Phase transformations and precipitation in amorphous Ti$_{50}$Ni$_{25}$Cu$_{25}$ ribbons

C. Satto a, A. Ledda a, P. Potapov a, J.F. Janssens b, D. Schryvers a,*

a Electron Microscopy for Materials Research (EMAT), University of Antwerp, RUCA, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
b Chemistry Department, University of Antwerp, RUCA, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Received 22 January 2001; accepted 12 February 2001

Abstract

Phase transformations and precipitation mechanisms in Ti$_{50}$Ni$_{25}$Cu$_{25}$ material, starting from an amorphous planar-cast ribbon, were studied by in-situ transmission electron microscopy (TEM). On heating, the cubic B2 austenite crystallisation occurs around 470°C after which the orthorhombic B19 martensite is formed on cooling. Annealings up to 700°C yield the identification of Cu$_3$Ti$_2$ and Ti$_2$Ni precipitates. These precipitations drastically alter the matrix composition, resulting in the formation upon cooling of the monoclinic B19$_0$ martensite with different types of long-period stacking sequences. Also the B19$'$ martensite is still recognised in the latter samples. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: A. Ternary alloy systems; B. Martensitic transformations; B. Phase transformations

1. Introduction

TiNi alloys are well known for their excellent shape-memory properties, as well as for their superelastic behaviour. Alloying with ternary elements can severely affect the transformation, for example the substitution of Cu for Ni changes the martensite start temperature M_s as well as the martensite structure [1]. The phase diagram of Ti$_{50}$Ni$_{50-x}$Cu$_x$ [2] is reproduced in Fig. 1. For low Cu concentration the monoclinic martensite B19$'$ is formed on cooling, similar to the transformation in the equiatomic binary compound [3]. For a Cu content around 10 at.%, the orthorhombic B19 martensite appears as an intermediate phase towards B19$'$ formation (B2 \rightarrow B19 \rightarrow B19$'$), the width of the composition region increasing with decreasing temperature [4–6]. Higher Cu levels inhibit the second step of this transformation and only B19 is retained [7,8].

The emphasis of the present work is on the in-situ observation by transmission electron microscopy (TEM) of the different transformation processes that take place when a ternary amorphous planar-cast ribbon with a composition of Ti$_{50}$Ni$_{25}$Cu$_{25}$ (at.%) is heated. Contrary to most other investigations, our anneals were performed up to 700°C and the effects compared with those in the more classic treatment up to 500°C.

2. Experimental

The starting material is an amorphous ribbon prepared from a melt of Ti$_{50}$Ni$_{50}$Cu$_{25}$ by the planar casting technique applied under argon atmosphere, which yields a cooling rate of $\sim 5 \times 10^3$ K/s. The resulting ribbons have a thickness of approximately 40 µm. TEM samples were obtained by punching 3 mm diameter samples from the ribbons and mechanically polishing them to a thickness of 20 µm. These samples were further electropolished, at room temperature, using an acetic acid solution with 8% of perchloric acid [9].

Conventional TEM images and selected area electron diffraction patterns were obtained in a Philips CM20 microscope. This latter is equipped with an energy dispersive X-ray spectrometry (EDX) device and a double-tilt heating holder. Differential scanning calorimetry (DSC) measurements were performed using a TA instrument 2920, operating under a nitrogen flux of 50
ml/min, with an alumina crucible holding the sample and using an empty alumina crucible as a reference.

3. Results

3.1. Heating treatment up to 500°C

Fig. 2a shows the early state of the B2 austenite crystallisation of spherical particles. These finally grow into well crystallised micron-sized grains of B2 at 500°C, as seen in Fig. 2b. From the DSC analysis, crystallisation was determined to start at 450°C and was completely finished at 490°C. Cooling the crystallised material inside the microscope at a rate of 10°C/min yields the martensitic transformation with the formation of the orthorhombic B19 phase, as revealed by SAED patterns corresponding to the [30-1] and [10-1] orientations and shown in Fig. 3a and b, respectively. All martensite grains show a twinned morphology as clearly seen from Fig. 3c. The B19 orthorhombic martensite crystallises in the Pmnb space group, with cell parameters $a = 0.29177(6)$ nm, $b = 0.42900(8)$ nm and $c = 0.45039(8)$ nm, determined by X-ray diffraction refinement in a separate study focusing on this annealing treatment [10]. These results confirm earlier studies on similar materials [11,12]. No fine-scale long-period twin sequences resulting in super-reflections in the SAED patterns of the martensite were found in these samples.

Here it is worth mentioning that the thinning, necessary for obtaining transparent TEM samples, strongly affects the material’s response. Indeed, in the thinnest edges of the TEM sample, only very small (i.e. with dimensions between 10 and 100 nm) austenite grains are formed. These small grains usually do not transform to the martensite structure upon in-situ cooling in the microscope. As a result, structural studies of the martensites thus have to be performed in samples heated before the electropolishing/thinning procedure.

3.2. Heating treatment up to 700°C

Continuing the heating treatment after the crystallisation to temperatures higher than 500°C induces
precipitation at around 600°C, as shown in Fig. 4a. Particles of a maximum size of 100 nm at 700°C are seen to form inside the grains as well as at the grain boundaries, strongly disturbing the geometrical image of the grains. As evidenced by the contrast of the particle labelled A in Fig. 4b, the larger particles are sometimes multigrained. Their chemical composition, determined by EDX analysis, corresponds, on average, to 50 at.% Cu, 40 at.% Ti and 10 at.% Ni. Assuming a single sub-lattice with a random occupation for Cu and Ni, these particles could present the tetragonal Cu$_3$Ti$_2$ structure with space group $P4/nmm$ and cell parameters close to $a = 0.313$ nm, $c = 1.395$ nm, values known for the stoichiometric compound [13]. This hypothesis was confirmed by the observation of diffraction patterns as in the inset of Fig. 4b, which can be indexed as the [56-1] zone of Cu$_3$Ti$_2$. The present pattern furthermore allows the characterisation of twinning along the (105) plane, responsible for the contrast in particle A of Fig. 4b.

Occasionally, evidence from a cubic superstructure with cell parameter $a = 1.127$ nm was found, as shown in the SAED pattern of Fig. 5. Although the relevant reflections at short reciprocal distances are weak and no full diffraction study could be performed owing to the elevated temperature and small sizes of the precipitates involved, these observations do indicate the presence of very small particles with the Ti$_2$Ni structure [14,15].

On cooling, the martensitic transformation occurs around 50°C, the temperatures of transformation being determined accurately by DSC measurements of unthinned material. Moreover, these measurements indicate that the martensitic transformation occurs in two steps, as clearly evidenced by the two peaks in the DSC curve of Fig. 6. From the TEM experiments it was found that
not only the orthorhombic B19 martensite appears, but also the B19’ type (space group \(P2_1/m \), cell parameters \(a = 0.2898 \) nm, \(b = 0.4108 \) nm, \(c = 0.4646 \) nm and \(\beta = 97.78^\circ \) [16]), obtained by a monoclinic distortion of B19. A typical [100] diffraction pattern of B19’ is shown in Fig. 7. It reveals an (011) type I twinning (underlined indexations) superposed by a six-fold stacking sequence of (011) twin planes, already well-known in the B19 [17] as well as B19’ case [18].

Local EDX measurements of the martensite plates yield an average composition of Ti\(_{50}\)Ni\(_{40}\)Cu\(_{10}\). Due to the strong mixing of B19 and B19’ regions, no separate compositions could be obtained for the two martensite structures.

As most structures appear with relatively small-sized morphologies, the final room temperature microstructure is a complex combination of different crystallographic structures and variants. Each austenite grain is divided into several twinned martensite plates, with numerous untransformed precipitates still distributed inside and between them, resulting in bright field images as in Fig. 8. A typical example of a SAED pattern from such a region is shown in Fig. 9a. The point-like reflections, indicated by vertical arrows, can be explained by the Cu\(_3\)Ti\(_2\) structure in the [56-1] orientation, twinned along (105). The remaining reflections appear to belong to a superstructure. They show slight streaking along the reciprocal direction of the superstructure and appear at commensurate or incommensurate locations, depending on the actual pattern.

A first possible explanation is by attributing these reflections to twinning along (001) of the B19’ monoclinic martensite, here observed along its [110] orientation. This type of twinning is indeed well known for the monoclinic B19’ structure [18,19] and is evidenced by the doubler of strong (111) type reflections, as shown in Fig. 9b. The streaked reflections at (in)commensurate positions around 1/3 of the basic reflections would then correspond to an imperfect superstructure or modulation of the monoclinic twinning. This interpretation is further sustained by the occasional observation of a [110] orientation of the B19 structure superposed on the pattern of Fig. 9a, yielding unsplit (111)\(_{B19}\) type reflections in between the twinned monoclinic ones. However, this explanation is not fully convincing because of small discrepancies in the values of the angles when compared with the regular monoclinic unit cell and the absence of the (001) reflection. Still, a superstructure could imply a slightly different monoclinic angle and a longitudinal component of the modulation could yield a severe diminishing of the intensity of the 001 ordering reflection due to dynamical scattering.

The second possibility, simulated in Fig. 9c, consists of twinning along (111) of the [7-3-4] zone axis of a Ti\(_3\)Ni particle. Although this better explains the location and angles for the reflections in the second row, it is
in disagreement with the reflection conditions induced by the Fd-3m space group of the binary structure \((hkl, h + k = 2n, h + l = 2n, k + l = 2n)\) which do not allow for the reflections in the first row. A chemical substitution, for instance some Cu in Ni sites, leading to crystallisation with a lower symmetry space group, could, however, result in the appearance of these reflections.

Unfortunately, because of the very small size of the Ti2Ni particles, no suitable EDX experiments could be performed. Still, this suggestion does not explain the occasional incommensurability of the streaked reflections at the \(1/3\) positions. The streaking itself could result from a plate-like shape of the precipitates.

Because of the high sensitivity of the martensite phase stability to observation under high energy electrons, no high resolution microscopy could be performed to elucidate this remaining problem.

4. Discussion

As precipitation takes place at temperatures above 500°C, the chemical composition of the austenite is changed and as a consequence also the chemical composition of the martensite formed by a purely displacive mechanism upon cooling. The observed precipitates are based on Cu3Ti2 and Ti2Ni structures, but, certainly for the former, are appearing here as a ternary compound. These observations are in accordance with the starting chemical composition, Ti50Ni25Cu25, which can also be written as Ti6Ni3Cu3. In order to equilibrate the chemical equation (and first disregarding the ternary nature of the precipitates), two parts of the matrix with TiNi composition have to be introduced, as shown below. Then, when replacing Cu3Ti2 by the more accurate Cu50Ni10Ti40 composition as determined by EDX, some Ni in the matrix has to be substituted by Cu. Thus, the martensite has a composition closer to Ti50Ni40Cu10. Probably by Cu substitution on Ni crystallographic sites, and the chemical balance between the precipitates and the matrix is retained. As the result of the decrease of Cu concentration in the matrix, the B19 martensite structure is observed, in accordance with the phase diagram of Fig. 1.

\[
\begin{align*}
\text{Ti}_{50}\text{Ni}_{25}\text{Cu}_{25} & \rightarrow \downarrow \\
\text{Ti}_{6}\text{Ni}_{3}\text{Cu}_{3} & \rightarrow \text{Cu}_{50}\text{Ni}_{10}\text{Ti}_{40} + \text{Ti}_{2}\text{Ni} + 2 \text{TiNi} \\
\text{Cu}_{50}\text{Ni}_{10}\text{Ti}_{40} & \rightarrow \downarrow \\
\text{Ti}_{50}\text{Ni}_{40}\text{Cu}_{10} & \rightarrow \text{Cu}_{50}\text{Ni}_{10}\text{Ti}_{40} + \text{Cu}_{50}\text{Ni}_{25}\text{Cu}_{25}
\end{align*}
\]

The fact that both B19 and B19' martensite structures are observed at room temperature could imply that the entire matrix is relatively homogeneous with a Cu content close to 10 at.%. This then means that at least part of the two peaks in the DSC curve of Fig. 6 is due to a subsequent \(B2 \rightarrow B19 \rightarrow B19'\) transformation. However, if the matrix is severely inhomogeneous as the result of the different precipitation processes, then the entire material could cover the different sequences as seen from the phase diagram in Fig. 1. In this case the two peaks in Fig. 6
could well indicate two separate B2- > B19 and B2- > B19' paths.

Regardless of the final conclusion on the complete elucidation of the transformation paths and the complex SAED patterns as in Fig. 9, the well aligned superposed reciprocal directions indicate that there is a strong crystallographic relation between the austenite and the precipitates and thus also with the martensite. Indeed, as the [001] directions of the B19 and B19' martensites originate from a <110> direction in the austenite [20], the [105] and [111] directions of the Cu3Ti2 and Ti2Ni precipitates, respectively, also align with a <110> direction of the austenite. The formation of coherent precipitates is of considerable interest to potential applications as it is known to introduce the two-way shape memory behaviour of these materials [21].
5. Conclusion

The martensitic transformation in planar-cast Ti$_{50}$Ni$_{25}$Cu$_{25}$ ribbons annealed at different temperatures has been investigated by in-situ TEM. A heat treatment at 700°C leads to Cu$_3$Ti$_2$ and Ti$_2$Ni type precipitation, which changes the chemical composition of the austenite, in such a way that not only the orthorhombic martensite B$_19$ is formed but also the monoclinic B$_19'$, in accordance with the phase diagram. At least one and possible two distinct long-period microtwinned stacking sequences have been recognised in the B$_19'$ martensite.

Acknowledgements

This work was supported by the Trade and Mobility Research program of the EEC under the project FMRX-CT98-0229 (DG12-BDN) entitled “Phase Transitions in Crystalline Solids” and within the Belgian IUAP project P4/10 “Systems with Reduced Dimensionality”. P. P. holds a guest professorship at the University of Antwerp.

References