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Abstract— This papers deals with the analysis of shape
and size of the debris particles obtained from wear exper-
iments on polymers using image processing. Two analysis
techniques that are very promising in this respect are the
morphological pattern spectrum and the Fourier spectrum.
They can be used to extract parameters that relate to par-
ticle size and shape. We experimentally compare different
choices for these parameters in order to determine the use-
fulness of the pattern spectrum in the field of material sci-
ence. The first tests were done on a polymer called “poly-
imide”. We performed wear experiments with different tem-
peratures, loads and frequencies. In the future we will per-
form experiments on composite materials.

Keywords— mathematical morphology; sliding bearing
materials; pattern spectrum; opening tree; fast Fourier
transform

I. INTRODUCTION

Composite materials are useful as friction bearing ma-
terials. They are used, e.g. in the motors of many house-
hold appliances and for telescopic arms or sluices. We
concentrate on dry bearing materials, which are used with-
out lubrification, as used in e.g. machinery for food and
pharmaceuticals processing. In comparison with the tradi-
tional bearings, the composite bearings have many advan-
tages: low noise, shock proof, simple assembly and dis-
assembly, high maximum rotational frequencies and high
life expectation. As such, there is a great interest in exper-
imentally evaluating their friction and wear properties and
relating them to external parameters (motor speed, temper-
ature, pressure, . . . ). A microscopic study of the fibres can
help us understand what is happening physically, and al-
lows us to choose the right materials to build bearing con-
structions. The microscopic images have to be analysed,
so image processing is needed for preprocessing and to do
the analysis.

A. Tribology

Tribology is the science and technology of interacting
surfaces in relative motion and the practices related thereto
[1]. Traditional parameters studied in tribological investi-

gations are the normal and the friction forces, which allow
us to determine one of the most important physical param-
eters: the friction coefficient. This parameter is important
because friction produces heat, and thus the friction coeffi-
cient should be minimized. It depends on many parameters
such as normal load, speed and temperature.

Another interesting parameter to measure is the vertical
displacement. This gives an indication of the wear rate, or
how fast a material wears under certain conditions.

Nowadays it is not enough to know how fast materials
wear, but we want to understand how they wear, what the
major processes are, all in order to pick up the better ma-
terial combination. Lots of different processes contribute
to wear. The most important mechanisms are adhesion,
abrasion, corrosion, fretting, pitting and delamination.

II. EXPERIMENTAL SETUP

The test samples are installed onto a pin-on-plate setup
(Plint TE-77) (fig. 1) where a steel pin applies a normal
force on the sample while moving forward and backward.
This will wear the material.

To visualise the different types of wear, a camera images
the surface of the test samples during the wear process.
Also, the debris particles resulting from the wear process
are collected and photographed. The analysis of the shape
and size of these particles in the pictures will hopefully
help us with the understanding of the wear process, and
with the correlation between all the parameters collected
during a test.

Although this paper deals only with the image process-
ing aspects, the experimental setup also collects other in-
formation. Different sensors measure features such as nor-
mal and frictional forces, vertical displacement of the pin,
acceleration, temperature of the pin and the disk surface,
and acoustic emission (a non destructive evaluation tech-
nique [2]).

For the experiments described in this paper we have
used polymers called “polyimide”. The main difference
with a composite material is the absence of fibres that
strengthen the polymer. Future experiments will be per-

399



Fig. 1. Experimental setup of the pin-on-plate experiment.

formed on composite sliding materials with a pin-on-disc
setup. The wear particles look like the ones in fig. 2.
The original pictures were colour images with resolu-
tion 1300×1030, but are converted to 8 bit grayscale pic-
tures, since our image processing algorithms only work on
monochrome images. For display purposes, we also per-
formed a histogram equalisation to improve the contrast
between the background and the particles.

Three parameters are varied in the experiment: temper-
ature, load and frequency.

The friction causes the plate to heat up. The tempera-
ture, which started at room temperature, can be regulated
to stay at a certain value, or it can be kept free, resulting
in further heating up of the plate (“free T” in the table).
The load of the pin on the sample varies between 50 N
and 200 N. We use different frequencies for the movement
speed of the plate.

We have pictures with the following parameter values:

Temperature (◦C) Load (N) Frequency (Hz)
1 free T 100 10
2 free T 100 20
3 free T 100 40
4 100 50 10
5 100 100 10
6 100 150 10
7 100 200 10
8 180 50 10
9 180 100 10
10 180 150 10

III. METHODS

Different possibilities are available to extract informa-
tion from an image. One method is to perform a Fourier
transform on the image and to calculate some parameters.
Another possibility is to take into account the size and

Fig. 2. Grayscale image of the debris particles from a polymer.

shape information of the objects in the image. This can
be done with mathematical morphology.

A. Fourier Analysis

The Fourier transform [3] of an image gives us an en-
ergy spectrum that reflects the grayscale periodicity (spa-
tial frequency spectrum) in the image. Large image objects
will have low frequency values, small objects will be rep-
resented by the higher frequencies. The Fourier transform
lacks the ability of spatial localisation, but in our case this
is not a problem, since our debris particles don’t have to
be localised. The particles in the pictures don’t behave pe-
riodically, but we hope the size distribution has it’s effect
on the shape of the Fourier spectrum.

An image is transformed with the two dimensional
Fast (Discrete) Fourier Transform (FFT). This results in
a two dimensional (real) spatial frequency energy spec-
trum (fig. 3). In order to calculate some first-order his-
togram features and to remove the orientation dependence
of the FFT-spectrum, we transform the 2D-spectrum into
a 1D-spectrum (FFTh) with on the abscissa the spatial fre-
quency

√

ν2
x + ν2

y . We use MatlabTM for the calculation of
the FFTh.

From the histogram, we compute the following parame-
ters, which will be discussed further on:
• Mean: the average value:

SM = b̄ =
∑

b

bP (b), (1)

with b the histogram index and P (b) the value of histogram
index b divided by the image area;
• Standard deviation: the spread of the values:

SD = σb =

[

∑

b

(b− b̄)2P (b)

]1/2

; (2)

400



ν
x

ν y

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

1000

Fig. 3. Fast Fourier Transformed image.

• Skewness: the asymmetry of the histogram curve:

SS =
1

σ3
b

∑

b

(b− b̄)3P (b); (3)

• Kurtosis: curve shape relative to a normal distribution:

SK =
1

σ4
b

∑

b

(b− b̄)4P (b)− 3; (4)

• Energy:
SN =

∑

b

P (b)2; (5)

• Entropy:

SE = −
∑

b

P (b) log2 P (b). (6)

B. Mathematical morphology

Mathematical morphology (MM) [4] is based on set the-
ory. The shapes of objects in a binary image are repre-
sented by object membership sets. This theory can be
extended to grayscale images. Morphological operations
can simplify image data, preserving the objects’ essential
shape characteristics, and can eliminate irrelevant objects.
The main advantage of a morphological filter for example
is the ability to preserve the shape of large enough objects,
unlike a Gaussian filter which blurs small and big objects
indiscriminately. MM is also a useful tool for segmenting
regions of interest.

Mathematical morphology is based on two basic oper-
ations: dilation, which fills holes and smoothens the con-
tour lines, and erosion, which removes small objects and
disconnects objects connected by a small bridge. Such
operations are defined in terms of a structuring element
(short: strel), a small window that scans the image and

alters the pixels in function of its window content. The
choice of the proper strel is important. A dilation of image
A with strel B (A ⊕ B) blows up the object, an erosion
(AªB) lets it shrink (see fig. 4).

Other operations, like the opening (an erosion followed
by a dilation) and the closing (a dilation followed by an
erosion), are derived from the basic operators.

Fig. 4. Schematic example of the basic morphological oper-
ators. Solid line: original object; Dashed line: result object;
Circle: structuring element. Left: dilation; Right: erosion.

B.1 Pattern spectrum

If we take a strel and perform an opening on an image,
some elements will disappear. If we take a bigger strel,
then more elements in the image will vanish. In this way
we can determine how the number of eliminated pixels in-
creases when the image is morphologically opened using
strels nB = B ⊕B ⊕ . . .⊕B (n times) of increasing size
n. The resulting plot of the number of eliminated pixels
versus the strel size n is called the pattern spectrum (PS)
or the granulometric curve [5].

The pattern spectrum is a histogram of the distribution
of the sizes of various objects displayed in an image. For-
mally, it is defined as follows:

PS(A;B)(n) = ][A ◦ nB \ A ◦ (n+ 1)B], n ≥ 0 (7)

where ◦ is the opening symbol, \ is the pixelwise dif-
ference and ] is the count of grayscale pixels. Note that
0B = {0}.

There is an analogy with the Fourier spectrum: the low
frequencies in the Fourier spectrum relate to the global fea-
tures of the image or the smooth objects, the high frequen-
cies to the details or the fast grayscale variations. Simi-
larly, big structuring elements in the pattern spectrum show
the global features of the image or the large smooth ob-
jects, while small sized strels also preserve the details or
the small rough objects.

An example: fig. 5 shows the pattern spectrum of the
first image in the series of fig. 6. In this figure you can see
the residues after an opening operation (left to right, top to
bottom). First the small objects are eliminated, finally the
big ones.
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Fig. 5. The pattern spectrum (norm.) of image A (fig. 6 upper-
left) with opening with structuring element B (a disk with ra-
dius 5).

Fig. 6. The residues after opening the image with increasing
structuring element (a disk starting with radius 5).

From the pattern spectrum we can extract different pa-
rameters [5], [6] such as:
• mean object size (area):

S(A;B) =

∑

n nPS(A;B)(n)
∑

a∈A A(a)
; (8)

• entropy (average roughness): a quantification of the
shape-size complexity:

E(A;B) = −

∑

n PS(A;B)(n) log2
PS(A;B)(n)
∑

a∈A
A(a)

∑

a∈A A(a)
; (9)

• normalised average roughness:

EN(A;B) =
E(A;B)

log2(N + 1)
; (10)

• B-shapiness: a quantitative measure of the resemblance
of the objects to the strel shape:

BS(A;B) =
PS(A;B)(Nmax)

∑

a∈A A(a)
; (11)

• maximal n (Nmax): the last bin (the highest n-value,
when all image objects are sieved out) of the pattern spec-
trum histogram.

These parameters provide statistical information about
the content of the image, like mean object size, shape, di-
rection, variation, . . . . Notice that using a different strel
results in another pattern spectrum, and thus in other val-
ues for the parameters. In the experiments we will use a
square structuring element, in order to be able to compare
with the pseudo-granulometry (section III-C).

Since the calculation time of the pattern spectrum is very
high, there is need for other, similar techniques [7], [8].
We will investigate two techniques: a block based tech-
nique and the pseudo-granulometry by minima of linear
openings [7].

B.2 Block based technique

The block based technique divides the images into
smaller blocks that are processed independently. This
should lower the total calculation time, but introduces a
potential problem: a particle at a block boundary will be
treated as multiple particles or as a smaller particle. Or in
some cases even as a bigger particle. We investigate the
resulting deteriorations experimentally. Different sizes for
the subimages are used and verified.

C. Opening tree

The opening tree [9] makes it possible to approximate
the pattern spectrum for grayscale images, with the cal-
culation time about three orders of magnitude faster than
the traditional pattern spectrum calculation. The opening
tree is a hierarchical technique where the image pixels are
the leaves and the nodes are made of pairs (h, n), where
h is a grayscale value and n is an opening size. The algo-
rithm works row-per-row or column-per-column, but can
be extended to a two dimensional version. In that case we
get the so-called pseudo-granulometry by minima of linear
openings or the granulometry by maxima of linear open-
ings. The pseudo-granulometric curve should be a good
approximation of a square granulometry because of simi-
lar image features. We will test this. For a discussion of
the algorithm we refer to the original articles [7], [9].
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In the 1D-case we will calculate the horizontal (1d.h),
vertical (1d.v) and diagonal (both upper-left to lower-
right (1d.dm) and upper-right to lower-left (1d.dp))
opening trees. In the 2D-case we will determine the
(pseudo-)granulometry for a horizontal and vertical open-
ing tree (*.hv), for the two diagonal opening trees
(*.dd), and for the horizontal, vertical and diagonal open-
ing trees (*.all). We will make a calculation with the
maximal openings (max.*) and with the minimal open-
ings (min.*).

The opening tree and pattern spectrum algorithms are
written in C.

IV. RESULTS

A. Calculation time

In this section we compare the calculation times for the
different algorithms used. Seventeen images with resolu-
tion 1300×1030 were processed. The methods are the Fast
Fourier Transform histogram, the pattern spectrum algo-
rithm, the pattern spectrum for images divided in subim-
ages, where each subimage is processed independently
(split into (3×4), (10×10) and (20×20) different images),
and the opening tree algorithm (1D and 2D).

The average results for one image are: the FFTh algo-
rithm only takes a few seconds, for the opening tree tens
of seconds are needed, the calculation time for the block
based technique goes from a few hours (20×20 subim-
ages) to a few days (3×4 subimages), while the calculation
of the classical pattern spectrum takes a few days.

The calculations were made on a PC with an AMD
Athlon XP processor (CPU-speed about 1.6 GHz) and with
1 GB of RAM. Other processes were running on the com-
puters at the same time, though.

For the block based technique, the calculation time is the
sum of the different block images. We have not taken into
account the time necessary to split the images and merge
the results.

The fastest technique is definitely the FFTh, followed
by the opening tree algorithm. This algorithm is faster than
the exact pattern spectrum algorithm by a factor 2000. This
is a remarkable improvement which doesn’t seem plau-
sible, but another author [9] also reports time reductions
of several orders of magnitude. Note that both algorithms
were implemented in C, so the large difference is not due
to a big difference in implementation efficiency. The cal-
culation time of PS(A;B)(n) increases (in a nonlinear
way) whit n, because for every increase of n with 1 an
extra erosion and dilatation have to be performed. It is
not possible to use previously obtained information from
the morphological opening for a calculation with another

n-value. This problem is not present in the opening tree al-
gorithm. The 1D opening tree is five times faster than the
2D opening tree. With the block based technique, the clas-
sical algorithm becomes faster (factor 40 when the image
has been divided in 400 subimages), but the time necessary
to split and merge the (sub)images still has to be taken into
account. In section IV-D we will investigate the usefulness
of this technique.

B. Fourier Analysis

We calculated six parameters. Table I shows the cor-
relation coefficients P between the different spectrum pa-
rameters and the different experimental parameters (fre-
quency, load and temperature). It also shows the value P̃ ,
the probability of getting a correlation as large as the ob-
served value by random chance, when the true correlation
is zero. So it is important that the value for P is close to
1 and the value for P̃ is low. Since there are too few pic-
tures available to do the statistical analysis, the P̃ value
will be quite large in most of the reported results. We hope
this problem is solved in the future. In the case of the cor-
relation of the temperature with the spectrum parameters
no value of P̃ is listed, since only two observations were
available.

From the correlation tables we observe the following
trends for the parameters from the FFTh:
• Frequency is proportional to entropy;
• Temperature is proportional to mean and standard de-
viation;
• Load is proportional to kurtosis and skewness when
T = 100 ◦C;
• Load is inversely proportional to energy and mean when
T = 180 ◦C;
• Load is proportional to entropy in both cases but with
lesser probability.

Overall, entropy correlates best with the physical param-
eters.

C. Pattern spectrum

The pattern spectrum gives us information about the
sizes and shapes of the objects in the image. We calcu-
lated the spectrum by using a square structuring element,
starting at size 2×2. Here we calculated five parameters.
Table II shows the correlation coefficients P for the differ-
ent spectrum parameters with the different experimental
parameters (frequency, load and temperature).

Some correlation between the parameters from the ex-
periment (frequency, temperature and load) and the param-
eters from the pattern spectrum can be seen:
• Frequency is inversely proportional to roughness, nor-
malised roughness and shapiness;
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TABLE I
CORRELATION COEFFICIENTS FOR THE FFTH PARAMETERS

Mean Std Skewness Kurtosis Energy Entropy

Frequency P 0.60 0.37 -0.64 -0.61 -0.51 0.78
free T, L = 100 N P̃ 0.59 0.76 0.55 0.59 0.66 0.43

Temperature P 1 1 1 1 1 -1
L = 50 N P̃ —- — — — — —

Temperature P 1 1 -1 -1 -1 1
L = 100 N P̃ — — — — — —

Temperature P 1 1 1 1 -1 1
L = 150 N P̃ — — — — — —

Load P -0.14 0.62 0.87 0.86 -0.0087 -0.67
T = 100 ◦C P̃ 0.86 0.38 0.14 0.14 0.99 0.33

Load P -0.83 -0.25 0.44 0.41 -0.94 -0.63
T = 180 ◦C P̃ 0.38 0.84 0.71 0.73 0.23 0.57

TABLE II
CORRELATION COEFFICIENTS FOR THE PS PARAMETERS

Size Roughness Norm. roughness Nmax Shapiness

Frequency P -0.68 -0.88 -0.94 -0.10 -0.90
free T, L = 100 N P̃ 0.53 0.32 0.23 0.94 0.28

Temperature P -1 1 1 -1 -1
L = 50 N P̃ — — — — —

Temperature P -1 -1 1 -1 -1
L = 100 N P̃ — — — — —

Temperature P -1 -1 -1 -1 1
L = 150 N P̃ — — — — —

Load P 0.55 0.96 0.93 0.88 -0.79
T = 100 ◦C P̃ 0.45 0.037 0.074 0.12 0.21

Load P 0.98 0.95 0.48 0.93 0.51
T = 180 ◦C P̃ 0.14 0.20 0.68 0.23 0.66

• Temperature inversely proportional to size and Nmax;
• Load is proportional to normalised roughness when
T = 100 ◦C;
• Load is proportional to size when T = 180 ◦C;
• Load is proportional to roughness and Nmax in both
cases.

Overall, roughness and normalised roughness correlate
best with the physical parameters, and they show the same
behaviour.

Compared to the FFTh parameters (section IV-B), there
is a better correlation between the experimental parameters
and those from the pattern spectrum.

As stated before, the number of pictures that were avail-
able is small. Therefore the presented results are prelimi-
nary. More data are needed.

D. Block based technique

When the number of subimages increases, the values of
size, Nmax en roughness decrease. The values of shapi-
ness and normalised roughness increase. Fig. 7 shows the
differences between the pattern spectra. At lower n-values,
the spectra from the images divided into more blocks show
higher PS-values, but lower PS-values at higher n and
lower Nmax-values. Notice from the insert in fig. 7 that
Nmax for the 3×4-case is higher than the one for the orig-
inal image. This is due to boundary effects.

If we compare the correlation coefficients P and the co-
efficients P̃ for the full image (section IV-C) with the in
subimages divided images, then we notice the following:
when the number of subimages increases the correlation
between the frequency and the spectrum parameters im-
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Fig. 7. Part of the Pattern spectrum of the original image and
the into subimages divided (and afterwards merged) images.

proves, but it worsens between the load and the spectrum
parameters. Also, the parameter Nmax tends to become
inversely proportional with the load.

E. Opening tree

If we compare the pattern spectrum with the 2D opening
trees, then we get the following results (fig. 8): min.all
and min.dd visually look more like the exact PS than
min.hv, but this one is better than the 1D opening trees
and max.all is the most different. But overall min.hv’s
parameters agree more with the pattern spectrum than the
other opening trees, although values can differ strongly.
Roughness and normalised roughness from min.hv agree
most with the value from the PS (over 90 % resemblance),
followed by the parameter size (about 30 % too large). The
other parameters differ very much.

Table III shows the correlation coefficients P for the
different spectrum parameters of min.hv with the differ-
ent experimental parameters (frequency, load and temper-
ature).

Notice how for Nmax there is no correlation coefficient
available. This is due to the fact that the opening tree algo-
rithm on the present images almost always produces the
same value for Nmax. Therefore no correlation can be
found.

Some correlation between the parameters from the ex-
periment (frequency, temperature and load) and the param-
eters from the opening tree min.hv can be seen:
• Frequency is inversely proportional to roughness, nor-
malised roughness and size;
• Temperature is inversely proportional to size;
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Fig. 8. Comparison of the exact pattern spectrum with some 2D
opening trees.

• Load is proportional to roughness and normalised
roughness when T = 100 ◦C;
• Load is proportional to shapiness when T = 180 ◦C;
• Load is proportional to size in both cases.

Overall, roughness and normalised roughness, which
show almost exactly the same correlation, and size corre-
late best with the physical parameters.

For the other types of opening trees similar results are
obtained. There are slight differences between the diago-
nal opening trees and the other trees, but they are not sig-
nificant.

It seems that the parameters from the PS (section IV-C)
are better correlated with the experimental parameters than
the parameters from the opening tree are.

V. CONCLUSIONS

Although the images don’t contain enough debris par-
ticles and there are too little number of pictures to draw
definite and reliable conclusions, some indications for cor-
relation between the parameters of the FFTh/PS/opening
tree and the physical parameters from the experiment can
be seen.

The Fast Fourier Transform histogram is a fast tech-
nique where the parameter entropy is the best to clas-
sify the differently threated images. For the pattern spec-
trum algorithm the parameters roughness and normalised
roughness are the best, but this technique is very slow. The
opening tree algorithm is very fast compared to the exact
pattern spectrum algorithm and gives similar results (espe-
cially min.hv). Size is a useful parameter.

Concluding from the obtained results, the opening tree
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TABLE III
CORRELATION COEFFICIENTS FOR THE MIN.HV PARAMETERS

Size Roughness Norm. roughness Nmax Shapiness

Frequency P -0.77 -0.85 -0.85 — -0.54
free T, L = 100 N P̃ 0.44 0.36 0.36 — 0.64

Temperature P -1 1 1 — 1
L = 50 N P̃ — — — — —

Temperature P -1 -1 -1 — 1
L = 100 N P̃ — — — — —

Temperature P -1 1 1 — -1
L = 150 N P̃ — — — — —

Load P 0.88 0.90 0.90 — 0.23
T = 100 ◦C P̃ 0.12 0.097 0.097 — 0.77

Load P 0.95 0.60 0.60 — 0.79
T = 180 ◦C P̃ 0.20 0.59 0.59 — 0.42

is preferred to the FFTh because of its correlation accuracy
and to the PS because its huge speed improvement.

VI. FUTURE WORK

In the future we analyse more images with more de-
bris particles present. We will also do something about
the speckled background of the pictures (fig. 2).

If the colour content could be incorporated in the algo-
rithms, it would give us extra information.
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