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ABSTRACT
This paper presents an interpolation technique “mmINTone”
for binary images, such as logos, diagrams, graphs and car-
toons. The technique removes the jaggies from a pixel-
replicated image, using concepts from mathematical mor-
phology. As a result, the edges are smoother and jaggy-free.

In this paper we describe the algorithm, show some re-
sults and compare it to existing interpolation methods as well
as to a previously developed technique of ours, also based on
mathematical morphology. We can conclude that mmINTone
is considerably faster and similar in quality.

1. INTRODUCTION

Image interpolation techniques are used to convert a bitmap
to a higher resolution. The easiest approach is to copy the ex-
isting pixel values to their new available neighbouring pixels
on the high resolution grid. This is called pixel replication or
nearest neighbour interpolation [1]. The result is poor and
suffers from unwanted jagged edges, called jaggies.

Linear techniques like bilinear and bicubic interpolation
convert the binary image to an upscaled greyscale image,
which can be binarized afterwards. Here, the (weighted)
mean of respectively 4 and 16 closest neighbours is cal-
culated for the missing pixel value. Other linear methods
use higher order (piecewise) polynomials, B-splines, trun-
cated or windowed sinc functions, etc. Most of them create
a greyscale image with extra artefacts, like blurring and/or
ringing.

Adaptive or non-linear interpolation methods incorpo-
rate prior knowledge about images. Several approaches ex-
ist, such as edge-based techniques [2], restoration methods
[3, 4], self-similarity techniques [5], or example-based ap-
proaches [6]. Our proposed method mmINTone can be clas-
sified as a restoration method. Adaptive methods still suffer
from artefacts: their results often look segmented, bear im-
portant visual degradation in fine textured areas or random
pixels are created in smooth areas.

In this paper we present an efficient non-linear binary
interpolation technique based on mathematical morphology,
“mmINTone” (Mathematical Morphological INTerpolation
in One step). In short, mmINTone removes the jaggies from
a pixel-replicated binary image, by changing the values of
the corner pixels of those jagged edges. mmINTone per-
forms very well and is also much faster than its predecessor
mmINT [7]. This method uses several iterations to remove
jaggies from a pixel-replicated image. Other existing tech-
niques that use morphological concepts for interpolation or
morphing can be found in e.g. [3, 8, 9, 10].

This paper is organized as follows: section 2 intro-
duces the morphological techniques used for mmINTone,

(a) Strel B (f.g.) (b) Strel C (b.g.) (c) Strel C′ (b.g. alt.)

Figure 1: Upper-left corner detection with the hit-miss trans-
form. Black squares: pixels of the strel; cross: origin of the
strel. f.g.: foreground; b.g.: background.

while section 3 describes the algorithm. Section 4 compares
mmINTone to other methods, both visually and computation-
ally. We will see that this technique outperforms other meth-
ods. Finally, section 5 draws some conclusions.

2. CORNER DETECTION

Our interpolation technique is based on mathematical mor-
phology [11]. A discussion of this theory can be found in
many standard books about image processing.

Binary mathematical morphology is based on two basic
operators: dilation and erosion. They are defined in terms of
a structuring element (short: strel); this is a small window
with an origin (the position of the current image pixel) which
is moved over the image as in a linear filter and the pixels
within the mask are used to compute a value for the output
pixel.

In our algorithm, we use the morphological hit-miss
transform. Two non-intersecting structuring elements are
needed: one for the erosion of object pixels (B), and one for
the erosion of background pixels (C). With this transform it
is possible to detect specific shapes in the image.

For example, the upper-left corner of an object can be
detected by eroding the image by strel B in fig. 1(a), and by
eroding the complement of the image by strel C (fig. 1(b)).
The intersection of both erosions is a set that shows the loca-
tions of upper-left corners in the image. We call it a cor-
ner map. Similarly, other corners (upper-right, lower-left
and lower-right) can be detected using rotated versions of the
structuring elements B and C.

3. ALGORITHM DESCRIPTION

In this section, we explain the mmINTone method. Its pur-
pose is to remove the jagged edges from a pixel-replicated
image (only integer magnification factors) in one step, by
swapping specific pixels from the foreground values to the
background values and vice versa. We consider the most fre-
quent value in the image to be the background.

Different steps can be distinguished in the algorithm:
1. Pixel replication: First, the image is pixel-replicated by

an M×M square of the same values. The resulting im-
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(a) Original image

(b) Pixel-replicated image (3×)

(c) Interpolated image

Figure 2: The jagged edges have to be removed, by replac-
ing the values of specific pixels. The dotted lines show the
orientation of the original line (a). The dots indicate jagged
corners, obtained after step 3 in the algorithm.

age contains strong staircase patterns because of the pixel
replication.

2. Corner detection: Using a combination of hit-miss
transforms, mmINTone determines the positions of cor-
ners, both real and false (due to jaggies) in the image.

3. Corner validation: Some corners found in the preced-
ing step are real corners, which have to be retained in
the interpolated image. For example, consider a pixel-
replicated drawing of a house containing walls, windows,
a door and a roof. The corners of the walls, windows
and door are real corners, as they represent the shape
of the objects. The corners detected on the roof, on the
other hand, are jagged corners, because the ideal roof is
a slanted line. The aim of corner validation is to distin-
guish jagged corners from real ones.

4. Pixel swapping: We swap the values of pixels classified
as jagged corners, and the values of some of their neigh-
bours.
In order to illustrate the details of our method, we con-

sider the case of enlarging an object consisting of a thin line
of foreground pixels (see fig. 2(a)).

3.1 Pixel replication
The pixel-replicated result is clearly jagged (fig. 2(b)). The
dotted lines show the ideal boundaries of the magnified line.
The ideal solution would be to replace all background (white)
pixels between the dotted lines with foreground (black) pix-
els and to replace all foreground pixels outside the dotted
lines with background pixels. mmINTone aims to do just that.

3.2 Corner detection
As illustrated in fig. 2(b), the jaggies can be removed by alter-
ing the pixel values at the locations of object and background

(a) Complements across the edge (b) Complements along the edge

Figure 3: Complementary corners: the background corner
(black dot) has different complementary corners (white dots)
at specific relative coordinates. Magnification M = 3.

corners. The positions of these corners can be found with the
morphological hit-miss transform as explained before, using
the structuring elements in fig. 1 (and rotated variants). We
not only look for corners of the objects, but also for corners
in the background. This way, we will have 8 corner maps (4
object corner maps and 4 background corner maps).

If we use the same structuring elements for the detection
of object corners and background corners, then artefacts will
occur at lines with barely touching pixels, i.e., pixels with the
same value that are 8-connected but not 4-connected. Two
object corners and two background corners are found at such
pixels. If all those corner pixels change value, then holes are
introduced [7]. To overcome this connectivity problem, the
structuring element shown in fig. 1(b) is replaced by the one
shown in fig. 1(c) in the case we detect foreground corners:
for the detection of an upper-left corner, not only the pixel
values to the left and above the current pixel are then investi-
gated, but also the neighbouring pixel at the upper-left.

3.3 Corner validation
In the corner validation step, we distinguish between real and
jagged corners, by searching for one or more complementary
corner pixels in a local neighbourhood, and this for every
detected corner pixel, in each of the 8 corner maps. A com-
plementary corner of a detected object corner co is a corner
in the background (or vice versa) that lies at specific relative
coordinates w.r.t. co.

Fig. 3(a) shows a pixel-replicated line (magnification
M = 3) with a detected background corner (black dot) and
two complementary corners across the edge at a distance of
M pixels. They all are of the same type (here: lower-left
corners). Complements along the edge are located at a Man-
hattan distance of M pixels, as can be seen in fig. 3(b) (M−1
pixels along the edge, 1 pixel in orthogonal direction). These
complements have the opposite orientation (here: upper-right
foreground corners and lower-left background corner).

The existence of a complementary corner suggests the
presence of a jaggy, and therefore all corners without any
complementary corner will be removed from the corner map.
After this step in the algorithm, the corner maps will only
contain jagged corners (the real corners are now removed),
so the pixel swapping (the next step in the algorithm) will
only occur on jagged edges.

3.4 Pixel swapping
The pixel swapping, step 4 in the algorithm, is the restoration
part. The length of the plateau (a step in the staircase pattern,
see fig. 4) of a jagged line (f.g. or b.g.) determines the num-
ber of pixels whose value will be changed at that location. In
fig. 2 for example, the plateaus in the pixel-replicated image
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k = 0

k = 2
k = 1

k = 3

Figure 4: A plateau consists of several layers. The figure
shows an M = 3 magnified image. This plateau is 2M pixels
long.

are 2M pixels long, with M the magnification. Two object
pixels should change to background and two background pix-
els should change to object value, which results in M smaller
plateaus with length 2M

M = 2. In general this becomes:

length(P) = nM ⇒ length(Pi) = n , (1)

where P is the initial plateau (in the pixel-replicated image),
n is a strictly positive integer value, and Pi are the plateaus
that replace P after interpolation.

A plateau consists of several layers k (see fig. 4). Layer 1
is the layer of the detected corner pixel (the white dot in the
figure). The next layer lies below the first layer. Note that a
corner pixel can be part of two plateaus, a vertical one and a
horizontal one. The layers of a vertical plateau are oriented
columnwise.

Detecting the end of the plateau, and thus its length, is
simple: scan the plateau, starting from the detected (and val-
idated) jagged corner c0 (the white dot in fig. 4), and check
the following conditions:
• Has the pixel under investigation the same value as the

corner pixel (the starting point c0)?
• If so, has the pixel that lies “above” (layer 0 in fig. 4) the

plateau the opposite value of the corner pixel?
If a pixel does not satisfy these two conditions, it lies next to
the end of a plateau.

How the pixels are swapped, is defined by the magnifi-
cation, the length of the plateau, and a distinction is made
between odd and even magnifications.

Taking eq. (1) into consideration, we can derive for each
layer k how many pixels ∆k need to change value. For a
magnification M by an even factor, the situation is a little
more complicated than for a magnification by an odd factor.
Object pixels are treated differently from background pixels,
because it would otherwise lead to undesired interpolation
results:

F.g. : ∆k =
n
2
(M−2k +1)− 1

2
(n mod 2)(M +1 mod 2) ,

B.g. : ∆k =
n
2
(M−2k +1)+

1
2
(n mod 2)(M +1 mod 2) .

n is a strictly positive integer value that defines the length
of the plateau, nM. Index k is a strictly positive integer that
depends on the magnification:

k ≤
⌊M

2
⌋

.

The second term in the above equations is not present for an
odd magnification, so the equation is the same for foreground

(a) Pixel replication (b) Bilinear

(c) Sinc (Blackman-Harris) (d) HQ

(e) mmINT (f) mmINTone

Figure 5: Results for different interpolation techniques (mag-
nification M = 3).

and background. Note that if n is even, then these equations
are equal to those for odd magnifications.

In the example illustrated in fig. 4, k = 1 is the only layer
where the pixel values change. If M = 3 and n = 2, we can
calculate that two pixels will change value, namely the de-
tected corner pixel and its neighbour (with the same pixel
value) on the same layer.

4. RESULTS

4.1 Visual comparison

mmINTone performs very well on binary images. Fig. 5(a)
shows a 3× magnified image using pixel replication. Stan-
dard techniques, such as bilinear and sinc interpolation (their
greyscale results were binarized using Otsu thresholding
[12]), are not able to remove the jaggies when the image is
magnified. While the technique HQ [6] is already very good,
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(a) Original

(b) mmINT (c) mmINTone

Figure 6: mmINT vs mmINTone. Magnification M = 3.

(a) Pixel replication (b) mmINT (c) mmINTone

Figure 7: Interpolation of a text sample. Straight lines like
those in the letter “u” are overinterpolated with mmINTone.

our techniques mmINT [7] and mmINTone perform even bet-
ter. We notice smoother lines for the chin, nose and collar.
None of the techniques can handle complex binary textures
very well. In [7] we performed a psycho-visual experiment
based on multi-dimensional scaling. mmINT scored best, ex-
cept for text where HQ was better.

The visual difference between mmINTone and its prede-
cessor mmINT is very small. This is because mmINTone fol-
lows a similar strategy as mmINT (i.e., removes jaggies from
a pixel-replicated image), but using a faster non-iterative al-
gorithm. The results are not identical. Fig. 6 shows the dif-
ference between interpolation with mmINT and interpolation
with mmINTone. It seems that mmINTone does a slightly
better job at smoothing the curved lines. In some situations,
mmINTone is too ambitious: small protrusions can cause un-
wanted artefacts, because mmINTone only looks at the length
of the plateaus. If the lines are very long, and the protrusions
very small (compared to the lines), then the region of pixels
that change values will expand more than with mmINT. This
feature of mmINTone can be inconvenient for the interpola-
tion of text (see fig. 7).

Table 1 shows the similarity values (in percent) for 7 in-
terpolation techniques. We took 51 different binary images
and scaled down 3 times (using downsampling, without fil-
tering). The image similarities are only calculated in relevant
regions, i.e., at edges. This region of interest (ROI) is defined
by the morphological gradient (a dilation minus an erosion,
using a 3×3 square strel) of the reference image. This edge
image roughly defines the image pixels that might change
due to interpolation. From the table, which shows the av-
erage similarity, we can conclude that the behaviour of the
similarity is correlated with the visual quality. The average
error on this measurement technique is about 0.015 %, i.e.,
only 15 out of 100 000 pixels that are different between the
reference image and the interpolated image lie outside the
ROI.

A PSNR calculation results in a similar trend, but such
quality measurement technique is not well suited for binary

Table 1: Average similarity calculation for 7 interpolation
techniques (51 images).

Technique Similarity (%)
mmINTone 80.78 ± 0.034

mmINT 80.37 ± 0.0043
HQ 79.29 ± 0.0028

Bilinear 76.28 ± 0.0022
Bicubic 76.08 ± 0.044

Sinc (B-H) 75.55 ± 0.020
Pixel replication 71.16 ± 0.00026

images. Values lie between 18.13 dB and 19.96 dB.

4.2 Speed comparison
We now test how much faster mmINTone is compared to
mmINT, discussed in a previous paper [7]. While both meth-
ods are based on the hit-miss transform from mathematical
morphology, there is a big difference between them: mmINT
is an iterative procedure, where each iteration (on average 15
iterations are needed) removes more and more jaggies, us-
ing different (and larger) structuring elements for the hit-miss
transform. mmINTone, on the other hand, is non-iterative.

Using mmINT can be time consuming when the input im-
age is large and/or when a lot of lines are present in the im-
age with “unfavourable” orientations. By unfavourable we
mean lines with angles near 0◦ or 90◦, because these are
jagged lines with long plateaus that need many iterations be-
fore completely smoothened.

4.2.1 Artificial images

We take 16 artificial images (size 50× 50) and interpolate
them for different magnifications. Each image Im (m =
{1,2, . . . ,16}) contains lines under a specific angle. The
angle of the lines in Im is chosen in such way that mmINT
would need m iterations for achieving optimal interpolation
of Im. The number of jagged corners in the images is kept
constant (188). The timing experiments are performed on
an AMD Athlon XP 2200+ (1.8 GHz, 1.5 GB RAM) running
Linux, kernel v2.6.3. We used the time command in Linux
for the calculation time of the process (sum of user and sys-
tem time).

The processing time for mmINTone interpolation is inde-
pendent of the image content, for a given magnification. This
is logical, since all the necessary changes are made in one
single step. On the other hand, the processing time depends
on the magnification M. The averaged total calculation times
for 4×, 11× and 30×magnification are respectively 0.098 s,
0.81 s and 5.1 s (see also fig. 8).

The processing time for mmINT interpolation increases
polynomially with the number of iterations needed (this num-
ber depends on the image content). This increase is not only
due to the number of iterations, but also due to the higher
calculation cost for using larger structuring elements in the
higher iteration steps. A plot is shown in fig. 8 for M = 4,
M = 11 and M = 30. τ is the number of iterations needed.
Notice the logarithmic scale of the ordinate. The dependency
on τ is approximately cubic, i.e., t ∝ τ3.

The processing time ratio mmINT/mmINTone ranges
from 1.07 to 52.95 for M = 4, from 1.08 to 12.45 for M = 11,
and from 1.37 to 31.39 for M = 30. The gain in speed when
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Figure 8: Calculation time needed for interpolating artifi-
cial images with different content, using mmINT for M =
{4,11,30}. The calculation time ratio mmINT/mmINTone
shows a similar behaviour. mmINTone is shown as reference.
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Figure 9: Calculation time needed for interpolating artificial
images with different content. mmINT vs mmINTone.

using mmINTone instead of mmINT can thus be one or two
orders of magnitude. The progress of the increases is similar
to those shown in fig. 8.

Fig. 9 shows a plot of the average calculation time for
the interpolation of the 16 artificial images with mmINT and
mmINTone, from magnification 2 up to 30. By fitting a poly-
nomial to the time measurements, we obtain a cubic rela-
tionship for mmINT (t ∝ M3) and a quadratic relationship for
mmINTone (t ∝ M2).

With the hit-miss transform, 4τ2 + τ + 4 operations are
needed for the detection of a corner pixel, which is small for
mmINTone (τ = 1), but can become large for mmINT.

4.2.2 Realistic images

We also take 33 realistic binary images, such as logos, car-
toons, text and diagrams, with different sizes (ranging from
14× 42 to 504× 300 pixels) and different content (ranging
from 4 to 38 needed iterations with mmINT). The timing
experiments are performed on an AMD Athlon XP 4000+
(2.41 GHz, 2 GB RAM, 64 bit) running Linux, kernel v2.6.11.

The average processing time ratios mmINT/mmINTone
increase with the desired magnification. For M = 4, M = 11
and M = 30, the ratio is 1.5, 2.6 and 12, respectively. The
ratio strongly depends on the number of iterations needed
with mmINT (maximum ratios are 4.3, 17 and 128, resp., the
smallest ratio is 1.0). We can fit this ratio linearly with the
number of iterations needed with mmINT.

5. CONCLUSIONS

We presented a binary interpolation technique, mmINTone,
based on the morphological hit-miss transform. The visual
quality of mmINTone is better than that of other methods and
comparable to that of mmINT. mmINTone tends to better
round curved lines than mmINT, but, on the other hand, it
can generate small artefacts at protrusions in the image.

While mmINT needs several iterations for optimal inter-
polation, mmINTone only needs one iteration. Therefore, we
now have a method with a processing time independent of
the image complexity, and several factors lower than that of
mmINT. In some cases, a speed gain of more than a factor
100 can be obtained.
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