structuring element-

normalized, 105
peak signal-to-noise ratio (psnr),

95, 245
pecstrum, 104
peer group filtering (pgf), 74, 96
perceptual space, 249
perceptually uniform, 70, 71
Periventricular Leukomalacia, 48
phase angle, 132
phase spectrum, 132
photon, 58
pixel density, 185
pixel replication, 185, 194, 206
pixel swapping, 215, 223, 228, 261
pixels per inch (ppi), 185
Planck’s constant, 58
plateau, 228, 230
polyoxymethylene homopolymer

(pomh), 150
pomh, 150, 159
population algorithm, 74
power spectrum, 132
primaries, 59
principle of homogeneity of percep-

tion, 250
probability density function, 252

quantization, 73, 188
colour, 73, 95

raster graphics, 184
real corners, 203
reconstruction kernel, 190
rectangular function, 192, 196
reflection, 13
reflexivity, 78
residual, 236
resolution, 185

response function (of human eye),
60

ringing, 195
rod cells, 58
root, 121, 123
root mean squared error (rmse),

245
roughness, 110, 154

normalized, 111, 154

sampled image, 188
sampling, 188
sampling theorem, 189
saturation, 66

psychometric, 72
scaling invariance, 20
segmentation, 47
segmentation effect, 202, 267
separability, 131, 190
Serra definition, 26
set, 11
set difference, 12
Shah function, 188
Shannon sampling theorem, 189
shift theorem, 132
sieving, 103
signal-to-noise ratio (snr), 45
similarity theorem, 132
sinc function, 192
sintered polyimide (sp), 151
sintering, 151
size distribution, 104
skewness, 137, 155
small-scale testing, 148
sp

sp-1, 151, 169
sp-21, 151, 174

specific neighbour based approach,
209

spectral locus, 63
spectrum, 132
splitting initialization algorithm, 78
standard deviation, 137, 155
stimulus, 249
stopband, 192
structuring element, 26
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flat, 39, 40
non-flat, 39, 40

subgraph, 34
subject, 249
subtractive colour system, 60
support, 36, 190
surface, 34

t-approach, 29
thermoplastic, 146
thermoplastic polyimide (tp), 151
thermoset(ting plastic), 146
threshold approach, 29
threshold decomposition, 29
top (surface), 34
tp, 151, 176
transformation

cylindrical hsl to double-cone
hsl, 70

cylindrical hsl to rgb, 67
double-cone hsl to cylindrical

hsl, 70
rgb to cmy, 65
rgb to cylindrical hsl, 66
xyz to rgb, 64
xyz to xy, 63

transitivity, 79
translation, 13
translation invariance, 10, 20
tree, 120, 122
triangular function, 195
tribology, 147
tristimulus value, 59
truncated sinc function, 195
twiddle factor, 133

u-approach, 34
umbra, 34
umbra approach, 34
umbra homomorphism theorem, 38
uniform quantization, 73
union, 12, 24
union-find, 120
unit step function, 198

variance, 155

vector graphics, 183
vertical displacement, 147
visible spectrum, 58

wear, 147
white matter damage, 48
Whittaker-Shannon sampling the-

orem, 189
window based approach, 210
windowed sinc function, 195
within-class variance, 241
World Wide Web Consortium

(w3c), 186

XGms, 251
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